PTHLexer.cpp revision a64ccefdf0ea4e03ec88805d71b0af74950c7472
1//===--- PTHLexer.cpp - Lex from a token stream ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PTHLexer interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Basic/TokenKinds.h"
15#include "clang/Basic/FileManager.h"
16#include "clang/Basic/FileSystemStatCache.h"
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/OnDiskHashTable.h"
19#include "clang/Lex/LexDiagnostic.h"
20#include "clang/Lex/PTHLexer.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Lex/PTHManager.h"
23#include "clang/Lex/Token.h"
24#include "clang/Lex/Preprocessor.h"
25#include "llvm/ADT/OwningPtr.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/ADT/StringMap.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/Support/system_error.h"
30using namespace clang;
31using namespace clang::io;
32
33#define DISK_TOKEN_SIZE (1+1+2+4+4)
34
35//===----------------------------------------------------------------------===//
36// PTHLexer methods.
37//===----------------------------------------------------------------------===//
38
39PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D,
40                   const unsigned char *ppcond, PTHManager &PM)
41  : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0),
42    PPCond(ppcond), CurPPCondPtr(ppcond), PTHMgr(PM) {
43
44  FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID);
45}
46
47void PTHLexer::Lex(Token& Tok) {
48LexNextToken:
49
50  //===--------------------------------------==//
51  // Read the raw token data.
52  //===--------------------------------------==//
53
54  // Shadow CurPtr into an automatic variable.
55  const unsigned char *CurPtrShadow = CurPtr;
56
57  // Read in the data for the token.
58  unsigned Word0 = ReadLE32(CurPtrShadow);
59  uint32_t IdentifierID = ReadLE32(CurPtrShadow);
60  uint32_t FileOffset = ReadLE32(CurPtrShadow);
61
62  tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF);
63  Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF);
64  uint32_t Len = Word0 >> 16;
65
66  CurPtr = CurPtrShadow;
67
68  //===--------------------------------------==//
69  // Construct the token itself.
70  //===--------------------------------------==//
71
72  Tok.startToken();
73  Tok.setKind(TKind);
74  Tok.setFlag(TFlags);
75  assert(!LexingRawMode);
76  Tok.setLocation(FileStartLoc.getLocWithOffset(FileOffset));
77  Tok.setLength(Len);
78
79  // Handle identifiers.
80  if (Tok.isLiteral()) {
81    Tok.setLiteralData((const char*) (PTHMgr.SpellingBase + IdentifierID));
82  }
83  else if (IdentifierID) {
84    MIOpt.ReadToken();
85    IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1);
86
87    Tok.setIdentifierInfo(II);
88
89    // Change the kind of this identifier to the appropriate token kind, e.g.
90    // turning "for" into a keyword.
91    Tok.setKind(II->getTokenID());
92
93    if (II->isHandleIdentifierCase())
94      PP->HandleIdentifier(Tok);
95    return;
96  }
97
98  //===--------------------------------------==//
99  // Process the token.
100  //===--------------------------------------==//
101  if (TKind == tok::eof) {
102    // Save the end-of-file token.
103    EofToken = Tok;
104
105    // Save 'PP' to 'PPCache' as LexEndOfFile can delete 'this'.
106    Preprocessor *PPCache = PP;
107
108    assert(!ParsingPreprocessorDirective);
109    assert(!LexingRawMode);
110
111    if (LexEndOfFile(Tok))
112      return;
113
114    return PPCache->Lex(Tok);
115  }
116
117  if (TKind == tok::hash && Tok.isAtStartOfLine()) {
118    LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE;
119    assert(!LexingRawMode);
120    PP->HandleDirective(Tok);
121
122    if (PP->isCurrentLexer(this))
123      goto LexNextToken;
124
125    return PP->Lex(Tok);
126  }
127
128  if (TKind == tok::eod) {
129    assert(ParsingPreprocessorDirective);
130    ParsingPreprocessorDirective = false;
131    return;
132  }
133
134  MIOpt.ReadToken();
135}
136
137bool PTHLexer::LexEndOfFile(Token &Result) {
138  // If we hit the end of the file while parsing a preprocessor directive,
139  // end the preprocessor directive first.  The next token returned will
140  // then be the end of file.
141  if (ParsingPreprocessorDirective) {
142    ParsingPreprocessorDirective = false; // Done parsing the "line".
143    return true;  // Have a token.
144  }
145
146  assert(!LexingRawMode);
147
148  // If we are in a #if directive, emit an error.
149  while (!ConditionalStack.empty()) {
150    if (PP->getCodeCompletionFileLoc() != FileStartLoc)
151      PP->Diag(ConditionalStack.back().IfLoc,
152               diag::err_pp_unterminated_conditional);
153    ConditionalStack.pop_back();
154  }
155
156  // Finally, let the preprocessor handle this.
157  return PP->HandleEndOfFile(Result);
158}
159
160// FIXME: We can just grab the last token instead of storing a copy
161// into EofToken.
162void PTHLexer::getEOF(Token& Tok) {
163  assert(EofToken.is(tok::eof));
164  Tok = EofToken;
165}
166
167void PTHLexer::DiscardToEndOfLine() {
168  assert(ParsingPreprocessorDirective && ParsingFilename == false &&
169         "Must be in a preprocessing directive!");
170
171  // We assume that if the preprocessor wishes to discard to the end of
172  // the line that it also means to end the current preprocessor directive.
173  ParsingPreprocessorDirective = false;
174
175  // Skip tokens by only peeking at their token kind and the flags.
176  // We don't need to actually reconstruct full tokens from the token buffer.
177  // This saves some copies and it also reduces IdentifierInfo* lookup.
178  const unsigned char* p = CurPtr;
179  while (1) {
180    // Read the token kind.  Are we at the end of the file?
181    tok::TokenKind x = (tok::TokenKind) (uint8_t) *p;
182    if (x == tok::eof) break;
183
184    // Read the token flags.  Are we at the start of the next line?
185    Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1];
186    if (y & Token::StartOfLine) break;
187
188    // Skip to the next token.
189    p += DISK_TOKEN_SIZE;
190  }
191
192  CurPtr = p;
193}
194
195/// SkipBlock - Used by Preprocessor to skip the current conditional block.
196bool PTHLexer::SkipBlock() {
197  assert(CurPPCondPtr && "No cached PP conditional information.");
198  assert(LastHashTokPtr && "No known '#' token.");
199
200  const unsigned char* HashEntryI = 0;
201  uint32_t Offset;
202  uint32_t TableIdx;
203
204  do {
205    // Read the token offset from the side-table.
206    Offset = ReadLE32(CurPPCondPtr);
207
208    // Read the target table index from the side-table.
209    TableIdx = ReadLE32(CurPPCondPtr);
210
211    // Compute the actual memory address of the '#' token data for this entry.
212    HashEntryI = TokBuf + Offset;
213
214    // Optmization: "Sibling jumping".  #if...#else...#endif blocks can
215    //  contain nested blocks.  In the side-table we can jump over these
216    //  nested blocks instead of doing a linear search if the next "sibling"
217    //  entry is not at a location greater than LastHashTokPtr.
218    if (HashEntryI < LastHashTokPtr && TableIdx) {
219      // In the side-table we are still at an entry for a '#' token that
220      // is earlier than the last one we saw.  Check if the location we would
221      // stride gets us closer.
222      const unsigned char* NextPPCondPtr =
223        PPCond + TableIdx*(sizeof(uint32_t)*2);
224      assert(NextPPCondPtr >= CurPPCondPtr);
225      // Read where we should jump to.
226      uint32_t TmpOffset = ReadLE32(NextPPCondPtr);
227      const unsigned char* HashEntryJ = TokBuf + TmpOffset;
228
229      if (HashEntryJ <= LastHashTokPtr) {
230        // Jump directly to the next entry in the side table.
231        HashEntryI = HashEntryJ;
232        Offset = TmpOffset;
233        TableIdx = ReadLE32(NextPPCondPtr);
234        CurPPCondPtr = NextPPCondPtr;
235      }
236    }
237  }
238  while (HashEntryI < LastHashTokPtr);
239  assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'");
240  assert(TableIdx && "No jumping from #endifs.");
241
242  // Update our side-table iterator.
243  const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
244  assert(NextPPCondPtr >= CurPPCondPtr);
245  CurPPCondPtr = NextPPCondPtr;
246
247  // Read where we should jump to.
248  HashEntryI = TokBuf + ReadLE32(NextPPCondPtr);
249  uint32_t NextIdx = ReadLE32(NextPPCondPtr);
250
251  // By construction NextIdx will be zero if this is a #endif.  This is useful
252  // to know to obviate lexing another token.
253  bool isEndif = NextIdx == 0;
254
255  // This case can occur when we see something like this:
256  //
257  //  #if ...
258  //   /* a comment or nothing */
259  //  #elif
260  //
261  // If we are skipping the first #if block it will be the case that CurPtr
262  // already points 'elif'.  Just return.
263
264  if (CurPtr > HashEntryI) {
265    assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE);
266    // Did we reach a #endif?  If so, go ahead and consume that token as well.
267    if (isEndif)
268      CurPtr += DISK_TOKEN_SIZE*2;
269    else
270      LastHashTokPtr = HashEntryI;
271
272    return isEndif;
273  }
274
275  // Otherwise, we need to advance.  Update CurPtr to point to the '#' token.
276  CurPtr = HashEntryI;
277
278  // Update the location of the last observed '#'.  This is useful if we
279  // are skipping multiple blocks.
280  LastHashTokPtr = CurPtr;
281
282  // Skip the '#' token.
283  assert(((tok::TokenKind)*CurPtr) == tok::hash);
284  CurPtr += DISK_TOKEN_SIZE;
285
286  // Did we reach a #endif?  If so, go ahead and consume that token as well.
287  if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; }
288
289  return isEndif;
290}
291
292SourceLocation PTHLexer::getSourceLocation() {
293  // getSourceLocation is not on the hot path.  It is used to get the location
294  // of the next token when transitioning back to this lexer when done
295  // handling a #included file.  Just read the necessary data from the token
296  // data buffer to construct the SourceLocation object.
297  // NOTE: This is a virtual function; hence it is defined out-of-line.
298  const unsigned char *OffsetPtr = CurPtr + (DISK_TOKEN_SIZE - 4);
299  uint32_t Offset = ReadLE32(OffsetPtr);
300  return FileStartLoc.getLocWithOffset(Offset);
301}
302
303//===----------------------------------------------------------------------===//
304// PTH file lookup: map from strings to file data.
305//===----------------------------------------------------------------------===//
306
307/// PTHFileLookup - This internal data structure is used by the PTHManager
308///  to map from FileEntry objects managed by FileManager to offsets within
309///  the PTH file.
310namespace {
311class PTHFileData {
312  const uint32_t TokenOff;
313  const uint32_t PPCondOff;
314public:
315  PTHFileData(uint32_t tokenOff, uint32_t ppCondOff)
316    : TokenOff(tokenOff), PPCondOff(ppCondOff) {}
317
318  uint32_t getTokenOffset() const { return TokenOff; }
319  uint32_t getPPCondOffset() const { return PPCondOff; }
320};
321
322
323class PTHFileLookupCommonTrait {
324public:
325  typedef std::pair<unsigned char, const char*> internal_key_type;
326
327  static unsigned ComputeHash(internal_key_type x) {
328    return llvm::HashString(x.second);
329  }
330
331  static std::pair<unsigned, unsigned>
332  ReadKeyDataLength(const unsigned char*& d) {
333    unsigned keyLen = (unsigned) ReadUnalignedLE16(d);
334    unsigned dataLen = (unsigned) *(d++);
335    return std::make_pair(keyLen, dataLen);
336  }
337
338  static internal_key_type ReadKey(const unsigned char* d, unsigned) {
339    unsigned char k = *(d++); // Read the entry kind.
340    return std::make_pair(k, (const char*) d);
341  }
342};
343
344class PTHFileLookupTrait : public PTHFileLookupCommonTrait {
345public:
346  typedef const FileEntry* external_key_type;
347  typedef PTHFileData      data_type;
348
349  static internal_key_type GetInternalKey(const FileEntry* FE) {
350    return std::make_pair((unsigned char) 0x1, FE->getName());
351  }
352
353  static bool EqualKey(internal_key_type a, internal_key_type b) {
354    return a.first == b.first && strcmp(a.second, b.second) == 0;
355  }
356
357  static PTHFileData ReadData(const internal_key_type& k,
358                              const unsigned char* d, unsigned) {
359    assert(k.first == 0x1 && "Only file lookups can match!");
360    uint32_t x = ::ReadUnalignedLE32(d);
361    uint32_t y = ::ReadUnalignedLE32(d);
362    return PTHFileData(x, y);
363  }
364};
365
366class PTHStringLookupTrait {
367public:
368  typedef uint32_t
369          data_type;
370
371  typedef const std::pair<const char*, unsigned>
372          external_key_type;
373
374  typedef external_key_type internal_key_type;
375
376  static bool EqualKey(const internal_key_type& a,
377                       const internal_key_type& b) {
378    return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0
379                                  : false;
380  }
381
382  static unsigned ComputeHash(const internal_key_type& a) {
383    return llvm::HashString(StringRef(a.first, a.second));
384  }
385
386  // This hopefully will just get inlined and removed by the optimizer.
387  static const internal_key_type&
388  GetInternalKey(const external_key_type& x) { return x; }
389
390  static std::pair<unsigned, unsigned>
391  ReadKeyDataLength(const unsigned char*& d) {
392    return std::make_pair((unsigned) ReadUnalignedLE16(d), sizeof(uint32_t));
393  }
394
395  static std::pair<const char*, unsigned>
396  ReadKey(const unsigned char* d, unsigned n) {
397      assert(n >= 2 && d[n-1] == '\0');
398      return std::make_pair((const char*) d, n-1);
399    }
400
401  static uint32_t ReadData(const internal_key_type& k, const unsigned char* d,
402                           unsigned) {
403    return ::ReadUnalignedLE32(d);
404  }
405};
406
407} // end anonymous namespace
408
409typedef OnDiskChainedHashTable<PTHFileLookupTrait>   PTHFileLookup;
410typedef OnDiskChainedHashTable<PTHStringLookupTrait> PTHStringIdLookup;
411
412//===----------------------------------------------------------------------===//
413// PTHManager methods.
414//===----------------------------------------------------------------------===//
415
416PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup,
417                       const unsigned char* idDataTable,
418                       IdentifierInfo** perIDCache,
419                       void* stringIdLookup, unsigned numIds,
420                       const unsigned char* spellingBase,
421                       const char* originalSourceFile)
422: Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup),
423  IdDataTable(idDataTable), StringIdLookup(stringIdLookup),
424  NumIds(numIds), PP(0), SpellingBase(spellingBase),
425  OriginalSourceFile(originalSourceFile) {}
426
427PTHManager::~PTHManager() {
428  delete Buf;
429  delete (PTHFileLookup*) FileLookup;
430  delete (PTHStringIdLookup*) StringIdLookup;
431  free(PerIDCache);
432}
433
434static void InvalidPTH(Diagnostic &Diags, const char *Msg) {
435  Diags.Report(Diags.getCustomDiagID(Diagnostic::Error, Msg));
436}
437
438PTHManager *PTHManager::Create(const std::string &file, Diagnostic &Diags) {
439  // Memory map the PTH file.
440  llvm::OwningPtr<llvm::MemoryBuffer> File;
441
442  if (llvm::MemoryBuffer::getFile(file, File)) {
443    // FIXME: Add ec.message() to this diag.
444    Diags.Report(diag::err_invalid_pth_file) << file;
445    return 0;
446  }
447
448  // Get the buffer ranges and check if there are at least three 32-bit
449  // words at the end of the file.
450  const unsigned char *BufBeg = (unsigned char*)File->getBufferStart();
451  const unsigned char *BufEnd = (unsigned char*)File->getBufferEnd();
452
453  // Check the prologue of the file.
454  if ((BufEnd - BufBeg) < (signed)(sizeof("cfe-pth") + 3 + 4) ||
455      memcmp(BufBeg, "cfe-pth", sizeof("cfe-pth") - 1) != 0) {
456    Diags.Report(diag::err_invalid_pth_file) << file;
457    return 0;
458  }
459
460  // Read the PTH version.
461  const unsigned char *p = BufBeg + (sizeof("cfe-pth") - 1);
462  unsigned Version = ReadLE32(p);
463
464  if (Version < PTHManager::Version) {
465    InvalidPTH(Diags,
466        Version < PTHManager::Version
467        ? "PTH file uses an older PTH format that is no longer supported"
468        : "PTH file uses a newer PTH format that cannot be read");
469    return 0;
470  }
471
472  // Compute the address of the index table at the end of the PTH file.
473  const unsigned char *PrologueOffset = p;
474
475  if (PrologueOffset >= BufEnd) {
476    Diags.Report(diag::err_invalid_pth_file) << file;
477    return 0;
478  }
479
480  // Construct the file lookup table.  This will be used for mapping from
481  // FileEntry*'s to cached tokens.
482  const unsigned char* FileTableOffset = PrologueOffset + sizeof(uint32_t)*2;
483  const unsigned char* FileTable = BufBeg + ReadLE32(FileTableOffset);
484
485  if (!(FileTable > BufBeg && FileTable < BufEnd)) {
486    Diags.Report(diag::err_invalid_pth_file) << file;
487    return 0; // FIXME: Proper error diagnostic?
488  }
489
490  llvm::OwningPtr<PTHFileLookup> FL(PTHFileLookup::Create(FileTable, BufBeg));
491
492  // Warn if the PTH file is empty.  We still want to create a PTHManager
493  // as the PTH could be used with -include-pth.
494  if (FL->isEmpty())
495    InvalidPTH(Diags, "PTH file contains no cached source data");
496
497  // Get the location of the table mapping from persistent ids to the
498  // data needed to reconstruct identifiers.
499  const unsigned char* IDTableOffset = PrologueOffset + sizeof(uint32_t)*0;
500  const unsigned char* IData = BufBeg + ReadLE32(IDTableOffset);
501
502  if (!(IData >= BufBeg && IData < BufEnd)) {
503    Diags.Report(diag::err_invalid_pth_file) << file;
504    return 0;
505  }
506
507  // Get the location of the hashtable mapping between strings and
508  // persistent IDs.
509  const unsigned char* StringIdTableOffset = PrologueOffset + sizeof(uint32_t)*1;
510  const unsigned char* StringIdTable = BufBeg + ReadLE32(StringIdTableOffset);
511  if (!(StringIdTable >= BufBeg && StringIdTable < BufEnd)) {
512    Diags.Report(diag::err_invalid_pth_file) << file;
513    return 0;
514  }
515
516  llvm::OwningPtr<PTHStringIdLookup> SL(PTHStringIdLookup::Create(StringIdTable,
517                                                                  BufBeg));
518
519  // Get the location of the spelling cache.
520  const unsigned char* spellingBaseOffset = PrologueOffset + sizeof(uint32_t)*3;
521  const unsigned char* spellingBase = BufBeg + ReadLE32(spellingBaseOffset);
522  if (!(spellingBase >= BufBeg && spellingBase < BufEnd)) {
523    Diags.Report(diag::err_invalid_pth_file) << file;
524    return 0;
525  }
526
527  // Get the number of IdentifierInfos and pre-allocate the identifier cache.
528  uint32_t NumIds = ReadLE32(IData);
529
530  // Pre-allocate the persistent ID -> IdentifierInfo* cache.  We use calloc()
531  // so that we in the best case only zero out memory once when the OS returns
532  // us new pages.
533  IdentifierInfo** PerIDCache = 0;
534
535  if (NumIds) {
536    PerIDCache = (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache));
537    if (!PerIDCache) {
538      InvalidPTH(Diags, "Could not allocate memory for processing PTH file");
539      return 0;
540    }
541  }
542
543  // Compute the address of the original source file.
544  const unsigned char* originalSourceBase = PrologueOffset + sizeof(uint32_t)*4;
545  unsigned len = ReadUnalignedLE16(originalSourceBase);
546  if (!len) originalSourceBase = 0;
547
548  // Create the new PTHManager.
549  return new PTHManager(File.take(), FL.take(), IData, PerIDCache,
550                        SL.take(), NumIds, spellingBase,
551                        (const char*) originalSourceBase);
552}
553
554IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) {
555  // Look in the PTH file for the string data for the IdentifierInfo object.
556  const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID;
557  const unsigned char* IDData =
558    (const unsigned char*)Buf->getBufferStart() + ReadLE32(TableEntry);
559  assert(IDData < (const unsigned char*)Buf->getBufferEnd());
560
561  // Allocate the object.
562  std::pair<IdentifierInfo,const unsigned char*> *Mem =
563    Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >();
564
565  Mem->second = IDData;
566  assert(IDData[0] != '\0');
567  IdentifierInfo *II = new ((void*) Mem) IdentifierInfo();
568
569  // Store the new IdentifierInfo in the cache.
570  PerIDCache[PersistentID] = II;
571  assert(II->getNameStart() && II->getNameStart()[0] != '\0');
572  return II;
573}
574
575IdentifierInfo* PTHManager::get(StringRef Name) {
576  PTHStringIdLookup& SL = *((PTHStringIdLookup*)StringIdLookup);
577  // Double check our assumption that the last character isn't '\0'.
578  assert(Name.empty() || Name.data()[Name.size()-1] != '\0');
579  PTHStringIdLookup::iterator I = SL.find(std::make_pair(Name.data(),
580                                                         Name.size()));
581  if (I == SL.end()) // No identifier found?
582    return 0;
583
584  // Match found.  Return the identifier!
585  assert(*I > 0);
586  return GetIdentifierInfo(*I-1);
587}
588
589PTHLexer *PTHManager::CreateLexer(FileID FID) {
590  const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID);
591  if (!FE)
592    return 0;
593
594  // Lookup the FileEntry object in our file lookup data structure.  It will
595  // return a variant that indicates whether or not there is an offset within
596  // the PTH file that contains cached tokens.
597  PTHFileLookup& PFL = *((PTHFileLookup*)FileLookup);
598  PTHFileLookup::iterator I = PFL.find(FE);
599
600  if (I == PFL.end()) // No tokens available?
601    return 0;
602
603  const PTHFileData& FileData = *I;
604
605  const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart();
606  // Compute the offset of the token data within the buffer.
607  const unsigned char* data = BufStart + FileData.getTokenOffset();
608
609  // Get the location of pp-conditional table.
610  const unsigned char* ppcond = BufStart + FileData.getPPCondOffset();
611  uint32_t Len = ReadLE32(ppcond);
612  if (Len == 0) ppcond = 0;
613
614  assert(PP && "No preprocessor set yet!");
615  return new PTHLexer(*PP, FID, data, ppcond, *this);
616}
617
618//===----------------------------------------------------------------------===//
619// 'stat' caching.
620//===----------------------------------------------------------------------===//
621
622namespace {
623class PTHStatData {
624public:
625  const bool hasStat;
626  const ino_t ino;
627  const dev_t dev;
628  const mode_t mode;
629  const time_t mtime;
630  const off_t size;
631
632  PTHStatData(ino_t i, dev_t d, mode_t mo, time_t m, off_t s)
633  : hasStat(true), ino(i), dev(d), mode(mo), mtime(m), size(s) {}
634
635  PTHStatData()
636    : hasStat(false), ino(0), dev(0), mode(0), mtime(0), size(0) {}
637};
638
639class PTHStatLookupTrait : public PTHFileLookupCommonTrait {
640public:
641  typedef const char* external_key_type;  // const char*
642  typedef PTHStatData data_type;
643
644  static internal_key_type GetInternalKey(const char *path) {
645    // The key 'kind' doesn't matter here because it is ignored in EqualKey.
646    return std::make_pair((unsigned char) 0x0, path);
647  }
648
649  static bool EqualKey(internal_key_type a, internal_key_type b) {
650    // When doing 'stat' lookups we don't care about the kind of 'a' and 'b',
651    // just the paths.
652    return strcmp(a.second, b.second) == 0;
653  }
654
655  static data_type ReadData(const internal_key_type& k, const unsigned char* d,
656                            unsigned) {
657
658    if (k.first /* File or Directory */) {
659      if (k.first == 0x1 /* File */) d += 4 * 2; // Skip the first 2 words.
660      ino_t ino = (ino_t) ReadUnalignedLE32(d);
661      dev_t dev = (dev_t) ReadUnalignedLE32(d);
662      mode_t mode = (mode_t) ReadUnalignedLE16(d);
663      time_t mtime = (time_t) ReadUnalignedLE64(d);
664      return data_type(ino, dev, mode, mtime, (off_t) ReadUnalignedLE64(d));
665    }
666
667    // Negative stat.  Don't read anything.
668    return data_type();
669  }
670};
671
672class PTHStatCache : public FileSystemStatCache {
673  typedef OnDiskChainedHashTable<PTHStatLookupTrait> CacheTy;
674  CacheTy Cache;
675
676public:
677  PTHStatCache(PTHFileLookup &FL) :
678    Cache(FL.getNumBuckets(), FL.getNumEntries(), FL.getBuckets(),
679          FL.getBase()) {}
680
681  ~PTHStatCache() {}
682
683  LookupResult getStat(const char *Path, struct stat &StatBuf,
684                       int *FileDescriptor) {
685    // Do the lookup for the file's data in the PTH file.
686    CacheTy::iterator I = Cache.find(Path);
687
688    // If we don't get a hit in the PTH file just forward to 'stat'.
689    if (I == Cache.end())
690      return statChained(Path, StatBuf, FileDescriptor);
691
692    const PTHStatData &Data = *I;
693
694    if (!Data.hasStat)
695      return CacheMissing;
696
697    StatBuf.st_ino = Data.ino;
698    StatBuf.st_dev = Data.dev;
699    StatBuf.st_mtime = Data.mtime;
700    StatBuf.st_mode = Data.mode;
701    StatBuf.st_size = Data.size;
702    return CacheExists;
703  }
704};
705} // end anonymous namespace
706
707FileSystemStatCache *PTHManager::createStatCache() {
708  return new PTHStatCache(*((PTHFileLookup*) FileLookup));
709}
710