CodeGenModule.cpp revision 90e99a84ddd020e8fda79643748243725a2ed071
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "TargetInfo.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/Diagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Basic/ConvertUTF.h"
33#include "llvm/CallingConv.h"
34#include "llvm/Module.h"
35#include "llvm/Intrinsics.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/ADT/Triple.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/ErrorHandling.h"
41using namespace clang;
42using namespace CodeGen;
43
44
45CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                             llvm::Module &M, const llvm::TargetData &TD,
47                             Diagnostic &diags)
48  : BlockModule(C, M, TD, Types, *this), Context(C),
49    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52    VTables(*this), Runtime(0), ABI(0),
53    CFConstantStringClassRef(0), NSConstantStringClassRef(0),
54    VMContext(M.getContext()),
55    NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
56    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
57    BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
58    BlockObjectAssign(0), BlockObjectDispose(0){
59
60  if (!Features.ObjC1)
61    Runtime = 0;
62  else if (!Features.NeXTRuntime)
63    Runtime = CreateGNUObjCRuntime(*this);
64  else if (Features.ObjCNonFragileABI)
65    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
66  else
67    Runtime = CreateMacObjCRuntime(*this);
68
69  if (!Features.CPlusPlus)
70    ABI = 0;
71  else createCXXABI();
72
73  // If debug info generation is enabled, create the CGDebugInfo object.
74  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
75}
76
77CodeGenModule::~CodeGenModule() {
78  delete Runtime;
79  delete ABI;
80  delete DebugInfo;
81}
82
83void CodeGenModule::createObjCRuntime() {
84  if (!Features.NeXTRuntime)
85    Runtime = CreateGNUObjCRuntime(*this);
86  else if (Features.ObjCNonFragileABI)
87    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
88  else
89    Runtime = CreateMacObjCRuntime(*this);
90}
91
92void CodeGenModule::createCXXABI() {
93  if (Context.Target.getCXXABI() == "microsoft")
94    ABI = CreateMicrosoftCXXABI(*this);
95  else
96    ABI = CreateItaniumCXXABI(*this);
97}
98
99void CodeGenModule::Release() {
100  EmitDeferred();
101  EmitCXXGlobalInitFunc();
102  EmitCXXGlobalDtorFunc();
103  if (Runtime)
104    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
105      AddGlobalCtor(ObjCInitFunction);
106  EmitCtorList(GlobalCtors, "llvm.global_ctors");
107  EmitCtorList(GlobalDtors, "llvm.global_dtors");
108  EmitAnnotations();
109  EmitLLVMUsed();
110
111  if (getCodeGenOpts().EmitDeclMetadata)
112    EmitDeclMetadata();
113}
114
115bool CodeGenModule::isTargetDarwin() const {
116  return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
117}
118
119/// ErrorUnsupported - Print out an error that codegen doesn't support the
120/// specified stmt yet.
121void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
122                                     bool OmitOnError) {
123  if (OmitOnError && getDiags().hasErrorOccurred())
124    return;
125  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
126                                               "cannot compile this %0 yet");
127  std::string Msg = Type;
128  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
129    << Msg << S->getSourceRange();
130}
131
132/// ErrorUnsupported - Print out an error that codegen doesn't support the
133/// specified decl yet.
134void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
135                                     bool OmitOnError) {
136  if (OmitOnError && getDiags().hasErrorOccurred())
137    return;
138  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
139                                               "cannot compile this %0 yet");
140  std::string Msg = Type;
141  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
142}
143
144LangOptions::VisibilityMode
145CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
146  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
147    if (VD->getStorageClass() == VarDecl::PrivateExtern)
148      return LangOptions::Hidden;
149
150  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
151    switch (attr->getVisibility()) {
152    default: assert(0 && "Unknown visibility!");
153    case VisibilityAttr::DefaultVisibility:
154      return LangOptions::Default;
155    case VisibilityAttr::HiddenVisibility:
156      return LangOptions::Hidden;
157    case VisibilityAttr::ProtectedVisibility:
158      return LangOptions::Protected;
159    }
160  }
161
162  if (getLangOptions().CPlusPlus) {
163    // Entities subject to an explicit instantiation declaration get default
164    // visibility.
165    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
166      if (Function->getTemplateSpecializationKind()
167                                        == TSK_ExplicitInstantiationDeclaration)
168        return LangOptions::Default;
169    } else if (const ClassTemplateSpecializationDecl *ClassSpec
170                              = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
171      if (ClassSpec->getSpecializationKind()
172                                        == TSK_ExplicitInstantiationDeclaration)
173        return LangOptions::Default;
174    } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
175      if (Record->getTemplateSpecializationKind()
176                                        == TSK_ExplicitInstantiationDeclaration)
177        return LangOptions::Default;
178    } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
179      if (Var->isStaticDataMember() &&
180          (Var->getTemplateSpecializationKind()
181                                      == TSK_ExplicitInstantiationDeclaration))
182        return LangOptions::Default;
183    }
184
185    // If -fvisibility-inlines-hidden was provided, then inline C++ member
186    // functions get "hidden" visibility by default.
187    if (getLangOptions().InlineVisibilityHidden)
188      if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
189        if (Method->isInlined())
190          return LangOptions::Hidden;
191  }
192
193  // This decl should have the same visibility as its parent.
194  if (const DeclContext *DC = D->getDeclContext())
195    return getDeclVisibilityMode(cast<Decl>(DC));
196
197  return getLangOptions().getVisibilityMode();
198}
199
200void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
201                                        const Decl *D) const {
202  // Internal definitions always have default visibility.
203  if (GV->hasLocalLinkage()) {
204    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
205    return;
206  }
207
208  switch (getDeclVisibilityMode(D)) {
209  default: assert(0 && "Unknown visibility!");
210  case LangOptions::Default:
211    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
212  case LangOptions::Hidden:
213    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
214  case LangOptions::Protected:
215    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
216  }
217}
218
219llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
220  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
221
222  llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
223  if (!Str.empty())
224    return Str;
225
226  if (!getMangleContext().shouldMangleDeclName(ND)) {
227    IdentifierInfo *II = ND->getIdentifier();
228    assert(II && "Attempt to mangle unnamed decl.");
229
230    Str = II->getName();
231    return Str;
232  }
233
234  llvm::SmallString<256> Buffer;
235  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
236    getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
237  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
238    getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
239  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
240    getMangleContext().mangleBlock(GD, BD, Buffer);
241  else
242    getMangleContext().mangleName(ND, Buffer);
243
244  // Allocate space for the mangled name.
245  size_t Length = Buffer.size();
246  char *Name = MangledNamesAllocator.Allocate<char>(Length);
247  std::copy(Buffer.begin(), Buffer.end(), Name);
248
249  Str = llvm::StringRef(Name, Length);
250
251  return Str;
252}
253
254void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
255                                   const BlockDecl *BD) {
256  getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
257}
258
259llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
260  return getModule().getNamedValue(Name);
261}
262
263/// AddGlobalCtor - Add a function to the list that will be called before
264/// main() runs.
265void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
266  // FIXME: Type coercion of void()* types.
267  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
268}
269
270/// AddGlobalDtor - Add a function to the list that will be called
271/// when the module is unloaded.
272void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
273  // FIXME: Type coercion of void()* types.
274  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
275}
276
277void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
278  // Ctor function type is void()*.
279  llvm::FunctionType* CtorFTy =
280    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
281                            std::vector<const llvm::Type*>(),
282                            false);
283  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
284
285  // Get the type of a ctor entry, { i32, void ()* }.
286  llvm::StructType* CtorStructTy =
287    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
288                          llvm::PointerType::getUnqual(CtorFTy), NULL);
289
290  // Construct the constructor and destructor arrays.
291  std::vector<llvm::Constant*> Ctors;
292  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
293    std::vector<llvm::Constant*> S;
294    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
295                I->second, false));
296    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
297    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
298  }
299
300  if (!Ctors.empty()) {
301    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
302    new llvm::GlobalVariable(TheModule, AT, false,
303                             llvm::GlobalValue::AppendingLinkage,
304                             llvm::ConstantArray::get(AT, Ctors),
305                             GlobalName);
306  }
307}
308
309void CodeGenModule::EmitAnnotations() {
310  if (Annotations.empty())
311    return;
312
313  // Create a new global variable for the ConstantStruct in the Module.
314  llvm::Constant *Array =
315  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
316                                                Annotations.size()),
317                           Annotations);
318  llvm::GlobalValue *gv =
319  new llvm::GlobalVariable(TheModule, Array->getType(), false,
320                           llvm::GlobalValue::AppendingLinkage, Array,
321                           "llvm.global.annotations");
322  gv->setSection("llvm.metadata");
323}
324
325llvm::GlobalValue::LinkageTypes
326CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
327  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
328
329  if (Linkage == GVA_Internal)
330    return llvm::Function::InternalLinkage;
331
332  if (D->hasAttr<DLLExportAttr>())
333    return llvm::Function::DLLExportLinkage;
334
335  if (D->hasAttr<WeakAttr>())
336    return llvm::Function::WeakAnyLinkage;
337
338  // In C99 mode, 'inline' functions are guaranteed to have a strong
339  // definition somewhere else, so we can use available_externally linkage.
340  if (Linkage == GVA_C99Inline)
341    return llvm::Function::AvailableExternallyLinkage;
342
343  // In C++, the compiler has to emit a definition in every translation unit
344  // that references the function.  We should use linkonce_odr because
345  // a) if all references in this translation unit are optimized away, we
346  // don't need to codegen it.  b) if the function persists, it needs to be
347  // merged with other definitions. c) C++ has the ODR, so we know the
348  // definition is dependable.
349  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
350    return llvm::Function::LinkOnceODRLinkage;
351
352  // An explicit instantiation of a template has weak linkage, since
353  // explicit instantiations can occur in multiple translation units
354  // and must all be equivalent. However, we are not allowed to
355  // throw away these explicit instantiations.
356  if (Linkage == GVA_ExplicitTemplateInstantiation)
357    return llvm::Function::WeakODRLinkage;
358
359  // Otherwise, we have strong external linkage.
360  assert(Linkage == GVA_StrongExternal);
361  return llvm::Function::ExternalLinkage;
362}
363
364
365/// SetFunctionDefinitionAttributes - Set attributes for a global.
366///
367/// FIXME: This is currently only done for aliases and functions, but not for
368/// variables (these details are set in EmitGlobalVarDefinition for variables).
369void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
370                                                    llvm::GlobalValue *GV) {
371  SetCommonAttributes(D, GV);
372}
373
374void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
375                                              const CGFunctionInfo &Info,
376                                              llvm::Function *F) {
377  unsigned CallingConv;
378  AttributeListType AttributeList;
379  ConstructAttributeList(Info, D, AttributeList, CallingConv);
380  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
381                                          AttributeList.size()));
382  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
383}
384
385void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
386                                                           llvm::Function *F) {
387  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
388    F->addFnAttr(llvm::Attribute::NoUnwind);
389
390  if (D->hasAttr<AlwaysInlineAttr>())
391    F->addFnAttr(llvm::Attribute::AlwaysInline);
392
393  if (D->hasAttr<NoInlineAttr>())
394    F->addFnAttr(llvm::Attribute::NoInline);
395
396  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
397    F->addFnAttr(llvm::Attribute::StackProtect);
398  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
399    F->addFnAttr(llvm::Attribute::StackProtectReq);
400
401  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
402    unsigned width = Context.Target.getCharWidth();
403    F->setAlignment(AA->getAlignment() / width);
404    while ((AA = AA->getNext<AlignedAttr>()))
405      F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
406  }
407  // C++ ABI requires 2-byte alignment for member functions.
408  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
409    F->setAlignment(2);
410}
411
412void CodeGenModule::SetCommonAttributes(const Decl *D,
413                                        llvm::GlobalValue *GV) {
414  setGlobalVisibility(GV, D);
415
416  if (D->hasAttr<UsedAttr>())
417    AddUsedGlobal(GV);
418
419  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
420    GV->setSection(SA->getName());
421
422  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
423}
424
425void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
426                                                  llvm::Function *F,
427                                                  const CGFunctionInfo &FI) {
428  SetLLVMFunctionAttributes(D, FI, F);
429  SetLLVMFunctionAttributesForDefinition(D, F);
430
431  F->setLinkage(llvm::Function::InternalLinkage);
432
433  SetCommonAttributes(D, F);
434}
435
436void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
437                                          llvm::Function *F,
438                                          bool IsIncompleteFunction) {
439  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
440
441  if (!IsIncompleteFunction)
442    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
443
444  // Only a few attributes are set on declarations; these may later be
445  // overridden by a definition.
446
447  if (FD->hasAttr<DLLImportAttr>()) {
448    F->setLinkage(llvm::Function::DLLImportLinkage);
449  } else if (FD->hasAttr<WeakAttr>() ||
450             FD->hasAttr<WeakImportAttr>()) {
451    // "extern_weak" is overloaded in LLVM; we probably should have
452    // separate linkage types for this.
453    F->setLinkage(llvm::Function::ExternalWeakLinkage);
454  } else {
455    F->setLinkage(llvm::Function::ExternalLinkage);
456  }
457
458  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
459    F->setSection(SA->getName());
460}
461
462void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
463  assert(!GV->isDeclaration() &&
464         "Only globals with definition can force usage.");
465  LLVMUsed.push_back(GV);
466}
467
468void CodeGenModule::EmitLLVMUsed() {
469  // Don't create llvm.used if there is no need.
470  if (LLVMUsed.empty())
471    return;
472
473  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
474
475  // Convert LLVMUsed to what ConstantArray needs.
476  std::vector<llvm::Constant*> UsedArray;
477  UsedArray.resize(LLVMUsed.size());
478  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
479    UsedArray[i] =
480     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
481                                      i8PTy);
482  }
483
484  if (UsedArray.empty())
485    return;
486  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
487
488  llvm::GlobalVariable *GV =
489    new llvm::GlobalVariable(getModule(), ATy, false,
490                             llvm::GlobalValue::AppendingLinkage,
491                             llvm::ConstantArray::get(ATy, UsedArray),
492                             "llvm.used");
493
494  GV->setSection("llvm.metadata");
495}
496
497void CodeGenModule::EmitDeferred() {
498  // Emit code for any potentially referenced deferred decls.  Since a
499  // previously unused static decl may become used during the generation of code
500  // for a static function, iterate until no  changes are made.
501
502  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
503    if (!DeferredVTables.empty()) {
504      const CXXRecordDecl *RD = DeferredVTables.back();
505      DeferredVTables.pop_back();
506      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
507      continue;
508    }
509
510    GlobalDecl D = DeferredDeclsToEmit.back();
511    DeferredDeclsToEmit.pop_back();
512
513    // Check to see if we've already emitted this.  This is necessary
514    // for a couple of reasons: first, decls can end up in the
515    // deferred-decls queue multiple times, and second, decls can end
516    // up with definitions in unusual ways (e.g. by an extern inline
517    // function acquiring a strong function redefinition).  Just
518    // ignore these cases.
519    //
520    // TODO: That said, looking this up multiple times is very wasteful.
521    llvm::StringRef Name = getMangledName(D);
522    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
523    assert(CGRef && "Deferred decl wasn't referenced?");
524
525    if (!CGRef->isDeclaration())
526      continue;
527
528    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
529    // purposes an alias counts as a definition.
530    if (isa<llvm::GlobalAlias>(CGRef))
531      continue;
532
533    // Otherwise, emit the definition and move on to the next one.
534    EmitGlobalDefinition(D);
535  }
536}
537
538/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
539/// annotation information for a given GlobalValue.  The annotation struct is
540/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
541/// GlobalValue being annotated.  The second field is the constant string
542/// created from the AnnotateAttr's annotation.  The third field is a constant
543/// string containing the name of the translation unit.  The fourth field is
544/// the line number in the file of the annotated value declaration.
545///
546/// FIXME: this does not unique the annotation string constants, as llvm-gcc
547///        appears to.
548///
549llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
550                                                const AnnotateAttr *AA,
551                                                unsigned LineNo) {
552  llvm::Module *M = &getModule();
553
554  // get [N x i8] constants for the annotation string, and the filename string
555  // which are the 2nd and 3rd elements of the global annotation structure.
556  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
557  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
558                                                  AA->getAnnotation(), true);
559  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
560                                                  M->getModuleIdentifier(),
561                                                  true);
562
563  // Get the two global values corresponding to the ConstantArrays we just
564  // created to hold the bytes of the strings.
565  llvm::GlobalValue *annoGV =
566    new llvm::GlobalVariable(*M, anno->getType(), false,
567                             llvm::GlobalValue::PrivateLinkage, anno,
568                             GV->getName());
569  // translation unit name string, emitted into the llvm.metadata section.
570  llvm::GlobalValue *unitGV =
571    new llvm::GlobalVariable(*M, unit->getType(), false,
572                             llvm::GlobalValue::PrivateLinkage, unit,
573                             ".str");
574
575  // Create the ConstantStruct for the global annotation.
576  llvm::Constant *Fields[4] = {
577    llvm::ConstantExpr::getBitCast(GV, SBP),
578    llvm::ConstantExpr::getBitCast(annoGV, SBP),
579    llvm::ConstantExpr::getBitCast(unitGV, SBP),
580    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
581  };
582  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
583}
584
585bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
586  // Never defer when EmitAllDecls is specified.
587  if (Features.EmitAllDecls)
588    return false;
589
590  return !getContext().DeclIsRequiredFunctionOrFileScopedVar(Global);
591}
592
593llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
594  const AliasAttr *AA = VD->getAttr<AliasAttr>();
595  assert(AA && "No alias?");
596
597  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
598
599  // See if there is already something with the target's name in the module.
600  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
601
602  llvm::Constant *Aliasee;
603  if (isa<llvm::FunctionType>(DeclTy))
604    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
605  else
606    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
607                                    llvm::PointerType::getUnqual(DeclTy), 0);
608  if (!Entry) {
609    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
610    F->setLinkage(llvm::Function::ExternalWeakLinkage);
611    WeakRefReferences.insert(F);
612  }
613
614  return Aliasee;
615}
616
617void CodeGenModule::EmitGlobal(GlobalDecl GD) {
618  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
619
620  // Weak references don't produce any output by themselves.
621  if (Global->hasAttr<WeakRefAttr>())
622    return;
623
624  // If this is an alias definition (which otherwise looks like a declaration)
625  // emit it now.
626  if (Global->hasAttr<AliasAttr>())
627    return EmitAliasDefinition(GD);
628
629  // Ignore declarations, they will be emitted on their first use.
630  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
631    if (FD->getIdentifier()) {
632      llvm::StringRef Name = FD->getName();
633      if (Name == "_Block_object_assign") {
634        BlockObjectAssignDecl = FD;
635      } else if (Name == "_Block_object_dispose") {
636        BlockObjectDisposeDecl = FD;
637      }
638    }
639
640    // Forward declarations are emitted lazily on first use.
641    if (!FD->isThisDeclarationADefinition())
642      return;
643  } else {
644    const VarDecl *VD = cast<VarDecl>(Global);
645    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
646
647    if (VD->getIdentifier()) {
648      llvm::StringRef Name = VD->getName();
649      if (Name == "_NSConcreteGlobalBlock") {
650        NSConcreteGlobalBlockDecl = VD;
651      } else if (Name == "_NSConcreteStackBlock") {
652        NSConcreteStackBlockDecl = VD;
653      }
654    }
655
656
657    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
658      return;
659  }
660
661  // Defer code generation when possible if this is a static definition, inline
662  // function etc.  These we only want to emit if they are used.
663  if (!MayDeferGeneration(Global)) {
664    // Emit the definition if it can't be deferred.
665    EmitGlobalDefinition(GD);
666    return;
667  }
668
669  // If we're deferring emission of a C++ variable with an
670  // initializer, remember the order in which it appeared in the file.
671  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
672      cast<VarDecl>(Global)->hasInit()) {
673    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
674    CXXGlobalInits.push_back(0);
675  }
676
677  // If the value has already been used, add it directly to the
678  // DeferredDeclsToEmit list.
679  llvm::StringRef MangledName = getMangledName(GD);
680  if (GetGlobalValue(MangledName))
681    DeferredDeclsToEmit.push_back(GD);
682  else {
683    // Otherwise, remember that we saw a deferred decl with this name.  The
684    // first use of the mangled name will cause it to move into
685    // DeferredDeclsToEmit.
686    DeferredDecls[MangledName] = GD;
687  }
688}
689
690void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
691  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
692
693  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
694                                 Context.getSourceManager(),
695                                 "Generating code for declaration");
696
697  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
698    // At -O0, don't generate IR for functions with available_externally
699    // linkage.
700    if (CodeGenOpts.OptimizationLevel == 0 &&
701        !Function->hasAttr<AlwaysInlineAttr>() &&
702        getFunctionLinkage(Function)
703                                  == llvm::Function::AvailableExternallyLinkage)
704      return;
705
706    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
707      if (Method->isVirtual())
708        getVTables().EmitThunks(GD);
709
710      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
711        return EmitCXXConstructor(CD, GD.getCtorType());
712
713      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
714        return EmitCXXDestructor(DD, GD.getDtorType());
715    }
716
717    return EmitGlobalFunctionDefinition(GD);
718  }
719
720  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
721    return EmitGlobalVarDefinition(VD);
722
723  assert(0 && "Invalid argument to EmitGlobalDefinition()");
724}
725
726/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
727/// module, create and return an llvm Function with the specified type. If there
728/// is something in the module with the specified name, return it potentially
729/// bitcasted to the right type.
730///
731/// If D is non-null, it specifies a decl that correspond to this.  This is used
732/// to set the attributes on the function when it is first created.
733llvm::Constant *
734CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
735                                       const llvm::Type *Ty,
736                                       GlobalDecl D) {
737  // Lookup the entry, lazily creating it if necessary.
738  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
739  if (Entry) {
740    if (WeakRefReferences.count(Entry)) {
741      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
742      if (FD && !FD->hasAttr<WeakAttr>())
743        Entry->setLinkage(llvm::Function::ExternalLinkage);
744
745      WeakRefReferences.erase(Entry);
746    }
747
748    if (Entry->getType()->getElementType() == Ty)
749      return Entry;
750
751    // Make sure the result is of the correct type.
752    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
753    return llvm::ConstantExpr::getBitCast(Entry, PTy);
754  }
755
756  // This function doesn't have a complete type (for example, the return
757  // type is an incomplete struct). Use a fake type instead, and make
758  // sure not to try to set attributes.
759  bool IsIncompleteFunction = false;
760
761  const llvm::FunctionType *FTy;
762  if (isa<llvm::FunctionType>(Ty)) {
763    FTy = cast<llvm::FunctionType>(Ty);
764  } else {
765    FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
766                                  std::vector<const llvm::Type*>(), false);
767    IsIncompleteFunction = true;
768  }
769
770  llvm::Function *F = llvm::Function::Create(FTy,
771                                             llvm::Function::ExternalLinkage,
772                                             MangledName, &getModule());
773  assert(F->getName() == MangledName && "name was uniqued!");
774  if (D.getDecl())
775    SetFunctionAttributes(D, F, IsIncompleteFunction);
776
777  // This is the first use or definition of a mangled name.  If there is a
778  // deferred decl with this name, remember that we need to emit it at the end
779  // of the file.
780  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
781  if (DDI != DeferredDecls.end()) {
782    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
783    // list, and remove it from DeferredDecls (since we don't need it anymore).
784    DeferredDeclsToEmit.push_back(DDI->second);
785    DeferredDecls.erase(DDI);
786  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
787    // If this the first reference to a C++ inline function in a class, queue up
788    // the deferred function body for emission.  These are not seen as
789    // top-level declarations.
790    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
791      DeferredDeclsToEmit.push_back(D);
792    // A called constructor which has no definition or declaration need be
793    // synthesized.
794    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
795      if (CD->isImplicit()) {
796        assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
797        DeferredDeclsToEmit.push_back(D);
798      }
799    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
800      if (DD->isImplicit()) {
801        assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
802        DeferredDeclsToEmit.push_back(D);
803      }
804    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
805      if (MD->isCopyAssignment() && MD->isImplicit()) {
806        assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
807        DeferredDeclsToEmit.push_back(D);
808      }
809    }
810  }
811
812  // Make sure the result is of the requested type.
813  if (!IsIncompleteFunction) {
814    assert(F->getType()->getElementType() == Ty);
815    return F;
816  }
817
818  const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
819  return llvm::ConstantExpr::getBitCast(F, PTy);
820}
821
822/// GetAddrOfFunction - Return the address of the given function.  If Ty is
823/// non-null, then this function will use the specified type if it has to
824/// create it (this occurs when we see a definition of the function).
825llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
826                                                 const llvm::Type *Ty) {
827  // If there was no specific requested type, just convert it now.
828  if (!Ty)
829    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
830
831  llvm::StringRef MangledName = getMangledName(GD);
832  return GetOrCreateLLVMFunction(MangledName, Ty, GD);
833}
834
835/// CreateRuntimeFunction - Create a new runtime function with the specified
836/// type and name.
837llvm::Constant *
838CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
839                                     llvm::StringRef Name) {
840  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
841}
842
843static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
844  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
845    return false;
846  if (Context.getLangOptions().CPlusPlus &&
847      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
848    // FIXME: We should do something fancier here!
849    return false;
850  }
851  return true;
852}
853
854/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
855/// create and return an llvm GlobalVariable with the specified type.  If there
856/// is something in the module with the specified name, return it potentially
857/// bitcasted to the right type.
858///
859/// If D is non-null, it specifies a decl that correspond to this.  This is used
860/// to set the attributes on the global when it is first created.
861llvm::Constant *
862CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
863                                     const llvm::PointerType *Ty,
864                                     const VarDecl *D) {
865  // Lookup the entry, lazily creating it if necessary.
866  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
867  if (Entry) {
868    if (WeakRefReferences.count(Entry)) {
869      if (D && !D->hasAttr<WeakAttr>())
870        Entry->setLinkage(llvm::Function::ExternalLinkage);
871
872      WeakRefReferences.erase(Entry);
873    }
874
875    if (Entry->getType() == Ty)
876      return Entry;
877
878    // Make sure the result is of the correct type.
879    return llvm::ConstantExpr::getBitCast(Entry, Ty);
880  }
881
882  // This is the first use or definition of a mangled name.  If there is a
883  // deferred decl with this name, remember that we need to emit it at the end
884  // of the file.
885  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
886  if (DDI != DeferredDecls.end()) {
887    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
888    // list, and remove it from DeferredDecls (since we don't need it anymore).
889    DeferredDeclsToEmit.push_back(DDI->second);
890    DeferredDecls.erase(DDI);
891  }
892
893  llvm::GlobalVariable *GV =
894    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
895                             llvm::GlobalValue::ExternalLinkage,
896                             0, MangledName, 0,
897                             false, Ty->getAddressSpace());
898
899  // Handle things which are present even on external declarations.
900  if (D) {
901    // FIXME: This code is overly simple and should be merged with other global
902    // handling.
903    GV->setConstant(DeclIsConstantGlobal(Context, D));
904
905    // FIXME: Merge with other attribute handling code.
906    if (D->getStorageClass() == VarDecl::PrivateExtern)
907      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
908
909    if (D->hasAttr<WeakAttr>() ||
910        D->hasAttr<WeakImportAttr>())
911      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
912
913    GV->setThreadLocal(D->isThreadSpecified());
914  }
915
916  return GV;
917}
918
919
920/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
921/// given global variable.  If Ty is non-null and if the global doesn't exist,
922/// then it will be greated with the specified type instead of whatever the
923/// normal requested type would be.
924llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
925                                                  const llvm::Type *Ty) {
926  assert(D->hasGlobalStorage() && "Not a global variable");
927  QualType ASTTy = D->getType();
928  if (Ty == 0)
929    Ty = getTypes().ConvertTypeForMem(ASTTy);
930
931  const llvm::PointerType *PTy =
932    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
933
934  llvm::StringRef MangledName = getMangledName(D);
935  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
936}
937
938/// CreateRuntimeVariable - Create a new runtime global variable with the
939/// specified type and name.
940llvm::Constant *
941CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
942                                     llvm::StringRef Name) {
943  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
944}
945
946void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
947  assert(!D->getInit() && "Cannot emit definite definitions here!");
948
949  if (MayDeferGeneration(D)) {
950    // If we have not seen a reference to this variable yet, place it
951    // into the deferred declarations table to be emitted if needed
952    // later.
953    llvm::StringRef MangledName = getMangledName(D);
954    if (!GetGlobalValue(MangledName)) {
955      DeferredDecls[MangledName] = D;
956      return;
957    }
958  }
959
960  // The tentative definition is the only definition.
961  EmitGlobalVarDefinition(D);
962}
963
964void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
965  if (DefinitionRequired)
966    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
967}
968
969llvm::GlobalVariable::LinkageTypes
970CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
971  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
972    return llvm::GlobalVariable::InternalLinkage;
973
974  if (const CXXMethodDecl *KeyFunction
975                                    = RD->getASTContext().getKeyFunction(RD)) {
976    // If this class has a key function, use that to determine the linkage of
977    // the vtable.
978    const FunctionDecl *Def = 0;
979    if (KeyFunction->hasBody(Def))
980      KeyFunction = cast<CXXMethodDecl>(Def);
981
982    switch (KeyFunction->getTemplateSpecializationKind()) {
983      case TSK_Undeclared:
984      case TSK_ExplicitSpecialization:
985        if (KeyFunction->isInlined())
986          return llvm::GlobalVariable::WeakODRLinkage;
987
988        return llvm::GlobalVariable::ExternalLinkage;
989
990      case TSK_ImplicitInstantiation:
991      case TSK_ExplicitInstantiationDefinition:
992        return llvm::GlobalVariable::WeakODRLinkage;
993
994      case TSK_ExplicitInstantiationDeclaration:
995        // FIXME: Use available_externally linkage. However, this currently
996        // breaks LLVM's build due to undefined symbols.
997        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
998        return llvm::GlobalVariable::WeakODRLinkage;
999    }
1000  }
1001
1002  switch (RD->getTemplateSpecializationKind()) {
1003  case TSK_Undeclared:
1004  case TSK_ExplicitSpecialization:
1005  case TSK_ImplicitInstantiation:
1006  case TSK_ExplicitInstantiationDefinition:
1007    return llvm::GlobalVariable::WeakODRLinkage;
1008
1009  case TSK_ExplicitInstantiationDeclaration:
1010    // FIXME: Use available_externally linkage. However, this currently
1011    // breaks LLVM's build due to undefined symbols.
1012    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1013    return llvm::GlobalVariable::WeakODRLinkage;
1014  }
1015
1016  // Silence GCC warning.
1017  return llvm::GlobalVariable::WeakODRLinkage;
1018}
1019
1020CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1021    return CharUnits::fromQuantity(
1022      TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1023}
1024
1025void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1026  llvm::Constant *Init = 0;
1027  QualType ASTTy = D->getType();
1028  bool NonConstInit = false;
1029
1030  const Expr *InitExpr = D->getAnyInitializer();
1031
1032  if (!InitExpr) {
1033    // This is a tentative definition; tentative definitions are
1034    // implicitly initialized with { 0 }.
1035    //
1036    // Note that tentative definitions are only emitted at the end of
1037    // a translation unit, so they should never have incomplete
1038    // type. In addition, EmitTentativeDefinition makes sure that we
1039    // never attempt to emit a tentative definition if a real one
1040    // exists. A use may still exists, however, so we still may need
1041    // to do a RAUW.
1042    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1043    Init = EmitNullConstant(D->getType());
1044  } else {
1045    Init = EmitConstantExpr(InitExpr, D->getType());
1046    if (!Init) {
1047      QualType T = InitExpr->getType();
1048      if (D->getType()->isReferenceType())
1049        T = D->getType();
1050
1051      if (getLangOptions().CPlusPlus) {
1052        EmitCXXGlobalVarDeclInitFunc(D);
1053        Init = EmitNullConstant(T);
1054        NonConstInit = true;
1055      } else {
1056        ErrorUnsupported(D, "static initializer");
1057        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1058      }
1059    } else {
1060      // We don't need an initializer, so remove the entry for the delayed
1061      // initializer position (just in case this entry was delayed).
1062      if (getLangOptions().CPlusPlus)
1063        DelayedCXXInitPosition.erase(D);
1064    }
1065  }
1066
1067  const llvm::Type* InitType = Init->getType();
1068  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1069
1070  // Strip off a bitcast if we got one back.
1071  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1072    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1073           // all zero index gep.
1074           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1075    Entry = CE->getOperand(0);
1076  }
1077
1078  // Entry is now either a Function or GlobalVariable.
1079  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1080
1081  // We have a definition after a declaration with the wrong type.
1082  // We must make a new GlobalVariable* and update everything that used OldGV
1083  // (a declaration or tentative definition) with the new GlobalVariable*
1084  // (which will be a definition).
1085  //
1086  // This happens if there is a prototype for a global (e.g.
1087  // "extern int x[];") and then a definition of a different type (e.g.
1088  // "int x[10];"). This also happens when an initializer has a different type
1089  // from the type of the global (this happens with unions).
1090  if (GV == 0 ||
1091      GV->getType()->getElementType() != InitType ||
1092      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1093
1094    // Move the old entry aside so that we'll create a new one.
1095    Entry->setName(llvm::StringRef());
1096
1097    // Make a new global with the correct type, this is now guaranteed to work.
1098    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1099
1100    // Replace all uses of the old global with the new global
1101    llvm::Constant *NewPtrForOldDecl =
1102        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1103    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1104
1105    // Erase the old global, since it is no longer used.
1106    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1107  }
1108
1109  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1110    SourceManager &SM = Context.getSourceManager();
1111    AddAnnotation(EmitAnnotateAttr(GV, AA,
1112                              SM.getInstantiationLineNumber(D->getLocation())));
1113  }
1114
1115  GV->setInitializer(Init);
1116
1117  // If it is safe to mark the global 'constant', do so now.
1118  GV->setConstant(false);
1119  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1120    GV->setConstant(true);
1121
1122  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1123
1124  // Set the llvm linkage type as appropriate.
1125  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1126  if (Linkage == GVA_Internal)
1127    GV->setLinkage(llvm::Function::InternalLinkage);
1128  else if (D->hasAttr<DLLImportAttr>())
1129    GV->setLinkage(llvm::Function::DLLImportLinkage);
1130  else if (D->hasAttr<DLLExportAttr>())
1131    GV->setLinkage(llvm::Function::DLLExportLinkage);
1132  else if (D->hasAttr<WeakAttr>()) {
1133    if (GV->isConstant())
1134      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1135    else
1136      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1137  } else if (Linkage == GVA_TemplateInstantiation ||
1138             Linkage == GVA_ExplicitTemplateInstantiation)
1139    // FIXME: It seems like we can provide more specific linkage here
1140    // (LinkOnceODR, WeakODR).
1141    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1142  else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1143           !D->hasExternalStorage() && !D->getInit() &&
1144           !D->getAttr<SectionAttr>()) {
1145    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1146    // common vars aren't constant even if declared const.
1147    GV->setConstant(false);
1148  } else
1149    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1150
1151  SetCommonAttributes(D, GV);
1152
1153  // Emit global variable debug information.
1154  if (CGDebugInfo *DI = getDebugInfo()) {
1155    DI->setLocation(D->getLocation());
1156    DI->EmitGlobalVariable(GV, D);
1157  }
1158}
1159
1160/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1161/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1162/// existing call uses of the old function in the module, this adjusts them to
1163/// call the new function directly.
1164///
1165/// This is not just a cleanup: the always_inline pass requires direct calls to
1166/// functions to be able to inline them.  If there is a bitcast in the way, it
1167/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1168/// run at -O0.
1169static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1170                                                      llvm::Function *NewFn) {
1171  // If we're redefining a global as a function, don't transform it.
1172  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1173  if (OldFn == 0) return;
1174
1175  const llvm::Type *NewRetTy = NewFn->getReturnType();
1176  llvm::SmallVector<llvm::Value*, 4> ArgList;
1177
1178  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1179       UI != E; ) {
1180    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1181    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1182    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1183    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1184    llvm::CallSite CS(CI);
1185    if (!CI || !CS.isCallee(I)) continue;
1186
1187    // If the return types don't match exactly, and if the call isn't dead, then
1188    // we can't transform this call.
1189    if (CI->getType() != NewRetTy && !CI->use_empty())
1190      continue;
1191
1192    // If the function was passed too few arguments, don't transform.  If extra
1193    // arguments were passed, we silently drop them.  If any of the types
1194    // mismatch, we don't transform.
1195    unsigned ArgNo = 0;
1196    bool DontTransform = false;
1197    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1198         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1199      if (CS.arg_size() == ArgNo ||
1200          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1201        DontTransform = true;
1202        break;
1203      }
1204    }
1205    if (DontTransform)
1206      continue;
1207
1208    // Okay, we can transform this.  Create the new call instruction and copy
1209    // over the required information.
1210    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1211    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1212                                                     ArgList.end(), "", CI);
1213    ArgList.clear();
1214    if (!NewCall->getType()->isVoidTy())
1215      NewCall->takeName(CI);
1216    NewCall->setAttributes(CI->getAttributes());
1217    NewCall->setCallingConv(CI->getCallingConv());
1218
1219    // Finally, remove the old call, replacing any uses with the new one.
1220    if (!CI->use_empty())
1221      CI->replaceAllUsesWith(NewCall);
1222
1223    // Copy debug location attached to CI.
1224    if (!CI->getDebugLoc().isUnknown())
1225      NewCall->setDebugLoc(CI->getDebugLoc());
1226    CI->eraseFromParent();
1227  }
1228}
1229
1230
1231void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1232  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1233  const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1234  getMangleContext().mangleInitDiscriminator();
1235  // Get or create the prototype for the function.
1236  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1237
1238  // Strip off a bitcast if we got one back.
1239  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1240    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1241    Entry = CE->getOperand(0);
1242  }
1243
1244
1245  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1246    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1247
1248    // If the types mismatch then we have to rewrite the definition.
1249    assert(OldFn->isDeclaration() &&
1250           "Shouldn't replace non-declaration");
1251
1252    // F is the Function* for the one with the wrong type, we must make a new
1253    // Function* and update everything that used F (a declaration) with the new
1254    // Function* (which will be a definition).
1255    //
1256    // This happens if there is a prototype for a function
1257    // (e.g. "int f()") and then a definition of a different type
1258    // (e.g. "int f(int x)").  Move the old function aside so that it
1259    // doesn't interfere with GetAddrOfFunction.
1260    OldFn->setName(llvm::StringRef());
1261    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1262
1263    // If this is an implementation of a function without a prototype, try to
1264    // replace any existing uses of the function (which may be calls) with uses
1265    // of the new function
1266    if (D->getType()->isFunctionNoProtoType()) {
1267      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1268      OldFn->removeDeadConstantUsers();
1269    }
1270
1271    // Replace uses of F with the Function we will endow with a body.
1272    if (!Entry->use_empty()) {
1273      llvm::Constant *NewPtrForOldDecl =
1274        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1275      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1276    }
1277
1278    // Ok, delete the old function now, which is dead.
1279    OldFn->eraseFromParent();
1280
1281    Entry = NewFn;
1282  }
1283
1284  llvm::Function *Fn = cast<llvm::Function>(Entry);
1285  setFunctionLinkage(D, Fn);
1286
1287  CodeGenFunction(*this).GenerateCode(D, Fn);
1288
1289  SetFunctionDefinitionAttributes(D, Fn);
1290  SetLLVMFunctionAttributesForDefinition(D, Fn);
1291
1292  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1293    AddGlobalCtor(Fn, CA->getPriority());
1294  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1295    AddGlobalDtor(Fn, DA->getPriority());
1296}
1297
1298void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1299  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1300  const AliasAttr *AA = D->getAttr<AliasAttr>();
1301  assert(AA && "Not an alias?");
1302
1303  llvm::StringRef MangledName = getMangledName(GD);
1304
1305  // If there is a definition in the module, then it wins over the alias.
1306  // This is dubious, but allow it to be safe.  Just ignore the alias.
1307  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1308  if (Entry && !Entry->isDeclaration())
1309    return;
1310
1311  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1312
1313  // Create a reference to the named value.  This ensures that it is emitted
1314  // if a deferred decl.
1315  llvm::Constant *Aliasee;
1316  if (isa<llvm::FunctionType>(DeclTy))
1317    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1318  else
1319    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1320                                    llvm::PointerType::getUnqual(DeclTy), 0);
1321
1322  // Create the new alias itself, but don't set a name yet.
1323  llvm::GlobalValue *GA =
1324    new llvm::GlobalAlias(Aliasee->getType(),
1325                          llvm::Function::ExternalLinkage,
1326                          "", Aliasee, &getModule());
1327
1328  if (Entry) {
1329    assert(Entry->isDeclaration());
1330
1331    // If there is a declaration in the module, then we had an extern followed
1332    // by the alias, as in:
1333    //   extern int test6();
1334    //   ...
1335    //   int test6() __attribute__((alias("test7")));
1336    //
1337    // Remove it and replace uses of it with the alias.
1338    GA->takeName(Entry);
1339
1340    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1341                                                          Entry->getType()));
1342    Entry->eraseFromParent();
1343  } else {
1344    GA->setName(MangledName);
1345  }
1346
1347  // Set attributes which are particular to an alias; this is a
1348  // specialization of the attributes which may be set on a global
1349  // variable/function.
1350  if (D->hasAttr<DLLExportAttr>()) {
1351    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1352      // The dllexport attribute is ignored for undefined symbols.
1353      if (FD->hasBody())
1354        GA->setLinkage(llvm::Function::DLLExportLinkage);
1355    } else {
1356      GA->setLinkage(llvm::Function::DLLExportLinkage);
1357    }
1358  } else if (D->hasAttr<WeakAttr>() ||
1359             D->hasAttr<WeakRefAttr>() ||
1360             D->hasAttr<WeakImportAttr>()) {
1361    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1362  }
1363
1364  SetCommonAttributes(D, GA);
1365}
1366
1367/// getBuiltinLibFunction - Given a builtin id for a function like
1368/// "__builtin_fabsf", return a Function* for "fabsf".
1369llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1370                                                  unsigned BuiltinID) {
1371  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1372          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1373         "isn't a lib fn");
1374
1375  // Get the name, skip over the __builtin_ prefix (if necessary).
1376  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1377  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1378    Name += 10;
1379
1380  const llvm::FunctionType *Ty =
1381    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1382
1383  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1384}
1385
1386llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1387                                            unsigned NumTys) {
1388  return llvm::Intrinsic::getDeclaration(&getModule(),
1389                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1390}
1391
1392
1393llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1394                                           const llvm::Type *SrcType,
1395                                           const llvm::Type *SizeType) {
1396  const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1397  return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1398}
1399
1400llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1401                                            const llvm::Type *SrcType,
1402                                            const llvm::Type *SizeType) {
1403  const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1404  return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1405}
1406
1407llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1408                                           const llvm::Type *SizeType) {
1409  const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1410  return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1411}
1412
1413static llvm::StringMapEntry<llvm::Constant*> &
1414GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1415                         const StringLiteral *Literal,
1416                         bool TargetIsLSB,
1417                         bool &IsUTF16,
1418                         unsigned &StringLength) {
1419  unsigned NumBytes = Literal->getByteLength();
1420
1421  // Check for simple case.
1422  if (!Literal->containsNonAsciiOrNull()) {
1423    StringLength = NumBytes;
1424    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1425                                                StringLength));
1426  }
1427
1428  // Otherwise, convert the UTF8 literals into a byte string.
1429  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1430  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1431  UTF16 *ToPtr = &ToBuf[0];
1432
1433  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1434                                               &ToPtr, ToPtr + NumBytes,
1435                                               strictConversion);
1436
1437  // Check for conversion failure.
1438  if (Result != conversionOK) {
1439    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1440    // this duplicate code.
1441    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1442    StringLength = NumBytes;
1443    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1444                                                StringLength));
1445  }
1446
1447  // ConvertUTF8toUTF16 returns the length in ToPtr.
1448  StringLength = ToPtr - &ToBuf[0];
1449
1450  // Render the UTF-16 string into a byte array and convert to the target byte
1451  // order.
1452  //
1453  // FIXME: This isn't something we should need to do here.
1454  llvm::SmallString<128> AsBytes;
1455  AsBytes.reserve(StringLength * 2);
1456  for (unsigned i = 0; i != StringLength; ++i) {
1457    unsigned short Val = ToBuf[i];
1458    if (TargetIsLSB) {
1459      AsBytes.push_back(Val & 0xFF);
1460      AsBytes.push_back(Val >> 8);
1461    } else {
1462      AsBytes.push_back(Val >> 8);
1463      AsBytes.push_back(Val & 0xFF);
1464    }
1465  }
1466  // Append one extra null character, the second is automatically added by our
1467  // caller.
1468  AsBytes.push_back(0);
1469
1470  IsUTF16 = true;
1471  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1472}
1473
1474llvm::Constant *
1475CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1476  unsigned StringLength = 0;
1477  bool isUTF16 = false;
1478  llvm::StringMapEntry<llvm::Constant*> &Entry =
1479    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1480                             getTargetData().isLittleEndian(),
1481                             isUTF16, StringLength);
1482
1483  if (llvm::Constant *C = Entry.getValue())
1484    return C;
1485
1486  llvm::Constant *Zero =
1487      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1488  llvm::Constant *Zeros[] = { Zero, Zero };
1489
1490  // If we don't already have it, get __CFConstantStringClassReference.
1491  if (!CFConstantStringClassRef) {
1492    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1493    Ty = llvm::ArrayType::get(Ty, 0);
1494    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1495                                           "__CFConstantStringClassReference");
1496    // Decay array -> ptr
1497    CFConstantStringClassRef =
1498      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1499  }
1500
1501  QualType CFTy = getContext().getCFConstantStringType();
1502
1503  const llvm::StructType *STy =
1504    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1505
1506  std::vector<llvm::Constant*> Fields(4);
1507
1508  // Class pointer.
1509  Fields[0] = CFConstantStringClassRef;
1510
1511  // Flags.
1512  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1513  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1514    llvm::ConstantInt::get(Ty, 0x07C8);
1515
1516  // String pointer.
1517  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1518
1519  llvm::GlobalValue::LinkageTypes Linkage;
1520  bool isConstant;
1521  if (isUTF16) {
1522    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1523    Linkage = llvm::GlobalValue::InternalLinkage;
1524    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1525    // does make plain ascii ones writable.
1526    isConstant = true;
1527  } else {
1528    Linkage = llvm::GlobalValue::PrivateLinkage;
1529    isConstant = !Features.WritableStrings;
1530  }
1531
1532  llvm::GlobalVariable *GV =
1533    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1534                             ".str");
1535  if (isUTF16) {
1536    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1537    GV->setAlignment(Align.getQuantity());
1538  }
1539  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1540
1541  // String length.
1542  Ty = getTypes().ConvertType(getContext().LongTy);
1543  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1544
1545  // The struct.
1546  C = llvm::ConstantStruct::get(STy, Fields);
1547  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1548                                llvm::GlobalVariable::PrivateLinkage, C,
1549                                "_unnamed_cfstring_");
1550  if (const char *Sect = getContext().Target.getCFStringSection())
1551    GV->setSection(Sect);
1552  Entry.setValue(GV);
1553
1554  return GV;
1555}
1556
1557llvm::Constant *
1558CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1559  unsigned StringLength = 0;
1560  bool isUTF16 = false;
1561  llvm::StringMapEntry<llvm::Constant*> &Entry =
1562    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1563                             getTargetData().isLittleEndian(),
1564                             isUTF16, StringLength);
1565
1566  if (llvm::Constant *C = Entry.getValue())
1567    return C;
1568
1569  llvm::Constant *Zero =
1570  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1571  llvm::Constant *Zeros[] = { Zero, Zero };
1572
1573  // If we don't already have it, get _NSConstantStringClassReference.
1574  if (!NSConstantStringClassRef) {
1575    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1576    Ty = llvm::ArrayType::get(Ty, 0);
1577    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1578                                        Features.ObjCNonFragileABI ?
1579                                        "OBJC_CLASS_$_NSConstantString" :
1580                                        "_NSConstantStringClassReference");
1581    // Decay array -> ptr
1582    NSConstantStringClassRef =
1583      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1584  }
1585
1586  QualType NSTy = getContext().getNSConstantStringType();
1587
1588  const llvm::StructType *STy =
1589  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1590
1591  std::vector<llvm::Constant*> Fields(3);
1592
1593  // Class pointer.
1594  Fields[0] = NSConstantStringClassRef;
1595
1596  // String pointer.
1597  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1598
1599  llvm::GlobalValue::LinkageTypes Linkage;
1600  bool isConstant;
1601  if (isUTF16) {
1602    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1603    Linkage = llvm::GlobalValue::InternalLinkage;
1604    // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1605    // does make plain ascii ones writable.
1606    isConstant = true;
1607  } else {
1608    Linkage = llvm::GlobalValue::PrivateLinkage;
1609    isConstant = !Features.WritableStrings;
1610  }
1611
1612  llvm::GlobalVariable *GV =
1613  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1614                           ".str");
1615  if (isUTF16) {
1616    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1617    GV->setAlignment(Align.getQuantity());
1618  }
1619  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1620
1621  // String length.
1622  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1623  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1624
1625  // The struct.
1626  C = llvm::ConstantStruct::get(STy, Fields);
1627  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1628                                llvm::GlobalVariable::PrivateLinkage, C,
1629                                "_unnamed_nsstring_");
1630  // FIXME. Fix section.
1631  if (const char *Sect =
1632        Features.ObjCNonFragileABI
1633          ? getContext().Target.getNSStringNonFragileABISection()
1634          : getContext().Target.getNSStringSection())
1635    GV->setSection(Sect);
1636  Entry.setValue(GV);
1637
1638  return GV;
1639}
1640
1641/// GetStringForStringLiteral - Return the appropriate bytes for a
1642/// string literal, properly padded to match the literal type.
1643std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1644  const char *StrData = E->getStrData();
1645  unsigned Len = E->getByteLength();
1646
1647  const ConstantArrayType *CAT =
1648    getContext().getAsConstantArrayType(E->getType());
1649  assert(CAT && "String isn't pointer or array!");
1650
1651  // Resize the string to the right size.
1652  std::string Str(StrData, StrData+Len);
1653  uint64_t RealLen = CAT->getSize().getZExtValue();
1654
1655  if (E->isWide())
1656    RealLen *= getContext().Target.getWCharWidth()/8;
1657
1658  Str.resize(RealLen, '\0');
1659
1660  return Str;
1661}
1662
1663/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1664/// constant array for the given string literal.
1665llvm::Constant *
1666CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1667  // FIXME: This can be more efficient.
1668  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1669  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1670  if (S->isWide()) {
1671    llvm::Type *DestTy =
1672        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1673    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1674  }
1675  return C;
1676}
1677
1678/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1679/// array for the given ObjCEncodeExpr node.
1680llvm::Constant *
1681CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1682  std::string Str;
1683  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1684
1685  return GetAddrOfConstantCString(Str);
1686}
1687
1688
1689/// GenerateWritableString -- Creates storage for a string literal.
1690static llvm::Constant *GenerateStringLiteral(const std::string &str,
1691                                             bool constant,
1692                                             CodeGenModule &CGM,
1693                                             const char *GlobalName) {
1694  // Create Constant for this string literal. Don't add a '\0'.
1695  llvm::Constant *C =
1696      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1697
1698  // Create a global variable for this string
1699  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1700                                  llvm::GlobalValue::PrivateLinkage,
1701                                  C, GlobalName);
1702}
1703
1704/// GetAddrOfConstantString - Returns a pointer to a character array
1705/// containing the literal. This contents are exactly that of the
1706/// given string, i.e. it will not be null terminated automatically;
1707/// see GetAddrOfConstantCString. Note that whether the result is
1708/// actually a pointer to an LLVM constant depends on
1709/// Feature.WriteableStrings.
1710///
1711/// The result has pointer to array type.
1712llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1713                                                       const char *GlobalName) {
1714  bool IsConstant = !Features.WritableStrings;
1715
1716  // Get the default prefix if a name wasn't specified.
1717  if (!GlobalName)
1718    GlobalName = ".str";
1719
1720  // Don't share any string literals if strings aren't constant.
1721  if (!IsConstant)
1722    return GenerateStringLiteral(str, false, *this, GlobalName);
1723
1724  llvm::StringMapEntry<llvm::Constant *> &Entry =
1725    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1726
1727  if (Entry.getValue())
1728    return Entry.getValue();
1729
1730  // Create a global variable for this.
1731  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1732  Entry.setValue(C);
1733  return C;
1734}
1735
1736/// GetAddrOfConstantCString - Returns a pointer to a character
1737/// array containing the literal and a terminating '\-'
1738/// character. The result has pointer to array type.
1739llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1740                                                        const char *GlobalName){
1741  return GetAddrOfConstantString(str + '\0', GlobalName);
1742}
1743
1744/// EmitObjCPropertyImplementations - Emit information for synthesized
1745/// properties for an implementation.
1746void CodeGenModule::EmitObjCPropertyImplementations(const
1747                                                    ObjCImplementationDecl *D) {
1748  for (ObjCImplementationDecl::propimpl_iterator
1749         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1750    ObjCPropertyImplDecl *PID = *i;
1751
1752    // Dynamic is just for type-checking.
1753    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1754      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1755
1756      // Determine which methods need to be implemented, some may have
1757      // been overridden. Note that ::isSynthesized is not the method
1758      // we want, that just indicates if the decl came from a
1759      // property. What we want to know is if the method is defined in
1760      // this implementation.
1761      if (!D->getInstanceMethod(PD->getGetterName()))
1762        CodeGenFunction(*this).GenerateObjCGetter(
1763                                 const_cast<ObjCImplementationDecl *>(D), PID);
1764      if (!PD->isReadOnly() &&
1765          !D->getInstanceMethod(PD->getSetterName()))
1766        CodeGenFunction(*this).GenerateObjCSetter(
1767                                 const_cast<ObjCImplementationDecl *>(D), PID);
1768    }
1769  }
1770}
1771
1772/// EmitObjCIvarInitializations - Emit information for ivar initialization
1773/// for an implementation.
1774void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1775  if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1776    return;
1777  DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1778  assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1779  IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1780  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1781  ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1782                                                  D->getLocation(),
1783                                                  D->getLocation(), cxxSelector,
1784                                                  getContext().VoidTy, 0,
1785                                                  DC, true, false, true, false,
1786                                                  ObjCMethodDecl::Required);
1787  D->addInstanceMethod(DTORMethod);
1788  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1789
1790  II = &getContext().Idents.get(".cxx_construct");
1791  cxxSelector = getContext().Selectors.getSelector(0, &II);
1792  // The constructor returns 'self'.
1793  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1794                                                D->getLocation(),
1795                                                D->getLocation(), cxxSelector,
1796                                                getContext().getObjCIdType(), 0,
1797                                                DC, true, false, true, false,
1798                                                ObjCMethodDecl::Required);
1799  D->addInstanceMethod(CTORMethod);
1800  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1801
1802
1803}
1804
1805/// EmitNamespace - Emit all declarations in a namespace.
1806void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1807  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1808       I != E; ++I)
1809    EmitTopLevelDecl(*I);
1810}
1811
1812// EmitLinkageSpec - Emit all declarations in a linkage spec.
1813void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1814  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1815      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1816    ErrorUnsupported(LSD, "linkage spec");
1817    return;
1818  }
1819
1820  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1821       I != E; ++I)
1822    EmitTopLevelDecl(*I);
1823}
1824
1825/// EmitTopLevelDecl - Emit code for a single top level declaration.
1826void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1827  // If an error has occurred, stop code generation, but continue
1828  // parsing and semantic analysis (to ensure all warnings and errors
1829  // are emitted).
1830  if (Diags.hasErrorOccurred())
1831    return;
1832
1833  // Ignore dependent declarations.
1834  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1835    return;
1836
1837  switch (D->getKind()) {
1838  case Decl::CXXConversion:
1839  case Decl::CXXMethod:
1840  case Decl::Function:
1841    // Skip function templates
1842    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1843      return;
1844
1845    EmitGlobal(cast<FunctionDecl>(D));
1846    break;
1847
1848  case Decl::Var:
1849    EmitGlobal(cast<VarDecl>(D));
1850    break;
1851
1852  // C++ Decls
1853  case Decl::Namespace:
1854    EmitNamespace(cast<NamespaceDecl>(D));
1855    break;
1856    // No code generation needed.
1857  case Decl::UsingShadow:
1858  case Decl::Using:
1859  case Decl::UsingDirective:
1860  case Decl::ClassTemplate:
1861  case Decl::FunctionTemplate:
1862  case Decl::NamespaceAlias:
1863    break;
1864  case Decl::CXXConstructor:
1865    // Skip function templates
1866    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1867      return;
1868
1869    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1870    break;
1871  case Decl::CXXDestructor:
1872    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1873    break;
1874
1875  case Decl::StaticAssert:
1876    // Nothing to do.
1877    break;
1878
1879  // Objective-C Decls
1880
1881  // Forward declarations, no (immediate) code generation.
1882  case Decl::ObjCClass:
1883  case Decl::ObjCForwardProtocol:
1884  case Decl::ObjCCategory:
1885  case Decl::ObjCInterface:
1886    break;
1887
1888  case Decl::ObjCProtocol:
1889    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1890    break;
1891
1892  case Decl::ObjCCategoryImpl:
1893    // Categories have properties but don't support synthesize so we
1894    // can ignore them here.
1895    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1896    break;
1897
1898  case Decl::ObjCImplementation: {
1899    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1900    EmitObjCPropertyImplementations(OMD);
1901    EmitObjCIvarInitializations(OMD);
1902    Runtime->GenerateClass(OMD);
1903    break;
1904  }
1905  case Decl::ObjCMethod: {
1906    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1907    // If this is not a prototype, emit the body.
1908    if (OMD->getBody())
1909      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1910    break;
1911  }
1912  case Decl::ObjCCompatibleAlias:
1913    // compatibility-alias is a directive and has no code gen.
1914    break;
1915
1916  case Decl::LinkageSpec:
1917    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1918    break;
1919
1920  case Decl::FileScopeAsm: {
1921    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1922    llvm::StringRef AsmString = AD->getAsmString()->getString();
1923
1924    const std::string &S = getModule().getModuleInlineAsm();
1925    if (S.empty())
1926      getModule().setModuleInlineAsm(AsmString);
1927    else
1928      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1929    break;
1930  }
1931
1932  default:
1933    // Make sure we handled everything we should, every other kind is a
1934    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1935    // function. Need to recode Decl::Kind to do that easily.
1936    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1937  }
1938}
1939
1940/// Turns the given pointer into a constant.
1941static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
1942                                          const void *Ptr) {
1943  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
1944  const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
1945  return llvm::ConstantInt::get(i64, PtrInt);
1946}
1947
1948static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
1949                                   llvm::NamedMDNode *&GlobalMetadata,
1950                                   GlobalDecl D,
1951                                   llvm::GlobalValue *Addr) {
1952  if (!GlobalMetadata)
1953    GlobalMetadata =
1954      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
1955
1956  // TODO: should we report variant information for ctors/dtors?
1957  llvm::Value *Ops[] = {
1958    Addr,
1959    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
1960  };
1961  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
1962}
1963
1964/// Emits metadata nodes associating all the global values in the
1965/// current module with the Decls they came from.  This is useful for
1966/// projects using IR gen as a subroutine.
1967///
1968/// Since there's currently no way to associate an MDNode directly
1969/// with an llvm::GlobalValue, we create a global named metadata
1970/// with the name 'clang.global.decl.ptrs'.
1971void CodeGenModule::EmitDeclMetadata() {
1972  llvm::NamedMDNode *GlobalMetadata = 0;
1973
1974  // StaticLocalDeclMap
1975  for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
1976         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
1977       I != E; ++I) {
1978    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
1979    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
1980  }
1981}
1982
1983/// Emits metadata nodes for all the local variables in the current
1984/// function.
1985void CodeGenFunction::EmitDeclMetadata() {
1986  if (LocalDeclMap.empty()) return;
1987
1988  llvm::LLVMContext &Context = getLLVMContext();
1989
1990  // Find the unique metadata ID for this name.
1991  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
1992
1993  llvm::NamedMDNode *GlobalMetadata = 0;
1994
1995  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
1996         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
1997    const Decl *D = I->first;
1998    llvm::Value *Addr = I->second;
1999
2000    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2001      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2002      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2003    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2004      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2005      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2006    }
2007  }
2008}
2009
2010///@name Custom Runtime Function Interfaces
2011///@{
2012//
2013// FIXME: These can be eliminated once we can have clients just get the required
2014// AST nodes from the builtin tables.
2015
2016llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2017  if (BlockObjectDispose)
2018    return BlockObjectDispose;
2019
2020  // If we saw an explicit decl, use that.
2021  if (BlockObjectDisposeDecl) {
2022    return BlockObjectDispose = GetAddrOfFunction(
2023      BlockObjectDisposeDecl,
2024      getTypes().GetFunctionType(BlockObjectDisposeDecl));
2025  }
2026
2027  // Otherwise construct the function by hand.
2028  const llvm::FunctionType *FTy;
2029  std::vector<const llvm::Type*> ArgTys;
2030  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2031  ArgTys.push_back(PtrToInt8Ty);
2032  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2033  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2034  return BlockObjectDispose =
2035    CreateRuntimeFunction(FTy, "_Block_object_dispose");
2036}
2037
2038llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2039  if (BlockObjectAssign)
2040    return BlockObjectAssign;
2041
2042  // If we saw an explicit decl, use that.
2043  if (BlockObjectAssignDecl) {
2044    return BlockObjectAssign = GetAddrOfFunction(
2045      BlockObjectAssignDecl,
2046      getTypes().GetFunctionType(BlockObjectAssignDecl));
2047  }
2048
2049  // Otherwise construct the function by hand.
2050  const llvm::FunctionType *FTy;
2051  std::vector<const llvm::Type*> ArgTys;
2052  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2053  ArgTys.push_back(PtrToInt8Ty);
2054  ArgTys.push_back(PtrToInt8Ty);
2055  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2056  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2057  return BlockObjectAssign =
2058    CreateRuntimeFunction(FTy, "_Block_object_assign");
2059}
2060
2061llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2062  if (NSConcreteGlobalBlock)
2063    return NSConcreteGlobalBlock;
2064
2065  // If we saw an explicit decl, use that.
2066  if (NSConcreteGlobalBlockDecl) {
2067    return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2068      NSConcreteGlobalBlockDecl,
2069      getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2070  }
2071
2072  // Otherwise construct the variable by hand.
2073  return NSConcreteGlobalBlock = CreateRuntimeVariable(
2074    PtrToInt8Ty, "_NSConcreteGlobalBlock");
2075}
2076
2077llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2078  if (NSConcreteStackBlock)
2079    return NSConcreteStackBlock;
2080
2081  // If we saw an explicit decl, use that.
2082  if (NSConcreteStackBlockDecl) {
2083    return NSConcreteStackBlock = GetAddrOfGlobalVar(
2084      NSConcreteStackBlockDecl,
2085      getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2086  }
2087
2088  // Otherwise construct the variable by hand.
2089  return NSConcreteStackBlock = CreateRuntimeVariable(
2090    PtrToInt8Ty, "_NSConcreteStackBlock");
2091}
2092
2093///@}
2094