CodeGenTypes.cpp revision 3a2b657088de9413714a51bff153a59565adb3ef
1//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the code that handles AST -> LLVM type lowering.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenTypes.h"
15#include "CGCall.h"
16#include "CGCXXABI.h"
17#include "CGRecordLayout.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/RecordLayout.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Module.h"
25#include "llvm/Target/TargetData.h"
26using namespace clang;
27using namespace CodeGen;
28
29CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
30                           const llvm::TargetData &TD, const ABIInfo &Info,
31                           CGCXXABI &CXXABI, const CodeGenOptions &CGO)
32  : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
33    TheABIInfo(Info), TheCXXABI(CXXABI), CodeGenOpts(CGO) {
34  RecursionState = RS_Normal;
35  SkippedLayout = false;
36}
37
38CodeGenTypes::~CodeGenTypes() {
39  for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
40         I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
41      I != E; ++I)
42    delete I->second;
43
44  for (llvm::FoldingSet<CGFunctionInfo>::iterator
45       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
46    delete &*I++;
47}
48
49void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
50                                     llvm::StructType *Ty,
51                                     llvm::StringRef suffix) {
52  llvm::SmallString<256> TypeName;
53  llvm::raw_svector_ostream OS(TypeName);
54  OS << RD->getKindName() << '.';
55
56  // Name the codegen type after the typedef name
57  // if there is no tag type name available
58  if (RD->getIdentifier()) {
59    // FIXME: We should not have to check for a null decl context here.
60    // Right now we do it because the implicit Obj-C decls don't have one.
61    if (RD->getDeclContext())
62      OS << RD->getQualifiedNameAsString();
63    else
64      RD->printName(OS);
65  } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
66    // FIXME: We should not have to check for a null decl context here.
67    // Right now we do it because the implicit Obj-C decls don't have one.
68    if (TDD->getDeclContext())
69      OS << TDD->getQualifiedNameAsString();
70    else
71      TDD->printName(OS);
72  } else
73    OS << "anon";
74
75  if (!suffix.empty())
76    OS << suffix;
77
78  Ty->setName(OS.str());
79}
80
81/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
82/// ConvertType in that it is used to convert to the memory representation for
83/// a type.  For example, the scalar representation for _Bool is i1, but the
84/// memory representation is usually i8 or i32, depending on the target.
85llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
86  llvm::Type *R = ConvertType(T);
87
88  // If this is a non-bool type, don't map it.
89  if (!R->isIntegerTy(1))
90    return R;
91
92  // Otherwise, return an integer of the target-specified size.
93  return llvm::IntegerType::get(getLLVMContext(),
94                                (unsigned)Context.getTypeSize(T));
95}
96
97/// isFuncTypeArgumentConvertible - Return true if the specified type in a
98/// function argument or result position can be converted to an IR type at this
99/// point.  This boils down to being whether it is complete, as well as whether
100/// we've temporarily deferred expanding the type because we're in a recursive
101/// context.
102bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty){
103  // If this isn't a tagged type, we can convert it!
104  const TagType *TT = Ty->getAs<TagType>();
105  if (TT == 0) return true;
106
107
108  // If it's a tagged type, but is a forward decl, we can't convert it.
109  if (!TT->getDecl()->isDefinition())
110    return false;
111
112  // If we're not under a pointer under a struct, then we can convert it if
113  // needed.
114  if (RecursionState != RS_StructPointer)
115    return true;
116
117  // If this is an enum, then it is safe to convert.
118  const RecordType *RT = dyn_cast<RecordType>(TT);
119  if (RT == 0) return true;
120
121  // Otherwise, we have to be careful.  If it is a struct that we're in the
122  // process of expanding, then we can't convert the function type.  That's ok
123  // though because we must be in a pointer context under the struct, so we can
124  // just convert it to a dummy type.
125  //
126  // We decide this by checking whether ConvertRecordDeclType returns us an
127  // opaque type for a struct that we know is defined.
128  return !ConvertRecordDeclType(RT->getDecl())->isOpaque();
129}
130
131
132/// Code to verify a given function type is complete, i.e. the return type
133/// and all of the argument types are complete.  Also check to see if we are in
134/// a RS_StructPointer context, and if so whether any struct types have been
135/// pended.  If so, we don't want to ask the ABI lowering code to handle a type
136/// that cannot be converted to an IR type.
137bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
138  if (!isFuncTypeArgumentConvertible(FT->getResultType()))
139    return false;
140
141  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
142    for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
143      if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
144        return false;
145
146  return true;
147}
148
149/// UpdateCompletedType - When we find the full definition for a TagDecl,
150/// replace the 'opaque' type we previously made for it if applicable.
151void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
152  // If this is an enum being completed, then we flush all non-struct types from
153  // the cache.  This allows function types and other things that may be derived
154  // from the enum to be recomputed.
155  if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
156    // Only flush the cache if we've actually already converted this type.
157    if (TypeCache.count(ED->getTypeForDecl()))
158      TypeCache.clear();
159    return;
160  }
161
162  // If we completed a RecordDecl that we previously used and converted to an
163  // anonymous type, then go ahead and complete it now.
164  const RecordDecl *RD = cast<RecordDecl>(TD);
165  if (RD->isDependentType()) return;
166
167  // Only complete it if we converted it already.  If we haven't converted it
168  // yet, we'll just do it lazily.
169  if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
170    ConvertRecordDeclType(RD);
171}
172
173static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
174                                    const llvm::fltSemantics &format) {
175  if (&format == &llvm::APFloat::IEEEsingle)
176    return llvm::Type::getFloatTy(VMContext);
177  if (&format == &llvm::APFloat::IEEEdouble)
178    return llvm::Type::getDoubleTy(VMContext);
179  if (&format == &llvm::APFloat::IEEEquad)
180    return llvm::Type::getFP128Ty(VMContext);
181  if (&format == &llvm::APFloat::PPCDoubleDouble)
182    return llvm::Type::getPPC_FP128Ty(VMContext);
183  if (&format == &llvm::APFloat::x87DoubleExtended)
184    return llvm::Type::getX86_FP80Ty(VMContext);
185  assert(0 && "Unknown float format!");
186  return 0;
187}
188
189/// ConvertType - Convert the specified type to its LLVM form.
190llvm::Type *CodeGenTypes::ConvertType(QualType T) {
191  T = Context.getCanonicalType(T);
192
193  const Type *Ty = T.getTypePtr();
194
195  // RecordTypes are cached and processed specially.
196  if (const RecordType *RT = dyn_cast<RecordType>(Ty))
197    return ConvertRecordDeclType(RT->getDecl());
198
199  // See if type is already cached.
200  llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
201  // If type is found in map then use it. Otherwise, convert type T.
202  if (TCI != TypeCache.end())
203    return TCI->second;
204
205  // If we don't have it in the cache, convert it now.
206  llvm::Type *ResultType = 0;
207  switch (Ty->getTypeClass()) {
208  case Type::Record: // Handled above.
209#define TYPE(Class, Base)
210#define ABSTRACT_TYPE(Class, Base)
211#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
212#define DEPENDENT_TYPE(Class, Base) case Type::Class:
213#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
214#include "clang/AST/TypeNodes.def"
215    llvm_unreachable("Non-canonical or dependent types aren't possible.");
216    break;
217
218  case Type::Builtin: {
219    switch (cast<BuiltinType>(Ty)->getKind()) {
220    case BuiltinType::Void:
221    case BuiltinType::ObjCId:
222    case BuiltinType::ObjCClass:
223    case BuiltinType::ObjCSel:
224      // LLVM void type can only be used as the result of a function call.  Just
225      // map to the same as char.
226      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
227      break;
228
229    case BuiltinType::Bool:
230      // Note that we always return bool as i1 for use as a scalar type.
231      ResultType = llvm::Type::getInt1Ty(getLLVMContext());
232      break;
233
234    case BuiltinType::Char_S:
235    case BuiltinType::Char_U:
236    case BuiltinType::SChar:
237    case BuiltinType::UChar:
238    case BuiltinType::Short:
239    case BuiltinType::UShort:
240    case BuiltinType::Int:
241    case BuiltinType::UInt:
242    case BuiltinType::Long:
243    case BuiltinType::ULong:
244    case BuiltinType::LongLong:
245    case BuiltinType::ULongLong:
246    case BuiltinType::WChar_S:
247    case BuiltinType::WChar_U:
248    case BuiltinType::Char16:
249    case BuiltinType::Char32:
250      ResultType = llvm::IntegerType::get(getLLVMContext(),
251                                 static_cast<unsigned>(Context.getTypeSize(T)));
252      break;
253
254    case BuiltinType::Float:
255    case BuiltinType::Double:
256    case BuiltinType::LongDouble:
257      ResultType = getTypeForFormat(getLLVMContext(),
258                                    Context.getFloatTypeSemantics(T));
259      break;
260
261    case BuiltinType::NullPtr:
262      // Model std::nullptr_t as i8*
263      ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
264      break;
265
266    case BuiltinType::UInt128:
267    case BuiltinType::Int128:
268      ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
269      break;
270
271    case BuiltinType::Overload:
272    case BuiltinType::Dependent:
273    case BuiltinType::BoundMember:
274    case BuiltinType::UnknownAny:
275      llvm_unreachable("Unexpected placeholder builtin type!");
276      break;
277    }
278    break;
279  }
280  case Type::Complex: {
281    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
282    ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
283    break;
284  }
285  case Type::LValueReference:
286  case Type::RValueReference: {
287    RecursionStatePointerRAII X(RecursionState);
288    const ReferenceType *RTy = cast<ReferenceType>(Ty);
289    QualType ETy = RTy->getPointeeType();
290    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
291    unsigned AS = Context.getTargetAddressSpace(ETy);
292    ResultType = llvm::PointerType::get(PointeeType, AS);
293    break;
294  }
295  case Type::Pointer: {
296    RecursionStatePointerRAII X(RecursionState);
297    const PointerType *PTy = cast<PointerType>(Ty);
298    QualType ETy = PTy->getPointeeType();
299    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
300    if (PointeeType->isVoidTy())
301      PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
302    unsigned AS = Context.getTargetAddressSpace(ETy);
303    ResultType = llvm::PointerType::get(PointeeType, AS);
304    break;
305  }
306
307  case Type::VariableArray: {
308    const VariableArrayType *A = cast<VariableArrayType>(Ty);
309    assert(A->getIndexTypeCVRQualifiers() == 0 &&
310           "FIXME: We only handle trivial array types so far!");
311    // VLAs resolve to the innermost element type; this matches
312    // the return of alloca, and there isn't any obviously better choice.
313    ResultType = ConvertTypeForMem(A->getElementType());
314    break;
315  }
316  case Type::IncompleteArray: {
317    const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
318    assert(A->getIndexTypeCVRQualifiers() == 0 &&
319           "FIXME: We only handle trivial array types so far!");
320    // int X[] -> [0 x int], unless the element type is not sized.  If it is
321    // unsized (e.g. an incomplete struct) just use [0 x i8].
322    ResultType = ConvertTypeForMem(A->getElementType());
323    if (!ResultType->isSized()) {
324      SkippedLayout = true;
325      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
326    }
327    ResultType = llvm::ArrayType::get(ResultType, 0);
328    break;
329  }
330  case Type::ConstantArray: {
331    const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
332    const llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
333    ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
334    break;
335  }
336  case Type::ExtVector:
337  case Type::Vector: {
338    const VectorType *VT = cast<VectorType>(Ty);
339    ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
340                                       VT->getNumElements());
341    break;
342  }
343  case Type::FunctionNoProto:
344  case Type::FunctionProto: {
345    // First, check whether we can build the full function type.  If the
346    // function type depends on an incomplete type (e.g. a struct or enum), we
347    // cannot lower the function type.
348    if (RecursionState == RS_StructPointer ||
349        !isFuncTypeConvertible(cast<FunctionType>(Ty))) {
350      // This function's type depends on an incomplete tag type.
351      // Return a placeholder type.
352      ResultType = llvm::StructType::get(getLLVMContext());
353
354      SkippedLayout |= RecursionState == RS_StructPointer;
355      break;
356    }
357
358    // While we're converting the argument types for a function, we don't want
359    // to recursively convert any pointed-to structs.  Converting directly-used
360    // structs is ok though.
361    RecursionStateTy SavedRecursionState = RecursionState;
362    RecursionState = RS_Struct;
363
364    // The function type can be built; call the appropriate routines to
365    // build it.
366    const CGFunctionInfo *FI;
367    bool isVariadic;
368    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Ty)) {
369      FI = &getFunctionInfo(
370                   CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
371      isVariadic = FPT->isVariadic();
372    } else {
373      const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(Ty);
374      FI = &getFunctionInfo(
375                CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
376      isVariadic = true;
377    }
378
379    ResultType = GetFunctionType(*FI, isVariadic);
380
381    // Restore our recursion state.
382    RecursionState = SavedRecursionState;
383
384    if (SkippedLayout)
385      TypeCache.clear();
386
387    if (RecursionState == RS_Normal)
388      while (!DeferredRecords.empty())
389        ConvertRecordDeclType(DeferredRecords.pop_back_val());
390    break;
391  }
392
393  case Type::ObjCObject:
394    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
395    break;
396
397  case Type::ObjCInterface: {
398    // Objective-C interfaces are always opaque (outside of the
399    // runtime, which can do whatever it likes); we never refine
400    // these.
401    llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
402    if (!T)
403      T = llvm::StructType::createNamed(getLLVMContext(), "");
404    ResultType = T;
405    break;
406  }
407
408  case Type::ObjCObjectPointer: {
409    RecursionStatePointerRAII X(RecursionState);
410    // Protocol qualifications do not influence the LLVM type, we just return a
411    // pointer to the underlying interface type. We don't need to worry about
412    // recursive conversion.
413    const llvm::Type *T =
414      ConvertType(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
415    ResultType = T->getPointerTo();
416    break;
417  }
418
419   case Type::Enum: {
420    const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
421    if (ED->isDefinition() || ED->isFixed())
422      return ConvertType(ED->getIntegerType());
423    // Return a placeholder '{}' type.
424    ResultType = llvm::StructType::get(getLLVMContext());
425    break;
426  }
427
428  case Type::BlockPointer: {
429    RecursionStatePointerRAII X(RecursionState);
430    const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
431    llvm::Type *PointeeType = ConvertTypeForMem(FTy);
432    unsigned AS = Context.getTargetAddressSpace(FTy);
433    ResultType = llvm::PointerType::get(PointeeType, AS);
434    break;
435  }
436
437  case Type::MemberPointer: {
438    ResultType =
439      getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
440    break;
441  }
442  }
443
444  assert(ResultType && "Didn't convert a type?");
445
446  TypeCache[Ty] = ResultType;
447  return ResultType;
448}
449
450/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
451llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
452  // TagDecl's are not necessarily unique, instead use the (clang)
453  // type connected to the decl.
454  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
455
456  llvm::StructType *&Entry = RecordDeclTypes[Key];
457
458  // If we don't have a StructType at all yet, create the forward declaration.
459  if (Entry == 0) {
460    Entry = llvm::StructType::createNamed(getLLVMContext(), "");
461    addRecordTypeName(RD, Entry, "");
462  }
463  llvm::StructType *Ty = Entry;
464
465  // If this is still a forward declaration, or the LLVM type is already
466  // complete, there's nothing more to do.
467  if (!RD->isDefinition() || !Ty->isOpaque())
468    return Ty;
469
470  // If we're recursively nested inside the conversion of a pointer inside the
471  // struct, defer conversion.
472  if (RecursionState == RS_StructPointer) {
473    DeferredRecords.push_back(RD);
474    return Ty;
475  }
476
477  // Okay, this is a definition of a type.  Compile the implementation now.
478  RecursionStateTy SavedRecursionState = RecursionState;
479  RecursionState = RS_Struct;
480
481  // Force conversion of non-virtual base classes recursively.
482  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
483    for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
484         e = CRD->bases_end(); i != e; ++i) {
485      if (!i->isVirtual()) {
486        const CXXRecordDecl *Base =
487          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
488        ConvertRecordDeclType(Base);
489      }
490    }
491  }
492
493  // Layout fields.
494  CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
495  CGRecordLayouts[Key] = Layout;
496
497  // If this struct blocked a FunctionType conversion, then recompute whatever
498  // was derived from that.
499  // FIXME: This is hugely overconservative.
500  if (SkippedLayout)
501    TypeCache.clear();
502
503
504  // Restore our recursion state.  If we're done converting the outer-most
505  // record, then convert any deferred structs as well.
506  RecursionState = SavedRecursionState;
507
508  if (RecursionState == RS_Normal)
509    while (!DeferredRecords.empty())
510      ConvertRecordDeclType(DeferredRecords.pop_back_val());
511
512  return Ty;
513}
514
515/// getCGRecordLayout - Return record layout info for the given record decl.
516const CGRecordLayout &
517CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
518  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
519
520  const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
521  if (!Layout) {
522    // Compute the type information.
523    ConvertRecordDeclType(RD);
524
525    // Now try again.
526    Layout = CGRecordLayouts.lookup(Key);
527  }
528
529  assert(Layout && "Unable to find record layout information for type");
530  return *Layout;
531}
532
533bool CodeGenTypes::isZeroInitializable(QualType T) {
534  // No need to check for member pointers when not compiling C++.
535  if (!Context.getLangOptions().CPlusPlus)
536    return true;
537
538  T = Context.getBaseElementType(T);
539
540  // Records are non-zero-initializable if they contain any
541  // non-zero-initializable subobjects.
542  if (const RecordType *RT = T->getAs<RecordType>()) {
543    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
544    return isZeroInitializable(RD);
545  }
546
547  // We have to ask the ABI about member pointers.
548  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
549    return getCXXABI().isZeroInitializable(MPT);
550
551  // Everything else is okay.
552  return true;
553}
554
555bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
556  return getCGRecordLayout(RD).isZeroInitializable();
557}
558