ParseDeclCXX.cpp revision dab60ad68a3a98d687305941a3852e793705f945
1//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the C++ Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Basic/OperatorKinds.h"
15#include "clang/Parse/Parser.h"
16#include "clang/Parse/ParseDiagnostic.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ParsedTemplate.h"
20#include "clang/Sema/PrettyDeclStackTrace.h"
21#include "RAIIObjectsForParser.h"
22using namespace clang;
23
24/// ParseNamespace - We know that the current token is a namespace keyword. This
25/// may either be a top level namespace or a block-level namespace alias. If
26/// there was an inline keyword, it has already been parsed.
27///
28///       namespace-definition: [C++ 7.3: basic.namespace]
29///         named-namespace-definition
30///         unnamed-namespace-definition
31///
32///       unnamed-namespace-definition:
33///         'inline'[opt] 'namespace' attributes[opt] '{' namespace-body '}'
34///
35///       named-namespace-definition:
36///         original-namespace-definition
37///         extension-namespace-definition
38///
39///       original-namespace-definition:
40///         'inline'[opt] 'namespace' identifier attributes[opt]
41///             '{' namespace-body '}'
42///
43///       extension-namespace-definition:
44///         'inline'[opt] 'namespace' original-namespace-name
45///             '{' namespace-body '}'
46///
47///       namespace-alias-definition:  [C++ 7.3.2: namespace.alias]
48///         'namespace' identifier '=' qualified-namespace-specifier ';'
49///
50Decl *Parser::ParseNamespace(unsigned Context,
51                             SourceLocation &DeclEnd,
52                             SourceLocation InlineLoc) {
53  assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
54  SourceLocation NamespaceLoc = ConsumeToken();  // eat the 'namespace'.
55
56  if (Tok.is(tok::code_completion)) {
57    Actions.CodeCompleteNamespaceDecl(getCurScope());
58    ConsumeCodeCompletionToken();
59  }
60
61  SourceLocation IdentLoc;
62  IdentifierInfo *Ident = 0;
63
64  Token attrTok;
65
66  if (Tok.is(tok::identifier)) {
67    Ident = Tok.getIdentifierInfo();
68    IdentLoc = ConsumeToken();  // eat the identifier.
69  }
70
71  // Read label attributes, if present.
72  llvm::OwningPtr<AttributeList> AttrList;
73  if (Tok.is(tok::kw___attribute)) {
74    attrTok = Tok;
75
76    // FIXME: save these somewhere.
77    AttrList.reset(ParseGNUAttributes());
78  }
79
80  if (Tok.is(tok::equal)) {
81    if (AttrList)
82      Diag(attrTok, diag::err_unexpected_namespace_attributes_alias);
83    if (InlineLoc.isValid())
84      Diag(InlineLoc, diag::err_inline_namespace_alias)
85          << FixItHint::CreateRemoval(InlineLoc);
86
87    return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd);
88  }
89
90  if (Tok.isNot(tok::l_brace)) {
91    Diag(Tok, Ident ? diag::err_expected_lbrace :
92         diag::err_expected_ident_lbrace);
93    return 0;
94  }
95
96  SourceLocation LBrace = ConsumeBrace();
97
98  if (getCurScope()->isClassScope() || getCurScope()->isTemplateParamScope() ||
99      getCurScope()->isInObjcMethodScope() || getCurScope()->getBlockParent() ||
100      getCurScope()->getFnParent()) {
101    Diag(LBrace, diag::err_namespace_nonnamespace_scope);
102    SkipUntil(tok::r_brace, false);
103    return 0;
104  }
105
106  // If we're still good, complain about inline namespaces in non-C++0x now.
107  if (!getLang().CPlusPlus0x && InlineLoc.isValid())
108    Diag(InlineLoc, diag::ext_inline_namespace);
109
110  // Enter a scope for the namespace.
111  ParseScope NamespaceScope(this, Scope::DeclScope);
112
113  Decl *NamespcDecl =
114    Actions.ActOnStartNamespaceDef(getCurScope(), InlineLoc, IdentLoc, Ident,
115                                   LBrace, AttrList.get());
116
117  PrettyDeclStackTraceEntry CrashInfo(Actions, NamespcDecl, NamespaceLoc,
118                                      "parsing namespace");
119
120  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
121    CXX0XAttributeList Attr;
122    if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier())
123      Attr = ParseCXX0XAttributes();
124    ParseExternalDeclaration(Attr);
125  }
126
127  // Leave the namespace scope.
128  NamespaceScope.Exit();
129
130  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBrace);
131  Actions.ActOnFinishNamespaceDef(NamespcDecl, RBraceLoc);
132
133  DeclEnd = RBraceLoc;
134  return NamespcDecl;
135}
136
137/// ParseNamespaceAlias - Parse the part after the '=' in a namespace
138/// alias definition.
139///
140Decl *Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc,
141                                              SourceLocation AliasLoc,
142                                              IdentifierInfo *Alias,
143                                              SourceLocation &DeclEnd) {
144  assert(Tok.is(tok::equal) && "Not equal token");
145
146  ConsumeToken(); // eat the '='.
147
148  if (Tok.is(tok::code_completion)) {
149    Actions.CodeCompleteNamespaceAliasDecl(getCurScope());
150    ConsumeCodeCompletionToken();
151  }
152
153  CXXScopeSpec SS;
154  // Parse (optional) nested-name-specifier.
155  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
156
157  if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
158    Diag(Tok, diag::err_expected_namespace_name);
159    // Skip to end of the definition and eat the ';'.
160    SkipUntil(tok::semi);
161    return 0;
162  }
163
164  // Parse identifier.
165  IdentifierInfo *Ident = Tok.getIdentifierInfo();
166  SourceLocation IdentLoc = ConsumeToken();
167
168  // Eat the ';'.
169  DeclEnd = Tok.getLocation();
170  ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name,
171                   "", tok::semi);
172
173  return Actions.ActOnNamespaceAliasDef(getCurScope(), NamespaceLoc, AliasLoc, Alias,
174                                        SS, IdentLoc, Ident);
175}
176
177/// ParseLinkage - We know that the current token is a string_literal
178/// and just before that, that extern was seen.
179///
180///       linkage-specification: [C++ 7.5p2: dcl.link]
181///         'extern' string-literal '{' declaration-seq[opt] '}'
182///         'extern' string-literal declaration
183///
184Decl *Parser::ParseLinkage(ParsingDeclSpec &DS,
185                                       unsigned Context) {
186  assert(Tok.is(tok::string_literal) && "Not a string literal!");
187  llvm::SmallString<8> LangBuffer;
188  // LangBuffer is guaranteed to be big enough.
189  bool Invalid = false;
190  llvm::StringRef Lang = PP.getSpelling(Tok, LangBuffer, &Invalid);
191  if (Invalid)
192    return 0;
193
194  SourceLocation Loc = ConsumeStringToken();
195
196  ParseScope LinkageScope(this, Scope::DeclScope);
197  Decl *LinkageSpec
198    = Actions.ActOnStartLinkageSpecification(getCurScope(),
199                                             /*FIXME: */SourceLocation(),
200                                             Loc, Lang,
201                                       Tok.is(tok::l_brace)? Tok.getLocation()
202                                                           : SourceLocation());
203
204  CXX0XAttributeList Attr;
205  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
206    Attr = ParseCXX0XAttributes();
207  }
208
209  if (Tok.isNot(tok::l_brace)) {
210    DS.setExternInLinkageSpec(true);
211    ParseExternalDeclaration(Attr, &DS);
212    return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
213                                                   SourceLocation());
214  }
215
216  DS.abort();
217
218  if (Attr.HasAttr)
219    Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
220      << Attr.Range;
221
222  SourceLocation LBrace = ConsumeBrace();
223  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
224    CXX0XAttributeList Attr;
225    if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier())
226      Attr = ParseCXX0XAttributes();
227    ParseExternalDeclaration(Attr);
228  }
229
230  SourceLocation RBrace = MatchRHSPunctuation(tok::r_brace, LBrace);
231  return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec, RBrace);
232}
233
234/// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or
235/// using-directive. Assumes that current token is 'using'.
236Decl *Parser::ParseUsingDirectiveOrDeclaration(unsigned Context,
237                                                     SourceLocation &DeclEnd,
238                                                     CXX0XAttributeList Attr) {
239  assert(Tok.is(tok::kw_using) && "Not using token");
240
241  // Eat 'using'.
242  SourceLocation UsingLoc = ConsumeToken();
243
244  if (Tok.is(tok::code_completion)) {
245    Actions.CodeCompleteUsing(getCurScope());
246    ConsumeCodeCompletionToken();
247  }
248
249  if (Tok.is(tok::kw_namespace))
250    // Next token after 'using' is 'namespace' so it must be using-directive
251    return ParseUsingDirective(Context, UsingLoc, DeclEnd, Attr.AttrList);
252
253  if (Attr.HasAttr)
254    Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
255      << Attr.Range;
256
257  // Otherwise, it must be using-declaration.
258  // Ignore illegal attributes (the caller should already have issued an error.
259  return ParseUsingDeclaration(Context, UsingLoc, DeclEnd);
260}
261
262/// ParseUsingDirective - Parse C++ using-directive, assumes
263/// that current token is 'namespace' and 'using' was already parsed.
264///
265///       using-directive: [C++ 7.3.p4: namespace.udir]
266///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
267///                 namespace-name ;
268/// [GNU] using-directive:
269///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
270///                 namespace-name attributes[opt] ;
271///
272Decl *Parser::ParseUsingDirective(unsigned Context,
273                                              SourceLocation UsingLoc,
274                                              SourceLocation &DeclEnd,
275                                              AttributeList *Attr) {
276  assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token");
277
278  // Eat 'namespace'.
279  SourceLocation NamespcLoc = ConsumeToken();
280
281  if (Tok.is(tok::code_completion)) {
282    Actions.CodeCompleteUsingDirective(getCurScope());
283    ConsumeCodeCompletionToken();
284  }
285
286  CXXScopeSpec SS;
287  // Parse (optional) nested-name-specifier.
288  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
289
290  IdentifierInfo *NamespcName = 0;
291  SourceLocation IdentLoc = SourceLocation();
292
293  // Parse namespace-name.
294  if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
295    Diag(Tok, diag::err_expected_namespace_name);
296    // If there was invalid namespace name, skip to end of decl, and eat ';'.
297    SkipUntil(tok::semi);
298    // FIXME: Are there cases, when we would like to call ActOnUsingDirective?
299    return 0;
300  }
301
302  // Parse identifier.
303  NamespcName = Tok.getIdentifierInfo();
304  IdentLoc = ConsumeToken();
305
306  // Parse (optional) attributes (most likely GNU strong-using extension).
307  bool GNUAttr = false;
308  if (Tok.is(tok::kw___attribute)) {
309    GNUAttr = true;
310    Attr = addAttributeLists(Attr, ParseGNUAttributes());
311  }
312
313  // Eat ';'.
314  DeclEnd = Tok.getLocation();
315  ExpectAndConsume(tok::semi,
316                   GNUAttr ? diag::err_expected_semi_after_attribute_list
317                           : diag::err_expected_semi_after_namespace_name,
318                   "", tok::semi);
319
320  return Actions.ActOnUsingDirective(getCurScope(), UsingLoc, NamespcLoc, SS,
321                                      IdentLoc, NamespcName, Attr);
322}
323
324/// ParseUsingDeclaration - Parse C++ using-declaration. Assumes that
325/// 'using' was already seen.
326///
327///     using-declaration: [C++ 7.3.p3: namespace.udecl]
328///       'using' 'typename'[opt] ::[opt] nested-name-specifier
329///               unqualified-id
330///       'using' :: unqualified-id
331///
332Decl *Parser::ParseUsingDeclaration(unsigned Context,
333                                                SourceLocation UsingLoc,
334                                                SourceLocation &DeclEnd,
335                                                AccessSpecifier AS) {
336  CXXScopeSpec SS;
337  SourceLocation TypenameLoc;
338  bool IsTypeName;
339
340  // Ignore optional 'typename'.
341  // FIXME: This is wrong; we should parse this as a typename-specifier.
342  if (Tok.is(tok::kw_typename)) {
343    TypenameLoc = Tok.getLocation();
344    ConsumeToken();
345    IsTypeName = true;
346  }
347  else
348    IsTypeName = false;
349
350  // Parse nested-name-specifier.
351  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
352
353  // Check nested-name specifier.
354  if (SS.isInvalid()) {
355    SkipUntil(tok::semi);
356    return 0;
357  }
358
359  // Parse the unqualified-id. We allow parsing of both constructor and
360  // destructor names and allow the action module to diagnose any semantic
361  // errors.
362  UnqualifiedId Name;
363  if (ParseUnqualifiedId(SS,
364                         /*EnteringContext=*/false,
365                         /*AllowDestructorName=*/true,
366                         /*AllowConstructorName=*/true,
367                         ParsedType(),
368                         Name)) {
369    SkipUntil(tok::semi);
370    return 0;
371  }
372
373  // Parse (optional) attributes (most likely GNU strong-using extension).
374  llvm::OwningPtr<AttributeList> AttrList;
375  if (Tok.is(tok::kw___attribute))
376    AttrList.reset(ParseGNUAttributes());
377
378  // Eat ';'.
379  DeclEnd = Tok.getLocation();
380  ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
381                   AttrList ? "attributes list" : "using declaration",
382                   tok::semi);
383
384  return Actions.ActOnUsingDeclaration(getCurScope(), AS, true, UsingLoc, SS, Name,
385                                       AttrList.get(), IsTypeName, TypenameLoc);
386}
387
388/// ParseStaticAssertDeclaration - Parse C++0x static_assert-declaratoion.
389///
390///      static_assert-declaration:
391///        static_assert ( constant-expression  ,  string-literal  ) ;
392///
393Decl *Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){
394  assert(Tok.is(tok::kw_static_assert) && "Not a static_assert declaration");
395  SourceLocation StaticAssertLoc = ConsumeToken();
396
397  if (Tok.isNot(tok::l_paren)) {
398    Diag(Tok, diag::err_expected_lparen);
399    return 0;
400  }
401
402  SourceLocation LParenLoc = ConsumeParen();
403
404  ExprResult AssertExpr(ParseConstantExpression());
405  if (AssertExpr.isInvalid()) {
406    SkipUntil(tok::semi);
407    return 0;
408  }
409
410  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::semi))
411    return 0;
412
413  if (Tok.isNot(tok::string_literal)) {
414    Diag(Tok, diag::err_expected_string_literal);
415    SkipUntil(tok::semi);
416    return 0;
417  }
418
419  ExprResult AssertMessage(ParseStringLiteralExpression());
420  if (AssertMessage.isInvalid())
421    return 0;
422
423  MatchRHSPunctuation(tok::r_paren, LParenLoc);
424
425  DeclEnd = Tok.getLocation();
426  ExpectAndConsumeSemi(diag::err_expected_semi_after_static_assert);
427
428  return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc,
429                                              AssertExpr.take(),
430                                              AssertMessage.take());
431}
432
433/// ParseDecltypeSpecifier - Parse a C++0x decltype specifier.
434///
435/// 'decltype' ( expression )
436///
437void Parser::ParseDecltypeSpecifier(DeclSpec &DS) {
438  assert(Tok.is(tok::kw_decltype) && "Not a decltype specifier");
439
440  SourceLocation StartLoc = ConsumeToken();
441  SourceLocation LParenLoc = Tok.getLocation();
442
443  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
444                       "decltype")) {
445    SkipUntil(tok::r_paren);
446    return;
447  }
448
449  // Parse the expression
450
451  // C++0x [dcl.type.simple]p4:
452  //   The operand of the decltype specifier is an unevaluated operand.
453  EnterExpressionEvaluationContext Unevaluated(Actions,
454                                               Sema::Unevaluated);
455  ExprResult Result = ParseExpression();
456  if (Result.isInvalid()) {
457    SkipUntil(tok::r_paren);
458    return;
459  }
460
461  // Match the ')'
462  SourceLocation RParenLoc;
463  if (Tok.is(tok::r_paren))
464    RParenLoc = ConsumeParen();
465  else
466    MatchRHSPunctuation(tok::r_paren, LParenLoc);
467
468  if (RParenLoc.isInvalid())
469    return;
470
471  const char *PrevSpec = 0;
472  unsigned DiagID;
473  // Check for duplicate type specifiers (e.g. "int decltype(a)").
474  if (DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec,
475                         DiagID, Result.release()))
476    Diag(StartLoc, DiagID) << PrevSpec;
477}
478
479/// ParseClassName - Parse a C++ class-name, which names a class. Note
480/// that we only check that the result names a type; semantic analysis
481/// will need to verify that the type names a class. The result is
482/// either a type or NULL, depending on whether a type name was
483/// found.
484///
485///       class-name: [C++ 9.1]
486///         identifier
487///         simple-template-id
488///
489Parser::TypeResult Parser::ParseClassName(SourceLocation &EndLocation,
490                                          CXXScopeSpec *SS) {
491  // Check whether we have a template-id that names a type.
492  if (Tok.is(tok::annot_template_id)) {
493    TemplateIdAnnotation *TemplateId
494      = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
495    if (TemplateId->Kind == TNK_Type_template ||
496        TemplateId->Kind == TNK_Dependent_template_name) {
497      AnnotateTemplateIdTokenAsType(SS);
498
499      assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
500      ParsedType Type = getTypeAnnotation(Tok);
501      EndLocation = Tok.getAnnotationEndLoc();
502      ConsumeToken();
503
504      if (Type)
505        return Type;
506      return true;
507    }
508
509    // Fall through to produce an error below.
510  }
511
512  if (Tok.isNot(tok::identifier)) {
513    Diag(Tok, diag::err_expected_class_name);
514    return true;
515  }
516
517  IdentifierInfo *Id = Tok.getIdentifierInfo();
518  SourceLocation IdLoc = ConsumeToken();
519
520  if (Tok.is(tok::less)) {
521    // It looks the user intended to write a template-id here, but the
522    // template-name was wrong. Try to fix that.
523    TemplateNameKind TNK = TNK_Type_template;
524    TemplateTy Template;
525    if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, getCurScope(),
526                                             SS, Template, TNK)) {
527      Diag(IdLoc, diag::err_unknown_template_name)
528        << Id;
529    }
530
531    if (!Template)
532      return true;
533
534    // Form the template name
535    UnqualifiedId TemplateName;
536    TemplateName.setIdentifier(Id, IdLoc);
537
538    // Parse the full template-id, then turn it into a type.
539    if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
540                                SourceLocation(), true))
541      return true;
542    if (TNK == TNK_Dependent_template_name)
543      AnnotateTemplateIdTokenAsType(SS);
544
545    // If we didn't end up with a typename token, there's nothing more we
546    // can do.
547    if (Tok.isNot(tok::annot_typename))
548      return true;
549
550    // Retrieve the type from the annotation token, consume that token, and
551    // return.
552    EndLocation = Tok.getAnnotationEndLoc();
553    ParsedType Type = getTypeAnnotation(Tok);
554    ConsumeToken();
555    return Type;
556  }
557
558  // We have an identifier; check whether it is actually a type.
559  ParsedType Type = Actions.getTypeName(*Id, IdLoc, getCurScope(), SS, true);
560  if (!Type) {
561    Diag(IdLoc, diag::err_expected_class_name);
562    return true;
563  }
564
565  // Consume the identifier.
566  EndLocation = IdLoc;
567
568  // Fake up a Declarator to use with ActOnTypeName.
569  DeclSpec DS;
570  DS.SetRangeStart(IdLoc);
571  DS.SetRangeEnd(EndLocation);
572  DS.getTypeSpecScope() = *SS;
573
574  const char *PrevSpec = 0;
575  unsigned DiagID;
576  DS.SetTypeSpecType(TST_typename, IdLoc, PrevSpec, DiagID, Type);
577
578  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
579  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
580}
581
582/// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
583/// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
584/// until we reach the start of a definition or see a token that
585/// cannot start a definition. If SuppressDeclarations is true, we do know.
586///
587///       class-specifier: [C++ class]
588///         class-head '{' member-specification[opt] '}'
589///         class-head '{' member-specification[opt] '}' attributes[opt]
590///       class-head:
591///         class-key identifier[opt] base-clause[opt]
592///         class-key nested-name-specifier identifier base-clause[opt]
593///         class-key nested-name-specifier[opt] simple-template-id
594///                          base-clause[opt]
595/// [GNU]   class-key attributes[opt] identifier[opt] base-clause[opt]
596/// [GNU]   class-key attributes[opt] nested-name-specifier
597///                          identifier base-clause[opt]
598/// [GNU]   class-key attributes[opt] nested-name-specifier[opt]
599///                          simple-template-id base-clause[opt]
600///       class-key:
601///         'class'
602///         'struct'
603///         'union'
604///
605///       elaborated-type-specifier: [C++ dcl.type.elab]
606///         class-key ::[opt] nested-name-specifier[opt] identifier
607///         class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
608///                          simple-template-id
609///
610///  Note that the C++ class-specifier and elaborated-type-specifier,
611///  together, subsume the C99 struct-or-union-specifier:
612///
613///       struct-or-union-specifier: [C99 6.7.2.1]
614///         struct-or-union identifier[opt] '{' struct-contents '}'
615///         struct-or-union identifier
616/// [GNU]   struct-or-union attributes[opt] identifier[opt] '{' struct-contents
617///                                                         '}' attributes[opt]
618/// [GNU]   struct-or-union attributes[opt] identifier
619///       struct-or-union:
620///         'struct'
621///         'union'
622void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind,
623                                 SourceLocation StartLoc, DeclSpec &DS,
624                                 const ParsedTemplateInfo &TemplateInfo,
625                                 AccessSpecifier AS, bool SuppressDeclarations){
626  DeclSpec::TST TagType;
627  if (TagTokKind == tok::kw_struct)
628    TagType = DeclSpec::TST_struct;
629  else if (TagTokKind == tok::kw_class)
630    TagType = DeclSpec::TST_class;
631  else {
632    assert(TagTokKind == tok::kw_union && "Not a class specifier");
633    TagType = DeclSpec::TST_union;
634  }
635
636  if (Tok.is(tok::code_completion)) {
637    // Code completion for a struct, class, or union name.
638    Actions.CodeCompleteTag(getCurScope(), TagType);
639    ConsumeCodeCompletionToken();
640  }
641
642  // C++03 [temp.explicit] 14.7.2/8:
643  //   The usual access checking rules do not apply to names used to specify
644  //   explicit instantiations.
645  //
646  // As an extension we do not perform access checking on the names used to
647  // specify explicit specializations either. This is important to allow
648  // specializing traits classes for private types.
649  bool SuppressingAccessChecks = false;
650  if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
651      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization) {
652    Actions.ActOnStartSuppressingAccessChecks();
653    SuppressingAccessChecks = true;
654  }
655
656  AttributeList *AttrList = 0;
657  // If attributes exist after tag, parse them.
658  if (Tok.is(tok::kw___attribute))
659    AttrList = ParseGNUAttributes();
660
661  // If declspecs exist after tag, parse them.
662  while (Tok.is(tok::kw___declspec))
663    AttrList = ParseMicrosoftDeclSpec(AttrList);
664
665  // If C++0x attributes exist here, parse them.
666  // FIXME: Are we consistent with the ordering of parsing of different
667  // styles of attributes?
668  if (isCXX0XAttributeSpecifier())
669    AttrList = addAttributeLists(AttrList, ParseCXX0XAttributes().AttrList);
670
671  if (TagType == DeclSpec::TST_struct && Tok.is(tok::kw___is_pod)) {
672    // GNU libstdc++ 4.2 uses __is_pod as the name of a struct template, but
673    // __is_pod is a keyword in GCC >= 4.3. Therefore, when we see the
674    // token sequence "struct __is_pod", make __is_pod into a normal
675    // identifier rather than a keyword, to allow libstdc++ 4.2 to work
676    // properly.
677    Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
678    Tok.setKind(tok::identifier);
679  }
680
681  if (TagType == DeclSpec::TST_struct && Tok.is(tok::kw___is_empty)) {
682    // GNU libstdc++ 4.2 uses __is_empty as the name of a struct template, but
683    // __is_empty is a keyword in GCC >= 4.3. Therefore, when we see the
684    // token sequence "struct __is_empty", make __is_empty into a normal
685    // identifier rather than a keyword, to allow libstdc++ 4.2 to work
686    // properly.
687    Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
688    Tok.setKind(tok::identifier);
689  }
690
691  // Parse the (optional) nested-name-specifier.
692  CXXScopeSpec &SS = DS.getTypeSpecScope();
693  if (getLang().CPlusPlus) {
694    // "FOO : BAR" is not a potential typo for "FOO::BAR".
695    ColonProtectionRAIIObject X(*this);
696
697    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true))
698      DS.SetTypeSpecError();
699    if (SS.isSet())
700      if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id))
701        Diag(Tok, diag::err_expected_ident);
702  }
703
704  TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
705
706  // Parse the (optional) class name or simple-template-id.
707  IdentifierInfo *Name = 0;
708  SourceLocation NameLoc;
709  TemplateIdAnnotation *TemplateId = 0;
710  if (Tok.is(tok::identifier)) {
711    Name = Tok.getIdentifierInfo();
712    NameLoc = ConsumeToken();
713
714    if (Tok.is(tok::less) && getLang().CPlusPlus) {
715      // The name was supposed to refer to a template, but didn't.
716      // Eat the template argument list and try to continue parsing this as
717      // a class (or template thereof).
718      TemplateArgList TemplateArgs;
719      SourceLocation LAngleLoc, RAngleLoc;
720      if (ParseTemplateIdAfterTemplateName(TemplateTy(), NameLoc, &SS,
721                                           true, LAngleLoc,
722                                           TemplateArgs, RAngleLoc)) {
723        // We couldn't parse the template argument list at all, so don't
724        // try to give any location information for the list.
725        LAngleLoc = RAngleLoc = SourceLocation();
726      }
727
728      Diag(NameLoc, diag::err_explicit_spec_non_template)
729        << (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
730        << (TagType == DeclSpec::TST_class? 0
731            : TagType == DeclSpec::TST_struct? 1
732            : 2)
733        << Name
734        << SourceRange(LAngleLoc, RAngleLoc);
735
736      // Strip off the last template parameter list if it was empty, since
737      // we've removed its template argument list.
738      if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) {
739        if (TemplateParams && TemplateParams->size() > 1) {
740          TemplateParams->pop_back();
741        } else {
742          TemplateParams = 0;
743          const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
744            = ParsedTemplateInfo::NonTemplate;
745        }
746      } else if (TemplateInfo.Kind
747                                == ParsedTemplateInfo::ExplicitInstantiation) {
748        // Pretend this is just a forward declaration.
749        TemplateParams = 0;
750        const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
751          = ParsedTemplateInfo::NonTemplate;
752        const_cast<ParsedTemplateInfo&>(TemplateInfo).TemplateLoc
753          = SourceLocation();
754        const_cast<ParsedTemplateInfo&>(TemplateInfo).ExternLoc
755          = SourceLocation();
756      }
757    }
758  } else if (Tok.is(tok::annot_template_id)) {
759    TemplateId = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
760    NameLoc = ConsumeToken();
761
762    if (TemplateId->Kind != TNK_Type_template) {
763      // The template-name in the simple-template-id refers to
764      // something other than a class template. Give an appropriate
765      // error message and skip to the ';'.
766      SourceRange Range(NameLoc);
767      if (SS.isNotEmpty())
768        Range.setBegin(SS.getBeginLoc());
769
770      Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template)
771        << Name << static_cast<int>(TemplateId->Kind) << Range;
772
773      DS.SetTypeSpecError();
774      SkipUntil(tok::semi, false, true);
775      TemplateId->Destroy();
776      if (SuppressingAccessChecks)
777        Actions.ActOnStopSuppressingAccessChecks();
778
779      return;
780    }
781  }
782
783  // As soon as we're finished parsing the class's template-id, turn access
784  // checking back on.
785  if (SuppressingAccessChecks)
786    Actions.ActOnStopSuppressingAccessChecks();
787
788  // There are four options here.  If we have 'struct foo;', then this
789  // is either a forward declaration or a friend declaration, which
790  // have to be treated differently.  If we have 'struct foo {...' or
791  // 'struct foo :...' then this is a definition. Otherwise we have
792  // something like 'struct foo xyz', a reference.
793  // However, in some contexts, things look like declarations but are just
794  // references, e.g.
795  // new struct s;
796  // or
797  // &T::operator struct s;
798  // For these, SuppressDeclarations is true.
799  Sema::TagUseKind TUK;
800  if (SuppressDeclarations)
801    TUK = Sema::TUK_Reference;
802  else if (Tok.is(tok::l_brace) || (getLang().CPlusPlus && Tok.is(tok::colon))){
803    if (DS.isFriendSpecified()) {
804      // C++ [class.friend]p2:
805      //   A class shall not be defined in a friend declaration.
806      Diag(Tok.getLocation(), diag::err_friend_decl_defines_class)
807        << SourceRange(DS.getFriendSpecLoc());
808
809      // Skip everything up to the semicolon, so that this looks like a proper
810      // friend class (or template thereof) declaration.
811      SkipUntil(tok::semi, true, true);
812      TUK = Sema::TUK_Friend;
813    } else {
814      // Okay, this is a class definition.
815      TUK = Sema::TUK_Definition;
816    }
817  } else if (Tok.is(tok::semi))
818    TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
819  else
820    TUK = Sema::TUK_Reference;
821
822  if (!Name && !TemplateId && (DS.getTypeSpecType() == DeclSpec::TST_error ||
823                               TUK != Sema::TUK_Definition)) {
824    if (DS.getTypeSpecType() != DeclSpec::TST_error) {
825      // We have a declaration or reference to an anonymous class.
826      Diag(StartLoc, diag::err_anon_type_definition)
827        << DeclSpec::getSpecifierName(TagType);
828    }
829
830    SkipUntil(tok::comma, true);
831
832    if (TemplateId)
833      TemplateId->Destroy();
834    return;
835  }
836
837  // Create the tag portion of the class or class template.
838  DeclResult TagOrTempResult = true; // invalid
839  TypeResult TypeResult = true; // invalid
840
841  bool Owned = false;
842  if (TemplateId) {
843    // Explicit specialization, class template partial specialization,
844    // or explicit instantiation.
845    ASTTemplateArgsPtr TemplateArgsPtr(Actions,
846                                       TemplateId->getTemplateArgs(),
847                                       TemplateId->NumArgs);
848    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
849        TUK == Sema::TUK_Declaration) {
850      // This is an explicit instantiation of a class template.
851      TagOrTempResult
852        = Actions.ActOnExplicitInstantiation(getCurScope(),
853                                             TemplateInfo.ExternLoc,
854                                             TemplateInfo.TemplateLoc,
855                                             TagType,
856                                             StartLoc,
857                                             SS,
858                                             TemplateId->Template,
859                                             TemplateId->TemplateNameLoc,
860                                             TemplateId->LAngleLoc,
861                                             TemplateArgsPtr,
862                                             TemplateId->RAngleLoc,
863                                             AttrList);
864
865    // Friend template-ids are treated as references unless
866    // they have template headers, in which case they're ill-formed
867    // (FIXME: "template <class T> friend class A<T>::B<int>;").
868    // We diagnose this error in ActOnClassTemplateSpecialization.
869    } else if (TUK == Sema::TUK_Reference ||
870               (TUK == Sema::TUK_Friend &&
871                TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate)) {
872      TypeResult
873        = Actions.ActOnTemplateIdType(TemplateId->Template,
874                                      TemplateId->TemplateNameLoc,
875                                      TemplateId->LAngleLoc,
876                                      TemplateArgsPtr,
877                                      TemplateId->RAngleLoc);
878
879      TypeResult = Actions.ActOnTagTemplateIdType(TypeResult, TUK,
880                                                  TagType, StartLoc);
881    } else {
882      // This is an explicit specialization or a class template
883      // partial specialization.
884      TemplateParameterLists FakedParamLists;
885
886      if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
887        // This looks like an explicit instantiation, because we have
888        // something like
889        //
890        //   template class Foo<X>
891        //
892        // but it actually has a definition. Most likely, this was
893        // meant to be an explicit specialization, but the user forgot
894        // the '<>' after 'template'.
895        assert(TUK == Sema::TUK_Definition && "Expected a definition here");
896
897        SourceLocation LAngleLoc
898          = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
899        Diag(TemplateId->TemplateNameLoc,
900             diag::err_explicit_instantiation_with_definition)
901          << SourceRange(TemplateInfo.TemplateLoc)
902          << FixItHint::CreateInsertion(LAngleLoc, "<>");
903
904        // Create a fake template parameter list that contains only
905        // "template<>", so that we treat this construct as a class
906        // template specialization.
907        FakedParamLists.push_back(
908          Actions.ActOnTemplateParameterList(0, SourceLocation(),
909                                             TemplateInfo.TemplateLoc,
910                                             LAngleLoc,
911                                             0, 0,
912                                             LAngleLoc));
913        TemplateParams = &FakedParamLists;
914      }
915
916      // Build the class template specialization.
917      TagOrTempResult
918        = Actions.ActOnClassTemplateSpecialization(getCurScope(), TagType, TUK,
919                       StartLoc, SS,
920                       TemplateId->Template,
921                       TemplateId->TemplateNameLoc,
922                       TemplateId->LAngleLoc,
923                       TemplateArgsPtr,
924                       TemplateId->RAngleLoc,
925                       AttrList,
926                       MultiTemplateParamsArg(Actions,
927                                    TemplateParams? &(*TemplateParams)[0] : 0,
928                                 TemplateParams? TemplateParams->size() : 0));
929    }
930    TemplateId->Destroy();
931  } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
932             TUK == Sema::TUK_Declaration) {
933    // Explicit instantiation of a member of a class template
934    // specialization, e.g.,
935    //
936    //   template struct Outer<int>::Inner;
937    //
938    TagOrTempResult
939      = Actions.ActOnExplicitInstantiation(getCurScope(),
940                                           TemplateInfo.ExternLoc,
941                                           TemplateInfo.TemplateLoc,
942                                           TagType, StartLoc, SS, Name,
943                                           NameLoc, AttrList);
944  } else {
945    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
946        TUK == Sema::TUK_Definition) {
947      // FIXME: Diagnose this particular error.
948    }
949
950    bool IsDependent = false;
951
952    // Declaration or definition of a class type
953    TagOrTempResult = Actions.ActOnTag(getCurScope(), TagType, TUK, StartLoc, SS,
954                                       Name, NameLoc, AttrList, AS,
955                                       MultiTemplateParamsArg(Actions,
956                                    TemplateParams? &(*TemplateParams)[0] : 0,
957                                    TemplateParams? TemplateParams->size() : 0),
958                                       Owned, IsDependent);
959
960    // If ActOnTag said the type was dependent, try again with the
961    // less common call.
962    if (IsDependent)
963      TypeResult = Actions.ActOnDependentTag(getCurScope(), TagType, TUK,
964                                             SS, Name, StartLoc, NameLoc);
965  }
966
967  // If there is a body, parse it and inform the actions module.
968  if (TUK == Sema::TUK_Definition) {
969    assert(Tok.is(tok::l_brace) ||
970           (getLang().CPlusPlus && Tok.is(tok::colon)));
971    if (getLang().CPlusPlus)
972      ParseCXXMemberSpecification(StartLoc, TagType, TagOrTempResult.get());
973    else
974      ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get());
975  }
976
977  // FIXME: The DeclSpec should keep the locations of both the keyword and the
978  // name (if there is one).
979  SourceLocation TSTLoc = NameLoc.isValid()? NameLoc : StartLoc;
980
981  const char *PrevSpec = 0;
982  unsigned DiagID;
983  bool Result;
984  if (!TypeResult.isInvalid()) {
985    Result = DS.SetTypeSpecType(DeclSpec::TST_typename, TSTLoc,
986                                PrevSpec, DiagID, TypeResult.get());
987  } else if (!TagOrTempResult.isInvalid()) {
988    Result = DS.SetTypeSpecType(TagType, TSTLoc, PrevSpec, DiagID,
989                                TagOrTempResult.get(), Owned);
990  } else {
991    DS.SetTypeSpecError();
992    return;
993  }
994
995  if (Result)
996    Diag(StartLoc, DiagID) << PrevSpec;
997
998  // At this point, we've successfully parsed a class-specifier in 'definition'
999  // form (e.g. "struct foo { int x; }".  While we could just return here, we're
1000  // going to look at what comes after it to improve error recovery.  If an
1001  // impossible token occurs next, we assume that the programmer forgot a ; at
1002  // the end of the declaration and recover that way.
1003  //
1004  // This switch enumerates the valid "follow" set for definition.
1005  if (TUK == Sema::TUK_Definition) {
1006    bool ExpectedSemi = true;
1007    switch (Tok.getKind()) {
1008    default: break;
1009    case tok::semi:               // struct foo {...} ;
1010    case tok::star:               // struct foo {...} *         P;
1011    case tok::amp:                // struct foo {...} &         R = ...
1012    case tok::identifier:         // struct foo {...} V         ;
1013    case tok::r_paren:            //(struct foo {...} )         {4}
1014    case tok::annot_cxxscope:     // struct foo {...} a::       b;
1015    case tok::annot_typename:     // struct foo {...} a         ::b;
1016    case tok::annot_template_id:  // struct foo {...} a<int>    ::b;
1017    case tok::l_paren:            // struct foo {...} (         x);
1018    case tok::comma:              // __builtin_offsetof(struct foo{...} ,
1019      ExpectedSemi = false;
1020      break;
1021    // Type qualifiers
1022    case tok::kw_const:           // struct foo {...} const     x;
1023    case tok::kw_volatile:        // struct foo {...} volatile  x;
1024    case tok::kw_restrict:        // struct foo {...} restrict  x;
1025    case tok::kw_inline:          // struct foo {...} inline    foo() {};
1026    // Storage-class specifiers
1027    case tok::kw_static:          // struct foo {...} static    x;
1028    case tok::kw_extern:          // struct foo {...} extern    x;
1029    case tok::kw_typedef:         // struct foo {...} typedef   x;
1030    case tok::kw_register:        // struct foo {...} register  x;
1031    case tok::kw_auto:            // struct foo {...} auto      x;
1032    case tok::kw_mutable:         // struct foo {...} mutable      x;
1033      // As shown above, type qualifiers and storage class specifiers absolutely
1034      // can occur after class specifiers according to the grammar.  However,
1035      // almost noone actually writes code like this.  If we see one of these,
1036      // it is much more likely that someone missed a semi colon and the
1037      // type/storage class specifier we're seeing is part of the *next*
1038      // intended declaration, as in:
1039      //
1040      //   struct foo { ... }
1041      //   typedef int X;
1042      //
1043      // We'd really like to emit a missing semicolon error instead of emitting
1044      // an error on the 'int' saying that you can't have two type specifiers in
1045      // the same declaration of X.  Because of this, we look ahead past this
1046      // token to see if it's a type specifier.  If so, we know the code is
1047      // otherwise invalid, so we can produce the expected semi error.
1048      if (!isKnownToBeTypeSpecifier(NextToken()))
1049        ExpectedSemi = false;
1050      break;
1051
1052    case tok::r_brace:  // struct bar { struct foo {...} }
1053      // Missing ';' at end of struct is accepted as an extension in C mode.
1054      if (!getLang().CPlusPlus)
1055        ExpectedSemi = false;
1056      break;
1057    }
1058
1059    if (ExpectedSemi) {
1060      ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl,
1061                       TagType == DeclSpec::TST_class ? "class"
1062                       : TagType == DeclSpec::TST_struct? "struct" : "union");
1063      // Push this token back into the preprocessor and change our current token
1064      // to ';' so that the rest of the code recovers as though there were an
1065      // ';' after the definition.
1066      PP.EnterToken(Tok);
1067      Tok.setKind(tok::semi);
1068    }
1069  }
1070}
1071
1072/// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
1073///
1074///       base-clause : [C++ class.derived]
1075///         ':' base-specifier-list
1076///       base-specifier-list:
1077///         base-specifier '...'[opt]
1078///         base-specifier-list ',' base-specifier '...'[opt]
1079void Parser::ParseBaseClause(Decl *ClassDecl) {
1080  assert(Tok.is(tok::colon) && "Not a base clause");
1081  ConsumeToken();
1082
1083  // Build up an array of parsed base specifiers.
1084  llvm::SmallVector<CXXBaseSpecifier *, 8> BaseInfo;
1085
1086  while (true) {
1087    // Parse a base-specifier.
1088    BaseResult Result = ParseBaseSpecifier(ClassDecl);
1089    if (Result.isInvalid()) {
1090      // Skip the rest of this base specifier, up until the comma or
1091      // opening brace.
1092      SkipUntil(tok::comma, tok::l_brace, true, true);
1093    } else {
1094      // Add this to our array of base specifiers.
1095      BaseInfo.push_back(Result.get());
1096    }
1097
1098    // If the next token is a comma, consume it and keep reading
1099    // base-specifiers.
1100    if (Tok.isNot(tok::comma)) break;
1101
1102    // Consume the comma.
1103    ConsumeToken();
1104  }
1105
1106  // Attach the base specifiers
1107  Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size());
1108}
1109
1110/// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
1111/// one entry in the base class list of a class specifier, for example:
1112///    class foo : public bar, virtual private baz {
1113/// 'public bar' and 'virtual private baz' are each base-specifiers.
1114///
1115///       base-specifier: [C++ class.derived]
1116///         ::[opt] nested-name-specifier[opt] class-name
1117///         'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt]
1118///                        class-name
1119///         access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt]
1120///                        class-name
1121Parser::BaseResult Parser::ParseBaseSpecifier(Decl *ClassDecl) {
1122  bool IsVirtual = false;
1123  SourceLocation StartLoc = Tok.getLocation();
1124
1125  // Parse the 'virtual' keyword.
1126  if (Tok.is(tok::kw_virtual))  {
1127    ConsumeToken();
1128    IsVirtual = true;
1129  }
1130
1131  // Parse an (optional) access specifier.
1132  AccessSpecifier Access = getAccessSpecifierIfPresent();
1133  if (Access != AS_none)
1134    ConsumeToken();
1135
1136  // Parse the 'virtual' keyword (again!), in case it came after the
1137  // access specifier.
1138  if (Tok.is(tok::kw_virtual))  {
1139    SourceLocation VirtualLoc = ConsumeToken();
1140    if (IsVirtual) {
1141      // Complain about duplicate 'virtual'
1142      Diag(VirtualLoc, diag::err_dup_virtual)
1143        << FixItHint::CreateRemoval(VirtualLoc);
1144    }
1145
1146    IsVirtual = true;
1147  }
1148
1149  // Parse optional '::' and optional nested-name-specifier.
1150  CXXScopeSpec SS;
1151  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
1152
1153  // The location of the base class itself.
1154  SourceLocation BaseLoc = Tok.getLocation();
1155
1156  // Parse the class-name.
1157  SourceLocation EndLocation;
1158  TypeResult BaseType = ParseClassName(EndLocation, &SS);
1159  if (BaseType.isInvalid())
1160    return true;
1161
1162  // Find the complete source range for the base-specifier.
1163  SourceRange Range(StartLoc, EndLocation);
1164
1165  // Notify semantic analysis that we have parsed a complete
1166  // base-specifier.
1167  return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access,
1168                                    BaseType.get(), BaseLoc);
1169}
1170
1171/// getAccessSpecifierIfPresent - Determine whether the next token is
1172/// a C++ access-specifier.
1173///
1174///       access-specifier: [C++ class.derived]
1175///         'private'
1176///         'protected'
1177///         'public'
1178AccessSpecifier Parser::getAccessSpecifierIfPresent() const {
1179  switch (Tok.getKind()) {
1180  default: return AS_none;
1181  case tok::kw_private: return AS_private;
1182  case tok::kw_protected: return AS_protected;
1183  case tok::kw_public: return AS_public;
1184  }
1185}
1186
1187void Parser::HandleMemberFunctionDefaultArgs(Declarator& DeclaratorInfo,
1188                                             Decl *ThisDecl) {
1189  // We just declared a member function. If this member function
1190  // has any default arguments, we'll need to parse them later.
1191  LateParsedMethodDeclaration *LateMethod = 0;
1192  DeclaratorChunk::FunctionTypeInfo &FTI
1193    = DeclaratorInfo.getTypeObject(0).Fun;
1194  for (unsigned ParamIdx = 0; ParamIdx < FTI.NumArgs; ++ParamIdx) {
1195    if (LateMethod || FTI.ArgInfo[ParamIdx].DefaultArgTokens) {
1196      if (!LateMethod) {
1197        // Push this method onto the stack of late-parsed method
1198        // declarations.
1199        getCurrentClass().MethodDecls.push_back(
1200                                LateParsedMethodDeclaration(ThisDecl));
1201        LateMethod = &getCurrentClass().MethodDecls.back();
1202        LateMethod->TemplateScope = getCurScope()->isTemplateParamScope();
1203
1204        // Add all of the parameters prior to this one (they don't
1205        // have default arguments).
1206        LateMethod->DefaultArgs.reserve(FTI.NumArgs);
1207        for (unsigned I = 0; I < ParamIdx; ++I)
1208          LateMethod->DefaultArgs.push_back(
1209                             LateParsedDefaultArgument(FTI.ArgInfo[I].Param));
1210      }
1211
1212      // Add this parameter to the list of parameters (it or may
1213      // not have a default argument).
1214      LateMethod->DefaultArgs.push_back(
1215        LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param,
1216                                  FTI.ArgInfo[ParamIdx].DefaultArgTokens));
1217    }
1218  }
1219}
1220
1221/// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
1222///
1223///       member-declaration:
1224///         decl-specifier-seq[opt] member-declarator-list[opt] ';'
1225///         function-definition ';'[opt]
1226///         ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
1227///         using-declaration                                            [TODO]
1228/// [C++0x] static_assert-declaration
1229///         template-declaration
1230/// [GNU]   '__extension__' member-declaration
1231///
1232///       member-declarator-list:
1233///         member-declarator
1234///         member-declarator-list ',' member-declarator
1235///
1236///       member-declarator:
1237///         declarator pure-specifier[opt]
1238///         declarator constant-initializer[opt]
1239///         identifier[opt] ':' constant-expression
1240///
1241///       pure-specifier:
1242///         '= 0'
1243///
1244///       constant-initializer:
1245///         '=' constant-expression
1246///
1247void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS,
1248                                       const ParsedTemplateInfo &TemplateInfo,
1249                                       ParsingDeclRAIIObject *TemplateDiags) {
1250  // Access declarations.
1251  if (!TemplateInfo.Kind &&
1252      (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) &&
1253      !TryAnnotateCXXScopeToken() &&
1254      Tok.is(tok::annot_cxxscope)) {
1255    bool isAccessDecl = false;
1256    if (NextToken().is(tok::identifier))
1257      isAccessDecl = GetLookAheadToken(2).is(tok::semi);
1258    else
1259      isAccessDecl = NextToken().is(tok::kw_operator);
1260
1261    if (isAccessDecl) {
1262      // Collect the scope specifier token we annotated earlier.
1263      CXXScopeSpec SS;
1264      ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
1265
1266      // Try to parse an unqualified-id.
1267      UnqualifiedId Name;
1268      if (ParseUnqualifiedId(SS, false, true, true, ParsedType(), Name)) {
1269        SkipUntil(tok::semi);
1270        return;
1271      }
1272
1273      // TODO: recover from mistakenly-qualified operator declarations.
1274      if (ExpectAndConsume(tok::semi,
1275                           diag::err_expected_semi_after,
1276                           "access declaration",
1277                           tok::semi))
1278        return;
1279
1280      Actions.ActOnUsingDeclaration(getCurScope(), AS,
1281                                    false, SourceLocation(),
1282                                    SS, Name,
1283                                    /* AttrList */ 0,
1284                                    /* IsTypeName */ false,
1285                                    SourceLocation());
1286      return;
1287    }
1288  }
1289
1290  // static_assert-declaration
1291  if (Tok.is(tok::kw_static_assert)) {
1292    // FIXME: Check for templates
1293    SourceLocation DeclEnd;
1294    ParseStaticAssertDeclaration(DeclEnd);
1295    return;
1296  }
1297
1298  if (Tok.is(tok::kw_template)) {
1299    assert(!TemplateInfo.TemplateParams &&
1300           "Nested template improperly parsed?");
1301    SourceLocation DeclEnd;
1302    ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd,
1303                                         AS);
1304    return;
1305  }
1306
1307  // Handle:  member-declaration ::= '__extension__' member-declaration
1308  if (Tok.is(tok::kw___extension__)) {
1309    // __extension__ silences extension warnings in the subexpression.
1310    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1311    ConsumeToken();
1312    return ParseCXXClassMemberDeclaration(AS, TemplateInfo, TemplateDiags);
1313  }
1314
1315  // Don't parse FOO:BAR as if it were a typo for FOO::BAR, in this context it
1316  // is a bitfield.
1317  ColonProtectionRAIIObject X(*this);
1318
1319  CXX0XAttributeList AttrList;
1320  // Optional C++0x attribute-specifier
1321  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier())
1322    AttrList = ParseCXX0XAttributes();
1323
1324  if (Tok.is(tok::kw_using)) {
1325    // FIXME: Check for template aliases
1326
1327    if (AttrList.HasAttr)
1328      Diag(AttrList.Range.getBegin(), diag::err_attributes_not_allowed)
1329        << AttrList.Range;
1330
1331    // Eat 'using'.
1332    SourceLocation UsingLoc = ConsumeToken();
1333
1334    if (Tok.is(tok::kw_namespace)) {
1335      Diag(UsingLoc, diag::err_using_namespace_in_class);
1336      SkipUntil(tok::semi, true, true);
1337    } else {
1338      SourceLocation DeclEnd;
1339      // Otherwise, it must be using-declaration.
1340      ParseUsingDeclaration(Declarator::MemberContext, UsingLoc, DeclEnd, AS);
1341    }
1342    return;
1343  }
1344
1345  SourceLocation DSStart = Tok.getLocation();
1346  // decl-specifier-seq:
1347  // Parse the common declaration-specifiers piece.
1348  ParsingDeclSpec DS(*this, TemplateDiags);
1349  DS.AddAttributes(AttrList.AttrList);
1350  ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC_class);
1351
1352  MultiTemplateParamsArg TemplateParams(Actions,
1353      TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0,
1354      TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
1355
1356  if (Tok.is(tok::semi)) {
1357    ConsumeToken();
1358    Decl *TheDecl =
1359      Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS);
1360    DS.complete(TheDecl);
1361    return;
1362  }
1363
1364  ParsingDeclarator DeclaratorInfo(*this, DS, Declarator::MemberContext);
1365
1366  if (Tok.isNot(tok::colon)) {
1367    // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1368    ColonProtectionRAIIObject X(*this);
1369
1370    // Parse the first declarator.
1371    ParseDeclarator(DeclaratorInfo);
1372    // Error parsing the declarator?
1373    if (!DeclaratorInfo.hasName()) {
1374      // If so, skip until the semi-colon or a }.
1375      SkipUntil(tok::r_brace, true);
1376      if (Tok.is(tok::semi))
1377        ConsumeToken();
1378      return;
1379    }
1380
1381    // If attributes exist after the declarator, but before an '{', parse them.
1382    if (Tok.is(tok::kw___attribute)) {
1383      SourceLocation Loc;
1384      AttributeList *AttrList = ParseGNUAttributes(&Loc);
1385      DeclaratorInfo.AddAttributes(AttrList, Loc);
1386    }
1387
1388    // function-definition:
1389    if (Tok.is(tok::l_brace)
1390        || (DeclaratorInfo.isFunctionDeclarator() &&
1391            (Tok.is(tok::colon) || Tok.is(tok::kw_try)))) {
1392      if (!DeclaratorInfo.isFunctionDeclarator()) {
1393        Diag(Tok, diag::err_func_def_no_params);
1394        ConsumeBrace();
1395        SkipUntil(tok::r_brace, true);
1396        return;
1397      }
1398
1399      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1400        Diag(Tok, diag::err_function_declared_typedef);
1401        // This recovery skips the entire function body. It would be nice
1402        // to simply call ParseCXXInlineMethodDef() below, however Sema
1403        // assumes the declarator represents a function, not a typedef.
1404        ConsumeBrace();
1405        SkipUntil(tok::r_brace, true);
1406        return;
1407      }
1408
1409      ParseCXXInlineMethodDef(AS, DeclaratorInfo, TemplateInfo);
1410      return;
1411    }
1412  }
1413
1414  // member-declarator-list:
1415  //   member-declarator
1416  //   member-declarator-list ',' member-declarator
1417
1418  llvm::SmallVector<Decl *, 8> DeclsInGroup;
1419  ExprResult BitfieldSize;
1420  ExprResult Init;
1421  bool Deleted = false;
1422
1423  while (1) {
1424    // member-declarator:
1425    //   declarator pure-specifier[opt]
1426    //   declarator constant-initializer[opt]
1427    //   identifier[opt] ':' constant-expression
1428    if (Tok.is(tok::colon)) {
1429      ConsumeToken();
1430      BitfieldSize = ParseConstantExpression();
1431      if (BitfieldSize.isInvalid())
1432        SkipUntil(tok::comma, true, true);
1433    }
1434
1435    // pure-specifier:
1436    //   '= 0'
1437    //
1438    // constant-initializer:
1439    //   '=' constant-expression
1440    //
1441    // defaulted/deleted function-definition:
1442    //   '=' 'default'                          [TODO]
1443    //   '=' 'delete'
1444    if (Tok.is(tok::equal)) {
1445      ConsumeToken();
1446      if (Tok.is(tok::kw_delete)) {
1447        if (!getLang().CPlusPlus0x)
1448          Diag(Tok, diag::warn_deleted_function_accepted_as_extension);
1449        ConsumeToken();
1450        Deleted = true;
1451      } else {
1452        Init = ParseInitializer();
1453        if (Init.isInvalid())
1454          SkipUntil(tok::comma, true, true);
1455      }
1456    }
1457
1458    // If a simple-asm-expr is present, parse it.
1459    if (Tok.is(tok::kw_asm)) {
1460      SourceLocation Loc;
1461      ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1462      if (AsmLabel.isInvalid())
1463        SkipUntil(tok::comma, true, true);
1464
1465      DeclaratorInfo.setAsmLabel(AsmLabel.release());
1466      DeclaratorInfo.SetRangeEnd(Loc);
1467    }
1468
1469    // If attributes exist after the declarator, parse them.
1470    if (Tok.is(tok::kw___attribute)) {
1471      SourceLocation Loc;
1472      AttributeList *AttrList = ParseGNUAttributes(&Loc);
1473      DeclaratorInfo.AddAttributes(AttrList, Loc);
1474    }
1475
1476    // NOTE: If Sema is the Action module and declarator is an instance field,
1477    // this call will *not* return the created decl; It will return null.
1478    // See Sema::ActOnCXXMemberDeclarator for details.
1479
1480    Decl *ThisDecl = 0;
1481    if (DS.isFriendSpecified()) {
1482      // TODO: handle initializers, bitfields, 'delete'
1483      ThisDecl = Actions.ActOnFriendFunctionDecl(getCurScope(), DeclaratorInfo,
1484                                                 /*IsDefinition*/ false,
1485                                                 move(TemplateParams));
1486    } else {
1487      ThisDecl = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS,
1488                                                  DeclaratorInfo,
1489                                                  move(TemplateParams),
1490                                                  BitfieldSize.release(),
1491                                                  Init.release(),
1492                                                  /*IsDefinition*/Deleted,
1493                                                  Deleted);
1494    }
1495    if (ThisDecl)
1496      DeclsInGroup.push_back(ThisDecl);
1497
1498    if (DeclaratorInfo.isFunctionDeclarator() &&
1499        DeclaratorInfo.getDeclSpec().getStorageClassSpec()
1500          != DeclSpec::SCS_typedef) {
1501      HandleMemberFunctionDefaultArgs(DeclaratorInfo, ThisDecl);
1502    }
1503
1504    DeclaratorInfo.complete(ThisDecl);
1505
1506    // If we don't have a comma, it is either the end of the list (a ';')
1507    // or an error, bail out.
1508    if (Tok.isNot(tok::comma))
1509      break;
1510
1511    // Consume the comma.
1512    ConsumeToken();
1513
1514    // Parse the next declarator.
1515    DeclaratorInfo.clear();
1516    BitfieldSize = 0;
1517    Init = 0;
1518    Deleted = false;
1519
1520    // Attributes are only allowed on the second declarator.
1521    if (Tok.is(tok::kw___attribute)) {
1522      SourceLocation Loc;
1523      AttributeList *AttrList = ParseGNUAttributes(&Loc);
1524      DeclaratorInfo.AddAttributes(AttrList, Loc);
1525    }
1526
1527    if (Tok.isNot(tok::colon))
1528      ParseDeclarator(DeclaratorInfo);
1529  }
1530
1531  if (ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list)) {
1532    // Skip to end of block or statement.
1533    SkipUntil(tok::r_brace, true, true);
1534    // If we stopped at a ';', eat it.
1535    if (Tok.is(tok::semi)) ConsumeToken();
1536    return;
1537  }
1538
1539  Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup.data(),
1540                                  DeclsInGroup.size());
1541}
1542
1543/// ParseCXXMemberSpecification - Parse the class definition.
1544///
1545///       member-specification:
1546///         member-declaration member-specification[opt]
1547///         access-specifier ':' member-specification[opt]
1548///
1549void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc,
1550                                         unsigned TagType, Decl *TagDecl) {
1551  assert((TagType == DeclSpec::TST_struct ||
1552         TagType == DeclSpec::TST_union  ||
1553         TagType == DeclSpec::TST_class) && "Invalid TagType!");
1554
1555  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
1556                                      "parsing struct/union/class body");
1557
1558  // Determine whether this is a non-nested class. Note that local
1559  // classes are *not* considered to be nested classes.
1560  bool NonNestedClass = true;
1561  if (!ClassStack.empty()) {
1562    for (const Scope *S = getCurScope(); S; S = S->getParent()) {
1563      if (S->isClassScope()) {
1564        // We're inside a class scope, so this is a nested class.
1565        NonNestedClass = false;
1566        break;
1567      }
1568
1569      if ((S->getFlags() & Scope::FnScope)) {
1570        // If we're in a function or function template declared in the
1571        // body of a class, then this is a local class rather than a
1572        // nested class.
1573        const Scope *Parent = S->getParent();
1574        if (Parent->isTemplateParamScope())
1575          Parent = Parent->getParent();
1576        if (Parent->isClassScope())
1577          break;
1578      }
1579    }
1580  }
1581
1582  // Enter a scope for the class.
1583  ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope);
1584
1585  // Note that we are parsing a new (potentially-nested) class definition.
1586  ParsingClassDefinition ParsingDef(*this, TagDecl, NonNestedClass);
1587
1588  if (TagDecl)
1589    Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
1590
1591  if (Tok.is(tok::colon)) {
1592    ParseBaseClause(TagDecl);
1593
1594    if (!Tok.is(tok::l_brace)) {
1595      Diag(Tok, diag::err_expected_lbrace_after_base_specifiers);
1596
1597      if (TagDecl)
1598        Actions.ActOnTagDefinitionError(getCurScope(), TagDecl);
1599      return;
1600    }
1601  }
1602
1603  assert(Tok.is(tok::l_brace));
1604
1605  SourceLocation LBraceLoc = ConsumeBrace();
1606
1607  if (TagDecl)
1608    Actions.ActOnStartCXXMemberDeclarations(getCurScope(), TagDecl, LBraceLoc);
1609
1610  // C++ 11p3: Members of a class defined with the keyword class are private
1611  // by default. Members of a class defined with the keywords struct or union
1612  // are public by default.
1613  AccessSpecifier CurAS;
1614  if (TagType == DeclSpec::TST_class)
1615    CurAS = AS_private;
1616  else
1617    CurAS = AS_public;
1618
1619  SourceLocation RBraceLoc;
1620  if (TagDecl) {
1621    // While we still have something to read, read the member-declarations.
1622    while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1623      // Each iteration of this loop reads one member-declaration.
1624
1625      // Check for extraneous top-level semicolon.
1626      if (Tok.is(tok::semi)) {
1627        Diag(Tok, diag::ext_extra_struct_semi)
1628          << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
1629          << FixItHint::CreateRemoval(Tok.getLocation());
1630        ConsumeToken();
1631        continue;
1632      }
1633
1634      AccessSpecifier AS = getAccessSpecifierIfPresent();
1635      if (AS != AS_none) {
1636        // Current token is a C++ access specifier.
1637        CurAS = AS;
1638        SourceLocation ASLoc = Tok.getLocation();
1639        ConsumeToken();
1640        if (Tok.is(tok::colon))
1641          Actions.ActOnAccessSpecifier(AS, ASLoc, Tok.getLocation());
1642        else
1643          Diag(Tok, diag::err_expected_colon);
1644        ConsumeToken();
1645        continue;
1646      }
1647
1648      // FIXME: Make sure we don't have a template here.
1649
1650      // Parse all the comma separated declarators.
1651      ParseCXXClassMemberDeclaration(CurAS);
1652    }
1653
1654    RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1655  } else {
1656    SkipUntil(tok::r_brace, false, false);
1657  }
1658
1659  // If attributes exist after class contents, parse them.
1660  llvm::OwningPtr<AttributeList> AttrList;
1661  if (Tok.is(tok::kw___attribute))
1662    AttrList.reset(ParseGNUAttributes());
1663
1664  if (TagDecl)
1665    Actions.ActOnFinishCXXMemberSpecification(getCurScope(), RecordLoc, TagDecl,
1666                                              LBraceLoc, RBraceLoc,
1667                                              AttrList.get());
1668
1669  // C++ 9.2p2: Within the class member-specification, the class is regarded as
1670  // complete within function bodies, default arguments,
1671  // exception-specifications, and constructor ctor-initializers (including
1672  // such things in nested classes).
1673  //
1674  // FIXME: Only function bodies and constructor ctor-initializers are
1675  // parsed correctly, fix the rest.
1676  if (TagDecl && NonNestedClass) {
1677    // We are not inside a nested class. This class and its nested classes
1678    // are complete and we can parse the delayed portions of method
1679    // declarations and the lexed inline method definitions.
1680    SourceLocation SavedPrevTokLocation = PrevTokLocation;
1681    ParseLexedMethodDeclarations(getCurrentClass());
1682    ParseLexedMethodDefs(getCurrentClass());
1683    PrevTokLocation = SavedPrevTokLocation;
1684  }
1685
1686  if (TagDecl)
1687    Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc);
1688
1689  // Leave the class scope.
1690  ParsingDef.Pop();
1691  ClassScope.Exit();
1692}
1693
1694/// ParseConstructorInitializer - Parse a C++ constructor initializer,
1695/// which explicitly initializes the members or base classes of a
1696/// class (C++ [class.base.init]). For example, the three initializers
1697/// after the ':' in the Derived constructor below:
1698///
1699/// @code
1700/// class Base { };
1701/// class Derived : Base {
1702///   int x;
1703///   float f;
1704/// public:
1705///   Derived(float f) : Base(), x(17), f(f) { }
1706/// };
1707/// @endcode
1708///
1709/// [C++]  ctor-initializer:
1710///          ':' mem-initializer-list
1711///
1712/// [C++]  mem-initializer-list:
1713///          mem-initializer
1714///          mem-initializer , mem-initializer-list
1715void Parser::ParseConstructorInitializer(Decl *ConstructorDecl) {
1716  assert(Tok.is(tok::colon) && "Constructor initializer always starts with ':'");
1717
1718  SourceLocation ColonLoc = ConsumeToken();
1719
1720  llvm::SmallVector<CXXBaseOrMemberInitializer*, 4> MemInitializers;
1721  bool AnyErrors = false;
1722
1723  do {
1724    if (Tok.is(tok::code_completion)) {
1725      Actions.CodeCompleteConstructorInitializer(ConstructorDecl,
1726                                                 MemInitializers.data(),
1727                                                 MemInitializers.size());
1728      ConsumeCodeCompletionToken();
1729    } else {
1730      MemInitResult MemInit = ParseMemInitializer(ConstructorDecl);
1731      if (!MemInit.isInvalid())
1732        MemInitializers.push_back(MemInit.get());
1733      else
1734        AnyErrors = true;
1735    }
1736
1737    if (Tok.is(tok::comma))
1738      ConsumeToken();
1739    else if (Tok.is(tok::l_brace))
1740      break;
1741    // If the next token looks like a base or member initializer, assume that
1742    // we're just missing a comma.
1743    else if (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) {
1744      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
1745      Diag(Loc, diag::err_ctor_init_missing_comma)
1746        << FixItHint::CreateInsertion(Loc, ", ");
1747    } else {
1748      // Skip over garbage, until we get to '{'.  Don't eat the '{'.
1749      Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma);
1750      SkipUntil(tok::l_brace, true, true);
1751      break;
1752    }
1753  } while (true);
1754
1755  Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc,
1756                               MemInitializers.data(), MemInitializers.size(),
1757                               AnyErrors);
1758}
1759
1760/// ParseMemInitializer - Parse a C++ member initializer, which is
1761/// part of a constructor initializer that explicitly initializes one
1762/// member or base class (C++ [class.base.init]). See
1763/// ParseConstructorInitializer for an example.
1764///
1765/// [C++] mem-initializer:
1766///         mem-initializer-id '(' expression-list[opt] ')'
1767///
1768/// [C++] mem-initializer-id:
1769///         '::'[opt] nested-name-specifier[opt] class-name
1770///         identifier
1771Parser::MemInitResult Parser::ParseMemInitializer(Decl *ConstructorDecl) {
1772  // parse '::'[opt] nested-name-specifier[opt]
1773  CXXScopeSpec SS;
1774  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
1775  ParsedType TemplateTypeTy;
1776  if (Tok.is(tok::annot_template_id)) {
1777    TemplateIdAnnotation *TemplateId
1778      = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1779    if (TemplateId->Kind == TNK_Type_template ||
1780        TemplateId->Kind == TNK_Dependent_template_name) {
1781      AnnotateTemplateIdTokenAsType(&SS);
1782      assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
1783      TemplateTypeTy = getTypeAnnotation(Tok);
1784    }
1785  }
1786  if (!TemplateTypeTy && Tok.isNot(tok::identifier)) {
1787    Diag(Tok, diag::err_expected_member_or_base_name);
1788    return true;
1789  }
1790
1791  // Get the identifier. This may be a member name or a class name,
1792  // but we'll let the semantic analysis determine which it is.
1793  IdentifierInfo *II = Tok.is(tok::identifier) ? Tok.getIdentifierInfo() : 0;
1794  SourceLocation IdLoc = ConsumeToken();
1795
1796  // Parse the '('.
1797  if (Tok.isNot(tok::l_paren)) {
1798    Diag(Tok, diag::err_expected_lparen);
1799    return true;
1800  }
1801  SourceLocation LParenLoc = ConsumeParen();
1802
1803  // Parse the optional expression-list.
1804  ExprVector ArgExprs(Actions);
1805  CommaLocsTy CommaLocs;
1806  if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) {
1807    SkipUntil(tok::r_paren);
1808    return true;
1809  }
1810
1811  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
1812
1813  return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
1814                                     TemplateTypeTy, IdLoc,
1815                                     LParenLoc, ArgExprs.take(),
1816                                     ArgExprs.size(), RParenLoc);
1817}
1818
1819/// ParseExceptionSpecification - Parse a C++ exception-specification
1820/// (C++ [except.spec]).
1821///
1822///       exception-specification:
1823///         'throw' '(' type-id-list [opt] ')'
1824/// [MS]    'throw' '(' '...' ')'
1825///
1826///       type-id-list:
1827///         type-id
1828///         type-id-list ',' type-id
1829///
1830bool Parser::ParseExceptionSpecification(SourceLocation &EndLoc,
1831                                         llvm::SmallVectorImpl<ParsedType>
1832                                             &Exceptions,
1833                                         llvm::SmallVectorImpl<SourceRange>
1834                                             &Ranges,
1835                                         bool &hasAnyExceptionSpec) {
1836  assert(Tok.is(tok::kw_throw) && "expected throw");
1837
1838  SourceLocation ThrowLoc = ConsumeToken();
1839
1840  if (!Tok.is(tok::l_paren)) {
1841    return Diag(Tok, diag::err_expected_lparen_after) << "throw";
1842  }
1843  SourceLocation LParenLoc = ConsumeParen();
1844
1845  // Parse throw(...), a Microsoft extension that means "this function
1846  // can throw anything".
1847  if (Tok.is(tok::ellipsis)) {
1848    hasAnyExceptionSpec = true;
1849    SourceLocation EllipsisLoc = ConsumeToken();
1850    if (!getLang().Microsoft)
1851      Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec);
1852    EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
1853    return false;
1854  }
1855
1856  // Parse the sequence of type-ids.
1857  SourceRange Range;
1858  while (Tok.isNot(tok::r_paren)) {
1859    TypeResult Res(ParseTypeName(&Range));
1860    if (!Res.isInvalid()) {
1861      Exceptions.push_back(Res.get());
1862      Ranges.push_back(Range);
1863    }
1864    if (Tok.is(tok::comma))
1865      ConsumeToken();
1866    else
1867      break;
1868  }
1869
1870  EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
1871  return false;
1872}
1873
1874/// ParseTrailingReturnType - Parse a trailing return type on a new-style
1875/// function declaration.
1876TypeResult Parser::ParseTrailingReturnType() {
1877  assert(Tok.is(tok::arrow) && "expected arrow");
1878
1879  ConsumeToken();
1880
1881  // FIXME: Need to suppress declarations when parsing this typename.
1882  // Otherwise in this function definition:
1883  //
1884  //   auto f() -> struct X {}
1885  //
1886  // struct X is parsed as class definition because of the trailing
1887  // brace.
1888
1889  SourceRange Range;
1890  return ParseTypeName(&Range);
1891}
1892
1893/// \brief We have just started parsing the definition of a new class,
1894/// so push that class onto our stack of classes that is currently
1895/// being parsed.
1896void Parser::PushParsingClass(Decl *ClassDecl, bool NonNestedClass) {
1897  assert((NonNestedClass || !ClassStack.empty()) &&
1898         "Nested class without outer class");
1899  ClassStack.push(new ParsingClass(ClassDecl, NonNestedClass));
1900}
1901
1902/// \brief Deallocate the given parsed class and all of its nested
1903/// classes.
1904void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) {
1905  for (unsigned I = 0, N = Class->NestedClasses.size(); I != N; ++I)
1906    DeallocateParsedClasses(Class->NestedClasses[I]);
1907  delete Class;
1908}
1909
1910/// \brief Pop the top class of the stack of classes that are
1911/// currently being parsed.
1912///
1913/// This routine should be called when we have finished parsing the
1914/// definition of a class, but have not yet popped the Scope
1915/// associated with the class's definition.
1916///
1917/// \returns true if the class we've popped is a top-level class,
1918/// false otherwise.
1919void Parser::PopParsingClass() {
1920  assert(!ClassStack.empty() && "Mismatched push/pop for class parsing");
1921
1922  ParsingClass *Victim = ClassStack.top();
1923  ClassStack.pop();
1924  if (Victim->TopLevelClass) {
1925    // Deallocate all of the nested classes of this class,
1926    // recursively: we don't need to keep any of this information.
1927    DeallocateParsedClasses(Victim);
1928    return;
1929  }
1930  assert(!ClassStack.empty() && "Missing top-level class?");
1931
1932  if (Victim->MethodDecls.empty() && Victim->MethodDefs.empty() &&
1933      Victim->NestedClasses.empty()) {
1934    // The victim is a nested class, but we will not need to perform
1935    // any processing after the definition of this class since it has
1936    // no members whose handling was delayed. Therefore, we can just
1937    // remove this nested class.
1938    delete Victim;
1939    return;
1940  }
1941
1942  // This nested class has some members that will need to be processed
1943  // after the top-level class is completely defined. Therefore, add
1944  // it to the list of nested classes within its parent.
1945  assert(getCurScope()->isClassScope() && "Nested class outside of class scope?");
1946  ClassStack.top()->NestedClasses.push_back(Victim);
1947  Victim->TemplateScope = getCurScope()->getParent()->isTemplateParamScope();
1948}
1949
1950/// ParseCXX0XAttributes - Parse a C++0x attribute-specifier. Currently only
1951/// parses standard attributes.
1952///
1953/// [C++0x] attribute-specifier:
1954///         '[' '[' attribute-list ']' ']'
1955///
1956/// [C++0x] attribute-list:
1957///         attribute[opt]
1958///         attribute-list ',' attribute[opt]
1959///
1960/// [C++0x] attribute:
1961///         attribute-token attribute-argument-clause[opt]
1962///
1963/// [C++0x] attribute-token:
1964///         identifier
1965///         attribute-scoped-token
1966///
1967/// [C++0x] attribute-scoped-token:
1968///         attribute-namespace '::' identifier
1969///
1970/// [C++0x] attribute-namespace:
1971///         identifier
1972///
1973/// [C++0x] attribute-argument-clause:
1974///         '(' balanced-token-seq ')'
1975///
1976/// [C++0x] balanced-token-seq:
1977///         balanced-token
1978///         balanced-token-seq balanced-token
1979///
1980/// [C++0x] balanced-token:
1981///         '(' balanced-token-seq ')'
1982///         '[' balanced-token-seq ']'
1983///         '{' balanced-token-seq '}'
1984///         any token but '(', ')', '[', ']', '{', or '}'
1985CXX0XAttributeList Parser::ParseCXX0XAttributes(SourceLocation *EndLoc) {
1986  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)
1987      && "Not a C++0x attribute list");
1988
1989  SourceLocation StartLoc = Tok.getLocation(), Loc;
1990  AttributeList *CurrAttr = 0;
1991
1992  ConsumeBracket();
1993  ConsumeBracket();
1994
1995  if (Tok.is(tok::comma)) {
1996    Diag(Tok.getLocation(), diag::err_expected_ident);
1997    ConsumeToken();
1998  }
1999
2000  while (Tok.is(tok::identifier) || Tok.is(tok::comma)) {
2001    // attribute not present
2002    if (Tok.is(tok::comma)) {
2003      ConsumeToken();
2004      continue;
2005    }
2006
2007    IdentifierInfo *ScopeName = 0, *AttrName = Tok.getIdentifierInfo();
2008    SourceLocation ScopeLoc, AttrLoc = ConsumeToken();
2009
2010    // scoped attribute
2011    if (Tok.is(tok::coloncolon)) {
2012      ConsumeToken();
2013
2014      if (!Tok.is(tok::identifier)) {
2015        Diag(Tok.getLocation(), diag::err_expected_ident);
2016        SkipUntil(tok::r_square, tok::comma, true, true);
2017        continue;
2018      }
2019
2020      ScopeName = AttrName;
2021      ScopeLoc = AttrLoc;
2022
2023      AttrName = Tok.getIdentifierInfo();
2024      AttrLoc = ConsumeToken();
2025    }
2026
2027    bool AttrParsed = false;
2028    // No scoped names are supported; ideally we could put all non-standard
2029    // attributes into namespaces.
2030    if (!ScopeName) {
2031      switch(AttributeList::getKind(AttrName))
2032      {
2033      // No arguments
2034      case AttributeList::AT_base_check:
2035      case AttributeList::AT_carries_dependency:
2036      case AttributeList::AT_final:
2037      case AttributeList::AT_hiding:
2038      case AttributeList::AT_noreturn:
2039      case AttributeList::AT_override: {
2040        if (Tok.is(tok::l_paren)) {
2041          Diag(Tok.getLocation(), diag::err_cxx0x_attribute_forbids_arguments)
2042            << AttrName->getName();
2043          break;
2044        }
2045
2046        CurrAttr = new AttributeList(AttrName, AttrLoc, 0, AttrLoc, 0,
2047                                     SourceLocation(), 0, 0, CurrAttr, false,
2048                                     true);
2049        AttrParsed = true;
2050        break;
2051      }
2052
2053      // One argument; must be a type-id or assignment-expression
2054      case AttributeList::AT_aligned: {
2055        if (Tok.isNot(tok::l_paren)) {
2056          Diag(Tok.getLocation(), diag::err_cxx0x_attribute_requires_arguments)
2057            << AttrName->getName();
2058          break;
2059        }
2060        SourceLocation ParamLoc = ConsumeParen();
2061
2062        ExprResult ArgExpr = ParseCXX0XAlignArgument(ParamLoc);
2063
2064        MatchRHSPunctuation(tok::r_paren, ParamLoc);
2065
2066        ExprVector ArgExprs(Actions);
2067        ArgExprs.push_back(ArgExpr.release());
2068        CurrAttr = new AttributeList(AttrName, AttrLoc, 0, AttrLoc,
2069                                     0, ParamLoc, ArgExprs.take(), 1, CurrAttr,
2070                                     false, true);
2071
2072        AttrParsed = true;
2073        break;
2074      }
2075
2076      // Silence warnings
2077      default: break;
2078      }
2079    }
2080
2081    // Skip the entire parameter clause, if any
2082    if (!AttrParsed && Tok.is(tok::l_paren)) {
2083      ConsumeParen();
2084      // SkipUntil maintains the balancedness of tokens.
2085      SkipUntil(tok::r_paren, false);
2086    }
2087  }
2088
2089  if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
2090    SkipUntil(tok::r_square, false);
2091  Loc = Tok.getLocation();
2092  if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
2093    SkipUntil(tok::r_square, false);
2094
2095  CXX0XAttributeList Attr (CurrAttr, SourceRange(StartLoc, Loc), true);
2096  return Attr;
2097}
2098
2099/// ParseCXX0XAlignArgument - Parse the argument to C++0x's [[align]]
2100/// attribute.
2101///
2102/// FIXME: Simply returns an alignof() expression if the argument is a
2103/// type. Ideally, the type should be propagated directly into Sema.
2104///
2105/// [C++0x] 'align' '(' type-id ')'
2106/// [C++0x] 'align' '(' assignment-expression ')'
2107ExprResult Parser::ParseCXX0XAlignArgument(SourceLocation Start) {
2108  if (isTypeIdInParens()) {
2109    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2110    SourceLocation TypeLoc = Tok.getLocation();
2111    ParsedType Ty = ParseTypeName().get();
2112    SourceRange TypeRange(Start, Tok.getLocation());
2113    return Actions.ActOnSizeOfAlignOfExpr(TypeLoc, false, true,
2114                                          Ty.getAsOpaquePtr(), TypeRange);
2115  } else
2116    return ParseConstantExpression();
2117}
2118