1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides Objective-C code generation targeting the GNU runtime.  The
11// class in this file generates structures used by the GNU Objective-C runtime
12// library.  These structures are defined in objc/objc.h and objc/objc-api.h in
13// the GNU runtime distribution.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CGObjCRuntime.h"
18#include "CGCleanup.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Basic/FileManager.h"
27#include "clang/Basic/SourceManager.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/IR/CallSite.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Support/Compiler.h"
36#include <cstdarg>
37
38
39using namespace clang;
40using namespace CodeGen;
41
42
43namespace {
44/// Class that lazily initialises the runtime function.  Avoids inserting the
45/// types and the function declaration into a module if they're not used, and
46/// avoids constructing the type more than once if it's used more than once.
47class LazyRuntimeFunction {
48  CodeGenModule *CGM;
49  std::vector<llvm::Type*> ArgTys;
50  const char *FunctionName;
51  llvm::Constant *Function;
52  public:
53    /// Constructor leaves this class uninitialized, because it is intended to
54    /// be used as a field in another class and not all of the types that are
55    /// used as arguments will necessarily be available at construction time.
56    LazyRuntimeFunction()
57      : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
58
59    /// Initialises the lazy function with the name, return type, and the types
60    /// of the arguments.
61    END_WITH_NULL
62    void init(CodeGenModule *Mod, const char *name,
63        llvm::Type *RetTy, ...) {
64       CGM =Mod;
65       FunctionName = name;
66       Function = nullptr;
67       ArgTys.clear();
68       va_list Args;
69       va_start(Args, RetTy);
70         while (llvm::Type *ArgTy = va_arg(Args, llvm::Type*))
71           ArgTys.push_back(ArgTy);
72       va_end(Args);
73       // Push the return type on at the end so we can pop it off easily
74       ArgTys.push_back(RetTy);
75   }
76   /// Overloaded cast operator, allows the class to be implicitly cast to an
77   /// LLVM constant.
78   operator llvm::Constant*() {
79     if (!Function) {
80       if (!FunctionName) return nullptr;
81       // We put the return type on the end of the vector, so pop it back off
82       llvm::Type *RetTy = ArgTys.back();
83       ArgTys.pop_back();
84       llvm::FunctionType *FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
85       Function =
86         cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
87       // We won't need to use the types again, so we may as well clean up the
88       // vector now
89       ArgTys.resize(0);
90     }
91     return Function;
92   }
93   operator llvm::Function*() {
94     return cast<llvm::Function>((llvm::Constant*)*this);
95   }
96
97};
98
99
100/// GNU Objective-C runtime code generation.  This class implements the parts of
101/// Objective-C support that are specific to the GNU family of runtimes (GCC,
102/// GNUstep and ObjFW).
103class CGObjCGNU : public CGObjCRuntime {
104protected:
105  /// The LLVM module into which output is inserted
106  llvm::Module &TheModule;
107  /// strut objc_super.  Used for sending messages to super.  This structure
108  /// contains the receiver (object) and the expected class.
109  llvm::StructType *ObjCSuperTy;
110  /// struct objc_super*.  The type of the argument to the superclass message
111  /// lookup functions.
112  llvm::PointerType *PtrToObjCSuperTy;
113  /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
114  /// SEL is included in a header somewhere, in which case it will be whatever
115  /// type is declared in that header, most likely {i8*, i8*}.
116  llvm::PointerType *SelectorTy;
117  /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
118  /// places where it's used
119  llvm::IntegerType *Int8Ty;
120  /// Pointer to i8 - LLVM type of char*, for all of the places where the
121  /// runtime needs to deal with C strings.
122  llvm::PointerType *PtrToInt8Ty;
123  /// Instance Method Pointer type.  This is a pointer to a function that takes,
124  /// at a minimum, an object and a selector, and is the generic type for
125  /// Objective-C methods.  Due to differences between variadic / non-variadic
126  /// calling conventions, it must always be cast to the correct type before
127  /// actually being used.
128  llvm::PointerType *IMPTy;
129  /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
130  /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
131  /// but if the runtime header declaring it is included then it may be a
132  /// pointer to a structure.
133  llvm::PointerType *IdTy;
134  /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
135  /// message lookup function and some GC-related functions.
136  llvm::PointerType *PtrToIdTy;
137  /// The clang type of id.  Used when using the clang CGCall infrastructure to
138  /// call Objective-C methods.
139  CanQualType ASTIdTy;
140  /// LLVM type for C int type.
141  llvm::IntegerType *IntTy;
142  /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
143  /// used in the code to document the difference between i8* meaning a pointer
144  /// to a C string and i8* meaning a pointer to some opaque type.
145  llvm::PointerType *PtrTy;
146  /// LLVM type for C long type.  The runtime uses this in a lot of places where
147  /// it should be using intptr_t, but we can't fix this without breaking
148  /// compatibility with GCC...
149  llvm::IntegerType *LongTy;
150  /// LLVM type for C size_t.  Used in various runtime data structures.
151  llvm::IntegerType *SizeTy;
152  /// LLVM type for C intptr_t.
153  llvm::IntegerType *IntPtrTy;
154  /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
155  llvm::IntegerType *PtrDiffTy;
156  /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
157  /// variables.
158  llvm::PointerType *PtrToIntTy;
159  /// LLVM type for Objective-C BOOL type.
160  llvm::Type *BoolTy;
161  /// 32-bit integer type, to save us needing to look it up every time it's used.
162  llvm::IntegerType *Int32Ty;
163  /// 64-bit integer type, to save us needing to look it up every time it's used.
164  llvm::IntegerType *Int64Ty;
165  /// Metadata kind used to tie method lookups to message sends.  The GNUstep
166  /// runtime provides some LLVM passes that can use this to do things like
167  /// automatic IMP caching and speculative inlining.
168  unsigned msgSendMDKind;
169  /// Helper function that generates a constant string and returns a pointer to
170  /// the start of the string.  The result of this function can be used anywhere
171  /// where the C code specifies const char*.
172  llvm::Constant *MakeConstantString(const std::string &Str,
173                                     const std::string &Name="") {
174    llvm::Constant *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
175    return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros);
176  }
177  /// Emits a linkonce_odr string, whose name is the prefix followed by the
178  /// string value.  This allows the linker to combine the strings between
179  /// different modules.  Used for EH typeinfo names, selector strings, and a
180  /// few other things.
181  llvm::Constant *ExportUniqueString(const std::string &Str,
182                                     const std::string prefix) {
183    std::string name = prefix + Str;
184    llvm::Constant *ConstStr = TheModule.getGlobalVariable(name);
185    if (!ConstStr) {
186      llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
187      ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
188              llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
189    }
190    return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros);
191  }
192  /// Generates a global structure, initialized by the elements in the vector.
193  /// The element types must match the types of the structure elements in the
194  /// first argument.
195  llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
196                                   ArrayRef<llvm::Constant *> V,
197                                   StringRef Name="",
198                                   llvm::GlobalValue::LinkageTypes linkage
199                                         =llvm::GlobalValue::InternalLinkage) {
200    llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
201    return new llvm::GlobalVariable(TheModule, Ty, false,
202        linkage, C, Name);
203  }
204  /// Generates a global array.  The vector must contain the same number of
205  /// elements that the array type declares, of the type specified as the array
206  /// element type.
207  llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
208                                   ArrayRef<llvm::Constant *> V,
209                                   StringRef Name="",
210                                   llvm::GlobalValue::LinkageTypes linkage
211                                         =llvm::GlobalValue::InternalLinkage) {
212    llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
213    return new llvm::GlobalVariable(TheModule, Ty, false,
214                                    linkage, C, Name);
215  }
216  /// Generates a global array, inferring the array type from the specified
217  /// element type and the size of the initialiser.
218  llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
219                                        ArrayRef<llvm::Constant *> V,
220                                        StringRef Name="",
221                                        llvm::GlobalValue::LinkageTypes linkage
222                                         =llvm::GlobalValue::InternalLinkage) {
223    llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
224    return MakeGlobal(ArrayTy, V, Name, linkage);
225  }
226  /// Returns a property name and encoding string.
227  llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
228                                             const Decl *Container) {
229    const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
230    if ((R.getKind() == ObjCRuntime::GNUstep) &&
231        (R.getVersion() >= VersionTuple(1, 6))) {
232      std::string NameAndAttributes;
233      std::string TypeStr;
234      CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
235      NameAndAttributes += '\0';
236      NameAndAttributes += TypeStr.length() + 3;
237      NameAndAttributes += TypeStr;
238      NameAndAttributes += '\0';
239      NameAndAttributes += PD->getNameAsString();
240      return llvm::ConstantExpr::getGetElementPtr(
241          CGM.GetAddrOfConstantCString(NameAndAttributes), Zeros);
242    }
243    return MakeConstantString(PD->getNameAsString());
244  }
245  /// Push the property attributes into two structure fields.
246  void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields,
247      ObjCPropertyDecl *property, bool isSynthesized=true, bool
248      isDynamic=true) {
249    int attrs = property->getPropertyAttributes();
250    // For read-only properties, clear the copy and retain flags
251    if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
252      attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
253      attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
254      attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
255      attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
256    }
257    // The first flags field has the same attribute values as clang uses internally
258    Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
259    attrs >>= 8;
260    attrs <<= 2;
261    // For protocol properties, synthesized and dynamic have no meaning, so we
262    // reuse these flags to indicate that this is a protocol property (both set
263    // has no meaning, as a property can't be both synthesized and dynamic)
264    attrs |= isSynthesized ? (1<<0) : 0;
265    attrs |= isDynamic ? (1<<1) : 0;
266    // The second field is the next four fields left shifted by two, with the
267    // low bit set to indicate whether the field is synthesized or dynamic.
268    Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
269    // Two padding fields
270    Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
271    Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
272  }
273  /// Ensures that the value has the required type, by inserting a bitcast if
274  /// required.  This function lets us avoid inserting bitcasts that are
275  /// redundant.
276  llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
277    if (V->getType() == Ty) return V;
278    return B.CreateBitCast(V, Ty);
279  }
280  // Some zeros used for GEPs in lots of places.
281  llvm::Constant *Zeros[2];
282  /// Null pointer value.  Mainly used as a terminator in various arrays.
283  llvm::Constant *NULLPtr;
284  /// LLVM context.
285  llvm::LLVMContext &VMContext;
286private:
287  /// Placeholder for the class.  Lots of things refer to the class before we've
288  /// actually emitted it.  We use this alias as a placeholder, and then replace
289  /// it with a pointer to the class structure before finally emitting the
290  /// module.
291  llvm::GlobalAlias *ClassPtrAlias;
292  /// Placeholder for the metaclass.  Lots of things refer to the class before
293  /// we've / actually emitted it.  We use this alias as a placeholder, and then
294  /// replace / it with a pointer to the metaclass structure before finally
295  /// emitting the / module.
296  llvm::GlobalAlias *MetaClassPtrAlias;
297  /// All of the classes that have been generated for this compilation units.
298  std::vector<llvm::Constant*> Classes;
299  /// All of the categories that have been generated for this compilation units.
300  std::vector<llvm::Constant*> Categories;
301  /// All of the Objective-C constant strings that have been generated for this
302  /// compilation units.
303  std::vector<llvm::Constant*> ConstantStrings;
304  /// Map from string values to Objective-C constant strings in the output.
305  /// Used to prevent emitting Objective-C strings more than once.  This should
306  /// not be required at all - CodeGenModule should manage this list.
307  llvm::StringMap<llvm::Constant*> ObjCStrings;
308  /// All of the protocols that have been declared.
309  llvm::StringMap<llvm::Constant*> ExistingProtocols;
310  /// For each variant of a selector, we store the type encoding and a
311  /// placeholder value.  For an untyped selector, the type will be the empty
312  /// string.  Selector references are all done via the module's selector table,
313  /// so we create an alias as a placeholder and then replace it with the real
314  /// value later.
315  typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
316  /// Type of the selector map.  This is roughly equivalent to the structure
317  /// used in the GNUstep runtime, which maintains a list of all of the valid
318  /// types for a selector in a table.
319  typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
320    SelectorMap;
321  /// A map from selectors to selector types.  This allows us to emit all
322  /// selectors of the same name and type together.
323  SelectorMap SelectorTable;
324
325  /// Selectors related to memory management.  When compiling in GC mode, we
326  /// omit these.
327  Selector RetainSel, ReleaseSel, AutoreleaseSel;
328  /// Runtime functions used for memory management in GC mode.  Note that clang
329  /// supports code generation for calling these functions, but neither GNU
330  /// runtime actually supports this API properly yet.
331  LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
332    WeakAssignFn, GlobalAssignFn;
333
334  typedef std::pair<std::string, std::string> ClassAliasPair;
335  /// All classes that have aliases set for them.
336  std::vector<ClassAliasPair> ClassAliases;
337
338protected:
339  /// Function used for throwing Objective-C exceptions.
340  LazyRuntimeFunction ExceptionThrowFn;
341  /// Function used for rethrowing exceptions, used at the end of \@finally or
342  /// \@synchronize blocks.
343  LazyRuntimeFunction ExceptionReThrowFn;
344  /// Function called when entering a catch function.  This is required for
345  /// differentiating Objective-C exceptions and foreign exceptions.
346  LazyRuntimeFunction EnterCatchFn;
347  /// Function called when exiting from a catch block.  Used to do exception
348  /// cleanup.
349  LazyRuntimeFunction ExitCatchFn;
350  /// Function called when entering an \@synchronize block.  Acquires the lock.
351  LazyRuntimeFunction SyncEnterFn;
352  /// Function called when exiting an \@synchronize block.  Releases the lock.
353  LazyRuntimeFunction SyncExitFn;
354
355private:
356
357  /// Function called if fast enumeration detects that the collection is
358  /// modified during the update.
359  LazyRuntimeFunction EnumerationMutationFn;
360  /// Function for implementing synthesized property getters that return an
361  /// object.
362  LazyRuntimeFunction GetPropertyFn;
363  /// Function for implementing synthesized property setters that return an
364  /// object.
365  LazyRuntimeFunction SetPropertyFn;
366  /// Function used for non-object declared property getters.
367  LazyRuntimeFunction GetStructPropertyFn;
368  /// Function used for non-object declared property setters.
369  LazyRuntimeFunction SetStructPropertyFn;
370
371  /// The version of the runtime that this class targets.  Must match the
372  /// version in the runtime.
373  int RuntimeVersion;
374  /// The version of the protocol class.  Used to differentiate between ObjC1
375  /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
376  /// components and can not contain declared properties.  We always emit
377  /// Objective-C 2 property structures, but we have to pretend that they're
378  /// Objective-C 1 property structures when targeting the GCC runtime or it
379  /// will abort.
380  const int ProtocolVersion;
381private:
382  /// Generates an instance variable list structure.  This is a structure
383  /// containing a size and an array of structures containing instance variable
384  /// metadata.  This is used purely for introspection in the fragile ABI.  In
385  /// the non-fragile ABI, it's used for instance variable fixup.
386  llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
387                                   ArrayRef<llvm::Constant *> IvarTypes,
388                                   ArrayRef<llvm::Constant *> IvarOffsets);
389  /// Generates a method list structure.  This is a structure containing a size
390  /// and an array of structures containing method metadata.
391  ///
392  /// This structure is used by both classes and categories, and contains a next
393  /// pointer allowing them to be chained together in a linked list.
394  llvm::Constant *GenerateMethodList(const StringRef &ClassName,
395      const StringRef &CategoryName,
396      ArrayRef<Selector> MethodSels,
397      ArrayRef<llvm::Constant *> MethodTypes,
398      bool isClassMethodList);
399  /// Emits an empty protocol.  This is used for \@protocol() where no protocol
400  /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
401  /// real protocol.
402  llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
403  /// Generates a list of property metadata structures.  This follows the same
404  /// pattern as method and instance variable metadata lists.
405  llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
406        SmallVectorImpl<Selector> &InstanceMethodSels,
407        SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
408  /// Generates a list of referenced protocols.  Classes, categories, and
409  /// protocols all use this structure.
410  llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
411  /// To ensure that all protocols are seen by the runtime, we add a category on
412  /// a class defined in the runtime, declaring no methods, but adopting the
413  /// protocols.  This is a horribly ugly hack, but it allows us to collect all
414  /// of the protocols without changing the ABI.
415  void GenerateProtocolHolderCategory();
416  /// Generates a class structure.
417  llvm::Constant *GenerateClassStructure(
418      llvm::Constant *MetaClass,
419      llvm::Constant *SuperClass,
420      unsigned info,
421      const char *Name,
422      llvm::Constant *Version,
423      llvm::Constant *InstanceSize,
424      llvm::Constant *IVars,
425      llvm::Constant *Methods,
426      llvm::Constant *Protocols,
427      llvm::Constant *IvarOffsets,
428      llvm::Constant *Properties,
429      llvm::Constant *StrongIvarBitmap,
430      llvm::Constant *WeakIvarBitmap,
431      bool isMeta=false);
432  /// Generates a method list.  This is used by protocols to define the required
433  /// and optional methods.
434  llvm::Constant *GenerateProtocolMethodList(
435      ArrayRef<llvm::Constant *> MethodNames,
436      ArrayRef<llvm::Constant *> MethodTypes);
437  /// Returns a selector with the specified type encoding.  An empty string is
438  /// used to return an untyped selector (with the types field set to NULL).
439  llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
440    const std::string &TypeEncoding, bool lval);
441  /// Returns the variable used to store the offset of an instance variable.
442  llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
443      const ObjCIvarDecl *Ivar);
444  /// Emits a reference to a class.  This allows the linker to object if there
445  /// is no class of the matching name.
446protected:
447  void EmitClassRef(const std::string &className);
448  /// Emits a pointer to the named class
449  virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
450                                     const std::string &Name, bool isWeak);
451  /// Looks up the method for sending a message to the specified object.  This
452  /// mechanism differs between the GCC and GNU runtimes, so this method must be
453  /// overridden in subclasses.
454  virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
455                                 llvm::Value *&Receiver,
456                                 llvm::Value *cmd,
457                                 llvm::MDNode *node,
458                                 MessageSendInfo &MSI) = 0;
459  /// Looks up the method for sending a message to a superclass.  This
460  /// mechanism differs between the GCC and GNU runtimes, so this method must
461  /// be overridden in subclasses.
462  virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
463                                      llvm::Value *ObjCSuper,
464                                      llvm::Value *cmd,
465                                      MessageSendInfo &MSI) = 0;
466  /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
467  /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
468  /// bits set to their values, LSB first, while larger ones are stored in a
469  /// structure of this / form:
470  ///
471  /// struct { int32_t length; int32_t values[length]; };
472  ///
473  /// The values in the array are stored in host-endian format, with the least
474  /// significant bit being assumed to come first in the bitfield.  Therefore,
475  /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
476  /// while a bitfield / with the 63rd bit set will be 1<<64.
477  llvm::Constant *MakeBitField(ArrayRef<bool> bits);
478public:
479  CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
480      unsigned protocolClassVersion);
481
482  llvm::Constant *GenerateConstantString(const StringLiteral *) override;
483
484  RValue
485  GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
486                      QualType ResultType, Selector Sel,
487                      llvm::Value *Receiver, const CallArgList &CallArgs,
488                      const ObjCInterfaceDecl *Class,
489                      const ObjCMethodDecl *Method) override;
490  RValue
491  GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
492                           QualType ResultType, Selector Sel,
493                           const ObjCInterfaceDecl *Class,
494                           bool isCategoryImpl, llvm::Value *Receiver,
495                           bool IsClassMessage, const CallArgList &CallArgs,
496                           const ObjCMethodDecl *Method) override;
497  llvm::Value *GetClass(CodeGenFunction &CGF,
498                        const ObjCInterfaceDecl *OID) override;
499  llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
500                           bool lval = false) override;
501  llvm::Value *GetSelector(CodeGenFunction &CGF,
502                           const ObjCMethodDecl *Method) override;
503  llvm::Constant *GetEHType(QualType T) override;
504
505  llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
506                                 const ObjCContainerDecl *CD) override;
507  void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
508  void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
509  void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
510  llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
511                                   const ObjCProtocolDecl *PD) override;
512  void GenerateProtocol(const ObjCProtocolDecl *PD) override;
513  llvm::Function *ModuleInitFunction() override;
514  llvm::Constant *GetPropertyGetFunction() override;
515  llvm::Constant *GetPropertySetFunction() override;
516  llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
517                                                  bool copy) override;
518  llvm::Constant *GetSetStructFunction() override;
519  llvm::Constant *GetGetStructFunction() override;
520  llvm::Constant *GetCppAtomicObjectGetFunction() override;
521  llvm::Constant *GetCppAtomicObjectSetFunction() override;
522  llvm::Constant *EnumerationMutationFunction() override;
523
524  void EmitTryStmt(CodeGenFunction &CGF,
525                   const ObjCAtTryStmt &S) override;
526  void EmitSynchronizedStmt(CodeGenFunction &CGF,
527                            const ObjCAtSynchronizedStmt &S) override;
528  void EmitThrowStmt(CodeGenFunction &CGF,
529                     const ObjCAtThrowStmt &S,
530                     bool ClearInsertionPoint=true) override;
531  llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
532                                 llvm::Value *AddrWeakObj) override;
533  void EmitObjCWeakAssign(CodeGenFunction &CGF,
534                          llvm::Value *src, llvm::Value *dst) override;
535  void EmitObjCGlobalAssign(CodeGenFunction &CGF,
536                            llvm::Value *src, llvm::Value *dest,
537                            bool threadlocal=false) override;
538  void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
539                          llvm::Value *dest, llvm::Value *ivarOffset) override;
540  void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
541                                llvm::Value *src, llvm::Value *dest) override;
542  void EmitGCMemmoveCollectable(CodeGenFunction &CGF, llvm::Value *DestPtr,
543                                llvm::Value *SrcPtr,
544                                llvm::Value *Size) override;
545  LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
546                              llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
547                              unsigned CVRQualifiers) override;
548  llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
549                              const ObjCInterfaceDecl *Interface,
550                              const ObjCIvarDecl *Ivar) override;
551  llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
552  llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
553                                     const CGBlockInfo &blockInfo) override {
554    return NULLPtr;
555  }
556  llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
557                                     const CGBlockInfo &blockInfo) override {
558    return NULLPtr;
559  }
560
561  llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
562    return NULLPtr;
563  }
564
565  llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
566                                       bool Weak = false) override {
567    return nullptr;
568  }
569};
570/// Class representing the legacy GCC Objective-C ABI.  This is the default when
571/// -fobjc-nonfragile-abi is not specified.
572///
573/// The GCC ABI target actually generates code that is approximately compatible
574/// with the new GNUstep runtime ABI, but refrains from using any features that
575/// would not work with the GCC runtime.  For example, clang always generates
576/// the extended form of the class structure, and the extra fields are simply
577/// ignored by GCC libobjc.
578class CGObjCGCC : public CGObjCGNU {
579  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
580  /// method implementation for this message.
581  LazyRuntimeFunction MsgLookupFn;
582  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
583  /// structure describing the receiver and the class, and a selector as
584  /// arguments.  Returns the IMP for the corresponding method.
585  LazyRuntimeFunction MsgLookupSuperFn;
586protected:
587  llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
588                         llvm::Value *cmd, llvm::MDNode *node,
589                         MessageSendInfo &MSI) override {
590    CGBuilderTy &Builder = CGF.Builder;
591    llvm::Value *args[] = {
592            EnforceType(Builder, Receiver, IdTy),
593            EnforceType(Builder, cmd, SelectorTy) };
594    llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
595    imp->setMetadata(msgSendMDKind, node);
596    return imp.getInstruction();
597  }
598  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
599                              llvm::Value *cmd, MessageSendInfo &MSI) override {
600      CGBuilderTy &Builder = CGF.Builder;
601      llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
602          PtrToObjCSuperTy), cmd};
603      return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
604    }
605  public:
606    CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
607      // IMP objc_msg_lookup(id, SEL);
608      MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy,
609                       nullptr);
610      // IMP objc_msg_lookup_super(struct objc_super*, SEL);
611      MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
612              PtrToObjCSuperTy, SelectorTy, nullptr);
613    }
614};
615/// Class used when targeting the new GNUstep runtime ABI.
616class CGObjCGNUstep : public CGObjCGNU {
617    /// The slot lookup function.  Returns a pointer to a cacheable structure
618    /// that contains (among other things) the IMP.
619    LazyRuntimeFunction SlotLookupFn;
620    /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
621    /// a structure describing the receiver and the class, and a selector as
622    /// arguments.  Returns the slot for the corresponding method.  Superclass
623    /// message lookup rarely changes, so this is a good caching opportunity.
624    LazyRuntimeFunction SlotLookupSuperFn;
625    /// Specialised function for setting atomic retain properties
626    LazyRuntimeFunction SetPropertyAtomic;
627    /// Specialised function for setting atomic copy properties
628    LazyRuntimeFunction SetPropertyAtomicCopy;
629    /// Specialised function for setting nonatomic retain properties
630    LazyRuntimeFunction SetPropertyNonAtomic;
631    /// Specialised function for setting nonatomic copy properties
632    LazyRuntimeFunction SetPropertyNonAtomicCopy;
633    /// Function to perform atomic copies of C++ objects with nontrivial copy
634    /// constructors from Objective-C ivars.
635    LazyRuntimeFunction CxxAtomicObjectGetFn;
636    /// Function to perform atomic copies of C++ objects with nontrivial copy
637    /// constructors to Objective-C ivars.
638    LazyRuntimeFunction CxxAtomicObjectSetFn;
639    /// Type of an slot structure pointer.  This is returned by the various
640    /// lookup functions.
641    llvm::Type *SlotTy;
642  public:
643    llvm::Constant *GetEHType(QualType T) override;
644  protected:
645    llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
646                           llvm::Value *cmd, llvm::MDNode *node,
647                           MessageSendInfo &MSI) override {
648      CGBuilderTy &Builder = CGF.Builder;
649      llvm::Function *LookupFn = SlotLookupFn;
650
651      // Store the receiver on the stack so that we can reload it later
652      llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType());
653      Builder.CreateStore(Receiver, ReceiverPtr);
654
655      llvm::Value *self;
656
657      if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
658        self = CGF.LoadObjCSelf();
659      } else {
660        self = llvm::ConstantPointerNull::get(IdTy);
661      }
662
663      // The lookup function is guaranteed not to capture the receiver pointer.
664      LookupFn->setDoesNotCapture(1);
665
666      llvm::Value *args[] = {
667              EnforceType(Builder, ReceiverPtr, PtrToIdTy),
668              EnforceType(Builder, cmd, SelectorTy),
669              EnforceType(Builder, self, IdTy) };
670      llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
671      slot.setOnlyReadsMemory();
672      slot->setMetadata(msgSendMDKind, node);
673
674      // Load the imp from the slot
675      llvm::Value *imp =
676        Builder.CreateLoad(Builder.CreateStructGEP(slot.getInstruction(), 4));
677
678      // The lookup function may have changed the receiver, so make sure we use
679      // the new one.
680      Receiver = Builder.CreateLoad(ReceiverPtr, true);
681      return imp;
682    }
683    llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
684                                llvm::Value *cmd,
685                                MessageSendInfo &MSI) override {
686      CGBuilderTy &Builder = CGF.Builder;
687      llvm::Value *lookupArgs[] = {ObjCSuper, cmd};
688
689      llvm::CallInst *slot =
690        CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
691      slot->setOnlyReadsMemory();
692
693      return Builder.CreateLoad(Builder.CreateStructGEP(slot, 4));
694    }
695  public:
696    CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
697      const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
698
699      llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
700          PtrTy, PtrTy, IntTy, IMPTy, nullptr);
701      SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
702      // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
703      SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
704          SelectorTy, IdTy, nullptr);
705      // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
706      SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
707              PtrToObjCSuperTy, SelectorTy, nullptr);
708      // If we're in ObjC++ mode, then we want to make
709      if (CGM.getLangOpts().CPlusPlus) {
710        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
711        // void *__cxa_begin_catch(void *e)
712        EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, nullptr);
713        // void __cxa_end_catch(void)
714        ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, nullptr);
715        // void _Unwind_Resume_or_Rethrow(void*)
716        ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
717            PtrTy, nullptr);
718      } else if (R.getVersion() >= VersionTuple(1, 7)) {
719        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
720        // id objc_begin_catch(void *e)
721        EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, nullptr);
722        // void objc_end_catch(void)
723        ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, nullptr);
724        // void _Unwind_Resume_or_Rethrow(void*)
725        ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy,
726            PtrTy, nullptr);
727      }
728      llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
729      SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
730          SelectorTy, IdTy, PtrDiffTy, nullptr);
731      SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
732          IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
733      SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
734          IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
735      SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
736          VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
737      // void objc_setCppObjectAtomic(void *dest, const void *src, void
738      // *helper);
739      CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
740          PtrTy, PtrTy, nullptr);
741      // void objc_getCppObjectAtomic(void *dest, const void *src, void
742      // *helper);
743      CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
744          PtrTy, PtrTy, nullptr);
745    }
746    llvm::Constant *GetCppAtomicObjectGetFunction() override {
747      // The optimised functions were added in version 1.7 of the GNUstep
748      // runtime.
749      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
750          VersionTuple(1, 7));
751      return CxxAtomicObjectGetFn;
752    }
753    llvm::Constant *GetCppAtomicObjectSetFunction() override {
754      // The optimised functions were added in version 1.7 of the GNUstep
755      // runtime.
756      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
757          VersionTuple(1, 7));
758      return CxxAtomicObjectSetFn;
759    }
760    llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
761                                                    bool copy) override {
762      // The optimised property functions omit the GC check, and so are not
763      // safe to use in GC mode.  The standard functions are fast in GC mode,
764      // so there is less advantage in using them.
765      assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
766      // The optimised functions were added in version 1.7 of the GNUstep
767      // runtime.
768      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
769          VersionTuple(1, 7));
770
771      if (atomic) {
772        if (copy) return SetPropertyAtomicCopy;
773        return SetPropertyAtomic;
774      }
775
776      return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
777    }
778};
779
780/// Support for the ObjFW runtime.
781class CGObjCObjFW: public CGObjCGNU {
782protected:
783  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
784  /// method implementation for this message.
785  LazyRuntimeFunction MsgLookupFn;
786  /// stret lookup function.  While this does not seem to make sense at the
787  /// first look, this is required to call the correct forwarding function.
788  LazyRuntimeFunction MsgLookupFnSRet;
789  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
790  /// structure describing the receiver and the class, and a selector as
791  /// arguments.  Returns the IMP for the corresponding method.
792  LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
793
794  llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
795                         llvm::Value *cmd, llvm::MDNode *node,
796                         MessageSendInfo &MSI) override {
797    CGBuilderTy &Builder = CGF.Builder;
798    llvm::Value *args[] = {
799            EnforceType(Builder, Receiver, IdTy),
800            EnforceType(Builder, cmd, SelectorTy) };
801
802    llvm::CallSite imp;
803    if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
804      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
805    else
806      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
807
808    imp->setMetadata(msgSendMDKind, node);
809    return imp.getInstruction();
810  }
811
812  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
813                              llvm::Value *cmd, MessageSendInfo &MSI) override {
814      CGBuilderTy &Builder = CGF.Builder;
815      llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
816          PtrToObjCSuperTy), cmd};
817
818      if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
819        return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
820      else
821        return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
822    }
823
824  llvm::Value *GetClassNamed(CodeGenFunction &CGF,
825                             const std::string &Name, bool isWeak) override {
826    if (isWeak)
827      return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
828
829    EmitClassRef(Name);
830
831    std::string SymbolName = "_OBJC_CLASS_" + Name;
832
833    llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
834
835    if (!ClassSymbol)
836      ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
837                                             llvm::GlobalValue::ExternalLinkage,
838                                             nullptr, SymbolName);
839
840    return ClassSymbol;
841  }
842
843public:
844  CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
845    // IMP objc_msg_lookup(id, SEL);
846    MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, nullptr);
847    MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
848                         SelectorTy, nullptr);
849    // IMP objc_msg_lookup_super(struct objc_super*, SEL);
850    MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
851                          PtrToObjCSuperTy, SelectorTy, nullptr);
852    MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
853                              PtrToObjCSuperTy, SelectorTy, nullptr);
854  }
855};
856} // end anonymous namespace
857
858
859/// Emits a reference to a dummy variable which is emitted with each class.
860/// This ensures that a linker error will be generated when trying to link
861/// together modules where a referenced class is not defined.
862void CGObjCGNU::EmitClassRef(const std::string &className) {
863  std::string symbolRef = "__objc_class_ref_" + className;
864  // Don't emit two copies of the same symbol
865  if (TheModule.getGlobalVariable(symbolRef))
866    return;
867  std::string symbolName = "__objc_class_name_" + className;
868  llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
869  if (!ClassSymbol) {
870    ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
871                                           llvm::GlobalValue::ExternalLinkage,
872                                           nullptr, symbolName);
873  }
874  new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
875    llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
876}
877
878static std::string SymbolNameForMethod(const StringRef &ClassName,
879    const StringRef &CategoryName, const Selector MethodName,
880    bool isClassMethod) {
881  std::string MethodNameColonStripped = MethodName.getAsString();
882  std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
883      ':', '_');
884  return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
885    CategoryName + "_" + MethodNameColonStripped).str();
886}
887
888CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
889                     unsigned protocolClassVersion)
890  : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
891    VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
892    MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
893    ProtocolVersion(protocolClassVersion) {
894
895  msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
896
897  CodeGenTypes &Types = CGM.getTypes();
898  IntTy = cast<llvm::IntegerType>(
899      Types.ConvertType(CGM.getContext().IntTy));
900  LongTy = cast<llvm::IntegerType>(
901      Types.ConvertType(CGM.getContext().LongTy));
902  SizeTy = cast<llvm::IntegerType>(
903      Types.ConvertType(CGM.getContext().getSizeType()));
904  PtrDiffTy = cast<llvm::IntegerType>(
905      Types.ConvertType(CGM.getContext().getPointerDiffType()));
906  BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
907
908  Int8Ty = llvm::Type::getInt8Ty(VMContext);
909  // C string type.  Used in lots of places.
910  PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
911
912  Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
913  Zeros[1] = Zeros[0];
914  NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
915  // Get the selector Type.
916  QualType selTy = CGM.getContext().getObjCSelType();
917  if (QualType() == selTy) {
918    SelectorTy = PtrToInt8Ty;
919  } else {
920    SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
921  }
922
923  PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
924  PtrTy = PtrToInt8Ty;
925
926  Int32Ty = llvm::Type::getInt32Ty(VMContext);
927  Int64Ty = llvm::Type::getInt64Ty(VMContext);
928
929  IntPtrTy =
930      CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
931
932  // Object type
933  QualType UnqualIdTy = CGM.getContext().getObjCIdType();
934  ASTIdTy = CanQualType();
935  if (UnqualIdTy != QualType()) {
936    ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
937    IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
938  } else {
939    IdTy = PtrToInt8Ty;
940  }
941  PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
942
943  ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, nullptr);
944  PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
945
946  llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
947
948  // void objc_exception_throw(id);
949  ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
950  ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
951  // int objc_sync_enter(id);
952  SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, nullptr);
953  // int objc_sync_exit(id);
954  SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, nullptr);
955
956  // void objc_enumerationMutation (id)
957  EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
958      IdTy, nullptr);
959
960  // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
961  GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
962      PtrDiffTy, BoolTy, nullptr);
963  // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
964  SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
965      PtrDiffTy, IdTy, BoolTy, BoolTy, nullptr);
966  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
967  GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
968      PtrDiffTy, BoolTy, BoolTy, nullptr);
969  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
970  SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
971      PtrDiffTy, BoolTy, BoolTy, nullptr);
972
973  // IMP type
974  llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
975  IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
976              true));
977
978  const LangOptions &Opts = CGM.getLangOpts();
979  if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
980    RuntimeVersion = 10;
981
982  // Don't bother initialising the GC stuff unless we're compiling in GC mode
983  if (Opts.getGC() != LangOptions::NonGC) {
984    // This is a bit of an hack.  We should sort this out by having a proper
985    // CGObjCGNUstep subclass for GC, but we may want to really support the old
986    // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
987    // Get selectors needed in GC mode
988    RetainSel = GetNullarySelector("retain", CGM.getContext());
989    ReleaseSel = GetNullarySelector("release", CGM.getContext());
990    AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
991
992    // Get functions needed in GC mode
993
994    // id objc_assign_ivar(id, id, ptrdiff_t);
995    IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
996        nullptr);
997    // id objc_assign_strongCast (id, id*)
998    StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
999        PtrToIdTy, nullptr);
1000    // id objc_assign_global(id, id*);
1001    GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
1002        nullptr);
1003    // id objc_assign_weak(id, id*);
1004    WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, nullptr);
1005    // id objc_read_weak(id*);
1006    WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, nullptr);
1007    // void *objc_memmove_collectable(void*, void *, size_t);
1008    MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
1009        SizeTy, nullptr);
1010  }
1011}
1012
1013llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
1014                                      const std::string &Name,
1015                                      bool isWeak) {
1016  llvm::Value *ClassName = CGM.GetAddrOfConstantCString(Name);
1017  // With the incompatible ABI, this will need to be replaced with a direct
1018  // reference to the class symbol.  For the compatible nonfragile ABI we are
1019  // still performing this lookup at run time but emitting the symbol for the
1020  // class externally so that we can make the switch later.
1021  //
1022  // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
1023  // with memoized versions or with static references if it's safe to do so.
1024  if (!isWeak)
1025    EmitClassRef(Name);
1026  ClassName = CGF.Builder.CreateStructGEP(ClassName, 0);
1027
1028  llvm::Constant *ClassLookupFn =
1029    CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
1030                              "objc_lookup_class");
1031  return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
1032}
1033
1034// This has to perform the lookup every time, since posing and related
1035// techniques can modify the name -> class mapping.
1036llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
1037                                 const ObjCInterfaceDecl *OID) {
1038  return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
1039}
1040llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
1041  return GetClassNamed(CGF, "NSAutoreleasePool", false);
1042}
1043
1044llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1045    const std::string &TypeEncoding, bool lval) {
1046
1047  SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
1048  llvm::GlobalAlias *SelValue = nullptr;
1049
1050  for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
1051      e = Types.end() ; i!=e ; i++) {
1052    if (i->first == TypeEncoding) {
1053      SelValue = i->second;
1054      break;
1055    }
1056  }
1057  if (!SelValue) {
1058    SelValue = llvm::GlobalAlias::create(
1059        SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
1060        ".objc_selector_" + Sel.getAsString(), &TheModule);
1061    Types.push_back(TypedSelector(TypeEncoding, SelValue));
1062  }
1063
1064  if (lval) {
1065    llvm::Value *tmp = CGF.CreateTempAlloca(SelValue->getType());
1066    CGF.Builder.CreateStore(SelValue, tmp);
1067    return tmp;
1068  }
1069  return SelValue;
1070}
1071
1072llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1073                                    bool lval) {
1074  return GetSelector(CGF, Sel, std::string(), lval);
1075}
1076
1077llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
1078                                    const ObjCMethodDecl *Method) {
1079  std::string SelTypes;
1080  CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
1081  return GetSelector(CGF, Method->getSelector(), SelTypes, false);
1082}
1083
1084llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
1085  if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
1086    // With the old ABI, there was only one kind of catchall, which broke
1087    // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
1088    // a pointer indicating object catchalls, and NULL to indicate real
1089    // catchalls
1090    if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
1091      return MakeConstantString("@id");
1092    } else {
1093      return nullptr;
1094    }
1095  }
1096
1097  // All other types should be Objective-C interface pointer types.
1098  const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
1099  assert(OPT && "Invalid @catch type.");
1100  const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
1101  assert(IDecl && "Invalid @catch type.");
1102  return MakeConstantString(IDecl->getIdentifier()->getName());
1103}
1104
1105llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
1106  if (!CGM.getLangOpts().CPlusPlus)
1107    return CGObjCGNU::GetEHType(T);
1108
1109  // For Objective-C++, we want to provide the ability to catch both C++ and
1110  // Objective-C objects in the same function.
1111
1112  // There's a particular fixed type info for 'id'.
1113  if (T->isObjCIdType() ||
1114      T->isObjCQualifiedIdType()) {
1115    llvm::Constant *IDEHType =
1116      CGM.getModule().getGlobalVariable("__objc_id_type_info");
1117    if (!IDEHType)
1118      IDEHType =
1119        new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
1120                                 false,
1121                                 llvm::GlobalValue::ExternalLinkage,
1122                                 nullptr, "__objc_id_type_info");
1123    return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
1124  }
1125
1126  const ObjCObjectPointerType *PT =
1127    T->getAs<ObjCObjectPointerType>();
1128  assert(PT && "Invalid @catch type.");
1129  const ObjCInterfaceType *IT = PT->getInterfaceType();
1130  assert(IT && "Invalid @catch type.");
1131  std::string className = IT->getDecl()->getIdentifier()->getName();
1132
1133  std::string typeinfoName = "__objc_eh_typeinfo_" + className;
1134
1135  // Return the existing typeinfo if it exists
1136  llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
1137  if (typeinfo)
1138    return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
1139
1140  // Otherwise create it.
1141
1142  // vtable for gnustep::libobjc::__objc_class_type_info
1143  // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
1144  // platform's name mangling.
1145  const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
1146  llvm::Constant *Vtable = TheModule.getGlobalVariable(vtableName);
1147  if (!Vtable) {
1148    Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
1149                                      llvm::GlobalValue::ExternalLinkage,
1150                                      nullptr, vtableName);
1151  }
1152  llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
1153  Vtable = llvm::ConstantExpr::getGetElementPtr(Vtable, Two);
1154  Vtable = llvm::ConstantExpr::getBitCast(Vtable, PtrToInt8Ty);
1155
1156  llvm::Constant *typeName =
1157    ExportUniqueString(className, "__objc_eh_typename_");
1158
1159  std::vector<llvm::Constant*> fields;
1160  fields.push_back(Vtable);
1161  fields.push_back(typeName);
1162  llvm::Constant *TI =
1163      MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1164              nullptr), fields, "__objc_eh_typeinfo_" + className,
1165          llvm::GlobalValue::LinkOnceODRLinkage);
1166  return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
1167}
1168
1169/// Generate an NSConstantString object.
1170llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
1171
1172  std::string Str = SL->getString().str();
1173
1174  // Look for an existing one
1175  llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
1176  if (old != ObjCStrings.end())
1177    return old->getValue();
1178
1179  StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1180
1181  if (StringClass.empty()) StringClass = "NXConstantString";
1182
1183  std::string Sym = "_OBJC_CLASS_";
1184  Sym += StringClass;
1185
1186  llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1187
1188  if (!isa)
1189    isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1190            llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
1191  else if (isa->getType() != PtrToIdTy)
1192    isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1193
1194  std::vector<llvm::Constant*> Ivars;
1195  Ivars.push_back(isa);
1196  Ivars.push_back(MakeConstantString(Str));
1197  Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
1198  llvm::Constant *ObjCStr = MakeGlobal(
1199    llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, nullptr),
1200    Ivars, ".objc_str");
1201  ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
1202  ObjCStrings[Str] = ObjCStr;
1203  ConstantStrings.push_back(ObjCStr);
1204  return ObjCStr;
1205}
1206
1207///Generates a message send where the super is the receiver.  This is a message
1208///send to self with special delivery semantics indicating which class's method
1209///should be called.
1210RValue
1211CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
1212                                    ReturnValueSlot Return,
1213                                    QualType ResultType,
1214                                    Selector Sel,
1215                                    const ObjCInterfaceDecl *Class,
1216                                    bool isCategoryImpl,
1217                                    llvm::Value *Receiver,
1218                                    bool IsClassMessage,
1219                                    const CallArgList &CallArgs,
1220                                    const ObjCMethodDecl *Method) {
1221  CGBuilderTy &Builder = CGF.Builder;
1222  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1223    if (Sel == RetainSel || Sel == AutoreleaseSel) {
1224      return RValue::get(EnforceType(Builder, Receiver,
1225                  CGM.getTypes().ConvertType(ResultType)));
1226    }
1227    if (Sel == ReleaseSel) {
1228      return RValue::get(nullptr);
1229    }
1230  }
1231
1232  llvm::Value *cmd = GetSelector(CGF, Sel);
1233
1234
1235  CallArgList ActualArgs;
1236
1237  ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1238  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1239  ActualArgs.addFrom(CallArgs);
1240
1241  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1242
1243  llvm::Value *ReceiverClass = nullptr;
1244  if (isCategoryImpl) {
1245    llvm::Constant *classLookupFunction = nullptr;
1246    if (IsClassMessage)  {
1247      classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1248            IdTy, PtrTy, true), "objc_get_meta_class");
1249    } else {
1250      classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1251            IdTy, PtrTy, true), "objc_get_class");
1252    }
1253    ReceiverClass = Builder.CreateCall(classLookupFunction,
1254        MakeConstantString(Class->getNameAsString()));
1255  } else {
1256    // Set up global aliases for the metaclass or class pointer if they do not
1257    // already exist.  These will are forward-references which will be set to
1258    // pointers to the class and metaclass structure created for the runtime
1259    // load function.  To send a message to super, we look up the value of the
1260    // super_class pointer from either the class or metaclass structure.
1261    if (IsClassMessage)  {
1262      if (!MetaClassPtrAlias) {
1263        MetaClassPtrAlias = llvm::GlobalAlias::create(
1264            IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1265            ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
1266      }
1267      ReceiverClass = MetaClassPtrAlias;
1268    } else {
1269      if (!ClassPtrAlias) {
1270        ClassPtrAlias = llvm::GlobalAlias::create(
1271            IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1272            ".objc_class_ref" + Class->getNameAsString(), &TheModule);
1273      }
1274      ReceiverClass = ClassPtrAlias;
1275    }
1276  }
1277  // Cast the pointer to a simplified version of the class structure
1278  ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1279      llvm::PointerType::getUnqual(
1280        llvm::StructType::get(IdTy, IdTy, nullptr)));
1281  // Get the superclass pointer
1282  ReceiverClass = Builder.CreateStructGEP(ReceiverClass, 1);
1283  // Load the superclass pointer
1284  ReceiverClass = Builder.CreateLoad(ReceiverClass);
1285  // Construct the structure used to look up the IMP
1286  llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1287      Receiver->getType(), IdTy, nullptr);
1288  llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy);
1289
1290  Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
1291  Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
1292
1293  ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1294
1295  // Get the IMP
1296  llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
1297  imp = EnforceType(Builder, imp, MSI.MessengerType);
1298
1299  llvm::Value *impMD[] = {
1300      llvm::MDString::get(VMContext, Sel.getAsString()),
1301      llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1302      llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsClassMessage)
1303   };
1304  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1305
1306  llvm::Instruction *call;
1307  RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
1308                               &call);
1309  call->setMetadata(msgSendMDKind, node);
1310  return msgRet;
1311}
1312
1313/// Generate code for a message send expression.
1314RValue
1315CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1316                               ReturnValueSlot Return,
1317                               QualType ResultType,
1318                               Selector Sel,
1319                               llvm::Value *Receiver,
1320                               const CallArgList &CallArgs,
1321                               const ObjCInterfaceDecl *Class,
1322                               const ObjCMethodDecl *Method) {
1323  CGBuilderTy &Builder = CGF.Builder;
1324
1325  // Strip out message sends to retain / release in GC mode
1326  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1327    if (Sel == RetainSel || Sel == AutoreleaseSel) {
1328      return RValue::get(EnforceType(Builder, Receiver,
1329                  CGM.getTypes().ConvertType(ResultType)));
1330    }
1331    if (Sel == ReleaseSel) {
1332      return RValue::get(nullptr);
1333    }
1334  }
1335
1336  // If the return type is something that goes in an integer register, the
1337  // runtime will handle 0 returns.  For other cases, we fill in the 0 value
1338  // ourselves.
1339  //
1340  // The language spec says the result of this kind of message send is
1341  // undefined, but lots of people seem to have forgotten to read that
1342  // paragraph and insist on sending messages to nil that have structure
1343  // returns.  With GCC, this generates a random return value (whatever happens
1344  // to be on the stack / in those registers at the time) on most platforms,
1345  // and generates an illegal instruction trap on SPARC.  With LLVM it corrupts
1346  // the stack.
1347  bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1348      ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1349
1350  llvm::BasicBlock *startBB = nullptr;
1351  llvm::BasicBlock *messageBB = nullptr;
1352  llvm::BasicBlock *continueBB = nullptr;
1353
1354  if (!isPointerSizedReturn) {
1355    startBB = Builder.GetInsertBlock();
1356    messageBB = CGF.createBasicBlock("msgSend");
1357    continueBB = CGF.createBasicBlock("continue");
1358
1359    llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
1360            llvm::Constant::getNullValue(Receiver->getType()));
1361    Builder.CreateCondBr(isNil, continueBB, messageBB);
1362    CGF.EmitBlock(messageBB);
1363  }
1364
1365  IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1366  llvm::Value *cmd;
1367  if (Method)
1368    cmd = GetSelector(CGF, Method);
1369  else
1370    cmd = GetSelector(CGF, Sel);
1371  cmd = EnforceType(Builder, cmd, SelectorTy);
1372  Receiver = EnforceType(Builder, Receiver, IdTy);
1373
1374  llvm::Value *impMD[] = {
1375        llvm::MDString::get(VMContext, Sel.getAsString()),
1376        llvm::MDString::get(VMContext, Class ? Class->getNameAsString() :""),
1377        llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext),
1378                               Class!=nullptr)
1379   };
1380  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1381
1382  CallArgList ActualArgs;
1383  ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1384  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1385  ActualArgs.addFrom(CallArgs);
1386
1387  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1388
1389  // Get the IMP to call
1390  llvm::Value *imp;
1391
1392  // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1393  // functions.  These are not supported on all platforms (or all runtimes on a
1394  // given platform), so we
1395  switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1396    case CodeGenOptions::Legacy:
1397      imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
1398      break;
1399    case CodeGenOptions::Mixed:
1400    case CodeGenOptions::NonLegacy:
1401      if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1402        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1403                                  "objc_msgSend_fpret");
1404      } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
1405        // The actual types here don't matter - we're going to bitcast the
1406        // function anyway
1407        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1408                                  "objc_msgSend_stret");
1409      } else {
1410        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1411                                  "objc_msgSend");
1412      }
1413  }
1414
1415  // Reset the receiver in case the lookup modified it
1416  ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1417
1418  imp = EnforceType(Builder, imp, MSI.MessengerType);
1419
1420  llvm::Instruction *call;
1421  RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
1422                               &call);
1423  call->setMetadata(msgSendMDKind, node);
1424
1425
1426  if (!isPointerSizedReturn) {
1427    messageBB = CGF.Builder.GetInsertBlock();
1428    CGF.Builder.CreateBr(continueBB);
1429    CGF.EmitBlock(continueBB);
1430    if (msgRet.isScalar()) {
1431      llvm::Value *v = msgRet.getScalarVal();
1432      llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1433      phi->addIncoming(v, messageBB);
1434      phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1435      msgRet = RValue::get(phi);
1436    } else if (msgRet.isAggregate()) {
1437      llvm::Value *v = msgRet.getAggregateAddr();
1438      llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1439      llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType());
1440      llvm::AllocaInst *NullVal =
1441          CGF.CreateTempAlloca(RetTy->getElementType(), "null");
1442      CGF.InitTempAlloca(NullVal,
1443          llvm::Constant::getNullValue(RetTy->getElementType()));
1444      phi->addIncoming(v, messageBB);
1445      phi->addIncoming(NullVal, startBB);
1446      msgRet = RValue::getAggregate(phi);
1447    } else /* isComplex() */ {
1448      std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1449      llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1450      phi->addIncoming(v.first, messageBB);
1451      phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1452          startBB);
1453      llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1454      phi2->addIncoming(v.second, messageBB);
1455      phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1456          startBB);
1457      msgRet = RValue::getComplex(phi, phi2);
1458    }
1459  }
1460  return msgRet;
1461}
1462
1463/// Generates a MethodList.  Used in construction of a objc_class and
1464/// objc_category structures.
1465llvm::Constant *CGObjCGNU::
1466GenerateMethodList(const StringRef &ClassName,
1467                   const StringRef &CategoryName,
1468                   ArrayRef<Selector> MethodSels,
1469                   ArrayRef<llvm::Constant *> MethodTypes,
1470                   bool isClassMethodList) {
1471  if (MethodSels.empty())
1472    return NULLPtr;
1473  // Get the method structure type.
1474  llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1475    PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1476    PtrToInt8Ty, // Method types
1477    IMPTy, //Method pointer
1478    nullptr);
1479  std::vector<llvm::Constant*> Methods;
1480  std::vector<llvm::Constant*> Elements;
1481  for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1482    Elements.clear();
1483    llvm::Constant *Method =
1484      TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1485                                                MethodSels[i],
1486                                                isClassMethodList));
1487    assert(Method && "Can't generate metadata for method that doesn't exist");
1488    llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1489    Elements.push_back(C);
1490    Elements.push_back(MethodTypes[i]);
1491    Method = llvm::ConstantExpr::getBitCast(Method,
1492        IMPTy);
1493    Elements.push_back(Method);
1494    Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
1495  }
1496
1497  // Array of method structures
1498  llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1499                                                            Methods.size());
1500  llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1501                                                         Methods);
1502
1503  // Structure containing list pointer, array and array count
1504  llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1505  llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1506  ObjCMethodListTy->setBody(
1507      NextPtrTy,
1508      IntTy,
1509      ObjCMethodArrayTy,
1510      nullptr);
1511
1512  Methods.clear();
1513  Methods.push_back(llvm::ConstantPointerNull::get(
1514        llvm::PointerType::getUnqual(ObjCMethodListTy)));
1515  Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1516  Methods.push_back(MethodArray);
1517
1518  // Create an instance of the structure
1519  return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list");
1520}
1521
1522/// Generates an IvarList.  Used in construction of a objc_class.
1523llvm::Constant *CGObjCGNU::
1524GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1525                 ArrayRef<llvm::Constant *> IvarTypes,
1526                 ArrayRef<llvm::Constant *> IvarOffsets) {
1527  if (IvarNames.size() == 0)
1528    return NULLPtr;
1529  // Get the method structure type.
1530  llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1531    PtrToInt8Ty,
1532    PtrToInt8Ty,
1533    IntTy,
1534    nullptr);
1535  std::vector<llvm::Constant*> Ivars;
1536  std::vector<llvm::Constant*> Elements;
1537  for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1538    Elements.clear();
1539    Elements.push_back(IvarNames[i]);
1540    Elements.push_back(IvarTypes[i]);
1541    Elements.push_back(IvarOffsets[i]);
1542    Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
1543  }
1544
1545  // Array of method structures
1546  llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1547      IvarNames.size());
1548
1549
1550  Elements.clear();
1551  Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
1552  Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
1553  // Structure containing array and array count
1554  llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1555    ObjCIvarArrayTy,
1556    nullptr);
1557
1558  // Create an instance of the structure
1559  return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list");
1560}
1561
1562/// Generate a class structure
1563llvm::Constant *CGObjCGNU::GenerateClassStructure(
1564    llvm::Constant *MetaClass,
1565    llvm::Constant *SuperClass,
1566    unsigned info,
1567    const char *Name,
1568    llvm::Constant *Version,
1569    llvm::Constant *InstanceSize,
1570    llvm::Constant *IVars,
1571    llvm::Constant *Methods,
1572    llvm::Constant *Protocols,
1573    llvm::Constant *IvarOffsets,
1574    llvm::Constant *Properties,
1575    llvm::Constant *StrongIvarBitmap,
1576    llvm::Constant *WeakIvarBitmap,
1577    bool isMeta) {
1578  // Set up the class structure
1579  // Note:  Several of these are char*s when they should be ids.  This is
1580  // because the runtime performs this translation on load.
1581  //
1582  // Fields marked New ABI are part of the GNUstep runtime.  We emit them
1583  // anyway; the classes will still work with the GNU runtime, they will just
1584  // be ignored.
1585  llvm::StructType *ClassTy = llvm::StructType::get(
1586      PtrToInt8Ty,        // isa
1587      PtrToInt8Ty,        // super_class
1588      PtrToInt8Ty,        // name
1589      LongTy,             // version
1590      LongTy,             // info
1591      LongTy,             // instance_size
1592      IVars->getType(),   // ivars
1593      Methods->getType(), // methods
1594      // These are all filled in by the runtime, so we pretend
1595      PtrTy,              // dtable
1596      PtrTy,              // subclass_list
1597      PtrTy,              // sibling_class
1598      PtrTy,              // protocols
1599      PtrTy,              // gc_object_type
1600      // New ABI:
1601      LongTy,                 // abi_version
1602      IvarOffsets->getType(), // ivar_offsets
1603      Properties->getType(),  // properties
1604      IntPtrTy,               // strong_pointers
1605      IntPtrTy,               // weak_pointers
1606      nullptr);
1607  llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1608  // Fill in the structure
1609  std::vector<llvm::Constant*> Elements;
1610  Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1611  Elements.push_back(SuperClass);
1612  Elements.push_back(MakeConstantString(Name, ".class_name"));
1613  Elements.push_back(Zero);
1614  Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1615  if (isMeta) {
1616    llvm::DataLayout td(&TheModule);
1617    Elements.push_back(
1618        llvm::ConstantInt::get(LongTy,
1619                               td.getTypeSizeInBits(ClassTy) /
1620                                 CGM.getContext().getCharWidth()));
1621  } else
1622    Elements.push_back(InstanceSize);
1623  Elements.push_back(IVars);
1624  Elements.push_back(Methods);
1625  Elements.push_back(NULLPtr);
1626  Elements.push_back(NULLPtr);
1627  Elements.push_back(NULLPtr);
1628  Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1629  Elements.push_back(NULLPtr);
1630  Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1631  Elements.push_back(IvarOffsets);
1632  Elements.push_back(Properties);
1633  Elements.push_back(StrongIvarBitmap);
1634  Elements.push_back(WeakIvarBitmap);
1635  // Create an instance of the structure
1636  // This is now an externally visible symbol, so that we can speed up class
1637  // messages in the next ABI.  We may already have some weak references to
1638  // this, so check and fix them properly.
1639  std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
1640          std::string(Name));
1641  llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
1642  llvm::Constant *Class = MakeGlobal(ClassTy, Elements, ClassSym,
1643          llvm::GlobalValue::ExternalLinkage);
1644  if (ClassRef) {
1645      ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
1646                  ClassRef->getType()));
1647      ClassRef->removeFromParent();
1648      Class->setName(ClassSym);
1649  }
1650  return Class;
1651}
1652
1653llvm::Constant *CGObjCGNU::
1654GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
1655                           ArrayRef<llvm::Constant *> MethodTypes) {
1656  // Get the method structure type.
1657  llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1658    PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1659    PtrToInt8Ty,
1660    nullptr);
1661  std::vector<llvm::Constant*> Methods;
1662  std::vector<llvm::Constant*> Elements;
1663  for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1664    Elements.clear();
1665    Elements.push_back(MethodNames[i]);
1666    Elements.push_back(MethodTypes[i]);
1667    Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
1668  }
1669  llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1670      MethodNames.size());
1671  llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1672                                                   Methods);
1673  llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1674      IntTy, ObjCMethodArrayTy, nullptr);
1675  Methods.clear();
1676  Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1677  Methods.push_back(Array);
1678  return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list");
1679}
1680
1681// Create the protocol list structure used in classes, categories and so on
1682llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
1683  llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1684      Protocols.size());
1685  llvm::StructType *ProtocolListTy = llvm::StructType::get(
1686      PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1687      SizeTy,
1688      ProtocolArrayTy,
1689      nullptr);
1690  std::vector<llvm::Constant*> Elements;
1691  for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1692      iter != endIter ; iter++) {
1693    llvm::Constant *protocol = nullptr;
1694    llvm::StringMap<llvm::Constant*>::iterator value =
1695      ExistingProtocols.find(*iter);
1696    if (value == ExistingProtocols.end()) {
1697      protocol = GenerateEmptyProtocol(*iter);
1698    } else {
1699      protocol = value->getValue();
1700    }
1701    llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1702                                                           PtrToInt8Ty);
1703    Elements.push_back(Ptr);
1704  }
1705  llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1706      Elements);
1707  Elements.clear();
1708  Elements.push_back(NULLPtr);
1709  Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1710  Elements.push_back(ProtocolArray);
1711  return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list");
1712}
1713
1714llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
1715                                            const ObjCProtocolDecl *PD) {
1716  llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1717  llvm::Type *T =
1718    CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1719  return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1720}
1721
1722llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1723  const std::string &ProtocolName) {
1724  SmallVector<std::string, 0> EmptyStringVector;
1725  SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1726
1727  llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1728  llvm::Constant *MethodList =
1729    GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1730  // Protocols are objects containing lists of the methods implemented and
1731  // protocols adopted.
1732  llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1733      PtrToInt8Ty,
1734      ProtocolList->getType(),
1735      MethodList->getType(),
1736      MethodList->getType(),
1737      MethodList->getType(),
1738      MethodList->getType(),
1739      nullptr);
1740  std::vector<llvm::Constant*> Elements;
1741  // The isa pointer must be set to a magic number so the runtime knows it's
1742  // the correct layout.
1743  Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1744        llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1745  Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1746  Elements.push_back(ProtocolList);
1747  Elements.push_back(MethodList);
1748  Elements.push_back(MethodList);
1749  Elements.push_back(MethodList);
1750  Elements.push_back(MethodList);
1751  return MakeGlobal(ProtocolTy, Elements, ".objc_protocol");
1752}
1753
1754void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1755  ASTContext &Context = CGM.getContext();
1756  std::string ProtocolName = PD->getNameAsString();
1757
1758  // Use the protocol definition, if there is one.
1759  if (const ObjCProtocolDecl *Def = PD->getDefinition())
1760    PD = Def;
1761
1762  SmallVector<std::string, 16> Protocols;
1763  for (const auto *PI : PD->protocols())
1764    Protocols.push_back(PI->getNameAsString());
1765  SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1766  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1767  SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1768  SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1769  for (const auto *I : PD->instance_methods()) {
1770    std::string TypeStr;
1771    Context.getObjCEncodingForMethodDecl(I, TypeStr);
1772    if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1773      OptionalInstanceMethodNames.push_back(
1774          MakeConstantString(I->getSelector().getAsString()));
1775      OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1776    } else {
1777      InstanceMethodNames.push_back(
1778          MakeConstantString(I->getSelector().getAsString()));
1779      InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1780    }
1781  }
1782  // Collect information about class methods:
1783  SmallVector<llvm::Constant*, 16> ClassMethodNames;
1784  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1785  SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1786  SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1787  for (const auto *I : PD->class_methods()) {
1788    std::string TypeStr;
1789    Context.getObjCEncodingForMethodDecl(I,TypeStr);
1790    if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1791      OptionalClassMethodNames.push_back(
1792          MakeConstantString(I->getSelector().getAsString()));
1793      OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1794    } else {
1795      ClassMethodNames.push_back(
1796          MakeConstantString(I->getSelector().getAsString()));
1797      ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1798    }
1799  }
1800
1801  llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1802  llvm::Constant *InstanceMethodList =
1803    GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1804  llvm::Constant *ClassMethodList =
1805    GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1806  llvm::Constant *OptionalInstanceMethodList =
1807    GenerateProtocolMethodList(OptionalInstanceMethodNames,
1808            OptionalInstanceMethodTypes);
1809  llvm::Constant *OptionalClassMethodList =
1810    GenerateProtocolMethodList(OptionalClassMethodNames,
1811            OptionalClassMethodTypes);
1812
1813  // Property metadata: name, attributes, isSynthesized, setter name, setter
1814  // types, getter name, getter types.
1815  // The isSynthesized value is always set to 0 in a protocol.  It exists to
1816  // simplify the runtime library by allowing it to use the same data
1817  // structures for protocol metadata everywhere.
1818  llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1819          PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
1820          PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
1821  std::vector<llvm::Constant*> Properties;
1822  std::vector<llvm::Constant*> OptionalProperties;
1823
1824  // Add all of the property methods need adding to the method list and to the
1825  // property metadata list.
1826  for (auto *property : PD->properties()) {
1827    std::vector<llvm::Constant*> Fields;
1828
1829    Fields.push_back(MakePropertyEncodingString(property, nullptr));
1830    PushPropertyAttributes(Fields, property);
1831
1832    if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1833      std::string TypeStr;
1834      Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1835      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1836      InstanceMethodTypes.push_back(TypeEncoding);
1837      Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1838      Fields.push_back(TypeEncoding);
1839    } else {
1840      Fields.push_back(NULLPtr);
1841      Fields.push_back(NULLPtr);
1842    }
1843    if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1844      std::string TypeStr;
1845      Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1846      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1847      InstanceMethodTypes.push_back(TypeEncoding);
1848      Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1849      Fields.push_back(TypeEncoding);
1850    } else {
1851      Fields.push_back(NULLPtr);
1852      Fields.push_back(NULLPtr);
1853    }
1854    if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1855      OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1856    } else {
1857      Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1858    }
1859  }
1860  llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1861      llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1862  llvm::Constant* PropertyListInitFields[] =
1863    {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1864
1865  llvm::Constant *PropertyListInit =
1866      llvm::ConstantStruct::getAnon(PropertyListInitFields);
1867  llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1868      PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1869      PropertyListInit, ".objc_property_list");
1870
1871  llvm::Constant *OptionalPropertyArray =
1872      llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1873          OptionalProperties.size()) , OptionalProperties);
1874  llvm::Constant* OptionalPropertyListInitFields[] = {
1875      llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1876      OptionalPropertyArray };
1877
1878  llvm::Constant *OptionalPropertyListInit =
1879      llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1880  llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1881          OptionalPropertyListInit->getType(), false,
1882          llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1883          ".objc_property_list");
1884
1885  // Protocols are objects containing lists of the methods implemented and
1886  // protocols adopted.
1887  llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1888      PtrToInt8Ty,
1889      ProtocolList->getType(),
1890      InstanceMethodList->getType(),
1891      ClassMethodList->getType(),
1892      OptionalInstanceMethodList->getType(),
1893      OptionalClassMethodList->getType(),
1894      PropertyList->getType(),
1895      OptionalPropertyList->getType(),
1896      nullptr);
1897  std::vector<llvm::Constant*> Elements;
1898  // The isa pointer must be set to a magic number so the runtime knows it's
1899  // the correct layout.
1900  Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1901        llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1902  Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1903  Elements.push_back(ProtocolList);
1904  Elements.push_back(InstanceMethodList);
1905  Elements.push_back(ClassMethodList);
1906  Elements.push_back(OptionalInstanceMethodList);
1907  Elements.push_back(OptionalClassMethodList);
1908  Elements.push_back(PropertyList);
1909  Elements.push_back(OptionalPropertyList);
1910  ExistingProtocols[ProtocolName] =
1911    llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1912          ".objc_protocol"), IdTy);
1913}
1914void CGObjCGNU::GenerateProtocolHolderCategory() {
1915  // Collect information about instance methods
1916  SmallVector<Selector, 1> MethodSels;
1917  SmallVector<llvm::Constant*, 1> MethodTypes;
1918
1919  std::vector<llvm::Constant*> Elements;
1920  const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1921  const std::string CategoryName = "AnotherHack";
1922  Elements.push_back(MakeConstantString(CategoryName));
1923  Elements.push_back(MakeConstantString(ClassName));
1924  // Instance method list
1925  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1926          ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1927  // Class method list
1928  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1929          ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1930  // Protocol list
1931  llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1932      ExistingProtocols.size());
1933  llvm::StructType *ProtocolListTy = llvm::StructType::get(
1934      PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1935      SizeTy,
1936      ProtocolArrayTy,
1937      nullptr);
1938  std::vector<llvm::Constant*> ProtocolElements;
1939  for (llvm::StringMapIterator<llvm::Constant*> iter =
1940       ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1941       iter != endIter ; iter++) {
1942    llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1943            PtrTy);
1944    ProtocolElements.push_back(Ptr);
1945  }
1946  llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1947      ProtocolElements);
1948  ProtocolElements.clear();
1949  ProtocolElements.push_back(NULLPtr);
1950  ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1951              ExistingProtocols.size()));
1952  ProtocolElements.push_back(ProtocolArray);
1953  Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1954                  ProtocolElements, ".objc_protocol_list"), PtrTy));
1955  Categories.push_back(llvm::ConstantExpr::getBitCast(
1956        MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1957            PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
1958}
1959
1960/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1961/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
1962/// bits set to their values, LSB first, while larger ones are stored in a
1963/// structure of this / form:
1964///
1965/// struct { int32_t length; int32_t values[length]; };
1966///
1967/// The values in the array are stored in host-endian format, with the least
1968/// significant bit being assumed to come first in the bitfield.  Therefore, a
1969/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
1970/// bitfield / with the 63rd bit set will be 1<<64.
1971llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
1972  int bitCount = bits.size();
1973  int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
1974  if (bitCount < ptrBits) {
1975    uint64_t val = 1;
1976    for (int i=0 ; i<bitCount ; ++i) {
1977      if (bits[i]) val |= 1ULL<<(i+1);
1978    }
1979    return llvm::ConstantInt::get(IntPtrTy, val);
1980  }
1981  SmallVector<llvm::Constant *, 8> values;
1982  int v=0;
1983  while (v < bitCount) {
1984    int32_t word = 0;
1985    for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
1986      if (bits[v]) word |= 1<<i;
1987      v++;
1988    }
1989    values.push_back(llvm::ConstantInt::get(Int32Ty, word));
1990  }
1991  llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
1992  llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
1993  llvm::Constant *fields[2] = {
1994      llvm::ConstantInt::get(Int32Ty, values.size()),
1995      array };
1996  llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
1997        nullptr), fields);
1998  llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
1999  return ptr;
2000}
2001
2002void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
2003  std::string ClassName = OCD->getClassInterface()->getNameAsString();
2004  std::string CategoryName = OCD->getNameAsString();
2005  // Collect information about instance methods
2006  SmallVector<Selector, 16> InstanceMethodSels;
2007  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2008  for (const auto *I : OCD->instance_methods()) {
2009    InstanceMethodSels.push_back(I->getSelector());
2010    std::string TypeStr;
2011    CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2012    InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2013  }
2014
2015  // Collect information about class methods
2016  SmallVector<Selector, 16> ClassMethodSels;
2017  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2018  for (const auto *I : OCD->class_methods()) {
2019    ClassMethodSels.push_back(I->getSelector());
2020    std::string TypeStr;
2021    CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2022    ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2023  }
2024
2025  // Collect the names of referenced protocols
2026  SmallVector<std::string, 16> Protocols;
2027  const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
2028  const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
2029  for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
2030       E = Protos.end(); I != E; ++I)
2031    Protocols.push_back((*I)->getNameAsString());
2032
2033  std::vector<llvm::Constant*> Elements;
2034  Elements.push_back(MakeConstantString(CategoryName));
2035  Elements.push_back(MakeConstantString(ClassName));
2036  // Instance method list
2037  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2038          ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
2039          false), PtrTy));
2040  // Class method list
2041  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2042          ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
2043        PtrTy));
2044  // Protocol list
2045  Elements.push_back(llvm::ConstantExpr::getBitCast(
2046        GenerateProtocolList(Protocols), PtrTy));
2047  Categories.push_back(llvm::ConstantExpr::getBitCast(
2048        MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
2049            PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
2050}
2051
2052llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
2053        SmallVectorImpl<Selector> &InstanceMethodSels,
2054        SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
2055  ASTContext &Context = CGM.getContext();
2056  // Property metadata: name, attributes, attributes2, padding1, padding2,
2057  // setter name, setter types, getter name, getter types.
2058  llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
2059          PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
2060          PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
2061  std::vector<llvm::Constant*> Properties;
2062
2063  // Add all of the property methods need adding to the method list and to the
2064  // property metadata list.
2065  for (auto *propertyImpl : OID->property_impls()) {
2066    std::vector<llvm::Constant*> Fields;
2067    ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
2068    bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
2069        ObjCPropertyImplDecl::Synthesize);
2070    bool isDynamic = (propertyImpl->getPropertyImplementation() ==
2071        ObjCPropertyImplDecl::Dynamic);
2072
2073    Fields.push_back(MakePropertyEncodingString(property, OID));
2074    PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
2075    if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
2076      std::string TypeStr;
2077      Context.getObjCEncodingForMethodDecl(getter,TypeStr);
2078      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2079      if (isSynthesized) {
2080        InstanceMethodTypes.push_back(TypeEncoding);
2081        InstanceMethodSels.push_back(getter->getSelector());
2082      }
2083      Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
2084      Fields.push_back(TypeEncoding);
2085    } else {
2086      Fields.push_back(NULLPtr);
2087      Fields.push_back(NULLPtr);
2088    }
2089    if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
2090      std::string TypeStr;
2091      Context.getObjCEncodingForMethodDecl(setter,TypeStr);
2092      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2093      if (isSynthesized) {
2094        InstanceMethodTypes.push_back(TypeEncoding);
2095        InstanceMethodSels.push_back(setter->getSelector());
2096      }
2097      Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
2098      Fields.push_back(TypeEncoding);
2099    } else {
2100      Fields.push_back(NULLPtr);
2101      Fields.push_back(NULLPtr);
2102    }
2103    Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
2104  }
2105  llvm::ArrayType *PropertyArrayTy =
2106      llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
2107  llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
2108          Properties);
2109  llvm::Constant* PropertyListInitFields[] =
2110    {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
2111
2112  llvm::Constant *PropertyListInit =
2113      llvm::ConstantStruct::getAnon(PropertyListInitFields);
2114  return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
2115          llvm::GlobalValue::InternalLinkage, PropertyListInit,
2116          ".objc_property_list");
2117}
2118
2119void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
2120  // Get the class declaration for which the alias is specified.
2121  ObjCInterfaceDecl *ClassDecl =
2122    const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
2123  std::string ClassName = ClassDecl->getNameAsString();
2124  std::string AliasName = OAD->getNameAsString();
2125  ClassAliases.push_back(ClassAliasPair(ClassName,AliasName));
2126}
2127
2128void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
2129  ASTContext &Context = CGM.getContext();
2130
2131  // Get the superclass name.
2132  const ObjCInterfaceDecl * SuperClassDecl =
2133    OID->getClassInterface()->getSuperClass();
2134  std::string SuperClassName;
2135  if (SuperClassDecl) {
2136    SuperClassName = SuperClassDecl->getNameAsString();
2137    EmitClassRef(SuperClassName);
2138  }
2139
2140  // Get the class name
2141  ObjCInterfaceDecl *ClassDecl =
2142    const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
2143  std::string ClassName = ClassDecl->getNameAsString();
2144  // Emit the symbol that is used to generate linker errors if this class is
2145  // referenced in other modules but not declared.
2146  std::string classSymbolName = "__objc_class_name_" + ClassName;
2147  if (llvm::GlobalVariable *symbol =
2148      TheModule.getGlobalVariable(classSymbolName)) {
2149    symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
2150  } else {
2151    new llvm::GlobalVariable(TheModule, LongTy, false,
2152    llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
2153    classSymbolName);
2154  }
2155
2156  // Get the size of instances.
2157  int instanceSize =
2158    Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
2159
2160  // Collect information about instance variables.
2161  SmallVector<llvm::Constant*, 16> IvarNames;
2162  SmallVector<llvm::Constant*, 16> IvarTypes;
2163  SmallVector<llvm::Constant*, 16> IvarOffsets;
2164
2165  std::vector<llvm::Constant*> IvarOffsetValues;
2166  SmallVector<bool, 16> WeakIvars;
2167  SmallVector<bool, 16> StrongIvars;
2168
2169  int superInstanceSize = !SuperClassDecl ? 0 :
2170    Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
2171  // For non-fragile ivars, set the instance size to 0 - {the size of just this
2172  // class}.  The runtime will then set this to the correct value on load.
2173  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2174    instanceSize = 0 - (instanceSize - superInstanceSize);
2175  }
2176
2177  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2178       IVD = IVD->getNextIvar()) {
2179      // Store the name
2180      IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
2181      // Get the type encoding for this ivar
2182      std::string TypeStr;
2183      Context.getObjCEncodingForType(IVD->getType(), TypeStr);
2184      IvarTypes.push_back(MakeConstantString(TypeStr));
2185      // Get the offset
2186      uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
2187      uint64_t Offset = BaseOffset;
2188      if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2189        Offset = BaseOffset - superInstanceSize;
2190      }
2191      llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
2192      // Create the direct offset value
2193      std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
2194          IVD->getNameAsString();
2195      llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
2196      if (OffsetVar) {
2197        OffsetVar->setInitializer(OffsetValue);
2198        // If this is the real definition, change its linkage type so that
2199        // different modules will use this one, rather than their private
2200        // copy.
2201        OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
2202      } else
2203        OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
2204          false, llvm::GlobalValue::ExternalLinkage,
2205          OffsetValue,
2206          "__objc_ivar_offset_value_" + ClassName +"." +
2207          IVD->getNameAsString());
2208      IvarOffsets.push_back(OffsetValue);
2209      IvarOffsetValues.push_back(OffsetVar);
2210      Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
2211      switch (lt) {
2212        case Qualifiers::OCL_Strong:
2213          StrongIvars.push_back(true);
2214          WeakIvars.push_back(false);
2215          break;
2216        case Qualifiers::OCL_Weak:
2217          StrongIvars.push_back(false);
2218          WeakIvars.push_back(true);
2219          break;
2220        default:
2221          StrongIvars.push_back(false);
2222          WeakIvars.push_back(false);
2223      }
2224  }
2225  llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2226  llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2227  llvm::GlobalVariable *IvarOffsetArray =
2228    MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets");
2229
2230
2231  // Collect information about instance methods
2232  SmallVector<Selector, 16> InstanceMethodSels;
2233  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2234  for (const auto *I : OID->instance_methods()) {
2235    InstanceMethodSels.push_back(I->getSelector());
2236    std::string TypeStr;
2237    Context.getObjCEncodingForMethodDecl(I,TypeStr);
2238    InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2239  }
2240
2241  llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2242          InstanceMethodTypes);
2243
2244
2245  // Collect information about class methods
2246  SmallVector<Selector, 16> ClassMethodSels;
2247  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2248  for (const auto *I : OID->class_methods()) {
2249    ClassMethodSels.push_back(I->getSelector());
2250    std::string TypeStr;
2251    Context.getObjCEncodingForMethodDecl(I,TypeStr);
2252    ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2253  }
2254  // Collect the names of referenced protocols
2255  SmallVector<std::string, 16> Protocols;
2256  for (const auto *I : ClassDecl->protocols())
2257    Protocols.push_back(I->getNameAsString());
2258
2259  // Get the superclass pointer.
2260  llvm::Constant *SuperClass;
2261  if (!SuperClassName.empty()) {
2262    SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2263  } else {
2264    SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2265  }
2266  // Empty vector used to construct empty method lists
2267  SmallVector<llvm::Constant*, 1>  empty;
2268  // Generate the method and instance variable lists
2269  llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2270      InstanceMethodSels, InstanceMethodTypes, false);
2271  llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2272      ClassMethodSels, ClassMethodTypes, true);
2273  llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2274      IvarOffsets);
2275  // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2276  // we emit a symbol containing the offset for each ivar in the class.  This
2277  // allows code compiled for the non-Fragile ABI to inherit from code compiled
2278  // for the legacy ABI, without causing problems.  The converse is also
2279  // possible, but causes all ivar accesses to be fragile.
2280
2281  // Offset pointer for getting at the correct field in the ivar list when
2282  // setting up the alias.  These are: The base address for the global, the
2283  // ivar array (second field), the ivar in this list (set for each ivar), and
2284  // the offset (third field in ivar structure)
2285  llvm::Type *IndexTy = Int32Ty;
2286  llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2287      llvm::ConstantInt::get(IndexTy, 1), nullptr,
2288      llvm::ConstantInt::get(IndexTy, 2) };
2289
2290  unsigned ivarIndex = 0;
2291  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2292       IVD = IVD->getNextIvar()) {
2293      const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2294          + IVD->getNameAsString();
2295      offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2296      // Get the correct ivar field
2297      llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2298              IvarList, offsetPointerIndexes);
2299      // Get the existing variable, if one exists.
2300      llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2301      if (offset) {
2302        offset->setInitializer(offsetValue);
2303        // If this is the real definition, change its linkage type so that
2304        // different modules will use this one, rather than their private
2305        // copy.
2306        offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2307      } else {
2308        // Add a new alias if there isn't one already.
2309        offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2310                false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2311        (void) offset; // Silence dead store warning.
2312      }
2313      ++ivarIndex;
2314  }
2315  llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2316  //Generate metaclass for class methods
2317  llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2318      NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], GenerateIvarList(
2319        empty, empty, empty), ClassMethodList, NULLPtr,
2320      NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2321
2322  // Generate the class structure
2323  llvm::Constant *ClassStruct =
2324    GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2325                           ClassName.c_str(), nullptr,
2326      llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2327      MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2328      Properties, StrongIvarBitmap, WeakIvarBitmap);
2329
2330  // Resolve the class aliases, if they exist.
2331  if (ClassPtrAlias) {
2332    ClassPtrAlias->replaceAllUsesWith(
2333        llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2334    ClassPtrAlias->eraseFromParent();
2335    ClassPtrAlias = nullptr;
2336  }
2337  if (MetaClassPtrAlias) {
2338    MetaClassPtrAlias->replaceAllUsesWith(
2339        llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2340    MetaClassPtrAlias->eraseFromParent();
2341    MetaClassPtrAlias = nullptr;
2342  }
2343
2344  // Add class structure to list to be added to the symtab later
2345  ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2346  Classes.push_back(ClassStruct);
2347}
2348
2349
2350llvm::Function *CGObjCGNU::ModuleInitFunction() {
2351  // Only emit an ObjC load function if no Objective-C stuff has been called
2352  if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2353      ExistingProtocols.empty() && SelectorTable.empty())
2354    return nullptr;
2355
2356  // Add all referenced protocols to a category.
2357  GenerateProtocolHolderCategory();
2358
2359  llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2360          SelectorTy->getElementType());
2361  llvm::Type *SelStructPtrTy = SelectorTy;
2362  if (!SelStructTy) {
2363    SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr);
2364    SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2365  }
2366
2367  std::vector<llvm::Constant*> Elements;
2368  llvm::Constant *Statics = NULLPtr;
2369  // Generate statics list:
2370  if (ConstantStrings.size()) {
2371    llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2372        ConstantStrings.size() + 1);
2373    ConstantStrings.push_back(NULLPtr);
2374
2375    StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2376
2377    if (StringClass.empty()) StringClass = "NXConstantString";
2378
2379    Elements.push_back(MakeConstantString(StringClass,
2380                ".objc_static_class_name"));
2381    Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2382       ConstantStrings));
2383    llvm::StructType *StaticsListTy =
2384      llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, nullptr);
2385    llvm::Type *StaticsListPtrTy =
2386      llvm::PointerType::getUnqual(StaticsListTy);
2387    Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics");
2388    llvm::ArrayType *StaticsListArrayTy =
2389      llvm::ArrayType::get(StaticsListPtrTy, 2);
2390    Elements.clear();
2391    Elements.push_back(Statics);
2392    Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2393    Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr");
2394    Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2395  }
2396  // Array of classes, categories, and constant objects
2397  llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2398      Classes.size() + Categories.size()  + 2);
2399  llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2400                                                     llvm::Type::getInt16Ty(VMContext),
2401                                                     llvm::Type::getInt16Ty(VMContext),
2402                                                     ClassListTy, nullptr);
2403
2404  Elements.clear();
2405  // Pointer to an array of selectors used in this module.
2406  std::vector<llvm::Constant*> Selectors;
2407  std::vector<llvm::GlobalAlias*> SelectorAliases;
2408  for (SelectorMap::iterator iter = SelectorTable.begin(),
2409      iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2410
2411    std::string SelNameStr = iter->first.getAsString();
2412    llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2413
2414    SmallVectorImpl<TypedSelector> &Types = iter->second;
2415    for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2416        e = Types.end() ; i!=e ; i++) {
2417
2418      llvm::Constant *SelectorTypeEncoding = NULLPtr;
2419      if (!i->first.empty())
2420        SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2421
2422      Elements.push_back(SelName);
2423      Elements.push_back(SelectorTypeEncoding);
2424      Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2425      Elements.clear();
2426
2427      // Store the selector alias for later replacement
2428      SelectorAliases.push_back(i->second);
2429    }
2430  }
2431  unsigned SelectorCount = Selectors.size();
2432  // NULL-terminate the selector list.  This should not actually be required,
2433  // because the selector list has a length field.  Unfortunately, the GCC
2434  // runtime decides to ignore the length field and expects a NULL terminator,
2435  // and GCC cooperates with this by always setting the length to 0.
2436  Elements.push_back(NULLPtr);
2437  Elements.push_back(NULLPtr);
2438  Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2439  Elements.clear();
2440
2441  // Number of static selectors
2442  Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2443  llvm::Constant *SelectorList = MakeGlobalArray(SelStructTy, Selectors,
2444          ".objc_selector_list");
2445  Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2446    SelStructPtrTy));
2447
2448  // Now that all of the static selectors exist, create pointers to them.
2449  for (unsigned int i=0 ; i<SelectorCount ; i++) {
2450
2451    llvm::Constant *Idxs[] = {Zeros[0],
2452      llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2453    // FIXME: We're generating redundant loads and stores here!
2454    llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(SelectorList,
2455        makeArrayRef(Idxs, 2));
2456    // If selectors are defined as an opaque type, cast the pointer to this
2457    // type.
2458    SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2459    SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2460    SelectorAliases[i]->eraseFromParent();
2461  }
2462
2463  // Number of classes defined.
2464  Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2465        Classes.size()));
2466  // Number of categories defined
2467  Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2468        Categories.size()));
2469  // Create an array of classes, then categories, then static object instances
2470  Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2471  //  NULL-terminated list of static object instances (mainly constant strings)
2472  Classes.push_back(Statics);
2473  Classes.push_back(NULLPtr);
2474  llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2475  Elements.push_back(ClassList);
2476  // Construct the symbol table
2477  llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements);
2478
2479  // The symbol table is contained in a module which has some version-checking
2480  // constants
2481  llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2482      PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
2483      (RuntimeVersion >= 10) ? IntTy : nullptr, nullptr);
2484  Elements.clear();
2485  // Runtime version, used for ABI compatibility checking.
2486  Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2487  // sizeof(ModuleTy)
2488  llvm::DataLayout td(&TheModule);
2489  Elements.push_back(
2490    llvm::ConstantInt::get(LongTy,
2491                           td.getTypeSizeInBits(ModuleTy) /
2492                             CGM.getContext().getCharWidth()));
2493
2494  // The path to the source file where this module was declared
2495  SourceManager &SM = CGM.getContext().getSourceManager();
2496  const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2497  std::string path =
2498    std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2499  Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2500  Elements.push_back(SymTab);
2501
2502  if (RuntimeVersion >= 10)
2503    switch (CGM.getLangOpts().getGC()) {
2504      case LangOptions::GCOnly:
2505        Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2506        break;
2507      case LangOptions::NonGC:
2508        if (CGM.getLangOpts().ObjCAutoRefCount)
2509          Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2510        else
2511          Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2512        break;
2513      case LangOptions::HybridGC:
2514          Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2515        break;
2516    }
2517
2518  llvm::Value *Module = MakeGlobal(ModuleTy, Elements);
2519
2520  // Create the load function calling the runtime entry point with the module
2521  // structure
2522  llvm::Function * LoadFunction = llvm::Function::Create(
2523      llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2524      llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2525      &TheModule);
2526  llvm::BasicBlock *EntryBB =
2527      llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2528  CGBuilderTy Builder(VMContext);
2529  Builder.SetInsertPoint(EntryBB);
2530
2531  llvm::FunctionType *FT =
2532    llvm::FunctionType::get(Builder.getVoidTy(),
2533                            llvm::PointerType::getUnqual(ModuleTy), true);
2534  llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2535  Builder.CreateCall(Register, Module);
2536
2537  if (!ClassAliases.empty()) {
2538    llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
2539    llvm::FunctionType *RegisterAliasTy =
2540      llvm::FunctionType::get(Builder.getVoidTy(),
2541                              ArgTypes, false);
2542    llvm::Function *RegisterAlias = llvm::Function::Create(
2543      RegisterAliasTy,
2544      llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
2545      &TheModule);
2546    llvm::BasicBlock *AliasBB =
2547      llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
2548    llvm::BasicBlock *NoAliasBB =
2549      llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
2550
2551    // Branch based on whether the runtime provided class_registerAlias_np()
2552    llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
2553            llvm::Constant::getNullValue(RegisterAlias->getType()));
2554    Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
2555
2556    // The true branch (has alias registration function):
2557    Builder.SetInsertPoint(AliasBB);
2558    // Emit alias registration calls:
2559    for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
2560       iter != ClassAliases.end(); ++iter) {
2561       llvm::Constant *TheClass =
2562         TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
2563            true);
2564       if (TheClass) {
2565         TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
2566         Builder.CreateCall2(RegisterAlias, TheClass,
2567            MakeConstantString(iter->second));
2568       }
2569    }
2570    // Jump to end:
2571    Builder.CreateBr(NoAliasBB);
2572
2573    // Missing alias registration function, just return from the function:
2574    Builder.SetInsertPoint(NoAliasBB);
2575  }
2576  Builder.CreateRetVoid();
2577
2578  return LoadFunction;
2579}
2580
2581llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2582                                          const ObjCContainerDecl *CD) {
2583  const ObjCCategoryImplDecl *OCD =
2584    dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2585  StringRef CategoryName = OCD ? OCD->getName() : "";
2586  StringRef ClassName = CD->getName();
2587  Selector MethodName = OMD->getSelector();
2588  bool isClassMethod = !OMD->isInstanceMethod();
2589
2590  CodeGenTypes &Types = CGM.getTypes();
2591  llvm::FunctionType *MethodTy =
2592    Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
2593  std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2594      MethodName, isClassMethod);
2595
2596  llvm::Function *Method
2597    = llvm::Function::Create(MethodTy,
2598                             llvm::GlobalValue::InternalLinkage,
2599                             FunctionName,
2600                             &TheModule);
2601  return Method;
2602}
2603
2604llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2605  return GetPropertyFn;
2606}
2607
2608llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2609  return SetPropertyFn;
2610}
2611
2612llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
2613                                                           bool copy) {
2614  return nullptr;
2615}
2616
2617llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2618  return GetStructPropertyFn;
2619}
2620llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2621  return SetStructPropertyFn;
2622}
2623llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
2624  return nullptr;
2625}
2626llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
2627  return nullptr;
2628}
2629
2630llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2631  return EnumerationMutationFn;
2632}
2633
2634void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2635                                     const ObjCAtSynchronizedStmt &S) {
2636  EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2637}
2638
2639
2640void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2641                            const ObjCAtTryStmt &S) {
2642  // Unlike the Apple non-fragile runtimes, which also uses
2643  // unwind-based zero cost exceptions, the GNU Objective C runtime's
2644  // EH support isn't a veneer over C++ EH.  Instead, exception
2645  // objects are created by objc_exception_throw and destroyed by
2646  // the personality function; this avoids the need for bracketing
2647  // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2648  // (or even _Unwind_DeleteException), but probably doesn't
2649  // interoperate very well with foreign exceptions.
2650  //
2651  // In Objective-C++ mode, we actually emit something equivalent to the C++
2652  // exception handler.
2653  EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2654  return ;
2655}
2656
2657void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2658                              const ObjCAtThrowStmt &S,
2659                              bool ClearInsertionPoint) {
2660  llvm::Value *ExceptionAsObject;
2661
2662  if (const Expr *ThrowExpr = S.getThrowExpr()) {
2663    llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2664    ExceptionAsObject = Exception;
2665  } else {
2666    assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2667           "Unexpected rethrow outside @catch block.");
2668    ExceptionAsObject = CGF.ObjCEHValueStack.back();
2669  }
2670  ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2671  llvm::CallSite Throw =
2672      CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
2673  Throw.setDoesNotReturn();
2674  CGF.Builder.CreateUnreachable();
2675  if (ClearInsertionPoint)
2676    CGF.Builder.ClearInsertionPoint();
2677}
2678
2679llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2680                                          llvm::Value *AddrWeakObj) {
2681  CGBuilderTy &B = CGF.Builder;
2682  AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2683  return B.CreateCall(WeakReadFn, AddrWeakObj);
2684}
2685
2686void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2687                                   llvm::Value *src, llvm::Value *dst) {
2688  CGBuilderTy &B = CGF.Builder;
2689  src = EnforceType(B, src, IdTy);
2690  dst = EnforceType(B, dst, PtrToIdTy);
2691  B.CreateCall2(WeakAssignFn, src, dst);
2692}
2693
2694void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2695                                     llvm::Value *src, llvm::Value *dst,
2696                                     bool threadlocal) {
2697  CGBuilderTy &B = CGF.Builder;
2698  src = EnforceType(B, src, IdTy);
2699  dst = EnforceType(B, dst, PtrToIdTy);
2700  if (!threadlocal)
2701    B.CreateCall2(GlobalAssignFn, src, dst);
2702  else
2703    // FIXME. Add threadloca assign API
2704    llvm_unreachable("EmitObjCGlobalAssign - Threal Local API NYI");
2705}
2706
2707void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2708                                   llvm::Value *src, llvm::Value *dst,
2709                                   llvm::Value *ivarOffset) {
2710  CGBuilderTy &B = CGF.Builder;
2711  src = EnforceType(B, src, IdTy);
2712  dst = EnforceType(B, dst, IdTy);
2713  B.CreateCall3(IvarAssignFn, src, dst, ivarOffset);
2714}
2715
2716void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2717                                         llvm::Value *src, llvm::Value *dst) {
2718  CGBuilderTy &B = CGF.Builder;
2719  src = EnforceType(B, src, IdTy);
2720  dst = EnforceType(B, dst, PtrToIdTy);
2721  B.CreateCall2(StrongCastAssignFn, src, dst);
2722}
2723
2724void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2725                                         llvm::Value *DestPtr,
2726                                         llvm::Value *SrcPtr,
2727                                         llvm::Value *Size) {
2728  CGBuilderTy &B = CGF.Builder;
2729  DestPtr = EnforceType(B, DestPtr, PtrTy);
2730  SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2731
2732  B.CreateCall3(MemMoveFn, DestPtr, SrcPtr, Size);
2733}
2734
2735llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2736                              const ObjCInterfaceDecl *ID,
2737                              const ObjCIvarDecl *Ivar) {
2738  const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2739    + '.' + Ivar->getNameAsString();
2740  // Emit the variable and initialize it with what we think the correct value
2741  // is.  This allows code compiled with non-fragile ivars to work correctly
2742  // when linked against code which isn't (most of the time).
2743  llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2744  if (!IvarOffsetPointer) {
2745    // This will cause a run-time crash if we accidentally use it.  A value of
2746    // 0 would seem more sensible, but will silently overwrite the isa pointer
2747    // causing a great deal of confusion.
2748    uint64_t Offset = -1;
2749    // We can't call ComputeIvarBaseOffset() here if we have the
2750    // implementation, because it will create an invalid ASTRecordLayout object
2751    // that we are then stuck with forever, so we only initialize the ivar
2752    // offset variable with a guess if we only have the interface.  The
2753    // initializer will be reset later anyway, when we are generating the class
2754    // description.
2755    if (!CGM.getContext().getObjCImplementation(
2756              const_cast<ObjCInterfaceDecl *>(ID)))
2757      Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2758
2759    llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2760                             /*isSigned*/true);
2761    // Don't emit the guess in non-PIC code because the linker will not be able
2762    // to replace it with the real version for a library.  In non-PIC code you
2763    // must compile with the fragile ABI if you want to use ivars from a
2764    // GCC-compiled class.
2765    if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) {
2766      llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2767            Int32Ty, false,
2768            llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2769      IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2770            IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2771            IvarOffsetGV, Name);
2772    } else {
2773      IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2774              llvm::Type::getInt32PtrTy(VMContext), false,
2775              llvm::GlobalValue::ExternalLinkage, nullptr, Name);
2776    }
2777  }
2778  return IvarOffsetPointer;
2779}
2780
2781LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2782                                       QualType ObjectTy,
2783                                       llvm::Value *BaseValue,
2784                                       const ObjCIvarDecl *Ivar,
2785                                       unsigned CVRQualifiers) {
2786  const ObjCInterfaceDecl *ID =
2787    ObjectTy->getAs<ObjCObjectType>()->getInterface();
2788  return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2789                                  EmitIvarOffset(CGF, ID, Ivar));
2790}
2791
2792static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2793                                                  const ObjCInterfaceDecl *OID,
2794                                                  const ObjCIvarDecl *OIVD) {
2795  for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2796       next = next->getNextIvar()) {
2797    if (OIVD == next)
2798      return OID;
2799  }
2800
2801  // Otherwise check in the super class.
2802  if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2803    return FindIvarInterface(Context, Super, OIVD);
2804
2805  return nullptr;
2806}
2807
2808llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2809                         const ObjCInterfaceDecl *Interface,
2810                         const ObjCIvarDecl *Ivar) {
2811  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2812    Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2813    if (RuntimeVersion < 10)
2814      return CGF.Builder.CreateZExtOrBitCast(
2815          CGF.Builder.CreateLoad(CGF.Builder.CreateLoad(
2816                  ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")),
2817          PtrDiffTy);
2818    std::string name = "__objc_ivar_offset_value_" +
2819      Interface->getNameAsString() +"." + Ivar->getNameAsString();
2820    llvm::Value *Offset = TheModule.getGlobalVariable(name);
2821    if (!Offset)
2822      Offset = new llvm::GlobalVariable(TheModule, IntTy,
2823          false, llvm::GlobalValue::LinkOnceAnyLinkage,
2824          llvm::Constant::getNullValue(IntTy), name);
2825    Offset = CGF.Builder.CreateLoad(Offset);
2826    if (Offset->getType() != PtrDiffTy)
2827      Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
2828    return Offset;
2829  }
2830  uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2831  return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2832}
2833
2834CGObjCRuntime *
2835clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2836  switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
2837  case ObjCRuntime::GNUstep:
2838    return new CGObjCGNUstep(CGM);
2839
2840  case ObjCRuntime::GCC:
2841    return new CGObjCGCC(CGM);
2842
2843  case ObjCRuntime::ObjFW:
2844    return new CGObjCObjFW(CGM);
2845
2846  case ObjCRuntime::FragileMacOSX:
2847  case ObjCRuntime::MacOSX:
2848  case ObjCRuntime::iOS:
2849    llvm_unreachable("these runtimes are not GNU runtimes");
2850  }
2851  llvm_unreachable("bad runtime");
2852}
2853