CodeGenTypes.cpp revision 9048891ff983d0681c116c6e8f1073aa31bdd6e8
13842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
23842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz//
33842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz//                     The LLVM Compiler Infrastructure
43842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz//
53842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz// This file is distributed under the University of Illinois Open Source
63842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz// License. See LICENSE.TXT for details.
73842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz//
83842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz//===----------------------------------------------------------------------===//
93842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz//
103842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz// This is the code that handles AST -> LLVM type lowering.
113842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz//
123842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz//===----------------------------------------------------------------------===//
133842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz
143842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz#include "CodeGenTypes.h"
153842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz#include "clang/AST/ASTContext.h"
163842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz#include "clang/AST/DeclObjC.h"
173842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz#include "clang/AST/Expr.h"
183842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz#include "clang/AST/RecordLayout.h"
193842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz#include "llvm/DerivedTypes.h"
203842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz#include "llvm/Module.h"
213842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz#include "llvm/Target/TargetData.h"
223842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz
233842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitzusing namespace clang;
243842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitzusing namespace CodeGen;
253842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz
263842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitznamespace {
273842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz  /// RecordOrganizer - This helper class, used by CGRecordLayout, layouts
283842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz  /// structs and unions. It manages transient information used during layout.
293842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz  /// FIXME : Handle field aligments. Handle packed structs.
303842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz  class RecordOrganizer {
313842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz  public:
323842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    explicit RecordOrganizer(CodeGenTypes &Types, const RecordDecl& Record) :
333842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz      CGT(Types), RD(Record), STy(NULL) {}
343842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz
355fef17c05dd20ea6c0a6e3532177a916ef022a3cTommi Rantala    /// layoutStructFields - Do the actual work and lay out all fields. Create
363842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    /// corresponding llvm struct type.  This should be invoked only after
375fef17c05dd20ea6c0a6e3532177a916ef022a3cTommi Rantala    /// all fields are added.
385fef17c05dd20ea6c0a6e3532177a916ef022a3cTommi Rantala    void layoutStructFields(const ASTRecordLayout &RL);
395fef17c05dd20ea6c0a6e3532177a916ef022a3cTommi Rantala
405fef17c05dd20ea6c0a6e3532177a916ef022a3cTommi Rantala    /// layoutUnionFields - Do the actual work and lay out all fields. Create
415fef17c05dd20ea6c0a6e3532177a916ef022a3cTommi Rantala    /// corresponding llvm struct type.  This should be invoked only after
425fef17c05dd20ea6c0a6e3532177a916ef022a3cTommi Rantala    /// all fields are added.
435fef17c05dd20ea6c0a6e3532177a916ef022a3cTommi Rantala    void layoutUnionFields(const ASTRecordLayout &RL);
445fef17c05dd20ea6c0a6e3532177a916ef022a3cTommi Rantala
453842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    /// getLLVMType - Return associated llvm struct type. This may be NULL
463842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    /// if fields are not laid out.
473842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    llvm::Type *getLLVMType() const {
483842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz      return STy;
493842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    }
503842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz
513842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    llvm::SmallSet<unsigned, 8> &getPaddingFields() {
523842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz      return PaddingFields;
533842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    }
543842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz
553842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz  private:
563842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    CodeGenTypes &CGT;
573842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    const RecordDecl& RD;
583842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    llvm::Type *STy;
593842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz    llvm::SmallSet<unsigned, 8> PaddingFields;
603842dac7333e42aa44531eda34ba55200b99ccf8Daniel Jacobowitz  };
61}
62
63CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
64                           const llvm::TargetData &TD)
65  : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD) {
66}
67
68CodeGenTypes::~CodeGenTypes() {
69  for(llvm::DenseMap<const TagDecl *, CGRecordLayout *>::iterator
70        I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
71      I != E; ++I)
72    delete I->second;
73  CGRecordLayouts.clear();
74}
75
76/// ConvertType - Convert the specified type to its LLVM form.
77const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
78  llvm::PATypeHolder Result = ConvertTypeRecursive(T);
79
80  // Any pointers that were converted defered evaluation of their pointee type,
81  // creating an opaque type instead.  This is in order to avoid problems with
82  // circular types.  Loop through all these defered pointees, if any, and
83  // resolve them now.
84  while (!PointersToResolve.empty()) {
85    std::pair<const PointerLikeType *, llvm::OpaqueType*> P =
86      PointersToResolve.back();
87    PointersToResolve.pop_back();
88    // We can handle bare pointers here because we know that the only pointers
89    // to the Opaque type are P.second and from other types.  Refining the
90    // opqaue type away will invalidate P.second, but we don't mind :).
91    const llvm::Type *NT = ConvertTypeRecursive(P.first->getPointeeType());
92    P.second->refineAbstractTypeTo(NT);
93  }
94
95  return Result;
96}
97
98const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
99  T = Context.getCanonicalType(T);;
100
101  // See if type is already cached.
102  llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
103    I = TypeCache.find(T.getTypePtr());
104  // If type is found in map and this is not a definition for a opaque
105  // place holder type then use it. Otherwise, convert type T.
106  if (I != TypeCache.end())
107    return I->second.get();
108
109  const llvm::Type *ResultType = ConvertNewType(T);
110  TypeCache.insert(std::make_pair(T.getTypePtr(),
111                                  llvm::PATypeHolder(ResultType)));
112  return ResultType;
113}
114
115/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
116/// ConvertType in that it is used to convert to the memory representation for
117/// a type.  For example, the scalar representation for _Bool is i1, but the
118/// memory representation is usually i8 or i32, depending on the target.
119const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
120  const llvm::Type *R = ConvertType(T);
121
122  // If this is a non-bool type, don't map it.
123  if (R != llvm::Type::Int1Ty)
124    return R;
125
126  // Otherwise, return an integer of the target-specified size.
127  return llvm::IntegerType::get((unsigned)Context.getTypeSize(T));
128
129}
130
131/// UpdateCompletedType - When we find the full definition for a TagDecl,
132/// replace the 'opaque' type we previously made for it if applicable.
133void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
134  llvm::DenseMap<const TagDecl*, llvm::PATypeHolder>::iterator TDTI =
135    TagDeclTypes.find(TD);
136  if (TDTI == TagDeclTypes.end()) return;
137
138  // Remember the opaque LLVM type for this tagdecl.
139  llvm::PATypeHolder OpaqueHolder = TDTI->second;
140  assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
141         "Updating compilation of an already non-opaque type?");
142
143  // Remove it from TagDeclTypes so that it will be regenerated.
144  TagDeclTypes.erase(TDTI);
145
146  // Generate the new type.
147  const llvm::Type *NT = ConvertTagDeclType(TD);
148
149  // Refine the old opaque type to its new definition.
150  cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);
151}
152
153/// Produces a vector containing the all of the instance variables in an
154/// Objective-C object, in the order that they appear.  Used to create LLVM
155/// structures corresponding to Objective-C objects.
156void CodeGenTypes::CollectObjCIvarTypes(ObjCInterfaceDecl *ObjCClass,
157                                    std::vector<const llvm::Type*> &IvarTypes) {
158  ObjCInterfaceDecl *SuperClass = ObjCClass->getSuperClass();
159  if (SuperClass)
160    CollectObjCIvarTypes(SuperClass, IvarTypes);
161  for (ObjCInterfaceDecl::ivar_iterator I = ObjCClass->ivar_begin(),
162       E = ObjCClass->ivar_end(); I != E; ++I) {
163    IvarTypes.push_back(ConvertType((*I)->getType()));
164    ObjCIvarInfo[*I] = IvarTypes.size() - 1;
165  }
166}
167
168const llvm::Type *CodeGenTypes::ConvertReturnType(QualType T) {
169  if (T->isVoidType())
170    return llvm::Type::VoidTy;    // Result of function uses llvm void.
171  else
172    return ConvertType(T);
173}
174
175static const llvm::Type* getTypeForFormat(const llvm::fltSemantics &format) {
176  if (&format == &llvm::APFloat::IEEEsingle)
177    return llvm::Type::FloatTy;
178  if (&format == &llvm::APFloat::IEEEdouble)
179    return llvm::Type::DoubleTy;
180  if (&format == &llvm::APFloat::IEEEquad)
181    return llvm::Type::FP128Ty;
182  if (&format == &llvm::APFloat::PPCDoubleDouble)
183    return llvm::Type::PPC_FP128Ty;
184  if (&format == &llvm::APFloat::x87DoubleExtended)
185    return llvm::Type::X86_FP80Ty;
186  assert(0 && "Unknown float format!");
187  return 0;
188}
189
190const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
191  const clang::Type &Ty = *Context.getCanonicalType(T);
192
193  switch (Ty.getTypeClass()) {
194  case Type::TypeName:        // typedef isn't canonical.
195  case Type::TypeOfExp:       // typeof isn't canonical.
196  case Type::TypeOfTyp:       // typeof isn't canonical.
197    assert(0 && "Non-canonical type, shouldn't happen");
198  case Type::Builtin: {
199    switch (cast<BuiltinType>(Ty).getKind()) {
200    default: assert(0 && "Unknown builtin type!");
201    case BuiltinType::Void:
202      // LLVM void type can only be used as the result of a function call.  Just
203      // map to the same as char.
204      return llvm::IntegerType::get(8);
205
206    case BuiltinType::Bool:
207      // Note that we always return bool as i1 for use as a scalar type.
208      return llvm::Type::Int1Ty;
209
210    case BuiltinType::Char_S:
211    case BuiltinType::Char_U:
212    case BuiltinType::SChar:
213    case BuiltinType::UChar:
214    case BuiltinType::Short:
215    case BuiltinType::UShort:
216    case BuiltinType::Int:
217    case BuiltinType::UInt:
218    case BuiltinType::Long:
219    case BuiltinType::ULong:
220    case BuiltinType::LongLong:
221    case BuiltinType::ULongLong:
222    case BuiltinType::WChar:
223      return llvm::IntegerType::get(
224        static_cast<unsigned>(Context.getTypeSize(T)));
225
226    case BuiltinType::Float:
227    case BuiltinType::Double:
228    case BuiltinType::LongDouble:
229      return getTypeForFormat(Context.getFloatTypeSemantics(T));
230    }
231    break;
232  }
233  case Type::Complex: {
234    const llvm::Type *EltTy =
235      ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType());
236    return llvm::StructType::get(EltTy, EltTy, NULL);
237  }
238  case Type::Reference:
239  case Type::Pointer: {
240    const PointerLikeType &PTy = cast<PointerLikeType>(Ty);
241    QualType ETy = PTy.getPointeeType();
242    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get();
243    PointersToResolve.push_back(std::make_pair(&PTy, PointeeType));
244    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
245  }
246
247  case Type::VariableArray: {
248    const VariableArrayType &A = cast<VariableArrayType>(Ty);
249    assert(A.getIndexTypeQualifier() == 0 &&
250           "FIXME: We only handle trivial array types so far!");
251    // VLAs resolve to the innermost element type; this matches
252    // the return of alloca, and there isn't any obviously better choice.
253    return ConvertTypeRecursive(A.getElementType());
254  }
255  case Type::IncompleteArray: {
256    const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
257    assert(A.getIndexTypeQualifier() == 0 &&
258           "FIXME: We only handle trivial array types so far!");
259    // int X[] -> [0 x int]
260    return llvm::ArrayType::get(ConvertTypeRecursive(A.getElementType()), 0);
261  }
262  case Type::ConstantArray: {
263    const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
264    const llvm::Type *EltTy = ConvertTypeRecursive(A.getElementType());
265    return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
266  }
267  case Type::ExtVector:
268  case Type::Vector: {
269    const VectorType &VT = cast<VectorType>(Ty);
270    return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()),
271                                 VT.getNumElements());
272  }
273  case Type::FunctionNoProto:
274  case Type::FunctionProto: {
275    const FunctionType &FP = cast<FunctionType>(Ty);
276    const llvm::Type *ResultType;
277
278    if (FP.getResultType()->isVoidType())
279      ResultType = llvm::Type::VoidTy;    // Result of function uses llvm void.
280    else
281      ResultType = ConvertTypeRecursive(FP.getResultType());
282
283    // FIXME: Convert argument types.
284    bool isVarArg;
285    std::vector<const llvm::Type*> ArgTys;
286
287    // Struct return passes the struct byref.
288    if (!ResultType->isSingleValueType() && ResultType != llvm::Type::VoidTy) {
289      ArgTys.push_back(llvm::PointerType::get(ResultType,
290                                        FP.getResultType().getAddressSpace()));
291      ResultType = llvm::Type::VoidTy;
292    }
293
294    if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(&FP)) {
295      DecodeArgumentTypes(*FTP, ArgTys);
296      isVarArg = FTP->isVariadic();
297    } else {
298      isVarArg = true;
299    }
300
301    return llvm::FunctionType::get(ResultType, ArgTys, isVarArg);
302  }
303
304  case Type::ASQual:
305    return
306      ConvertTypeRecursive(QualType(cast<ASQualType>(Ty).getBaseType(), 0));
307
308  case Type::ObjCInterface: {
309    // FIXME: This comment is broken. Either the code should check for
310    // the flag it is referring to or it should do the right thing in
311    // the presence of it.
312
313    // Warning: Use of this is strongly discouraged.  Late binding of instance
314    // variables is supported on some runtimes and so using static binding can
315    // break code when libraries are updated.  Only use this if you have
316    // previously checked that the ObjCRuntime subclass in use does not support
317    // late-bound ivars.
318    ObjCInterfaceType OIT = cast<ObjCInterfaceType>(Ty);
319    std::vector<const llvm::Type*> IvarTypes;
320    CollectObjCIvarTypes(OIT.getDecl(), IvarTypes);
321    llvm::Type *T = llvm::StructType::get(IvarTypes);
322    TheModule.addTypeName(std::string("struct.") + OIT.getDecl()->getName(), T);
323    return T;
324  }
325
326  case Type::ObjCQualifiedInterface: {
327    ObjCQualifiedInterfaceType QIT = cast<ObjCQualifiedInterfaceType>(Ty);
328
329    return ConvertTypeRecursive(Context.getObjCInterfaceType(QIT.getDecl()));
330  }
331
332  case Type::ObjCQualifiedId:
333    // Protocols don't influence the LLVM type.
334    return ConvertTypeRecursive(Context.getObjCIdType());
335
336  case Type::Tagged: {
337    const TagDecl *TD = cast<TagType>(Ty).getDecl();
338    const llvm::Type *Res = ConvertTagDeclType(TD);
339
340    std::string TypeName(TD->getKindName());
341    TypeName += '.';
342
343    // Name the codegen type after the typedef name
344    // if there is no tag type name available
345    if (TD->getIdentifier())
346      TypeName += TD->getName();
347    else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
348      TypeName += TdT->getDecl()->getName();
349    else
350      TypeName += "anon";
351
352    TheModule.addTypeName(TypeName, Res);
353    return Res;
354  }
355
356  case Type::BlockPointer: {
357    assert(0 && "FIXME: Cannot get type of block pointer.");
358  }
359  }
360
361  // FIXME: implement.
362  return llvm::OpaqueType::get();
363}
364
365void CodeGenTypes::DecodeArgumentTypes(const FunctionTypeProto &FTP,
366                                       std::vector<const llvm::Type*> &ArgTys) {
367  for (unsigned i = 0, e = FTP.getNumArgs(); i != e; ++i) {
368    const llvm::Type *Ty = ConvertTypeRecursive(FTP.getArgType(i));
369    if (Ty->isSingleValueType())
370      ArgTys.push_back(Ty);
371    else
372      // byval arguments are always on the stack, which is addr space #0.
373      ArgTys.push_back(llvm::PointerType::getUnqual(Ty));
374  }
375}
376
377/// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
378/// enum.
379const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
380  llvm::DenseMap<const TagDecl*, llvm::PATypeHolder>::iterator TDTI =
381    TagDeclTypes.find(TD);
382
383  // If we've already compiled this tag type, use the previous definition.
384  if (TDTI != TagDeclTypes.end())
385    return TDTI->second;
386
387  // If this is still a forward definition, just define an opaque type to use
388  // for this tagged decl.
389  if (!TD->isDefinition()) {
390    llvm::Type *ResultType = llvm::OpaqueType::get();
391    TagDeclTypes.insert(std::make_pair(TD, ResultType));
392    return ResultType;
393  }
394
395  // Okay, this is a definition of a type.  Compile the implementation now.
396
397  if (TD->isEnum()) {
398    // Don't bother storing enums in TagDeclTypes.
399    return ConvertTypeRecursive(cast<EnumDecl>(TD)->getIntegerType());
400  }
401
402  // This decl could well be recursive.  In this case, insert an opaque
403  // definition of this type, which the recursive uses will get.  We will then
404  // refine this opaque version later.
405
406  // Create new OpaqueType now for later use in case this is a recursive
407  // type.  This will later be refined to the actual type.
408  llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get();
409  TagDeclTypes.insert(std::make_pair(TD, ResultHolder));
410
411  const llvm::Type *ResultType;
412  const RecordDecl *RD = cast<const RecordDecl>(TD);
413  if (TD->isStruct() || TD->isClass()) {
414    // Layout fields.
415    RecordOrganizer RO(*this, *RD);
416
417    RO.layoutStructFields(Context.getASTRecordLayout(RD));
418
419    // Get llvm::StructType.
420    CGRecordLayouts[TD] = new CGRecordLayout(RO.getLLVMType(),
421                                             RO.getPaddingFields());
422    ResultType = RO.getLLVMType();
423
424  } else if (TD->isUnion()) {
425    // Just use the largest element of the union, breaking ties with the
426    // highest aligned member.
427    if (RD->getNumMembers() != 0) {
428      RecordOrganizer RO(*this, *RD);
429
430      RO.layoutUnionFields(Context.getASTRecordLayout(RD));
431
432      // Get llvm::StructType.
433      CGRecordLayouts[TD] = new CGRecordLayout(RO.getLLVMType(),
434                                               RO.getPaddingFields());
435      ResultType = RO.getLLVMType();
436    } else {
437      ResultType = llvm::StructType::get(std::vector<const llvm::Type*>());
438    }
439  } else {
440    assert(0 && "FIXME: Unknown tag decl kind!");
441  }
442
443  // Refine our Opaque type to ResultType.  This can invalidate ResultType, so
444  // make sure to read the result out of the holder.
445  cast<llvm::OpaqueType>(ResultHolder.get())
446    ->refineAbstractTypeTo(ResultType);
447
448  return ResultHolder.get();
449}
450
451/// getLLVMFieldNo - Return llvm::StructType element number
452/// that corresponds to the field FD.
453unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
454  llvm::DenseMap<const FieldDecl*, unsigned>::iterator I = FieldInfo.find(FD);
455  assert (I != FieldInfo.end()  && "Unable to find field info");
456  return I->second;
457}
458
459unsigned CodeGenTypes::getLLVMFieldNo(const ObjCIvarDecl *OID) {
460  llvm::DenseMap<const ObjCIvarDecl*, unsigned>::iterator
461    I = ObjCIvarInfo.find(OID);
462  assert(I != ObjCIvarInfo.end() && "Unable to find field info");
463  return I->second;
464}
465
466/// addFieldInfo - Assign field number to field FD.
467void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
468  FieldInfo[FD] = No;
469}
470
471/// getBitFieldInfo - Return the BitFieldInfo  that corresponds to the field FD.
472CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) {
473  llvm::DenseMap<const FieldDecl *, BitFieldInfo>::iterator
474    I = BitFields.find(FD);
475  assert (I != BitFields.end()  && "Unable to find bitfield info");
476  return I->second;
477}
478
479/// addBitFieldInfo - Assign a start bit and a size to field FD.
480void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned Begin,
481                                   unsigned Size) {
482  BitFields.insert(std::make_pair(FD, BitFieldInfo(Begin, Size)));
483}
484
485/// getCGRecordLayout - Return record layout info for the given llvm::Type.
486const CGRecordLayout *
487CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const {
488  llvm::DenseMap<const TagDecl*, CGRecordLayout *>::iterator I
489    = CGRecordLayouts.find(TD);
490  assert (I != CGRecordLayouts.end()
491          && "Unable to find record layout information for type");
492  return I->second;
493}
494
495/// layoutStructFields - Do the actual work and lay out all fields. Create
496/// corresponding llvm struct type.
497/// Note that this doesn't actually try to do struct layout; it depends on
498/// the layout built by the AST.  (We have to do struct layout to do Sema,
499/// and there's no point to duplicating the work.)
500void RecordOrganizer::layoutStructFields(const ASTRecordLayout &RL) {
501  // FIXME: This code currently always generates packed structures.
502  // Unpacked structures are more readable, and sometimes more efficient!
503  // (But note that any changes here are likely to impact CGExprConstant,
504  // which makes some messy assumptions.)
505  uint64_t llvmSize = 0;
506  // FIXME: Make this a SmallVector
507  std::vector<const llvm::Type*> LLVMFields;
508  int NumMembers = RD.getNumMembers();
509
510  for (int curField = 0; curField < NumMembers; curField++) {
511    const FieldDecl *FD = RD.getMember(curField);
512    uint64_t offset = RL.getFieldOffset(curField);
513    const llvm::Type *Ty = CGT.ConvertTypeRecursive(FD->getType());
514    uint64_t size = CGT.getTargetData().getABITypeSizeInBits(Ty);
515
516    if (FD->isBitField()) {
517      Expr *BitWidth = FD->getBitWidth();
518      llvm::APSInt FieldSize(32);
519      bool isBitField =
520        BitWidth->isIntegerConstantExpr(FieldSize, CGT.getContext());
521      assert (isBitField  && "Invalid BitField size expression");
522      uint64_t BitFieldSize =  FieldSize.getZExtValue();
523
524      // Bitfield field info is different from other field info;
525      // it actually ignores the underlying LLVM struct because
526      // there isn't any convenient mapping.
527      CGT.addFieldInfo(FD, offset / size);
528      CGT.addBitFieldInfo(FD, offset % size, BitFieldSize);
529    } else {
530      // Put the element into the struct. This would be simpler
531      // if we didn't bother, but it seems a bit too strange to
532      // allocate all structs as i8 arrays.
533      while (llvmSize < offset) {
534        LLVMFields.push_back(llvm::Type::Int8Ty);
535        llvmSize += 8;
536      }
537
538      llvmSize += size;
539      CGT.addFieldInfo(FD, LLVMFields.size());
540      LLVMFields.push_back(Ty);
541    }
542  }
543
544  while (llvmSize < RL.getSize()) {
545    LLVMFields.push_back(llvm::Type::Int8Ty);
546    llvmSize += 8;
547  }
548
549  STy = llvm::StructType::get(LLVMFields, true);
550  assert(CGT.getTargetData().getABITypeSizeInBits(STy) == RL.getSize());
551}
552
553/// layoutUnionFields - Do the actual work and lay out all fields. Create
554/// corresponding llvm struct type.  This should be invoked only after
555/// all fields are added.
556void RecordOrganizer::layoutUnionFields(const ASTRecordLayout &RL) {
557  for (int curField = 0; curField < RD.getNumMembers(); curField++) {
558    const FieldDecl *FD = RD.getMember(curField);
559    // The offset should usually be zero, but bitfields could be strange
560    uint64_t offset = RL.getFieldOffset(curField);
561
562    if (FD->isBitField()) {
563      Expr *BitWidth = FD->getBitWidth();
564      uint64_t BitFieldSize =
565        BitWidth->getIntegerConstantExprValue(CGT.getContext()).getZExtValue();
566
567      CGT.addFieldInfo(FD, 0);
568      CGT.addBitFieldInfo(FD, offset, BitFieldSize);
569    } else {
570      CGT.addFieldInfo(FD, 0);
571    }
572  }
573
574  // This looks stupid, but it is correct in the sense that
575  // it works no matter how complicated the sizes and alignments
576  // of the union elements are. The natural alignment
577  // of the result doesn't matter because anyone allocating
578  // structures should be aligning them appropriately anyway.
579  // FIXME: We can be a bit more intuitive in a lot of cases.
580  STy = llvm::ArrayType::get(llvm::Type::Int8Ty, RL.getSize() / 8);
581  assert(CGT.getTargetData().getABITypeSizeInBits(STy) == RL.getSize());
582}
583