CodeGenModule.cpp revision 7a536907da776bdc47a704e7cafd641e8150e653
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "TargetInfo.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/Diagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Basic/ConvertUTF.h"
33#include "llvm/CallingConv.h"
34#include "llvm/Module.h"
35#include "llvm/Intrinsics.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/ADT/Triple.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/ErrorHandling.h"
41using namespace clang;
42using namespace CodeGen;
43
44
45CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                             llvm::Module &M, const llvm::TargetData &TD,
47                             Diagnostic &diags)
48  : BlockModule(C, M, TD, Types, *this), Context(C),
49    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52    VTables(*this), Runtime(0), ABI(0),
53    CFConstantStringClassRef(0), NSConstantStringClassRef(0),
54    VMContext(M.getContext()),
55    NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
56    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
57    BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
58    BlockObjectAssign(0), BlockObjectDispose(0){
59
60  if (!Features.ObjC1)
61    Runtime = 0;
62  else if (!Features.NeXTRuntime)
63    Runtime = CreateGNUObjCRuntime(*this);
64  else if (Features.ObjCNonFragileABI)
65    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
66  else
67    Runtime = CreateMacObjCRuntime(*this);
68
69  if (!Features.CPlusPlus)
70    ABI = 0;
71  else createCXXABI();
72
73  // If debug info generation is enabled, create the CGDebugInfo object.
74  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
75}
76
77CodeGenModule::~CodeGenModule() {
78  delete Runtime;
79  delete ABI;
80  delete DebugInfo;
81}
82
83void CodeGenModule::createObjCRuntime() {
84  if (!Features.NeXTRuntime)
85    Runtime = CreateGNUObjCRuntime(*this);
86  else if (Features.ObjCNonFragileABI)
87    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
88  else
89    Runtime = CreateMacObjCRuntime(*this);
90}
91
92void CodeGenModule::createCXXABI() {
93  if (Context.Target.getCXXABI() == "microsoft")
94    ABI = CreateMicrosoftCXXABI(*this);
95  else
96    ABI = CreateItaniumCXXABI(*this);
97}
98
99void CodeGenModule::Release() {
100  EmitDeferred();
101  EmitCXXGlobalInitFunc();
102  EmitCXXGlobalDtorFunc();
103  if (Runtime)
104    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
105      AddGlobalCtor(ObjCInitFunction);
106  EmitCtorList(GlobalCtors, "llvm.global_ctors");
107  EmitCtorList(GlobalDtors, "llvm.global_dtors");
108  EmitAnnotations();
109  EmitLLVMUsed();
110
111  if (getCodeGenOpts().EmitDeclMetadata)
112    EmitDeclMetadata();
113}
114
115bool CodeGenModule::isTargetDarwin() const {
116  return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
117}
118
119/// ErrorUnsupported - Print out an error that codegen doesn't support the
120/// specified stmt yet.
121void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
122                                     bool OmitOnError) {
123  if (OmitOnError && getDiags().hasErrorOccurred())
124    return;
125  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
126                                               "cannot compile this %0 yet");
127  std::string Msg = Type;
128  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
129    << Msg << S->getSourceRange();
130}
131
132/// ErrorUnsupported - Print out an error that codegen doesn't support the
133/// specified decl yet.
134void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
135                                     bool OmitOnError) {
136  if (OmitOnError && getDiags().hasErrorOccurred())
137    return;
138  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
139                                               "cannot compile this %0 yet");
140  std::string Msg = Type;
141  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
142}
143
144LangOptions::VisibilityMode
145CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
146  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
147    if (VD->getStorageClass() == VarDecl::PrivateExtern)
148      return LangOptions::Hidden;
149
150  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
151    switch (attr->getVisibility()) {
152    default: assert(0 && "Unknown visibility!");
153    case VisibilityAttr::DefaultVisibility:
154      return LangOptions::Default;
155    case VisibilityAttr::HiddenVisibility:
156      return LangOptions::Hidden;
157    case VisibilityAttr::ProtectedVisibility:
158      return LangOptions::Protected;
159    }
160  }
161
162  if (getLangOptions().CPlusPlus) {
163    // Entities subject to an explicit instantiation declaration get default
164    // visibility.
165    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
166      if (Function->getTemplateSpecializationKind()
167                                        == TSK_ExplicitInstantiationDeclaration)
168        return LangOptions::Default;
169    } else if (const ClassTemplateSpecializationDecl *ClassSpec
170                              = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
171      if (ClassSpec->getSpecializationKind()
172                                        == TSK_ExplicitInstantiationDeclaration)
173        return LangOptions::Default;
174    } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
175      if (Record->getTemplateSpecializationKind()
176                                        == TSK_ExplicitInstantiationDeclaration)
177        return LangOptions::Default;
178    } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
179      if (Var->isStaticDataMember() &&
180          (Var->getTemplateSpecializationKind()
181                                      == TSK_ExplicitInstantiationDeclaration))
182        return LangOptions::Default;
183    }
184
185    // If -fvisibility-inlines-hidden was provided, then inline C++ member
186    // functions get "hidden" visibility by default.
187    if (getLangOptions().InlineVisibilityHidden)
188      if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
189        if (Method->isInlined())
190          return LangOptions::Hidden;
191  }
192
193  // If this decl is contained in a class, it should have the same visibility
194  // as the parent class.
195  if (const DeclContext *DC = D->getDeclContext())
196    if (DC->isRecord())
197      return getDeclVisibilityMode(cast<Decl>(DC));
198
199  return getLangOptions().getVisibilityMode();
200}
201
202void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
203                                        const Decl *D) const {
204  // Internal definitions always have default visibility.
205  if (GV->hasLocalLinkage()) {
206    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
207    return;
208  }
209
210  switch (getDeclVisibilityMode(D)) {
211  default: assert(0 && "Unknown visibility!");
212  case LangOptions::Default:
213    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
214  case LangOptions::Hidden:
215    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
216  case LangOptions::Protected:
217    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
218  }
219}
220
221/// Set the symbol visibility of type information (vtable and RTTI)
222/// associated with the given type.
223void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
224                                      const CXXRecordDecl *RD,
225                                      bool IsForRTTI) const {
226  setGlobalVisibility(GV, RD);
227
228  // We want to drop the visibility to hidden for weak type symbols.
229  // This isn't possible if there might be unresolved references
230  // elsewhere that rely on this symbol being visible.
231
232  // This should be kept roughly in sync with setThunkVisibility
233  // in CGVTables.cpp.
234
235  // Preconditions.
236  if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
237      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
238    return;
239
240  // Don't override an explicit visibility attribute.
241  if (RD->hasAttr<VisibilityAttr>())
242    return;
243
244  switch (RD->getTemplateSpecializationKind()) {
245  // We have to disable the optimization if this is an EI definition
246  // because there might be EI declarations in other shared objects.
247  case TSK_ExplicitInstantiationDefinition:
248  case TSK_ExplicitInstantiationDeclaration:
249    return;
250
251  // Every use of a non-template class's type information has to emit it.
252  case TSK_Undeclared:
253    break;
254
255  // In theory, implicit instantiations can ignore the possibility of
256  // an explicit instantiation declaration because there necessarily
257  // must be an EI definition somewhere with default visibility.  In
258  // practice, it's possible to have an explicit instantiation for
259  // an arbitrary template class, and linkers aren't necessarily able
260  // to deal with mixed-visibility symbols.
261  case TSK_ExplicitSpecialization:
262  case TSK_ImplicitInstantiation:
263    if (!CodeGenOpts.EmitWeakTemplatesHidden)
264      return;
265    break;
266  }
267
268  // If there's a key function, there may be translation units
269  // that don't have the key function's definition.  But ignore
270  // this if we're emitting RTTI under -fno-rtti.
271  if (!IsForRTTI || Features.RTTI)
272    if (Context.getKeyFunction(RD))
273      return;
274
275  // Otherwise, drop the visibility to hidden.
276  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
277}
278
279llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
280  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
281
282  llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
283  if (!Str.empty())
284    return Str;
285
286  if (!getMangleContext().shouldMangleDeclName(ND)) {
287    IdentifierInfo *II = ND->getIdentifier();
288    assert(II && "Attempt to mangle unnamed decl.");
289
290    Str = II->getName();
291    return Str;
292  }
293
294  llvm::SmallString<256> Buffer;
295  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
296    getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
297  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
298    getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
299  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
300    getMangleContext().mangleBlock(GD, BD, Buffer);
301  else
302    getMangleContext().mangleName(ND, Buffer);
303
304  // Allocate space for the mangled name.
305  size_t Length = Buffer.size();
306  char *Name = MangledNamesAllocator.Allocate<char>(Length);
307  std::copy(Buffer.begin(), Buffer.end(), Name);
308
309  Str = llvm::StringRef(Name, Length);
310
311  return Str;
312}
313
314void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
315                                   const BlockDecl *BD) {
316  getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
317}
318
319llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
320  return getModule().getNamedValue(Name);
321}
322
323/// AddGlobalCtor - Add a function to the list that will be called before
324/// main() runs.
325void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
326  // FIXME: Type coercion of void()* types.
327  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
328}
329
330/// AddGlobalDtor - Add a function to the list that will be called
331/// when the module is unloaded.
332void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
333  // FIXME: Type coercion of void()* types.
334  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
335}
336
337void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
338  // Ctor function type is void()*.
339  llvm::FunctionType* CtorFTy =
340    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
341                            std::vector<const llvm::Type*>(),
342                            false);
343  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
344
345  // Get the type of a ctor entry, { i32, void ()* }.
346  llvm::StructType* CtorStructTy =
347    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
348                          llvm::PointerType::getUnqual(CtorFTy), NULL);
349
350  // Construct the constructor and destructor arrays.
351  std::vector<llvm::Constant*> Ctors;
352  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
353    std::vector<llvm::Constant*> S;
354    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
355                I->second, false));
356    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
357    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
358  }
359
360  if (!Ctors.empty()) {
361    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
362    new llvm::GlobalVariable(TheModule, AT, false,
363                             llvm::GlobalValue::AppendingLinkage,
364                             llvm::ConstantArray::get(AT, Ctors),
365                             GlobalName);
366  }
367}
368
369void CodeGenModule::EmitAnnotations() {
370  if (Annotations.empty())
371    return;
372
373  // Create a new global variable for the ConstantStruct in the Module.
374  llvm::Constant *Array =
375  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
376                                                Annotations.size()),
377                           Annotations);
378  llvm::GlobalValue *gv =
379  new llvm::GlobalVariable(TheModule, Array->getType(), false,
380                           llvm::GlobalValue::AppendingLinkage, Array,
381                           "llvm.global.annotations");
382  gv->setSection("llvm.metadata");
383}
384
385llvm::GlobalValue::LinkageTypes
386CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
387  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
388
389  if (Linkage == GVA_Internal)
390    return llvm::Function::InternalLinkage;
391
392  if (D->hasAttr<DLLExportAttr>())
393    return llvm::Function::DLLExportLinkage;
394
395  if (D->hasAttr<WeakAttr>())
396    return llvm::Function::WeakAnyLinkage;
397
398  // In C99 mode, 'inline' functions are guaranteed to have a strong
399  // definition somewhere else, so we can use available_externally linkage.
400  if (Linkage == GVA_C99Inline)
401    return llvm::Function::AvailableExternallyLinkage;
402
403  // In C++, the compiler has to emit a definition in every translation unit
404  // that references the function.  We should use linkonce_odr because
405  // a) if all references in this translation unit are optimized away, we
406  // don't need to codegen it.  b) if the function persists, it needs to be
407  // merged with other definitions. c) C++ has the ODR, so we know the
408  // definition is dependable.
409  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
410    return llvm::Function::LinkOnceODRLinkage;
411
412  // An explicit instantiation of a template has weak linkage, since
413  // explicit instantiations can occur in multiple translation units
414  // and must all be equivalent. However, we are not allowed to
415  // throw away these explicit instantiations.
416  if (Linkage == GVA_ExplicitTemplateInstantiation)
417    return llvm::Function::WeakODRLinkage;
418
419  // Otherwise, we have strong external linkage.
420  assert(Linkage == GVA_StrongExternal);
421  return llvm::Function::ExternalLinkage;
422}
423
424
425/// SetFunctionDefinitionAttributes - Set attributes for a global.
426///
427/// FIXME: This is currently only done for aliases and functions, but not for
428/// variables (these details are set in EmitGlobalVarDefinition for variables).
429void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
430                                                    llvm::GlobalValue *GV) {
431  SetCommonAttributes(D, GV);
432}
433
434void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
435                                              const CGFunctionInfo &Info,
436                                              llvm::Function *F) {
437  unsigned CallingConv;
438  AttributeListType AttributeList;
439  ConstructAttributeList(Info, D, AttributeList, CallingConv);
440  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
441                                          AttributeList.size()));
442  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
443}
444
445void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
446                                                           llvm::Function *F) {
447  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
448    F->addFnAttr(llvm::Attribute::NoUnwind);
449
450  if (D->hasAttr<AlwaysInlineAttr>())
451    F->addFnAttr(llvm::Attribute::AlwaysInline);
452
453  if (D->hasAttr<NoInlineAttr>())
454    F->addFnAttr(llvm::Attribute::NoInline);
455
456  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
457    F->addFnAttr(llvm::Attribute::StackProtect);
458  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
459    F->addFnAttr(llvm::Attribute::StackProtectReq);
460
461  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
462    unsigned width = Context.Target.getCharWidth();
463    F->setAlignment(AA->getAlignment() / width);
464    while ((AA = AA->getNext<AlignedAttr>()))
465      F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
466  }
467  // C++ ABI requires 2-byte alignment for member functions.
468  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
469    F->setAlignment(2);
470}
471
472void CodeGenModule::SetCommonAttributes(const Decl *D,
473                                        llvm::GlobalValue *GV) {
474  setGlobalVisibility(GV, D);
475
476  if (D->hasAttr<UsedAttr>())
477    AddUsedGlobal(GV);
478
479  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
480    GV->setSection(SA->getName());
481
482  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
483}
484
485void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
486                                                  llvm::Function *F,
487                                                  const CGFunctionInfo &FI) {
488  SetLLVMFunctionAttributes(D, FI, F);
489  SetLLVMFunctionAttributesForDefinition(D, F);
490
491  F->setLinkage(llvm::Function::InternalLinkage);
492
493  SetCommonAttributes(D, F);
494}
495
496void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
497                                          llvm::Function *F,
498                                          bool IsIncompleteFunction) {
499  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
500
501  if (!IsIncompleteFunction)
502    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
503
504  // Only a few attributes are set on declarations; these may later be
505  // overridden by a definition.
506
507  if (FD->hasAttr<DLLImportAttr>()) {
508    F->setLinkage(llvm::Function::DLLImportLinkage);
509  } else if (FD->hasAttr<WeakAttr>() ||
510             FD->hasAttr<WeakImportAttr>()) {
511    // "extern_weak" is overloaded in LLVM; we probably should have
512    // separate linkage types for this.
513    F->setLinkage(llvm::Function::ExternalWeakLinkage);
514  } else {
515    F->setLinkage(llvm::Function::ExternalLinkage);
516  }
517
518  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
519    F->setSection(SA->getName());
520}
521
522void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
523  assert(!GV->isDeclaration() &&
524         "Only globals with definition can force usage.");
525  LLVMUsed.push_back(GV);
526}
527
528void CodeGenModule::EmitLLVMUsed() {
529  // Don't create llvm.used if there is no need.
530  if (LLVMUsed.empty())
531    return;
532
533  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
534
535  // Convert LLVMUsed to what ConstantArray needs.
536  std::vector<llvm::Constant*> UsedArray;
537  UsedArray.resize(LLVMUsed.size());
538  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
539    UsedArray[i] =
540     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
541                                      i8PTy);
542  }
543
544  if (UsedArray.empty())
545    return;
546  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
547
548  llvm::GlobalVariable *GV =
549    new llvm::GlobalVariable(getModule(), ATy, false,
550                             llvm::GlobalValue::AppendingLinkage,
551                             llvm::ConstantArray::get(ATy, UsedArray),
552                             "llvm.used");
553
554  GV->setSection("llvm.metadata");
555}
556
557void CodeGenModule::EmitDeferred() {
558  // Emit code for any potentially referenced deferred decls.  Since a
559  // previously unused static decl may become used during the generation of code
560  // for a static function, iterate until no  changes are made.
561
562  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
563    if (!DeferredVTables.empty()) {
564      const CXXRecordDecl *RD = DeferredVTables.back();
565      DeferredVTables.pop_back();
566      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
567      continue;
568    }
569
570    GlobalDecl D = DeferredDeclsToEmit.back();
571    DeferredDeclsToEmit.pop_back();
572
573    // Check to see if we've already emitted this.  This is necessary
574    // for a couple of reasons: first, decls can end up in the
575    // deferred-decls queue multiple times, and second, decls can end
576    // up with definitions in unusual ways (e.g. by an extern inline
577    // function acquiring a strong function redefinition).  Just
578    // ignore these cases.
579    //
580    // TODO: That said, looking this up multiple times is very wasteful.
581    llvm::StringRef Name = getMangledName(D);
582    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
583    assert(CGRef && "Deferred decl wasn't referenced?");
584
585    if (!CGRef->isDeclaration())
586      continue;
587
588    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
589    // purposes an alias counts as a definition.
590    if (isa<llvm::GlobalAlias>(CGRef))
591      continue;
592
593    // Otherwise, emit the definition and move on to the next one.
594    EmitGlobalDefinition(D);
595  }
596}
597
598/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
599/// annotation information for a given GlobalValue.  The annotation struct is
600/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
601/// GlobalValue being annotated.  The second field is the constant string
602/// created from the AnnotateAttr's annotation.  The third field is a constant
603/// string containing the name of the translation unit.  The fourth field is
604/// the line number in the file of the annotated value declaration.
605///
606/// FIXME: this does not unique the annotation string constants, as llvm-gcc
607///        appears to.
608///
609llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
610                                                const AnnotateAttr *AA,
611                                                unsigned LineNo) {
612  llvm::Module *M = &getModule();
613
614  // get [N x i8] constants for the annotation string, and the filename string
615  // which are the 2nd and 3rd elements of the global annotation structure.
616  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
617  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
618                                                  AA->getAnnotation(), true);
619  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
620                                                  M->getModuleIdentifier(),
621                                                  true);
622
623  // Get the two global values corresponding to the ConstantArrays we just
624  // created to hold the bytes of the strings.
625  llvm::GlobalValue *annoGV =
626    new llvm::GlobalVariable(*M, anno->getType(), false,
627                             llvm::GlobalValue::PrivateLinkage, anno,
628                             GV->getName());
629  // translation unit name string, emitted into the llvm.metadata section.
630  llvm::GlobalValue *unitGV =
631    new llvm::GlobalVariable(*M, unit->getType(), false,
632                             llvm::GlobalValue::PrivateLinkage, unit,
633                             ".str");
634
635  // Create the ConstantStruct for the global annotation.
636  llvm::Constant *Fields[4] = {
637    llvm::ConstantExpr::getBitCast(GV, SBP),
638    llvm::ConstantExpr::getBitCast(annoGV, SBP),
639    llvm::ConstantExpr::getBitCast(unitGV, SBP),
640    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
641  };
642  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
643}
644
645bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
646  // Never defer when EmitAllDecls is specified.
647  if (Features.EmitAllDecls)
648    return false;
649
650  return !getContext().DeclMustBeEmitted(Global);
651}
652
653llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
654  const AliasAttr *AA = VD->getAttr<AliasAttr>();
655  assert(AA && "No alias?");
656
657  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
658
659  // See if there is already something with the target's name in the module.
660  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
661
662  llvm::Constant *Aliasee;
663  if (isa<llvm::FunctionType>(DeclTy))
664    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
665  else
666    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
667                                    llvm::PointerType::getUnqual(DeclTy), 0);
668  if (!Entry) {
669    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
670    F->setLinkage(llvm::Function::ExternalWeakLinkage);
671    WeakRefReferences.insert(F);
672  }
673
674  return Aliasee;
675}
676
677void CodeGenModule::EmitGlobal(GlobalDecl GD) {
678  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
679
680  // Weak references don't produce any output by themselves.
681  if (Global->hasAttr<WeakRefAttr>())
682    return;
683
684  // If this is an alias definition (which otherwise looks like a declaration)
685  // emit it now.
686  if (Global->hasAttr<AliasAttr>())
687    return EmitAliasDefinition(GD);
688
689  // Ignore declarations, they will be emitted on their first use.
690  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
691    if (FD->getIdentifier()) {
692      llvm::StringRef Name = FD->getName();
693      if (Name == "_Block_object_assign") {
694        BlockObjectAssignDecl = FD;
695      } else if (Name == "_Block_object_dispose") {
696        BlockObjectDisposeDecl = FD;
697      }
698    }
699
700    // Forward declarations are emitted lazily on first use.
701    if (!FD->isThisDeclarationADefinition())
702      return;
703  } else {
704    const VarDecl *VD = cast<VarDecl>(Global);
705    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
706
707    if (VD->getIdentifier()) {
708      llvm::StringRef Name = VD->getName();
709      if (Name == "_NSConcreteGlobalBlock") {
710        NSConcreteGlobalBlockDecl = VD;
711      } else if (Name == "_NSConcreteStackBlock") {
712        NSConcreteStackBlockDecl = VD;
713      }
714    }
715
716
717    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
718      return;
719  }
720
721  // Defer code generation when possible if this is a static definition, inline
722  // function etc.  These we only want to emit if they are used.
723  if (!MayDeferGeneration(Global)) {
724    // Emit the definition if it can't be deferred.
725    EmitGlobalDefinition(GD);
726    return;
727  }
728
729  // If we're deferring emission of a C++ variable with an
730  // initializer, remember the order in which it appeared in the file.
731  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
732      cast<VarDecl>(Global)->hasInit()) {
733    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
734    CXXGlobalInits.push_back(0);
735  }
736
737  // If the value has already been used, add it directly to the
738  // DeferredDeclsToEmit list.
739  llvm::StringRef MangledName = getMangledName(GD);
740  if (GetGlobalValue(MangledName))
741    DeferredDeclsToEmit.push_back(GD);
742  else {
743    // Otherwise, remember that we saw a deferred decl with this name.  The
744    // first use of the mangled name will cause it to move into
745    // DeferredDeclsToEmit.
746    DeferredDecls[MangledName] = GD;
747  }
748}
749
750void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
751  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
752
753  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
754                                 Context.getSourceManager(),
755                                 "Generating code for declaration");
756
757  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
758    // At -O0, don't generate IR for functions with available_externally
759    // linkage.
760    if (CodeGenOpts.OptimizationLevel == 0 &&
761        !Function->hasAttr<AlwaysInlineAttr>() &&
762        getFunctionLinkage(Function)
763                                  == llvm::Function::AvailableExternallyLinkage)
764      return;
765
766    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
767      if (Method->isVirtual())
768        getVTables().EmitThunks(GD);
769
770      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
771        return EmitCXXConstructor(CD, GD.getCtorType());
772
773      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
774        return EmitCXXDestructor(DD, GD.getDtorType());
775    }
776
777    return EmitGlobalFunctionDefinition(GD);
778  }
779
780  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
781    return EmitGlobalVarDefinition(VD);
782
783  assert(0 && "Invalid argument to EmitGlobalDefinition()");
784}
785
786/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
787/// module, create and return an llvm Function with the specified type. If there
788/// is something in the module with the specified name, return it potentially
789/// bitcasted to the right type.
790///
791/// If D is non-null, it specifies a decl that correspond to this.  This is used
792/// to set the attributes on the function when it is first created.
793llvm::Constant *
794CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
795                                       const llvm::Type *Ty,
796                                       GlobalDecl D) {
797  // Lookup the entry, lazily creating it if necessary.
798  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
799  if (Entry) {
800    if (WeakRefReferences.count(Entry)) {
801      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
802      if (FD && !FD->hasAttr<WeakAttr>())
803        Entry->setLinkage(llvm::Function::ExternalLinkage);
804
805      WeakRefReferences.erase(Entry);
806    }
807
808    if (Entry->getType()->getElementType() == Ty)
809      return Entry;
810
811    // Make sure the result is of the correct type.
812    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
813    return llvm::ConstantExpr::getBitCast(Entry, PTy);
814  }
815
816  // This function doesn't have a complete type (for example, the return
817  // type is an incomplete struct). Use a fake type instead, and make
818  // sure not to try to set attributes.
819  bool IsIncompleteFunction = false;
820
821  const llvm::FunctionType *FTy;
822  if (isa<llvm::FunctionType>(Ty)) {
823    FTy = cast<llvm::FunctionType>(Ty);
824  } else {
825    FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
826                                  std::vector<const llvm::Type*>(), false);
827    IsIncompleteFunction = true;
828  }
829
830  llvm::Function *F = llvm::Function::Create(FTy,
831                                             llvm::Function::ExternalLinkage,
832                                             MangledName, &getModule());
833  assert(F->getName() == MangledName && "name was uniqued!");
834  if (D.getDecl())
835    SetFunctionAttributes(D, F, IsIncompleteFunction);
836
837  // This is the first use or definition of a mangled name.  If there is a
838  // deferred decl with this name, remember that we need to emit it at the end
839  // of the file.
840  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
841  if (DDI != DeferredDecls.end()) {
842    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
843    // list, and remove it from DeferredDecls (since we don't need it anymore).
844    DeferredDeclsToEmit.push_back(DDI->second);
845    DeferredDecls.erase(DDI);
846  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
847    // If this the first reference to a C++ inline function in a class, queue up
848    // the deferred function body for emission.  These are not seen as
849    // top-level declarations.
850    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
851      DeferredDeclsToEmit.push_back(D);
852    // A called constructor which has no definition or declaration need be
853    // synthesized.
854    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
855      if (CD->isImplicit()) {
856        assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
857        DeferredDeclsToEmit.push_back(D);
858      }
859    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
860      if (DD->isImplicit()) {
861        assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
862        DeferredDeclsToEmit.push_back(D);
863      }
864    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
865      if (MD->isCopyAssignment() && MD->isImplicit()) {
866        assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
867        DeferredDeclsToEmit.push_back(D);
868      }
869    }
870  }
871
872  // Make sure the result is of the requested type.
873  if (!IsIncompleteFunction) {
874    assert(F->getType()->getElementType() == Ty);
875    return F;
876  }
877
878  const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
879  return llvm::ConstantExpr::getBitCast(F, PTy);
880}
881
882/// GetAddrOfFunction - Return the address of the given function.  If Ty is
883/// non-null, then this function will use the specified type if it has to
884/// create it (this occurs when we see a definition of the function).
885llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
886                                                 const llvm::Type *Ty) {
887  // If there was no specific requested type, just convert it now.
888  if (!Ty)
889    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
890
891  llvm::StringRef MangledName = getMangledName(GD);
892  return GetOrCreateLLVMFunction(MangledName, Ty, GD);
893}
894
895/// CreateRuntimeFunction - Create a new runtime function with the specified
896/// type and name.
897llvm::Constant *
898CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
899                                     llvm::StringRef Name) {
900  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
901}
902
903static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
904  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
905    return false;
906  if (Context.getLangOptions().CPlusPlus &&
907      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
908    // FIXME: We should do something fancier here!
909    return false;
910  }
911  return true;
912}
913
914/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
915/// create and return an llvm GlobalVariable with the specified type.  If there
916/// is something in the module with the specified name, return it potentially
917/// bitcasted to the right type.
918///
919/// If D is non-null, it specifies a decl that correspond to this.  This is used
920/// to set the attributes on the global when it is first created.
921llvm::Constant *
922CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
923                                     const llvm::PointerType *Ty,
924                                     const VarDecl *D) {
925  // Lookup the entry, lazily creating it if necessary.
926  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
927  if (Entry) {
928    if (WeakRefReferences.count(Entry)) {
929      if (D && !D->hasAttr<WeakAttr>())
930        Entry->setLinkage(llvm::Function::ExternalLinkage);
931
932      WeakRefReferences.erase(Entry);
933    }
934
935    if (Entry->getType() == Ty)
936      return Entry;
937
938    // Make sure the result is of the correct type.
939    return llvm::ConstantExpr::getBitCast(Entry, Ty);
940  }
941
942  // This is the first use or definition of a mangled name.  If there is a
943  // deferred decl with this name, remember that we need to emit it at the end
944  // of the file.
945  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
946  if (DDI != DeferredDecls.end()) {
947    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
948    // list, and remove it from DeferredDecls (since we don't need it anymore).
949    DeferredDeclsToEmit.push_back(DDI->second);
950    DeferredDecls.erase(DDI);
951  }
952
953  llvm::GlobalVariable *GV =
954    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
955                             llvm::GlobalValue::ExternalLinkage,
956                             0, MangledName, 0,
957                             false, Ty->getAddressSpace());
958
959  // Handle things which are present even on external declarations.
960  if (D) {
961    // FIXME: This code is overly simple and should be merged with other global
962    // handling.
963    GV->setConstant(DeclIsConstantGlobal(Context, D));
964
965    // FIXME: Merge with other attribute handling code.
966    if (D->getStorageClass() == VarDecl::PrivateExtern)
967      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
968
969    if (D->hasAttr<WeakAttr>() ||
970        D->hasAttr<WeakImportAttr>())
971      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
972
973    GV->setThreadLocal(D->isThreadSpecified());
974  }
975
976  return GV;
977}
978
979
980/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
981/// given global variable.  If Ty is non-null and if the global doesn't exist,
982/// then it will be greated with the specified type instead of whatever the
983/// normal requested type would be.
984llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
985                                                  const llvm::Type *Ty) {
986  assert(D->hasGlobalStorage() && "Not a global variable");
987  QualType ASTTy = D->getType();
988  if (Ty == 0)
989    Ty = getTypes().ConvertTypeForMem(ASTTy);
990
991  const llvm::PointerType *PTy =
992    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
993
994  llvm::StringRef MangledName = getMangledName(D);
995  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
996}
997
998/// CreateRuntimeVariable - Create a new runtime global variable with the
999/// specified type and name.
1000llvm::Constant *
1001CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1002                                     llvm::StringRef Name) {
1003  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1004}
1005
1006void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1007  assert(!D->getInit() && "Cannot emit definite definitions here!");
1008
1009  if (MayDeferGeneration(D)) {
1010    // If we have not seen a reference to this variable yet, place it
1011    // into the deferred declarations table to be emitted if needed
1012    // later.
1013    llvm::StringRef MangledName = getMangledName(D);
1014    if (!GetGlobalValue(MangledName)) {
1015      DeferredDecls[MangledName] = D;
1016      return;
1017    }
1018  }
1019
1020  // The tentative definition is the only definition.
1021  EmitGlobalVarDefinition(D);
1022}
1023
1024void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1025  if (DefinitionRequired)
1026    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1027}
1028
1029llvm::GlobalVariable::LinkageTypes
1030CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1031  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1032    return llvm::GlobalVariable::InternalLinkage;
1033
1034  if (const CXXMethodDecl *KeyFunction
1035                                    = RD->getASTContext().getKeyFunction(RD)) {
1036    // If this class has a key function, use that to determine the linkage of
1037    // the vtable.
1038    const FunctionDecl *Def = 0;
1039    if (KeyFunction->hasBody(Def))
1040      KeyFunction = cast<CXXMethodDecl>(Def);
1041
1042    switch (KeyFunction->getTemplateSpecializationKind()) {
1043      case TSK_Undeclared:
1044      case TSK_ExplicitSpecialization:
1045        if (KeyFunction->isInlined())
1046          return llvm::GlobalVariable::WeakODRLinkage;
1047
1048        return llvm::GlobalVariable::ExternalLinkage;
1049
1050      case TSK_ImplicitInstantiation:
1051      case TSK_ExplicitInstantiationDefinition:
1052        return llvm::GlobalVariable::WeakODRLinkage;
1053
1054      case TSK_ExplicitInstantiationDeclaration:
1055        // FIXME: Use available_externally linkage. However, this currently
1056        // breaks LLVM's build due to undefined symbols.
1057        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1058        return llvm::GlobalVariable::WeakODRLinkage;
1059    }
1060  }
1061
1062  switch (RD->getTemplateSpecializationKind()) {
1063  case TSK_Undeclared:
1064  case TSK_ExplicitSpecialization:
1065  case TSK_ImplicitInstantiation:
1066  case TSK_ExplicitInstantiationDefinition:
1067    return llvm::GlobalVariable::WeakODRLinkage;
1068
1069  case TSK_ExplicitInstantiationDeclaration:
1070    // FIXME: Use available_externally linkage. However, this currently
1071    // breaks LLVM's build due to undefined symbols.
1072    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1073    return llvm::GlobalVariable::WeakODRLinkage;
1074  }
1075
1076  // Silence GCC warning.
1077  return llvm::GlobalVariable::WeakODRLinkage;
1078}
1079
1080CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1081    return CharUnits::fromQuantity(
1082      TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1083}
1084
1085void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1086  llvm::Constant *Init = 0;
1087  QualType ASTTy = D->getType();
1088  bool NonConstInit = false;
1089
1090  const Expr *InitExpr = D->getAnyInitializer();
1091
1092  if (!InitExpr) {
1093    // This is a tentative definition; tentative definitions are
1094    // implicitly initialized with { 0 }.
1095    //
1096    // Note that tentative definitions are only emitted at the end of
1097    // a translation unit, so they should never have incomplete
1098    // type. In addition, EmitTentativeDefinition makes sure that we
1099    // never attempt to emit a tentative definition if a real one
1100    // exists. A use may still exists, however, so we still may need
1101    // to do a RAUW.
1102    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1103    Init = EmitNullConstant(D->getType());
1104  } else {
1105    Init = EmitConstantExpr(InitExpr, D->getType());
1106    if (!Init) {
1107      QualType T = InitExpr->getType();
1108      if (D->getType()->isReferenceType())
1109        T = D->getType();
1110
1111      if (getLangOptions().CPlusPlus) {
1112        EmitCXXGlobalVarDeclInitFunc(D);
1113        Init = EmitNullConstant(T);
1114        NonConstInit = true;
1115      } else {
1116        ErrorUnsupported(D, "static initializer");
1117        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1118      }
1119    } else {
1120      // We don't need an initializer, so remove the entry for the delayed
1121      // initializer position (just in case this entry was delayed).
1122      if (getLangOptions().CPlusPlus)
1123        DelayedCXXInitPosition.erase(D);
1124    }
1125  }
1126
1127  const llvm::Type* InitType = Init->getType();
1128  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1129
1130  // Strip off a bitcast if we got one back.
1131  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1132    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1133           // all zero index gep.
1134           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1135    Entry = CE->getOperand(0);
1136  }
1137
1138  // Entry is now either a Function or GlobalVariable.
1139  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1140
1141  // We have a definition after a declaration with the wrong type.
1142  // We must make a new GlobalVariable* and update everything that used OldGV
1143  // (a declaration or tentative definition) with the new GlobalVariable*
1144  // (which will be a definition).
1145  //
1146  // This happens if there is a prototype for a global (e.g.
1147  // "extern int x[];") and then a definition of a different type (e.g.
1148  // "int x[10];"). This also happens when an initializer has a different type
1149  // from the type of the global (this happens with unions).
1150  if (GV == 0 ||
1151      GV->getType()->getElementType() != InitType ||
1152      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1153
1154    // Move the old entry aside so that we'll create a new one.
1155    Entry->setName(llvm::StringRef());
1156
1157    // Make a new global with the correct type, this is now guaranteed to work.
1158    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1159
1160    // Replace all uses of the old global with the new global
1161    llvm::Constant *NewPtrForOldDecl =
1162        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1163    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1164
1165    // Erase the old global, since it is no longer used.
1166    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1167  }
1168
1169  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1170    SourceManager &SM = Context.getSourceManager();
1171    AddAnnotation(EmitAnnotateAttr(GV, AA,
1172                              SM.getInstantiationLineNumber(D->getLocation())));
1173  }
1174
1175  GV->setInitializer(Init);
1176
1177  // If it is safe to mark the global 'constant', do so now.
1178  GV->setConstant(false);
1179  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1180    GV->setConstant(true);
1181
1182  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1183
1184  // Set the llvm linkage type as appropriate.
1185  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1186  if (Linkage == GVA_Internal)
1187    GV->setLinkage(llvm::Function::InternalLinkage);
1188  else if (D->hasAttr<DLLImportAttr>())
1189    GV->setLinkage(llvm::Function::DLLImportLinkage);
1190  else if (D->hasAttr<DLLExportAttr>())
1191    GV->setLinkage(llvm::Function::DLLExportLinkage);
1192  else if (D->hasAttr<WeakAttr>()) {
1193    if (GV->isConstant())
1194      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1195    else
1196      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1197  } else if (Linkage == GVA_TemplateInstantiation ||
1198             Linkage == GVA_ExplicitTemplateInstantiation)
1199    // FIXME: It seems like we can provide more specific linkage here
1200    // (LinkOnceODR, WeakODR).
1201    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1202  else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1203           !D->hasExternalStorage() && !D->getInit() &&
1204           !D->getAttr<SectionAttr>()) {
1205    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1206    // common vars aren't constant even if declared const.
1207    GV->setConstant(false);
1208  } else
1209    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1210
1211  SetCommonAttributes(D, GV);
1212
1213  // Emit global variable debug information.
1214  if (CGDebugInfo *DI = getDebugInfo()) {
1215    DI->setLocation(D->getLocation());
1216    DI->EmitGlobalVariable(GV, D);
1217  }
1218}
1219
1220/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1221/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1222/// existing call uses of the old function in the module, this adjusts them to
1223/// call the new function directly.
1224///
1225/// This is not just a cleanup: the always_inline pass requires direct calls to
1226/// functions to be able to inline them.  If there is a bitcast in the way, it
1227/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1228/// run at -O0.
1229static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1230                                                      llvm::Function *NewFn) {
1231  // If we're redefining a global as a function, don't transform it.
1232  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1233  if (OldFn == 0) return;
1234
1235  const llvm::Type *NewRetTy = NewFn->getReturnType();
1236  llvm::SmallVector<llvm::Value*, 4> ArgList;
1237
1238  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1239       UI != E; ) {
1240    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1241    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1242    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1243    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1244    llvm::CallSite CS(CI);
1245    if (!CI || !CS.isCallee(I)) continue;
1246
1247    // If the return types don't match exactly, and if the call isn't dead, then
1248    // we can't transform this call.
1249    if (CI->getType() != NewRetTy && !CI->use_empty())
1250      continue;
1251
1252    // If the function was passed too few arguments, don't transform.  If extra
1253    // arguments were passed, we silently drop them.  If any of the types
1254    // mismatch, we don't transform.
1255    unsigned ArgNo = 0;
1256    bool DontTransform = false;
1257    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1258         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1259      if (CS.arg_size() == ArgNo ||
1260          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1261        DontTransform = true;
1262        break;
1263      }
1264    }
1265    if (DontTransform)
1266      continue;
1267
1268    // Okay, we can transform this.  Create the new call instruction and copy
1269    // over the required information.
1270    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1271    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1272                                                     ArgList.end(), "", CI);
1273    ArgList.clear();
1274    if (!NewCall->getType()->isVoidTy())
1275      NewCall->takeName(CI);
1276    NewCall->setAttributes(CI->getAttributes());
1277    NewCall->setCallingConv(CI->getCallingConv());
1278
1279    // Finally, remove the old call, replacing any uses with the new one.
1280    if (!CI->use_empty())
1281      CI->replaceAllUsesWith(NewCall);
1282
1283    // Copy debug location attached to CI.
1284    if (!CI->getDebugLoc().isUnknown())
1285      NewCall->setDebugLoc(CI->getDebugLoc());
1286    CI->eraseFromParent();
1287  }
1288}
1289
1290
1291void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1292  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1293  const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1294  getMangleContext().mangleInitDiscriminator();
1295  // Get or create the prototype for the function.
1296  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1297
1298  // Strip off a bitcast if we got one back.
1299  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1300    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1301    Entry = CE->getOperand(0);
1302  }
1303
1304
1305  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1306    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1307
1308    // If the types mismatch then we have to rewrite the definition.
1309    assert(OldFn->isDeclaration() &&
1310           "Shouldn't replace non-declaration");
1311
1312    // F is the Function* for the one with the wrong type, we must make a new
1313    // Function* and update everything that used F (a declaration) with the new
1314    // Function* (which will be a definition).
1315    //
1316    // This happens if there is a prototype for a function
1317    // (e.g. "int f()") and then a definition of a different type
1318    // (e.g. "int f(int x)").  Move the old function aside so that it
1319    // doesn't interfere with GetAddrOfFunction.
1320    OldFn->setName(llvm::StringRef());
1321    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1322
1323    // If this is an implementation of a function without a prototype, try to
1324    // replace any existing uses of the function (which may be calls) with uses
1325    // of the new function
1326    if (D->getType()->isFunctionNoProtoType()) {
1327      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1328      OldFn->removeDeadConstantUsers();
1329    }
1330
1331    // Replace uses of F with the Function we will endow with a body.
1332    if (!Entry->use_empty()) {
1333      llvm::Constant *NewPtrForOldDecl =
1334        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1335      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1336    }
1337
1338    // Ok, delete the old function now, which is dead.
1339    OldFn->eraseFromParent();
1340
1341    Entry = NewFn;
1342  }
1343
1344  llvm::Function *Fn = cast<llvm::Function>(Entry);
1345  setFunctionLinkage(D, Fn);
1346
1347  CodeGenFunction(*this).GenerateCode(D, Fn);
1348
1349  SetFunctionDefinitionAttributes(D, Fn);
1350  SetLLVMFunctionAttributesForDefinition(D, Fn);
1351
1352  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1353    AddGlobalCtor(Fn, CA->getPriority());
1354  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1355    AddGlobalDtor(Fn, DA->getPriority());
1356}
1357
1358void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1359  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1360  const AliasAttr *AA = D->getAttr<AliasAttr>();
1361  assert(AA && "Not an alias?");
1362
1363  llvm::StringRef MangledName = getMangledName(GD);
1364
1365  // If there is a definition in the module, then it wins over the alias.
1366  // This is dubious, but allow it to be safe.  Just ignore the alias.
1367  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1368  if (Entry && !Entry->isDeclaration())
1369    return;
1370
1371  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1372
1373  // Create a reference to the named value.  This ensures that it is emitted
1374  // if a deferred decl.
1375  llvm::Constant *Aliasee;
1376  if (isa<llvm::FunctionType>(DeclTy))
1377    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1378  else
1379    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1380                                    llvm::PointerType::getUnqual(DeclTy), 0);
1381
1382  // Create the new alias itself, but don't set a name yet.
1383  llvm::GlobalValue *GA =
1384    new llvm::GlobalAlias(Aliasee->getType(),
1385                          llvm::Function::ExternalLinkage,
1386                          "", Aliasee, &getModule());
1387
1388  if (Entry) {
1389    assert(Entry->isDeclaration());
1390
1391    // If there is a declaration in the module, then we had an extern followed
1392    // by the alias, as in:
1393    //   extern int test6();
1394    //   ...
1395    //   int test6() __attribute__((alias("test7")));
1396    //
1397    // Remove it and replace uses of it with the alias.
1398    GA->takeName(Entry);
1399
1400    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1401                                                          Entry->getType()));
1402    Entry->eraseFromParent();
1403  } else {
1404    GA->setName(MangledName);
1405  }
1406
1407  // Set attributes which are particular to an alias; this is a
1408  // specialization of the attributes which may be set on a global
1409  // variable/function.
1410  if (D->hasAttr<DLLExportAttr>()) {
1411    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1412      // The dllexport attribute is ignored for undefined symbols.
1413      if (FD->hasBody())
1414        GA->setLinkage(llvm::Function::DLLExportLinkage);
1415    } else {
1416      GA->setLinkage(llvm::Function::DLLExportLinkage);
1417    }
1418  } else if (D->hasAttr<WeakAttr>() ||
1419             D->hasAttr<WeakRefAttr>() ||
1420             D->hasAttr<WeakImportAttr>()) {
1421    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1422  }
1423
1424  SetCommonAttributes(D, GA);
1425}
1426
1427/// getBuiltinLibFunction - Given a builtin id for a function like
1428/// "__builtin_fabsf", return a Function* for "fabsf".
1429llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1430                                                  unsigned BuiltinID) {
1431  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1432          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1433         "isn't a lib fn");
1434
1435  // Get the name, skip over the __builtin_ prefix (if necessary).
1436  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1437  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1438    Name += 10;
1439
1440  const llvm::FunctionType *Ty =
1441    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1442
1443  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1444}
1445
1446llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1447                                            unsigned NumTys) {
1448  return llvm::Intrinsic::getDeclaration(&getModule(),
1449                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1450}
1451
1452
1453llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1454                                           const llvm::Type *SrcType,
1455                                           const llvm::Type *SizeType) {
1456  const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1457  return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1458}
1459
1460llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1461                                            const llvm::Type *SrcType,
1462                                            const llvm::Type *SizeType) {
1463  const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1464  return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1465}
1466
1467llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1468                                           const llvm::Type *SizeType) {
1469  const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1470  return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1471}
1472
1473static llvm::StringMapEntry<llvm::Constant*> &
1474GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1475                         const StringLiteral *Literal,
1476                         bool TargetIsLSB,
1477                         bool &IsUTF16,
1478                         unsigned &StringLength) {
1479  unsigned NumBytes = Literal->getByteLength();
1480
1481  // Check for simple case.
1482  if (!Literal->containsNonAsciiOrNull()) {
1483    StringLength = NumBytes;
1484    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1485                                                StringLength));
1486  }
1487
1488  // Otherwise, convert the UTF8 literals into a byte string.
1489  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1490  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1491  UTF16 *ToPtr = &ToBuf[0];
1492
1493  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1494                                               &ToPtr, ToPtr + NumBytes,
1495                                               strictConversion);
1496
1497  // Check for conversion failure.
1498  if (Result != conversionOK) {
1499    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1500    // this duplicate code.
1501    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1502    StringLength = NumBytes;
1503    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1504                                                StringLength));
1505  }
1506
1507  // ConvertUTF8toUTF16 returns the length in ToPtr.
1508  StringLength = ToPtr - &ToBuf[0];
1509
1510  // Render the UTF-16 string into a byte array and convert to the target byte
1511  // order.
1512  //
1513  // FIXME: This isn't something we should need to do here.
1514  llvm::SmallString<128> AsBytes;
1515  AsBytes.reserve(StringLength * 2);
1516  for (unsigned i = 0; i != StringLength; ++i) {
1517    unsigned short Val = ToBuf[i];
1518    if (TargetIsLSB) {
1519      AsBytes.push_back(Val & 0xFF);
1520      AsBytes.push_back(Val >> 8);
1521    } else {
1522      AsBytes.push_back(Val >> 8);
1523      AsBytes.push_back(Val & 0xFF);
1524    }
1525  }
1526  // Append one extra null character, the second is automatically added by our
1527  // caller.
1528  AsBytes.push_back(0);
1529
1530  IsUTF16 = true;
1531  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1532}
1533
1534llvm::Constant *
1535CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1536  unsigned StringLength = 0;
1537  bool isUTF16 = false;
1538  llvm::StringMapEntry<llvm::Constant*> &Entry =
1539    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1540                             getTargetData().isLittleEndian(),
1541                             isUTF16, StringLength);
1542
1543  if (llvm::Constant *C = Entry.getValue())
1544    return C;
1545
1546  llvm::Constant *Zero =
1547      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1548  llvm::Constant *Zeros[] = { Zero, Zero };
1549
1550  // If we don't already have it, get __CFConstantStringClassReference.
1551  if (!CFConstantStringClassRef) {
1552    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1553    Ty = llvm::ArrayType::get(Ty, 0);
1554    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1555                                           "__CFConstantStringClassReference");
1556    // Decay array -> ptr
1557    CFConstantStringClassRef =
1558      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1559  }
1560
1561  QualType CFTy = getContext().getCFConstantStringType();
1562
1563  const llvm::StructType *STy =
1564    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1565
1566  std::vector<llvm::Constant*> Fields(4);
1567
1568  // Class pointer.
1569  Fields[0] = CFConstantStringClassRef;
1570
1571  // Flags.
1572  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1573  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1574    llvm::ConstantInt::get(Ty, 0x07C8);
1575
1576  // String pointer.
1577  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1578
1579  llvm::GlobalValue::LinkageTypes Linkage;
1580  bool isConstant;
1581  if (isUTF16) {
1582    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1583    Linkage = llvm::GlobalValue::InternalLinkage;
1584    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1585    // does make plain ascii ones writable.
1586    isConstant = true;
1587  } else {
1588    Linkage = llvm::GlobalValue::PrivateLinkage;
1589    isConstant = !Features.WritableStrings;
1590  }
1591
1592  llvm::GlobalVariable *GV =
1593    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1594                             ".str");
1595  if (isUTF16) {
1596    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1597    GV->setAlignment(Align.getQuantity());
1598  }
1599  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1600
1601  // String length.
1602  Ty = getTypes().ConvertType(getContext().LongTy);
1603  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1604
1605  // The struct.
1606  C = llvm::ConstantStruct::get(STy, Fields);
1607  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1608                                llvm::GlobalVariable::PrivateLinkage, C,
1609                                "_unnamed_cfstring_");
1610  if (const char *Sect = getContext().Target.getCFStringSection())
1611    GV->setSection(Sect);
1612  Entry.setValue(GV);
1613
1614  return GV;
1615}
1616
1617llvm::Constant *
1618CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1619  unsigned StringLength = 0;
1620  bool isUTF16 = false;
1621  llvm::StringMapEntry<llvm::Constant*> &Entry =
1622    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1623                             getTargetData().isLittleEndian(),
1624                             isUTF16, StringLength);
1625
1626  if (llvm::Constant *C = Entry.getValue())
1627    return C;
1628
1629  llvm::Constant *Zero =
1630  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1631  llvm::Constant *Zeros[] = { Zero, Zero };
1632
1633  // If we don't already have it, get _NSConstantStringClassReference.
1634  if (!NSConstantStringClassRef) {
1635    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1636    Ty = llvm::ArrayType::get(Ty, 0);
1637    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1638                                        Features.ObjCNonFragileABI ?
1639                                        "OBJC_CLASS_$_NSConstantString" :
1640                                        "_NSConstantStringClassReference");
1641    // Decay array -> ptr
1642    NSConstantStringClassRef =
1643      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1644  }
1645
1646  QualType NSTy = getContext().getNSConstantStringType();
1647
1648  const llvm::StructType *STy =
1649  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1650
1651  std::vector<llvm::Constant*> Fields(3);
1652
1653  // Class pointer.
1654  Fields[0] = NSConstantStringClassRef;
1655
1656  // String pointer.
1657  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1658
1659  llvm::GlobalValue::LinkageTypes Linkage;
1660  bool isConstant;
1661  if (isUTF16) {
1662    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1663    Linkage = llvm::GlobalValue::InternalLinkage;
1664    // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1665    // does make plain ascii ones writable.
1666    isConstant = true;
1667  } else {
1668    Linkage = llvm::GlobalValue::PrivateLinkage;
1669    isConstant = !Features.WritableStrings;
1670  }
1671
1672  llvm::GlobalVariable *GV =
1673  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1674                           ".str");
1675  if (isUTF16) {
1676    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1677    GV->setAlignment(Align.getQuantity());
1678  }
1679  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1680
1681  // String length.
1682  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1683  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1684
1685  // The struct.
1686  C = llvm::ConstantStruct::get(STy, Fields);
1687  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1688                                llvm::GlobalVariable::PrivateLinkage, C,
1689                                "_unnamed_nsstring_");
1690  // FIXME. Fix section.
1691  if (const char *Sect =
1692        Features.ObjCNonFragileABI
1693          ? getContext().Target.getNSStringNonFragileABISection()
1694          : getContext().Target.getNSStringSection())
1695    GV->setSection(Sect);
1696  Entry.setValue(GV);
1697
1698  return GV;
1699}
1700
1701/// GetStringForStringLiteral - Return the appropriate bytes for a
1702/// string literal, properly padded to match the literal type.
1703std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1704  const char *StrData = E->getStrData();
1705  unsigned Len = E->getByteLength();
1706
1707  const ConstantArrayType *CAT =
1708    getContext().getAsConstantArrayType(E->getType());
1709  assert(CAT && "String isn't pointer or array!");
1710
1711  // Resize the string to the right size.
1712  std::string Str(StrData, StrData+Len);
1713  uint64_t RealLen = CAT->getSize().getZExtValue();
1714
1715  if (E->isWide())
1716    RealLen *= getContext().Target.getWCharWidth()/8;
1717
1718  Str.resize(RealLen, '\0');
1719
1720  return Str;
1721}
1722
1723/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1724/// constant array for the given string literal.
1725llvm::Constant *
1726CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1727  // FIXME: This can be more efficient.
1728  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1729  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1730  if (S->isWide()) {
1731    llvm::Type *DestTy =
1732        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1733    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1734  }
1735  return C;
1736}
1737
1738/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1739/// array for the given ObjCEncodeExpr node.
1740llvm::Constant *
1741CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1742  std::string Str;
1743  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1744
1745  return GetAddrOfConstantCString(Str);
1746}
1747
1748
1749/// GenerateWritableString -- Creates storage for a string literal.
1750static llvm::Constant *GenerateStringLiteral(const std::string &str,
1751                                             bool constant,
1752                                             CodeGenModule &CGM,
1753                                             const char *GlobalName) {
1754  // Create Constant for this string literal. Don't add a '\0'.
1755  llvm::Constant *C =
1756      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1757
1758  // Create a global variable for this string
1759  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1760                                  llvm::GlobalValue::PrivateLinkage,
1761                                  C, GlobalName);
1762}
1763
1764/// GetAddrOfConstantString - Returns a pointer to a character array
1765/// containing the literal. This contents are exactly that of the
1766/// given string, i.e. it will not be null terminated automatically;
1767/// see GetAddrOfConstantCString. Note that whether the result is
1768/// actually a pointer to an LLVM constant depends on
1769/// Feature.WriteableStrings.
1770///
1771/// The result has pointer to array type.
1772llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1773                                                       const char *GlobalName) {
1774  bool IsConstant = !Features.WritableStrings;
1775
1776  // Get the default prefix if a name wasn't specified.
1777  if (!GlobalName)
1778    GlobalName = ".str";
1779
1780  // Don't share any string literals if strings aren't constant.
1781  if (!IsConstant)
1782    return GenerateStringLiteral(str, false, *this, GlobalName);
1783
1784  llvm::StringMapEntry<llvm::Constant *> &Entry =
1785    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1786
1787  if (Entry.getValue())
1788    return Entry.getValue();
1789
1790  // Create a global variable for this.
1791  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1792  Entry.setValue(C);
1793  return C;
1794}
1795
1796/// GetAddrOfConstantCString - Returns a pointer to a character
1797/// array containing the literal and a terminating '\-'
1798/// character. The result has pointer to array type.
1799llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1800                                                        const char *GlobalName){
1801  return GetAddrOfConstantString(str + '\0', GlobalName);
1802}
1803
1804/// EmitObjCPropertyImplementations - Emit information for synthesized
1805/// properties for an implementation.
1806void CodeGenModule::EmitObjCPropertyImplementations(const
1807                                                    ObjCImplementationDecl *D) {
1808  for (ObjCImplementationDecl::propimpl_iterator
1809         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1810    ObjCPropertyImplDecl *PID = *i;
1811
1812    // Dynamic is just for type-checking.
1813    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1814      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1815
1816      // Determine which methods need to be implemented, some may have
1817      // been overridden. Note that ::isSynthesized is not the method
1818      // we want, that just indicates if the decl came from a
1819      // property. What we want to know is if the method is defined in
1820      // this implementation.
1821      if (!D->getInstanceMethod(PD->getGetterName()))
1822        CodeGenFunction(*this).GenerateObjCGetter(
1823                                 const_cast<ObjCImplementationDecl *>(D), PID);
1824      if (!PD->isReadOnly() &&
1825          !D->getInstanceMethod(PD->getSetterName()))
1826        CodeGenFunction(*this).GenerateObjCSetter(
1827                                 const_cast<ObjCImplementationDecl *>(D), PID);
1828    }
1829  }
1830}
1831
1832/// EmitObjCIvarInitializations - Emit information for ivar initialization
1833/// for an implementation.
1834void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1835  if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1836    return;
1837  DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1838  assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1839  IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1840  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1841  ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1842                                                  D->getLocation(),
1843                                                  D->getLocation(), cxxSelector,
1844                                                  getContext().VoidTy, 0,
1845                                                  DC, true, false, true, false,
1846                                                  ObjCMethodDecl::Required);
1847  D->addInstanceMethod(DTORMethod);
1848  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1849
1850  II = &getContext().Idents.get(".cxx_construct");
1851  cxxSelector = getContext().Selectors.getSelector(0, &II);
1852  // The constructor returns 'self'.
1853  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1854                                                D->getLocation(),
1855                                                D->getLocation(), cxxSelector,
1856                                                getContext().getObjCIdType(), 0,
1857                                                DC, true, false, true, false,
1858                                                ObjCMethodDecl::Required);
1859  D->addInstanceMethod(CTORMethod);
1860  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1861
1862
1863}
1864
1865/// EmitNamespace - Emit all declarations in a namespace.
1866void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1867  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1868       I != E; ++I)
1869    EmitTopLevelDecl(*I);
1870}
1871
1872// EmitLinkageSpec - Emit all declarations in a linkage spec.
1873void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1874  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1875      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1876    ErrorUnsupported(LSD, "linkage spec");
1877    return;
1878  }
1879
1880  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1881       I != E; ++I)
1882    EmitTopLevelDecl(*I);
1883}
1884
1885/// EmitTopLevelDecl - Emit code for a single top level declaration.
1886void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1887  // If an error has occurred, stop code generation, but continue
1888  // parsing and semantic analysis (to ensure all warnings and errors
1889  // are emitted).
1890  if (Diags.hasErrorOccurred())
1891    return;
1892
1893  // Ignore dependent declarations.
1894  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1895    return;
1896
1897  switch (D->getKind()) {
1898  case Decl::CXXConversion:
1899  case Decl::CXXMethod:
1900  case Decl::Function:
1901    // Skip function templates
1902    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1903      return;
1904
1905    EmitGlobal(cast<FunctionDecl>(D));
1906    break;
1907
1908  case Decl::Var:
1909    EmitGlobal(cast<VarDecl>(D));
1910    break;
1911
1912  // C++ Decls
1913  case Decl::Namespace:
1914    EmitNamespace(cast<NamespaceDecl>(D));
1915    break;
1916    // No code generation needed.
1917  case Decl::UsingShadow:
1918  case Decl::Using:
1919  case Decl::UsingDirective:
1920  case Decl::ClassTemplate:
1921  case Decl::FunctionTemplate:
1922  case Decl::NamespaceAlias:
1923    break;
1924  case Decl::CXXConstructor:
1925    // Skip function templates
1926    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1927      return;
1928
1929    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1930    break;
1931  case Decl::CXXDestructor:
1932    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1933    break;
1934
1935  case Decl::StaticAssert:
1936    // Nothing to do.
1937    break;
1938
1939  // Objective-C Decls
1940
1941  // Forward declarations, no (immediate) code generation.
1942  case Decl::ObjCClass:
1943  case Decl::ObjCForwardProtocol:
1944  case Decl::ObjCCategory:
1945  case Decl::ObjCInterface:
1946    break;
1947
1948  case Decl::ObjCProtocol:
1949    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1950    break;
1951
1952  case Decl::ObjCCategoryImpl:
1953    // Categories have properties but don't support synthesize so we
1954    // can ignore them here.
1955    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1956    break;
1957
1958  case Decl::ObjCImplementation: {
1959    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1960    EmitObjCPropertyImplementations(OMD);
1961    EmitObjCIvarInitializations(OMD);
1962    Runtime->GenerateClass(OMD);
1963    break;
1964  }
1965  case Decl::ObjCMethod: {
1966    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1967    // If this is not a prototype, emit the body.
1968    if (OMD->getBody())
1969      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1970    break;
1971  }
1972  case Decl::ObjCCompatibleAlias:
1973    // compatibility-alias is a directive and has no code gen.
1974    break;
1975
1976  case Decl::LinkageSpec:
1977    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1978    break;
1979
1980  case Decl::FileScopeAsm: {
1981    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1982    llvm::StringRef AsmString = AD->getAsmString()->getString();
1983
1984    const std::string &S = getModule().getModuleInlineAsm();
1985    if (S.empty())
1986      getModule().setModuleInlineAsm(AsmString);
1987    else
1988      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1989    break;
1990  }
1991
1992  default:
1993    // Make sure we handled everything we should, every other kind is a
1994    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1995    // function. Need to recode Decl::Kind to do that easily.
1996    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1997  }
1998}
1999
2000/// Turns the given pointer into a constant.
2001static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2002                                          const void *Ptr) {
2003  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2004  const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2005  return llvm::ConstantInt::get(i64, PtrInt);
2006}
2007
2008static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2009                                   llvm::NamedMDNode *&GlobalMetadata,
2010                                   GlobalDecl D,
2011                                   llvm::GlobalValue *Addr) {
2012  if (!GlobalMetadata)
2013    GlobalMetadata =
2014      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2015
2016  // TODO: should we report variant information for ctors/dtors?
2017  llvm::Value *Ops[] = {
2018    Addr,
2019    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2020  };
2021  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2022}
2023
2024/// Emits metadata nodes associating all the global values in the
2025/// current module with the Decls they came from.  This is useful for
2026/// projects using IR gen as a subroutine.
2027///
2028/// Since there's currently no way to associate an MDNode directly
2029/// with an llvm::GlobalValue, we create a global named metadata
2030/// with the name 'clang.global.decl.ptrs'.
2031void CodeGenModule::EmitDeclMetadata() {
2032  llvm::NamedMDNode *GlobalMetadata = 0;
2033
2034  // StaticLocalDeclMap
2035  for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2036         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2037       I != E; ++I) {
2038    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2039    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2040  }
2041}
2042
2043/// Emits metadata nodes for all the local variables in the current
2044/// function.
2045void CodeGenFunction::EmitDeclMetadata() {
2046  if (LocalDeclMap.empty()) return;
2047
2048  llvm::LLVMContext &Context = getLLVMContext();
2049
2050  // Find the unique metadata ID for this name.
2051  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2052
2053  llvm::NamedMDNode *GlobalMetadata = 0;
2054
2055  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2056         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2057    const Decl *D = I->first;
2058    llvm::Value *Addr = I->second;
2059
2060    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2061      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2062      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2063    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2064      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2065      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2066    }
2067  }
2068}
2069
2070///@name Custom Runtime Function Interfaces
2071///@{
2072//
2073// FIXME: These can be eliminated once we can have clients just get the required
2074// AST nodes from the builtin tables.
2075
2076llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2077  if (BlockObjectDispose)
2078    return BlockObjectDispose;
2079
2080  // If we saw an explicit decl, use that.
2081  if (BlockObjectDisposeDecl) {
2082    return BlockObjectDispose = GetAddrOfFunction(
2083      BlockObjectDisposeDecl,
2084      getTypes().GetFunctionType(BlockObjectDisposeDecl));
2085  }
2086
2087  // Otherwise construct the function by hand.
2088  const llvm::FunctionType *FTy;
2089  std::vector<const llvm::Type*> ArgTys;
2090  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2091  ArgTys.push_back(PtrToInt8Ty);
2092  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2093  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2094  return BlockObjectDispose =
2095    CreateRuntimeFunction(FTy, "_Block_object_dispose");
2096}
2097
2098llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2099  if (BlockObjectAssign)
2100    return BlockObjectAssign;
2101
2102  // If we saw an explicit decl, use that.
2103  if (BlockObjectAssignDecl) {
2104    return BlockObjectAssign = GetAddrOfFunction(
2105      BlockObjectAssignDecl,
2106      getTypes().GetFunctionType(BlockObjectAssignDecl));
2107  }
2108
2109  // Otherwise construct the function by hand.
2110  const llvm::FunctionType *FTy;
2111  std::vector<const llvm::Type*> ArgTys;
2112  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2113  ArgTys.push_back(PtrToInt8Ty);
2114  ArgTys.push_back(PtrToInt8Ty);
2115  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2116  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2117  return BlockObjectAssign =
2118    CreateRuntimeFunction(FTy, "_Block_object_assign");
2119}
2120
2121llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2122  if (NSConcreteGlobalBlock)
2123    return NSConcreteGlobalBlock;
2124
2125  // If we saw an explicit decl, use that.
2126  if (NSConcreteGlobalBlockDecl) {
2127    return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2128      NSConcreteGlobalBlockDecl,
2129      getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2130  }
2131
2132  // Otherwise construct the variable by hand.
2133  return NSConcreteGlobalBlock = CreateRuntimeVariable(
2134    PtrToInt8Ty, "_NSConcreteGlobalBlock");
2135}
2136
2137llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2138  if (NSConcreteStackBlock)
2139    return NSConcreteStackBlock;
2140
2141  // If we saw an explicit decl, use that.
2142  if (NSConcreteStackBlockDecl) {
2143    return NSConcreteStackBlock = GetAddrOfGlobalVar(
2144      NSConcreteStackBlockDecl,
2145      getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2146  }
2147
2148  // Otherwise construct the variable by hand.
2149  return NSConcreteStackBlock = CreateRuntimeVariable(
2150    PtrToInt8Ty, "_NSConcreteStackBlock");
2151}
2152
2153///@}
2154