1//===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Provides the Expression parsing implementation.
12///
13/// Expressions in C99 basically consist of a bunch of binary operators with
14/// unary operators and other random stuff at the leaves.
15///
16/// In the C99 grammar, these unary operators bind tightest and are represented
17/// as the 'cast-expression' production.  Everything else is either a binary
18/// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
19/// handled by ParseCastExpression, the higher level pieces are handled by
20/// ParseBinaryExpression.
21///
22//===----------------------------------------------------------------------===//
23
24#include "clang/Parse/Parser.h"
25#include "RAIIObjectsForParser.h"
26#include "clang/AST/ASTContext.h"
27#include "clang/Basic/PrettyStackTrace.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Sema/Scope.h"
31#include "clang/Sema/TypoCorrection.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/SmallVector.h"
34using namespace clang;
35
36/// \brief Simple precedence-based parser for binary/ternary operators.
37///
38/// Note: we diverge from the C99 grammar when parsing the assignment-expression
39/// production.  C99 specifies that the LHS of an assignment operator should be
40/// parsed as a unary-expression, but consistency dictates that it be a
41/// conditional-expession.  In practice, the important thing here is that the
42/// LHS of an assignment has to be an l-value, which productions between
43/// unary-expression and conditional-expression don't produce.  Because we want
44/// consistency, we parse the LHS as a conditional-expression, then check for
45/// l-value-ness in semantic analysis stages.
46///
47/// \verbatim
48///       pm-expression: [C++ 5.5]
49///         cast-expression
50///         pm-expression '.*' cast-expression
51///         pm-expression '->*' cast-expression
52///
53///       multiplicative-expression: [C99 6.5.5]
54///     Note: in C++, apply pm-expression instead of cast-expression
55///         cast-expression
56///         multiplicative-expression '*' cast-expression
57///         multiplicative-expression '/' cast-expression
58///         multiplicative-expression '%' cast-expression
59///
60///       additive-expression: [C99 6.5.6]
61///         multiplicative-expression
62///         additive-expression '+' multiplicative-expression
63///         additive-expression '-' multiplicative-expression
64///
65///       shift-expression: [C99 6.5.7]
66///         additive-expression
67///         shift-expression '<<' additive-expression
68///         shift-expression '>>' additive-expression
69///
70///       relational-expression: [C99 6.5.8]
71///         shift-expression
72///         relational-expression '<' shift-expression
73///         relational-expression '>' shift-expression
74///         relational-expression '<=' shift-expression
75///         relational-expression '>=' shift-expression
76///
77///       equality-expression: [C99 6.5.9]
78///         relational-expression
79///         equality-expression '==' relational-expression
80///         equality-expression '!=' relational-expression
81///
82///       AND-expression: [C99 6.5.10]
83///         equality-expression
84///         AND-expression '&' equality-expression
85///
86///       exclusive-OR-expression: [C99 6.5.11]
87///         AND-expression
88///         exclusive-OR-expression '^' AND-expression
89///
90///       inclusive-OR-expression: [C99 6.5.12]
91///         exclusive-OR-expression
92///         inclusive-OR-expression '|' exclusive-OR-expression
93///
94///       logical-AND-expression: [C99 6.5.13]
95///         inclusive-OR-expression
96///         logical-AND-expression '&&' inclusive-OR-expression
97///
98///       logical-OR-expression: [C99 6.5.14]
99///         logical-AND-expression
100///         logical-OR-expression '||' logical-AND-expression
101///
102///       conditional-expression: [C99 6.5.15]
103///         logical-OR-expression
104///         logical-OR-expression '?' expression ':' conditional-expression
105/// [GNU]   logical-OR-expression '?' ':' conditional-expression
106/// [C++] the third operand is an assignment-expression
107///
108///       assignment-expression: [C99 6.5.16]
109///         conditional-expression
110///         unary-expression assignment-operator assignment-expression
111/// [C++]   throw-expression [C++ 15]
112///
113///       assignment-operator: one of
114///         = *= /= %= += -= <<= >>= &= ^= |=
115///
116///       expression: [C99 6.5.17]
117///         assignment-expression ...[opt]
118///         expression ',' assignment-expression ...[opt]
119/// \endverbatim
120ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
121  ExprResult LHS(ParseAssignmentExpression(isTypeCast));
122  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
123}
124
125/// This routine is called when the '@' is seen and consumed.
126/// Current token is an Identifier and is not a 'try'. This
127/// routine is necessary to disambiguate \@try-statement from,
128/// for example, \@encode-expression.
129///
130ExprResult
131Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
132  ExprResult LHS(ParseObjCAtExpression(AtLoc));
133  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
134}
135
136/// This routine is called when a leading '__extension__' is seen and
137/// consumed.  This is necessary because the token gets consumed in the
138/// process of disambiguating between an expression and a declaration.
139ExprResult
140Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
141  ExprResult LHS(true);
142  {
143    // Silence extension warnings in the sub-expression
144    ExtensionRAIIObject O(Diags);
145
146    LHS = ParseCastExpression(false);
147  }
148
149  if (!LHS.isInvalid())
150    LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
151                               LHS.get());
152
153  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
154}
155
156/// \brief Parse an expr that doesn't include (top-level) commas.
157ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
158  if (Tok.is(tok::code_completion)) {
159    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
160    cutOffParsing();
161    return ExprError();
162  }
163
164  if (Tok.is(tok::kw_throw))
165    return ParseThrowExpression();
166
167  ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
168                                       /*isAddressOfOperand=*/false,
169                                       isTypeCast);
170  return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
171}
172
173/// \brief Parse an assignment expression where part of an Objective-C message
174/// send has already been parsed.
175///
176/// In this case \p LBracLoc indicates the location of the '[' of the message
177/// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
178/// the receiver of the message.
179///
180/// Since this handles full assignment-expression's, it handles postfix
181/// expressions and other binary operators for these expressions as well.
182ExprResult
183Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
184                                                    SourceLocation SuperLoc,
185                                                    ParsedType ReceiverType,
186                                                    Expr *ReceiverExpr) {
187  ExprResult R
188    = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
189                                     ReceiverType, ReceiverExpr);
190  R = ParsePostfixExpressionSuffix(R);
191  return ParseRHSOfBinaryExpression(R, prec::Assignment);
192}
193
194
195ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
196  // C++03 [basic.def.odr]p2:
197  //   An expression is potentially evaluated unless it appears where an
198  //   integral constant expression is required (see 5.19) [...].
199  // C++98 and C++11 have no such rule, but this is only a defect in C++98.
200  EnterExpressionEvaluationContext Unevaluated(Actions,
201                                               Sema::ConstantEvaluated);
202
203  ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
204  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
205  return Actions.ActOnConstantExpression(Res);
206}
207
208bool Parser::isNotExpressionStart() {
209  tok::TokenKind K = Tok.getKind();
210  if (K == tok::l_brace || K == tok::r_brace  ||
211      K == tok::kw_for  || K == tok::kw_while ||
212      K == tok::kw_if   || K == tok::kw_else  ||
213      K == tok::kw_goto || K == tok::kw_try)
214    return true;
215  // If this is a decl-specifier, we can't be at the start of an expression.
216  return isKnownToBeDeclarationSpecifier();
217}
218
219/// \brief Parse a binary expression that starts with \p LHS and has a
220/// precedence of at least \p MinPrec.
221ExprResult
222Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
223  prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
224                                               GreaterThanIsOperator,
225                                               getLangOpts().CPlusPlus11);
226  SourceLocation ColonLoc;
227
228  while (1) {
229    // If this token has a lower precedence than we are allowed to parse (e.g.
230    // because we are called recursively, or because the token is not a binop),
231    // then we are done!
232    if (NextTokPrec < MinPrec)
233      return LHS;
234
235    // Consume the operator, saving the operator token for error reporting.
236    Token OpToken = Tok;
237    ConsumeToken();
238
239    // Bail out when encountering a comma followed by a token which can't
240    // possibly be the start of an expression. For instance:
241    //   int f() { return 1, }
242    // We can't do this before consuming the comma, because
243    // isNotExpressionStart() looks at the token stream.
244    if (OpToken.is(tok::comma) && isNotExpressionStart()) {
245      PP.EnterToken(Tok);
246      Tok = OpToken;
247      return LHS;
248    }
249
250    // Special case handling for the ternary operator.
251    ExprResult TernaryMiddle(true);
252    if (NextTokPrec == prec::Conditional) {
253      if (Tok.isNot(tok::colon)) {
254        // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
255        ColonProtectionRAIIObject X(*this);
256
257        // Handle this production specially:
258        //   logical-OR-expression '?' expression ':' conditional-expression
259        // In particular, the RHS of the '?' is 'expression', not
260        // 'logical-OR-expression' as we might expect.
261        TernaryMiddle = ParseExpression();
262        if (TernaryMiddle.isInvalid()) {
263          LHS = ExprError();
264          TernaryMiddle = nullptr;
265        }
266      } else {
267        // Special case handling of "X ? Y : Z" where Y is empty:
268        //   logical-OR-expression '?' ':' conditional-expression   [GNU]
269        TernaryMiddle = nullptr;
270        Diag(Tok, diag::ext_gnu_conditional_expr);
271      }
272
273      if (!TryConsumeToken(tok::colon, ColonLoc)) {
274        // Otherwise, we're missing a ':'.  Assume that this was a typo that
275        // the user forgot. If we're not in a macro expansion, we can suggest
276        // a fixit hint. If there were two spaces before the current token,
277        // suggest inserting the colon in between them, otherwise insert ": ".
278        SourceLocation FILoc = Tok.getLocation();
279        const char *FIText = ": ";
280        const SourceManager &SM = PP.getSourceManager();
281        if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
282          assert(FILoc.isFileID());
283          bool IsInvalid = false;
284          const char *SourcePtr =
285            SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
286          if (!IsInvalid && *SourcePtr == ' ') {
287            SourcePtr =
288              SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
289            if (!IsInvalid && *SourcePtr == ' ') {
290              FILoc = FILoc.getLocWithOffset(-1);
291              FIText = ":";
292            }
293          }
294        }
295
296        Diag(Tok, diag::err_expected)
297            << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
298        Diag(OpToken, diag::note_matching) << tok::question;
299        ColonLoc = Tok.getLocation();
300      }
301    }
302
303    // Code completion for the right-hand side of an assignment expression
304    // goes through a special hook that takes the left-hand side into account.
305    if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
306      Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
307      cutOffParsing();
308      return ExprError();
309    }
310
311    // Parse another leaf here for the RHS of the operator.
312    // ParseCastExpression works here because all RHS expressions in C have it
313    // as a prefix, at least. However, in C++, an assignment-expression could
314    // be a throw-expression, which is not a valid cast-expression.
315    // Therefore we need some special-casing here.
316    // Also note that the third operand of the conditional operator is
317    // an assignment-expression in C++, and in C++11, we can have a
318    // braced-init-list on the RHS of an assignment. For better diagnostics,
319    // parse as if we were allowed braced-init-lists everywhere, and check that
320    // they only appear on the RHS of assignments later.
321    ExprResult RHS;
322    bool RHSIsInitList = false;
323    if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
324      RHS = ParseBraceInitializer();
325      RHSIsInitList = true;
326    } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
327      RHS = ParseAssignmentExpression();
328    else
329      RHS = ParseCastExpression(false);
330
331    if (RHS.isInvalid())
332      LHS = ExprError();
333
334    // Remember the precedence of this operator and get the precedence of the
335    // operator immediately to the right of the RHS.
336    prec::Level ThisPrec = NextTokPrec;
337    NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
338                                     getLangOpts().CPlusPlus11);
339
340    // Assignment and conditional expressions are right-associative.
341    bool isRightAssoc = ThisPrec == prec::Conditional ||
342                        ThisPrec == prec::Assignment;
343
344    // Get the precedence of the operator to the right of the RHS.  If it binds
345    // more tightly with RHS than we do, evaluate it completely first.
346    if (ThisPrec < NextTokPrec ||
347        (ThisPrec == NextTokPrec && isRightAssoc)) {
348      if (!RHS.isInvalid() && RHSIsInitList) {
349        Diag(Tok, diag::err_init_list_bin_op)
350          << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
351        RHS = ExprError();
352      }
353      // If this is left-associative, only parse things on the RHS that bind
354      // more tightly than the current operator.  If it is left-associative, it
355      // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
356      // A=(B=(C=D)), where each paren is a level of recursion here.
357      // The function takes ownership of the RHS.
358      RHS = ParseRHSOfBinaryExpression(RHS,
359                            static_cast<prec::Level>(ThisPrec + !isRightAssoc));
360      RHSIsInitList = false;
361
362      if (RHS.isInvalid())
363        LHS = ExprError();
364
365      NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
366                                       getLangOpts().CPlusPlus11);
367    }
368    assert(NextTokPrec <= ThisPrec && "Recursion didn't work!");
369
370    if (!RHS.isInvalid() && RHSIsInitList) {
371      if (ThisPrec == prec::Assignment) {
372        Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
373          << Actions.getExprRange(RHS.get());
374      } else {
375        Diag(OpToken, diag::err_init_list_bin_op)
376          << /*RHS*/1 << PP.getSpelling(OpToken)
377          << Actions.getExprRange(RHS.get());
378        LHS = ExprError();
379      }
380    }
381
382    if (!LHS.isInvalid()) {
383      // Combine the LHS and RHS into the LHS (e.g. build AST).
384      if (TernaryMiddle.isInvalid()) {
385        // If we're using '>>' as an operator within a template
386        // argument list (in C++98), suggest the addition of
387        // parentheses so that the code remains well-formed in C++0x.
388        if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
389          SuggestParentheses(OpToken.getLocation(),
390                             diag::warn_cxx11_right_shift_in_template_arg,
391                         SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
392                                     Actions.getExprRange(RHS.get()).getEnd()));
393
394        LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
395                                 OpToken.getKind(), LHS.get(), RHS.get());
396      } else
397        LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
398                                         LHS.get(), TernaryMiddle.get(),
399                                         RHS.get());
400    }
401  }
402}
403
404/// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
405/// parse a unary-expression.
406///
407/// \p isAddressOfOperand exists because an id-expression that is the
408/// operand of address-of gets special treatment due to member pointers.
409///
410ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
411                                       bool isAddressOfOperand,
412                                       TypeCastState isTypeCast) {
413  bool NotCastExpr;
414  ExprResult Res = ParseCastExpression(isUnaryExpression,
415                                       isAddressOfOperand,
416                                       NotCastExpr,
417                                       isTypeCast);
418  if (NotCastExpr)
419    Diag(Tok, diag::err_expected_expression);
420  return Res;
421}
422
423namespace {
424class CastExpressionIdValidator : public CorrectionCandidateCallback {
425 public:
426  CastExpressionIdValidator(bool AllowTypes, bool AllowNonTypes)
427      : AllowNonTypes(AllowNonTypes) {
428    WantTypeSpecifiers = AllowTypes;
429  }
430
431  bool ValidateCandidate(const TypoCorrection &candidate) override {
432    NamedDecl *ND = candidate.getCorrectionDecl();
433    if (!ND)
434      return candidate.isKeyword();
435
436    if (isa<TypeDecl>(ND))
437      return WantTypeSpecifiers;
438    return AllowNonTypes &&
439           CorrectionCandidateCallback::ValidateCandidate(candidate);
440  }
441
442 private:
443  bool AllowNonTypes;
444};
445}
446
447/// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
448/// a unary-expression.
449///
450/// \p isAddressOfOperand exists because an id-expression that is the operand
451/// of address-of gets special treatment due to member pointers. NotCastExpr
452/// is set to true if the token is not the start of a cast-expression, and no
453/// diagnostic is emitted in this case.
454///
455/// \verbatim
456///       cast-expression: [C99 6.5.4]
457///         unary-expression
458///         '(' type-name ')' cast-expression
459///
460///       unary-expression:  [C99 6.5.3]
461///         postfix-expression
462///         '++' unary-expression
463///         '--' unary-expression
464///         unary-operator cast-expression
465///         'sizeof' unary-expression
466///         'sizeof' '(' type-name ')'
467/// [C++11] 'sizeof' '...' '(' identifier ')'
468/// [GNU]   '__alignof' unary-expression
469/// [GNU]   '__alignof' '(' type-name ')'
470/// [C11]   '_Alignof' '(' type-name ')'
471/// [C++11] 'alignof' '(' type-id ')'
472/// [GNU]   '&&' identifier
473/// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
474/// [C++]   new-expression
475/// [C++]   delete-expression
476///
477///       unary-operator: one of
478///         '&'  '*'  '+'  '-'  '~'  '!'
479/// [GNU]   '__extension__'  '__real'  '__imag'
480///
481///       primary-expression: [C99 6.5.1]
482/// [C99]   identifier
483/// [C++]   id-expression
484///         constant
485///         string-literal
486/// [C++]   boolean-literal  [C++ 2.13.5]
487/// [C++11] 'nullptr'        [C++11 2.14.7]
488/// [C++11] user-defined-literal
489///         '(' expression ')'
490/// [C11]   generic-selection
491///         '__func__'        [C99 6.4.2.2]
492/// [GNU]   '__FUNCTION__'
493/// [MS]    '__FUNCDNAME__'
494/// [MS]    'L__FUNCTION__'
495/// [GNU]   '__PRETTY_FUNCTION__'
496/// [GNU]   '(' compound-statement ')'
497/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
498/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
499/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
500///                                     assign-expr ')'
501/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
502/// [GNU]   '__null'
503/// [OBJC]  '[' objc-message-expr ']'
504/// [OBJC]  '\@selector' '(' objc-selector-arg ')'
505/// [OBJC]  '\@protocol' '(' identifier ')'
506/// [OBJC]  '\@encode' '(' type-name ')'
507/// [OBJC]  objc-string-literal
508/// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
509/// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
510/// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
511/// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
512/// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
513/// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
514/// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
515/// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
516/// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
517/// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
518/// [C++]   'this'          [C++ 9.3.2]
519/// [G++]   unary-type-trait '(' type-id ')'
520/// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
521/// [EMBT]  array-type-trait '(' type-id ',' integer ')'
522/// [clang] '^' block-literal
523///
524///       constant: [C99 6.4.4]
525///         integer-constant
526///         floating-constant
527///         enumeration-constant -> identifier
528///         character-constant
529///
530///       id-expression: [C++ 5.1]
531///                   unqualified-id
532///                   qualified-id
533///
534///       unqualified-id: [C++ 5.1]
535///                   identifier
536///                   operator-function-id
537///                   conversion-function-id
538///                   '~' class-name
539///                   template-id
540///
541///       new-expression: [C++ 5.3.4]
542///                   '::'[opt] 'new' new-placement[opt] new-type-id
543///                                     new-initializer[opt]
544///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
545///                                     new-initializer[opt]
546///
547///       delete-expression: [C++ 5.3.5]
548///                   '::'[opt] 'delete' cast-expression
549///                   '::'[opt] 'delete' '[' ']' cast-expression
550///
551/// [GNU/Embarcadero] unary-type-trait:
552///                   '__is_arithmetic'
553///                   '__is_floating_point'
554///                   '__is_integral'
555///                   '__is_lvalue_expr'
556///                   '__is_rvalue_expr'
557///                   '__is_complete_type'
558///                   '__is_void'
559///                   '__is_array'
560///                   '__is_function'
561///                   '__is_reference'
562///                   '__is_lvalue_reference'
563///                   '__is_rvalue_reference'
564///                   '__is_fundamental'
565///                   '__is_object'
566///                   '__is_scalar'
567///                   '__is_compound'
568///                   '__is_pointer'
569///                   '__is_member_object_pointer'
570///                   '__is_member_function_pointer'
571///                   '__is_member_pointer'
572///                   '__is_const'
573///                   '__is_volatile'
574///                   '__is_trivial'
575///                   '__is_standard_layout'
576///                   '__is_signed'
577///                   '__is_unsigned'
578///
579/// [GNU] unary-type-trait:
580///                   '__has_nothrow_assign'
581///                   '__has_nothrow_copy'
582///                   '__has_nothrow_constructor'
583///                   '__has_trivial_assign'                  [TODO]
584///                   '__has_trivial_copy'                    [TODO]
585///                   '__has_trivial_constructor'
586///                   '__has_trivial_destructor'
587///                   '__has_virtual_destructor'
588///                   '__is_abstract'                         [TODO]
589///                   '__is_class'
590///                   '__is_empty'                            [TODO]
591///                   '__is_enum'
592///                   '__is_final'
593///                   '__is_pod'
594///                   '__is_polymorphic'
595///                   '__is_sealed'                           [MS]
596///                   '__is_trivial'
597///                   '__is_union'
598///
599/// [Clang] unary-type-trait:
600///                   '__trivially_copyable'
601///
602///       binary-type-trait:
603/// [GNU]             '__is_base_of'
604/// [MS]              '__is_convertible_to'
605///                   '__is_convertible'
606///                   '__is_same'
607///
608/// [Embarcadero] array-type-trait:
609///                   '__array_rank'
610///                   '__array_extent'
611///
612/// [Embarcadero] expression-trait:
613///                   '__is_lvalue_expr'
614///                   '__is_rvalue_expr'
615/// \endverbatim
616///
617ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
618                                       bool isAddressOfOperand,
619                                       bool &NotCastExpr,
620                                       TypeCastState isTypeCast) {
621  ExprResult Res;
622  tok::TokenKind SavedKind = Tok.getKind();
623  NotCastExpr = false;
624
625  // This handles all of cast-expression, unary-expression, postfix-expression,
626  // and primary-expression.  We handle them together like this for efficiency
627  // and to simplify handling of an expression starting with a '(' token: which
628  // may be one of a parenthesized expression, cast-expression, compound literal
629  // expression, or statement expression.
630  //
631  // If the parsed tokens consist of a primary-expression, the cases below
632  // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
633  // to handle the postfix expression suffixes.  Cases that cannot be followed
634  // by postfix exprs should return without invoking
635  // ParsePostfixExpressionSuffix.
636  switch (SavedKind) {
637  case tok::l_paren: {
638    // If this expression is limited to being a unary-expression, the parent can
639    // not start a cast expression.
640    ParenParseOption ParenExprType =
641        (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
642                                                        : CastExpr;
643    ParsedType CastTy;
644    SourceLocation RParenLoc;
645    Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
646                               isTypeCast == IsTypeCast, CastTy, RParenLoc);
647
648    switch (ParenExprType) {
649    case SimpleExpr:   break;    // Nothing else to do.
650    case CompoundStmt: break;  // Nothing else to do.
651    case CompoundLiteral:
652      // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
653      // postfix-expression exist, parse them now.
654      break;
655    case CastExpr:
656      // We have parsed the cast-expression and no postfix-expr pieces are
657      // following.
658      return Res;
659    }
660
661    break;
662  }
663
664    // primary-expression
665  case tok::numeric_constant:
666    // constant: integer-constant
667    // constant: floating-constant
668
669    Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
670    ConsumeToken();
671    break;
672
673  case tok::kw_true:
674  case tok::kw_false:
675    return ParseCXXBoolLiteral();
676
677  case tok::kw___objc_yes:
678  case tok::kw___objc_no:
679      return ParseObjCBoolLiteral();
680
681  case tok::kw_nullptr:
682    Diag(Tok, diag::warn_cxx98_compat_nullptr);
683    return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
684
685  case tok::annot_primary_expr:
686    assert(Res.get() == nullptr && "Stray primary-expression annotation?");
687    Res = getExprAnnotation(Tok);
688    ConsumeToken();
689    break;
690
691  case tok::kw_decltype:
692    // Annotate the token and tail recurse.
693    if (TryAnnotateTypeOrScopeToken())
694      return ExprError();
695    assert(Tok.isNot(tok::kw_decltype));
696    return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
697
698  case tok::identifier: {      // primary-expression: identifier
699                               // unqualified-id: identifier
700                               // constant: enumeration-constant
701    // Turn a potentially qualified name into a annot_typename or
702    // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
703    if (getLangOpts().CPlusPlus) {
704      // Avoid the unnecessary parse-time lookup in the common case
705      // where the syntax forbids a type.
706      const Token &Next = NextToken();
707
708      // If this identifier was reverted from a token ID, and the next token
709      // is a parenthesis, this is likely to be a use of a type trait. Check
710      // those tokens.
711      if (Next.is(tok::l_paren) && Tok.is(tok::identifier) &&
712          Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier() &&
713          TryIdentKeywordUpgrade())
714        return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
715                                   NotCastExpr, isTypeCast);
716
717      if (Next.is(tok::coloncolon) ||
718          (!ColonIsSacred && Next.is(tok::colon)) ||
719          Next.is(tok::less) ||
720          Next.is(tok::l_paren) ||
721          Next.is(tok::l_brace)) {
722        // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
723        if (TryAnnotateTypeOrScopeToken())
724          return ExprError();
725        if (!Tok.is(tok::identifier))
726          return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
727      }
728    }
729
730    // Consume the identifier so that we can see if it is followed by a '(' or
731    // '.'.
732    IdentifierInfo &II = *Tok.getIdentifierInfo();
733    SourceLocation ILoc = ConsumeToken();
734
735    // Support 'Class.property' and 'super.property' notation.
736    if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
737        (Actions.getTypeName(II, ILoc, getCurScope()) ||
738         // Allow the base to be 'super' if in an objc-method.
739         (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
740      ConsumeToken();
741
742      // Allow either an identifier or the keyword 'class' (in C++).
743      if (Tok.isNot(tok::identifier) &&
744          !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
745        Diag(Tok, diag::err_expected_property_name);
746        return ExprError();
747      }
748      IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
749      SourceLocation PropertyLoc = ConsumeToken();
750
751      Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
752                                              ILoc, PropertyLoc);
753      break;
754    }
755
756    // In an Objective-C method, if we have "super" followed by an identifier,
757    // the token sequence is ill-formed. However, if there's a ':' or ']' after
758    // that identifier, this is probably a message send with a missing open
759    // bracket. Treat it as such.
760    if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
761        getCurScope()->isInObjcMethodScope() &&
762        ((Tok.is(tok::identifier) &&
763         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
764         Tok.is(tok::code_completion))) {
765      Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
766                                           nullptr);
767      break;
768    }
769
770    // If we have an Objective-C class name followed by an identifier
771    // and either ':' or ']', this is an Objective-C class message
772    // send that's missing the opening '['. Recovery
773    // appropriately. Also take this path if we're performing code
774    // completion after an Objective-C class name.
775    if (getLangOpts().ObjC1 &&
776        ((Tok.is(tok::identifier) && !InMessageExpression) ||
777         Tok.is(tok::code_completion))) {
778      const Token& Next = NextToken();
779      if (Tok.is(tok::code_completion) ||
780          Next.is(tok::colon) || Next.is(tok::r_square))
781        if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
782          if (Typ.get()->isObjCObjectOrInterfaceType()) {
783            // Fake up a Declarator to use with ActOnTypeName.
784            DeclSpec DS(AttrFactory);
785            DS.SetRangeStart(ILoc);
786            DS.SetRangeEnd(ILoc);
787            const char *PrevSpec = nullptr;
788            unsigned DiagID;
789            DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
790                               Actions.getASTContext().getPrintingPolicy());
791
792            Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
793            TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
794                                                  DeclaratorInfo);
795            if (Ty.isInvalid())
796              break;
797
798            Res = ParseObjCMessageExpressionBody(SourceLocation(),
799                                                 SourceLocation(),
800                                                 Ty.get(), nullptr);
801            break;
802          }
803    }
804
805    // Make sure to pass down the right value for isAddressOfOperand.
806    if (isAddressOfOperand && isPostfixExpressionSuffixStart())
807      isAddressOfOperand = false;
808
809    // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
810    // need to know whether or not this identifier is a function designator or
811    // not.
812    UnqualifiedId Name;
813    CXXScopeSpec ScopeSpec;
814    SourceLocation TemplateKWLoc;
815    CastExpressionIdValidator Validator(isTypeCast != NotTypeCast,
816                                        isTypeCast != IsTypeCast);
817    Validator.IsAddressOfOperand = isAddressOfOperand;
818    Name.setIdentifier(&II, ILoc);
819    Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
820                                    Name, Tok.is(tok::l_paren),
821                                    isAddressOfOperand, &Validator);
822    break;
823  }
824  case tok::char_constant:     // constant: character-constant
825  case tok::wide_char_constant:
826  case tok::utf16_char_constant:
827  case tok::utf32_char_constant:
828    Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
829    ConsumeToken();
830    break;
831  case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
832  case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
833  case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
834  case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
835  case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
836  case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
837    Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
838    ConsumeToken();
839    break;
840  case tok::string_literal:    // primary-expression: string-literal
841  case tok::wide_string_literal:
842  case tok::utf8_string_literal:
843  case tok::utf16_string_literal:
844  case tok::utf32_string_literal:
845    Res = ParseStringLiteralExpression(true);
846    break;
847  case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
848    Res = ParseGenericSelectionExpression();
849    break;
850  case tok::kw___builtin_va_arg:
851  case tok::kw___builtin_offsetof:
852  case tok::kw___builtin_choose_expr:
853  case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
854  case tok::kw___builtin_convertvector:
855    return ParseBuiltinPrimaryExpression();
856  case tok::kw___null:
857    return Actions.ActOnGNUNullExpr(ConsumeToken());
858
859  case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
860  case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
861    // C++ [expr.unary] has:
862    //   unary-expression:
863    //     ++ cast-expression
864    //     -- cast-expression
865    SourceLocation SavedLoc = ConsumeToken();
866    Res = ParseCastExpression(!getLangOpts().CPlusPlus);
867    if (!Res.isInvalid())
868      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
869    return Res;
870  }
871  case tok::amp: {         // unary-expression: '&' cast-expression
872    // Special treatment because of member pointers
873    SourceLocation SavedLoc = ConsumeToken();
874    Res = ParseCastExpression(false, true);
875    if (!Res.isInvalid())
876      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
877    return Res;
878  }
879
880  case tok::star:          // unary-expression: '*' cast-expression
881  case tok::plus:          // unary-expression: '+' cast-expression
882  case tok::minus:         // unary-expression: '-' cast-expression
883  case tok::tilde:         // unary-expression: '~' cast-expression
884  case tok::exclaim:       // unary-expression: '!' cast-expression
885  case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
886  case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
887    SourceLocation SavedLoc = ConsumeToken();
888    Res = ParseCastExpression(false);
889    if (!Res.isInvalid())
890      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
891    return Res;
892  }
893
894  case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
895    // __extension__ silences extension warnings in the subexpression.
896    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
897    SourceLocation SavedLoc = ConsumeToken();
898    Res = ParseCastExpression(false);
899    if (!Res.isInvalid())
900      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
901    return Res;
902  }
903  case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
904    if (!getLangOpts().C11)
905      Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
906    // fallthrough
907  case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
908  case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
909                           // unary-expression: '__alignof' '(' type-name ')'
910  case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
911                           // unary-expression: 'sizeof' '(' type-name ')'
912  case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
913    return ParseUnaryExprOrTypeTraitExpression();
914  case tok::ampamp: {      // unary-expression: '&&' identifier
915    SourceLocation AmpAmpLoc = ConsumeToken();
916    if (Tok.isNot(tok::identifier))
917      return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
918
919    if (getCurScope()->getFnParent() == nullptr)
920      return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
921
922    Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
923    LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
924                                                Tok.getLocation());
925    Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
926    ConsumeToken();
927    return Res;
928  }
929  case tok::kw_const_cast:
930  case tok::kw_dynamic_cast:
931  case tok::kw_reinterpret_cast:
932  case tok::kw_static_cast:
933    Res = ParseCXXCasts();
934    break;
935  case tok::kw_typeid:
936    Res = ParseCXXTypeid();
937    break;
938  case tok::kw___uuidof:
939    Res = ParseCXXUuidof();
940    break;
941  case tok::kw_this:
942    Res = ParseCXXThis();
943    break;
944
945  case tok::annot_typename:
946    if (isStartOfObjCClassMessageMissingOpenBracket()) {
947      ParsedType Type = getTypeAnnotation(Tok);
948
949      // Fake up a Declarator to use with ActOnTypeName.
950      DeclSpec DS(AttrFactory);
951      DS.SetRangeStart(Tok.getLocation());
952      DS.SetRangeEnd(Tok.getLastLoc());
953
954      const char *PrevSpec = nullptr;
955      unsigned DiagID;
956      DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
957                         PrevSpec, DiagID, Type,
958                         Actions.getASTContext().getPrintingPolicy());
959
960      Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
961      TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
962      if (Ty.isInvalid())
963        break;
964
965      ConsumeToken();
966      Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
967                                           Ty.get(), nullptr);
968      break;
969    }
970    // Fall through
971
972  case tok::annot_decltype:
973  case tok::kw_char:
974  case tok::kw_wchar_t:
975  case tok::kw_char16_t:
976  case tok::kw_char32_t:
977  case tok::kw_bool:
978  case tok::kw_short:
979  case tok::kw_int:
980  case tok::kw_long:
981  case tok::kw___int64:
982  case tok::kw___int128:
983  case tok::kw_signed:
984  case tok::kw_unsigned:
985  case tok::kw_half:
986  case tok::kw_float:
987  case tok::kw_double:
988  case tok::kw_void:
989  case tok::kw_typename:
990  case tok::kw_typeof:
991  case tok::kw___vector: {
992    if (!getLangOpts().CPlusPlus) {
993      Diag(Tok, diag::err_expected_expression);
994      return ExprError();
995    }
996
997    if (SavedKind == tok::kw_typename) {
998      // postfix-expression: typename-specifier '(' expression-list[opt] ')'
999      //                     typename-specifier braced-init-list
1000      if (TryAnnotateTypeOrScopeToken())
1001        return ExprError();
1002
1003      if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1004        // We are trying to parse a simple-type-specifier but might not get such
1005        // a token after error recovery.
1006        return ExprError();
1007    }
1008
1009    // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1010    //                     simple-type-specifier braced-init-list
1011    //
1012    DeclSpec DS(AttrFactory);
1013
1014    ParseCXXSimpleTypeSpecifier(DS);
1015    if (Tok.isNot(tok::l_paren) &&
1016        (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1017      return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1018                         << DS.getSourceRange());
1019
1020    if (Tok.is(tok::l_brace))
1021      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1022
1023    Res = ParseCXXTypeConstructExpression(DS);
1024    break;
1025  }
1026
1027  case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1028    // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1029    // (We can end up in this situation after tentative parsing.)
1030    if (TryAnnotateTypeOrScopeToken())
1031      return ExprError();
1032    if (!Tok.is(tok::annot_cxxscope))
1033      return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1034                                 NotCastExpr, isTypeCast);
1035
1036    Token Next = NextToken();
1037    if (Next.is(tok::annot_template_id)) {
1038      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1039      if (TemplateId->Kind == TNK_Type_template) {
1040        // We have a qualified template-id that we know refers to a
1041        // type, translate it into a type and continue parsing as a
1042        // cast expression.
1043        CXXScopeSpec SS;
1044        ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1045                                       /*EnteringContext=*/false);
1046        AnnotateTemplateIdTokenAsType();
1047        return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1048                                   NotCastExpr, isTypeCast);
1049      }
1050    }
1051
1052    // Parse as an id-expression.
1053    Res = ParseCXXIdExpression(isAddressOfOperand);
1054    break;
1055  }
1056
1057  case tok::annot_template_id: { // [C++]          template-id
1058    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1059    if (TemplateId->Kind == TNK_Type_template) {
1060      // We have a template-id that we know refers to a type,
1061      // translate it into a type and continue parsing as a cast
1062      // expression.
1063      AnnotateTemplateIdTokenAsType();
1064      return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1065                                 NotCastExpr, isTypeCast);
1066    }
1067
1068    // Fall through to treat the template-id as an id-expression.
1069  }
1070
1071  case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1072    Res = ParseCXXIdExpression(isAddressOfOperand);
1073    break;
1074
1075  case tok::coloncolon: {
1076    // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1077    // annotates the token, tail recurse.
1078    if (TryAnnotateTypeOrScopeToken())
1079      return ExprError();
1080    if (!Tok.is(tok::coloncolon))
1081      return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1082
1083    // ::new -> [C++] new-expression
1084    // ::delete -> [C++] delete-expression
1085    SourceLocation CCLoc = ConsumeToken();
1086    if (Tok.is(tok::kw_new))
1087      return ParseCXXNewExpression(true, CCLoc);
1088    if (Tok.is(tok::kw_delete))
1089      return ParseCXXDeleteExpression(true, CCLoc);
1090
1091    // This is not a type name or scope specifier, it is an invalid expression.
1092    Diag(CCLoc, diag::err_expected_expression);
1093    return ExprError();
1094  }
1095
1096  case tok::kw_new: // [C++] new-expression
1097    return ParseCXXNewExpression(false, Tok.getLocation());
1098
1099  case tok::kw_delete: // [C++] delete-expression
1100    return ParseCXXDeleteExpression(false, Tok.getLocation());
1101
1102  case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1103    Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1104    SourceLocation KeyLoc = ConsumeToken();
1105    BalancedDelimiterTracker T(*this, tok::l_paren);
1106
1107    if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1108      return ExprError();
1109    // C++11 [expr.unary.noexcept]p1:
1110    //   The noexcept operator determines whether the evaluation of its operand,
1111    //   which is an unevaluated operand, can throw an exception.
1112    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1113    ExprResult Result = ParseExpression();
1114
1115    T.consumeClose();
1116
1117    if (!Result.isInvalid())
1118      Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1119                                         Result.get(), T.getCloseLocation());
1120    return Result;
1121  }
1122
1123#define TYPE_TRAIT(N,Spelling,K) \
1124  case tok::kw_##Spelling:
1125#include "clang/Basic/TokenKinds.def"
1126    return ParseTypeTrait();
1127
1128  case tok::kw___array_rank:
1129  case tok::kw___array_extent:
1130    return ParseArrayTypeTrait();
1131
1132  case tok::kw___is_lvalue_expr:
1133  case tok::kw___is_rvalue_expr:
1134    return ParseExpressionTrait();
1135
1136  case tok::at: {
1137    SourceLocation AtLoc = ConsumeToken();
1138    return ParseObjCAtExpression(AtLoc);
1139  }
1140  case tok::caret:
1141    Res = ParseBlockLiteralExpression();
1142    break;
1143  case tok::code_completion: {
1144    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1145    cutOffParsing();
1146    return ExprError();
1147  }
1148  case tok::l_square:
1149    if (getLangOpts().CPlusPlus11) {
1150      if (getLangOpts().ObjC1) {
1151        // C++11 lambda expressions and Objective-C message sends both start with a
1152        // square bracket.  There are three possibilities here:
1153        // we have a valid lambda expression, we have an invalid lambda
1154        // expression, or we have something that doesn't appear to be a lambda.
1155        // If we're in the last case, we fall back to ParseObjCMessageExpression.
1156        Res = TryParseLambdaExpression();
1157        if (!Res.isInvalid() && !Res.get())
1158          Res = ParseObjCMessageExpression();
1159        break;
1160      }
1161      Res = ParseLambdaExpression();
1162      break;
1163    }
1164    if (getLangOpts().ObjC1) {
1165      Res = ParseObjCMessageExpression();
1166      break;
1167    }
1168    // FALL THROUGH.
1169  default:
1170    NotCastExpr = true;
1171    return ExprError();
1172  }
1173
1174  // These can be followed by postfix-expr pieces.
1175  return ParsePostfixExpressionSuffix(Res);
1176}
1177
1178/// \brief Once the leading part of a postfix-expression is parsed, this
1179/// method parses any suffixes that apply.
1180///
1181/// \verbatim
1182///       postfix-expression: [C99 6.5.2]
1183///         primary-expression
1184///         postfix-expression '[' expression ']'
1185///         postfix-expression '[' braced-init-list ']'
1186///         postfix-expression '(' argument-expression-list[opt] ')'
1187///         postfix-expression '.' identifier
1188///         postfix-expression '->' identifier
1189///         postfix-expression '++'
1190///         postfix-expression '--'
1191///         '(' type-name ')' '{' initializer-list '}'
1192///         '(' type-name ')' '{' initializer-list ',' '}'
1193///
1194///       argument-expression-list: [C99 6.5.2]
1195///         argument-expression ...[opt]
1196///         argument-expression-list ',' assignment-expression ...[opt]
1197/// \endverbatim
1198ExprResult
1199Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1200  // Now that the primary-expression piece of the postfix-expression has been
1201  // parsed, see if there are any postfix-expression pieces here.
1202  SourceLocation Loc;
1203  while (1) {
1204    switch (Tok.getKind()) {
1205    case tok::code_completion:
1206      if (InMessageExpression)
1207        return LHS;
1208
1209      Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1210      cutOffParsing();
1211      return ExprError();
1212
1213    case tok::identifier:
1214      // If we see identifier: after an expression, and we're not already in a
1215      // message send, then this is probably a message send with a missing
1216      // opening bracket '['.
1217      if (getLangOpts().ObjC1 && !InMessageExpression &&
1218          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1219        LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1220                                             ParsedType(), LHS.get());
1221        break;
1222      }
1223
1224      // Fall through; this isn't a message send.
1225
1226    default:  // Not a postfix-expression suffix.
1227      return LHS;
1228    case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1229      // If we have a array postfix expression that starts on a new line and
1230      // Objective-C is enabled, it is highly likely that the user forgot a
1231      // semicolon after the base expression and that the array postfix-expr is
1232      // actually another message send.  In this case, do some look-ahead to see
1233      // if the contents of the square brackets are obviously not a valid
1234      // expression and recover by pretending there is no suffix.
1235      if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1236          isSimpleObjCMessageExpression())
1237        return LHS;
1238
1239      // Reject array indices starting with a lambda-expression. '[[' is
1240      // reserved for attributes.
1241      if (CheckProhibitedCXX11Attribute())
1242        return ExprError();
1243
1244      BalancedDelimiterTracker T(*this, tok::l_square);
1245      T.consumeOpen();
1246      Loc = T.getOpenLocation();
1247      ExprResult Idx;
1248      if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1249        Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1250        Idx = ParseBraceInitializer();
1251      } else
1252        Idx = ParseExpression();
1253
1254      SourceLocation RLoc = Tok.getLocation();
1255
1256      if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
1257        LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1258                                              Idx.get(), RLoc);
1259      } else
1260        LHS = ExprError();
1261
1262      // Match the ']'.
1263      T.consumeClose();
1264      break;
1265    }
1266
1267    case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1268    case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1269                               //   '(' argument-expression-list[opt] ')'
1270      tok::TokenKind OpKind = Tok.getKind();
1271      InMessageExpressionRAIIObject InMessage(*this, false);
1272
1273      Expr *ExecConfig = nullptr;
1274
1275      BalancedDelimiterTracker PT(*this, tok::l_paren);
1276
1277      if (OpKind == tok::lesslessless) {
1278        ExprVector ExecConfigExprs;
1279        CommaLocsTy ExecConfigCommaLocs;
1280        SourceLocation OpenLoc = ConsumeToken();
1281
1282        if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1283          LHS = ExprError();
1284        }
1285
1286        SourceLocation CloseLoc;
1287        if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1288        } else if (LHS.isInvalid()) {
1289          SkipUntil(tok::greatergreatergreater, StopAtSemi);
1290        } else {
1291          // There was an error closing the brackets
1292          Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1293          Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1294          SkipUntil(tok::greatergreatergreater, StopAtSemi);
1295          LHS = ExprError();
1296        }
1297
1298        if (!LHS.isInvalid()) {
1299          if (ExpectAndConsume(tok::l_paren))
1300            LHS = ExprError();
1301          else
1302            Loc = PrevTokLocation;
1303        }
1304
1305        if (!LHS.isInvalid()) {
1306          ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1307                                    OpenLoc,
1308                                    ExecConfigExprs,
1309                                    CloseLoc);
1310          if (ECResult.isInvalid())
1311            LHS = ExprError();
1312          else
1313            ExecConfig = ECResult.get();
1314        }
1315      } else {
1316        PT.consumeOpen();
1317        Loc = PT.getOpenLocation();
1318      }
1319
1320      ExprVector ArgExprs;
1321      CommaLocsTy CommaLocs;
1322
1323      if (Tok.is(tok::code_completion)) {
1324        Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
1325        cutOffParsing();
1326        return ExprError();
1327      }
1328
1329      if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1330        if (Tok.isNot(tok::r_paren)) {
1331          if (ParseExpressionList(ArgExprs, CommaLocs, &Sema::CodeCompleteCall,
1332                                  LHS.get())) {
1333            LHS = ExprError();
1334          }
1335        }
1336      }
1337
1338      // Match the ')'.
1339      if (LHS.isInvalid()) {
1340        SkipUntil(tok::r_paren, StopAtSemi);
1341      } else if (Tok.isNot(tok::r_paren)) {
1342        PT.consumeClose();
1343        LHS = ExprError();
1344      } else {
1345        assert((ArgExprs.size() == 0 ||
1346                ArgExprs.size()-1 == CommaLocs.size())&&
1347               "Unexpected number of commas!");
1348        LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1349                                    ArgExprs, Tok.getLocation(),
1350                                    ExecConfig);
1351        PT.consumeClose();
1352      }
1353
1354      break;
1355    }
1356    case tok::arrow:
1357    case tok::period: {
1358      // postfix-expression: p-e '->' template[opt] id-expression
1359      // postfix-expression: p-e '.' template[opt] id-expression
1360      tok::TokenKind OpKind = Tok.getKind();
1361      SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
1362
1363      CXXScopeSpec SS;
1364      ParsedType ObjectType;
1365      bool MayBePseudoDestructor = false;
1366      if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1367        Expr *Base = LHS.get();
1368        const Type* BaseType = Base->getType().getTypePtrOrNull();
1369        if (BaseType && Tok.is(tok::l_paren) &&
1370            (BaseType->isFunctionType() ||
1371             BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1372          Diag(OpLoc, diag::err_function_is_not_record)
1373              << OpKind << Base->getSourceRange()
1374              << FixItHint::CreateRemoval(OpLoc);
1375          return ParsePostfixExpressionSuffix(Base);
1376        }
1377
1378        LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1379                                                   OpLoc, OpKind, ObjectType,
1380                                                   MayBePseudoDestructor);
1381        if (LHS.isInvalid())
1382          break;
1383
1384        ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1385                                       /*EnteringContext=*/false,
1386                                       &MayBePseudoDestructor);
1387        if (SS.isNotEmpty())
1388          ObjectType = ParsedType();
1389      }
1390
1391      if (Tok.is(tok::code_completion)) {
1392        // Code completion for a member access expression.
1393        Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1394                                                OpLoc, OpKind == tok::arrow);
1395
1396        cutOffParsing();
1397        return ExprError();
1398      }
1399
1400      if (MayBePseudoDestructor && !LHS.isInvalid()) {
1401        LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
1402                                       ObjectType);
1403        break;
1404      }
1405
1406      // Either the action has told is that this cannot be a
1407      // pseudo-destructor expression (based on the type of base
1408      // expression), or we didn't see a '~' in the right place. We
1409      // can still parse a destructor name here, but in that case it
1410      // names a real destructor.
1411      // Allow explicit constructor calls in Microsoft mode.
1412      // FIXME: Add support for explicit call of template constructor.
1413      SourceLocation TemplateKWLoc;
1414      UnqualifiedId Name;
1415      if (getLangOpts().ObjC2 && OpKind == tok::period && Tok.is(tok::kw_class)) {
1416        // Objective-C++:
1417        //   After a '.' in a member access expression, treat the keyword
1418        //   'class' as if it were an identifier.
1419        //
1420        // This hack allows property access to the 'class' method because it is
1421        // such a common method name. For other C++ keywords that are
1422        // Objective-C method names, one must use the message send syntax.
1423        IdentifierInfo *Id = Tok.getIdentifierInfo();
1424        SourceLocation Loc = ConsumeToken();
1425        Name.setIdentifier(Id, Loc);
1426      } else if (ParseUnqualifiedId(SS,
1427                                    /*EnteringContext=*/false,
1428                                    /*AllowDestructorName=*/true,
1429                                    /*AllowConstructorName=*/
1430                                      getLangOpts().MicrosoftExt,
1431                                    ObjectType, TemplateKWLoc, Name))
1432        LHS = ExprError();
1433
1434      if (!LHS.isInvalid())
1435        LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
1436                                            OpKind, SS, TemplateKWLoc, Name,
1437                                 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
1438                                                   : nullptr,
1439                                            Tok.is(tok::l_paren));
1440      break;
1441    }
1442    case tok::plusplus:    // postfix-expression: postfix-expression '++'
1443    case tok::minusminus:  // postfix-expression: postfix-expression '--'
1444      if (!LHS.isInvalid()) {
1445        LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1446                                          Tok.getKind(), LHS.get());
1447      }
1448      ConsumeToken();
1449      break;
1450    }
1451  }
1452}
1453
1454/// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1455/// vec_step and we are at the start of an expression or a parenthesized
1456/// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1457/// expression (isCastExpr == false) or the type (isCastExpr == true).
1458///
1459/// \verbatim
1460///       unary-expression:  [C99 6.5.3]
1461///         'sizeof' unary-expression
1462///         'sizeof' '(' type-name ')'
1463/// [GNU]   '__alignof' unary-expression
1464/// [GNU]   '__alignof' '(' type-name ')'
1465/// [C11]   '_Alignof' '(' type-name ')'
1466/// [C++0x] 'alignof' '(' type-id ')'
1467///
1468/// [GNU]   typeof-specifier:
1469///           typeof ( expressions )
1470///           typeof ( type-name )
1471/// [GNU/C++] typeof unary-expression
1472///
1473/// [OpenCL 1.1 6.11.12] vec_step built-in function:
1474///           vec_step ( expressions )
1475///           vec_step ( type-name )
1476/// \endverbatim
1477ExprResult
1478Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1479                                           bool &isCastExpr,
1480                                           ParsedType &CastTy,
1481                                           SourceRange &CastRange) {
1482
1483  assert((OpTok.is(tok::kw_typeof)    || OpTok.is(tok::kw_sizeof) ||
1484          OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
1485          OpTok.is(tok::kw__Alignof)  || OpTok.is(tok::kw_vec_step)) &&
1486          "Not a typeof/sizeof/alignof/vec_step expression!");
1487
1488  ExprResult Operand;
1489
1490  // If the operand doesn't start with an '(', it must be an expression.
1491  if (Tok.isNot(tok::l_paren)) {
1492    // If construct allows a form without parenthesis, user may forget to put
1493    // pathenthesis around type name.
1494    if (OpTok.is(tok::kw_sizeof)  || OpTok.is(tok::kw___alignof) ||
1495        OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) {
1496      if (isTypeIdUnambiguously()) {
1497        DeclSpec DS(AttrFactory);
1498        ParseSpecifierQualifierList(DS);
1499        Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1500        ParseDeclarator(DeclaratorInfo);
1501
1502        SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1503        SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1504        Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1505          << OpTok.getName()
1506          << FixItHint::CreateInsertion(LParenLoc, "(")
1507          << FixItHint::CreateInsertion(RParenLoc, ")");
1508        isCastExpr = true;
1509        return ExprEmpty();
1510      }
1511    }
1512
1513    isCastExpr = false;
1514    if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1515      Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
1516                                          << tok::l_paren;
1517      return ExprError();
1518    }
1519
1520    Operand = ParseCastExpression(true/*isUnaryExpression*/);
1521  } else {
1522    // If it starts with a '(', we know that it is either a parenthesized
1523    // type-name, or it is a unary-expression that starts with a compound
1524    // literal, or starts with a primary-expression that is a parenthesized
1525    // expression.
1526    ParenParseOption ExprType = CastExpr;
1527    SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1528
1529    Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1530                                   false, CastTy, RParenLoc);
1531    CastRange = SourceRange(LParenLoc, RParenLoc);
1532
1533    // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1534    // a type.
1535    if (ExprType == CastExpr) {
1536      isCastExpr = true;
1537      return ExprEmpty();
1538    }
1539
1540    if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1541      // GNU typeof in C requires the expression to be parenthesized. Not so for
1542      // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1543      // the start of a unary-expression, but doesn't include any postfix
1544      // pieces. Parse these now if present.
1545      if (!Operand.isInvalid())
1546        Operand = ParsePostfixExpressionSuffix(Operand.get());
1547    }
1548  }
1549
1550  // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1551  isCastExpr = false;
1552  return Operand;
1553}
1554
1555
1556/// \brief Parse a sizeof or alignof expression.
1557///
1558/// \verbatim
1559///       unary-expression:  [C99 6.5.3]
1560///         'sizeof' unary-expression
1561///         'sizeof' '(' type-name ')'
1562/// [C++11] 'sizeof' '...' '(' identifier ')'
1563/// [GNU]   '__alignof' unary-expression
1564/// [GNU]   '__alignof' '(' type-name ')'
1565/// [C11]   '_Alignof' '(' type-name ')'
1566/// [C++11] 'alignof' '(' type-id ')'
1567/// \endverbatim
1568ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1569  assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
1570          Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
1571          Tok.is(tok::kw_vec_step)) &&
1572         "Not a sizeof/alignof/vec_step expression!");
1573  Token OpTok = Tok;
1574  ConsumeToken();
1575
1576  // [C++11] 'sizeof' '...' '(' identifier ')'
1577  if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1578    SourceLocation EllipsisLoc = ConsumeToken();
1579    SourceLocation LParenLoc, RParenLoc;
1580    IdentifierInfo *Name = nullptr;
1581    SourceLocation NameLoc;
1582    if (Tok.is(tok::l_paren)) {
1583      BalancedDelimiterTracker T(*this, tok::l_paren);
1584      T.consumeOpen();
1585      LParenLoc = T.getOpenLocation();
1586      if (Tok.is(tok::identifier)) {
1587        Name = Tok.getIdentifierInfo();
1588        NameLoc = ConsumeToken();
1589        T.consumeClose();
1590        RParenLoc = T.getCloseLocation();
1591        if (RParenLoc.isInvalid())
1592          RParenLoc = PP.getLocForEndOfToken(NameLoc);
1593      } else {
1594        Diag(Tok, diag::err_expected_parameter_pack);
1595        SkipUntil(tok::r_paren, StopAtSemi);
1596      }
1597    } else if (Tok.is(tok::identifier)) {
1598      Name = Tok.getIdentifierInfo();
1599      NameLoc = ConsumeToken();
1600      LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1601      RParenLoc = PP.getLocForEndOfToken(NameLoc);
1602      Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1603        << Name
1604        << FixItHint::CreateInsertion(LParenLoc, "(")
1605        << FixItHint::CreateInsertion(RParenLoc, ")");
1606    } else {
1607      Diag(Tok, diag::err_sizeof_parameter_pack);
1608    }
1609
1610    if (!Name)
1611      return ExprError();
1612
1613    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1614                                                 Sema::ReuseLambdaContextDecl);
1615
1616    return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1617                                                OpTok.getLocation(),
1618                                                *Name, NameLoc,
1619                                                RParenLoc);
1620  }
1621
1622  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1623    Diag(OpTok, diag::warn_cxx98_compat_alignof);
1624
1625  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1626                                               Sema::ReuseLambdaContextDecl);
1627
1628  bool isCastExpr;
1629  ParsedType CastTy;
1630  SourceRange CastRange;
1631  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1632                                                          isCastExpr,
1633                                                          CastTy,
1634                                                          CastRange);
1635
1636  UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1637  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
1638      OpTok.is(tok::kw__Alignof))
1639    ExprKind = UETT_AlignOf;
1640  else if (OpTok.is(tok::kw_vec_step))
1641    ExprKind = UETT_VecStep;
1642
1643  if (isCastExpr)
1644    return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1645                                                 ExprKind,
1646                                                 /*isType=*/true,
1647                                                 CastTy.getAsOpaquePtr(),
1648                                                 CastRange);
1649
1650  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1651    Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1652
1653  // If we get here, the operand to the sizeof/alignof was an expresion.
1654  if (!Operand.isInvalid())
1655    Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1656                                                    ExprKind,
1657                                                    /*isType=*/false,
1658                                                    Operand.get(),
1659                                                    CastRange);
1660  return Operand;
1661}
1662
1663/// ParseBuiltinPrimaryExpression
1664///
1665/// \verbatim
1666///       primary-expression: [C99 6.5.1]
1667/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1668/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1669/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1670///                                     assign-expr ')'
1671/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1672/// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
1673///
1674/// [GNU] offsetof-member-designator:
1675/// [GNU]   identifier
1676/// [GNU]   offsetof-member-designator '.' identifier
1677/// [GNU]   offsetof-member-designator '[' expression ']'
1678/// \endverbatim
1679ExprResult Parser::ParseBuiltinPrimaryExpression() {
1680  ExprResult Res;
1681  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1682
1683  tok::TokenKind T = Tok.getKind();
1684  SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
1685
1686  // All of these start with an open paren.
1687  if (Tok.isNot(tok::l_paren))
1688    return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
1689                                                         << tok::l_paren);
1690
1691  BalancedDelimiterTracker PT(*this, tok::l_paren);
1692  PT.consumeOpen();
1693
1694  // TODO: Build AST.
1695
1696  switch (T) {
1697  default: llvm_unreachable("Not a builtin primary expression!");
1698  case tok::kw___builtin_va_arg: {
1699    ExprResult Expr(ParseAssignmentExpression());
1700
1701    if (ExpectAndConsume(tok::comma)) {
1702      SkipUntil(tok::r_paren, StopAtSemi);
1703      Expr = ExprError();
1704    }
1705
1706    TypeResult Ty = ParseTypeName();
1707
1708    if (Tok.isNot(tok::r_paren)) {
1709      Diag(Tok, diag::err_expected) << tok::r_paren;
1710      Expr = ExprError();
1711    }
1712
1713    if (Expr.isInvalid() || Ty.isInvalid())
1714      Res = ExprError();
1715    else
1716      Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
1717    break;
1718  }
1719  case tok::kw___builtin_offsetof: {
1720    SourceLocation TypeLoc = Tok.getLocation();
1721    TypeResult Ty = ParseTypeName();
1722    if (Ty.isInvalid()) {
1723      SkipUntil(tok::r_paren, StopAtSemi);
1724      return ExprError();
1725    }
1726
1727    if (ExpectAndConsume(tok::comma)) {
1728      SkipUntil(tok::r_paren, StopAtSemi);
1729      return ExprError();
1730    }
1731
1732    // We must have at least one identifier here.
1733    if (Tok.isNot(tok::identifier)) {
1734      Diag(Tok, diag::err_expected) << tok::identifier;
1735      SkipUntil(tok::r_paren, StopAtSemi);
1736      return ExprError();
1737    }
1738
1739    // Keep track of the various subcomponents we see.
1740    SmallVector<Sema::OffsetOfComponent, 4> Comps;
1741
1742    Comps.push_back(Sema::OffsetOfComponent());
1743    Comps.back().isBrackets = false;
1744    Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1745    Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1746
1747    // FIXME: This loop leaks the index expressions on error.
1748    while (1) {
1749      if (Tok.is(tok::period)) {
1750        // offsetof-member-designator: offsetof-member-designator '.' identifier
1751        Comps.push_back(Sema::OffsetOfComponent());
1752        Comps.back().isBrackets = false;
1753        Comps.back().LocStart = ConsumeToken();
1754
1755        if (Tok.isNot(tok::identifier)) {
1756          Diag(Tok, diag::err_expected) << tok::identifier;
1757          SkipUntil(tok::r_paren, StopAtSemi);
1758          return ExprError();
1759        }
1760        Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1761        Comps.back().LocEnd = ConsumeToken();
1762
1763      } else if (Tok.is(tok::l_square)) {
1764        if (CheckProhibitedCXX11Attribute())
1765          return ExprError();
1766
1767        // offsetof-member-designator: offsetof-member-design '[' expression ']'
1768        Comps.push_back(Sema::OffsetOfComponent());
1769        Comps.back().isBrackets = true;
1770        BalancedDelimiterTracker ST(*this, tok::l_square);
1771        ST.consumeOpen();
1772        Comps.back().LocStart = ST.getOpenLocation();
1773        Res = ParseExpression();
1774        if (Res.isInvalid()) {
1775          SkipUntil(tok::r_paren, StopAtSemi);
1776          return Res;
1777        }
1778        Comps.back().U.E = Res.get();
1779
1780        ST.consumeClose();
1781        Comps.back().LocEnd = ST.getCloseLocation();
1782      } else {
1783        if (Tok.isNot(tok::r_paren)) {
1784          PT.consumeClose();
1785          Res = ExprError();
1786        } else if (Ty.isInvalid()) {
1787          Res = ExprError();
1788        } else {
1789          PT.consumeClose();
1790          Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
1791                                             Ty.get(), &Comps[0], Comps.size(),
1792                                             PT.getCloseLocation());
1793        }
1794        break;
1795      }
1796    }
1797    break;
1798  }
1799  case tok::kw___builtin_choose_expr: {
1800    ExprResult Cond(ParseAssignmentExpression());
1801    if (Cond.isInvalid()) {
1802      SkipUntil(tok::r_paren, StopAtSemi);
1803      return Cond;
1804    }
1805    if (ExpectAndConsume(tok::comma)) {
1806      SkipUntil(tok::r_paren, StopAtSemi);
1807      return ExprError();
1808    }
1809
1810    ExprResult Expr1(ParseAssignmentExpression());
1811    if (Expr1.isInvalid()) {
1812      SkipUntil(tok::r_paren, StopAtSemi);
1813      return Expr1;
1814    }
1815    if (ExpectAndConsume(tok::comma)) {
1816      SkipUntil(tok::r_paren, StopAtSemi);
1817      return ExprError();
1818    }
1819
1820    ExprResult Expr2(ParseAssignmentExpression());
1821    if (Expr2.isInvalid()) {
1822      SkipUntil(tok::r_paren, StopAtSemi);
1823      return Expr2;
1824    }
1825    if (Tok.isNot(tok::r_paren)) {
1826      Diag(Tok, diag::err_expected) << tok::r_paren;
1827      return ExprError();
1828    }
1829    Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
1830                                  Expr2.get(), ConsumeParen());
1831    break;
1832  }
1833  case tok::kw___builtin_astype: {
1834    // The first argument is an expression to be converted, followed by a comma.
1835    ExprResult Expr(ParseAssignmentExpression());
1836    if (Expr.isInvalid()) {
1837      SkipUntil(tok::r_paren, StopAtSemi);
1838      return ExprError();
1839    }
1840
1841    if (ExpectAndConsume(tok::comma)) {
1842      SkipUntil(tok::r_paren, StopAtSemi);
1843      return ExprError();
1844    }
1845
1846    // Second argument is the type to bitcast to.
1847    TypeResult DestTy = ParseTypeName();
1848    if (DestTy.isInvalid())
1849      return ExprError();
1850
1851    // Attempt to consume the r-paren.
1852    if (Tok.isNot(tok::r_paren)) {
1853      Diag(Tok, diag::err_expected) << tok::r_paren;
1854      SkipUntil(tok::r_paren, StopAtSemi);
1855      return ExprError();
1856    }
1857
1858    Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
1859                                  ConsumeParen());
1860    break;
1861  }
1862  case tok::kw___builtin_convertvector: {
1863    // The first argument is an expression to be converted, followed by a comma.
1864    ExprResult Expr(ParseAssignmentExpression());
1865    if (Expr.isInvalid()) {
1866      SkipUntil(tok::r_paren, StopAtSemi);
1867      return ExprError();
1868    }
1869
1870    if (ExpectAndConsume(tok::comma)) {
1871      SkipUntil(tok::r_paren, StopAtSemi);
1872      return ExprError();
1873    }
1874
1875    // Second argument is the type to bitcast to.
1876    TypeResult DestTy = ParseTypeName();
1877    if (DestTy.isInvalid())
1878      return ExprError();
1879
1880    // Attempt to consume the r-paren.
1881    if (Tok.isNot(tok::r_paren)) {
1882      Diag(Tok, diag::err_expected) << tok::r_paren;
1883      SkipUntil(tok::r_paren, StopAtSemi);
1884      return ExprError();
1885    }
1886
1887    Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
1888                                         ConsumeParen());
1889    break;
1890  }
1891  }
1892
1893  if (Res.isInvalid())
1894    return ExprError();
1895
1896  // These can be followed by postfix-expr pieces because they are
1897  // primary-expressions.
1898  return ParsePostfixExpressionSuffix(Res.get());
1899}
1900
1901/// ParseParenExpression - This parses the unit that starts with a '(' token,
1902/// based on what is allowed by ExprType.  The actual thing parsed is returned
1903/// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
1904/// not the parsed cast-expression.
1905///
1906/// \verbatim
1907///       primary-expression: [C99 6.5.1]
1908///         '(' expression ')'
1909/// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
1910///       postfix-expression: [C99 6.5.2]
1911///         '(' type-name ')' '{' initializer-list '}'
1912///         '(' type-name ')' '{' initializer-list ',' '}'
1913///       cast-expression: [C99 6.5.4]
1914///         '(' type-name ')' cast-expression
1915/// [ARC]   bridged-cast-expression
1916///
1917/// [ARC] bridged-cast-expression:
1918///         (__bridge type-name) cast-expression
1919///         (__bridge_transfer type-name) cast-expression
1920///         (__bridge_retained type-name) cast-expression
1921/// \endverbatim
1922ExprResult
1923Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
1924                             bool isTypeCast, ParsedType &CastTy,
1925                             SourceLocation &RParenLoc) {
1926  assert(Tok.is(tok::l_paren) && "Not a paren expr!");
1927  ColonProtectionRAIIObject ColonProtection(*this, false);
1928  BalancedDelimiterTracker T(*this, tok::l_paren);
1929  if (T.consumeOpen())
1930    return ExprError();
1931  SourceLocation OpenLoc = T.getOpenLocation();
1932
1933  ExprResult Result(true);
1934  bool isAmbiguousTypeId;
1935  CastTy = ParsedType();
1936
1937  if (Tok.is(tok::code_completion)) {
1938    Actions.CodeCompleteOrdinaryName(getCurScope(),
1939                 ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
1940                                            : Sema::PCC_Expression);
1941    cutOffParsing();
1942    return ExprError();
1943  }
1944
1945  // Diagnose use of bridge casts in non-arc mode.
1946  bool BridgeCast = (getLangOpts().ObjC2 &&
1947                     (Tok.is(tok::kw___bridge) ||
1948                      Tok.is(tok::kw___bridge_transfer) ||
1949                      Tok.is(tok::kw___bridge_retained) ||
1950                      Tok.is(tok::kw___bridge_retain)));
1951  if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
1952    if (!TryConsumeToken(tok::kw___bridge)) {
1953      StringRef BridgeCastName = Tok.getName();
1954      SourceLocation BridgeKeywordLoc = ConsumeToken();
1955      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
1956        Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
1957          << BridgeCastName
1958          << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
1959    }
1960    BridgeCast = false;
1961  }
1962
1963  // None of these cases should fall through with an invalid Result
1964  // unless they've already reported an error.
1965  if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
1966    Diag(Tok, diag::ext_gnu_statement_expr);
1967    Actions.ActOnStartStmtExpr();
1968
1969    StmtResult Stmt(ParseCompoundStatement(true));
1970    ExprType = CompoundStmt;
1971
1972    // If the substmt parsed correctly, build the AST node.
1973    if (!Stmt.isInvalid()) {
1974      Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
1975    } else {
1976      Actions.ActOnStmtExprError();
1977    }
1978  } else if (ExprType >= CompoundLiteral && BridgeCast) {
1979    tok::TokenKind tokenKind = Tok.getKind();
1980    SourceLocation BridgeKeywordLoc = ConsumeToken();
1981
1982    // Parse an Objective-C ARC ownership cast expression.
1983    ObjCBridgeCastKind Kind;
1984    if (tokenKind == tok::kw___bridge)
1985      Kind = OBC_Bridge;
1986    else if (tokenKind == tok::kw___bridge_transfer)
1987      Kind = OBC_BridgeTransfer;
1988    else if (tokenKind == tok::kw___bridge_retained)
1989      Kind = OBC_BridgeRetained;
1990    else {
1991      // As a hopefully temporary workaround, allow __bridge_retain as
1992      // a synonym for __bridge_retained, but only in system headers.
1993      assert(tokenKind == tok::kw___bridge_retain);
1994      Kind = OBC_BridgeRetained;
1995      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
1996        Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
1997          << FixItHint::CreateReplacement(BridgeKeywordLoc,
1998                                          "__bridge_retained");
1999    }
2000
2001    TypeResult Ty = ParseTypeName();
2002    T.consumeClose();
2003    ColonProtection.restore();
2004    RParenLoc = T.getCloseLocation();
2005    ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2006
2007    if (Ty.isInvalid() || SubExpr.isInvalid())
2008      return ExprError();
2009
2010    return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2011                                        BridgeKeywordLoc, Ty.get(),
2012                                        RParenLoc, SubExpr.get());
2013  } else if (ExprType >= CompoundLiteral &&
2014             isTypeIdInParens(isAmbiguousTypeId)) {
2015
2016    // Otherwise, this is a compound literal expression or cast expression.
2017
2018    // In C++, if the type-id is ambiguous we disambiguate based on context.
2019    // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2020    // in which case we should treat it as type-id.
2021    // if stopIfCastExpr is false, we need to determine the context past the
2022    // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2023    if (isAmbiguousTypeId && !stopIfCastExpr) {
2024      ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2025                                                        ColonProtection);
2026      RParenLoc = T.getCloseLocation();
2027      return res;
2028    }
2029
2030    // Parse the type declarator.
2031    DeclSpec DS(AttrFactory);
2032    ParseSpecifierQualifierList(DS);
2033    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2034    ParseDeclarator(DeclaratorInfo);
2035
2036    // If our type is followed by an identifier and either ':' or ']', then
2037    // this is probably an Objective-C message send where the leading '[' is
2038    // missing. Recover as if that were the case.
2039    if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2040        !InMessageExpression && getLangOpts().ObjC1 &&
2041        (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2042      TypeResult Ty;
2043      {
2044        InMessageExpressionRAIIObject InMessage(*this, false);
2045        Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2046      }
2047      Result = ParseObjCMessageExpressionBody(SourceLocation(),
2048                                              SourceLocation(),
2049                                              Ty.get(), nullptr);
2050    } else {
2051      // Match the ')'.
2052      T.consumeClose();
2053      ColonProtection.restore();
2054      RParenLoc = T.getCloseLocation();
2055      if (Tok.is(tok::l_brace)) {
2056        ExprType = CompoundLiteral;
2057        TypeResult Ty;
2058        {
2059          InMessageExpressionRAIIObject InMessage(*this, false);
2060          Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2061        }
2062        return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2063      }
2064
2065      if (ExprType == CastExpr) {
2066        // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2067
2068        if (DeclaratorInfo.isInvalidType())
2069          return ExprError();
2070
2071        // Note that this doesn't parse the subsequent cast-expression, it just
2072        // returns the parsed type to the callee.
2073        if (stopIfCastExpr) {
2074          TypeResult Ty;
2075          {
2076            InMessageExpressionRAIIObject InMessage(*this, false);
2077            Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2078          }
2079          CastTy = Ty.get();
2080          return ExprResult();
2081        }
2082
2083        // Reject the cast of super idiom in ObjC.
2084        if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2085            Tok.getIdentifierInfo() == Ident_super &&
2086            getCurScope()->isInObjcMethodScope() &&
2087            GetLookAheadToken(1).isNot(tok::period)) {
2088          Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2089            << SourceRange(OpenLoc, RParenLoc);
2090          return ExprError();
2091        }
2092
2093        // Parse the cast-expression that follows it next.
2094        // TODO: For cast expression with CastTy.
2095        Result = ParseCastExpression(/*isUnaryExpression=*/false,
2096                                     /*isAddressOfOperand=*/false,
2097                                     /*isTypeCast=*/IsTypeCast);
2098        if (!Result.isInvalid()) {
2099          Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2100                                         DeclaratorInfo, CastTy,
2101                                         RParenLoc, Result.get());
2102        }
2103        return Result;
2104      }
2105
2106      Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2107      return ExprError();
2108    }
2109  } else if (isTypeCast) {
2110    // Parse the expression-list.
2111    InMessageExpressionRAIIObject InMessage(*this, false);
2112
2113    ExprVector ArgExprs;
2114    CommaLocsTy CommaLocs;
2115
2116    if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2117      ExprType = SimpleExpr;
2118      Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2119                                          ArgExprs);
2120    }
2121  } else {
2122    InMessageExpressionRAIIObject InMessage(*this, false);
2123
2124    Result = ParseExpression(MaybeTypeCast);
2125    ExprType = SimpleExpr;
2126
2127    // Don't build a paren expression unless we actually match a ')'.
2128    if (!Result.isInvalid() && Tok.is(tok::r_paren))
2129      Result =
2130          Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2131  }
2132
2133  // Match the ')'.
2134  if (Result.isInvalid()) {
2135    SkipUntil(tok::r_paren, StopAtSemi);
2136    return ExprError();
2137  }
2138
2139  T.consumeClose();
2140  RParenLoc = T.getCloseLocation();
2141  return Result;
2142}
2143
2144/// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2145/// and we are at the left brace.
2146///
2147/// \verbatim
2148///       postfix-expression: [C99 6.5.2]
2149///         '(' type-name ')' '{' initializer-list '}'
2150///         '(' type-name ')' '{' initializer-list ',' '}'
2151/// \endverbatim
2152ExprResult
2153Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2154                                       SourceLocation LParenLoc,
2155                                       SourceLocation RParenLoc) {
2156  assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2157  if (!getLangOpts().C99)   // Compound literals don't exist in C90.
2158    Diag(LParenLoc, diag::ext_c99_compound_literal);
2159  ExprResult Result = ParseInitializer();
2160  if (!Result.isInvalid() && Ty)
2161    return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2162  return Result;
2163}
2164
2165/// ParseStringLiteralExpression - This handles the various token types that
2166/// form string literals, and also handles string concatenation [C99 5.1.1.2,
2167/// translation phase #6].
2168///
2169/// \verbatim
2170///       primary-expression: [C99 6.5.1]
2171///         string-literal
2172/// \verbatim
2173ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2174  assert(isTokenStringLiteral() && "Not a string literal!");
2175
2176  // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
2177  // considered to be strings for concatenation purposes.
2178  SmallVector<Token, 4> StringToks;
2179
2180  do {
2181    StringToks.push_back(Tok);
2182    ConsumeStringToken();
2183  } while (isTokenStringLiteral());
2184
2185  // Pass the set of string tokens, ready for concatenation, to the actions.
2186  return Actions.ActOnStringLiteral(StringToks,
2187                                    AllowUserDefinedLiteral ? getCurScope()
2188                                                            : nullptr);
2189}
2190
2191/// ParseGenericSelectionExpression - Parse a C11 generic-selection
2192/// [C11 6.5.1.1].
2193///
2194/// \verbatim
2195///    generic-selection:
2196///           _Generic ( assignment-expression , generic-assoc-list )
2197///    generic-assoc-list:
2198///           generic-association
2199///           generic-assoc-list , generic-association
2200///    generic-association:
2201///           type-name : assignment-expression
2202///           default : assignment-expression
2203/// \endverbatim
2204ExprResult Parser::ParseGenericSelectionExpression() {
2205  assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2206  SourceLocation KeyLoc = ConsumeToken();
2207
2208  if (!getLangOpts().C11)
2209    Diag(KeyLoc, diag::ext_c11_generic_selection);
2210
2211  BalancedDelimiterTracker T(*this, tok::l_paren);
2212  if (T.expectAndConsume())
2213    return ExprError();
2214
2215  ExprResult ControllingExpr;
2216  {
2217    // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2218    // not evaluated."
2219    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2220    ControllingExpr = ParseAssignmentExpression();
2221    if (ControllingExpr.isInvalid()) {
2222      SkipUntil(tok::r_paren, StopAtSemi);
2223      return ExprError();
2224    }
2225  }
2226
2227  if (ExpectAndConsume(tok::comma)) {
2228    SkipUntil(tok::r_paren, StopAtSemi);
2229    return ExprError();
2230  }
2231
2232  SourceLocation DefaultLoc;
2233  TypeVector Types;
2234  ExprVector Exprs;
2235  do {
2236    ParsedType Ty;
2237    if (Tok.is(tok::kw_default)) {
2238      // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2239      // generic association."
2240      if (!DefaultLoc.isInvalid()) {
2241        Diag(Tok, diag::err_duplicate_default_assoc);
2242        Diag(DefaultLoc, diag::note_previous_default_assoc);
2243        SkipUntil(tok::r_paren, StopAtSemi);
2244        return ExprError();
2245      }
2246      DefaultLoc = ConsumeToken();
2247      Ty = ParsedType();
2248    } else {
2249      ColonProtectionRAIIObject X(*this);
2250      TypeResult TR = ParseTypeName();
2251      if (TR.isInvalid()) {
2252        SkipUntil(tok::r_paren, StopAtSemi);
2253        return ExprError();
2254      }
2255      Ty = TR.get();
2256    }
2257    Types.push_back(Ty);
2258
2259    if (ExpectAndConsume(tok::colon)) {
2260      SkipUntil(tok::r_paren, StopAtSemi);
2261      return ExprError();
2262    }
2263
2264    // FIXME: These expressions should be parsed in a potentially potentially
2265    // evaluated context.
2266    ExprResult ER(ParseAssignmentExpression());
2267    if (ER.isInvalid()) {
2268      SkipUntil(tok::r_paren, StopAtSemi);
2269      return ExprError();
2270    }
2271    Exprs.push_back(ER.get());
2272  } while (TryConsumeToken(tok::comma));
2273
2274  T.consumeClose();
2275  if (T.getCloseLocation().isInvalid())
2276    return ExprError();
2277
2278  return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2279                                           T.getCloseLocation(),
2280                                           ControllingExpr.get(),
2281                                           Types, Exprs);
2282}
2283
2284/// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2285///
2286/// \verbatim
2287///       argument-expression-list:
2288///         assignment-expression
2289///         argument-expression-list , assignment-expression
2290///
2291/// [C++] expression-list:
2292/// [C++]   assignment-expression
2293/// [C++]   expression-list , assignment-expression
2294///
2295/// [C++0x] expression-list:
2296/// [C++0x]   initializer-list
2297///
2298/// [C++0x] initializer-list
2299/// [C++0x]   initializer-clause ...[opt]
2300/// [C++0x]   initializer-list , initializer-clause ...[opt]
2301///
2302/// [C++0x] initializer-clause:
2303/// [C++0x]   assignment-expression
2304/// [C++0x]   braced-init-list
2305/// \endverbatim
2306bool Parser::ParseExpressionList(SmallVectorImpl<Expr*> &Exprs,
2307                                 SmallVectorImpl<SourceLocation> &CommaLocs,
2308                                 void (Sema::*Completer)(Scope *S,
2309                                                         Expr *Data,
2310                                                         ArrayRef<Expr *> Args),
2311                                 Expr *Data) {
2312  while (1) {
2313    if (Tok.is(tok::code_completion)) {
2314      if (Completer)
2315        (Actions.*Completer)(getCurScope(), Data, Exprs);
2316      else
2317        Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2318      cutOffParsing();
2319      return true;
2320    }
2321
2322    ExprResult Expr;
2323    if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2324      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2325      Expr = ParseBraceInitializer();
2326    } else
2327      Expr = ParseAssignmentExpression();
2328
2329    if (Tok.is(tok::ellipsis))
2330      Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2331    if (Expr.isInvalid())
2332      return true;
2333
2334    Exprs.push_back(Expr.get());
2335
2336    if (Tok.isNot(tok::comma))
2337      return false;
2338    // Move to the next argument, remember where the comma was.
2339    CommaLocs.push_back(ConsumeToken());
2340  }
2341}
2342
2343/// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2344/// used for misc language extensions.
2345///
2346/// \verbatim
2347///       simple-expression-list:
2348///         assignment-expression
2349///         simple-expression-list , assignment-expression
2350/// \endverbatim
2351bool
2352Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2353                                  SmallVectorImpl<SourceLocation> &CommaLocs) {
2354  while (1) {
2355    ExprResult Expr = ParseAssignmentExpression();
2356    if (Expr.isInvalid())
2357      return true;
2358
2359    Exprs.push_back(Expr.get());
2360
2361    if (Tok.isNot(tok::comma))
2362      return false;
2363
2364    // Move to the next argument, remember where the comma was.
2365    CommaLocs.push_back(ConsumeToken());
2366  }
2367}
2368
2369/// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2370///
2371/// \verbatim
2372/// [clang] block-id:
2373/// [clang]   specifier-qualifier-list block-declarator
2374/// \endverbatim
2375void Parser::ParseBlockId(SourceLocation CaretLoc) {
2376  if (Tok.is(tok::code_completion)) {
2377    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2378    return cutOffParsing();
2379  }
2380
2381  // Parse the specifier-qualifier-list piece.
2382  DeclSpec DS(AttrFactory);
2383  ParseSpecifierQualifierList(DS);
2384
2385  // Parse the block-declarator.
2386  Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2387  ParseDeclarator(DeclaratorInfo);
2388
2389  // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
2390  DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
2391
2392  MaybeParseGNUAttributes(DeclaratorInfo);
2393
2394  // Inform sema that we are starting a block.
2395  Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2396}
2397
2398/// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2399/// like ^(int x){ return x+1; }
2400///
2401/// \verbatim
2402///         block-literal:
2403/// [clang]   '^' block-args[opt] compound-statement
2404/// [clang]   '^' block-id compound-statement
2405/// [clang] block-args:
2406/// [clang]   '(' parameter-list ')'
2407/// \endverbatim
2408ExprResult Parser::ParseBlockLiteralExpression() {
2409  assert(Tok.is(tok::caret) && "block literal starts with ^");
2410  SourceLocation CaretLoc = ConsumeToken();
2411
2412  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2413                                "block literal parsing");
2414
2415  // Enter a scope to hold everything within the block.  This includes the
2416  // argument decls, decls within the compound expression, etc.  This also
2417  // allows determining whether a variable reference inside the block is
2418  // within or outside of the block.
2419  ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2420                              Scope::DeclScope);
2421
2422  // Inform sema that we are starting a block.
2423  Actions.ActOnBlockStart(CaretLoc, getCurScope());
2424
2425  // Parse the return type if present.
2426  DeclSpec DS(AttrFactory);
2427  Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2428  // FIXME: Since the return type isn't actually parsed, it can't be used to
2429  // fill ParamInfo with an initial valid range, so do it manually.
2430  ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2431
2432  // If this block has arguments, parse them.  There is no ambiguity here with
2433  // the expression case, because the expression case requires a parameter list.
2434  if (Tok.is(tok::l_paren)) {
2435    ParseParenDeclarator(ParamInfo);
2436    // Parse the pieces after the identifier as if we had "int(...)".
2437    // SetIdentifier sets the source range end, but in this case we're past
2438    // that location.
2439    SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2440    ParamInfo.SetIdentifier(nullptr, CaretLoc);
2441    ParamInfo.SetRangeEnd(Tmp);
2442    if (ParamInfo.isInvalidType()) {
2443      // If there was an error parsing the arguments, they may have
2444      // tried to use ^(x+y) which requires an argument list.  Just
2445      // skip the whole block literal.
2446      Actions.ActOnBlockError(CaretLoc, getCurScope());
2447      return ExprError();
2448    }
2449
2450    MaybeParseGNUAttributes(ParamInfo);
2451
2452    // Inform sema that we are starting a block.
2453    Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2454  } else if (!Tok.is(tok::l_brace)) {
2455    ParseBlockId(CaretLoc);
2456  } else {
2457    // Otherwise, pretend we saw (void).
2458    ParsedAttributes attrs(AttrFactory);
2459    SourceLocation NoLoc;
2460    ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2461                                             /*IsAmbiguous=*/false,
2462                                             /*RParenLoc=*/NoLoc,
2463                                             /*ArgInfo=*/nullptr,
2464                                             /*NumArgs=*/0,
2465                                             /*EllipsisLoc=*/NoLoc,
2466                                             /*RParenLoc=*/NoLoc,
2467                                             /*TypeQuals=*/0,
2468                                             /*RefQualifierIsLvalueRef=*/true,
2469                                             /*RefQualifierLoc=*/NoLoc,
2470                                             /*ConstQualifierLoc=*/NoLoc,
2471                                             /*VolatileQualifierLoc=*/NoLoc,
2472                                             /*MutableLoc=*/NoLoc,
2473                                             EST_None,
2474                                             /*ESpecLoc=*/NoLoc,
2475                                             /*Exceptions=*/nullptr,
2476                                             /*ExceptionRanges=*/nullptr,
2477                                             /*NumExceptions=*/0,
2478                                             /*NoexceptExpr=*/nullptr,
2479                                             CaretLoc, CaretLoc,
2480                                             ParamInfo),
2481                          attrs, CaretLoc);
2482
2483    MaybeParseGNUAttributes(ParamInfo);
2484
2485    // Inform sema that we are starting a block.
2486    Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2487  }
2488
2489
2490  ExprResult Result(true);
2491  if (!Tok.is(tok::l_brace)) {
2492    // Saw something like: ^expr
2493    Diag(Tok, diag::err_expected_expression);
2494    Actions.ActOnBlockError(CaretLoc, getCurScope());
2495    return ExprError();
2496  }
2497
2498  StmtResult Stmt(ParseCompoundStatementBody());
2499  BlockScope.Exit();
2500  if (!Stmt.isInvalid())
2501    Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
2502  else
2503    Actions.ActOnBlockError(CaretLoc, getCurScope());
2504  return Result;
2505}
2506
2507/// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2508///
2509///         '__objc_yes'
2510///         '__objc_no'
2511ExprResult Parser::ParseObjCBoolLiteral() {
2512  tok::TokenKind Kind = Tok.getKind();
2513  return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2514}
2515