CodeGenModule.cpp revision 15233e5a4d98b66b3c6cfcc4e6413ad776a79481
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/CodeGen/CodeGenOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Basic/ConvertUTF.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Module.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Support/ErrorHandling.h"
34using namespace clang;
35using namespace CodeGen;
36
37
38CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
39                             llvm::Module &M, const llvm::TargetData &TD,
40                             Diagnostic &diags)
41  : BlockModule(C, M, TD, Types, *this), Context(C),
42    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
43    TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
44    VtableInfo(*this), Runtime(0),
45    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
46    VMContext(M.getContext()) {
47
48  if (!Features.ObjC1)
49    Runtime = 0;
50  else if (!Features.NeXTRuntime)
51    Runtime = CreateGNUObjCRuntime(*this);
52  else if (Features.ObjCNonFragileABI)
53    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
54  else
55    Runtime = CreateMacObjCRuntime(*this);
56
57  // If debug info generation is enabled, create the CGDebugInfo object.
58  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(this) : 0;
59}
60
61CodeGenModule::~CodeGenModule() {
62  delete Runtime;
63  delete DebugInfo;
64}
65
66void CodeGenModule::Release() {
67  // We need to call this first because it can add deferred declarations.
68  EmitCXXGlobalInitFunc();
69
70  EmitDeferred();
71  if (Runtime)
72    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
73      AddGlobalCtor(ObjCInitFunction);
74  EmitCtorList(GlobalCtors, "llvm.global_ctors");
75  EmitCtorList(GlobalDtors, "llvm.global_dtors");
76  EmitAnnotations();
77  EmitLLVMUsed();
78}
79
80/// ErrorUnsupported - Print out an error that codegen doesn't support the
81/// specified stmt yet.
82void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
83                                     bool OmitOnError) {
84  if (OmitOnError && getDiags().hasErrorOccurred())
85    return;
86  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
87                                               "cannot compile this %0 yet");
88  std::string Msg = Type;
89  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
90    << Msg << S->getSourceRange();
91}
92
93/// ErrorUnsupported - Print out an error that codegen doesn't support the
94/// specified decl yet.
95void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
96                                     bool OmitOnError) {
97  if (OmitOnError && getDiags().hasErrorOccurred())
98    return;
99  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
100                                               "cannot compile this %0 yet");
101  std::string Msg = Type;
102  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
103}
104
105LangOptions::VisibilityMode
106CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
107  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
108    if (VD->getStorageClass() == VarDecl::PrivateExtern)
109      return LangOptions::Hidden;
110
111  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
112    switch (attr->getVisibility()) {
113    default: assert(0 && "Unknown visibility!");
114    case VisibilityAttr::DefaultVisibility:
115      return LangOptions::Default;
116    case VisibilityAttr::HiddenVisibility:
117      return LangOptions::Hidden;
118    case VisibilityAttr::ProtectedVisibility:
119      return LangOptions::Protected;
120    }
121  }
122
123  return getLangOptions().getVisibilityMode();
124}
125
126void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
127                                        const Decl *D) const {
128  // Internal definitions always have default visibility.
129  if (GV->hasLocalLinkage()) {
130    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131    return;
132  }
133
134  switch (getDeclVisibilityMode(D)) {
135  default: assert(0 && "Unknown visibility!");
136  case LangOptions::Default:
137    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
138  case LangOptions::Hidden:
139    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
140  case LangOptions::Protected:
141    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
142  }
143}
144
145const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
146  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
147
148  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
149    return getMangledCXXCtorName(D, GD.getCtorType());
150  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
151    return getMangledCXXDtorName(D, GD.getDtorType());
152
153  return getMangledName(ND);
154}
155
156/// \brief Retrieves the mangled name for the given declaration.
157///
158/// If the given declaration requires a mangled name, returns an
159/// const char* containing the mangled name.  Otherwise, returns
160/// the unmangled name.
161///
162const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
163  if (!getMangleContext().shouldMangleDeclName(ND)) {
164    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
165    return ND->getNameAsCString();
166  }
167
168  llvm::SmallString<256> Name;
169  getMangleContext().mangleName(ND, Name);
170  Name += '\0';
171  return UniqueMangledName(Name.begin(), Name.end());
172}
173
174const char *CodeGenModule::UniqueMangledName(const char *NameStart,
175                                             const char *NameEnd) {
176  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
177
178  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
179}
180
181/// AddGlobalCtor - Add a function to the list that will be called before
182/// main() runs.
183void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
184  // FIXME: Type coercion of void()* types.
185  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
186}
187
188/// AddGlobalDtor - Add a function to the list that will be called
189/// when the module is unloaded.
190void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
191  // FIXME: Type coercion of void()* types.
192  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
193}
194
195void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
196  // Ctor function type is void()*.
197  llvm::FunctionType* CtorFTy =
198    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
199                            std::vector<const llvm::Type*>(),
200                            false);
201  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
202
203  // Get the type of a ctor entry, { i32, void ()* }.
204  llvm::StructType* CtorStructTy =
205    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
206                          llvm::PointerType::getUnqual(CtorFTy), NULL);
207
208  // Construct the constructor and destructor arrays.
209  std::vector<llvm::Constant*> Ctors;
210  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
211    std::vector<llvm::Constant*> S;
212    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
213                I->second, false));
214    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
215    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
216  }
217
218  if (!Ctors.empty()) {
219    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
220    new llvm::GlobalVariable(TheModule, AT, false,
221                             llvm::GlobalValue::AppendingLinkage,
222                             llvm::ConstantArray::get(AT, Ctors),
223                             GlobalName);
224  }
225}
226
227void CodeGenModule::EmitAnnotations() {
228  if (Annotations.empty())
229    return;
230
231  // Create a new global variable for the ConstantStruct in the Module.
232  llvm::Constant *Array =
233  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
234                                                Annotations.size()),
235                           Annotations);
236  llvm::GlobalValue *gv =
237  new llvm::GlobalVariable(TheModule, Array->getType(), false,
238                           llvm::GlobalValue::AppendingLinkage, Array,
239                           "llvm.global.annotations");
240  gv->setSection("llvm.metadata");
241}
242
243static CodeGenModule::GVALinkage
244GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
245                      const LangOptions &Features) {
246  // Everything located semantically within an anonymous namespace is
247  // always internal.
248  if (FD->isInAnonymousNamespace())
249    return CodeGenModule::GVA_Internal;
250
251  // "static" functions get internal linkage.
252  if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
253    return CodeGenModule::GVA_Internal;
254
255  // The kind of external linkage this function will have, if it is not
256  // inline or static.
257  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
258  if (Context.getLangOptions().CPlusPlus &&
259      FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
260    External = CodeGenModule::GVA_TemplateInstantiation;
261
262  if (!FD->isInlined())
263    return External;
264
265  if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
266    // GNU or C99 inline semantics. Determine whether this symbol should be
267    // externally visible.
268    if (FD->isInlineDefinitionExternallyVisible())
269      return External;
270
271    // C99 inline semantics, where the symbol is not externally visible.
272    return CodeGenModule::GVA_C99Inline;
273  }
274
275  // C++0x [temp.explicit]p9:
276  //   [ Note: The intent is that an inline function that is the subject of
277  //   an explicit instantiation declaration will still be implicitly
278  //   instantiated when used so that the body can be considered for
279  //   inlining, but that no out-of-line copy of the inline function would be
280  //   generated in the translation unit. -- end note ]
281  if (FD->getTemplateSpecializationKind()
282                                       == TSK_ExplicitInstantiationDeclaration)
283    return CodeGenModule::GVA_C99Inline;
284
285  return CodeGenModule::GVA_CXXInline;
286}
287
288/// SetFunctionDefinitionAttributes - Set attributes for a global.
289///
290/// FIXME: This is currently only done for aliases and functions, but not for
291/// variables (these details are set in EmitGlobalVarDefinition for variables).
292void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
293                                                    llvm::GlobalValue *GV) {
294  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
295
296  if (Linkage == GVA_Internal) {
297    GV->setLinkage(llvm::Function::InternalLinkage);
298  } else if (D->hasAttr<DLLExportAttr>()) {
299    GV->setLinkage(llvm::Function::DLLExportLinkage);
300  } else if (D->hasAttr<WeakAttr>()) {
301    GV->setLinkage(llvm::Function::WeakAnyLinkage);
302  } else if (Linkage == GVA_C99Inline) {
303    // In C99 mode, 'inline' functions are guaranteed to have a strong
304    // definition somewhere else, so we can use available_externally linkage.
305    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
306  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
307    // In C++, the compiler has to emit a definition in every translation unit
308    // that references the function.  We should use linkonce_odr because
309    // a) if all references in this translation unit are optimized away, we
310    // don't need to codegen it.  b) if the function persists, it needs to be
311    // merged with other definitions. c) C++ has the ODR, so we know the
312    // definition is dependable.
313    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
314  } else {
315    assert(Linkage == GVA_StrongExternal);
316    // Otherwise, we have strong external linkage.
317    GV->setLinkage(llvm::Function::ExternalLinkage);
318  }
319
320  SetCommonAttributes(D, GV);
321}
322
323void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
324                                              const CGFunctionInfo &Info,
325                                              llvm::Function *F) {
326  unsigned CallingConv;
327  AttributeListType AttributeList;
328  ConstructAttributeList(Info, D, AttributeList, CallingConv);
329  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
330                                          AttributeList.size()));
331  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
332}
333
334void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
335                                                           llvm::Function *F) {
336  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
337    F->addFnAttr(llvm::Attribute::NoUnwind);
338
339  if (D->hasAttr<AlwaysInlineAttr>())
340    F->addFnAttr(llvm::Attribute::AlwaysInline);
341
342  if (D->hasAttr<NoInlineAttr>())
343    F->addFnAttr(llvm::Attribute::NoInline);
344
345  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
346    F->addFnAttr(llvm::Attribute::StackProtect);
347  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
348    F->addFnAttr(llvm::Attribute::StackProtectReq);
349
350  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
351    unsigned width = Context.Target.getCharWidth();
352    F->setAlignment(AA->getAlignment() / width);
353    while ((AA = AA->getNext<AlignedAttr>()))
354      F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
355  }
356  // C++ ABI requires 2-byte alignment for member functions.
357  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
358    F->setAlignment(2);
359}
360
361void CodeGenModule::SetCommonAttributes(const Decl *D,
362                                        llvm::GlobalValue *GV) {
363  setGlobalVisibility(GV, D);
364
365  if (D->hasAttr<UsedAttr>())
366    AddUsedGlobal(GV);
367
368  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
369    GV->setSection(SA->getName());
370}
371
372void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
373                                                  llvm::Function *F,
374                                                  const CGFunctionInfo &FI) {
375  SetLLVMFunctionAttributes(D, FI, F);
376  SetLLVMFunctionAttributesForDefinition(D, F);
377
378  F->setLinkage(llvm::Function::InternalLinkage);
379
380  SetCommonAttributes(D, F);
381}
382
383void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
384                                          llvm::Function *F,
385                                          bool IsIncompleteFunction) {
386  if (!IsIncompleteFunction)
387    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
388
389  // Only a few attributes are set on declarations; these may later be
390  // overridden by a definition.
391
392  if (FD->hasAttr<DLLImportAttr>()) {
393    F->setLinkage(llvm::Function::DLLImportLinkage);
394  } else if (FD->hasAttr<WeakAttr>() ||
395             FD->hasAttr<WeakImportAttr>()) {
396    // "extern_weak" is overloaded in LLVM; we probably should have
397    // separate linkage types for this.
398    F->setLinkage(llvm::Function::ExternalWeakLinkage);
399  } else {
400    F->setLinkage(llvm::Function::ExternalLinkage);
401  }
402
403  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
404    F->setSection(SA->getName());
405}
406
407void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
408  assert(!GV->isDeclaration() &&
409         "Only globals with definition can force usage.");
410  LLVMUsed.push_back(GV);
411}
412
413void CodeGenModule::EmitLLVMUsed() {
414  // Don't create llvm.used if there is no need.
415  if (LLVMUsed.empty())
416    return;
417
418  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
419
420  // Convert LLVMUsed to what ConstantArray needs.
421  std::vector<llvm::Constant*> UsedArray;
422  UsedArray.resize(LLVMUsed.size());
423  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
424    UsedArray[i] =
425     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
426                                      i8PTy);
427  }
428
429  if (UsedArray.empty())
430    return;
431  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
432
433  llvm::GlobalVariable *GV =
434    new llvm::GlobalVariable(getModule(), ATy, false,
435                             llvm::GlobalValue::AppendingLinkage,
436                             llvm::ConstantArray::get(ATy, UsedArray),
437                             "llvm.used");
438
439  GV->setSection("llvm.metadata");
440}
441
442void CodeGenModule::EmitDeferred() {
443  // Emit code for any potentially referenced deferred decls.  Since a
444  // previously unused static decl may become used during the generation of code
445  // for a static function, iterate until no  changes are made.
446  while (!DeferredDeclsToEmit.empty()) {
447    GlobalDecl D = DeferredDeclsToEmit.back();
448    DeferredDeclsToEmit.pop_back();
449
450    // The mangled name for the decl must have been emitted in GlobalDeclMap.
451    // Look it up to see if it was defined with a stronger definition (e.g. an
452    // extern inline function with a strong function redefinition).  If so,
453    // just ignore the deferred decl.
454    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
455    assert(CGRef && "Deferred decl wasn't referenced?");
456
457    if (!CGRef->isDeclaration())
458      continue;
459
460    // Otherwise, emit the definition and move on to the next one.
461    EmitGlobalDefinition(D);
462  }
463}
464
465/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
466/// annotation information for a given GlobalValue.  The annotation struct is
467/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
468/// GlobalValue being annotated.  The second field is the constant string
469/// created from the AnnotateAttr's annotation.  The third field is a constant
470/// string containing the name of the translation unit.  The fourth field is
471/// the line number in the file of the annotated value declaration.
472///
473/// FIXME: this does not unique the annotation string constants, as llvm-gcc
474///        appears to.
475///
476llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
477                                                const AnnotateAttr *AA,
478                                                unsigned LineNo) {
479  llvm::Module *M = &getModule();
480
481  // get [N x i8] constants for the annotation string, and the filename string
482  // which are the 2nd and 3rd elements of the global annotation structure.
483  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
484  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
485                                                  AA->getAnnotation(), true);
486  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
487                                                  M->getModuleIdentifier(),
488                                                  true);
489
490  // Get the two global values corresponding to the ConstantArrays we just
491  // created to hold the bytes of the strings.
492  llvm::GlobalValue *annoGV =
493    new llvm::GlobalVariable(*M, anno->getType(), false,
494                             llvm::GlobalValue::PrivateLinkage, anno,
495                             GV->getName());
496  // translation unit name string, emitted into the llvm.metadata section.
497  llvm::GlobalValue *unitGV =
498    new llvm::GlobalVariable(*M, unit->getType(), false,
499                             llvm::GlobalValue::PrivateLinkage, unit,
500                             ".str");
501
502  // Create the ConstantStruct for the global annotation.
503  llvm::Constant *Fields[4] = {
504    llvm::ConstantExpr::getBitCast(GV, SBP),
505    llvm::ConstantExpr::getBitCast(annoGV, SBP),
506    llvm::ConstantExpr::getBitCast(unitGV, SBP),
507    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
508  };
509  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
510}
511
512bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
513  // Never defer when EmitAllDecls is specified or the decl has
514  // attribute used.
515  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
516    return false;
517
518  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
519    // Constructors and destructors should never be deferred.
520    if (FD->hasAttr<ConstructorAttr>() ||
521        FD->hasAttr<DestructorAttr>())
522      return false;
523
524    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
525
526    // static, static inline, always_inline, and extern inline functions can
527    // always be deferred.  Normal inline functions can be deferred in C99/C++.
528    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
529        Linkage == GVA_CXXInline)
530      return true;
531    return false;
532  }
533
534  const VarDecl *VD = cast<VarDecl>(Global);
535  assert(VD->isFileVarDecl() && "Invalid decl");
536
537  // We never want to defer structs that have non-trivial constructors or
538  // destructors.
539
540  // FIXME: Handle references.
541  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
542    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
543      if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
544        return false;
545    }
546  }
547
548  // Static data may be deferred, but out-of-line static data members
549  // cannot be.
550  if (VD->isInAnonymousNamespace())
551    return true;
552  if (VD->getLinkage() == VarDecl::InternalLinkage) {
553    // Initializer has side effects?
554    if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
555      return false;
556    return !(VD->isStaticDataMember() && VD->isOutOfLine());
557  }
558  return false;
559}
560
561void CodeGenModule::EmitGlobal(GlobalDecl GD) {
562  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
563
564  // If this is an alias definition (which otherwise looks like a declaration)
565  // emit it now.
566  if (Global->hasAttr<AliasAttr>())
567    return EmitAliasDefinition(Global);
568
569  // Ignore declarations, they will be emitted on their first use.
570  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
571    // Forward declarations are emitted lazily on first use.
572    if (!FD->isThisDeclarationADefinition())
573      return;
574  } else {
575    const VarDecl *VD = cast<VarDecl>(Global);
576    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
577
578    // In C++, if this is marked "extern", defer code generation.
579    if (getLangOptions().CPlusPlus && !VD->getInit() &&
580        (VD->getStorageClass() == VarDecl::Extern ||
581         VD->isExternC()))
582      return;
583
584    // In C, if this isn't a definition, defer code generation.
585    if (!getLangOptions().CPlusPlus && !VD->getInit())
586      return;
587  }
588
589  // Defer code generation when possible if this is a static definition, inline
590  // function etc.  These we only want to emit if they are used.
591  if (MayDeferGeneration(Global)) {
592    // If the value has already been used, add it directly to the
593    // DeferredDeclsToEmit list.
594    const char *MangledName = getMangledName(GD);
595    if (GlobalDeclMap.count(MangledName))
596      DeferredDeclsToEmit.push_back(GD);
597    else {
598      // Otherwise, remember that we saw a deferred decl with this name.  The
599      // first use of the mangled name will cause it to move into
600      // DeferredDeclsToEmit.
601      DeferredDecls[MangledName] = GD;
602    }
603    return;
604  }
605
606  // Otherwise emit the definition.
607  EmitGlobalDefinition(GD);
608}
609
610void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
611  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
612
613  PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
614                                 Context.getSourceManager(),
615                                 "Generating code for declaration");
616
617  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
618    const CXXRecordDecl *RD = MD->getParent();
619    // We have to convert it to have a record layout.
620    Types.ConvertTagDeclType(RD);
621    const CGRecordLayout &CGLayout = Types.getCGRecordLayout(RD);
622    // A definition of a KeyFunction, generates all the class data, such
623    // as vtable, rtti and the VTT.
624    if (CGLayout.getKeyFunction()
625        && (CGLayout.getKeyFunction()->getCanonicalDecl()
626            == MD->getCanonicalDecl()))
627      getVtableInfo().GenerateClassData(RD);
628  }
629  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
630    EmitCXXConstructor(CD, GD.getCtorType());
631  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
632    EmitCXXDestructor(DD, GD.getDtorType());
633  else if (isa<FunctionDecl>(D))
634    EmitGlobalFunctionDefinition(GD);
635  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
636    EmitGlobalVarDefinition(VD);
637  else {
638    assert(0 && "Invalid argument to EmitGlobalDefinition()");
639  }
640}
641
642/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
643/// module, create and return an llvm Function with the specified type. If there
644/// is something in the module with the specified name, return it potentially
645/// bitcasted to the right type.
646///
647/// If D is non-null, it specifies a decl that correspond to this.  This is used
648/// to set the attributes on the function when it is first created.
649llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
650                                                       const llvm::Type *Ty,
651                                                       GlobalDecl D) {
652  // Lookup the entry, lazily creating it if necessary.
653  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
654  if (Entry) {
655    if (Entry->getType()->getElementType() == Ty)
656      return Entry;
657
658    // Make sure the result is of the correct type.
659    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
660    return llvm::ConstantExpr::getBitCast(Entry, PTy);
661  }
662
663  // This function doesn't have a complete type (for example, the return
664  // type is an incomplete struct). Use a fake type instead, and make
665  // sure not to try to set attributes.
666  bool IsIncompleteFunction = false;
667  if (!isa<llvm::FunctionType>(Ty)) {
668    Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
669                                 std::vector<const llvm::Type*>(), false);
670    IsIncompleteFunction = true;
671  }
672  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
673                                             llvm::Function::ExternalLinkage,
674                                             "", &getModule());
675  F->setName(MangledName);
676  if (D.getDecl())
677    SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
678                          IsIncompleteFunction);
679  Entry = F;
680
681  // This is the first use or definition of a mangled name.  If there is a
682  // deferred decl with this name, remember that we need to emit it at the end
683  // of the file.
684  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
685    DeferredDecls.find(MangledName);
686  if (DDI != DeferredDecls.end()) {
687    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
688    // list, and remove it from DeferredDecls (since we don't need it anymore).
689    DeferredDeclsToEmit.push_back(DDI->second);
690    DeferredDecls.erase(DDI);
691  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
692    // If this the first reference to a C++ inline function in a class, queue up
693    // the deferred function body for emission.  These are not seen as
694    // top-level declarations.
695    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
696      DeferredDeclsToEmit.push_back(D);
697    // A called constructor which has no definition or declaration need be
698    // synthesized.
699    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
700      if (CD->isImplicit())
701        DeferredDeclsToEmit.push_back(D);
702    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
703      if (DD->isImplicit())
704        DeferredDeclsToEmit.push_back(D);
705    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
706      if (MD->isCopyAssignment() && MD->isImplicit())
707        DeferredDeclsToEmit.push_back(D);
708    }
709  }
710
711  return F;
712}
713
714/// GetAddrOfFunction - Return the address of the given function.  If Ty is
715/// non-null, then this function will use the specified type if it has to
716/// create it (this occurs when we see a definition of the function).
717llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
718                                                 const llvm::Type *Ty) {
719  // If there was no specific requested type, just convert it now.
720  if (!Ty)
721    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
722  return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
723}
724
725/// CreateRuntimeFunction - Create a new runtime function with the specified
726/// type and name.
727llvm::Constant *
728CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
729                                     const char *Name) {
730  // Convert Name to be a uniqued string from the IdentifierInfo table.
731  Name = getContext().Idents.get(Name).getNameStart();
732  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
733}
734
735/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
736/// create and return an llvm GlobalVariable with the specified type.  If there
737/// is something in the module with the specified name, return it potentially
738/// bitcasted to the right type.
739///
740/// If D is non-null, it specifies a decl that correspond to this.  This is used
741/// to set the attributes on the global when it is first created.
742llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
743                                                     const llvm::PointerType*Ty,
744                                                     const VarDecl *D) {
745  // Lookup the entry, lazily creating it if necessary.
746  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
747  if (Entry) {
748    if (Entry->getType() == Ty)
749      return Entry;
750
751    // Make sure the result is of the correct type.
752    return llvm::ConstantExpr::getBitCast(Entry, Ty);
753  }
754
755  // This is the first use or definition of a mangled name.  If there is a
756  // deferred decl with this name, remember that we need to emit it at the end
757  // of the file.
758  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
759    DeferredDecls.find(MangledName);
760  if (DDI != DeferredDecls.end()) {
761    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
762    // list, and remove it from DeferredDecls (since we don't need it anymore).
763    DeferredDeclsToEmit.push_back(DDI->second);
764    DeferredDecls.erase(DDI);
765  }
766
767  llvm::GlobalVariable *GV =
768    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
769                             llvm::GlobalValue::ExternalLinkage,
770                             0, "", 0,
771                             false, Ty->getAddressSpace());
772  GV->setName(MangledName);
773
774  // Handle things which are present even on external declarations.
775  if (D) {
776    // FIXME: This code is overly simple and should be merged with other global
777    // handling.
778    GV->setConstant(D->getType().isConstant(Context));
779
780    // FIXME: Merge with other attribute handling code.
781    if (D->getStorageClass() == VarDecl::PrivateExtern)
782      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
783
784    if (D->hasAttr<WeakAttr>() ||
785        D->hasAttr<WeakImportAttr>())
786      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
787
788    GV->setThreadLocal(D->isThreadSpecified());
789  }
790
791  return Entry = GV;
792}
793
794
795/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
796/// given global variable.  If Ty is non-null and if the global doesn't exist,
797/// then it will be greated with the specified type instead of whatever the
798/// normal requested type would be.
799llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
800                                                  const llvm::Type *Ty) {
801  assert(D->hasGlobalStorage() && "Not a global variable");
802  QualType ASTTy = D->getType();
803  if (Ty == 0)
804    Ty = getTypes().ConvertTypeForMem(ASTTy);
805
806  const llvm::PointerType *PTy =
807    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
808  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
809}
810
811/// CreateRuntimeVariable - Create a new runtime global variable with the
812/// specified type and name.
813llvm::Constant *
814CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
815                                     const char *Name) {
816  // Convert Name to be a uniqued string from the IdentifierInfo table.
817  Name = getContext().Idents.get(Name).getNameStart();
818  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
819}
820
821void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
822  assert(!D->getInit() && "Cannot emit definite definitions here!");
823
824  if (MayDeferGeneration(D)) {
825    // If we have not seen a reference to this variable yet, place it
826    // into the deferred declarations table to be emitted if needed
827    // later.
828    const char *MangledName = getMangledName(D);
829    if (GlobalDeclMap.count(MangledName) == 0) {
830      DeferredDecls[MangledName] = D;
831      return;
832    }
833  }
834
835  // The tentative definition is the only definition.
836  EmitGlobalVarDefinition(D);
837}
838
839static CodeGenModule::GVALinkage
840GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
841  // Everything located semantically within an anonymous namespace is
842  // always internal.
843  if (VD->isInAnonymousNamespace())
844    return CodeGenModule::GVA_Internal;
845
846  // Handle linkage for static data members.
847  if (VD->isStaticDataMember()) {
848    switch (VD->getTemplateSpecializationKind()) {
849    case TSK_Undeclared:
850    case TSK_ExplicitSpecialization:
851    case TSK_ExplicitInstantiationDefinition:
852      return CodeGenModule::GVA_StrongExternal;
853
854    case TSK_ExplicitInstantiationDeclaration:
855      llvm::llvm_unreachable("Variable should not be instantiated");
856      // Fall through to treat this like any other instantiation.
857
858    case TSK_ImplicitInstantiation:
859      return CodeGenModule::GVA_TemplateInstantiation;
860    }
861  }
862
863  if (VD->getLinkage() == VarDecl::InternalLinkage)
864    return CodeGenModule::GVA_Internal;
865
866  return CodeGenModule::GVA_StrongExternal;
867}
868
869void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
870  llvm::Constant *Init = 0;
871  QualType ASTTy = D->getType();
872
873  if (D->getInit() == 0) {
874    // This is a tentative definition; tentative definitions are
875    // implicitly initialized with { 0 }.
876    //
877    // Note that tentative definitions are only emitted at the end of
878    // a translation unit, so they should never have incomplete
879    // type. In addition, EmitTentativeDefinition makes sure that we
880    // never attempt to emit a tentative definition if a real one
881    // exists. A use may still exists, however, so we still may need
882    // to do a RAUW.
883    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
884    Init = EmitNullConstant(D->getType());
885  } else {
886    Init = EmitConstantExpr(D->getInit(), D->getType());
887
888    if (!Init) {
889      QualType T = D->getInit()->getType();
890      if (getLangOptions().CPlusPlus) {
891        CXXGlobalInits.push_back(D);
892        Init = EmitNullConstant(T);
893      } else {
894        ErrorUnsupported(D, "static initializer");
895        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
896      }
897    }
898  }
899
900  const llvm::Type* InitType = Init->getType();
901  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
902
903  // Strip off a bitcast if we got one back.
904  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
905    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
906           // all zero index gep.
907           CE->getOpcode() == llvm::Instruction::GetElementPtr);
908    Entry = CE->getOperand(0);
909  }
910
911  // Entry is now either a Function or GlobalVariable.
912  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
913
914  // We have a definition after a declaration with the wrong type.
915  // We must make a new GlobalVariable* and update everything that used OldGV
916  // (a declaration or tentative definition) with the new GlobalVariable*
917  // (which will be a definition).
918  //
919  // This happens if there is a prototype for a global (e.g.
920  // "extern int x[];") and then a definition of a different type (e.g.
921  // "int x[10];"). This also happens when an initializer has a different type
922  // from the type of the global (this happens with unions).
923  if (GV == 0 ||
924      GV->getType()->getElementType() != InitType ||
925      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
926
927    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
928    GlobalDeclMap.erase(getMangledName(D));
929
930    // Make a new global with the correct type, this is now guaranteed to work.
931    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
932    GV->takeName(cast<llvm::GlobalValue>(Entry));
933
934    // Replace all uses of the old global with the new global
935    llvm::Constant *NewPtrForOldDecl =
936        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
937    Entry->replaceAllUsesWith(NewPtrForOldDecl);
938
939    // Erase the old global, since it is no longer used.
940    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
941  }
942
943  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
944    SourceManager &SM = Context.getSourceManager();
945    AddAnnotation(EmitAnnotateAttr(GV, AA,
946                              SM.getInstantiationLineNumber(D->getLocation())));
947  }
948
949  GV->setInitializer(Init);
950
951  // If it is safe to mark the global 'constant', do so now.
952  GV->setConstant(false);
953  if (D->getType().isConstant(Context)) {
954    // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
955    // members, it cannot be declared "LLVM const".
956    GV->setConstant(true);
957  }
958
959  GV->setAlignment(getContext().getDeclAlignInBytes(D));
960
961  // Set the llvm linkage type as appropriate.
962  GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
963  if (Linkage == GVA_Internal)
964    GV->setLinkage(llvm::Function::InternalLinkage);
965  else if (D->hasAttr<DLLImportAttr>())
966    GV->setLinkage(llvm::Function::DLLImportLinkage);
967  else if (D->hasAttr<DLLExportAttr>())
968    GV->setLinkage(llvm::Function::DLLExportLinkage);
969  else if (D->hasAttr<WeakAttr>()) {
970    if (GV->isConstant())
971      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
972    else
973      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
974  } else if (Linkage == GVA_TemplateInstantiation)
975    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
976  else if (!CodeGenOpts.NoCommon &&
977           !D->hasExternalStorage() && !D->getInit() &&
978           !D->getAttr<SectionAttr>()) {
979    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
980    // common vars aren't constant even if declared const.
981    GV->setConstant(false);
982  } else
983    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
984
985  SetCommonAttributes(D, GV);
986
987  // Emit global variable debug information.
988  if (CGDebugInfo *DI = getDebugInfo()) {
989    DI->setLocation(D->getLocation());
990    DI->EmitGlobalVariable(GV, D);
991  }
992}
993
994/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
995/// implement a function with no prototype, e.g. "int foo() {}".  If there are
996/// existing call uses of the old function in the module, this adjusts them to
997/// call the new function directly.
998///
999/// This is not just a cleanup: the always_inline pass requires direct calls to
1000/// functions to be able to inline them.  If there is a bitcast in the way, it
1001/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1002/// run at -O0.
1003static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1004                                                      llvm::Function *NewFn) {
1005  // If we're redefining a global as a function, don't transform it.
1006  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1007  if (OldFn == 0) return;
1008
1009  const llvm::Type *NewRetTy = NewFn->getReturnType();
1010  llvm::SmallVector<llvm::Value*, 4> ArgList;
1011
1012  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1013       UI != E; ) {
1014    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1015    unsigned OpNo = UI.getOperandNo();
1016    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1017    if (!CI || OpNo != 0) continue;
1018
1019    // If the return types don't match exactly, and if the call isn't dead, then
1020    // we can't transform this call.
1021    if (CI->getType() != NewRetTy && !CI->use_empty())
1022      continue;
1023
1024    // If the function was passed too few arguments, don't transform.  If extra
1025    // arguments were passed, we silently drop them.  If any of the types
1026    // mismatch, we don't transform.
1027    unsigned ArgNo = 0;
1028    bool DontTransform = false;
1029    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1030         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1031      if (CI->getNumOperands()-1 == ArgNo ||
1032          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1033        DontTransform = true;
1034        break;
1035      }
1036    }
1037    if (DontTransform)
1038      continue;
1039
1040    // Okay, we can transform this.  Create the new call instruction and copy
1041    // over the required information.
1042    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1043    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1044                                                     ArgList.end(), "", CI);
1045    ArgList.clear();
1046    if (!NewCall->getType()->isVoidTy())
1047      NewCall->takeName(CI);
1048    NewCall->setAttributes(CI->getAttributes());
1049    NewCall->setCallingConv(CI->getCallingConv());
1050
1051    // Finally, remove the old call, replacing any uses with the new one.
1052    if (!CI->use_empty())
1053      CI->replaceAllUsesWith(NewCall);
1054
1055    // Copy any custom metadata attached with CI.
1056    llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1057    TheMetadata.copyMD(CI, NewCall);
1058
1059    CI->eraseFromParent();
1060  }
1061}
1062
1063
1064void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1065  const llvm::FunctionType *Ty;
1066  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1067
1068  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1069    bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1070
1071    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1072  } else {
1073    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1074
1075    // As a special case, make sure that definitions of K&R function
1076    // "type foo()" aren't declared as varargs (which forces the backend
1077    // to do unnecessary work).
1078    if (D->getType()->isFunctionNoProtoType()) {
1079      assert(Ty->isVarArg() && "Didn't lower type as expected");
1080      // Due to stret, the lowered function could have arguments.
1081      // Just create the same type as was lowered by ConvertType
1082      // but strip off the varargs bit.
1083      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1084      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1085    }
1086  }
1087
1088  // Get or create the prototype for the function.
1089  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1090
1091  // Strip off a bitcast if we got one back.
1092  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1093    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1094    Entry = CE->getOperand(0);
1095  }
1096
1097
1098  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1099    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1100
1101    // If the types mismatch then we have to rewrite the definition.
1102    assert(OldFn->isDeclaration() &&
1103           "Shouldn't replace non-declaration");
1104
1105    // F is the Function* for the one with the wrong type, we must make a new
1106    // Function* and update everything that used F (a declaration) with the new
1107    // Function* (which will be a definition).
1108    //
1109    // This happens if there is a prototype for a function
1110    // (e.g. "int f()") and then a definition of a different type
1111    // (e.g. "int f(int x)").  Start by making a new function of the
1112    // correct type, RAUW, then steal the name.
1113    GlobalDeclMap.erase(getMangledName(D));
1114    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1115    NewFn->takeName(OldFn);
1116
1117    // If this is an implementation of a function without a prototype, try to
1118    // replace any existing uses of the function (which may be calls) with uses
1119    // of the new function
1120    if (D->getType()->isFunctionNoProtoType()) {
1121      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1122      OldFn->removeDeadConstantUsers();
1123    }
1124
1125    // Replace uses of F with the Function we will endow with a body.
1126    if (!Entry->use_empty()) {
1127      llvm::Constant *NewPtrForOldDecl =
1128        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1129      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1130    }
1131
1132    // Ok, delete the old function now, which is dead.
1133    OldFn->eraseFromParent();
1134
1135    Entry = NewFn;
1136  }
1137
1138  llvm::Function *Fn = cast<llvm::Function>(Entry);
1139
1140  CodeGenFunction(*this).GenerateCode(D, Fn);
1141
1142  SetFunctionDefinitionAttributes(D, Fn);
1143  SetLLVMFunctionAttributesForDefinition(D, Fn);
1144
1145  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1146    AddGlobalCtor(Fn, CA->getPriority());
1147  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1148    AddGlobalDtor(Fn, DA->getPriority());
1149}
1150
1151void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1152  const AliasAttr *AA = D->getAttr<AliasAttr>();
1153  assert(AA && "Not an alias?");
1154
1155  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1156
1157  // Unique the name through the identifier table.
1158  const char *AliaseeName = AA->getAliasee().c_str();
1159  AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1160
1161  // Create a reference to the named value.  This ensures that it is emitted
1162  // if a deferred decl.
1163  llvm::Constant *Aliasee;
1164  if (isa<llvm::FunctionType>(DeclTy))
1165    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1166  else
1167    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1168                                    llvm::PointerType::getUnqual(DeclTy), 0);
1169
1170  // Create the new alias itself, but don't set a name yet.
1171  llvm::GlobalValue *GA =
1172    new llvm::GlobalAlias(Aliasee->getType(),
1173                          llvm::Function::ExternalLinkage,
1174                          "", Aliasee, &getModule());
1175
1176  // See if there is already something with the alias' name in the module.
1177  const char *MangledName = getMangledName(D);
1178  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1179
1180  if (Entry && !Entry->isDeclaration()) {
1181    // If there is a definition in the module, then it wins over the alias.
1182    // This is dubious, but allow it to be safe.  Just ignore the alias.
1183    GA->eraseFromParent();
1184    return;
1185  }
1186
1187  if (Entry) {
1188    // If there is a declaration in the module, then we had an extern followed
1189    // by the alias, as in:
1190    //   extern int test6();
1191    //   ...
1192    //   int test6() __attribute__((alias("test7")));
1193    //
1194    // Remove it and replace uses of it with the alias.
1195
1196    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1197                                                          Entry->getType()));
1198    Entry->eraseFromParent();
1199  }
1200
1201  // Now we know that there is no conflict, set the name.
1202  Entry = GA;
1203  GA->setName(MangledName);
1204
1205  // Set attributes which are particular to an alias; this is a
1206  // specialization of the attributes which may be set on a global
1207  // variable/function.
1208  if (D->hasAttr<DLLExportAttr>()) {
1209    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1210      // The dllexport attribute is ignored for undefined symbols.
1211      if (FD->getBody())
1212        GA->setLinkage(llvm::Function::DLLExportLinkage);
1213    } else {
1214      GA->setLinkage(llvm::Function::DLLExportLinkage);
1215    }
1216  } else if (D->hasAttr<WeakAttr>() ||
1217             D->hasAttr<WeakImportAttr>()) {
1218    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1219  }
1220
1221  SetCommonAttributes(D, GA);
1222}
1223
1224/// getBuiltinLibFunction - Given a builtin id for a function like
1225/// "__builtin_fabsf", return a Function* for "fabsf".
1226llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1227                                                  unsigned BuiltinID) {
1228  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1229          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1230         "isn't a lib fn");
1231
1232  // Get the name, skip over the __builtin_ prefix (if necessary).
1233  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1234  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1235    Name += 10;
1236
1237  // Get the type for the builtin.
1238  ASTContext::GetBuiltinTypeError Error;
1239  QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1240  assert(Error == ASTContext::GE_None && "Can't get builtin type");
1241
1242  const llvm::FunctionType *Ty =
1243    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1244
1245  // Unique the name through the identifier table.
1246  Name = getContext().Idents.get(Name).getNameStart();
1247  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1248}
1249
1250llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1251                                            unsigned NumTys) {
1252  return llvm::Intrinsic::getDeclaration(&getModule(),
1253                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1254}
1255
1256llvm::Function *CodeGenModule::getMemCpyFn() {
1257  if (MemCpyFn) return MemCpyFn;
1258  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1259  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1260}
1261
1262llvm::Function *CodeGenModule::getMemMoveFn() {
1263  if (MemMoveFn) return MemMoveFn;
1264  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1265  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1266}
1267
1268llvm::Function *CodeGenModule::getMemSetFn() {
1269  if (MemSetFn) return MemSetFn;
1270  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1271  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1272}
1273
1274static llvm::StringMapEntry<llvm::Constant*> &
1275GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1276                         const StringLiteral *Literal,
1277                         bool TargetIsLSB,
1278                         bool &IsUTF16,
1279                         unsigned &StringLength) {
1280  unsigned NumBytes = Literal->getByteLength();
1281
1282  // Check for simple case.
1283  if (!Literal->containsNonAsciiOrNull()) {
1284    StringLength = NumBytes;
1285    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1286                                                StringLength));
1287  }
1288
1289  // Otherwise, convert the UTF8 literals into a byte string.
1290  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1291  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1292  UTF16 *ToPtr = &ToBuf[0];
1293
1294  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1295                                               &ToPtr, ToPtr + NumBytes,
1296                                               strictConversion);
1297
1298  // Check for conversion failure.
1299  if (Result != conversionOK) {
1300    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1301    // this duplicate code.
1302    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1303    StringLength = NumBytes;
1304    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1305                                                StringLength));
1306  }
1307
1308  // ConvertUTF8toUTF16 returns the length in ToPtr.
1309  StringLength = ToPtr - &ToBuf[0];
1310
1311  // Render the UTF-16 string into a byte array and convert to the target byte
1312  // order.
1313  //
1314  // FIXME: This isn't something we should need to do here.
1315  llvm::SmallString<128> AsBytes;
1316  AsBytes.reserve(StringLength * 2);
1317  for (unsigned i = 0; i != StringLength; ++i) {
1318    unsigned short Val = ToBuf[i];
1319    if (TargetIsLSB) {
1320      AsBytes.push_back(Val & 0xFF);
1321      AsBytes.push_back(Val >> 8);
1322    } else {
1323      AsBytes.push_back(Val >> 8);
1324      AsBytes.push_back(Val & 0xFF);
1325    }
1326  }
1327  // Append one extra null character, the second is automatically added by our
1328  // caller.
1329  AsBytes.push_back(0);
1330
1331  IsUTF16 = true;
1332  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1333}
1334
1335llvm::Constant *
1336CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1337  unsigned StringLength = 0;
1338  bool isUTF16 = false;
1339  llvm::StringMapEntry<llvm::Constant*> &Entry =
1340    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1341                             getTargetData().isLittleEndian(),
1342                             isUTF16, StringLength);
1343
1344  if (llvm::Constant *C = Entry.getValue())
1345    return C;
1346
1347  llvm::Constant *Zero =
1348      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1349  llvm::Constant *Zeros[] = { Zero, Zero };
1350
1351  // If we don't already have it, get __CFConstantStringClassReference.
1352  if (!CFConstantStringClassRef) {
1353    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1354    Ty = llvm::ArrayType::get(Ty, 0);
1355    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1356                                           "__CFConstantStringClassReference");
1357    // Decay array -> ptr
1358    CFConstantStringClassRef =
1359      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1360  }
1361
1362  QualType CFTy = getContext().getCFConstantStringType();
1363
1364  const llvm::StructType *STy =
1365    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1366
1367  std::vector<llvm::Constant*> Fields(4);
1368
1369  // Class pointer.
1370  Fields[0] = CFConstantStringClassRef;
1371
1372  // Flags.
1373  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1374  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1375    llvm::ConstantInt::get(Ty, 0x07C8);
1376
1377  // String pointer.
1378  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1379
1380  const char *Sect = 0;
1381  llvm::GlobalValue::LinkageTypes Linkage;
1382  bool isConstant;
1383  if (isUTF16) {
1384    Sect = getContext().Target.getUnicodeStringSection();
1385    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1386    Linkage = llvm::GlobalValue::InternalLinkage;
1387    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1388    // does make plain ascii ones writable.
1389    isConstant = true;
1390  } else {
1391    Linkage = llvm::GlobalValue::PrivateLinkage;
1392    isConstant = !Features.WritableStrings;
1393  }
1394
1395  llvm::GlobalVariable *GV =
1396    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1397                             ".str");
1398  if (Sect)
1399    GV->setSection(Sect);
1400  if (isUTF16) {
1401    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1402    GV->setAlignment(Align);
1403  }
1404  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1405
1406  // String length.
1407  Ty = getTypes().ConvertType(getContext().LongTy);
1408  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1409
1410  // The struct.
1411  C = llvm::ConstantStruct::get(STy, Fields);
1412  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1413                                llvm::GlobalVariable::PrivateLinkage, C,
1414                                "_unnamed_cfstring_");
1415  if (const char *Sect = getContext().Target.getCFStringSection())
1416    GV->setSection(Sect);
1417  Entry.setValue(GV);
1418
1419  return GV;
1420}
1421
1422/// GetStringForStringLiteral - Return the appropriate bytes for a
1423/// string literal, properly padded to match the literal type.
1424std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1425  const char *StrData = E->getStrData();
1426  unsigned Len = E->getByteLength();
1427
1428  const ConstantArrayType *CAT =
1429    getContext().getAsConstantArrayType(E->getType());
1430  assert(CAT && "String isn't pointer or array!");
1431
1432  // Resize the string to the right size.
1433  std::string Str(StrData, StrData+Len);
1434  uint64_t RealLen = CAT->getSize().getZExtValue();
1435
1436  if (E->isWide())
1437    RealLen *= getContext().Target.getWCharWidth()/8;
1438
1439  Str.resize(RealLen, '\0');
1440
1441  return Str;
1442}
1443
1444/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1445/// constant array for the given string literal.
1446llvm::Constant *
1447CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1448  // FIXME: This can be more efficient.
1449  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1450  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1451  if (S->isWide()) {
1452    llvm::Type *DestTy =
1453        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1454    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1455  }
1456  return C;
1457}
1458
1459/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1460/// array for the given ObjCEncodeExpr node.
1461llvm::Constant *
1462CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1463  std::string Str;
1464  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1465
1466  return GetAddrOfConstantCString(Str);
1467}
1468
1469
1470/// GenerateWritableString -- Creates storage for a string literal.
1471static llvm::Constant *GenerateStringLiteral(const std::string &str,
1472                                             bool constant,
1473                                             CodeGenModule &CGM,
1474                                             const char *GlobalName) {
1475  // Create Constant for this string literal. Don't add a '\0'.
1476  llvm::Constant *C =
1477      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1478
1479  // Create a global variable for this string
1480  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1481                                  llvm::GlobalValue::PrivateLinkage,
1482                                  C, GlobalName);
1483}
1484
1485/// GetAddrOfConstantString - Returns a pointer to a character array
1486/// containing the literal. This contents are exactly that of the
1487/// given string, i.e. it will not be null terminated automatically;
1488/// see GetAddrOfConstantCString. Note that whether the result is
1489/// actually a pointer to an LLVM constant depends on
1490/// Feature.WriteableStrings.
1491///
1492/// The result has pointer to array type.
1493llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1494                                                       const char *GlobalName) {
1495  bool IsConstant = !Features.WritableStrings;
1496
1497  // Get the default prefix if a name wasn't specified.
1498  if (!GlobalName)
1499    GlobalName = ".str";
1500
1501  // Don't share any string literals if strings aren't constant.
1502  if (!IsConstant)
1503    return GenerateStringLiteral(str, false, *this, GlobalName);
1504
1505  llvm::StringMapEntry<llvm::Constant *> &Entry =
1506    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1507
1508  if (Entry.getValue())
1509    return Entry.getValue();
1510
1511  // Create a global variable for this.
1512  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1513  Entry.setValue(C);
1514  return C;
1515}
1516
1517/// GetAddrOfConstantCString - Returns a pointer to a character
1518/// array containing the literal and a terminating '\-'
1519/// character. The result has pointer to array type.
1520llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1521                                                        const char *GlobalName){
1522  return GetAddrOfConstantString(str + '\0', GlobalName);
1523}
1524
1525/// EmitObjCPropertyImplementations - Emit information for synthesized
1526/// properties for an implementation.
1527void CodeGenModule::EmitObjCPropertyImplementations(const
1528                                                    ObjCImplementationDecl *D) {
1529  for (ObjCImplementationDecl::propimpl_iterator
1530         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1531    ObjCPropertyImplDecl *PID = *i;
1532
1533    // Dynamic is just for type-checking.
1534    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1535      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1536
1537      // Determine which methods need to be implemented, some may have
1538      // been overridden. Note that ::isSynthesized is not the method
1539      // we want, that just indicates if the decl came from a
1540      // property. What we want to know is if the method is defined in
1541      // this implementation.
1542      if (!D->getInstanceMethod(PD->getGetterName()))
1543        CodeGenFunction(*this).GenerateObjCGetter(
1544                                 const_cast<ObjCImplementationDecl *>(D), PID);
1545      if (!PD->isReadOnly() &&
1546          !D->getInstanceMethod(PD->getSetterName()))
1547        CodeGenFunction(*this).GenerateObjCSetter(
1548                                 const_cast<ObjCImplementationDecl *>(D), PID);
1549    }
1550  }
1551}
1552
1553/// EmitNamespace - Emit all declarations in a namespace.
1554void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1555  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1556       I != E; ++I)
1557    EmitTopLevelDecl(*I);
1558}
1559
1560// EmitLinkageSpec - Emit all declarations in a linkage spec.
1561void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1562  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1563      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1564    ErrorUnsupported(LSD, "linkage spec");
1565    return;
1566  }
1567
1568  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1569       I != E; ++I)
1570    EmitTopLevelDecl(*I);
1571}
1572
1573/// EmitTopLevelDecl - Emit code for a single top level declaration.
1574void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1575  // If an error has occurred, stop code generation, but continue
1576  // parsing and semantic analysis (to ensure all warnings and errors
1577  // are emitted).
1578  if (Diags.hasErrorOccurred())
1579    return;
1580
1581  // Ignore dependent declarations.
1582  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1583    return;
1584
1585  switch (D->getKind()) {
1586  case Decl::CXXConversion:
1587  case Decl::CXXMethod:
1588  case Decl::Function:
1589    // Skip function templates
1590    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1591      return;
1592
1593    EmitGlobal(cast<FunctionDecl>(D));
1594    break;
1595
1596  case Decl::Var:
1597    EmitGlobal(cast<VarDecl>(D));
1598    break;
1599
1600  // C++ Decls
1601  case Decl::Namespace:
1602    EmitNamespace(cast<NamespaceDecl>(D));
1603    break;
1604    // No code generation needed.
1605  case Decl::UsingShadow:
1606  case Decl::Using:
1607  case Decl::UsingDirective:
1608  case Decl::ClassTemplate:
1609  case Decl::FunctionTemplate:
1610  case Decl::NamespaceAlias:
1611    break;
1612  case Decl::CXXConstructor:
1613    // Skip function templates
1614    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1615      return;
1616
1617    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1618    break;
1619  case Decl::CXXDestructor:
1620    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1621    break;
1622
1623  case Decl::StaticAssert:
1624    // Nothing to do.
1625    break;
1626
1627  // Objective-C Decls
1628
1629  // Forward declarations, no (immediate) code generation.
1630  case Decl::ObjCClass:
1631  case Decl::ObjCForwardProtocol:
1632  case Decl::ObjCCategory:
1633  case Decl::ObjCInterface:
1634    break;
1635
1636  case Decl::ObjCProtocol:
1637    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1638    break;
1639
1640  case Decl::ObjCCategoryImpl:
1641    // Categories have properties but don't support synthesize so we
1642    // can ignore them here.
1643    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1644    break;
1645
1646  case Decl::ObjCImplementation: {
1647    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1648    EmitObjCPropertyImplementations(OMD);
1649    Runtime->GenerateClass(OMD);
1650    break;
1651  }
1652  case Decl::ObjCMethod: {
1653    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1654    // If this is not a prototype, emit the body.
1655    if (OMD->getBody())
1656      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1657    break;
1658  }
1659  case Decl::ObjCCompatibleAlias:
1660    // compatibility-alias is a directive and has no code gen.
1661    break;
1662
1663  case Decl::LinkageSpec:
1664    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1665    break;
1666
1667  case Decl::FileScopeAsm: {
1668    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1669    std::string AsmString(AD->getAsmString()->getStrData(),
1670                          AD->getAsmString()->getByteLength());
1671
1672    const std::string &S = getModule().getModuleInlineAsm();
1673    if (S.empty())
1674      getModule().setModuleInlineAsm(AsmString);
1675    else
1676      getModule().setModuleInlineAsm(S + '\n' + AsmString);
1677    break;
1678  }
1679
1680  default:
1681    // Make sure we handled everything we should, every other kind is a
1682    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1683    // function. Need to recode Decl::Kind to do that easily.
1684    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1685  }
1686}
1687