CodeGenModule.cpp revision d3a344c55b89bad933c04ac59650f7afb95423e9
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "TargetInfo.h"
21#include "clang/CodeGen/CodeGenOptions.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/Diagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Basic/ConvertUTF.h"
32#include "llvm/CallingConv.h"
33#include "llvm/Module.h"
34#include "llvm/Intrinsics.h"
35#include "llvm/LLVMContext.h"
36#include "llvm/ADT/Triple.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Support/ErrorHandling.h"
39using namespace clang;
40using namespace CodeGen;
41
42
43CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
44                             llvm::Module &M, const llvm::TargetData &TD,
45                             Diagnostic &diags)
46  : BlockModule(C, M, TD, Types, *this), Context(C),
47    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
48    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
49    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
50    MangleCtx(C), VtableInfo(*this), Runtime(0),
51    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
52    VMContext(M.getContext()) {
53
54  if (!Features.ObjC1)
55    Runtime = 0;
56  else if (!Features.NeXTRuntime)
57    Runtime = CreateGNUObjCRuntime(*this);
58  else if (Features.ObjCNonFragileABI)
59    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
60  else
61    Runtime = CreateMacObjCRuntime(*this);
62
63  // If debug info generation is enabled, create the CGDebugInfo object.
64  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
65}
66
67CodeGenModule::~CodeGenModule() {
68  delete Runtime;
69  delete DebugInfo;
70}
71
72void CodeGenModule::createObjCRuntime() {
73  if (!Features.NeXTRuntime)
74    Runtime = CreateGNUObjCRuntime(*this);
75  else if (Features.ObjCNonFragileABI)
76    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
77  else
78    Runtime = CreateMacObjCRuntime(*this);
79}
80
81void CodeGenModule::Release() {
82  EmitDeferred();
83  EmitCXXGlobalInitFunc();
84  if (Runtime)
85    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
86      AddGlobalCtor(ObjCInitFunction);
87  EmitCtorList(GlobalCtors, "llvm.global_ctors");
88  EmitCtorList(GlobalDtors, "llvm.global_dtors");
89  EmitAnnotations();
90  EmitLLVMUsed();
91}
92
93bool CodeGenModule::isTargetDarwin() const {
94  return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
95}
96
97/// ErrorUnsupported - Print out an error that codegen doesn't support the
98/// specified stmt yet.
99void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
100                                     bool OmitOnError) {
101  if (OmitOnError && getDiags().hasErrorOccurred())
102    return;
103  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
104                                               "cannot compile this %0 yet");
105  std::string Msg = Type;
106  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
107    << Msg << S->getSourceRange();
108}
109
110/// ErrorUnsupported - Print out an error that codegen doesn't support the
111/// specified decl yet.
112void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
113                                     bool OmitOnError) {
114  if (OmitOnError && getDiags().hasErrorOccurred())
115    return;
116  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
117                                               "cannot compile this %0 yet");
118  std::string Msg = Type;
119  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
120}
121
122LangOptions::VisibilityMode
123CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
124  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
125    if (VD->getStorageClass() == VarDecl::PrivateExtern)
126      return LangOptions::Hidden;
127
128  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
129    switch (attr->getVisibility()) {
130    default: assert(0 && "Unknown visibility!");
131    case VisibilityAttr::DefaultVisibility:
132      return LangOptions::Default;
133    case VisibilityAttr::HiddenVisibility:
134      return LangOptions::Hidden;
135    case VisibilityAttr::ProtectedVisibility:
136      return LangOptions::Protected;
137    }
138  }
139
140  // This decl should have the same visibility as its parent.
141  if (const DeclContext *DC = D->getDeclContext())
142    return getDeclVisibilityMode(cast<Decl>(DC));
143
144  return getLangOptions().getVisibilityMode();
145}
146
147void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
148                                        const Decl *D) const {
149  // Internal definitions always have default visibility.
150  if (GV->hasLocalLinkage()) {
151    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
152    return;
153  }
154
155  switch (getDeclVisibilityMode(D)) {
156  default: assert(0 && "Unknown visibility!");
157  case LangOptions::Default:
158    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
159  case LangOptions::Hidden:
160    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
161  case LangOptions::Protected:
162    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
163  }
164}
165
166const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
167  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
168
169  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
170    return getMangledCXXCtorName(D, GD.getCtorType());
171  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
172    return getMangledCXXDtorName(D, GD.getDtorType());
173
174  return getMangledName(ND);
175}
176
177/// \brief Retrieves the mangled name for the given declaration.
178///
179/// If the given declaration requires a mangled name, returns an
180/// const char* containing the mangled name.  Otherwise, returns
181/// the unmangled name.
182///
183const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
184  if (!getMangleContext().shouldMangleDeclName(ND)) {
185    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
186    return ND->getNameAsCString();
187  }
188
189  llvm::SmallString<256> Name;
190  getMangleContext().mangleName(ND, Name);
191  Name += '\0';
192  return UniqueMangledName(Name.begin(), Name.end());
193}
194
195const char *CodeGenModule::UniqueMangledName(const char *NameStart,
196                                             const char *NameEnd) {
197  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
198
199  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
200}
201
202/// AddGlobalCtor - Add a function to the list that will be called before
203/// main() runs.
204void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
205  // FIXME: Type coercion of void()* types.
206  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
207}
208
209/// AddGlobalDtor - Add a function to the list that will be called
210/// when the module is unloaded.
211void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
212  // FIXME: Type coercion of void()* types.
213  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
214}
215
216void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
217  // Ctor function type is void()*.
218  llvm::FunctionType* CtorFTy =
219    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
220                            std::vector<const llvm::Type*>(),
221                            false);
222  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
223
224  // Get the type of a ctor entry, { i32, void ()* }.
225  llvm::StructType* CtorStructTy =
226    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
227                          llvm::PointerType::getUnqual(CtorFTy), NULL);
228
229  // Construct the constructor and destructor arrays.
230  std::vector<llvm::Constant*> Ctors;
231  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
232    std::vector<llvm::Constant*> S;
233    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
234                I->second, false));
235    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
236    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
237  }
238
239  if (!Ctors.empty()) {
240    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
241    new llvm::GlobalVariable(TheModule, AT, false,
242                             llvm::GlobalValue::AppendingLinkage,
243                             llvm::ConstantArray::get(AT, Ctors),
244                             GlobalName);
245  }
246}
247
248void CodeGenModule::EmitAnnotations() {
249  if (Annotations.empty())
250    return;
251
252  // Create a new global variable for the ConstantStruct in the Module.
253  llvm::Constant *Array =
254  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
255                                                Annotations.size()),
256                           Annotations);
257  llvm::GlobalValue *gv =
258  new llvm::GlobalVariable(TheModule, Array->getType(), false,
259                           llvm::GlobalValue::AppendingLinkage, Array,
260                           "llvm.global.annotations");
261  gv->setSection("llvm.metadata");
262}
263
264static CodeGenModule::GVALinkage
265GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
266                      const LangOptions &Features) {
267  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
268
269  Linkage L = FD->getLinkage();
270  if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
271      FD->getType()->getLinkage() == UniqueExternalLinkage)
272    L = UniqueExternalLinkage;
273
274  switch (L) {
275  case NoLinkage:
276  case InternalLinkage:
277  case UniqueExternalLinkage:
278    return CodeGenModule::GVA_Internal;
279
280  case ExternalLinkage:
281    switch (FD->getTemplateSpecializationKind()) {
282    case TSK_Undeclared:
283    case TSK_ExplicitSpecialization:
284      External = CodeGenModule::GVA_StrongExternal;
285      break;
286
287    case TSK_ExplicitInstantiationDefinition:
288      // FIXME: explicit instantiation definitions should use weak linkage
289      return CodeGenModule::GVA_StrongExternal;
290
291    case TSK_ExplicitInstantiationDeclaration:
292    case TSK_ImplicitInstantiation:
293      External = CodeGenModule::GVA_TemplateInstantiation;
294      break;
295    }
296  }
297
298  if (!FD->isInlined())
299    return External;
300
301  if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
302    // GNU or C99 inline semantics. Determine whether this symbol should be
303    // externally visible.
304    if (FD->isInlineDefinitionExternallyVisible())
305      return External;
306
307    // C99 inline semantics, where the symbol is not externally visible.
308    return CodeGenModule::GVA_C99Inline;
309  }
310
311  // C++0x [temp.explicit]p9:
312  //   [ Note: The intent is that an inline function that is the subject of
313  //   an explicit instantiation declaration will still be implicitly
314  //   instantiated when used so that the body can be considered for
315  //   inlining, but that no out-of-line copy of the inline function would be
316  //   generated in the translation unit. -- end note ]
317  if (FD->getTemplateSpecializationKind()
318                                       == TSK_ExplicitInstantiationDeclaration)
319    return CodeGenModule::GVA_C99Inline;
320
321  return CodeGenModule::GVA_CXXInline;
322}
323
324llvm::GlobalValue::LinkageTypes
325CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
326  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
327
328  if (Linkage == GVA_Internal) {
329    return llvm::Function::InternalLinkage;
330  } else if (D->hasAttr<DLLExportAttr>()) {
331    return llvm::Function::DLLExportLinkage;
332  } else if (D->hasAttr<WeakAttr>()) {
333    return llvm::Function::WeakAnyLinkage;
334  } else if (Linkage == GVA_C99Inline) {
335    // In C99 mode, 'inline' functions are guaranteed to have a strong
336    // definition somewhere else, so we can use available_externally linkage.
337    return llvm::Function::AvailableExternallyLinkage;
338  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
339    // In C++, the compiler has to emit a definition in every translation unit
340    // that references the function.  We should use linkonce_odr because
341    // a) if all references in this translation unit are optimized away, we
342    // don't need to codegen it.  b) if the function persists, it needs to be
343    // merged with other definitions. c) C++ has the ODR, so we know the
344    // definition is dependable.
345    return llvm::Function::LinkOnceODRLinkage;
346  } else {
347    assert(Linkage == GVA_StrongExternal);
348    // Otherwise, we have strong external linkage.
349    return llvm::Function::ExternalLinkage;
350  }
351}
352
353
354/// SetFunctionDefinitionAttributes - Set attributes for a global.
355///
356/// FIXME: This is currently only done for aliases and functions, but not for
357/// variables (these details are set in EmitGlobalVarDefinition for variables).
358void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
359                                                    llvm::GlobalValue *GV) {
360  GV->setLinkage(getFunctionLinkage(D));
361  SetCommonAttributes(D, GV);
362}
363
364void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
365                                              const CGFunctionInfo &Info,
366                                              llvm::Function *F) {
367  unsigned CallingConv;
368  AttributeListType AttributeList;
369  ConstructAttributeList(Info, D, AttributeList, CallingConv);
370  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
371                                          AttributeList.size()));
372  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
373}
374
375void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
376                                                           llvm::Function *F) {
377  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
378    F->addFnAttr(llvm::Attribute::NoUnwind);
379
380  if (D->hasAttr<AlwaysInlineAttr>())
381    F->addFnAttr(llvm::Attribute::AlwaysInline);
382
383  if (D->hasAttr<NoInlineAttr>())
384    F->addFnAttr(llvm::Attribute::NoInline);
385
386  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
387    F->addFnAttr(llvm::Attribute::StackProtect);
388  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
389    F->addFnAttr(llvm::Attribute::StackProtectReq);
390
391  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
392    unsigned width = Context.Target.getCharWidth();
393    F->setAlignment(AA->getAlignment() / width);
394    while ((AA = AA->getNext<AlignedAttr>()))
395      F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
396  }
397  // C++ ABI requires 2-byte alignment for member functions.
398  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
399    F->setAlignment(2);
400}
401
402void CodeGenModule::SetCommonAttributes(const Decl *D,
403                                        llvm::GlobalValue *GV) {
404  setGlobalVisibility(GV, D);
405
406  if (D->hasAttr<UsedAttr>())
407    AddUsedGlobal(GV);
408
409  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
410    GV->setSection(SA->getName());
411
412  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
413}
414
415void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
416                                                  llvm::Function *F,
417                                                  const CGFunctionInfo &FI) {
418  SetLLVMFunctionAttributes(D, FI, F);
419  SetLLVMFunctionAttributesForDefinition(D, F);
420
421  F->setLinkage(llvm::Function::InternalLinkage);
422
423  SetCommonAttributes(D, F);
424}
425
426void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
427                                          llvm::Function *F,
428                                          bool IsIncompleteFunction) {
429  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
430
431  if (!IsIncompleteFunction)
432    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
433
434  // Only a few attributes are set on declarations; these may later be
435  // overridden by a definition.
436
437  if (FD->hasAttr<DLLImportAttr>()) {
438    F->setLinkage(llvm::Function::DLLImportLinkage);
439  } else if (FD->hasAttr<WeakAttr>() ||
440             FD->hasAttr<WeakImportAttr>()) {
441    // "extern_weak" is overloaded in LLVM; we probably should have
442    // separate linkage types for this.
443    F->setLinkage(llvm::Function::ExternalWeakLinkage);
444  } else {
445    F->setLinkage(llvm::Function::ExternalLinkage);
446  }
447
448  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
449    F->setSection(SA->getName());
450}
451
452void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
453  assert(!GV->isDeclaration() &&
454         "Only globals with definition can force usage.");
455  LLVMUsed.push_back(GV);
456}
457
458void CodeGenModule::EmitLLVMUsed() {
459  // Don't create llvm.used if there is no need.
460  if (LLVMUsed.empty())
461    return;
462
463  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
464
465  // Convert LLVMUsed to what ConstantArray needs.
466  std::vector<llvm::Constant*> UsedArray;
467  UsedArray.resize(LLVMUsed.size());
468  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
469    UsedArray[i] =
470     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
471                                      i8PTy);
472  }
473
474  if (UsedArray.empty())
475    return;
476  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
477
478  llvm::GlobalVariable *GV =
479    new llvm::GlobalVariable(getModule(), ATy, false,
480                             llvm::GlobalValue::AppendingLinkage,
481                             llvm::ConstantArray::get(ATy, UsedArray),
482                             "llvm.used");
483
484  GV->setSection("llvm.metadata");
485}
486
487void CodeGenModule::EmitDeferred() {
488  // Emit code for any potentially referenced deferred decls.  Since a
489  // previously unused static decl may become used during the generation of code
490  // for a static function, iterate until no  changes are made.
491  while (!DeferredDeclsToEmit.empty()) {
492    GlobalDecl D = DeferredDeclsToEmit.back();
493    DeferredDeclsToEmit.pop_back();
494
495    // The mangled name for the decl must have been emitted in GlobalDeclMap.
496    // Look it up to see if it was defined with a stronger definition (e.g. an
497    // extern inline function with a strong function redefinition).  If so,
498    // just ignore the deferred decl.
499    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
500    assert(CGRef && "Deferred decl wasn't referenced?");
501
502    if (!CGRef->isDeclaration())
503      continue;
504
505    // Otherwise, emit the definition and move on to the next one.
506    EmitGlobalDefinition(D);
507  }
508}
509
510/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
511/// annotation information for a given GlobalValue.  The annotation struct is
512/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
513/// GlobalValue being annotated.  The second field is the constant string
514/// created from the AnnotateAttr's annotation.  The third field is a constant
515/// string containing the name of the translation unit.  The fourth field is
516/// the line number in the file of the annotated value declaration.
517///
518/// FIXME: this does not unique the annotation string constants, as llvm-gcc
519///        appears to.
520///
521llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
522                                                const AnnotateAttr *AA,
523                                                unsigned LineNo) {
524  llvm::Module *M = &getModule();
525
526  // get [N x i8] constants for the annotation string, and the filename string
527  // which are the 2nd and 3rd elements of the global annotation structure.
528  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
529  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
530                                                  AA->getAnnotation(), true);
531  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
532                                                  M->getModuleIdentifier(),
533                                                  true);
534
535  // Get the two global values corresponding to the ConstantArrays we just
536  // created to hold the bytes of the strings.
537  llvm::GlobalValue *annoGV =
538    new llvm::GlobalVariable(*M, anno->getType(), false,
539                             llvm::GlobalValue::PrivateLinkage, anno,
540                             GV->getName());
541  // translation unit name string, emitted into the llvm.metadata section.
542  llvm::GlobalValue *unitGV =
543    new llvm::GlobalVariable(*M, unit->getType(), false,
544                             llvm::GlobalValue::PrivateLinkage, unit,
545                             ".str");
546
547  // Create the ConstantStruct for the global annotation.
548  llvm::Constant *Fields[4] = {
549    llvm::ConstantExpr::getBitCast(GV, SBP),
550    llvm::ConstantExpr::getBitCast(annoGV, SBP),
551    llvm::ConstantExpr::getBitCast(unitGV, SBP),
552    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
553  };
554  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
555}
556
557bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
558  // Never defer when EmitAllDecls is specified or the decl has
559  // attribute used.
560  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
561    return false;
562
563  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
564    // Constructors and destructors should never be deferred.
565    if (FD->hasAttr<ConstructorAttr>() ||
566        FD->hasAttr<DestructorAttr>())
567      return false;
568
569    // The key function for a class must never be deferred.
570    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
571      const CXXRecordDecl *RD = MD->getParent();
572      if (MD->isOutOfLine() && RD->isDynamicClass()) {
573        const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
574        if (KeyFunction &&
575            KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
576          return false;
577      }
578    }
579
580    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
581
582    // static, static inline, always_inline, and extern inline functions can
583    // always be deferred.  Normal inline functions can be deferred in C99/C++.
584    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
585        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
586      return true;
587    return false;
588  }
589
590  const VarDecl *VD = cast<VarDecl>(Global);
591  assert(VD->isFileVarDecl() && "Invalid decl");
592
593  // We never want to defer structs that have non-trivial constructors or
594  // destructors.
595
596  // FIXME: Handle references.
597  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
598    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
599      if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
600        return false;
601    }
602  }
603
604  // Static data may be deferred, but out-of-line static data members
605  // cannot be.
606  Linkage L = VD->getLinkage();
607  if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
608      VD->getType()->getLinkage() == UniqueExternalLinkage)
609    L = UniqueExternalLinkage;
610
611  switch (L) {
612  case NoLinkage:
613  case InternalLinkage:
614  case UniqueExternalLinkage:
615    // Initializer has side effects?
616    if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
617      return false;
618    return !(VD->isStaticDataMember() && VD->isOutOfLine());
619
620  case ExternalLinkage:
621    break;
622  }
623
624  return false;
625}
626
627llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
628  const AliasAttr *AA = VD->getAttr<AliasAttr>();
629  assert(AA && "No alias?");
630
631  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
632
633  // Unique the name through the identifier table.
634  const char *AliaseeName =
635    getContext().Idents.get(AA->getAliasee()).getNameStart();
636
637  // See if there is already something with the target's name in the module.
638  llvm::GlobalValue *Entry = GlobalDeclMap[AliaseeName];
639
640  llvm::Constant *Aliasee;
641  if (isa<llvm::FunctionType>(DeclTy))
642    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
643  else
644    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
645                                    llvm::PointerType::getUnqual(DeclTy), 0);
646  if (!Entry) {
647    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
648    F->setLinkage(llvm::Function::ExternalWeakLinkage);
649    WeakRefReferences.insert(F);
650  }
651
652  return Aliasee;
653}
654
655void CodeGenModule::EmitGlobal(GlobalDecl GD) {
656  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
657
658  // Weak references don't produce any output by themselves.
659  if (Global->hasAttr<WeakRefAttr>())
660    return;
661
662  // If this is an alias definition (which otherwise looks like a declaration)
663  // emit it now.
664  if (Global->hasAttr<AliasAttr>())
665    return EmitAliasDefinition(Global);
666
667  // Ignore declarations, they will be emitted on their first use.
668  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
669    // Forward declarations are emitted lazily on first use.
670    if (!FD->isThisDeclarationADefinition())
671      return;
672  } else {
673    const VarDecl *VD = cast<VarDecl>(Global);
674    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
675
676    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
677      return;
678  }
679
680  // Defer code generation when possible if this is a static definition, inline
681  // function etc.  These we only want to emit if they are used.
682  if (MayDeferGeneration(Global)) {
683    // If the value has already been used, add it directly to the
684    // DeferredDeclsToEmit list.
685    const char *MangledName = getMangledName(GD);
686    if (GlobalDeclMap.count(MangledName))
687      DeferredDeclsToEmit.push_back(GD);
688    else {
689      // Otherwise, remember that we saw a deferred decl with this name.  The
690      // first use of the mangled name will cause it to move into
691      // DeferredDeclsToEmit.
692      DeferredDecls[MangledName] = GD;
693    }
694    return;
695  }
696
697  // Otherwise emit the definition.
698  EmitGlobalDefinition(GD);
699}
700
701void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
702  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
703
704  PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
705                                 Context.getSourceManager(),
706                                 "Generating code for declaration");
707
708  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
709    getVtableInfo().MaybeEmitVtable(GD);
710    if (MD->isVirtual() && MD->isOutOfLine() &&
711        (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
712      if (isa<CXXDestructorDecl>(D)) {
713        GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
714                           GD.getDtorType());
715        BuildThunksForVirtual(CanonGD);
716      } else {
717        BuildThunksForVirtual(MD->getCanonicalDecl());
718      }
719    }
720  }
721
722  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
723    EmitCXXConstructor(CD, GD.getCtorType());
724  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
725    EmitCXXDestructor(DD, GD.getDtorType());
726  else if (isa<FunctionDecl>(D))
727    EmitGlobalFunctionDefinition(GD);
728  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
729    EmitGlobalVarDefinition(VD);
730  else {
731    assert(0 && "Invalid argument to EmitGlobalDefinition()");
732  }
733}
734
735/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
736/// module, create and return an llvm Function with the specified type. If there
737/// is something in the module with the specified name, return it potentially
738/// bitcasted to the right type.
739///
740/// If D is non-null, it specifies a decl that correspond to this.  This is used
741/// to set the attributes on the function when it is first created.
742llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
743                                                       const llvm::Type *Ty,
744                                                       GlobalDecl D) {
745  // Lookup the entry, lazily creating it if necessary.
746  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
747  if (Entry) {
748    if (WeakRefReferences.count(Entry)) {
749      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
750      if (FD && !FD->hasAttr<WeakAttr>())
751	Entry->setLinkage(llvm::Function::ExternalLinkage);
752
753      WeakRefReferences.erase(Entry);
754    }
755
756    if (Entry->getType()->getElementType() == Ty)
757      return Entry;
758
759    // Make sure the result is of the correct type.
760    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
761    return llvm::ConstantExpr::getBitCast(Entry, PTy);
762  }
763
764  // This function doesn't have a complete type (for example, the return
765  // type is an incomplete struct). Use a fake type instead, and make
766  // sure not to try to set attributes.
767  bool IsIncompleteFunction = false;
768  if (!isa<llvm::FunctionType>(Ty)) {
769    Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
770                                 std::vector<const llvm::Type*>(), false);
771    IsIncompleteFunction = true;
772  }
773  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
774                                             llvm::Function::ExternalLinkage,
775                                             "", &getModule());
776  F->setName(MangledName);
777  if (D.getDecl())
778    SetFunctionAttributes(D, F, IsIncompleteFunction);
779  Entry = F;
780
781  // This is the first use or definition of a mangled name.  If there is a
782  // deferred decl with this name, remember that we need to emit it at the end
783  // of the file.
784  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
785    DeferredDecls.find(MangledName);
786  if (DDI != DeferredDecls.end()) {
787    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
788    // list, and remove it from DeferredDecls (since we don't need it anymore).
789    DeferredDeclsToEmit.push_back(DDI->second);
790    DeferredDecls.erase(DDI);
791  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
792    // If this the first reference to a C++ inline function in a class, queue up
793    // the deferred function body for emission.  These are not seen as
794    // top-level declarations.
795    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
796      DeferredDeclsToEmit.push_back(D);
797    // A called constructor which has no definition or declaration need be
798    // synthesized.
799    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
800      if (CD->isImplicit()) {
801        assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
802        DeferredDeclsToEmit.push_back(D);
803      }
804    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
805      if (DD->isImplicit()) {
806        assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
807        DeferredDeclsToEmit.push_back(D);
808      }
809    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
810      if (MD->isCopyAssignment() && MD->isImplicit()) {
811        assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
812        DeferredDeclsToEmit.push_back(D);
813      }
814    }
815  }
816
817  return F;
818}
819
820/// GetAddrOfFunction - Return the address of the given function.  If Ty is
821/// non-null, then this function will use the specified type if it has to
822/// create it (this occurs when we see a definition of the function).
823llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
824                                                 const llvm::Type *Ty) {
825  // If there was no specific requested type, just convert it now.
826  if (!Ty)
827    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
828  return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
829}
830
831/// CreateRuntimeFunction - Create a new runtime function with the specified
832/// type and name.
833llvm::Constant *
834CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
835                                     const char *Name) {
836  // Convert Name to be a uniqued string from the IdentifierInfo table.
837  Name = getContext().Idents.get(Name).getNameStart();
838  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
839}
840
841static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
842  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
843    return false;
844  if (Context.getLangOptions().CPlusPlus &&
845      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
846    // FIXME: We should do something fancier here!
847    return false;
848  }
849  return true;
850}
851
852/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
853/// create and return an llvm GlobalVariable with the specified type.  If there
854/// is something in the module with the specified name, return it potentially
855/// bitcasted to the right type.
856///
857/// If D is non-null, it specifies a decl that correspond to this.  This is used
858/// to set the attributes on the global when it is first created.
859llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
860                                                     const llvm::PointerType*Ty,
861                                                     const VarDecl *D) {
862  // Lookup the entry, lazily creating it if necessary.
863  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
864  if (Entry) {
865    if (WeakRefReferences.count(Entry)) {
866      if (D && !D->hasAttr<WeakAttr>())
867	Entry->setLinkage(llvm::Function::ExternalLinkage);
868
869      WeakRefReferences.erase(Entry);
870    }
871
872    if (Entry->getType() == Ty)
873      return Entry;
874
875    // Make sure the result is of the correct type.
876    return llvm::ConstantExpr::getBitCast(Entry, Ty);
877  }
878
879  // This is the first use or definition of a mangled name.  If there is a
880  // deferred decl with this name, remember that we need to emit it at the end
881  // of the file.
882  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
883    DeferredDecls.find(MangledName);
884  if (DDI != DeferredDecls.end()) {
885    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
886    // list, and remove it from DeferredDecls (since we don't need it anymore).
887    DeferredDeclsToEmit.push_back(DDI->second);
888    DeferredDecls.erase(DDI);
889  }
890
891  llvm::GlobalVariable *GV =
892    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
893                             llvm::GlobalValue::ExternalLinkage,
894                             0, "", 0,
895                             false, Ty->getAddressSpace());
896  GV->setName(MangledName);
897
898  // Handle things which are present even on external declarations.
899  if (D) {
900    // FIXME: This code is overly simple and should be merged with other global
901    // handling.
902    GV->setConstant(DeclIsConstantGlobal(Context, D));
903
904    // FIXME: Merge with other attribute handling code.
905    if (D->getStorageClass() == VarDecl::PrivateExtern)
906      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
907
908    if (D->hasAttr<WeakAttr>() ||
909        D->hasAttr<WeakImportAttr>())
910      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
911
912    GV->setThreadLocal(D->isThreadSpecified());
913  }
914
915  return Entry = GV;
916}
917
918
919/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
920/// given global variable.  If Ty is non-null and if the global doesn't exist,
921/// then it will be greated with the specified type instead of whatever the
922/// normal requested type would be.
923llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
924                                                  const llvm::Type *Ty) {
925  assert(D->hasGlobalStorage() && "Not a global variable");
926  QualType ASTTy = D->getType();
927  if (Ty == 0)
928    Ty = getTypes().ConvertTypeForMem(ASTTy);
929
930  const llvm::PointerType *PTy =
931    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
932  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
933}
934
935/// CreateRuntimeVariable - Create a new runtime global variable with the
936/// specified type and name.
937llvm::Constant *
938CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
939                                     const char *Name) {
940  // Convert Name to be a uniqued string from the IdentifierInfo table.
941  Name = getContext().Idents.get(Name).getNameStart();
942  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
943}
944
945void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
946  assert(!D->getInit() && "Cannot emit definite definitions here!");
947
948  if (MayDeferGeneration(D)) {
949    // If we have not seen a reference to this variable yet, place it
950    // into the deferred declarations table to be emitted if needed
951    // later.
952    const char *MangledName = getMangledName(D);
953    if (GlobalDeclMap.count(MangledName) == 0) {
954      DeferredDecls[MangledName] = D;
955      return;
956    }
957  }
958
959  // The tentative definition is the only definition.
960  EmitGlobalVarDefinition(D);
961}
962
963llvm::GlobalVariable::LinkageTypes
964CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
965  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
966    return llvm::GlobalVariable::InternalLinkage;
967
968  if (const CXXMethodDecl *KeyFunction
969                                    = RD->getASTContext().getKeyFunction(RD)) {
970    // If this class has a key function, use that to determine the linkage of
971    // the vtable.
972    const FunctionDecl *Def = 0;
973    if (KeyFunction->getBody(Def))
974      KeyFunction = cast<CXXMethodDecl>(Def);
975
976    switch (KeyFunction->getTemplateSpecializationKind()) {
977      case TSK_Undeclared:
978      case TSK_ExplicitSpecialization:
979        if (KeyFunction->isInlined())
980          return llvm::GlobalVariable::WeakODRLinkage;
981
982        return llvm::GlobalVariable::ExternalLinkage;
983
984      case TSK_ImplicitInstantiation:
985      case TSK_ExplicitInstantiationDefinition:
986        return llvm::GlobalVariable::WeakODRLinkage;
987
988      case TSK_ExplicitInstantiationDeclaration:
989        // FIXME: Use available_externally linkage. However, this currently
990        // breaks LLVM's build due to undefined symbols.
991        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
992        return llvm::GlobalVariable::WeakODRLinkage;
993    }
994  }
995
996  switch (RD->getTemplateSpecializationKind()) {
997  case TSK_Undeclared:
998  case TSK_ExplicitSpecialization:
999  case TSK_ImplicitInstantiation:
1000  case TSK_ExplicitInstantiationDefinition:
1001    return llvm::GlobalVariable::WeakODRLinkage;
1002
1003  case TSK_ExplicitInstantiationDeclaration:
1004    // FIXME: Use available_externally linkage. However, this currently
1005    // breaks LLVM's build due to undefined symbols.
1006    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1007    return llvm::GlobalVariable::WeakODRLinkage;
1008  }
1009
1010  // Silence GCC warning.
1011  return llvm::GlobalVariable::WeakODRLinkage;
1012}
1013
1014static CodeGenModule::GVALinkage
1015GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1016  // If this is a static data member, compute the kind of template
1017  // specialization. Otherwise, this variable is not part of a
1018  // template.
1019  TemplateSpecializationKind TSK = TSK_Undeclared;
1020  if (VD->isStaticDataMember())
1021    TSK = VD->getTemplateSpecializationKind();
1022
1023  Linkage L = VD->getLinkage();
1024  if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1025      VD->getType()->getLinkage() == UniqueExternalLinkage)
1026    L = UniqueExternalLinkage;
1027
1028  switch (L) {
1029  case NoLinkage:
1030  case InternalLinkage:
1031  case UniqueExternalLinkage:
1032    return CodeGenModule::GVA_Internal;
1033
1034  case ExternalLinkage:
1035    switch (TSK) {
1036    case TSK_Undeclared:
1037    case TSK_ExplicitSpecialization:
1038
1039      // FIXME: ExplicitInstantiationDefinition should be weak!
1040    case TSK_ExplicitInstantiationDefinition:
1041      return CodeGenModule::GVA_StrongExternal;
1042
1043    case TSK_ExplicitInstantiationDeclaration:
1044      llvm_unreachable("Variable should not be instantiated");
1045      // Fall through to treat this like any other instantiation.
1046
1047    case TSK_ImplicitInstantiation:
1048      return CodeGenModule::GVA_TemplateInstantiation;
1049    }
1050  }
1051
1052  return CodeGenModule::GVA_StrongExternal;
1053}
1054
1055CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1056    return CharUnits::fromQuantity(
1057      TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1058}
1059
1060void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1061  llvm::Constant *Init = 0;
1062  QualType ASTTy = D->getType();
1063  bool NonConstInit = false;
1064
1065  const Expr *InitExpr = D->getAnyInitializer();
1066
1067  if (!InitExpr) {
1068    // This is a tentative definition; tentative definitions are
1069    // implicitly initialized with { 0 }.
1070    //
1071    // Note that tentative definitions are only emitted at the end of
1072    // a translation unit, so they should never have incomplete
1073    // type. In addition, EmitTentativeDefinition makes sure that we
1074    // never attempt to emit a tentative definition if a real one
1075    // exists. A use may still exists, however, so we still may need
1076    // to do a RAUW.
1077    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1078    Init = EmitNullConstant(D->getType());
1079  } else {
1080    Init = EmitConstantExpr(InitExpr, D->getType());
1081
1082    if (!Init) {
1083      QualType T = InitExpr->getType();
1084      if (getLangOptions().CPlusPlus) {
1085        EmitCXXGlobalVarDeclInitFunc(D);
1086        Init = EmitNullConstant(T);
1087        NonConstInit = true;
1088      } else {
1089        ErrorUnsupported(D, "static initializer");
1090        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1091      }
1092    }
1093  }
1094
1095  const llvm::Type* InitType = Init->getType();
1096  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1097
1098  // Strip off a bitcast if we got one back.
1099  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1100    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1101           // all zero index gep.
1102           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1103    Entry = CE->getOperand(0);
1104  }
1105
1106  // Entry is now either a Function or GlobalVariable.
1107  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1108
1109  // We have a definition after a declaration with the wrong type.
1110  // We must make a new GlobalVariable* and update everything that used OldGV
1111  // (a declaration or tentative definition) with the new GlobalVariable*
1112  // (which will be a definition).
1113  //
1114  // This happens if there is a prototype for a global (e.g.
1115  // "extern int x[];") and then a definition of a different type (e.g.
1116  // "int x[10];"). This also happens when an initializer has a different type
1117  // from the type of the global (this happens with unions).
1118  if (GV == 0 ||
1119      GV->getType()->getElementType() != InitType ||
1120      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1121
1122    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1123    GlobalDeclMap.erase(getMangledName(D));
1124
1125    // Make a new global with the correct type, this is now guaranteed to work.
1126    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1127    GV->takeName(cast<llvm::GlobalValue>(Entry));
1128
1129    // Replace all uses of the old global with the new global
1130    llvm::Constant *NewPtrForOldDecl =
1131        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1132    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1133
1134    // Erase the old global, since it is no longer used.
1135    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1136  }
1137
1138  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1139    SourceManager &SM = Context.getSourceManager();
1140    AddAnnotation(EmitAnnotateAttr(GV, AA,
1141                              SM.getInstantiationLineNumber(D->getLocation())));
1142  }
1143
1144  GV->setInitializer(Init);
1145
1146  // If it is safe to mark the global 'constant', do so now.
1147  GV->setConstant(false);
1148  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1149    GV->setConstant(true);
1150
1151  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1152
1153  // Set the llvm linkage type as appropriate.
1154  GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1155  if (Linkage == GVA_Internal)
1156    GV->setLinkage(llvm::Function::InternalLinkage);
1157  else if (D->hasAttr<DLLImportAttr>())
1158    GV->setLinkage(llvm::Function::DLLImportLinkage);
1159  else if (D->hasAttr<DLLExportAttr>())
1160    GV->setLinkage(llvm::Function::DLLExportLinkage);
1161  else if (D->hasAttr<WeakAttr>()) {
1162    if (GV->isConstant())
1163      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1164    else
1165      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1166  } else if (Linkage == GVA_TemplateInstantiation)
1167    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1168  else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1169           !D->hasExternalStorage() && !D->getInit() &&
1170           !D->getAttr<SectionAttr>()) {
1171    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1172    // common vars aren't constant even if declared const.
1173    GV->setConstant(false);
1174  } else
1175    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1176
1177  SetCommonAttributes(D, GV);
1178
1179  // Emit global variable debug information.
1180  if (CGDebugInfo *DI = getDebugInfo()) {
1181    DI->setLocation(D->getLocation());
1182    DI->EmitGlobalVariable(GV, D);
1183  }
1184}
1185
1186/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1187/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1188/// existing call uses of the old function in the module, this adjusts them to
1189/// call the new function directly.
1190///
1191/// This is not just a cleanup: the always_inline pass requires direct calls to
1192/// functions to be able to inline them.  If there is a bitcast in the way, it
1193/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1194/// run at -O0.
1195static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1196                                                      llvm::Function *NewFn) {
1197  // If we're redefining a global as a function, don't transform it.
1198  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1199  if (OldFn == 0) return;
1200
1201  const llvm::Type *NewRetTy = NewFn->getReturnType();
1202  llvm::SmallVector<llvm::Value*, 4> ArgList;
1203
1204  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1205       UI != E; ) {
1206    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1207    unsigned OpNo = UI.getOperandNo();
1208    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1209    if (!CI || OpNo != 0) continue;
1210
1211    // If the return types don't match exactly, and if the call isn't dead, then
1212    // we can't transform this call.
1213    if (CI->getType() != NewRetTy && !CI->use_empty())
1214      continue;
1215
1216    // If the function was passed too few arguments, don't transform.  If extra
1217    // arguments were passed, we silently drop them.  If any of the types
1218    // mismatch, we don't transform.
1219    unsigned ArgNo = 0;
1220    bool DontTransform = false;
1221    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1222         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1223      if (CI->getNumOperands()-1 == ArgNo ||
1224          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1225        DontTransform = true;
1226        break;
1227      }
1228    }
1229    if (DontTransform)
1230      continue;
1231
1232    // Okay, we can transform this.  Create the new call instruction and copy
1233    // over the required information.
1234    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1235    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1236                                                     ArgList.end(), "", CI);
1237    ArgList.clear();
1238    if (!NewCall->getType()->isVoidTy())
1239      NewCall->takeName(CI);
1240    NewCall->setAttributes(CI->getAttributes());
1241    NewCall->setCallingConv(CI->getCallingConv());
1242
1243    // Finally, remove the old call, replacing any uses with the new one.
1244    if (!CI->use_empty())
1245      CI->replaceAllUsesWith(NewCall);
1246
1247    // Copy any custom metadata attached with CI.
1248    if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1249      NewCall->setMetadata("dbg", DbgNode);
1250    CI->eraseFromParent();
1251  }
1252}
1253
1254
1255void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1256  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1257  const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1258  getMangleContext().mangleInitDiscriminator();
1259  // Get or create the prototype for the function.
1260  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1261
1262  // Strip off a bitcast if we got one back.
1263  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1264    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1265    Entry = CE->getOperand(0);
1266  }
1267
1268
1269  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1270    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1271
1272    // If the types mismatch then we have to rewrite the definition.
1273    assert(OldFn->isDeclaration() &&
1274           "Shouldn't replace non-declaration");
1275
1276    // F is the Function* for the one with the wrong type, we must make a new
1277    // Function* and update everything that used F (a declaration) with the new
1278    // Function* (which will be a definition).
1279    //
1280    // This happens if there is a prototype for a function
1281    // (e.g. "int f()") and then a definition of a different type
1282    // (e.g. "int f(int x)").  Start by making a new function of the
1283    // correct type, RAUW, then steal the name.
1284    GlobalDeclMap.erase(getMangledName(D));
1285    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1286    NewFn->takeName(OldFn);
1287
1288    // If this is an implementation of a function without a prototype, try to
1289    // replace any existing uses of the function (which may be calls) with uses
1290    // of the new function
1291    if (D->getType()->isFunctionNoProtoType()) {
1292      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1293      OldFn->removeDeadConstantUsers();
1294    }
1295
1296    // Replace uses of F with the Function we will endow with a body.
1297    if (!Entry->use_empty()) {
1298      llvm::Constant *NewPtrForOldDecl =
1299        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1300      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1301    }
1302
1303    // Ok, delete the old function now, which is dead.
1304    OldFn->eraseFromParent();
1305
1306    Entry = NewFn;
1307  }
1308
1309  llvm::Function *Fn = cast<llvm::Function>(Entry);
1310
1311  CodeGenFunction(*this).GenerateCode(D, Fn);
1312
1313  SetFunctionDefinitionAttributes(D, Fn);
1314  SetLLVMFunctionAttributesForDefinition(D, Fn);
1315
1316  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1317    AddGlobalCtor(Fn, CA->getPriority());
1318  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1319    AddGlobalDtor(Fn, DA->getPriority());
1320}
1321
1322void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1323  const AliasAttr *AA = D->getAttr<AliasAttr>();
1324  assert(AA && "Not an alias?");
1325
1326  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1327
1328  // Unique the name through the identifier table.
1329  const char *AliaseeName =
1330    getContext().Idents.get(AA->getAliasee()).getNameStart();
1331
1332  // Create a reference to the named value.  This ensures that it is emitted
1333  // if a deferred decl.
1334  llvm::Constant *Aliasee;
1335  if (isa<llvm::FunctionType>(DeclTy))
1336    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1337  else
1338    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1339                                    llvm::PointerType::getUnqual(DeclTy), 0);
1340
1341  // Create the new alias itself, but don't set a name yet.
1342  llvm::GlobalValue *GA =
1343    new llvm::GlobalAlias(Aliasee->getType(),
1344                          llvm::Function::ExternalLinkage,
1345                          "", Aliasee, &getModule());
1346
1347  // See if there is already something with the alias' name in the module.
1348  const char *MangledName = getMangledName(D);
1349  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1350
1351  if (Entry && !Entry->isDeclaration()) {
1352    // If there is a definition in the module, then it wins over the alias.
1353    // This is dubious, but allow it to be safe.  Just ignore the alias.
1354    GA->eraseFromParent();
1355    return;
1356  }
1357
1358  if (Entry) {
1359    // If there is a declaration in the module, then we had an extern followed
1360    // by the alias, as in:
1361    //   extern int test6();
1362    //   ...
1363    //   int test6() __attribute__((alias("test7")));
1364    //
1365    // Remove it and replace uses of it with the alias.
1366
1367    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1368                                                          Entry->getType()));
1369    Entry->eraseFromParent();
1370  }
1371
1372  // Now we know that there is no conflict, set the name.
1373  Entry = GA;
1374  GA->setName(MangledName);
1375
1376  // Set attributes which are particular to an alias; this is a
1377  // specialization of the attributes which may be set on a global
1378  // variable/function.
1379  if (D->hasAttr<DLLExportAttr>()) {
1380    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1381      // The dllexport attribute is ignored for undefined symbols.
1382      if (FD->getBody())
1383        GA->setLinkage(llvm::Function::DLLExportLinkage);
1384    } else {
1385      GA->setLinkage(llvm::Function::DLLExportLinkage);
1386    }
1387  } else if (D->hasAttr<WeakAttr>() ||
1388             D->hasAttr<WeakRefAttr>() ||
1389             D->hasAttr<WeakImportAttr>()) {
1390    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1391  }
1392
1393  SetCommonAttributes(D, GA);
1394}
1395
1396/// getBuiltinLibFunction - Given a builtin id for a function like
1397/// "__builtin_fabsf", return a Function* for "fabsf".
1398llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1399                                                  unsigned BuiltinID) {
1400  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1401          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1402         "isn't a lib fn");
1403
1404  // Get the name, skip over the __builtin_ prefix (if necessary).
1405  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1406  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1407    Name += 10;
1408
1409  const llvm::FunctionType *Ty =
1410    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1411
1412  // Unique the name through the identifier table.
1413  Name = getContext().Idents.get(Name).getNameStart();
1414  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1415}
1416
1417llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1418                                            unsigned NumTys) {
1419  return llvm::Intrinsic::getDeclaration(&getModule(),
1420                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1421}
1422
1423llvm::Function *CodeGenModule::getMemCpyFn() {
1424  if (MemCpyFn) return MemCpyFn;
1425  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1426  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1427}
1428
1429llvm::Function *CodeGenModule::getMemMoveFn() {
1430  if (MemMoveFn) return MemMoveFn;
1431  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1432  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1433}
1434
1435llvm::Function *CodeGenModule::getMemSetFn() {
1436  if (MemSetFn) return MemSetFn;
1437  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1438  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1439}
1440
1441static llvm::StringMapEntry<llvm::Constant*> &
1442GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1443                         const StringLiteral *Literal,
1444                         bool TargetIsLSB,
1445                         bool &IsUTF16,
1446                         unsigned &StringLength) {
1447  unsigned NumBytes = Literal->getByteLength();
1448
1449  // Check for simple case.
1450  if (!Literal->containsNonAsciiOrNull()) {
1451    StringLength = NumBytes;
1452    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1453                                                StringLength));
1454  }
1455
1456  // Otherwise, convert the UTF8 literals into a byte string.
1457  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1458  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1459  UTF16 *ToPtr = &ToBuf[0];
1460
1461  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1462                                               &ToPtr, ToPtr + NumBytes,
1463                                               strictConversion);
1464
1465  // Check for conversion failure.
1466  if (Result != conversionOK) {
1467    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1468    // this duplicate code.
1469    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1470    StringLength = NumBytes;
1471    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1472                                                StringLength));
1473  }
1474
1475  // ConvertUTF8toUTF16 returns the length in ToPtr.
1476  StringLength = ToPtr - &ToBuf[0];
1477
1478  // Render the UTF-16 string into a byte array and convert to the target byte
1479  // order.
1480  //
1481  // FIXME: This isn't something we should need to do here.
1482  llvm::SmallString<128> AsBytes;
1483  AsBytes.reserve(StringLength * 2);
1484  for (unsigned i = 0; i != StringLength; ++i) {
1485    unsigned short Val = ToBuf[i];
1486    if (TargetIsLSB) {
1487      AsBytes.push_back(Val & 0xFF);
1488      AsBytes.push_back(Val >> 8);
1489    } else {
1490      AsBytes.push_back(Val >> 8);
1491      AsBytes.push_back(Val & 0xFF);
1492    }
1493  }
1494  // Append one extra null character, the second is automatically added by our
1495  // caller.
1496  AsBytes.push_back(0);
1497
1498  IsUTF16 = true;
1499  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1500}
1501
1502llvm::Constant *
1503CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1504  unsigned StringLength = 0;
1505  bool isUTF16 = false;
1506  llvm::StringMapEntry<llvm::Constant*> &Entry =
1507    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1508                             getTargetData().isLittleEndian(),
1509                             isUTF16, StringLength);
1510
1511  if (llvm::Constant *C = Entry.getValue())
1512    return C;
1513
1514  llvm::Constant *Zero =
1515      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1516  llvm::Constant *Zeros[] = { Zero, Zero };
1517
1518  // If we don't already have it, get __CFConstantStringClassReference.
1519  if (!CFConstantStringClassRef) {
1520    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1521    Ty = llvm::ArrayType::get(Ty, 0);
1522    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1523                                           "__CFConstantStringClassReference");
1524    // Decay array -> ptr
1525    CFConstantStringClassRef =
1526      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1527  }
1528
1529  QualType CFTy = getContext().getCFConstantStringType();
1530
1531  const llvm::StructType *STy =
1532    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1533
1534  std::vector<llvm::Constant*> Fields(4);
1535
1536  // Class pointer.
1537  Fields[0] = CFConstantStringClassRef;
1538
1539  // Flags.
1540  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1541  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1542    llvm::ConstantInt::get(Ty, 0x07C8);
1543
1544  // String pointer.
1545  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1546
1547  llvm::GlobalValue::LinkageTypes Linkage;
1548  bool isConstant;
1549  if (isUTF16) {
1550    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1551    Linkage = llvm::GlobalValue::InternalLinkage;
1552    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1553    // does make plain ascii ones writable.
1554    isConstant = true;
1555  } else {
1556    Linkage = llvm::GlobalValue::PrivateLinkage;
1557    isConstant = !Features.WritableStrings;
1558  }
1559
1560  llvm::GlobalVariable *GV =
1561    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1562                             ".str");
1563  if (isUTF16) {
1564    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1565    GV->setAlignment(Align.getQuantity());
1566  }
1567  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1568
1569  // String length.
1570  Ty = getTypes().ConvertType(getContext().LongTy);
1571  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1572
1573  // The struct.
1574  C = llvm::ConstantStruct::get(STy, Fields);
1575  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1576                                llvm::GlobalVariable::PrivateLinkage, C,
1577                                "_unnamed_cfstring_");
1578  if (const char *Sect = getContext().Target.getCFStringSection())
1579    GV->setSection(Sect);
1580  Entry.setValue(GV);
1581
1582  return GV;
1583}
1584
1585/// GetStringForStringLiteral - Return the appropriate bytes for a
1586/// string literal, properly padded to match the literal type.
1587std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1588  const char *StrData = E->getStrData();
1589  unsigned Len = E->getByteLength();
1590
1591  const ConstantArrayType *CAT =
1592    getContext().getAsConstantArrayType(E->getType());
1593  assert(CAT && "String isn't pointer or array!");
1594
1595  // Resize the string to the right size.
1596  std::string Str(StrData, StrData+Len);
1597  uint64_t RealLen = CAT->getSize().getZExtValue();
1598
1599  if (E->isWide())
1600    RealLen *= getContext().Target.getWCharWidth()/8;
1601
1602  Str.resize(RealLen, '\0');
1603
1604  return Str;
1605}
1606
1607/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1608/// constant array for the given string literal.
1609llvm::Constant *
1610CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1611  // FIXME: This can be more efficient.
1612  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1613  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1614  if (S->isWide()) {
1615    llvm::Type *DestTy =
1616        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1617    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1618  }
1619  return C;
1620}
1621
1622/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1623/// array for the given ObjCEncodeExpr node.
1624llvm::Constant *
1625CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1626  std::string Str;
1627  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1628
1629  return GetAddrOfConstantCString(Str);
1630}
1631
1632
1633/// GenerateWritableString -- Creates storage for a string literal.
1634static llvm::Constant *GenerateStringLiteral(const std::string &str,
1635                                             bool constant,
1636                                             CodeGenModule &CGM,
1637                                             const char *GlobalName) {
1638  // Create Constant for this string literal. Don't add a '\0'.
1639  llvm::Constant *C =
1640      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1641
1642  // Create a global variable for this string
1643  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1644                                  llvm::GlobalValue::PrivateLinkage,
1645                                  C, GlobalName);
1646}
1647
1648/// GetAddrOfConstantString - Returns a pointer to a character array
1649/// containing the literal. This contents are exactly that of the
1650/// given string, i.e. it will not be null terminated automatically;
1651/// see GetAddrOfConstantCString. Note that whether the result is
1652/// actually a pointer to an LLVM constant depends on
1653/// Feature.WriteableStrings.
1654///
1655/// The result has pointer to array type.
1656llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1657                                                       const char *GlobalName) {
1658  bool IsConstant = !Features.WritableStrings;
1659
1660  // Get the default prefix if a name wasn't specified.
1661  if (!GlobalName)
1662    GlobalName = ".str";
1663
1664  // Don't share any string literals if strings aren't constant.
1665  if (!IsConstant)
1666    return GenerateStringLiteral(str, false, *this, GlobalName);
1667
1668  llvm::StringMapEntry<llvm::Constant *> &Entry =
1669    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1670
1671  if (Entry.getValue())
1672    return Entry.getValue();
1673
1674  // Create a global variable for this.
1675  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1676  Entry.setValue(C);
1677  return C;
1678}
1679
1680/// GetAddrOfConstantCString - Returns a pointer to a character
1681/// array containing the literal and a terminating '\-'
1682/// character. The result has pointer to array type.
1683llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1684                                                        const char *GlobalName){
1685  return GetAddrOfConstantString(str + '\0', GlobalName);
1686}
1687
1688/// EmitObjCPropertyImplementations - Emit information for synthesized
1689/// properties for an implementation.
1690void CodeGenModule::EmitObjCPropertyImplementations(const
1691                                                    ObjCImplementationDecl *D) {
1692  for (ObjCImplementationDecl::propimpl_iterator
1693         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1694    ObjCPropertyImplDecl *PID = *i;
1695
1696    // Dynamic is just for type-checking.
1697    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1698      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1699
1700      // Determine which methods need to be implemented, some may have
1701      // been overridden. Note that ::isSynthesized is not the method
1702      // we want, that just indicates if the decl came from a
1703      // property. What we want to know is if the method is defined in
1704      // this implementation.
1705      if (!D->getInstanceMethod(PD->getGetterName()))
1706        CodeGenFunction(*this).GenerateObjCGetter(
1707                                 const_cast<ObjCImplementationDecl *>(D), PID);
1708      if (!PD->isReadOnly() &&
1709          !D->getInstanceMethod(PD->getSetterName()))
1710        CodeGenFunction(*this).GenerateObjCSetter(
1711                                 const_cast<ObjCImplementationDecl *>(D), PID);
1712    }
1713  }
1714}
1715
1716/// EmitNamespace - Emit all declarations in a namespace.
1717void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1718  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1719       I != E; ++I)
1720    EmitTopLevelDecl(*I);
1721}
1722
1723// EmitLinkageSpec - Emit all declarations in a linkage spec.
1724void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1725  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1726      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1727    ErrorUnsupported(LSD, "linkage spec");
1728    return;
1729  }
1730
1731  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1732       I != E; ++I)
1733    EmitTopLevelDecl(*I);
1734}
1735
1736/// EmitTopLevelDecl - Emit code for a single top level declaration.
1737void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1738  // If an error has occurred, stop code generation, but continue
1739  // parsing and semantic analysis (to ensure all warnings and errors
1740  // are emitted).
1741  if (Diags.hasErrorOccurred())
1742    return;
1743
1744  // Ignore dependent declarations.
1745  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1746    return;
1747
1748  switch (D->getKind()) {
1749  case Decl::CXXConversion:
1750  case Decl::CXXMethod:
1751  case Decl::Function:
1752    // Skip function templates
1753    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1754      return;
1755
1756    EmitGlobal(cast<FunctionDecl>(D));
1757    break;
1758
1759  case Decl::Var:
1760    EmitGlobal(cast<VarDecl>(D));
1761    break;
1762
1763  // C++ Decls
1764  case Decl::Namespace:
1765    EmitNamespace(cast<NamespaceDecl>(D));
1766    break;
1767    // No code generation needed.
1768  case Decl::UsingShadow:
1769  case Decl::Using:
1770  case Decl::UsingDirective:
1771  case Decl::ClassTemplate:
1772  case Decl::FunctionTemplate:
1773  case Decl::NamespaceAlias:
1774    break;
1775  case Decl::CXXConstructor:
1776    // Skip function templates
1777    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1778      return;
1779
1780    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1781    break;
1782  case Decl::CXXDestructor:
1783    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1784    break;
1785
1786  case Decl::StaticAssert:
1787    // Nothing to do.
1788    break;
1789
1790  // Objective-C Decls
1791
1792  // Forward declarations, no (immediate) code generation.
1793  case Decl::ObjCClass:
1794  case Decl::ObjCForwardProtocol:
1795  case Decl::ObjCCategory:
1796  case Decl::ObjCInterface:
1797    break;
1798
1799  case Decl::ObjCProtocol:
1800    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1801    break;
1802
1803  case Decl::ObjCCategoryImpl:
1804    // Categories have properties but don't support synthesize so we
1805    // can ignore them here.
1806    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1807    break;
1808
1809  case Decl::ObjCImplementation: {
1810    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1811    EmitObjCPropertyImplementations(OMD);
1812    Runtime->GenerateClass(OMD);
1813    break;
1814  }
1815  case Decl::ObjCMethod: {
1816    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1817    // If this is not a prototype, emit the body.
1818    if (OMD->getBody())
1819      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1820    break;
1821  }
1822  case Decl::ObjCCompatibleAlias:
1823    // compatibility-alias is a directive and has no code gen.
1824    break;
1825
1826  case Decl::LinkageSpec:
1827    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1828    break;
1829
1830  case Decl::FileScopeAsm: {
1831    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1832    llvm::StringRef AsmString = AD->getAsmString()->getString();
1833
1834    const std::string &S = getModule().getModuleInlineAsm();
1835    if (S.empty())
1836      getModule().setModuleInlineAsm(AsmString);
1837    else
1838      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1839    break;
1840  }
1841
1842  default:
1843    // Make sure we handled everything we should, every other kind is a
1844    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1845    // function. Need to recode Decl::Kind to do that easily.
1846    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1847  }
1848}
1849