CodeGenModule.cpp revision 0d13f6fdbdd6f06e2449b8834dda53334abd399a
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "TargetInfo.h"
21#include "clang/CodeGen/CodeGenOptions.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/Diagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Basic/ConvertUTF.h"
31#include "llvm/CallingConv.h"
32#include "llvm/Module.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/LLVMContext.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/ErrorHandling.h"
37using namespace clang;
38using namespace CodeGen;
39
40
41CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
42                             llvm::Module &M, const llvm::TargetData &TD,
43                             Diagnostic &diags)
44  : BlockModule(C, M, TD, Types, *this), Context(C),
45    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
46    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
47    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
48    MangleCtx(C), VtableInfo(*this), Runtime(0),
49    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
50    VMContext(M.getContext()) {
51
52  if (!Features.ObjC1)
53    Runtime = 0;
54  else if (!Features.NeXTRuntime)
55    Runtime = CreateGNUObjCRuntime(*this);
56  else if (Features.ObjCNonFragileABI)
57    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
58  else
59    Runtime = CreateMacObjCRuntime(*this);
60
61  // If debug info generation is enabled, create the CGDebugInfo object.
62  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
63}
64
65CodeGenModule::~CodeGenModule() {
66  delete Runtime;
67  delete DebugInfo;
68}
69
70void CodeGenModule::createObjCRuntime() {
71  if (!Features.NeXTRuntime)
72    Runtime = CreateGNUObjCRuntime(*this);
73  else if (Features.ObjCNonFragileABI)
74    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
75  else
76    Runtime = CreateMacObjCRuntime(*this);
77}
78
79void CodeGenModule::Release() {
80  EmitDeferred();
81  EmitCXXGlobalInitFunc();
82  if (Runtime)
83    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
84      AddGlobalCtor(ObjCInitFunction);
85  EmitCtorList(GlobalCtors, "llvm.global_ctors");
86  EmitCtorList(GlobalDtors, "llvm.global_dtors");
87  EmitAnnotations();
88  EmitLLVMUsed();
89}
90
91/// ErrorUnsupported - Print out an error that codegen doesn't support the
92/// specified stmt yet.
93void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
94                                     bool OmitOnError) {
95  if (OmitOnError && getDiags().hasErrorOccurred())
96    return;
97  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                               "cannot compile this %0 yet");
99  std::string Msg = Type;
100  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
101    << Msg << S->getSourceRange();
102}
103
104/// ErrorUnsupported - Print out an error that codegen doesn't support the
105/// specified decl yet.
106void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
107                                     bool OmitOnError) {
108  if (OmitOnError && getDiags().hasErrorOccurred())
109    return;
110  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
111                                               "cannot compile this %0 yet");
112  std::string Msg = Type;
113  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
114}
115
116LangOptions::VisibilityMode
117CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
118  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
119    if (VD->getStorageClass() == VarDecl::PrivateExtern)
120      return LangOptions::Hidden;
121
122  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
123    switch (attr->getVisibility()) {
124    default: assert(0 && "Unknown visibility!");
125    case VisibilityAttr::DefaultVisibility:
126      return LangOptions::Default;
127    case VisibilityAttr::HiddenVisibility:
128      return LangOptions::Hidden;
129    case VisibilityAttr::ProtectedVisibility:
130      return LangOptions::Protected;
131    }
132  }
133
134  return getLangOptions().getVisibilityMode();
135}
136
137void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
138                                        const Decl *D) const {
139  // Internal definitions always have default visibility.
140  if (GV->hasLocalLinkage()) {
141    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
142    return;
143  }
144
145  switch (getDeclVisibilityMode(D)) {
146  default: assert(0 && "Unknown visibility!");
147  case LangOptions::Default:
148    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
149  case LangOptions::Hidden:
150    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
151  case LangOptions::Protected:
152    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
153  }
154}
155
156const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
157  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
158
159  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
160    return getMangledCXXCtorName(D, GD.getCtorType());
161  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
162    return getMangledCXXDtorName(D, GD.getDtorType());
163
164  return getMangledName(ND);
165}
166
167/// \brief Retrieves the mangled name for the given declaration.
168///
169/// If the given declaration requires a mangled name, returns an
170/// const char* containing the mangled name.  Otherwise, returns
171/// the unmangled name.
172///
173const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
174  if (!getMangleContext().shouldMangleDeclName(ND)) {
175    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
176    return ND->getNameAsCString();
177  }
178
179  llvm::SmallString<256> Name;
180  getMangleContext().mangleName(ND, Name);
181  Name += '\0';
182  return UniqueMangledName(Name.begin(), Name.end());
183}
184
185const char *CodeGenModule::UniqueMangledName(const char *NameStart,
186                                             const char *NameEnd) {
187  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
188
189  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
190}
191
192/// AddGlobalCtor - Add a function to the list that will be called before
193/// main() runs.
194void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
195  // FIXME: Type coercion of void()* types.
196  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
197}
198
199/// AddGlobalDtor - Add a function to the list that will be called
200/// when the module is unloaded.
201void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
202  // FIXME: Type coercion of void()* types.
203  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
204}
205
206void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
207  // Ctor function type is void()*.
208  llvm::FunctionType* CtorFTy =
209    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
210                            std::vector<const llvm::Type*>(),
211                            false);
212  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
213
214  // Get the type of a ctor entry, { i32, void ()* }.
215  llvm::StructType* CtorStructTy =
216    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
217                          llvm::PointerType::getUnqual(CtorFTy), NULL);
218
219  // Construct the constructor and destructor arrays.
220  std::vector<llvm::Constant*> Ctors;
221  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
222    std::vector<llvm::Constant*> S;
223    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
224                I->second, false));
225    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
226    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
227  }
228
229  if (!Ctors.empty()) {
230    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
231    new llvm::GlobalVariable(TheModule, AT, false,
232                             llvm::GlobalValue::AppendingLinkage,
233                             llvm::ConstantArray::get(AT, Ctors),
234                             GlobalName);
235  }
236}
237
238void CodeGenModule::EmitAnnotations() {
239  if (Annotations.empty())
240    return;
241
242  // Create a new global variable for the ConstantStruct in the Module.
243  llvm::Constant *Array =
244  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
245                                                Annotations.size()),
246                           Annotations);
247  llvm::GlobalValue *gv =
248  new llvm::GlobalVariable(TheModule, Array->getType(), false,
249                           llvm::GlobalValue::AppendingLinkage, Array,
250                           "llvm.global.annotations");
251  gv->setSection("llvm.metadata");
252}
253
254static CodeGenModule::GVALinkage
255GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
256                      const LangOptions &Features) {
257  // Everything located semantically within an anonymous namespace is
258  // always internal.
259  if (FD->isInAnonymousNamespace())
260    return CodeGenModule::GVA_Internal;
261
262  // "static" functions get internal linkage.
263  if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
264    return CodeGenModule::GVA_Internal;
265
266  // The kind of external linkage this function will have, if it is not
267  // inline or static.
268  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
269  if (Context.getLangOptions().CPlusPlus) {
270    TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind();
271
272    if (TSK == TSK_ExplicitInstantiationDefinition) {
273      // If a function has been explicitly instantiated, then it should
274      // always have strong external linkage.
275      return CodeGenModule::GVA_StrongExternal;
276    }
277
278    if (TSK == TSK_ImplicitInstantiation)
279      External = CodeGenModule::GVA_TemplateInstantiation;
280  }
281
282  if (!FD->isInlined())
283    return External;
284
285  if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
286    // GNU or C99 inline semantics. Determine whether this symbol should be
287    // externally visible.
288    if (FD->isInlineDefinitionExternallyVisible())
289      return External;
290
291    // C99 inline semantics, where the symbol is not externally visible.
292    return CodeGenModule::GVA_C99Inline;
293  }
294
295  // C++0x [temp.explicit]p9:
296  //   [ Note: The intent is that an inline function that is the subject of
297  //   an explicit instantiation declaration will still be implicitly
298  //   instantiated when used so that the body can be considered for
299  //   inlining, but that no out-of-line copy of the inline function would be
300  //   generated in the translation unit. -- end note ]
301  if (FD->getTemplateSpecializationKind()
302                                       == TSK_ExplicitInstantiationDeclaration)
303    return CodeGenModule::GVA_C99Inline;
304
305  return CodeGenModule::GVA_CXXInline;
306}
307
308/// SetFunctionDefinitionAttributes - Set attributes for a global.
309///
310/// FIXME: This is currently only done for aliases and functions, but not for
311/// variables (these details are set in EmitGlobalVarDefinition for variables).
312void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
313                                                    llvm::GlobalValue *GV) {
314  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
315
316  if (Linkage == GVA_Internal) {
317    GV->setLinkage(llvm::Function::InternalLinkage);
318  } else if (D->hasAttr<DLLExportAttr>()) {
319    GV->setLinkage(llvm::Function::DLLExportLinkage);
320  } else if (D->hasAttr<WeakAttr>()) {
321    GV->setLinkage(llvm::Function::WeakAnyLinkage);
322  } else if (Linkage == GVA_C99Inline) {
323    // In C99 mode, 'inline' functions are guaranteed to have a strong
324    // definition somewhere else, so we can use available_externally linkage.
325    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
326  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
327    // In C++, the compiler has to emit a definition in every translation unit
328    // that references the function.  We should use linkonce_odr because
329    // a) if all references in this translation unit are optimized away, we
330    // don't need to codegen it.  b) if the function persists, it needs to be
331    // merged with other definitions. c) C++ has the ODR, so we know the
332    // definition is dependable.
333    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
334  } else {
335    assert(Linkage == GVA_StrongExternal);
336    // Otherwise, we have strong external linkage.
337    GV->setLinkage(llvm::Function::ExternalLinkage);
338  }
339
340  SetCommonAttributes(D, GV);
341}
342
343void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
344                                              const CGFunctionInfo &Info,
345                                              llvm::Function *F) {
346  unsigned CallingConv;
347  AttributeListType AttributeList;
348  ConstructAttributeList(Info, D, AttributeList, CallingConv);
349  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
350                                          AttributeList.size()));
351  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
352}
353
354void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
355                                                           llvm::Function *F) {
356  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
357    F->addFnAttr(llvm::Attribute::NoUnwind);
358
359  if (D->hasAttr<AlwaysInlineAttr>())
360    F->addFnAttr(llvm::Attribute::AlwaysInline);
361
362  if (D->hasAttr<NoInlineAttr>())
363    F->addFnAttr(llvm::Attribute::NoInline);
364
365  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
366    F->addFnAttr(llvm::Attribute::StackProtect);
367  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
368    F->addFnAttr(llvm::Attribute::StackProtectReq);
369
370  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
371    unsigned width = Context.Target.getCharWidth();
372    F->setAlignment(AA->getAlignment() / width);
373    while ((AA = AA->getNext<AlignedAttr>()))
374      F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
375  }
376  // C++ ABI requires 2-byte alignment for member functions.
377  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
378    F->setAlignment(2);
379}
380
381void CodeGenModule::SetCommonAttributes(const Decl *D,
382                                        llvm::GlobalValue *GV) {
383  setGlobalVisibility(GV, D);
384
385  if (D->hasAttr<UsedAttr>())
386    AddUsedGlobal(GV);
387
388  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
389    GV->setSection(SA->getName());
390
391  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
392}
393
394void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
395                                                  llvm::Function *F,
396                                                  const CGFunctionInfo &FI) {
397  SetLLVMFunctionAttributes(D, FI, F);
398  SetLLVMFunctionAttributesForDefinition(D, F);
399
400  F->setLinkage(llvm::Function::InternalLinkage);
401
402  SetCommonAttributes(D, F);
403}
404
405void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
406                                          llvm::Function *F,
407                                          bool IsIncompleteFunction) {
408  if (!IsIncompleteFunction)
409    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
410
411  // Only a few attributes are set on declarations; these may later be
412  // overridden by a definition.
413
414  if (FD->hasAttr<DLLImportAttr>()) {
415    F->setLinkage(llvm::Function::DLLImportLinkage);
416  } else if (FD->hasAttr<WeakAttr>() ||
417             FD->hasAttr<WeakImportAttr>()) {
418    // "extern_weak" is overloaded in LLVM; we probably should have
419    // separate linkage types for this.
420    F->setLinkage(llvm::Function::ExternalWeakLinkage);
421  } else {
422    F->setLinkage(llvm::Function::ExternalLinkage);
423  }
424
425  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
426    F->setSection(SA->getName());
427}
428
429void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
430  assert(!GV->isDeclaration() &&
431         "Only globals with definition can force usage.");
432  LLVMUsed.push_back(GV);
433}
434
435void CodeGenModule::EmitLLVMUsed() {
436  // Don't create llvm.used if there is no need.
437  if (LLVMUsed.empty())
438    return;
439
440  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
441
442  // Convert LLVMUsed to what ConstantArray needs.
443  std::vector<llvm::Constant*> UsedArray;
444  UsedArray.resize(LLVMUsed.size());
445  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
446    UsedArray[i] =
447     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
448                                      i8PTy);
449  }
450
451  if (UsedArray.empty())
452    return;
453  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
454
455  llvm::GlobalVariable *GV =
456    new llvm::GlobalVariable(getModule(), ATy, false,
457                             llvm::GlobalValue::AppendingLinkage,
458                             llvm::ConstantArray::get(ATy, UsedArray),
459                             "llvm.used");
460
461  GV->setSection("llvm.metadata");
462}
463
464void CodeGenModule::EmitDeferred() {
465  // Emit code for any potentially referenced deferred decls.  Since a
466  // previously unused static decl may become used during the generation of code
467  // for a static function, iterate until no  changes are made.
468  while (!DeferredDeclsToEmit.empty()) {
469    GlobalDecl D = DeferredDeclsToEmit.back();
470    DeferredDeclsToEmit.pop_back();
471
472    // The mangled name for the decl must have been emitted in GlobalDeclMap.
473    // Look it up to see if it was defined with a stronger definition (e.g. an
474    // extern inline function with a strong function redefinition).  If so,
475    // just ignore the deferred decl.
476    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
477    assert(CGRef && "Deferred decl wasn't referenced?");
478
479    if (!CGRef->isDeclaration())
480      continue;
481
482    // Otherwise, emit the definition and move on to the next one.
483    EmitGlobalDefinition(D);
484  }
485}
486
487/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
488/// annotation information for a given GlobalValue.  The annotation struct is
489/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
490/// GlobalValue being annotated.  The second field is the constant string
491/// created from the AnnotateAttr's annotation.  The third field is a constant
492/// string containing the name of the translation unit.  The fourth field is
493/// the line number in the file of the annotated value declaration.
494///
495/// FIXME: this does not unique the annotation string constants, as llvm-gcc
496///        appears to.
497///
498llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
499                                                const AnnotateAttr *AA,
500                                                unsigned LineNo) {
501  llvm::Module *M = &getModule();
502
503  // get [N x i8] constants for the annotation string, and the filename string
504  // which are the 2nd and 3rd elements of the global annotation structure.
505  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
506  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
507                                                  AA->getAnnotation(), true);
508  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
509                                                  M->getModuleIdentifier(),
510                                                  true);
511
512  // Get the two global values corresponding to the ConstantArrays we just
513  // created to hold the bytes of the strings.
514  llvm::GlobalValue *annoGV =
515    new llvm::GlobalVariable(*M, anno->getType(), false,
516                             llvm::GlobalValue::PrivateLinkage, anno,
517                             GV->getName());
518  // translation unit name string, emitted into the llvm.metadata section.
519  llvm::GlobalValue *unitGV =
520    new llvm::GlobalVariable(*M, unit->getType(), false,
521                             llvm::GlobalValue::PrivateLinkage, unit,
522                             ".str");
523
524  // Create the ConstantStruct for the global annotation.
525  llvm::Constant *Fields[4] = {
526    llvm::ConstantExpr::getBitCast(GV, SBP),
527    llvm::ConstantExpr::getBitCast(annoGV, SBP),
528    llvm::ConstantExpr::getBitCast(unitGV, SBP),
529    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
530  };
531  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
532}
533
534bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
535  // Never defer when EmitAllDecls is specified or the decl has
536  // attribute used.
537  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
538    return false;
539
540  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
541    // Constructors and destructors should never be deferred.
542    if (FD->hasAttr<ConstructorAttr>() ||
543        FD->hasAttr<DestructorAttr>())
544      return false;
545
546    // The key function for a class must never be deferred.
547    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
548      const CXXRecordDecl *RD = MD->getParent();
549      if (MD->isOutOfLine() && RD->isDynamicClass()) {
550        const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
551        if (KeyFunction &&
552            KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
553          return false;
554      }
555    }
556
557    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
558
559    // static, static inline, always_inline, and extern inline functions can
560    // always be deferred.  Normal inline functions can be deferred in C99/C++.
561    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
562        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
563      return true;
564    return false;
565  }
566
567  const VarDecl *VD = cast<VarDecl>(Global);
568  assert(VD->isFileVarDecl() && "Invalid decl");
569
570  // We never want to defer structs that have non-trivial constructors or
571  // destructors.
572
573  // FIXME: Handle references.
574  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
575    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
576      if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
577        return false;
578    }
579  }
580
581  // Static data may be deferred, but out-of-line static data members
582  // cannot be.
583  if (VD->isInAnonymousNamespace())
584    return true;
585  if (VD->getLinkage() == VarDecl::InternalLinkage) {
586    // Initializer has side effects?
587    if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
588      return false;
589    return !(VD->isStaticDataMember() && VD->isOutOfLine());
590  }
591  return false;
592}
593
594void CodeGenModule::EmitGlobal(GlobalDecl GD) {
595  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
596
597  // If this is an alias definition (which otherwise looks like a declaration)
598  // emit it now.
599  if (Global->hasAttr<AliasAttr>())
600    return EmitAliasDefinition(Global);
601
602  // Ignore declarations, they will be emitted on their first use.
603  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
604    // Forward declarations are emitted lazily on first use.
605    if (!FD->isThisDeclarationADefinition())
606      return;
607  } else {
608    const VarDecl *VD = cast<VarDecl>(Global);
609    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
610
611    if (getLangOptions().CPlusPlus && !VD->getInit()) {
612      // In C++, if this is marked "extern", defer code generation.
613      if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
614        return;
615
616      // If this is a declaration of an explicit specialization of a static
617      // data member in a class template, don't emit it.
618      if (VD->isStaticDataMember() &&
619          VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
620        return;
621    }
622
623    // In C, if this isn't a definition, defer code generation.
624    if (!getLangOptions().CPlusPlus && !VD->getInit())
625      return;
626  }
627
628  // Defer code generation when possible if this is a static definition, inline
629  // function etc.  These we only want to emit if they are used.
630  if (MayDeferGeneration(Global)) {
631    // If the value has already been used, add it directly to the
632    // DeferredDeclsToEmit list.
633    const char *MangledName = getMangledName(GD);
634    if (GlobalDeclMap.count(MangledName))
635      DeferredDeclsToEmit.push_back(GD);
636    else {
637      // Otherwise, remember that we saw a deferred decl with this name.  The
638      // first use of the mangled name will cause it to move into
639      // DeferredDeclsToEmit.
640      DeferredDecls[MangledName] = GD;
641    }
642    return;
643  }
644
645  // Otherwise emit the definition.
646  EmitGlobalDefinition(GD);
647}
648
649void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
650  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
651
652  PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
653                                 Context.getSourceManager(),
654                                 "Generating code for declaration");
655
656  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
657    getVtableInfo().MaybeEmitVtable(GD);
658    if (MD->isVirtual() && MD->isOutOfLine() &&
659        (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
660      if (isa<CXXDestructorDecl>(D)) {
661        GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
662                           GD.getDtorType());
663        BuildThunksForVirtual(CanonGD);
664      } else {
665        BuildThunksForVirtual(MD->getCanonicalDecl());
666      }
667    }
668  }
669
670  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
671    EmitCXXConstructor(CD, GD.getCtorType());
672  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
673    EmitCXXDestructor(DD, GD.getDtorType());
674  else if (isa<FunctionDecl>(D))
675    EmitGlobalFunctionDefinition(GD);
676  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
677    EmitGlobalVarDefinition(VD);
678  else {
679    assert(0 && "Invalid argument to EmitGlobalDefinition()");
680  }
681}
682
683/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
684/// module, create and return an llvm Function with the specified type. If there
685/// is something in the module with the specified name, return it potentially
686/// bitcasted to the right type.
687///
688/// If D is non-null, it specifies a decl that correspond to this.  This is used
689/// to set the attributes on the function when it is first created.
690llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
691                                                       const llvm::Type *Ty,
692                                                       GlobalDecl D) {
693  // Lookup the entry, lazily creating it if necessary.
694  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
695  if (Entry) {
696    if (Entry->getType()->getElementType() == Ty)
697      return Entry;
698
699    // Make sure the result is of the correct type.
700    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
701    return llvm::ConstantExpr::getBitCast(Entry, PTy);
702  }
703
704  // This function doesn't have a complete type (for example, the return
705  // type is an incomplete struct). Use a fake type instead, and make
706  // sure not to try to set attributes.
707  bool IsIncompleteFunction = false;
708  if (!isa<llvm::FunctionType>(Ty)) {
709    Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
710                                 std::vector<const llvm::Type*>(), false);
711    IsIncompleteFunction = true;
712  }
713  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
714                                             llvm::Function::ExternalLinkage,
715                                             "", &getModule());
716  F->setName(MangledName);
717  if (D.getDecl())
718    SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
719                          IsIncompleteFunction);
720  Entry = F;
721
722  // This is the first use or definition of a mangled name.  If there is a
723  // deferred decl with this name, remember that we need to emit it at the end
724  // of the file.
725  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
726    DeferredDecls.find(MangledName);
727  if (DDI != DeferredDecls.end()) {
728    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
729    // list, and remove it from DeferredDecls (since we don't need it anymore).
730    DeferredDeclsToEmit.push_back(DDI->second);
731    DeferredDecls.erase(DDI);
732  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
733    // If this the first reference to a C++ inline function in a class, queue up
734    // the deferred function body for emission.  These are not seen as
735    // top-level declarations.
736    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
737      DeferredDeclsToEmit.push_back(D);
738    // A called constructor which has no definition or declaration need be
739    // synthesized.
740    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
741      if (CD->isImplicit())
742        DeferredDeclsToEmit.push_back(D);
743    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
744      if (DD->isImplicit())
745        DeferredDeclsToEmit.push_back(D);
746    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
747      if (MD->isCopyAssignment() && MD->isImplicit())
748        DeferredDeclsToEmit.push_back(D);
749    }
750  }
751
752  return F;
753}
754
755/// GetAddrOfFunction - Return the address of the given function.  If Ty is
756/// non-null, then this function will use the specified type if it has to
757/// create it (this occurs when we see a definition of the function).
758llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
759                                                 const llvm::Type *Ty) {
760  // If there was no specific requested type, just convert it now.
761  if (!Ty)
762    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
763  return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
764}
765
766/// CreateRuntimeFunction - Create a new runtime function with the specified
767/// type and name.
768llvm::Constant *
769CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
770                                     const char *Name) {
771  // Convert Name to be a uniqued string from the IdentifierInfo table.
772  Name = getContext().Idents.get(Name).getNameStart();
773  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
774}
775
776static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
777  if (!D->getType().isConstant(Context))
778    return false;
779  if (Context.getLangOptions().CPlusPlus &&
780      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
781    // FIXME: We should do something fancier here!
782    return false;
783  }
784  return true;
785}
786
787/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
788/// create and return an llvm GlobalVariable with the specified type.  If there
789/// is something in the module with the specified name, return it potentially
790/// bitcasted to the right type.
791///
792/// If D is non-null, it specifies a decl that correspond to this.  This is used
793/// to set the attributes on the global when it is first created.
794llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
795                                                     const llvm::PointerType*Ty,
796                                                     const VarDecl *D) {
797  // Lookup the entry, lazily creating it if necessary.
798  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
799  if (Entry) {
800    if (Entry->getType() == Ty)
801      return Entry;
802
803    // Make sure the result is of the correct type.
804    return llvm::ConstantExpr::getBitCast(Entry, Ty);
805  }
806
807  // This is the first use or definition of a mangled name.  If there is a
808  // deferred decl with this name, remember that we need to emit it at the end
809  // of the file.
810  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
811    DeferredDecls.find(MangledName);
812  if (DDI != DeferredDecls.end()) {
813    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
814    // list, and remove it from DeferredDecls (since we don't need it anymore).
815    DeferredDeclsToEmit.push_back(DDI->second);
816    DeferredDecls.erase(DDI);
817  }
818
819  llvm::GlobalVariable *GV =
820    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
821                             llvm::GlobalValue::ExternalLinkage,
822                             0, "", 0,
823                             false, Ty->getAddressSpace());
824  GV->setName(MangledName);
825
826  // Handle things which are present even on external declarations.
827  if (D) {
828    // FIXME: This code is overly simple and should be merged with other global
829    // handling.
830    GV->setConstant(DeclIsConstantGlobal(Context, D));
831
832    // FIXME: Merge with other attribute handling code.
833    if (D->getStorageClass() == VarDecl::PrivateExtern)
834      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
835
836    if (D->hasAttr<WeakAttr>() ||
837        D->hasAttr<WeakImportAttr>())
838      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
839
840    GV->setThreadLocal(D->isThreadSpecified());
841  }
842
843  return Entry = GV;
844}
845
846
847/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
848/// given global variable.  If Ty is non-null and if the global doesn't exist,
849/// then it will be greated with the specified type instead of whatever the
850/// normal requested type would be.
851llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
852                                                  const llvm::Type *Ty) {
853  assert(D->hasGlobalStorage() && "Not a global variable");
854  QualType ASTTy = D->getType();
855  if (Ty == 0)
856    Ty = getTypes().ConvertTypeForMem(ASTTy);
857
858  const llvm::PointerType *PTy =
859    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
860  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
861}
862
863/// CreateRuntimeVariable - Create a new runtime global variable with the
864/// specified type and name.
865llvm::Constant *
866CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
867                                     const char *Name) {
868  // Convert Name to be a uniqued string from the IdentifierInfo table.
869  Name = getContext().Idents.get(Name).getNameStart();
870  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
871}
872
873void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
874  assert(!D->getInit() && "Cannot emit definite definitions here!");
875
876  if (MayDeferGeneration(D)) {
877    // If we have not seen a reference to this variable yet, place it
878    // into the deferred declarations table to be emitted if needed
879    // later.
880    const char *MangledName = getMangledName(D);
881    if (GlobalDeclMap.count(MangledName) == 0) {
882      DeferredDecls[MangledName] = D;
883      return;
884    }
885  }
886
887  // The tentative definition is the only definition.
888  EmitGlobalVarDefinition(D);
889}
890
891llvm::GlobalVariable::LinkageTypes
892CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
893  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
894    return llvm::GlobalVariable::InternalLinkage;
895
896  if (const CXXMethodDecl *KeyFunction
897                                    = RD->getASTContext().getKeyFunction(RD)) {
898    // If this class has a key function, use that to determine the linkage of
899    // the vtable.
900    const FunctionDecl *Def = 0;
901    if (KeyFunction->getBody(Def))
902      KeyFunction = cast<CXXMethodDecl>(Def);
903
904    switch (KeyFunction->getTemplateSpecializationKind()) {
905      case TSK_Undeclared:
906      case TSK_ExplicitSpecialization:
907        if (KeyFunction->isInlined())
908          return llvm::GlobalVariable::WeakODRLinkage;
909
910        return llvm::GlobalVariable::ExternalLinkage;
911
912      case TSK_ImplicitInstantiation:
913      case TSK_ExplicitInstantiationDefinition:
914        return llvm::GlobalVariable::WeakODRLinkage;
915
916      case TSK_ExplicitInstantiationDeclaration:
917        // FIXME: Use available_externally linkage. However, this currently
918        // breaks LLVM's build due to undefined symbols.
919        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
920        return llvm::GlobalVariable::WeakODRLinkage;
921    }
922  }
923
924  switch (RD->getTemplateSpecializationKind()) {
925  case TSK_Undeclared:
926  case TSK_ExplicitSpecialization:
927  case TSK_ImplicitInstantiation:
928  case TSK_ExplicitInstantiationDefinition:
929    return llvm::GlobalVariable::WeakODRLinkage;
930
931  case TSK_ExplicitInstantiationDeclaration:
932    // FIXME: Use available_externally linkage. However, this currently
933    // breaks LLVM's build due to undefined symbols.
934    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
935    return llvm::GlobalVariable::WeakODRLinkage;
936  }
937
938  // Silence GCC warning.
939  return llvm::GlobalVariable::WeakODRLinkage;
940}
941
942static CodeGenModule::GVALinkage
943GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
944  // Everything located semantically within an anonymous namespace is
945  // always internal.
946  if (VD->isInAnonymousNamespace())
947    return CodeGenModule::GVA_Internal;
948
949  // Handle linkage for static data members.
950  if (VD->isStaticDataMember()) {
951    switch (VD->getTemplateSpecializationKind()) {
952    case TSK_Undeclared:
953    case TSK_ExplicitSpecialization:
954    case TSK_ExplicitInstantiationDefinition:
955      return CodeGenModule::GVA_StrongExternal;
956
957    case TSK_ExplicitInstantiationDeclaration:
958      llvm_unreachable("Variable should not be instantiated");
959      // Fall through to treat this like any other instantiation.
960
961    case TSK_ImplicitInstantiation:
962      return CodeGenModule::GVA_TemplateInstantiation;
963    }
964  }
965
966  if (VD->getLinkage() == VarDecl::InternalLinkage)
967    return CodeGenModule::GVA_Internal;
968
969  return CodeGenModule::GVA_StrongExternal;
970}
971
972void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
973  llvm::Constant *Init = 0;
974  QualType ASTTy = D->getType();
975  bool NonConstInit = false;
976
977  if (D->getInit() == 0) {
978    // This is a tentative definition; tentative definitions are
979    // implicitly initialized with { 0 }.
980    //
981    // Note that tentative definitions are only emitted at the end of
982    // a translation unit, so they should never have incomplete
983    // type. In addition, EmitTentativeDefinition makes sure that we
984    // never attempt to emit a tentative definition if a real one
985    // exists. A use may still exists, however, so we still may need
986    // to do a RAUW.
987    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
988    Init = EmitNullConstant(D->getType());
989  } else {
990    Init = EmitConstantExpr(D->getInit(), D->getType());
991
992    if (!Init) {
993      QualType T = D->getInit()->getType();
994      if (getLangOptions().CPlusPlus) {
995        EmitCXXGlobalVarDeclInitFunc(D);
996        Init = EmitNullConstant(T);
997        NonConstInit = true;
998      } else {
999        ErrorUnsupported(D, "static initializer");
1000        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1001      }
1002    }
1003  }
1004
1005  const llvm::Type* InitType = Init->getType();
1006  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1007
1008  // Strip off a bitcast if we got one back.
1009  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1010    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1011           // all zero index gep.
1012           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1013    Entry = CE->getOperand(0);
1014  }
1015
1016  // Entry is now either a Function or GlobalVariable.
1017  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1018
1019  // We have a definition after a declaration with the wrong type.
1020  // We must make a new GlobalVariable* and update everything that used OldGV
1021  // (a declaration or tentative definition) with the new GlobalVariable*
1022  // (which will be a definition).
1023  //
1024  // This happens if there is a prototype for a global (e.g.
1025  // "extern int x[];") and then a definition of a different type (e.g.
1026  // "int x[10];"). This also happens when an initializer has a different type
1027  // from the type of the global (this happens with unions).
1028  if (GV == 0 ||
1029      GV->getType()->getElementType() != InitType ||
1030      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1031
1032    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1033    GlobalDeclMap.erase(getMangledName(D));
1034
1035    // Make a new global with the correct type, this is now guaranteed to work.
1036    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1037    GV->takeName(cast<llvm::GlobalValue>(Entry));
1038
1039    // Replace all uses of the old global with the new global
1040    llvm::Constant *NewPtrForOldDecl =
1041        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1042    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1043
1044    // Erase the old global, since it is no longer used.
1045    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1046  }
1047
1048  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1049    SourceManager &SM = Context.getSourceManager();
1050    AddAnnotation(EmitAnnotateAttr(GV, AA,
1051                              SM.getInstantiationLineNumber(D->getLocation())));
1052  }
1053
1054  GV->setInitializer(Init);
1055
1056  // If it is safe to mark the global 'constant', do so now.
1057  GV->setConstant(false);
1058  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1059    GV->setConstant(true);
1060
1061  GV->setAlignment(getContext().getDeclAlignInBytes(D));
1062
1063  // Set the llvm linkage type as appropriate.
1064  GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1065  if (Linkage == GVA_Internal)
1066    GV->setLinkage(llvm::Function::InternalLinkage);
1067  else if (D->hasAttr<DLLImportAttr>())
1068    GV->setLinkage(llvm::Function::DLLImportLinkage);
1069  else if (D->hasAttr<DLLExportAttr>())
1070    GV->setLinkage(llvm::Function::DLLExportLinkage);
1071  else if (D->hasAttr<WeakAttr>()) {
1072    if (GV->isConstant())
1073      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1074    else
1075      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1076  } else if (Linkage == GVA_TemplateInstantiation)
1077    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1078  else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1079           !D->hasExternalStorage() && !D->getInit() &&
1080           !D->getAttr<SectionAttr>()) {
1081    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1082    // common vars aren't constant even if declared const.
1083    GV->setConstant(false);
1084  } else
1085    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1086
1087  SetCommonAttributes(D, GV);
1088
1089  // Emit global variable debug information.
1090  if (CGDebugInfo *DI = getDebugInfo()) {
1091    DI->setLocation(D->getLocation());
1092    DI->EmitGlobalVariable(GV, D);
1093  }
1094}
1095
1096/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1097/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1098/// existing call uses of the old function in the module, this adjusts them to
1099/// call the new function directly.
1100///
1101/// This is not just a cleanup: the always_inline pass requires direct calls to
1102/// functions to be able to inline them.  If there is a bitcast in the way, it
1103/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1104/// run at -O0.
1105static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1106                                                      llvm::Function *NewFn) {
1107  // If we're redefining a global as a function, don't transform it.
1108  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1109  if (OldFn == 0) return;
1110
1111  const llvm::Type *NewRetTy = NewFn->getReturnType();
1112  llvm::SmallVector<llvm::Value*, 4> ArgList;
1113
1114  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1115       UI != E; ) {
1116    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1117    unsigned OpNo = UI.getOperandNo();
1118    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1119    if (!CI || OpNo != 0) continue;
1120
1121    // If the return types don't match exactly, and if the call isn't dead, then
1122    // we can't transform this call.
1123    if (CI->getType() != NewRetTy && !CI->use_empty())
1124      continue;
1125
1126    // If the function was passed too few arguments, don't transform.  If extra
1127    // arguments were passed, we silently drop them.  If any of the types
1128    // mismatch, we don't transform.
1129    unsigned ArgNo = 0;
1130    bool DontTransform = false;
1131    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1132         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1133      if (CI->getNumOperands()-1 == ArgNo ||
1134          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1135        DontTransform = true;
1136        break;
1137      }
1138    }
1139    if (DontTransform)
1140      continue;
1141
1142    // Okay, we can transform this.  Create the new call instruction and copy
1143    // over the required information.
1144    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1145    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1146                                                     ArgList.end(), "", CI);
1147    ArgList.clear();
1148    if (!NewCall->getType()->isVoidTy())
1149      NewCall->takeName(CI);
1150    NewCall->setAttributes(CI->getAttributes());
1151    NewCall->setCallingConv(CI->getCallingConv());
1152
1153    // Finally, remove the old call, replacing any uses with the new one.
1154    if (!CI->use_empty())
1155      CI->replaceAllUsesWith(NewCall);
1156
1157    // Copy any custom metadata attached with CI.
1158    if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1159      NewCall->setMetadata("dbg", DbgNode);
1160    CI->eraseFromParent();
1161  }
1162}
1163
1164
1165void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1166  const llvm::FunctionType *Ty;
1167  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1168
1169  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1170    bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1171
1172    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1173  } else {
1174    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1175
1176    // As a special case, make sure that definitions of K&R function
1177    // "type foo()" aren't declared as varargs (which forces the backend
1178    // to do unnecessary work).
1179    if (D->getType()->isFunctionNoProtoType()) {
1180      assert(Ty->isVarArg() && "Didn't lower type as expected");
1181      // Due to stret, the lowered function could have arguments.
1182      // Just create the same type as was lowered by ConvertType
1183      // but strip off the varargs bit.
1184      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1185      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1186    }
1187  }
1188
1189  // Get or create the prototype for the function.
1190  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1191
1192  // Strip off a bitcast if we got one back.
1193  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1194    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1195    Entry = CE->getOperand(0);
1196  }
1197
1198
1199  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1200    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1201
1202    // If the types mismatch then we have to rewrite the definition.
1203    assert(OldFn->isDeclaration() &&
1204           "Shouldn't replace non-declaration");
1205
1206    // F is the Function* for the one with the wrong type, we must make a new
1207    // Function* and update everything that used F (a declaration) with the new
1208    // Function* (which will be a definition).
1209    //
1210    // This happens if there is a prototype for a function
1211    // (e.g. "int f()") and then a definition of a different type
1212    // (e.g. "int f(int x)").  Start by making a new function of the
1213    // correct type, RAUW, then steal the name.
1214    GlobalDeclMap.erase(getMangledName(D));
1215    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1216    NewFn->takeName(OldFn);
1217
1218    // If this is an implementation of a function without a prototype, try to
1219    // replace any existing uses of the function (which may be calls) with uses
1220    // of the new function
1221    if (D->getType()->isFunctionNoProtoType()) {
1222      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1223      OldFn->removeDeadConstantUsers();
1224    }
1225
1226    // Replace uses of F with the Function we will endow with a body.
1227    if (!Entry->use_empty()) {
1228      llvm::Constant *NewPtrForOldDecl =
1229        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1230      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1231    }
1232
1233    // Ok, delete the old function now, which is dead.
1234    OldFn->eraseFromParent();
1235
1236    Entry = NewFn;
1237  }
1238
1239  llvm::Function *Fn = cast<llvm::Function>(Entry);
1240
1241  CodeGenFunction(*this).GenerateCode(D, Fn);
1242
1243  SetFunctionDefinitionAttributes(D, Fn);
1244  SetLLVMFunctionAttributesForDefinition(D, Fn);
1245
1246  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1247    AddGlobalCtor(Fn, CA->getPriority());
1248  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1249    AddGlobalDtor(Fn, DA->getPriority());
1250}
1251
1252void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1253  const AliasAttr *AA = D->getAttr<AliasAttr>();
1254  assert(AA && "Not an alias?");
1255
1256  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1257
1258  // Unique the name through the identifier table.
1259  const char *AliaseeName = AA->getAliasee().c_str();
1260  AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1261
1262  // Create a reference to the named value.  This ensures that it is emitted
1263  // if a deferred decl.
1264  llvm::Constant *Aliasee;
1265  if (isa<llvm::FunctionType>(DeclTy))
1266    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1267  else
1268    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1269                                    llvm::PointerType::getUnqual(DeclTy), 0);
1270
1271  // Create the new alias itself, but don't set a name yet.
1272  llvm::GlobalValue *GA =
1273    new llvm::GlobalAlias(Aliasee->getType(),
1274                          llvm::Function::ExternalLinkage,
1275                          "", Aliasee, &getModule());
1276
1277  // See if there is already something with the alias' name in the module.
1278  const char *MangledName = getMangledName(D);
1279  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1280
1281  if (Entry && !Entry->isDeclaration()) {
1282    // If there is a definition in the module, then it wins over the alias.
1283    // This is dubious, but allow it to be safe.  Just ignore the alias.
1284    GA->eraseFromParent();
1285    return;
1286  }
1287
1288  if (Entry) {
1289    // If there is a declaration in the module, then we had an extern followed
1290    // by the alias, as in:
1291    //   extern int test6();
1292    //   ...
1293    //   int test6() __attribute__((alias("test7")));
1294    //
1295    // Remove it and replace uses of it with the alias.
1296
1297    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1298                                                          Entry->getType()));
1299    Entry->eraseFromParent();
1300  }
1301
1302  // Now we know that there is no conflict, set the name.
1303  Entry = GA;
1304  GA->setName(MangledName);
1305
1306  // Set attributes which are particular to an alias; this is a
1307  // specialization of the attributes which may be set on a global
1308  // variable/function.
1309  if (D->hasAttr<DLLExportAttr>()) {
1310    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1311      // The dllexport attribute is ignored for undefined symbols.
1312      if (FD->getBody())
1313        GA->setLinkage(llvm::Function::DLLExportLinkage);
1314    } else {
1315      GA->setLinkage(llvm::Function::DLLExportLinkage);
1316    }
1317  } else if (D->hasAttr<WeakAttr>() ||
1318             D->hasAttr<WeakImportAttr>()) {
1319    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1320  }
1321
1322  SetCommonAttributes(D, GA);
1323}
1324
1325/// getBuiltinLibFunction - Given a builtin id for a function like
1326/// "__builtin_fabsf", return a Function* for "fabsf".
1327llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1328                                                  unsigned BuiltinID) {
1329  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1330          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1331         "isn't a lib fn");
1332
1333  // Get the name, skip over the __builtin_ prefix (if necessary).
1334  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1335  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1336    Name += 10;
1337
1338  const llvm::FunctionType *Ty =
1339    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1340
1341  // Unique the name through the identifier table.
1342  Name = getContext().Idents.get(Name).getNameStart();
1343  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1344}
1345
1346llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1347                                            unsigned NumTys) {
1348  return llvm::Intrinsic::getDeclaration(&getModule(),
1349                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1350}
1351
1352llvm::Function *CodeGenModule::getMemCpyFn() {
1353  if (MemCpyFn) return MemCpyFn;
1354  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1355  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1356}
1357
1358llvm::Function *CodeGenModule::getMemMoveFn() {
1359  if (MemMoveFn) return MemMoveFn;
1360  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1361  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1362}
1363
1364llvm::Function *CodeGenModule::getMemSetFn() {
1365  if (MemSetFn) return MemSetFn;
1366  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1367  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1368}
1369
1370static llvm::StringMapEntry<llvm::Constant*> &
1371GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1372                         const StringLiteral *Literal,
1373                         bool TargetIsLSB,
1374                         bool &IsUTF16,
1375                         unsigned &StringLength) {
1376  unsigned NumBytes = Literal->getByteLength();
1377
1378  // Check for simple case.
1379  if (!Literal->containsNonAsciiOrNull()) {
1380    StringLength = NumBytes;
1381    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1382                                                StringLength));
1383  }
1384
1385  // Otherwise, convert the UTF8 literals into a byte string.
1386  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1387  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1388  UTF16 *ToPtr = &ToBuf[0];
1389
1390  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1391                                               &ToPtr, ToPtr + NumBytes,
1392                                               strictConversion);
1393
1394  // Check for conversion failure.
1395  if (Result != conversionOK) {
1396    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1397    // this duplicate code.
1398    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1399    StringLength = NumBytes;
1400    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1401                                                StringLength));
1402  }
1403
1404  // ConvertUTF8toUTF16 returns the length in ToPtr.
1405  StringLength = ToPtr - &ToBuf[0];
1406
1407  // Render the UTF-16 string into a byte array and convert to the target byte
1408  // order.
1409  //
1410  // FIXME: This isn't something we should need to do here.
1411  llvm::SmallString<128> AsBytes;
1412  AsBytes.reserve(StringLength * 2);
1413  for (unsigned i = 0; i != StringLength; ++i) {
1414    unsigned short Val = ToBuf[i];
1415    if (TargetIsLSB) {
1416      AsBytes.push_back(Val & 0xFF);
1417      AsBytes.push_back(Val >> 8);
1418    } else {
1419      AsBytes.push_back(Val >> 8);
1420      AsBytes.push_back(Val & 0xFF);
1421    }
1422  }
1423  // Append one extra null character, the second is automatically added by our
1424  // caller.
1425  AsBytes.push_back(0);
1426
1427  IsUTF16 = true;
1428  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1429}
1430
1431llvm::Constant *
1432CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1433  unsigned StringLength = 0;
1434  bool isUTF16 = false;
1435  llvm::StringMapEntry<llvm::Constant*> &Entry =
1436    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1437                             getTargetData().isLittleEndian(),
1438                             isUTF16, StringLength);
1439
1440  if (llvm::Constant *C = Entry.getValue())
1441    return C;
1442
1443  llvm::Constant *Zero =
1444      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1445  llvm::Constant *Zeros[] = { Zero, Zero };
1446
1447  // If we don't already have it, get __CFConstantStringClassReference.
1448  if (!CFConstantStringClassRef) {
1449    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1450    Ty = llvm::ArrayType::get(Ty, 0);
1451    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1452                                           "__CFConstantStringClassReference");
1453    // Decay array -> ptr
1454    CFConstantStringClassRef =
1455      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1456  }
1457
1458  QualType CFTy = getContext().getCFConstantStringType();
1459
1460  const llvm::StructType *STy =
1461    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1462
1463  std::vector<llvm::Constant*> Fields(4);
1464
1465  // Class pointer.
1466  Fields[0] = CFConstantStringClassRef;
1467
1468  // Flags.
1469  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1470  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1471    llvm::ConstantInt::get(Ty, 0x07C8);
1472
1473  // String pointer.
1474  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1475
1476  const char *Sect = 0;
1477  llvm::GlobalValue::LinkageTypes Linkage;
1478  bool isConstant;
1479  if (isUTF16) {
1480    Sect = getContext().Target.getUnicodeStringSection();
1481    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1482    Linkage = llvm::GlobalValue::InternalLinkage;
1483    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1484    // does make plain ascii ones writable.
1485    isConstant = true;
1486  } else {
1487    Linkage = llvm::GlobalValue::PrivateLinkage;
1488    isConstant = !Features.WritableStrings;
1489  }
1490
1491  llvm::GlobalVariable *GV =
1492    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1493                             ".str");
1494  if (Sect)
1495    GV->setSection(Sect);
1496  if (isUTF16) {
1497    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1498    GV->setAlignment(Align);
1499  }
1500  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1501
1502  // String length.
1503  Ty = getTypes().ConvertType(getContext().LongTy);
1504  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1505
1506  // The struct.
1507  C = llvm::ConstantStruct::get(STy, Fields);
1508  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1509                                llvm::GlobalVariable::PrivateLinkage, C,
1510                                "_unnamed_cfstring_");
1511  if (const char *Sect = getContext().Target.getCFStringSection())
1512    GV->setSection(Sect);
1513  Entry.setValue(GV);
1514
1515  return GV;
1516}
1517
1518/// GetStringForStringLiteral - Return the appropriate bytes for a
1519/// string literal, properly padded to match the literal type.
1520std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1521  const char *StrData = E->getStrData();
1522  unsigned Len = E->getByteLength();
1523
1524  const ConstantArrayType *CAT =
1525    getContext().getAsConstantArrayType(E->getType());
1526  assert(CAT && "String isn't pointer or array!");
1527
1528  // Resize the string to the right size.
1529  std::string Str(StrData, StrData+Len);
1530  uint64_t RealLen = CAT->getSize().getZExtValue();
1531
1532  if (E->isWide())
1533    RealLen *= getContext().Target.getWCharWidth()/8;
1534
1535  Str.resize(RealLen, '\0');
1536
1537  return Str;
1538}
1539
1540/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1541/// constant array for the given string literal.
1542llvm::Constant *
1543CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1544  // FIXME: This can be more efficient.
1545  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1546  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1547  if (S->isWide()) {
1548    llvm::Type *DestTy =
1549        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1550    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1551  }
1552  return C;
1553}
1554
1555/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1556/// array for the given ObjCEncodeExpr node.
1557llvm::Constant *
1558CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1559  std::string Str;
1560  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1561
1562  return GetAddrOfConstantCString(Str);
1563}
1564
1565
1566/// GenerateWritableString -- Creates storage for a string literal.
1567static llvm::Constant *GenerateStringLiteral(const std::string &str,
1568                                             bool constant,
1569                                             CodeGenModule &CGM,
1570                                             const char *GlobalName) {
1571  // Create Constant for this string literal. Don't add a '\0'.
1572  llvm::Constant *C =
1573      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1574
1575  // Create a global variable for this string
1576  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1577                                  llvm::GlobalValue::PrivateLinkage,
1578                                  C, GlobalName);
1579}
1580
1581/// GetAddrOfConstantString - Returns a pointer to a character array
1582/// containing the literal. This contents are exactly that of the
1583/// given string, i.e. it will not be null terminated automatically;
1584/// see GetAddrOfConstantCString. Note that whether the result is
1585/// actually a pointer to an LLVM constant depends on
1586/// Feature.WriteableStrings.
1587///
1588/// The result has pointer to array type.
1589llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1590                                                       const char *GlobalName) {
1591  bool IsConstant = !Features.WritableStrings;
1592
1593  // Get the default prefix if a name wasn't specified.
1594  if (!GlobalName)
1595    GlobalName = ".str";
1596
1597  // Don't share any string literals if strings aren't constant.
1598  if (!IsConstant)
1599    return GenerateStringLiteral(str, false, *this, GlobalName);
1600
1601  llvm::StringMapEntry<llvm::Constant *> &Entry =
1602    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1603
1604  if (Entry.getValue())
1605    return Entry.getValue();
1606
1607  // Create a global variable for this.
1608  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1609  Entry.setValue(C);
1610  return C;
1611}
1612
1613/// GetAddrOfConstantCString - Returns a pointer to a character
1614/// array containing the literal and a terminating '\-'
1615/// character. The result has pointer to array type.
1616llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1617                                                        const char *GlobalName){
1618  return GetAddrOfConstantString(str + '\0', GlobalName);
1619}
1620
1621/// EmitObjCPropertyImplementations - Emit information for synthesized
1622/// properties for an implementation.
1623void CodeGenModule::EmitObjCPropertyImplementations(const
1624                                                    ObjCImplementationDecl *D) {
1625  for (ObjCImplementationDecl::propimpl_iterator
1626         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1627    ObjCPropertyImplDecl *PID = *i;
1628
1629    // Dynamic is just for type-checking.
1630    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1631      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1632
1633      // Determine which methods need to be implemented, some may have
1634      // been overridden. Note that ::isSynthesized is not the method
1635      // we want, that just indicates if the decl came from a
1636      // property. What we want to know is if the method is defined in
1637      // this implementation.
1638      if (!D->getInstanceMethod(PD->getGetterName()))
1639        CodeGenFunction(*this).GenerateObjCGetter(
1640                                 const_cast<ObjCImplementationDecl *>(D), PID);
1641      if (!PD->isReadOnly() &&
1642          !D->getInstanceMethod(PD->getSetterName()))
1643        CodeGenFunction(*this).GenerateObjCSetter(
1644                                 const_cast<ObjCImplementationDecl *>(D), PID);
1645    }
1646  }
1647}
1648
1649/// EmitNamespace - Emit all declarations in a namespace.
1650void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1651  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1652       I != E; ++I)
1653    EmitTopLevelDecl(*I);
1654}
1655
1656// EmitLinkageSpec - Emit all declarations in a linkage spec.
1657void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1658  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1659      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1660    ErrorUnsupported(LSD, "linkage spec");
1661    return;
1662  }
1663
1664  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1665       I != E; ++I)
1666    EmitTopLevelDecl(*I);
1667}
1668
1669/// EmitTopLevelDecl - Emit code for a single top level declaration.
1670void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1671  // If an error has occurred, stop code generation, but continue
1672  // parsing and semantic analysis (to ensure all warnings and errors
1673  // are emitted).
1674  if (Diags.hasErrorOccurred())
1675    return;
1676
1677  // Ignore dependent declarations.
1678  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1679    return;
1680
1681  switch (D->getKind()) {
1682  case Decl::CXXConversion:
1683  case Decl::CXXMethod:
1684  case Decl::Function:
1685    // Skip function templates
1686    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1687      return;
1688
1689    EmitGlobal(cast<FunctionDecl>(D));
1690    break;
1691
1692  case Decl::Var:
1693    EmitGlobal(cast<VarDecl>(D));
1694    break;
1695
1696  // C++ Decls
1697  case Decl::Namespace:
1698    EmitNamespace(cast<NamespaceDecl>(D));
1699    break;
1700    // No code generation needed.
1701  case Decl::UsingShadow:
1702  case Decl::Using:
1703  case Decl::UsingDirective:
1704  case Decl::ClassTemplate:
1705  case Decl::FunctionTemplate:
1706  case Decl::NamespaceAlias:
1707    break;
1708  case Decl::CXXConstructor:
1709    // Skip function templates
1710    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1711      return;
1712
1713    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1714    break;
1715  case Decl::CXXDestructor:
1716    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1717    break;
1718
1719  case Decl::StaticAssert:
1720    // Nothing to do.
1721    break;
1722
1723  // Objective-C Decls
1724
1725  // Forward declarations, no (immediate) code generation.
1726  case Decl::ObjCClass:
1727  case Decl::ObjCForwardProtocol:
1728  case Decl::ObjCCategory:
1729  case Decl::ObjCInterface:
1730    break;
1731
1732  case Decl::ObjCProtocol:
1733    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1734    break;
1735
1736  case Decl::ObjCCategoryImpl:
1737    // Categories have properties but don't support synthesize so we
1738    // can ignore them here.
1739    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1740    break;
1741
1742  case Decl::ObjCImplementation: {
1743    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1744    EmitObjCPropertyImplementations(OMD);
1745    Runtime->GenerateClass(OMD);
1746    break;
1747  }
1748  case Decl::ObjCMethod: {
1749    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1750    // If this is not a prototype, emit the body.
1751    if (OMD->getBody())
1752      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1753    break;
1754  }
1755  case Decl::ObjCCompatibleAlias:
1756    // compatibility-alias is a directive and has no code gen.
1757    break;
1758
1759  case Decl::LinkageSpec:
1760    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1761    break;
1762
1763  case Decl::FileScopeAsm: {
1764    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1765    llvm::StringRef AsmString = AD->getAsmString()->getString();
1766
1767    const std::string &S = getModule().getModuleInlineAsm();
1768    if (S.empty())
1769      getModule().setModuleInlineAsm(AsmString);
1770    else
1771      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1772    break;
1773  }
1774
1775  default:
1776    // Make sure we handled everything we should, every other kind is a
1777    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1778    // function. Need to recode Decl::Kind to do that easily.
1779    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1780  }
1781}
1782