CodeGenModule.cpp revision 2198ba12b73a8e6801d13f25de38031da6df46b6
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/Frontend/CompileOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Basic/ConvertUTF.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Module.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Target/TargetData.h"
33using namespace clang;
34using namespace CodeGen;
35
36
37CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                             llvm::Module &M, const llvm::TargetData &TD,
39                             Diagnostic &diags)
40  : BlockModule(C, M, TD, Types, *this), Context(C),
41    Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42    TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44    VMContext(M.getContext()) {
45
46  if (!Features.ObjC1)
47    Runtime = 0;
48  else if (!Features.NeXTRuntime)
49    Runtime = CreateGNUObjCRuntime(*this);
50  else if (Features.ObjCNonFragileABI)
51    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52  else
53    Runtime = CreateMacObjCRuntime(*this);
54
55  // If debug info generation is enabled, create the CGDebugInfo object.
56  DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57}
58
59CodeGenModule::~CodeGenModule() {
60  delete Runtime;
61  delete DebugInfo;
62}
63
64void CodeGenModule::Release() {
65  // We need to call this first because it can add deferred declarations.
66  EmitCXXGlobalInitFunc();
67
68  EmitDeferred();
69  if (Runtime)
70    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71      AddGlobalCtor(ObjCInitFunction);
72  EmitCtorList(GlobalCtors, "llvm.global_ctors");
73  EmitCtorList(GlobalDtors, "llvm.global_dtors");
74  EmitAnnotations();
75  EmitLLVMUsed();
76}
77
78/// ErrorUnsupported - Print out an error that codegen doesn't support the
79/// specified stmt yet.
80void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                     bool OmitOnError) {
82  if (OmitOnError && getDiags().hasErrorOccurred())
83    return;
84  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                               "cannot compile this %0 yet");
86  std::string Msg = Type;
87  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88    << Msg << S->getSourceRange();
89}
90
91/// ErrorUnsupported - Print out an error that codegen doesn't support the
92/// specified decl yet.
93void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                     bool OmitOnError) {
95  if (OmitOnError && getDiags().hasErrorOccurred())
96    return;
97  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                               "cannot compile this %0 yet");
99  std::string Msg = Type;
100  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101}
102
103LangOptions::VisibilityMode
104CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106    if (VD->getStorageClass() == VarDecl::PrivateExtern)
107      return LangOptions::Hidden;
108
109  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110    switch (attr->getVisibility()) {
111    default: assert(0 && "Unknown visibility!");
112    case VisibilityAttr::DefaultVisibility:
113      return LangOptions::Default;
114    case VisibilityAttr::HiddenVisibility:
115      return LangOptions::Hidden;
116    case VisibilityAttr::ProtectedVisibility:
117      return LangOptions::Protected;
118    }
119  }
120
121  return getLangOptions().getVisibilityMode();
122}
123
124void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                        const Decl *D) const {
126  // Internal definitions always have default visibility.
127  if (GV->hasLocalLinkage()) {
128    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129    return;
130  }
131
132  switch (getDeclVisibilityMode(D)) {
133  default: assert(0 && "Unknown visibility!");
134  case LangOptions::Default:
135    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136  case LangOptions::Hidden:
137    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138  case LangOptions::Protected:
139    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140  }
141}
142
143const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144  const NamedDecl *ND = GD.getDecl();
145
146  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147    return getMangledCXXCtorName(D, GD.getCtorType());
148  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149    return getMangledCXXDtorName(D, GD.getDtorType());
150
151  return getMangledName(ND);
152}
153
154/// \brief Retrieves the mangled name for the given declaration.
155///
156/// If the given declaration requires a mangled name, returns an
157/// const char* containing the mangled name.  Otherwise, returns
158/// the unmangled name.
159///
160const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161  // In C, functions with no attributes never need to be mangled. Fastpath them.
162  if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164    return ND->getNameAsCString();
165  }
166
167  llvm::SmallString<256> Name;
168  llvm::raw_svector_ostream Out(Name);
169  if (!mangleName(ND, Context, Out)) {
170    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171    return ND->getNameAsCString();
172  }
173
174  Name += '\0';
175  return UniqueMangledName(Name.begin(), Name.end());
176}
177
178const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                             const char *NameEnd) {
180  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181
182  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183}
184
185/// AddGlobalCtor - Add a function to the list that will be called before
186/// main() runs.
187void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188  // FIXME: Type coercion of void()* types.
189  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190}
191
192/// AddGlobalDtor - Add a function to the list that will be called
193/// when the module is unloaded.
194void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195  // FIXME: Type coercion of void()* types.
196  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197}
198
199void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200  // Ctor function type is void()*.
201  llvm::FunctionType* CtorFTy =
202    llvm::FunctionType::get(llvm::Type::VoidTy,
203                            std::vector<const llvm::Type*>(),
204                            false);
205  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206
207  // Get the type of a ctor entry, { i32, void ()* }.
208  llvm::StructType* CtorStructTy =
209    llvm::StructType::get(VMContext, llvm::Type::Int32Ty,
210                          llvm::PointerType::getUnqual(CtorFTy), NULL);
211
212  // Construct the constructor and destructor arrays.
213  std::vector<llvm::Constant*> Ctors;
214  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215    std::vector<llvm::Constant*> S;
216    S.push_back(
217      llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
218    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220  }
221
222  if (!Ctors.empty()) {
223    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224    new llvm::GlobalVariable(TheModule, AT, false,
225                             llvm::GlobalValue::AppendingLinkage,
226                             llvm::ConstantArray::get(AT, Ctors),
227                             GlobalName);
228  }
229}
230
231void CodeGenModule::EmitAnnotations() {
232  if (Annotations.empty())
233    return;
234
235  // Create a new global variable for the ConstantStruct in the Module.
236  llvm::Constant *Array =
237  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                Annotations.size()),
239                           Annotations);
240  llvm::GlobalValue *gv =
241  new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                           llvm::GlobalValue::AppendingLinkage, Array,
243                           "llvm.global.annotations");
244  gv->setSection("llvm.metadata");
245}
246
247static CodeGenModule::GVALinkage
248GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                      const LangOptions &Features) {
250  // The kind of external linkage this function will have, if it is not
251  // inline or static.
252  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253  if (Context.getLangOptions().CPlusPlus &&
254      (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
255      !FD->isExplicitSpecialization())
256    External = CodeGenModule::GVA_TemplateInstantiation;
257
258  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
259    // C++ member functions defined inside the class are always inline.
260    if (MD->isInline() || !MD->isOutOfLine())
261      return CodeGenModule::GVA_CXXInline;
262
263    return External;
264  }
265
266  // "static" functions get internal linkage.
267  if (FD->getStorageClass() == FunctionDecl::Static)
268    return CodeGenModule::GVA_Internal;
269
270  if (!FD->isInline())
271    return External;
272
273  // If the inline function explicitly has the GNU inline attribute on it, or if
274  // this is C89 mode, we use to GNU semantics.
275  if (!Features.C99 && !Features.CPlusPlus) {
276    // extern inline in GNU mode is like C99 inline.
277    if (FD->getStorageClass() == FunctionDecl::Extern)
278      return CodeGenModule::GVA_C99Inline;
279    // Normal inline is a strong symbol.
280    return CodeGenModule::GVA_StrongExternal;
281  } else if (FD->hasActiveGNUInlineAttribute(Context)) {
282    // GCC in C99 mode seems to use a different decision-making
283    // process for extern inline, which factors in previous
284    // declarations.
285    if (FD->isExternGNUInline(Context))
286      return CodeGenModule::GVA_C99Inline;
287    // Normal inline is a strong symbol.
288    return External;
289  }
290
291  // The definition of inline changes based on the language.  Note that we
292  // have already handled "static inline" above, with the GVA_Internal case.
293  if (Features.CPlusPlus)  // inline and extern inline.
294    return CodeGenModule::GVA_CXXInline;
295
296  assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
297  if (FD->isC99InlineDefinition())
298    return CodeGenModule::GVA_C99Inline;
299
300  return CodeGenModule::GVA_StrongExternal;
301}
302
303/// SetFunctionDefinitionAttributes - Set attributes for a global.
304///
305/// FIXME: This is currently only done for aliases and functions, but not for
306/// variables (these details are set in EmitGlobalVarDefinition for variables).
307void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
308                                                    llvm::GlobalValue *GV) {
309  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
310
311  if (Linkage == GVA_Internal) {
312    GV->setLinkage(llvm::Function::InternalLinkage);
313  } else if (D->hasAttr<DLLExportAttr>()) {
314    GV->setLinkage(llvm::Function::DLLExportLinkage);
315  } else if (D->hasAttr<WeakAttr>()) {
316    GV->setLinkage(llvm::Function::WeakAnyLinkage);
317  } else if (Linkage == GVA_C99Inline) {
318    // In C99 mode, 'inline' functions are guaranteed to have a strong
319    // definition somewhere else, so we can use available_externally linkage.
320    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
321  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
322    // In C++, the compiler has to emit a definition in every translation unit
323    // that references the function.  We should use linkonce_odr because
324    // a) if all references in this translation unit are optimized away, we
325    // don't need to codegen it.  b) if the function persists, it needs to be
326    // merged with other definitions. c) C++ has the ODR, so we know the
327    // definition is dependable.
328    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
329  } else {
330    assert(Linkage == GVA_StrongExternal);
331    // Otherwise, we have strong external linkage.
332    GV->setLinkage(llvm::Function::ExternalLinkage);
333  }
334
335  SetCommonAttributes(D, GV);
336}
337
338void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
339                                              const CGFunctionInfo &Info,
340                                              llvm::Function *F) {
341  AttributeListType AttributeList;
342  ConstructAttributeList(Info, D, AttributeList);
343
344  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
345                                        AttributeList.size()));
346
347  // Set the appropriate calling convention for the Function.
348  if (D->hasAttr<FastCallAttr>())
349    F->setCallingConv(llvm::CallingConv::X86_FastCall);
350
351  if (D->hasAttr<StdCallAttr>())
352    F->setCallingConv(llvm::CallingConv::X86_StdCall);
353}
354
355void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
356                                                           llvm::Function *F) {
357  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
358    F->addFnAttr(llvm::Attribute::NoUnwind);
359
360  if (D->hasAttr<AlwaysInlineAttr>())
361    F->addFnAttr(llvm::Attribute::AlwaysInline);
362
363  if (D->hasAttr<NoinlineAttr>())
364    F->addFnAttr(llvm::Attribute::NoInline);
365}
366
367void CodeGenModule::SetCommonAttributes(const Decl *D,
368                                        llvm::GlobalValue *GV) {
369  setGlobalVisibility(GV, D);
370
371  if (D->hasAttr<UsedAttr>())
372    AddUsedGlobal(GV);
373
374  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
375    GV->setSection(SA->getName());
376}
377
378void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
379                                                  llvm::Function *F,
380                                                  const CGFunctionInfo &FI) {
381  SetLLVMFunctionAttributes(D, FI, F);
382  SetLLVMFunctionAttributesForDefinition(D, F);
383
384  F->setLinkage(llvm::Function::InternalLinkage);
385
386  SetCommonAttributes(D, F);
387}
388
389void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
390                                          llvm::Function *F,
391                                          bool IsIncompleteFunction) {
392  if (!IsIncompleteFunction)
393    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
394
395  // Only a few attributes are set on declarations; these may later be
396  // overridden by a definition.
397
398  if (FD->hasAttr<DLLImportAttr>()) {
399    F->setLinkage(llvm::Function::DLLImportLinkage);
400  } else if (FD->hasAttr<WeakAttr>() ||
401             FD->hasAttr<WeakImportAttr>()) {
402    // "extern_weak" is overloaded in LLVM; we probably should have
403    // separate linkage types for this.
404    F->setLinkage(llvm::Function::ExternalWeakLinkage);
405  } else {
406    F->setLinkage(llvm::Function::ExternalLinkage);
407  }
408
409  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
410    F->setSection(SA->getName());
411}
412
413void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
414  assert(!GV->isDeclaration() &&
415         "Only globals with definition can force usage.");
416  LLVMUsed.push_back(GV);
417}
418
419void CodeGenModule::EmitLLVMUsed() {
420  // Don't create llvm.used if there is no need.
421  if (LLVMUsed.empty())
422    return;
423
424  llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
425
426  // Convert LLVMUsed to what ConstantArray needs.
427  std::vector<llvm::Constant*> UsedArray;
428  UsedArray.resize(LLVMUsed.size());
429  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
430    UsedArray[i] =
431     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
432                                      i8PTy);
433  }
434
435  if (UsedArray.empty())
436    return;
437  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
438
439  llvm::GlobalVariable *GV =
440    new llvm::GlobalVariable(getModule(), ATy, false,
441                             llvm::GlobalValue::AppendingLinkage,
442                             llvm::ConstantArray::get(ATy, UsedArray),
443                             "llvm.used");
444
445  GV->setSection("llvm.metadata");
446}
447
448void CodeGenModule::EmitDeferred() {
449  // Emit code for any potentially referenced deferred decls.  Since a
450  // previously unused static decl may become used during the generation of code
451  // for a static function, iterate until no  changes are made.
452  while (!DeferredDeclsToEmit.empty()) {
453    GlobalDecl D = DeferredDeclsToEmit.back();
454    DeferredDeclsToEmit.pop_back();
455
456    // The mangled name for the decl must have been emitted in GlobalDeclMap.
457    // Look it up to see if it was defined with a stronger definition (e.g. an
458    // extern inline function with a strong function redefinition).  If so,
459    // just ignore the deferred decl.
460    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
461    assert(CGRef && "Deferred decl wasn't referenced?");
462
463    if (!CGRef->isDeclaration())
464      continue;
465
466    // Otherwise, emit the definition and move on to the next one.
467    EmitGlobalDefinition(D);
468  }
469}
470
471/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
472/// annotation information for a given GlobalValue.  The annotation struct is
473/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
474/// GlobalValue being annotated.  The second field is the constant string
475/// created from the AnnotateAttr's annotation.  The third field is a constant
476/// string containing the name of the translation unit.  The fourth field is
477/// the line number in the file of the annotated value declaration.
478///
479/// FIXME: this does not unique the annotation string constants, as llvm-gcc
480///        appears to.
481///
482llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
483                                                const AnnotateAttr *AA,
484                                                unsigned LineNo) {
485  llvm::Module *M = &getModule();
486
487  // get [N x i8] constants for the annotation string, and the filename string
488  // which are the 2nd and 3rd elements of the global annotation structure.
489  const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
490  llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
491  llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
492                                                  true);
493
494  // Get the two global values corresponding to the ConstantArrays we just
495  // created to hold the bytes of the strings.
496  llvm::GlobalValue *annoGV =
497    new llvm::GlobalVariable(*M, anno->getType(), false,
498                             llvm::GlobalValue::PrivateLinkage, anno,
499                             GV->getName());
500  // translation unit name string, emitted into the llvm.metadata section.
501  llvm::GlobalValue *unitGV =
502    new llvm::GlobalVariable(*M, unit->getType(), false,
503                             llvm::GlobalValue::PrivateLinkage, unit,
504                             ".str");
505
506  // Create the ConstantStruct for the global annotation.
507  llvm::Constant *Fields[4] = {
508    llvm::ConstantExpr::getBitCast(GV, SBP),
509    llvm::ConstantExpr::getBitCast(annoGV, SBP),
510    llvm::ConstantExpr::getBitCast(unitGV, SBP),
511    llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
512  };
513  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
514}
515
516bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
517  // Never defer when EmitAllDecls is specified or the decl has
518  // attribute used.
519  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
520    return false;
521
522  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
523    // Constructors and destructors should never be deferred.
524    if (FD->hasAttr<ConstructorAttr>() ||
525        FD->hasAttr<DestructorAttr>())
526      return false;
527
528    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
529
530    // static, static inline, always_inline, and extern inline functions can
531    // always be deferred.  Normal inline functions can be deferred in C99/C++.
532    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
533        Linkage == GVA_CXXInline)
534      return true;
535    return false;
536  }
537
538  const VarDecl *VD = cast<VarDecl>(Global);
539  assert(VD->isFileVarDecl() && "Invalid decl");
540
541  return VD->getStorageClass() == VarDecl::Static;
542}
543
544void CodeGenModule::EmitGlobal(GlobalDecl GD) {
545  const ValueDecl *Global = GD.getDecl();
546
547  // If this is an alias definition (which otherwise looks like a declaration)
548  // emit it now.
549  if (Global->hasAttr<AliasAttr>())
550    return EmitAliasDefinition(Global);
551
552  // Ignore declarations, they will be emitted on their first use.
553  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
554    // Forward declarations are emitted lazily on first use.
555    if (!FD->isThisDeclarationADefinition())
556      return;
557  } else {
558    const VarDecl *VD = cast<VarDecl>(Global);
559    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
560
561    // In C++, if this is marked "extern", defer code generation.
562    if (getLangOptions().CPlusPlus && !VD->getInit() &&
563        (VD->getStorageClass() == VarDecl::Extern ||
564         VD->isExternC(getContext())))
565      return;
566
567    // In C, if this isn't a definition, defer code generation.
568    if (!getLangOptions().CPlusPlus && !VD->getInit())
569      return;
570  }
571
572  // Defer code generation when possible if this is a static definition, inline
573  // function etc.  These we only want to emit if they are used.
574  if (MayDeferGeneration(Global)) {
575    // If the value has already been used, add it directly to the
576    // DeferredDeclsToEmit list.
577    const char *MangledName = getMangledName(GD);
578    if (GlobalDeclMap.count(MangledName))
579      DeferredDeclsToEmit.push_back(GD);
580    else {
581      // Otherwise, remember that we saw a deferred decl with this name.  The
582      // first use of the mangled name will cause it to move into
583      // DeferredDeclsToEmit.
584      DeferredDecls[MangledName] = GD;
585    }
586    return;
587  }
588
589  // Otherwise emit the definition.
590  EmitGlobalDefinition(GD);
591}
592
593void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
594  const ValueDecl *D = GD.getDecl();
595
596  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
597    EmitCXXConstructor(CD, GD.getCtorType());
598  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
599    EmitCXXDestructor(DD, GD.getDtorType());
600  else if (isa<FunctionDecl>(D))
601    EmitGlobalFunctionDefinition(GD);
602  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
603    EmitGlobalVarDefinition(VD);
604  else {
605    assert(0 && "Invalid argument to EmitGlobalDefinition()");
606  }
607}
608
609/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
610/// module, create and return an llvm Function with the specified type. If there
611/// is something in the module with the specified name, return it potentially
612/// bitcasted to the right type.
613///
614/// If D is non-null, it specifies a decl that correspond to this.  This is used
615/// to set the attributes on the function when it is first created.
616llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
617                                                       const llvm::Type *Ty,
618                                                       GlobalDecl D) {
619  // Lookup the entry, lazily creating it if necessary.
620  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
621  if (Entry) {
622    if (Entry->getType()->getElementType() == Ty)
623      return Entry;
624
625    // Make sure the result is of the correct type.
626    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
627    return llvm::ConstantExpr::getBitCast(Entry, PTy);
628  }
629
630  // This is the first use or definition of a mangled name.  If there is a
631  // deferred decl with this name, remember that we need to emit it at the end
632  // of the file.
633  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
634    DeferredDecls.find(MangledName);
635  if (DDI != DeferredDecls.end()) {
636    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
637    // list, and remove it from DeferredDecls (since we don't need it anymore).
638    DeferredDeclsToEmit.push_back(DDI->second);
639    DeferredDecls.erase(DDI);
640  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
641    // If this the first reference to a C++ inline function in a class, queue up
642    // the deferred function body for emission.  These are not seen as
643    // top-level declarations.
644    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
645      DeferredDeclsToEmit.push_back(D);
646    // A called constructor which has no definition or declaration need be
647    // synthesized.
648    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
649      const CXXRecordDecl *ClassDecl =
650        cast<CXXRecordDecl>(CD->getDeclContext());
651      if (CD->isCopyConstructor(getContext()))
652        DeferredCopyConstructorToEmit(D);
653      else if (!ClassDecl->hasUserDeclaredConstructor())
654        DeferredDeclsToEmit.push_back(D);
655    }
656    else
657      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
658        if (MD->isCopyAssignment()) {
659          DeferredDeclsToEmit.push_back(D);
660        }
661  }
662
663  // This function doesn't have a complete type (for example, the return
664  // type is an incomplete struct). Use a fake type instead, and make
665  // sure not to try to set attributes.
666  bool IsIncompleteFunction = false;
667  if (!isa<llvm::FunctionType>(Ty)) {
668    Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
669                                 std::vector<const llvm::Type*>(), false);
670    IsIncompleteFunction = true;
671  }
672  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
673                                             llvm::Function::ExternalLinkage,
674                                             "", &getModule());
675  F->setName(MangledName);
676  if (D.getDecl())
677    SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
678                          IsIncompleteFunction);
679  Entry = F;
680  return F;
681}
682
683/// Defer definition of copy constructor(s) which need be implicitly defined.
684void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
685  const CXXConstructorDecl *CD =
686    cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
687  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
688  if (ClassDecl->hasTrivialCopyConstructor() ||
689      ClassDecl->hasUserDeclaredCopyConstructor())
690    return;
691
692  // First make sure all direct base classes and virtual bases and non-static
693  // data mebers which need to have their copy constructors implicitly defined
694  // are defined. 12.8.p7
695  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
696       Base != ClassDecl->bases_end(); ++Base) {
697    CXXRecordDecl *BaseClassDecl
698      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
699    if (CXXConstructorDecl *BaseCopyCtor =
700        BaseClassDecl->getCopyConstructor(Context, 0))
701      GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
702  }
703
704  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
705       FieldEnd = ClassDecl->field_end();
706       Field != FieldEnd; ++Field) {
707    QualType FieldType = Context.getCanonicalType((*Field)->getType());
708    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
709      FieldType = Array->getElementType();
710    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
711      if ((*Field)->isAnonymousStructOrUnion())
712        continue;
713      CXXRecordDecl *FieldClassDecl
714        = cast<CXXRecordDecl>(FieldClassType->getDecl());
715      if (CXXConstructorDecl *FieldCopyCtor =
716          FieldClassDecl->getCopyConstructor(Context, 0))
717        GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
718    }
719  }
720  DeferredDeclsToEmit.push_back(CopyCtorDecl);
721
722}
723
724/// GetAddrOfFunction - Return the address of the given function.  If Ty is
725/// non-null, then this function will use the specified type if it has to
726/// create it (this occurs when we see a definition of the function).
727llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
728                                                 const llvm::Type *Ty) {
729  // If there was no specific requested type, just convert it now.
730  if (!Ty)
731    Ty = getTypes().ConvertType(GD.getDecl()->getType());
732  return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
733}
734
735/// CreateRuntimeFunction - Create a new runtime function with the specified
736/// type and name.
737llvm::Constant *
738CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
739                                     const char *Name) {
740  // Convert Name to be a uniqued string from the IdentifierInfo table.
741  Name = getContext().Idents.get(Name).getName();
742  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
743}
744
745/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
746/// create and return an llvm GlobalVariable with the specified type.  If there
747/// is something in the module with the specified name, return it potentially
748/// bitcasted to the right type.
749///
750/// If D is non-null, it specifies a decl that correspond to this.  This is used
751/// to set the attributes on the global when it is first created.
752llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
753                                                     const llvm::PointerType*Ty,
754                                                     const VarDecl *D) {
755  // Lookup the entry, lazily creating it if necessary.
756  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
757  if (Entry) {
758    if (Entry->getType() == Ty)
759      return Entry;
760
761    // Make sure the result is of the correct type.
762    return llvm::ConstantExpr::getBitCast(Entry, Ty);
763  }
764
765  // This is the first use or definition of a mangled name.  If there is a
766  // deferred decl with this name, remember that we need to emit it at the end
767  // of the file.
768  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
769    DeferredDecls.find(MangledName);
770  if (DDI != DeferredDecls.end()) {
771    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
772    // list, and remove it from DeferredDecls (since we don't need it anymore).
773    DeferredDeclsToEmit.push_back(DDI->second);
774    DeferredDecls.erase(DDI);
775  }
776
777  llvm::GlobalVariable *GV =
778    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
779                             llvm::GlobalValue::ExternalLinkage,
780                             0, "", 0,
781                             false, Ty->getAddressSpace());
782  GV->setName(MangledName);
783
784  // Handle things which are present even on external declarations.
785  if (D) {
786    // FIXME: This code is overly simple and should be merged with other global
787    // handling.
788    GV->setConstant(D->getType().isConstant(Context));
789
790    // FIXME: Merge with other attribute handling code.
791    if (D->getStorageClass() == VarDecl::PrivateExtern)
792      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
793
794    if (D->hasAttr<WeakAttr>() ||
795        D->hasAttr<WeakImportAttr>())
796      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
797
798    GV->setThreadLocal(D->isThreadSpecified());
799  }
800
801  return Entry = GV;
802}
803
804
805/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
806/// given global variable.  If Ty is non-null and if the global doesn't exist,
807/// then it will be greated with the specified type instead of whatever the
808/// normal requested type would be.
809llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
810                                                  const llvm::Type *Ty) {
811  assert(D->hasGlobalStorage() && "Not a global variable");
812  QualType ASTTy = D->getType();
813  if (Ty == 0)
814    Ty = getTypes().ConvertTypeForMem(ASTTy);
815
816  const llvm::PointerType *PTy =
817    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
818  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
819}
820
821/// CreateRuntimeVariable - Create a new runtime global variable with the
822/// specified type and name.
823llvm::Constant *
824CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
825                                     const char *Name) {
826  // Convert Name to be a uniqued string from the IdentifierInfo table.
827  Name = getContext().Idents.get(Name).getName();
828  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
829}
830
831void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
832  assert(!D->getInit() && "Cannot emit definite definitions here!");
833
834  if (MayDeferGeneration(D)) {
835    // If we have not seen a reference to this variable yet, place it
836    // into the deferred declarations table to be emitted if needed
837    // later.
838    const char *MangledName = getMangledName(D);
839    if (GlobalDeclMap.count(MangledName) == 0) {
840      DeferredDecls[MangledName] = GlobalDecl(D);
841      return;
842    }
843  }
844
845  // The tentative definition is the only definition.
846  EmitGlobalVarDefinition(D);
847}
848
849void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
850  llvm::Constant *Init = 0;
851  QualType ASTTy = D->getType();
852
853  if (D->getInit() == 0) {
854    // This is a tentative definition; tentative definitions are
855    // implicitly initialized with { 0 }.
856    //
857    // Note that tentative definitions are only emitted at the end of
858    // a translation unit, so they should never have incomplete
859    // type. In addition, EmitTentativeDefinition makes sure that we
860    // never attempt to emit a tentative definition if a real one
861    // exists. A use may still exists, however, so we still may need
862    // to do a RAUW.
863    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
864    Init = EmitNullConstant(D->getType());
865  } else {
866    Init = EmitConstantExpr(D->getInit(), D->getType());
867
868    if (!Init) {
869      QualType T = D->getInit()->getType();
870      if (getLangOptions().CPlusPlus) {
871        CXXGlobalInits.push_back(D);
872        Init = EmitNullConstant(T);
873      } else {
874        ErrorUnsupported(D, "static initializer");
875        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
876      }
877    }
878  }
879
880  const llvm::Type* InitType = Init->getType();
881  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
882
883  // Strip off a bitcast if we got one back.
884  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
885    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
886           // all zero index gep.
887           CE->getOpcode() == llvm::Instruction::GetElementPtr);
888    Entry = CE->getOperand(0);
889  }
890
891  // Entry is now either a Function or GlobalVariable.
892  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
893
894  // We have a definition after a declaration with the wrong type.
895  // We must make a new GlobalVariable* and update everything that used OldGV
896  // (a declaration or tentative definition) with the new GlobalVariable*
897  // (which will be a definition).
898  //
899  // This happens if there is a prototype for a global (e.g.
900  // "extern int x[];") and then a definition of a different type (e.g.
901  // "int x[10];"). This also happens when an initializer has a different type
902  // from the type of the global (this happens with unions).
903  if (GV == 0 ||
904      GV->getType()->getElementType() != InitType ||
905      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
906
907    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
908    GlobalDeclMap.erase(getMangledName(D));
909
910    // Make a new global with the correct type, this is now guaranteed to work.
911    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
912    GV->takeName(cast<llvm::GlobalValue>(Entry));
913
914    // Replace all uses of the old global with the new global
915    llvm::Constant *NewPtrForOldDecl =
916        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
917    Entry->replaceAllUsesWith(NewPtrForOldDecl);
918
919    // Erase the old global, since it is no longer used.
920    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
921  }
922
923  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
924    SourceManager &SM = Context.getSourceManager();
925    AddAnnotation(EmitAnnotateAttr(GV, AA,
926                              SM.getInstantiationLineNumber(D->getLocation())));
927  }
928
929  GV->setInitializer(Init);
930
931  // If it is safe to mark the global 'constant', do so now.
932  GV->setConstant(false);
933  if (D->getType().isConstant(Context)) {
934    // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
935    // members, it cannot be declared "LLVM const".
936    GV->setConstant(true);
937  }
938
939  GV->setAlignment(getContext().getDeclAlignInBytes(D));
940
941  // Set the llvm linkage type as appropriate.
942  if (D->getStorageClass() == VarDecl::Static)
943    GV->setLinkage(llvm::Function::InternalLinkage);
944  else if (D->hasAttr<DLLImportAttr>())
945    GV->setLinkage(llvm::Function::DLLImportLinkage);
946  else if (D->hasAttr<DLLExportAttr>())
947    GV->setLinkage(llvm::Function::DLLExportLinkage);
948  else if (D->hasAttr<WeakAttr>()) {
949    if (GV->isConstant())
950      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
951    else
952      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
953  } else if (!CompileOpts.NoCommon &&
954           !D->hasExternalStorage() && !D->getInit() &&
955           !D->getAttr<SectionAttr>()) {
956    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
957    // common vars aren't constant even if declared const.
958    GV->setConstant(false);
959  } else
960    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
961
962  SetCommonAttributes(D, GV);
963
964  // Emit global variable debug information.
965  if (CGDebugInfo *DI = getDebugInfo()) {
966    DI->setLocation(D->getLocation());
967    DI->EmitGlobalVariable(GV, D);
968  }
969}
970
971/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
972/// implement a function with no prototype, e.g. "int foo() {}".  If there are
973/// existing call uses of the old function in the module, this adjusts them to
974/// call the new function directly.
975///
976/// This is not just a cleanup: the always_inline pass requires direct calls to
977/// functions to be able to inline them.  If there is a bitcast in the way, it
978/// won't inline them.  Instcombine normally deletes these calls, but it isn't
979/// run at -O0.
980static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
981                                                      llvm::Function *NewFn) {
982  // If we're redefining a global as a function, don't transform it.
983  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
984  if (OldFn == 0) return;
985
986  const llvm::Type *NewRetTy = NewFn->getReturnType();
987  llvm::SmallVector<llvm::Value*, 4> ArgList;
988
989  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
990       UI != E; ) {
991    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
992    unsigned OpNo = UI.getOperandNo();
993    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
994    if (!CI || OpNo != 0) continue;
995
996    // If the return types don't match exactly, and if the call isn't dead, then
997    // we can't transform this call.
998    if (CI->getType() != NewRetTy && !CI->use_empty())
999      continue;
1000
1001    // If the function was passed too few arguments, don't transform.  If extra
1002    // arguments were passed, we silently drop them.  If any of the types
1003    // mismatch, we don't transform.
1004    unsigned ArgNo = 0;
1005    bool DontTransform = false;
1006    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1007         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1008      if (CI->getNumOperands()-1 == ArgNo ||
1009          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1010        DontTransform = true;
1011        break;
1012      }
1013    }
1014    if (DontTransform)
1015      continue;
1016
1017    // Okay, we can transform this.  Create the new call instruction and copy
1018    // over the required information.
1019    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1020    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1021                                                     ArgList.end(), "", CI);
1022    ArgList.clear();
1023    if (NewCall->getType() != llvm::Type::VoidTy)
1024      NewCall->takeName(CI);
1025    NewCall->setCallingConv(CI->getCallingConv());
1026    NewCall->setAttributes(CI->getAttributes());
1027
1028    // Finally, remove the old call, replacing any uses with the new one.
1029    if (!CI->use_empty())
1030      CI->replaceAllUsesWith(NewCall);
1031    CI->eraseFromParent();
1032  }
1033}
1034
1035
1036void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1037  const llvm::FunctionType *Ty;
1038  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1039
1040  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1041    bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1042
1043    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1044  } else {
1045    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1046
1047    // As a special case, make sure that definitions of K&R function
1048    // "type foo()" aren't declared as varargs (which forces the backend
1049    // to do unnecessary work).
1050    if (D->getType()->isFunctionNoProtoType()) {
1051      assert(Ty->isVarArg() && "Didn't lower type as expected");
1052      // Due to stret, the lowered function could have arguments.
1053      // Just create the same type as was lowered by ConvertType
1054      // but strip off the varargs bit.
1055      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1056      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1057    }
1058  }
1059
1060  // Get or create the prototype for the function.
1061  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1062
1063  // Strip off a bitcast if we got one back.
1064  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1065    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1066    Entry = CE->getOperand(0);
1067  }
1068
1069
1070  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1071    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1072
1073    // If the types mismatch then we have to rewrite the definition.
1074    assert(OldFn->isDeclaration() &&
1075           "Shouldn't replace non-declaration");
1076
1077    // F is the Function* for the one with the wrong type, we must make a new
1078    // Function* and update everything that used F (a declaration) with the new
1079    // Function* (which will be a definition).
1080    //
1081    // This happens if there is a prototype for a function
1082    // (e.g. "int f()") and then a definition of a different type
1083    // (e.g. "int f(int x)").  Start by making a new function of the
1084    // correct type, RAUW, then steal the name.
1085    GlobalDeclMap.erase(getMangledName(D));
1086    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1087    NewFn->takeName(OldFn);
1088
1089    // If this is an implementation of a function without a prototype, try to
1090    // replace any existing uses of the function (which may be calls) with uses
1091    // of the new function
1092    if (D->getType()->isFunctionNoProtoType()) {
1093      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1094      OldFn->removeDeadConstantUsers();
1095    }
1096
1097    // Replace uses of F with the Function we will endow with a body.
1098    if (!Entry->use_empty()) {
1099      llvm::Constant *NewPtrForOldDecl =
1100        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1101      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1102    }
1103
1104    // Ok, delete the old function now, which is dead.
1105    OldFn->eraseFromParent();
1106
1107    Entry = NewFn;
1108  }
1109
1110  llvm::Function *Fn = cast<llvm::Function>(Entry);
1111
1112  CodeGenFunction(*this).GenerateCode(D, Fn);
1113
1114  SetFunctionDefinitionAttributes(D, Fn);
1115  SetLLVMFunctionAttributesForDefinition(D, Fn);
1116
1117  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1118    AddGlobalCtor(Fn, CA->getPriority());
1119  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1120    AddGlobalDtor(Fn, DA->getPriority());
1121}
1122
1123void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1124  const AliasAttr *AA = D->getAttr<AliasAttr>();
1125  assert(AA && "Not an alias?");
1126
1127  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1128
1129  // Unique the name through the identifier table.
1130  const char *AliaseeName = AA->getAliasee().c_str();
1131  AliaseeName = getContext().Idents.get(AliaseeName).getName();
1132
1133  // Create a reference to the named value.  This ensures that it is emitted
1134  // if a deferred decl.
1135  llvm::Constant *Aliasee;
1136  if (isa<llvm::FunctionType>(DeclTy))
1137    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1138  else
1139    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1140                                    llvm::PointerType::getUnqual(DeclTy), 0);
1141
1142  // Create the new alias itself, but don't set a name yet.
1143  llvm::GlobalValue *GA =
1144    new llvm::GlobalAlias(Aliasee->getType(),
1145                          llvm::Function::ExternalLinkage,
1146                          "", Aliasee, &getModule());
1147
1148  // See if there is already something with the alias' name in the module.
1149  const char *MangledName = getMangledName(D);
1150  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1151
1152  if (Entry && !Entry->isDeclaration()) {
1153    // If there is a definition in the module, then it wins over the alias.
1154    // This is dubious, but allow it to be safe.  Just ignore the alias.
1155    GA->eraseFromParent();
1156    return;
1157  }
1158
1159  if (Entry) {
1160    // If there is a declaration in the module, then we had an extern followed
1161    // by the alias, as in:
1162    //   extern int test6();
1163    //   ...
1164    //   int test6() __attribute__((alias("test7")));
1165    //
1166    // Remove it and replace uses of it with the alias.
1167
1168    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1169                                                          Entry->getType()));
1170    Entry->eraseFromParent();
1171  }
1172
1173  // Now we know that there is no conflict, set the name.
1174  Entry = GA;
1175  GA->setName(MangledName);
1176
1177  // Set attributes which are particular to an alias; this is a
1178  // specialization of the attributes which may be set on a global
1179  // variable/function.
1180  if (D->hasAttr<DLLExportAttr>()) {
1181    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1182      // The dllexport attribute is ignored for undefined symbols.
1183      if (FD->getBody())
1184        GA->setLinkage(llvm::Function::DLLExportLinkage);
1185    } else {
1186      GA->setLinkage(llvm::Function::DLLExportLinkage);
1187    }
1188  } else if (D->hasAttr<WeakAttr>() ||
1189             D->hasAttr<WeakImportAttr>()) {
1190    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1191  }
1192
1193  SetCommonAttributes(D, GA);
1194}
1195
1196/// getBuiltinLibFunction - Given a builtin id for a function like
1197/// "__builtin_fabsf", return a Function* for "fabsf".
1198llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1199  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1200          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1201         "isn't a lib fn");
1202
1203  // Get the name, skip over the __builtin_ prefix (if necessary).
1204  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1205  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1206    Name += 10;
1207
1208  // Get the type for the builtin.
1209  ASTContext::GetBuiltinTypeError Error;
1210  QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1211  assert(Error == ASTContext::GE_None && "Can't get builtin type");
1212
1213  const llvm::FunctionType *Ty =
1214    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1215
1216  // Unique the name through the identifier table.
1217  Name = getContext().Idents.get(Name).getName();
1218  // FIXME: param attributes for sext/zext etc.
1219  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1220}
1221
1222llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1223                                            unsigned NumTys) {
1224  return llvm::Intrinsic::getDeclaration(&getModule(),
1225                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1226}
1227
1228llvm::Function *CodeGenModule::getMemCpyFn() {
1229  if (MemCpyFn) return MemCpyFn;
1230  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1231  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1232}
1233
1234llvm::Function *CodeGenModule::getMemMoveFn() {
1235  if (MemMoveFn) return MemMoveFn;
1236  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1237  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1238}
1239
1240llvm::Function *CodeGenModule::getMemSetFn() {
1241  if (MemSetFn) return MemSetFn;
1242  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1243  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1244}
1245
1246static void appendFieldAndPadding(CodeGenModule &CGM,
1247                                  std::vector<llvm::Constant*>& Fields,
1248                                  FieldDecl *FieldD, FieldDecl *NextFieldD,
1249                                  llvm::Constant* Field,
1250                                  RecordDecl* RD, const llvm::StructType *STy) {
1251  // Append the field.
1252  Fields.push_back(Field);
1253
1254  int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1255
1256  int NextStructFieldNo;
1257  if (!NextFieldD) {
1258    NextStructFieldNo = STy->getNumElements();
1259  } else {
1260    NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1261  }
1262
1263  // Append padding
1264  for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1265    llvm::Constant *C =
1266      llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1267
1268    Fields.push_back(C);
1269  }
1270}
1271
1272static llvm::StringMapEntry<llvm::Constant*> &
1273GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1274                         const StringLiteral *Literal,
1275                         bool TargetIsLSB,
1276                         bool &IsUTF16,
1277                         unsigned &StringLength) {
1278  unsigned NumBytes = Literal->getByteLength();
1279
1280  // Check for simple case.
1281  if (!Literal->containsNonAsciiOrNull()) {
1282    StringLength = NumBytes;
1283    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1284                                                StringLength));
1285  }
1286
1287  // Otherwise, convert the UTF8 literals into a byte string.
1288  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1289  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1290  UTF16 *ToPtr = &ToBuf[0];
1291
1292  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1293                                               &ToPtr, ToPtr + NumBytes,
1294                                               strictConversion);
1295
1296  // Check for conversion failure.
1297  if (Result != conversionOK) {
1298    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1299    // this duplicate code.
1300    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1301    StringLength = NumBytes;
1302    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1303                                                StringLength));
1304  }
1305
1306  // ConvertUTF8toUTF16 returns the length in ToPtr.
1307  StringLength = ToPtr - &ToBuf[0];
1308
1309  // Render the UTF-16 string into a byte array and convert to the target byte
1310  // order.
1311  //
1312  // FIXME: This isn't something we should need to do here.
1313  llvm::SmallString<128> AsBytes;
1314  AsBytes.reserve(StringLength * 2);
1315  for (unsigned i = 0; i != StringLength; ++i) {
1316    unsigned short Val = ToBuf[i];
1317    if (TargetIsLSB) {
1318      AsBytes.push_back(Val & 0xFF);
1319      AsBytes.push_back(Val >> 8);
1320    } else {
1321      AsBytes.push_back(Val >> 8);
1322      AsBytes.push_back(Val & 0xFF);
1323    }
1324  }
1325  // Append one extra null character, the second is automatically added by our
1326  // caller.
1327  AsBytes.push_back(0);
1328
1329  IsUTF16 = true;
1330  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1331}
1332
1333llvm::Constant *
1334CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1335  unsigned StringLength = 0;
1336  bool isUTF16 = false;
1337  llvm::StringMapEntry<llvm::Constant*> &Entry =
1338    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1339                             getTargetData().isLittleEndian(),
1340                             isUTF16, StringLength);
1341
1342  if (llvm::Constant *C = Entry.getValue())
1343    return C;
1344
1345  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1346  llvm::Constant *Zeros[] = { Zero, Zero };
1347
1348  // If we don't already have it, get __CFConstantStringClassReference.
1349  if (!CFConstantStringClassRef) {
1350    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1351    Ty = llvm::ArrayType::get(Ty, 0);
1352    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1353                                           "__CFConstantStringClassReference");
1354    // Decay array -> ptr
1355    CFConstantStringClassRef =
1356      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1357  }
1358
1359  QualType CFTy = getContext().getCFConstantStringType();
1360  RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl();
1361
1362  const llvm::StructType *STy =
1363    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1364
1365  std::vector<llvm::Constant*> Fields;
1366  RecordDecl::field_iterator Field = CFRD->field_begin();
1367
1368  // Class pointer.
1369  FieldDecl *CurField = *Field++;
1370  FieldDecl *NextField = *Field++;
1371  appendFieldAndPadding(*this, Fields, CurField, NextField,
1372                        CFConstantStringClassRef, CFRD, STy);
1373
1374  // Flags.
1375  CurField = NextField;
1376  NextField = *Field++;
1377  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1378  appendFieldAndPadding(*this, Fields, CurField, NextField,
1379                        isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1380                                : llvm::ConstantInt::get(Ty, 0x07C8),
1381                        CFRD, STy);
1382
1383  // String pointer.
1384  CurField = NextField;
1385  NextField = *Field++;
1386  llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str());
1387
1388  const char *Sect, *Prefix;
1389  bool isConstant;
1390  llvm::GlobalValue::LinkageTypes Linkage;
1391  if (isUTF16) {
1392    Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1393    Sect = getContext().Target.getUnicodeStringSection();
1394    // FIXME: why do utf strings get "l" labels instead of "L" labels?
1395    Linkage = llvm::GlobalValue::InternalLinkage;
1396    // FIXME: Why does GCC not set constant here?
1397    isConstant = false;
1398  } else {
1399    Prefix = ".str";
1400    Sect = getContext().Target.getCFStringDataSection();
1401    Linkage = llvm::GlobalValue::PrivateLinkage;
1402    // FIXME: -fwritable-strings should probably affect this, but we
1403    // are following gcc here.
1404    isConstant = true;
1405  }
1406  llvm::GlobalVariable *GV =
1407    new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1408                             Linkage, C, Prefix);
1409  if (Sect)
1410    GV->setSection(Sect);
1411  if (isUTF16) {
1412    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1413    GV->setAlignment(Align);
1414  }
1415  appendFieldAndPadding(*this, Fields, CurField, NextField,
1416                        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1417                        CFRD, STy);
1418
1419  // String length.
1420  CurField = NextField;
1421  NextField = 0;
1422  Ty = getTypes().ConvertType(getContext().LongTy);
1423  appendFieldAndPadding(*this, Fields, CurField, NextField,
1424                        llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1425
1426  // The struct.
1427  C = llvm::ConstantStruct::get(STy, Fields);
1428  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1429                                llvm::GlobalVariable::PrivateLinkage, C,
1430                                "_unnamed_cfstring_");
1431  if (const char *Sect = getContext().Target.getCFStringSection())
1432    GV->setSection(Sect);
1433  Entry.setValue(GV);
1434
1435  return GV;
1436}
1437
1438/// GetStringForStringLiteral - Return the appropriate bytes for a
1439/// string literal, properly padded to match the literal type.
1440std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1441  const char *StrData = E->getStrData();
1442  unsigned Len = E->getByteLength();
1443
1444  const ConstantArrayType *CAT =
1445    getContext().getAsConstantArrayType(E->getType());
1446  assert(CAT && "String isn't pointer or array!");
1447
1448  // Resize the string to the right size.
1449  std::string Str(StrData, StrData+Len);
1450  uint64_t RealLen = CAT->getSize().getZExtValue();
1451
1452  if (E->isWide())
1453    RealLen *= getContext().Target.getWCharWidth()/8;
1454
1455  Str.resize(RealLen, '\0');
1456
1457  return Str;
1458}
1459
1460/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1461/// constant array for the given string literal.
1462llvm::Constant *
1463CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1464  // FIXME: This can be more efficient.
1465  return GetAddrOfConstantString(GetStringForStringLiteral(S));
1466}
1467
1468/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1469/// array for the given ObjCEncodeExpr node.
1470llvm::Constant *
1471CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1472  std::string Str;
1473  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1474
1475  return GetAddrOfConstantCString(Str);
1476}
1477
1478
1479/// GenerateWritableString -- Creates storage for a string literal.
1480static llvm::Constant *GenerateStringLiteral(const std::string &str,
1481                                             bool constant,
1482                                             CodeGenModule &CGM,
1483                                             const char *GlobalName) {
1484  // Create Constant for this string literal. Don't add a '\0'.
1485  llvm::Constant *C = llvm::ConstantArray::get(str, false);
1486
1487  // Create a global variable for this string
1488  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1489                                  llvm::GlobalValue::PrivateLinkage,
1490                                  C, GlobalName);
1491}
1492
1493/// GetAddrOfConstantString - Returns a pointer to a character array
1494/// containing the literal. This contents are exactly that of the
1495/// given string, i.e. it will not be null terminated automatically;
1496/// see GetAddrOfConstantCString. Note that whether the result is
1497/// actually a pointer to an LLVM constant depends on
1498/// Feature.WriteableStrings.
1499///
1500/// The result has pointer to array type.
1501llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1502                                                       const char *GlobalName) {
1503  bool IsConstant = !Features.WritableStrings;
1504
1505  // Get the default prefix if a name wasn't specified.
1506  if (!GlobalName)
1507    GlobalName = ".str";
1508
1509  // Don't share any string literals if strings aren't constant.
1510  if (!IsConstant)
1511    return GenerateStringLiteral(str, false, *this, GlobalName);
1512
1513  llvm::StringMapEntry<llvm::Constant *> &Entry =
1514    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1515
1516  if (Entry.getValue())
1517    return Entry.getValue();
1518
1519  // Create a global variable for this.
1520  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1521  Entry.setValue(C);
1522  return C;
1523}
1524
1525/// GetAddrOfConstantCString - Returns a pointer to a character
1526/// array containing the literal and a terminating '\-'
1527/// character. The result has pointer to array type.
1528llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1529                                                        const char *GlobalName){
1530  return GetAddrOfConstantString(str + '\0', GlobalName);
1531}
1532
1533/// EmitObjCPropertyImplementations - Emit information for synthesized
1534/// properties for an implementation.
1535void CodeGenModule::EmitObjCPropertyImplementations(const
1536                                                    ObjCImplementationDecl *D) {
1537  for (ObjCImplementationDecl::propimpl_iterator
1538         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1539    ObjCPropertyImplDecl *PID = *i;
1540
1541    // Dynamic is just for type-checking.
1542    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1543      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1544
1545      // Determine which methods need to be implemented, some may have
1546      // been overridden. Note that ::isSynthesized is not the method
1547      // we want, that just indicates if the decl came from a
1548      // property. What we want to know is if the method is defined in
1549      // this implementation.
1550      if (!D->getInstanceMethod(PD->getGetterName()))
1551        CodeGenFunction(*this).GenerateObjCGetter(
1552                                 const_cast<ObjCImplementationDecl *>(D), PID);
1553      if (!PD->isReadOnly() &&
1554          !D->getInstanceMethod(PD->getSetterName()))
1555        CodeGenFunction(*this).GenerateObjCSetter(
1556                                 const_cast<ObjCImplementationDecl *>(D), PID);
1557    }
1558  }
1559}
1560
1561/// EmitNamespace - Emit all declarations in a namespace.
1562void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1563  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1564       I != E; ++I)
1565    EmitTopLevelDecl(*I);
1566}
1567
1568// EmitLinkageSpec - Emit all declarations in a linkage spec.
1569void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1570  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1571      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1572    ErrorUnsupported(LSD, "linkage spec");
1573    return;
1574  }
1575
1576  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1577       I != E; ++I)
1578    EmitTopLevelDecl(*I);
1579}
1580
1581/// EmitTopLevelDecl - Emit code for a single top level declaration.
1582void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1583  // If an error has occurred, stop code generation, but continue
1584  // parsing and semantic analysis (to ensure all warnings and errors
1585  // are emitted).
1586  if (Diags.hasErrorOccurred())
1587    return;
1588
1589  // Ignore dependent declarations.
1590  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1591    return;
1592
1593  switch (D->getKind()) {
1594  case Decl::CXXMethod:
1595  case Decl::Function:
1596    // Skip function templates
1597    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1598      return;
1599
1600    // Fall through
1601
1602  case Decl::Var:
1603    EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1604    break;
1605
1606  // C++ Decls
1607  case Decl::Namespace:
1608    EmitNamespace(cast<NamespaceDecl>(D));
1609    break;
1610    // No code generation needed.
1611  case Decl::Using:
1612  case Decl::ClassTemplate:
1613  case Decl::FunctionTemplate:
1614    break;
1615  case Decl::CXXConstructor:
1616    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1617    break;
1618  case Decl::CXXDestructor:
1619    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1620    break;
1621
1622  case Decl::StaticAssert:
1623    // Nothing to do.
1624    break;
1625
1626  // Objective-C Decls
1627
1628  // Forward declarations, no (immediate) code generation.
1629  case Decl::ObjCClass:
1630  case Decl::ObjCForwardProtocol:
1631  case Decl::ObjCCategory:
1632  case Decl::ObjCInterface:
1633    break;
1634
1635  case Decl::ObjCProtocol:
1636    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1637    break;
1638
1639  case Decl::ObjCCategoryImpl:
1640    // Categories have properties but don't support synthesize so we
1641    // can ignore them here.
1642    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1643    break;
1644
1645  case Decl::ObjCImplementation: {
1646    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1647    EmitObjCPropertyImplementations(OMD);
1648    Runtime->GenerateClass(OMD);
1649    break;
1650  }
1651  case Decl::ObjCMethod: {
1652    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1653    // If this is not a prototype, emit the body.
1654    if (OMD->getBody())
1655      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1656    break;
1657  }
1658  case Decl::ObjCCompatibleAlias:
1659    // compatibility-alias is a directive and has no code gen.
1660    break;
1661
1662  case Decl::LinkageSpec:
1663    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1664    break;
1665
1666  case Decl::FileScopeAsm: {
1667    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1668    std::string AsmString(AD->getAsmString()->getStrData(),
1669                          AD->getAsmString()->getByteLength());
1670
1671    const std::string &S = getModule().getModuleInlineAsm();
1672    if (S.empty())
1673      getModule().setModuleInlineAsm(AsmString);
1674    else
1675      getModule().setModuleInlineAsm(S + '\n' + AsmString);
1676    break;
1677  }
1678
1679  default:
1680    // Make sure we handled everything we should, every other kind is a
1681    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1682    // function. Need to recode Decl::Kind to do that easily.
1683    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1684  }
1685}
1686