1//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Stmt nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGDebugInfo.h"
16#include "CodeGenModule.h"
17#include "TargetInfo.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/PrettyStackTrace.h"
20#include "clang/Basic/TargetInfo.h"
21#include "clang/Sema/LoopHint.h"
22#include "clang/Sema/SemaDiagnostic.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/IR/CallSite.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/InlineAsm.h"
27#include "llvm/IR/Intrinsics.h"
28using namespace clang;
29using namespace CodeGen;
30
31//===----------------------------------------------------------------------===//
32//                              Statement Emission
33//===----------------------------------------------------------------------===//
34
35void CodeGenFunction::EmitStopPoint(const Stmt *S) {
36  if (CGDebugInfo *DI = getDebugInfo()) {
37    SourceLocation Loc;
38    Loc = S->getLocStart();
39    DI->EmitLocation(Builder, Loc);
40
41    LastStopPoint = Loc;
42  }
43}
44
45void CodeGenFunction::EmitStmt(const Stmt *S) {
46  assert(S && "Null statement?");
47  PGO.setCurrentStmt(S);
48
49  // These statements have their own debug info handling.
50  if (EmitSimpleStmt(S))
51    return;
52
53  // Check if we are generating unreachable code.
54  if (!HaveInsertPoint()) {
55    // If so, and the statement doesn't contain a label, then we do not need to
56    // generate actual code. This is safe because (1) the current point is
57    // unreachable, so we don't need to execute the code, and (2) we've already
58    // handled the statements which update internal data structures (like the
59    // local variable map) which could be used by subsequent statements.
60    if (!ContainsLabel(S)) {
61      // Verify that any decl statements were handled as simple, they may be in
62      // scope of subsequent reachable statements.
63      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
64      return;
65    }
66
67    // Otherwise, make a new block to hold the code.
68    EnsureInsertPoint();
69  }
70
71  // Generate a stoppoint if we are emitting debug info.
72  EmitStopPoint(S);
73
74  switch (S->getStmtClass()) {
75  case Stmt::NoStmtClass:
76  case Stmt::CXXCatchStmtClass:
77  case Stmt::SEHExceptStmtClass:
78  case Stmt::SEHFinallyStmtClass:
79  case Stmt::MSDependentExistsStmtClass:
80    llvm_unreachable("invalid statement class to emit generically");
81  case Stmt::NullStmtClass:
82  case Stmt::CompoundStmtClass:
83  case Stmt::DeclStmtClass:
84  case Stmt::LabelStmtClass:
85  case Stmt::AttributedStmtClass:
86  case Stmt::GotoStmtClass:
87  case Stmt::BreakStmtClass:
88  case Stmt::ContinueStmtClass:
89  case Stmt::DefaultStmtClass:
90  case Stmt::CaseStmtClass:
91    llvm_unreachable("should have emitted these statements as simple");
92
93#define STMT(Type, Base)
94#define ABSTRACT_STMT(Op)
95#define EXPR(Type, Base) \
96  case Stmt::Type##Class:
97#include "clang/AST/StmtNodes.inc"
98  {
99    // Remember the block we came in on.
100    llvm::BasicBlock *incoming = Builder.GetInsertBlock();
101    assert(incoming && "expression emission must have an insertion point");
102
103    EmitIgnoredExpr(cast<Expr>(S));
104
105    llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
106    assert(outgoing && "expression emission cleared block!");
107
108    // The expression emitters assume (reasonably!) that the insertion
109    // point is always set.  To maintain that, the call-emission code
110    // for noreturn functions has to enter a new block with no
111    // predecessors.  We want to kill that block and mark the current
112    // insertion point unreachable in the common case of a call like
113    // "exit();".  Since expression emission doesn't otherwise create
114    // blocks with no predecessors, we can just test for that.
115    // However, we must be careful not to do this to our incoming
116    // block, because *statement* emission does sometimes create
117    // reachable blocks which will have no predecessors until later in
118    // the function.  This occurs with, e.g., labels that are not
119    // reachable by fallthrough.
120    if (incoming != outgoing && outgoing->use_empty()) {
121      outgoing->eraseFromParent();
122      Builder.ClearInsertionPoint();
123    }
124    break;
125  }
126
127  case Stmt::IndirectGotoStmtClass:
128    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
129
130  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
131  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
132  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
133  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
134
135  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
136
137  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
138  case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
139  case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
140  case Stmt::CapturedStmtClass: {
141    const CapturedStmt *CS = cast<CapturedStmt>(S);
142    EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
143    }
144    break;
145  case Stmt::ObjCAtTryStmtClass:
146    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
147    break;
148  case Stmt::ObjCAtCatchStmtClass:
149    llvm_unreachable(
150                    "@catch statements should be handled by EmitObjCAtTryStmt");
151  case Stmt::ObjCAtFinallyStmtClass:
152    llvm_unreachable(
153                  "@finally statements should be handled by EmitObjCAtTryStmt");
154  case Stmt::ObjCAtThrowStmtClass:
155    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
156    break;
157  case Stmt::ObjCAtSynchronizedStmtClass:
158    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
159    break;
160  case Stmt::ObjCForCollectionStmtClass:
161    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
162    break;
163  case Stmt::ObjCAutoreleasePoolStmtClass:
164    EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
165    break;
166
167  case Stmt::CXXTryStmtClass:
168    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
169    break;
170  case Stmt::CXXForRangeStmtClass:
171    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
172    break;
173  case Stmt::SEHTryStmtClass:
174    EmitSEHTryStmt(cast<SEHTryStmt>(*S));
175    break;
176  case Stmt::SEHLeaveStmtClass:
177    EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
178    break;
179  case Stmt::OMPParallelDirectiveClass:
180    EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
181    break;
182  case Stmt::OMPSimdDirectiveClass:
183    EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
184    break;
185  case Stmt::OMPForDirectiveClass:
186    EmitOMPForDirective(cast<OMPForDirective>(*S));
187    break;
188  case Stmt::OMPSectionsDirectiveClass:
189    EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
190    break;
191  case Stmt::OMPSectionDirectiveClass:
192    EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
193    break;
194  case Stmt::OMPSingleDirectiveClass:
195    EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
196    break;
197  case Stmt::OMPParallelForDirectiveClass:
198    EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
199    break;
200  case Stmt::OMPParallelSectionsDirectiveClass:
201    EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
202    break;
203  }
204}
205
206bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
207  switch (S->getStmtClass()) {
208  default: return false;
209  case Stmt::NullStmtClass: break;
210  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
211  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
212  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
213  case Stmt::AttributedStmtClass:
214                            EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
215  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
216  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
217  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
218  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
219  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
220  }
221
222  return true;
223}
224
225/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
226/// this captures the expression result of the last sub-statement and returns it
227/// (for use by the statement expression extension).
228llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
229                                               AggValueSlot AggSlot) {
230  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
231                             "LLVM IR generation of compound statement ('{}')");
232
233  // Keep track of the current cleanup stack depth, including debug scopes.
234  LexicalScope Scope(*this, S.getSourceRange());
235
236  return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
237}
238
239llvm::Value*
240CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
241                                              bool GetLast,
242                                              AggValueSlot AggSlot) {
243
244  for (CompoundStmt::const_body_iterator I = S.body_begin(),
245       E = S.body_end()-GetLast; I != E; ++I)
246    EmitStmt(*I);
247
248  llvm::Value *RetAlloca = nullptr;
249  if (GetLast) {
250    // We have to special case labels here.  They are statements, but when put
251    // at the end of a statement expression, they yield the value of their
252    // subexpression.  Handle this by walking through all labels we encounter,
253    // emitting them before we evaluate the subexpr.
254    const Stmt *LastStmt = S.body_back();
255    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
256      EmitLabel(LS->getDecl());
257      LastStmt = LS->getSubStmt();
258    }
259
260    EnsureInsertPoint();
261
262    QualType ExprTy = cast<Expr>(LastStmt)->getType();
263    if (hasAggregateEvaluationKind(ExprTy)) {
264      EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
265    } else {
266      // We can't return an RValue here because there might be cleanups at
267      // the end of the StmtExpr.  Because of that, we have to emit the result
268      // here into a temporary alloca.
269      RetAlloca = CreateMemTemp(ExprTy);
270      EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
271                       /*IsInit*/false);
272    }
273
274  }
275
276  return RetAlloca;
277}
278
279void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
280  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
281
282  // If there is a cleanup stack, then we it isn't worth trying to
283  // simplify this block (we would need to remove it from the scope map
284  // and cleanup entry).
285  if (!EHStack.empty())
286    return;
287
288  // Can only simplify direct branches.
289  if (!BI || !BI->isUnconditional())
290    return;
291
292  // Can only simplify empty blocks.
293  if (BI != BB->begin())
294    return;
295
296  BB->replaceAllUsesWith(BI->getSuccessor(0));
297  BI->eraseFromParent();
298  BB->eraseFromParent();
299}
300
301void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
302  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
303
304  // Fall out of the current block (if necessary).
305  EmitBranch(BB);
306
307  if (IsFinished && BB->use_empty()) {
308    delete BB;
309    return;
310  }
311
312  // Place the block after the current block, if possible, or else at
313  // the end of the function.
314  if (CurBB && CurBB->getParent())
315    CurFn->getBasicBlockList().insertAfter(CurBB, BB);
316  else
317    CurFn->getBasicBlockList().push_back(BB);
318  Builder.SetInsertPoint(BB);
319}
320
321void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
322  // Emit a branch from the current block to the target one if this
323  // was a real block.  If this was just a fall-through block after a
324  // terminator, don't emit it.
325  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
326
327  if (!CurBB || CurBB->getTerminator()) {
328    // If there is no insert point or the previous block is already
329    // terminated, don't touch it.
330  } else {
331    // Otherwise, create a fall-through branch.
332    Builder.CreateBr(Target);
333  }
334
335  Builder.ClearInsertionPoint();
336}
337
338void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
339  bool inserted = false;
340  for (llvm::User *u : block->users()) {
341    if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
342      CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
343      inserted = true;
344      break;
345    }
346  }
347
348  if (!inserted)
349    CurFn->getBasicBlockList().push_back(block);
350
351  Builder.SetInsertPoint(block);
352}
353
354CodeGenFunction::JumpDest
355CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
356  JumpDest &Dest = LabelMap[D];
357  if (Dest.isValid()) return Dest;
358
359  // Create, but don't insert, the new block.
360  Dest = JumpDest(createBasicBlock(D->getName()),
361                  EHScopeStack::stable_iterator::invalid(),
362                  NextCleanupDestIndex++);
363  return Dest;
364}
365
366void CodeGenFunction::EmitLabel(const LabelDecl *D) {
367  // Add this label to the current lexical scope if we're within any
368  // normal cleanups.  Jumps "in" to this label --- when permitted by
369  // the language --- may need to be routed around such cleanups.
370  if (EHStack.hasNormalCleanups() && CurLexicalScope)
371    CurLexicalScope->addLabel(D);
372
373  JumpDest &Dest = LabelMap[D];
374
375  // If we didn't need a forward reference to this label, just go
376  // ahead and create a destination at the current scope.
377  if (!Dest.isValid()) {
378    Dest = getJumpDestInCurrentScope(D->getName());
379
380  // Otherwise, we need to give this label a target depth and remove
381  // it from the branch-fixups list.
382  } else {
383    assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
384    Dest.setScopeDepth(EHStack.stable_begin());
385    ResolveBranchFixups(Dest.getBlock());
386  }
387
388  RegionCounter Cnt = getPGORegionCounter(D->getStmt());
389  EmitBlock(Dest.getBlock());
390  Cnt.beginRegion(Builder);
391}
392
393/// Change the cleanup scope of the labels in this lexical scope to
394/// match the scope of the enclosing context.
395void CodeGenFunction::LexicalScope::rescopeLabels() {
396  assert(!Labels.empty());
397  EHScopeStack::stable_iterator innermostScope
398    = CGF.EHStack.getInnermostNormalCleanup();
399
400  // Change the scope depth of all the labels.
401  for (SmallVectorImpl<const LabelDecl*>::const_iterator
402         i = Labels.begin(), e = Labels.end(); i != e; ++i) {
403    assert(CGF.LabelMap.count(*i));
404    JumpDest &dest = CGF.LabelMap.find(*i)->second;
405    assert(dest.getScopeDepth().isValid());
406    assert(innermostScope.encloses(dest.getScopeDepth()));
407    dest.setScopeDepth(innermostScope);
408  }
409
410  // Reparent the labels if the new scope also has cleanups.
411  if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
412    ParentScope->Labels.append(Labels.begin(), Labels.end());
413  }
414}
415
416
417void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
418  EmitLabel(S.getDecl());
419  EmitStmt(S.getSubStmt());
420}
421
422void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
423  const Stmt *SubStmt = S.getSubStmt();
424  switch (SubStmt->getStmtClass()) {
425  case Stmt::DoStmtClass:
426    EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
427    break;
428  case Stmt::ForStmtClass:
429    EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
430    break;
431  case Stmt::WhileStmtClass:
432    EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
433    break;
434  case Stmt::CXXForRangeStmtClass:
435    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
436    break;
437  default:
438    EmitStmt(SubStmt);
439  }
440}
441
442void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
443  // If this code is reachable then emit a stop point (if generating
444  // debug info). We have to do this ourselves because we are on the
445  // "simple" statement path.
446  if (HaveInsertPoint())
447    EmitStopPoint(&S);
448
449  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
450}
451
452
453void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
454  if (const LabelDecl *Target = S.getConstantTarget()) {
455    EmitBranchThroughCleanup(getJumpDestForLabel(Target));
456    return;
457  }
458
459  // Ensure that we have an i8* for our PHI node.
460  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
461                                         Int8PtrTy, "addr");
462  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
463
464  // Get the basic block for the indirect goto.
465  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
466
467  // The first instruction in the block has to be the PHI for the switch dest,
468  // add an entry for this branch.
469  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
470
471  EmitBranch(IndGotoBB);
472}
473
474void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
475  // C99 6.8.4.1: The first substatement is executed if the expression compares
476  // unequal to 0.  The condition must be a scalar type.
477  LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
478  RegionCounter Cnt = getPGORegionCounter(&S);
479
480  if (S.getConditionVariable())
481    EmitAutoVarDecl(*S.getConditionVariable());
482
483  // If the condition constant folds and can be elided, try to avoid emitting
484  // the condition and the dead arm of the if/else.
485  bool CondConstant;
486  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
487    // Figure out which block (then or else) is executed.
488    const Stmt *Executed = S.getThen();
489    const Stmt *Skipped  = S.getElse();
490    if (!CondConstant)  // Condition false?
491      std::swap(Executed, Skipped);
492
493    // If the skipped block has no labels in it, just emit the executed block.
494    // This avoids emitting dead code and simplifies the CFG substantially.
495    if (!ContainsLabel(Skipped)) {
496      if (CondConstant)
497        Cnt.beginRegion(Builder);
498      if (Executed) {
499        RunCleanupsScope ExecutedScope(*this);
500        EmitStmt(Executed);
501      }
502      return;
503    }
504  }
505
506  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
507  // the conditional branch.
508  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
509  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
510  llvm::BasicBlock *ElseBlock = ContBlock;
511  if (S.getElse())
512    ElseBlock = createBasicBlock("if.else");
513
514  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
515
516  // Emit the 'then' code.
517  EmitBlock(ThenBlock);
518  Cnt.beginRegion(Builder);
519  {
520    RunCleanupsScope ThenScope(*this);
521    EmitStmt(S.getThen());
522  }
523  EmitBranch(ContBlock);
524
525  // Emit the 'else' code if present.
526  if (const Stmt *Else = S.getElse()) {
527    // There is no need to emit line number for unconditional branch.
528    if (getDebugInfo())
529      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
530    EmitBlock(ElseBlock);
531    {
532      RunCleanupsScope ElseScope(*this);
533      EmitStmt(Else);
534    }
535    // There is no need to emit line number for unconditional branch.
536    if (getDebugInfo())
537      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
538    EmitBranch(ContBlock);
539  }
540
541  // Emit the continuation block for code after the if.
542  EmitBlock(ContBlock, true);
543}
544
545void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context,
546                                      llvm::BranchInst *CondBr,
547                                      const ArrayRef<const Attr *> &Attrs) {
548  // Return if there are no hints.
549  if (Attrs.empty())
550    return;
551
552  // Add vectorize and unroll hints to the metadata on the conditional branch.
553  SmallVector<llvm::Value *, 2> Metadata(1);
554  for (const auto *Attr : Attrs) {
555    const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr);
556
557    // Skip non loop hint attributes
558    if (!LH)
559      continue;
560
561    LoopHintAttr::OptionType Option = LH->getOption();
562    int ValueInt = LH->getValue();
563
564    const char *MetadataName;
565    switch (Option) {
566    case LoopHintAttr::Vectorize:
567    case LoopHintAttr::VectorizeWidth:
568      MetadataName = "llvm.loop.vectorize.width";
569      break;
570    case LoopHintAttr::Interleave:
571    case LoopHintAttr::InterleaveCount:
572      MetadataName = "llvm.loop.vectorize.unroll";
573      break;
574    case LoopHintAttr::Unroll:
575      MetadataName = "llvm.loop.unroll.enable";
576      break;
577    case LoopHintAttr::UnrollCount:
578      MetadataName = "llvm.loop.unroll.count";
579      break;
580    }
581
582    llvm::Value *Value;
583    llvm::MDString *Name;
584    switch (Option) {
585    case LoopHintAttr::Vectorize:
586    case LoopHintAttr::Interleave:
587      if (ValueInt == 1) {
588        // FIXME: In the future I will modifiy the behavior of the metadata
589        // so we can enable/disable vectorization and interleaving separately.
590        Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable");
591        Value = Builder.getTrue();
592        break;
593      }
594      // Vectorization/interleaving is disabled, set width/count to 1.
595      ValueInt = 1;
596      // Fallthrough.
597    case LoopHintAttr::VectorizeWidth:
598    case LoopHintAttr::InterleaveCount:
599      Name = llvm::MDString::get(Context, MetadataName);
600      Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
601      break;
602    case LoopHintAttr::Unroll:
603      Name = llvm::MDString::get(Context, MetadataName);
604      Value = (ValueInt == 0) ? Builder.getFalse() : Builder.getTrue();
605      break;
606    case LoopHintAttr::UnrollCount:
607      Name = llvm::MDString::get(Context, MetadataName);
608      Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
609      break;
610    }
611
612    SmallVector<llvm::Value *, 2> OpValues;
613    OpValues.push_back(Name);
614    OpValues.push_back(Value);
615
616    // Set or overwrite metadata indicated by Name.
617    Metadata.push_back(llvm::MDNode::get(Context, OpValues));
618  }
619
620  if (!Metadata.empty()) {
621    // Add llvm.loop MDNode to CondBr.
622    llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata);
623    LoopID->replaceOperandWith(0, LoopID); // First op points to itself.
624
625    CondBr->setMetadata("llvm.loop", LoopID);
626  }
627}
628
629void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
630                                    const ArrayRef<const Attr *> &WhileAttrs) {
631  RegionCounter Cnt = getPGORegionCounter(&S);
632
633  // Emit the header for the loop, which will also become
634  // the continue target.
635  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
636  EmitBlock(LoopHeader.getBlock());
637
638  LoopStack.push(LoopHeader.getBlock());
639
640  // Create an exit block for when the condition fails, which will
641  // also become the break target.
642  JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
643
644  // Store the blocks to use for break and continue.
645  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
646
647  // C++ [stmt.while]p2:
648  //   When the condition of a while statement is a declaration, the
649  //   scope of the variable that is declared extends from its point
650  //   of declaration (3.3.2) to the end of the while statement.
651  //   [...]
652  //   The object created in a condition is destroyed and created
653  //   with each iteration of the loop.
654  RunCleanupsScope ConditionScope(*this);
655
656  if (S.getConditionVariable())
657    EmitAutoVarDecl(*S.getConditionVariable());
658
659  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
660  // evaluation of the controlling expression takes place before each
661  // execution of the loop body.
662  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
663
664  // while(1) is common, avoid extra exit blocks.  Be sure
665  // to correctly handle break/continue though.
666  bool EmitBoolCondBranch = true;
667  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
668    if (C->isOne())
669      EmitBoolCondBranch = false;
670
671  // As long as the condition is true, go to the loop body.
672  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
673  if (EmitBoolCondBranch) {
674    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
675    if (ConditionScope.requiresCleanups())
676      ExitBlock = createBasicBlock("while.exit");
677    llvm::BranchInst *CondBr =
678        Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
679                             PGO.createLoopWeights(S.getCond(), Cnt));
680
681    if (ExitBlock != LoopExit.getBlock()) {
682      EmitBlock(ExitBlock);
683      EmitBranchThroughCleanup(LoopExit);
684    }
685
686    // Attach metadata to loop body conditional branch.
687    EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs);
688  }
689
690  // Emit the loop body.  We have to emit this in a cleanup scope
691  // because it might be a singleton DeclStmt.
692  {
693    RunCleanupsScope BodyScope(*this);
694    EmitBlock(LoopBody);
695    Cnt.beginRegion(Builder);
696    EmitStmt(S.getBody());
697  }
698
699  BreakContinueStack.pop_back();
700
701  // Immediately force cleanup.
702  ConditionScope.ForceCleanup();
703
704  // Branch to the loop header again.
705  EmitBranch(LoopHeader.getBlock());
706
707  LoopStack.pop();
708
709  // Emit the exit block.
710  EmitBlock(LoopExit.getBlock(), true);
711
712  // The LoopHeader typically is just a branch if we skipped emitting
713  // a branch, try to erase it.
714  if (!EmitBoolCondBranch)
715    SimplifyForwardingBlocks(LoopHeader.getBlock());
716}
717
718void CodeGenFunction::EmitDoStmt(const DoStmt &S,
719                                 const ArrayRef<const Attr *> &DoAttrs) {
720  JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
721  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
722
723  RegionCounter Cnt = getPGORegionCounter(&S);
724
725  // Store the blocks to use for break and continue.
726  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
727
728  // Emit the body of the loop.
729  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
730
731  LoopStack.push(LoopBody);
732
733  EmitBlockWithFallThrough(LoopBody, Cnt);
734  {
735    RunCleanupsScope BodyScope(*this);
736    EmitStmt(S.getBody());
737  }
738
739  EmitBlock(LoopCond.getBlock());
740
741  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
742  // after each execution of the loop body."
743
744  // Evaluate the conditional in the while header.
745  // C99 6.8.5p2/p4: The first substatement is executed if the expression
746  // compares unequal to 0.  The condition must be a scalar type.
747  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
748
749  BreakContinueStack.pop_back();
750
751  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
752  // to correctly handle break/continue though.
753  bool EmitBoolCondBranch = true;
754  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
755    if (C->isZero())
756      EmitBoolCondBranch = false;
757
758  // As long as the condition is true, iterate the loop.
759  if (EmitBoolCondBranch) {
760    llvm::BranchInst *CondBr =
761        Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
762                             PGO.createLoopWeights(S.getCond(), Cnt));
763
764    // Attach metadata to loop body conditional branch.
765    EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs);
766  }
767
768  LoopStack.pop();
769
770  // Emit the exit block.
771  EmitBlock(LoopExit.getBlock());
772
773  // The DoCond block typically is just a branch if we skipped
774  // emitting a branch, try to erase it.
775  if (!EmitBoolCondBranch)
776    SimplifyForwardingBlocks(LoopCond.getBlock());
777}
778
779void CodeGenFunction::EmitForStmt(const ForStmt &S,
780                                  const ArrayRef<const Attr *> &ForAttrs) {
781  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
782
783  RunCleanupsScope ForScope(*this);
784
785  CGDebugInfo *DI = getDebugInfo();
786  if (DI)
787    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
788
789  // Evaluate the first part before the loop.
790  if (S.getInit())
791    EmitStmt(S.getInit());
792
793  RegionCounter Cnt = getPGORegionCounter(&S);
794
795  // Start the loop with a block that tests the condition.
796  // If there's an increment, the continue scope will be overwritten
797  // later.
798  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
799  llvm::BasicBlock *CondBlock = Continue.getBlock();
800  EmitBlock(CondBlock);
801
802  LoopStack.push(CondBlock);
803
804  // If the for loop doesn't have an increment we can just use the
805  // condition as the continue block.  Otherwise we'll need to create
806  // a block for it (in the current scope, i.e. in the scope of the
807  // condition), and that we will become our continue block.
808  if (S.getInc())
809    Continue = getJumpDestInCurrentScope("for.inc");
810
811  // Store the blocks to use for break and continue.
812  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
813
814  // Create a cleanup scope for the condition variable cleanups.
815  RunCleanupsScope ConditionScope(*this);
816
817  if (S.getCond()) {
818    // If the for statement has a condition scope, emit the local variable
819    // declaration.
820    if (S.getConditionVariable()) {
821      EmitAutoVarDecl(*S.getConditionVariable());
822    }
823
824    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
825    // If there are any cleanups between here and the loop-exit scope,
826    // create a block to stage a loop exit along.
827    if (ForScope.requiresCleanups())
828      ExitBlock = createBasicBlock("for.cond.cleanup");
829
830    // As long as the condition is true, iterate the loop.
831    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
832
833    // C99 6.8.5p2/p4: The first substatement is executed if the expression
834    // compares unequal to 0.  The condition must be a scalar type.
835    llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
836    llvm::BranchInst *CondBr =
837        Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
838                             PGO.createLoopWeights(S.getCond(), Cnt));
839
840    // Attach metadata to loop body conditional branch.
841    EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
842
843    if (ExitBlock != LoopExit.getBlock()) {
844      EmitBlock(ExitBlock);
845      EmitBranchThroughCleanup(LoopExit);
846    }
847
848    EmitBlock(ForBody);
849  } else {
850    // Treat it as a non-zero constant.  Don't even create a new block for the
851    // body, just fall into it.
852  }
853  Cnt.beginRegion(Builder);
854
855  {
856    // Create a separate cleanup scope for the body, in case it is not
857    // a compound statement.
858    RunCleanupsScope BodyScope(*this);
859    EmitStmt(S.getBody());
860  }
861
862  // If there is an increment, emit it next.
863  if (S.getInc()) {
864    EmitBlock(Continue.getBlock());
865    EmitStmt(S.getInc());
866  }
867
868  BreakContinueStack.pop_back();
869
870  ConditionScope.ForceCleanup();
871  EmitBranch(CondBlock);
872
873  ForScope.ForceCleanup();
874
875  if (DI)
876    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
877
878  LoopStack.pop();
879
880  // Emit the fall-through block.
881  EmitBlock(LoopExit.getBlock(), true);
882}
883
884void
885CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
886                                     const ArrayRef<const Attr *> &ForAttrs) {
887  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
888
889  RunCleanupsScope ForScope(*this);
890
891  CGDebugInfo *DI = getDebugInfo();
892  if (DI)
893    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
894
895  // Evaluate the first pieces before the loop.
896  EmitStmt(S.getRangeStmt());
897  EmitStmt(S.getBeginEndStmt());
898
899  RegionCounter Cnt = getPGORegionCounter(&S);
900
901  // Start the loop with a block that tests the condition.
902  // If there's an increment, the continue scope will be overwritten
903  // later.
904  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
905  EmitBlock(CondBlock);
906
907  LoopStack.push(CondBlock);
908
909  // If there are any cleanups between here and the loop-exit scope,
910  // create a block to stage a loop exit along.
911  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
912  if (ForScope.requiresCleanups())
913    ExitBlock = createBasicBlock("for.cond.cleanup");
914
915  // The loop body, consisting of the specified body and the loop variable.
916  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
917
918  // The body is executed if the expression, contextually converted
919  // to bool, is true.
920  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
921  llvm::BranchInst *CondBr = Builder.CreateCondBr(
922      BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt));
923
924  // Attach metadata to loop body conditional branch.
925  EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
926
927  if (ExitBlock != LoopExit.getBlock()) {
928    EmitBlock(ExitBlock);
929    EmitBranchThroughCleanup(LoopExit);
930  }
931
932  EmitBlock(ForBody);
933  Cnt.beginRegion(Builder);
934
935  // Create a block for the increment. In case of a 'continue', we jump there.
936  JumpDest Continue = getJumpDestInCurrentScope("for.inc");
937
938  // Store the blocks to use for break and continue.
939  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
940
941  {
942    // Create a separate cleanup scope for the loop variable and body.
943    RunCleanupsScope BodyScope(*this);
944    EmitStmt(S.getLoopVarStmt());
945    EmitStmt(S.getBody());
946  }
947
948  // If there is an increment, emit it next.
949  EmitBlock(Continue.getBlock());
950  EmitStmt(S.getInc());
951
952  BreakContinueStack.pop_back();
953
954  EmitBranch(CondBlock);
955
956  ForScope.ForceCleanup();
957
958  if (DI)
959    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
960
961  LoopStack.pop();
962
963  // Emit the fall-through block.
964  EmitBlock(LoopExit.getBlock(), true);
965}
966
967void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
968  if (RV.isScalar()) {
969    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
970  } else if (RV.isAggregate()) {
971    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
972  } else {
973    EmitStoreOfComplex(RV.getComplexVal(),
974                       MakeNaturalAlignAddrLValue(ReturnValue, Ty),
975                       /*init*/ true);
976  }
977  EmitBranchThroughCleanup(ReturnBlock);
978}
979
980/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
981/// if the function returns void, or may be missing one if the function returns
982/// non-void.  Fun stuff :).
983void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
984  // Emit the result value, even if unused, to evalute the side effects.
985  const Expr *RV = S.getRetValue();
986
987  // Treat block literals in a return expression as if they appeared
988  // in their own scope.  This permits a small, easily-implemented
989  // exception to our over-conservative rules about not jumping to
990  // statements following block literals with non-trivial cleanups.
991  RunCleanupsScope cleanupScope(*this);
992  if (const ExprWithCleanups *cleanups =
993        dyn_cast_or_null<ExprWithCleanups>(RV)) {
994    enterFullExpression(cleanups);
995    RV = cleanups->getSubExpr();
996  }
997
998  // FIXME: Clean this up by using an LValue for ReturnTemp,
999  // EmitStoreThroughLValue, and EmitAnyExpr.
1000  if (getLangOpts().ElideConstructors &&
1001      S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1002    // Apply the named return value optimization for this return statement,
1003    // which means doing nothing: the appropriate result has already been
1004    // constructed into the NRVO variable.
1005
1006    // If there is an NRVO flag for this variable, set it to 1 into indicate
1007    // that the cleanup code should not destroy the variable.
1008    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1009      Builder.CreateStore(Builder.getTrue(), NRVOFlag);
1010  } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
1011    // Make sure not to return anything, but evaluate the expression
1012    // for side effects.
1013    if (RV)
1014      EmitAnyExpr(RV);
1015  } else if (!RV) {
1016    // Do nothing (return value is left uninitialized)
1017  } else if (FnRetTy->isReferenceType()) {
1018    // If this function returns a reference, take the address of the expression
1019    // rather than the value.
1020    RValue Result = EmitReferenceBindingToExpr(RV);
1021    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1022  } else {
1023    switch (getEvaluationKind(RV->getType())) {
1024    case TEK_Scalar:
1025      Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1026      break;
1027    case TEK_Complex:
1028      EmitComplexExprIntoLValue(RV,
1029                     MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
1030                                /*isInit*/ true);
1031      break;
1032    case TEK_Aggregate: {
1033      CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
1034      EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
1035                                            Qualifiers(),
1036                                            AggValueSlot::IsDestructed,
1037                                            AggValueSlot::DoesNotNeedGCBarriers,
1038                                            AggValueSlot::IsNotAliased));
1039      break;
1040    }
1041    }
1042  }
1043
1044  ++NumReturnExprs;
1045  if (!RV || RV->isEvaluatable(getContext()))
1046    ++NumSimpleReturnExprs;
1047
1048  cleanupScope.ForceCleanup();
1049  EmitBranchThroughCleanup(ReturnBlock);
1050}
1051
1052void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1053  // As long as debug info is modeled with instructions, we have to ensure we
1054  // have a place to insert here and write the stop point here.
1055  if (HaveInsertPoint())
1056    EmitStopPoint(&S);
1057
1058  for (const auto *I : S.decls())
1059    EmitDecl(*I);
1060}
1061
1062void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1063  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1064
1065  // If this code is reachable then emit a stop point (if generating
1066  // debug info). We have to do this ourselves because we are on the
1067  // "simple" statement path.
1068  if (HaveInsertPoint())
1069    EmitStopPoint(&S);
1070
1071  EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1072}
1073
1074void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1075  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1076
1077  // If this code is reachable then emit a stop point (if generating
1078  // debug info). We have to do this ourselves because we are on the
1079  // "simple" statement path.
1080  if (HaveInsertPoint())
1081    EmitStopPoint(&S);
1082
1083  EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1084}
1085
1086/// EmitCaseStmtRange - If case statement range is not too big then
1087/// add multiple cases to switch instruction, one for each value within
1088/// the range. If range is too big then emit "if" condition check.
1089void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1090  assert(S.getRHS() && "Expected RHS value in CaseStmt");
1091
1092  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1093  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1094
1095  RegionCounter CaseCnt = getPGORegionCounter(&S);
1096
1097  // Emit the code for this case. We do this first to make sure it is
1098  // properly chained from our predecessor before generating the
1099  // switch machinery to enter this block.
1100  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1101  EmitBlockWithFallThrough(CaseDest, CaseCnt);
1102  EmitStmt(S.getSubStmt());
1103
1104  // If range is empty, do nothing.
1105  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1106    return;
1107
1108  llvm::APInt Range = RHS - LHS;
1109  // FIXME: parameters such as this should not be hardcoded.
1110  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1111    // Range is small enough to add multiple switch instruction cases.
1112    uint64_t Total = CaseCnt.getCount();
1113    unsigned NCases = Range.getZExtValue() + 1;
1114    // We only have one region counter for the entire set of cases here, so we
1115    // need to divide the weights evenly between the generated cases, ensuring
1116    // that the total weight is preserved. E.g., a weight of 5 over three cases
1117    // will be distributed as weights of 2, 2, and 1.
1118    uint64_t Weight = Total / NCases, Rem = Total % NCases;
1119    for (unsigned I = 0; I != NCases; ++I) {
1120      if (SwitchWeights)
1121        SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1122      if (Rem)
1123        Rem--;
1124      SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1125      LHS++;
1126    }
1127    return;
1128  }
1129
1130  // The range is too big. Emit "if" condition into a new block,
1131  // making sure to save and restore the current insertion point.
1132  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1133
1134  // Push this test onto the chain of range checks (which terminates
1135  // in the default basic block). The switch's default will be changed
1136  // to the top of this chain after switch emission is complete.
1137  llvm::BasicBlock *FalseDest = CaseRangeBlock;
1138  CaseRangeBlock = createBasicBlock("sw.caserange");
1139
1140  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1141  Builder.SetInsertPoint(CaseRangeBlock);
1142
1143  // Emit range check.
1144  llvm::Value *Diff =
1145    Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1146  llvm::Value *Cond =
1147    Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1148
1149  llvm::MDNode *Weights = nullptr;
1150  if (SwitchWeights) {
1151    uint64_t ThisCount = CaseCnt.getCount();
1152    uint64_t DefaultCount = (*SwitchWeights)[0];
1153    Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
1154
1155    // Since we're chaining the switch default through each large case range, we
1156    // need to update the weight for the default, ie, the first case, to include
1157    // this case.
1158    (*SwitchWeights)[0] += ThisCount;
1159  }
1160  Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1161
1162  // Restore the appropriate insertion point.
1163  if (RestoreBB)
1164    Builder.SetInsertPoint(RestoreBB);
1165  else
1166    Builder.ClearInsertionPoint();
1167}
1168
1169void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1170  // If there is no enclosing switch instance that we're aware of, then this
1171  // case statement and its block can be elided.  This situation only happens
1172  // when we've constant-folded the switch, are emitting the constant case,
1173  // and part of the constant case includes another case statement.  For
1174  // instance: switch (4) { case 4: do { case 5: } while (1); }
1175  if (!SwitchInsn) {
1176    EmitStmt(S.getSubStmt());
1177    return;
1178  }
1179
1180  // Handle case ranges.
1181  if (S.getRHS()) {
1182    EmitCaseStmtRange(S);
1183    return;
1184  }
1185
1186  RegionCounter CaseCnt = getPGORegionCounter(&S);
1187  llvm::ConstantInt *CaseVal =
1188    Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1189
1190  // If the body of the case is just a 'break', try to not emit an empty block.
1191  // If we're profiling or we're not optimizing, leave the block in for better
1192  // debug and coverage analysis.
1193  if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1194      CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1195      isa<BreakStmt>(S.getSubStmt())) {
1196    JumpDest Block = BreakContinueStack.back().BreakBlock;
1197
1198    // Only do this optimization if there are no cleanups that need emitting.
1199    if (isObviouslyBranchWithoutCleanups(Block)) {
1200      if (SwitchWeights)
1201        SwitchWeights->push_back(CaseCnt.getCount());
1202      SwitchInsn->addCase(CaseVal, Block.getBlock());
1203
1204      // If there was a fallthrough into this case, make sure to redirect it to
1205      // the end of the switch as well.
1206      if (Builder.GetInsertBlock()) {
1207        Builder.CreateBr(Block.getBlock());
1208        Builder.ClearInsertionPoint();
1209      }
1210      return;
1211    }
1212  }
1213
1214  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1215  EmitBlockWithFallThrough(CaseDest, CaseCnt);
1216  if (SwitchWeights)
1217    SwitchWeights->push_back(CaseCnt.getCount());
1218  SwitchInsn->addCase(CaseVal, CaseDest);
1219
1220  // Recursively emitting the statement is acceptable, but is not wonderful for
1221  // code where we have many case statements nested together, i.e.:
1222  //  case 1:
1223  //    case 2:
1224  //      case 3: etc.
1225  // Handling this recursively will create a new block for each case statement
1226  // that falls through to the next case which is IR intensive.  It also causes
1227  // deep recursion which can run into stack depth limitations.  Handle
1228  // sequential non-range case statements specially.
1229  const CaseStmt *CurCase = &S;
1230  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1231
1232  // Otherwise, iteratively add consecutive cases to this switch stmt.
1233  while (NextCase && NextCase->getRHS() == nullptr) {
1234    CurCase = NextCase;
1235    llvm::ConstantInt *CaseVal =
1236      Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1237
1238    CaseCnt = getPGORegionCounter(NextCase);
1239    if (SwitchWeights)
1240      SwitchWeights->push_back(CaseCnt.getCount());
1241    if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1242      CaseDest = createBasicBlock("sw.bb");
1243      EmitBlockWithFallThrough(CaseDest, CaseCnt);
1244    }
1245
1246    SwitchInsn->addCase(CaseVal, CaseDest);
1247    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1248  }
1249
1250  // Normal default recursion for non-cases.
1251  EmitStmt(CurCase->getSubStmt());
1252}
1253
1254void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1255  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1256  assert(DefaultBlock->empty() &&
1257         "EmitDefaultStmt: Default block already defined?");
1258
1259  RegionCounter Cnt = getPGORegionCounter(&S);
1260  EmitBlockWithFallThrough(DefaultBlock, Cnt);
1261
1262  EmitStmt(S.getSubStmt());
1263}
1264
1265/// CollectStatementsForCase - Given the body of a 'switch' statement and a
1266/// constant value that is being switched on, see if we can dead code eliminate
1267/// the body of the switch to a simple series of statements to emit.  Basically,
1268/// on a switch (5) we want to find these statements:
1269///    case 5:
1270///      printf(...);    <--
1271///      ++i;            <--
1272///      break;
1273///
1274/// and add them to the ResultStmts vector.  If it is unsafe to do this
1275/// transformation (for example, one of the elided statements contains a label
1276/// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1277/// should include statements after it (e.g. the printf() line is a substmt of
1278/// the case) then return CSFC_FallThrough.  If we handled it and found a break
1279/// statement, then return CSFC_Success.
1280///
1281/// If Case is non-null, then we are looking for the specified case, checking
1282/// that nothing we jump over contains labels.  If Case is null, then we found
1283/// the case and are looking for the break.
1284///
1285/// If the recursive walk actually finds our Case, then we set FoundCase to
1286/// true.
1287///
1288enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1289static CSFC_Result CollectStatementsForCase(const Stmt *S,
1290                                            const SwitchCase *Case,
1291                                            bool &FoundCase,
1292                              SmallVectorImpl<const Stmt*> &ResultStmts) {
1293  // If this is a null statement, just succeed.
1294  if (!S)
1295    return Case ? CSFC_Success : CSFC_FallThrough;
1296
1297  // If this is the switchcase (case 4: or default) that we're looking for, then
1298  // we're in business.  Just add the substatement.
1299  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1300    if (S == Case) {
1301      FoundCase = true;
1302      return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1303                                      ResultStmts);
1304    }
1305
1306    // Otherwise, this is some other case or default statement, just ignore it.
1307    return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1308                                    ResultStmts);
1309  }
1310
1311  // If we are in the live part of the code and we found our break statement,
1312  // return a success!
1313  if (!Case && isa<BreakStmt>(S))
1314    return CSFC_Success;
1315
1316  // If this is a switch statement, then it might contain the SwitchCase, the
1317  // break, or neither.
1318  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1319    // Handle this as two cases: we might be looking for the SwitchCase (if so
1320    // the skipped statements must be skippable) or we might already have it.
1321    CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1322    if (Case) {
1323      // Keep track of whether we see a skipped declaration.  The code could be
1324      // using the declaration even if it is skipped, so we can't optimize out
1325      // the decl if the kept statements might refer to it.
1326      bool HadSkippedDecl = false;
1327
1328      // If we're looking for the case, just see if we can skip each of the
1329      // substatements.
1330      for (; Case && I != E; ++I) {
1331        HadSkippedDecl |= isa<DeclStmt>(*I);
1332
1333        switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1334        case CSFC_Failure: return CSFC_Failure;
1335        case CSFC_Success:
1336          // A successful result means that either 1) that the statement doesn't
1337          // have the case and is skippable, or 2) does contain the case value
1338          // and also contains the break to exit the switch.  In the later case,
1339          // we just verify the rest of the statements are elidable.
1340          if (FoundCase) {
1341            // If we found the case and skipped declarations, we can't do the
1342            // optimization.
1343            if (HadSkippedDecl)
1344              return CSFC_Failure;
1345
1346            for (++I; I != E; ++I)
1347              if (CodeGenFunction::ContainsLabel(*I, true))
1348                return CSFC_Failure;
1349            return CSFC_Success;
1350          }
1351          break;
1352        case CSFC_FallThrough:
1353          // If we have a fallthrough condition, then we must have found the
1354          // case started to include statements.  Consider the rest of the
1355          // statements in the compound statement as candidates for inclusion.
1356          assert(FoundCase && "Didn't find case but returned fallthrough?");
1357          // We recursively found Case, so we're not looking for it anymore.
1358          Case = nullptr;
1359
1360          // If we found the case and skipped declarations, we can't do the
1361          // optimization.
1362          if (HadSkippedDecl)
1363            return CSFC_Failure;
1364          break;
1365        }
1366      }
1367    }
1368
1369    // If we have statements in our range, then we know that the statements are
1370    // live and need to be added to the set of statements we're tracking.
1371    for (; I != E; ++I) {
1372      switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1373      case CSFC_Failure: return CSFC_Failure;
1374      case CSFC_FallThrough:
1375        // A fallthrough result means that the statement was simple and just
1376        // included in ResultStmt, keep adding them afterwards.
1377        break;
1378      case CSFC_Success:
1379        // A successful result means that we found the break statement and
1380        // stopped statement inclusion.  We just ensure that any leftover stmts
1381        // are skippable and return success ourselves.
1382        for (++I; I != E; ++I)
1383          if (CodeGenFunction::ContainsLabel(*I, true))
1384            return CSFC_Failure;
1385        return CSFC_Success;
1386      }
1387    }
1388
1389    return Case ? CSFC_Success : CSFC_FallThrough;
1390  }
1391
1392  // Okay, this is some other statement that we don't handle explicitly, like a
1393  // for statement or increment etc.  If we are skipping over this statement,
1394  // just verify it doesn't have labels, which would make it invalid to elide.
1395  if (Case) {
1396    if (CodeGenFunction::ContainsLabel(S, true))
1397      return CSFC_Failure;
1398    return CSFC_Success;
1399  }
1400
1401  // Otherwise, we want to include this statement.  Everything is cool with that
1402  // so long as it doesn't contain a break out of the switch we're in.
1403  if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1404
1405  // Otherwise, everything is great.  Include the statement and tell the caller
1406  // that we fall through and include the next statement as well.
1407  ResultStmts.push_back(S);
1408  return CSFC_FallThrough;
1409}
1410
1411/// FindCaseStatementsForValue - Find the case statement being jumped to and
1412/// then invoke CollectStatementsForCase to find the list of statements to emit
1413/// for a switch on constant.  See the comment above CollectStatementsForCase
1414/// for more details.
1415static bool FindCaseStatementsForValue(const SwitchStmt &S,
1416                                       const llvm::APSInt &ConstantCondValue,
1417                                SmallVectorImpl<const Stmt*> &ResultStmts,
1418                                       ASTContext &C,
1419                                       const SwitchCase *&ResultCase) {
1420  // First step, find the switch case that is being branched to.  We can do this
1421  // efficiently by scanning the SwitchCase list.
1422  const SwitchCase *Case = S.getSwitchCaseList();
1423  const DefaultStmt *DefaultCase = nullptr;
1424
1425  for (; Case; Case = Case->getNextSwitchCase()) {
1426    // It's either a default or case.  Just remember the default statement in
1427    // case we're not jumping to any numbered cases.
1428    if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1429      DefaultCase = DS;
1430      continue;
1431    }
1432
1433    // Check to see if this case is the one we're looking for.
1434    const CaseStmt *CS = cast<CaseStmt>(Case);
1435    // Don't handle case ranges yet.
1436    if (CS->getRHS()) return false;
1437
1438    // If we found our case, remember it as 'case'.
1439    if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1440      break;
1441  }
1442
1443  // If we didn't find a matching case, we use a default if it exists, or we
1444  // elide the whole switch body!
1445  if (!Case) {
1446    // It is safe to elide the body of the switch if it doesn't contain labels
1447    // etc.  If it is safe, return successfully with an empty ResultStmts list.
1448    if (!DefaultCase)
1449      return !CodeGenFunction::ContainsLabel(&S);
1450    Case = DefaultCase;
1451  }
1452
1453  // Ok, we know which case is being jumped to, try to collect all the
1454  // statements that follow it.  This can fail for a variety of reasons.  Also,
1455  // check to see that the recursive walk actually found our case statement.
1456  // Insane cases like this can fail to find it in the recursive walk since we
1457  // don't handle every stmt kind:
1458  // switch (4) {
1459  //   while (1) {
1460  //     case 4: ...
1461  bool FoundCase = false;
1462  ResultCase = Case;
1463  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1464                                  ResultStmts) != CSFC_Failure &&
1465         FoundCase;
1466}
1467
1468void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1469  // Handle nested switch statements.
1470  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1471  SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1472  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1473
1474  // See if we can constant fold the condition of the switch and therefore only
1475  // emit the live case statement (if any) of the switch.
1476  llvm::APSInt ConstantCondValue;
1477  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1478    SmallVector<const Stmt*, 4> CaseStmts;
1479    const SwitchCase *Case = nullptr;
1480    if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1481                                   getContext(), Case)) {
1482      if (Case) {
1483        RegionCounter CaseCnt = getPGORegionCounter(Case);
1484        CaseCnt.beginRegion(Builder);
1485      }
1486      RunCleanupsScope ExecutedScope(*this);
1487
1488      // Emit the condition variable if needed inside the entire cleanup scope
1489      // used by this special case for constant folded switches.
1490      if (S.getConditionVariable())
1491        EmitAutoVarDecl(*S.getConditionVariable());
1492
1493      // At this point, we are no longer "within" a switch instance, so
1494      // we can temporarily enforce this to ensure that any embedded case
1495      // statements are not emitted.
1496      SwitchInsn = nullptr;
1497
1498      // Okay, we can dead code eliminate everything except this case.  Emit the
1499      // specified series of statements and we're good.
1500      for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1501        EmitStmt(CaseStmts[i]);
1502      RegionCounter ExitCnt = getPGORegionCounter(&S);
1503      ExitCnt.beginRegion(Builder);
1504
1505      // Now we want to restore the saved switch instance so that nested
1506      // switches continue to function properly
1507      SwitchInsn = SavedSwitchInsn;
1508
1509      return;
1510    }
1511  }
1512
1513  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1514
1515  RunCleanupsScope ConditionScope(*this);
1516  if (S.getConditionVariable())
1517    EmitAutoVarDecl(*S.getConditionVariable());
1518  llvm::Value *CondV = EmitScalarExpr(S.getCond());
1519
1520  // Create basic block to hold stuff that comes after switch
1521  // statement. We also need to create a default block now so that
1522  // explicit case ranges tests can have a place to jump to on
1523  // failure.
1524  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1525  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1526  if (PGO.haveRegionCounts()) {
1527    // Walk the SwitchCase list to find how many there are.
1528    uint64_t DefaultCount = 0;
1529    unsigned NumCases = 0;
1530    for (const SwitchCase *Case = S.getSwitchCaseList();
1531         Case;
1532         Case = Case->getNextSwitchCase()) {
1533      if (isa<DefaultStmt>(Case))
1534        DefaultCount = getPGORegionCounter(Case).getCount();
1535      NumCases += 1;
1536    }
1537    SwitchWeights = new SmallVector<uint64_t, 16>();
1538    SwitchWeights->reserve(NumCases);
1539    // The default needs to be first. We store the edge count, so we already
1540    // know the right weight.
1541    SwitchWeights->push_back(DefaultCount);
1542  }
1543  CaseRangeBlock = DefaultBlock;
1544
1545  // Clear the insertion point to indicate we are in unreachable code.
1546  Builder.ClearInsertionPoint();
1547
1548  // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1549  // then reuse last ContinueBlock.
1550  JumpDest OuterContinue;
1551  if (!BreakContinueStack.empty())
1552    OuterContinue = BreakContinueStack.back().ContinueBlock;
1553
1554  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1555
1556  // Emit switch body.
1557  EmitStmt(S.getBody());
1558
1559  BreakContinueStack.pop_back();
1560
1561  // Update the default block in case explicit case range tests have
1562  // been chained on top.
1563  SwitchInsn->setDefaultDest(CaseRangeBlock);
1564
1565  // If a default was never emitted:
1566  if (!DefaultBlock->getParent()) {
1567    // If we have cleanups, emit the default block so that there's a
1568    // place to jump through the cleanups from.
1569    if (ConditionScope.requiresCleanups()) {
1570      EmitBlock(DefaultBlock);
1571
1572    // Otherwise, just forward the default block to the switch end.
1573    } else {
1574      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1575      delete DefaultBlock;
1576    }
1577  }
1578
1579  ConditionScope.ForceCleanup();
1580
1581  // Emit continuation.
1582  EmitBlock(SwitchExit.getBlock(), true);
1583  RegionCounter ExitCnt = getPGORegionCounter(&S);
1584  ExitCnt.beginRegion(Builder);
1585
1586  if (SwitchWeights) {
1587    assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1588           "switch weights do not match switch cases");
1589    // If there's only one jump destination there's no sense weighting it.
1590    if (SwitchWeights->size() > 1)
1591      SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1592                              PGO.createBranchWeights(*SwitchWeights));
1593    delete SwitchWeights;
1594  }
1595  SwitchInsn = SavedSwitchInsn;
1596  SwitchWeights = SavedSwitchWeights;
1597  CaseRangeBlock = SavedCRBlock;
1598}
1599
1600static std::string
1601SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1602                 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1603  std::string Result;
1604
1605  while (*Constraint) {
1606    switch (*Constraint) {
1607    default:
1608      Result += Target.convertConstraint(Constraint);
1609      break;
1610    // Ignore these
1611    case '*':
1612    case '?':
1613    case '!':
1614    case '=': // Will see this and the following in mult-alt constraints.
1615    case '+':
1616      break;
1617    case '#': // Ignore the rest of the constraint alternative.
1618      while (Constraint[1] && Constraint[1] != ',')
1619        Constraint++;
1620      break;
1621    case ',':
1622      Result += "|";
1623      break;
1624    case 'g':
1625      Result += "imr";
1626      break;
1627    case '[': {
1628      assert(OutCons &&
1629             "Must pass output names to constraints with a symbolic name");
1630      unsigned Index;
1631      bool result = Target.resolveSymbolicName(Constraint,
1632                                               &(*OutCons)[0],
1633                                               OutCons->size(), Index);
1634      assert(result && "Could not resolve symbolic name"); (void)result;
1635      Result += llvm::utostr(Index);
1636      break;
1637    }
1638    }
1639
1640    Constraint++;
1641  }
1642
1643  return Result;
1644}
1645
1646/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1647/// as using a particular register add that as a constraint that will be used
1648/// in this asm stmt.
1649static std::string
1650AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1651                       const TargetInfo &Target, CodeGenModule &CGM,
1652                       const AsmStmt &Stmt) {
1653  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1654  if (!AsmDeclRef)
1655    return Constraint;
1656  const ValueDecl &Value = *AsmDeclRef->getDecl();
1657  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1658  if (!Variable)
1659    return Constraint;
1660  if (Variable->getStorageClass() != SC_Register)
1661    return Constraint;
1662  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1663  if (!Attr)
1664    return Constraint;
1665  StringRef Register = Attr->getLabel();
1666  assert(Target.isValidGCCRegisterName(Register));
1667  // We're using validateOutputConstraint here because we only care if
1668  // this is a register constraint.
1669  TargetInfo::ConstraintInfo Info(Constraint, "");
1670  if (Target.validateOutputConstraint(Info) &&
1671      !Info.allowsRegister()) {
1672    CGM.ErrorUnsupported(&Stmt, "__asm__");
1673    return Constraint;
1674  }
1675  // Canonicalize the register here before returning it.
1676  Register = Target.getNormalizedGCCRegisterName(Register);
1677  return "{" + Register.str() + "}";
1678}
1679
1680llvm::Value*
1681CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1682                                    LValue InputValue, QualType InputType,
1683                                    std::string &ConstraintStr,
1684                                    SourceLocation Loc) {
1685  llvm::Value *Arg;
1686  if (Info.allowsRegister() || !Info.allowsMemory()) {
1687    if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1688      Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1689    } else {
1690      llvm::Type *Ty = ConvertType(InputType);
1691      uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1692      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1693        Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1694        Ty = llvm::PointerType::getUnqual(Ty);
1695
1696        Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1697                                                       Ty));
1698      } else {
1699        Arg = InputValue.getAddress();
1700        ConstraintStr += '*';
1701      }
1702    }
1703  } else {
1704    Arg = InputValue.getAddress();
1705    ConstraintStr += '*';
1706  }
1707
1708  return Arg;
1709}
1710
1711llvm::Value* CodeGenFunction::EmitAsmInput(
1712                                         const TargetInfo::ConstraintInfo &Info,
1713                                           const Expr *InputExpr,
1714                                           std::string &ConstraintStr) {
1715  if (Info.allowsRegister() || !Info.allowsMemory())
1716    if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1717      return EmitScalarExpr(InputExpr);
1718
1719  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1720  LValue Dest = EmitLValue(InputExpr);
1721  return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1722                            InputExpr->getExprLoc());
1723}
1724
1725/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1726/// asm call instruction.  The !srcloc MDNode contains a list of constant
1727/// integers which are the source locations of the start of each line in the
1728/// asm.
1729static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1730                                      CodeGenFunction &CGF) {
1731  SmallVector<llvm::Value *, 8> Locs;
1732  // Add the location of the first line to the MDNode.
1733  Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1734                                        Str->getLocStart().getRawEncoding()));
1735  StringRef StrVal = Str->getString();
1736  if (!StrVal.empty()) {
1737    const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1738    const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1739
1740    // Add the location of the start of each subsequent line of the asm to the
1741    // MDNode.
1742    for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1743      if (StrVal[i] != '\n') continue;
1744      SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1745                                                      CGF.getTarget());
1746      Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1747                                            LineLoc.getRawEncoding()));
1748    }
1749  }
1750
1751  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1752}
1753
1754void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1755  // Assemble the final asm string.
1756  std::string AsmString = S.generateAsmString(getContext());
1757
1758  // Get all the output and input constraints together.
1759  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1760  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1761
1762  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1763    StringRef Name;
1764    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1765      Name = GAS->getOutputName(i);
1766    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1767    bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1768    assert(IsValid && "Failed to parse output constraint");
1769    OutputConstraintInfos.push_back(Info);
1770  }
1771
1772  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1773    StringRef Name;
1774    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1775      Name = GAS->getInputName(i);
1776    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1777    bool IsValid =
1778      getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1779                                          S.getNumOutputs(), Info);
1780    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1781    InputConstraintInfos.push_back(Info);
1782  }
1783
1784  std::string Constraints;
1785
1786  std::vector<LValue> ResultRegDests;
1787  std::vector<QualType> ResultRegQualTys;
1788  std::vector<llvm::Type *> ResultRegTypes;
1789  std::vector<llvm::Type *> ResultTruncRegTypes;
1790  std::vector<llvm::Type *> ArgTypes;
1791  std::vector<llvm::Value*> Args;
1792
1793  // Keep track of inout constraints.
1794  std::string InOutConstraints;
1795  std::vector<llvm::Value*> InOutArgs;
1796  std::vector<llvm::Type*> InOutArgTypes;
1797
1798  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1799    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1800
1801    // Simplify the output constraint.
1802    std::string OutputConstraint(S.getOutputConstraint(i));
1803    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1804                                          getTarget());
1805
1806    const Expr *OutExpr = S.getOutputExpr(i);
1807    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1808
1809    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1810                                              getTarget(), CGM, S);
1811
1812    LValue Dest = EmitLValue(OutExpr);
1813    if (!Constraints.empty())
1814      Constraints += ',';
1815
1816    // If this is a register output, then make the inline asm return it
1817    // by-value.  If this is a memory result, return the value by-reference.
1818    if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1819      Constraints += "=" + OutputConstraint;
1820      ResultRegQualTys.push_back(OutExpr->getType());
1821      ResultRegDests.push_back(Dest);
1822      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1823      ResultTruncRegTypes.push_back(ResultRegTypes.back());
1824
1825      // If this output is tied to an input, and if the input is larger, then
1826      // we need to set the actual result type of the inline asm node to be the
1827      // same as the input type.
1828      if (Info.hasMatchingInput()) {
1829        unsigned InputNo;
1830        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1831          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1832          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1833            break;
1834        }
1835        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1836
1837        QualType InputTy = S.getInputExpr(InputNo)->getType();
1838        QualType OutputType = OutExpr->getType();
1839
1840        uint64_t InputSize = getContext().getTypeSize(InputTy);
1841        if (getContext().getTypeSize(OutputType) < InputSize) {
1842          // Form the asm to return the value as a larger integer or fp type.
1843          ResultRegTypes.back() = ConvertType(InputTy);
1844        }
1845      }
1846      if (llvm::Type* AdjTy =
1847            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1848                                                 ResultRegTypes.back()))
1849        ResultRegTypes.back() = AdjTy;
1850      else {
1851        CGM.getDiags().Report(S.getAsmLoc(),
1852                              diag::err_asm_invalid_type_in_input)
1853            << OutExpr->getType() << OutputConstraint;
1854      }
1855    } else {
1856      ArgTypes.push_back(Dest.getAddress()->getType());
1857      Args.push_back(Dest.getAddress());
1858      Constraints += "=*";
1859      Constraints += OutputConstraint;
1860    }
1861
1862    if (Info.isReadWrite()) {
1863      InOutConstraints += ',';
1864
1865      const Expr *InputExpr = S.getOutputExpr(i);
1866      llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1867                                            InOutConstraints,
1868                                            InputExpr->getExprLoc());
1869
1870      if (llvm::Type* AdjTy =
1871          getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1872                                               Arg->getType()))
1873        Arg = Builder.CreateBitCast(Arg, AdjTy);
1874
1875      if (Info.allowsRegister())
1876        InOutConstraints += llvm::utostr(i);
1877      else
1878        InOutConstraints += OutputConstraint;
1879
1880      InOutArgTypes.push_back(Arg->getType());
1881      InOutArgs.push_back(Arg);
1882    }
1883  }
1884
1885  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1886
1887  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1888    const Expr *InputExpr = S.getInputExpr(i);
1889
1890    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1891
1892    if (!Constraints.empty())
1893      Constraints += ',';
1894
1895    // Simplify the input constraint.
1896    std::string InputConstraint(S.getInputConstraint(i));
1897    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1898                                         &OutputConstraintInfos);
1899
1900    InputConstraint =
1901      AddVariableConstraints(InputConstraint,
1902                            *InputExpr->IgnoreParenNoopCasts(getContext()),
1903                            getTarget(), CGM, S);
1904
1905    llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1906
1907    // If this input argument is tied to a larger output result, extend the
1908    // input to be the same size as the output.  The LLVM backend wants to see
1909    // the input and output of a matching constraint be the same size.  Note
1910    // that GCC does not define what the top bits are here.  We use zext because
1911    // that is usually cheaper, but LLVM IR should really get an anyext someday.
1912    if (Info.hasTiedOperand()) {
1913      unsigned Output = Info.getTiedOperand();
1914      QualType OutputType = S.getOutputExpr(Output)->getType();
1915      QualType InputTy = InputExpr->getType();
1916
1917      if (getContext().getTypeSize(OutputType) >
1918          getContext().getTypeSize(InputTy)) {
1919        // Use ptrtoint as appropriate so that we can do our extension.
1920        if (isa<llvm::PointerType>(Arg->getType()))
1921          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1922        llvm::Type *OutputTy = ConvertType(OutputType);
1923        if (isa<llvm::IntegerType>(OutputTy))
1924          Arg = Builder.CreateZExt(Arg, OutputTy);
1925        else if (isa<llvm::PointerType>(OutputTy))
1926          Arg = Builder.CreateZExt(Arg, IntPtrTy);
1927        else {
1928          assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1929          Arg = Builder.CreateFPExt(Arg, OutputTy);
1930        }
1931      }
1932    }
1933    if (llvm::Type* AdjTy =
1934              getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1935                                                   Arg->getType()))
1936      Arg = Builder.CreateBitCast(Arg, AdjTy);
1937    else
1938      CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1939          << InputExpr->getType() << InputConstraint;
1940
1941    ArgTypes.push_back(Arg->getType());
1942    Args.push_back(Arg);
1943    Constraints += InputConstraint;
1944  }
1945
1946  // Append the "input" part of inout constraints last.
1947  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1948    ArgTypes.push_back(InOutArgTypes[i]);
1949    Args.push_back(InOutArgs[i]);
1950  }
1951  Constraints += InOutConstraints;
1952
1953  // Clobbers
1954  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1955    StringRef Clobber = S.getClobber(i);
1956
1957    if (Clobber != "memory" && Clobber != "cc")
1958    Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1959
1960    if (i != 0 || NumConstraints != 0)
1961      Constraints += ',';
1962
1963    Constraints += "~{";
1964    Constraints += Clobber;
1965    Constraints += '}';
1966  }
1967
1968  // Add machine specific clobbers
1969  std::string MachineClobbers = getTarget().getClobbers();
1970  if (!MachineClobbers.empty()) {
1971    if (!Constraints.empty())
1972      Constraints += ',';
1973    Constraints += MachineClobbers;
1974  }
1975
1976  llvm::Type *ResultType;
1977  if (ResultRegTypes.empty())
1978    ResultType = VoidTy;
1979  else if (ResultRegTypes.size() == 1)
1980    ResultType = ResultRegTypes[0];
1981  else
1982    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1983
1984  llvm::FunctionType *FTy =
1985    llvm::FunctionType::get(ResultType, ArgTypes, false);
1986
1987  bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1988  llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1989    llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1990  llvm::InlineAsm *IA =
1991    llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1992                         /* IsAlignStack */ false, AsmDialect);
1993  llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1994  Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1995                       llvm::Attribute::NoUnwind);
1996
1997  // Slap the source location of the inline asm into a !srcloc metadata on the
1998  // call.  FIXME: Handle metadata for MS-style inline asms.
1999  if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2000    Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2001                                                   *this));
2002
2003  // Extract all of the register value results from the asm.
2004  std::vector<llvm::Value*> RegResults;
2005  if (ResultRegTypes.size() == 1) {
2006    RegResults.push_back(Result);
2007  } else {
2008    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2009      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2010      RegResults.push_back(Tmp);
2011    }
2012  }
2013
2014  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2015    llvm::Value *Tmp = RegResults[i];
2016
2017    // If the result type of the LLVM IR asm doesn't match the result type of
2018    // the expression, do the conversion.
2019    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2020      llvm::Type *TruncTy = ResultTruncRegTypes[i];
2021
2022      // Truncate the integer result to the right size, note that TruncTy can be
2023      // a pointer.
2024      if (TruncTy->isFloatingPointTy())
2025        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2026      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2027        uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2028        Tmp = Builder.CreateTrunc(Tmp,
2029                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2030        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2031      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2032        uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2033        Tmp = Builder.CreatePtrToInt(Tmp,
2034                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2035        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2036      } else if (TruncTy->isIntegerTy()) {
2037        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2038      } else if (TruncTy->isVectorTy()) {
2039        Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2040      }
2041    }
2042
2043    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2044  }
2045}
2046
2047static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
2048  const RecordDecl *RD = S.getCapturedRecordDecl();
2049  QualType RecordTy = CGF.getContext().getRecordType(RD);
2050
2051  // Initialize the captured struct.
2052  LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
2053                    CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2054
2055  RecordDecl::field_iterator CurField = RD->field_begin();
2056  for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
2057                                           E = S.capture_init_end();
2058       I != E; ++I, ++CurField) {
2059    LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
2060    CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
2061  }
2062
2063  return SlotLV;
2064}
2065
2066static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) {
2067  for (auto &C : S.captures()) {
2068    if (C.capturesVariable()) {
2069      QualType QTy;
2070      auto VD = C.getCapturedVar();
2071      if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
2072        QTy = PVD->getOriginalType();
2073      else
2074        QTy = VD->getType();
2075      if (QTy->isVariablyModifiedType()) {
2076        CGF.EmitVariablyModifiedType(QTy);
2077      }
2078    }
2079  }
2080}
2081
2082/// Generate an outlined function for the body of a CapturedStmt, store any
2083/// captured variables into the captured struct, and call the outlined function.
2084llvm::Function *
2085CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2086  LValue CapStruct = InitCapturedStruct(*this, S);
2087
2088  // Emit the CapturedDecl
2089  CodeGenFunction CGF(CGM, true);
2090  CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
2091  llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2092  delete CGF.CapturedStmtInfo;
2093
2094  // Emit call to the helper function.
2095  EmitCallOrInvoke(F, CapStruct.getAddress());
2096
2097  return F;
2098}
2099
2100llvm::Value *
2101CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2102  LValue CapStruct = InitCapturedStruct(*this, S);
2103  return CapStruct.getAddress();
2104}
2105
2106/// Creates the outlined function for a CapturedStmt.
2107llvm::Function *
2108CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2109  assert(CapturedStmtInfo &&
2110    "CapturedStmtInfo should be set when generating the captured function");
2111  const CapturedDecl *CD = S.getCapturedDecl();
2112  const RecordDecl *RD = S.getCapturedRecordDecl();
2113  SourceLocation Loc = S.getLocStart();
2114  assert(CD->hasBody() && "missing CapturedDecl body");
2115
2116  // Build the argument list.
2117  ASTContext &Ctx = CGM.getContext();
2118  FunctionArgList Args;
2119  Args.append(CD->param_begin(), CD->param_end());
2120
2121  // Create the function declaration.
2122  FunctionType::ExtInfo ExtInfo;
2123  const CGFunctionInfo &FuncInfo =
2124      CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2125                                                    /*IsVariadic=*/false);
2126  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2127
2128  llvm::Function *F =
2129    llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2130                           CapturedStmtInfo->getHelperName(), &CGM.getModule());
2131  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2132
2133  // Generate the function.
2134  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2135                CD->getLocation(),
2136                CD->getBody()->getLocStart());
2137  // Set the context parameter in CapturedStmtInfo.
2138  llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
2139  assert(DeclPtr && "missing context parameter for CapturedStmt");
2140  CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2141
2142  // Initialize variable-length arrays.
2143  InitVLACaptures(*this, S);
2144
2145  // If 'this' is captured, load it into CXXThisValue.
2146  if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2147    FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2148    LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2149                                           Ctx.getTagDeclType(RD));
2150    LValue ThisLValue = EmitLValueForField(LV, FD);
2151    CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2152  }
2153
2154  PGO.assignRegionCounters(CD, F);
2155  CapturedStmtInfo->EmitBody(*this, CD->getBody());
2156  FinishFunction(CD->getBodyRBrace());
2157  PGO.emitInstrumentationData();
2158  PGO.destroyRegionCounters();
2159
2160  return F;
2161}
2162