ParseExprCXX.cpp revision 6ee326af4e77e6f05973486097884d7431f2108d
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "RAIIObjectsForParser.h"
17#include "clang/Basic/PrettyStackTrace.h"
18#include "clang/Lex/LiteralSupport.h"
19#include "clang/Sema/DeclSpec.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/ParsedTemplate.h"
22#include "llvm/Support/ErrorHandling.h"
23
24using namespace clang;
25
26static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
27  switch (Kind) {
28    case tok::kw_template:         return 0;
29    case tok::kw_const_cast:       return 1;
30    case tok::kw_dynamic_cast:     return 2;
31    case tok::kw_reinterpret_cast: return 3;
32    case tok::kw_static_cast:      return 4;
33    default:
34      llvm_unreachable("Unknown type for digraph error message.");
35  }
36}
37
38// Are the two tokens adjacent in the same source file?
39static bool AreTokensAdjacent(Preprocessor &PP, Token &First, Token &Second) {
40  SourceManager &SM = PP.getSourceManager();
41  SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
42  SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
43  return FirstEnd == SM.getSpellingLoc(Second.getLocation());
44}
45
46// Suggest fixit for "<::" after a cast.
47static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
48                       Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
49  // Pull '<:' and ':' off token stream.
50  if (!AtDigraph)
51    PP.Lex(DigraphToken);
52  PP.Lex(ColonToken);
53
54  SourceRange Range;
55  Range.setBegin(DigraphToken.getLocation());
56  Range.setEnd(ColonToken.getLocation());
57  P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
58      << SelectDigraphErrorMessage(Kind)
59      << FixItHint::CreateReplacement(Range, "< ::");
60
61  // Update token information to reflect their change in token type.
62  ColonToken.setKind(tok::coloncolon);
63  ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
64  ColonToken.setLength(2);
65  DigraphToken.setKind(tok::less);
66  DigraphToken.setLength(1);
67
68  // Push new tokens back to token stream.
69  PP.EnterToken(ColonToken);
70  if (!AtDigraph)
71    PP.EnterToken(DigraphToken);
72}
73
74// Check for '<::' which should be '< ::' instead of '[:' when following
75// a template name.
76void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
77                                        bool EnteringContext,
78                                        IdentifierInfo &II, CXXScopeSpec &SS) {
79  if (!Next.is(tok::l_square) || Next.getLength() != 2)
80    return;
81
82  Token SecondToken = GetLookAheadToken(2);
83  if (!SecondToken.is(tok::colon) || !AreTokensAdjacent(PP, Next, SecondToken))
84    return;
85
86  TemplateTy Template;
87  UnqualifiedId TemplateName;
88  TemplateName.setIdentifier(&II, Tok.getLocation());
89  bool MemberOfUnknownSpecialization;
90  if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
91                              TemplateName, ObjectType, EnteringContext,
92                              Template, MemberOfUnknownSpecialization))
93    return;
94
95  FixDigraph(*this, PP, Next, SecondToken, tok::kw_template,
96             /*AtDigraph*/false);
97}
98
99/// \brief Parse global scope or nested-name-specifier if present.
100///
101/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
102/// may be preceded by '::'). Note that this routine will not parse ::new or
103/// ::delete; it will just leave them in the token stream.
104///
105///       '::'[opt] nested-name-specifier
106///       '::'
107///
108///       nested-name-specifier:
109///         type-name '::'
110///         namespace-name '::'
111///         nested-name-specifier identifier '::'
112///         nested-name-specifier 'template'[opt] simple-template-id '::'
113///
114///
115/// \param SS the scope specifier that will be set to the parsed
116/// nested-name-specifier (or empty)
117///
118/// \param ObjectType if this nested-name-specifier is being parsed following
119/// the "." or "->" of a member access expression, this parameter provides the
120/// type of the object whose members are being accessed.
121///
122/// \param EnteringContext whether we will be entering into the context of
123/// the nested-name-specifier after parsing it.
124///
125/// \param MayBePseudoDestructor When non-NULL, points to a flag that
126/// indicates whether this nested-name-specifier may be part of a
127/// pseudo-destructor name. In this case, the flag will be set false
128/// if we don't actually end up parsing a destructor name. Moreorover,
129/// if we do end up determining that we are parsing a destructor name,
130/// the last component of the nested-name-specifier is not parsed as
131/// part of the scope specifier.
132
133/// member access expression, e.g., the \p T:: in \p p->T::m.
134///
135/// \returns true if there was an error parsing a scope specifier
136bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
137                                            ParsedType ObjectType,
138                                            bool EnteringContext,
139                                            bool *MayBePseudoDestructor,
140                                            bool IsTypename) {
141  assert(getLangOpts().CPlusPlus &&
142         "Call sites of this function should be guarded by checking for C++");
143
144  if (Tok.is(tok::annot_cxxscope)) {
145    Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
146                                                 Tok.getAnnotationRange(),
147                                                 SS);
148    ConsumeToken();
149    return false;
150  }
151
152  bool HasScopeSpecifier = false;
153
154  if (Tok.is(tok::coloncolon)) {
155    // ::new and ::delete aren't nested-name-specifiers.
156    tok::TokenKind NextKind = NextToken().getKind();
157    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
158      return false;
159
160    // '::' - Global scope qualifier.
161    if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
162      return true;
163
164    HasScopeSpecifier = true;
165  }
166
167  bool CheckForDestructor = false;
168  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
169    CheckForDestructor = true;
170    *MayBePseudoDestructor = false;
171  }
172
173  if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
174    DeclSpec DS(AttrFactory);
175    SourceLocation DeclLoc = Tok.getLocation();
176    SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
177    if (Tok.isNot(tok::coloncolon)) {
178      AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
179      return false;
180    }
181
182    SourceLocation CCLoc = ConsumeToken();
183    if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
184      SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
185
186    HasScopeSpecifier = true;
187  }
188
189  while (true) {
190    if (HasScopeSpecifier) {
191      // C++ [basic.lookup.classref]p5:
192      //   If the qualified-id has the form
193      //
194      //       ::class-name-or-namespace-name::...
195      //
196      //   the class-name-or-namespace-name is looked up in global scope as a
197      //   class-name or namespace-name.
198      //
199      // To implement this, we clear out the object type as soon as we've
200      // seen a leading '::' or part of a nested-name-specifier.
201      ObjectType = ParsedType();
202
203      if (Tok.is(tok::code_completion)) {
204        // Code completion for a nested-name-specifier, where the code
205        // code completion token follows the '::'.
206        Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
207        // Include code completion token into the range of the scope otherwise
208        // when we try to annotate the scope tokens the dangling code completion
209        // token will cause assertion in
210        // Preprocessor::AnnotatePreviousCachedTokens.
211        SS.setEndLoc(Tok.getLocation());
212        cutOffParsing();
213        return true;
214      }
215    }
216
217    // nested-name-specifier:
218    //   nested-name-specifier 'template'[opt] simple-template-id '::'
219
220    // Parse the optional 'template' keyword, then make sure we have
221    // 'identifier <' after it.
222    if (Tok.is(tok::kw_template)) {
223      // If we don't have a scope specifier or an object type, this isn't a
224      // nested-name-specifier, since they aren't allowed to start with
225      // 'template'.
226      if (!HasScopeSpecifier && !ObjectType)
227        break;
228
229      TentativeParsingAction TPA(*this);
230      SourceLocation TemplateKWLoc = ConsumeToken();
231
232      UnqualifiedId TemplateName;
233      if (Tok.is(tok::identifier)) {
234        // Consume the identifier.
235        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
236        ConsumeToken();
237      } else if (Tok.is(tok::kw_operator)) {
238        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
239                                       TemplateName)) {
240          TPA.Commit();
241          break;
242        }
243
244        if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
245            TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
246          Diag(TemplateName.getSourceRange().getBegin(),
247               diag::err_id_after_template_in_nested_name_spec)
248            << TemplateName.getSourceRange();
249          TPA.Commit();
250          break;
251        }
252      } else {
253        TPA.Revert();
254        break;
255      }
256
257      // If the next token is not '<', we have a qualified-id that refers
258      // to a template name, such as T::template apply, but is not a
259      // template-id.
260      if (Tok.isNot(tok::less)) {
261        TPA.Revert();
262        break;
263      }
264
265      // Commit to parsing the template-id.
266      TPA.Commit();
267      TemplateTy Template;
268      if (TemplateNameKind TNK
269          = Actions.ActOnDependentTemplateName(getCurScope(),
270                                               SS, TemplateKWLoc, TemplateName,
271                                               ObjectType, EnteringContext,
272                                               Template)) {
273        if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
274                                    TemplateName, false))
275          return true;
276      } else
277        return true;
278
279      continue;
280    }
281
282    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
283      // We have
284      //
285      //   simple-template-id '::'
286      //
287      // So we need to check whether the simple-template-id is of the
288      // right kind (it should name a type or be dependent), and then
289      // convert it into a type within the nested-name-specifier.
290      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
291      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
292        *MayBePseudoDestructor = true;
293        return false;
294      }
295
296      // Consume the template-id token.
297      ConsumeToken();
298
299      assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
300      SourceLocation CCLoc = ConsumeToken();
301
302      HasScopeSpecifier = true;
303
304      ASTTemplateArgsPtr TemplateArgsPtr(Actions,
305                                         TemplateId->getTemplateArgs(),
306                                         TemplateId->NumArgs);
307
308      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
309                                              SS,
310                                              TemplateId->TemplateKWLoc,
311                                              TemplateId->Template,
312                                              TemplateId->TemplateNameLoc,
313                                              TemplateId->LAngleLoc,
314                                              TemplateArgsPtr,
315                                              TemplateId->RAngleLoc,
316                                              CCLoc,
317                                              EnteringContext)) {
318        SourceLocation StartLoc
319          = SS.getBeginLoc().isValid()? SS.getBeginLoc()
320                                      : TemplateId->TemplateNameLoc;
321        SS.SetInvalid(SourceRange(StartLoc, CCLoc));
322      }
323
324      continue;
325    }
326
327
328    // The rest of the nested-name-specifier possibilities start with
329    // tok::identifier.
330    if (Tok.isNot(tok::identifier))
331      break;
332
333    IdentifierInfo &II = *Tok.getIdentifierInfo();
334
335    // nested-name-specifier:
336    //   type-name '::'
337    //   namespace-name '::'
338    //   nested-name-specifier identifier '::'
339    Token Next = NextToken();
340
341    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
342    // and emit a fixit hint for it.
343    if (Next.is(tok::colon) && !ColonIsSacred) {
344      if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
345                                            Tok.getLocation(),
346                                            Next.getLocation(), ObjectType,
347                                            EnteringContext) &&
348          // If the token after the colon isn't an identifier, it's still an
349          // error, but they probably meant something else strange so don't
350          // recover like this.
351          PP.LookAhead(1).is(tok::identifier)) {
352        Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
353          << FixItHint::CreateReplacement(Next.getLocation(), "::");
354
355        // Recover as if the user wrote '::'.
356        Next.setKind(tok::coloncolon);
357      }
358    }
359
360    if (Next.is(tok::coloncolon)) {
361      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
362          !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
363                                                II, ObjectType)) {
364        *MayBePseudoDestructor = true;
365        return false;
366      }
367
368      // We have an identifier followed by a '::'. Lookup this name
369      // as the name in a nested-name-specifier.
370      SourceLocation IdLoc = ConsumeToken();
371      assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
372             "NextToken() not working properly!");
373      SourceLocation CCLoc = ConsumeToken();
374
375      HasScopeSpecifier = true;
376      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
377                                              ObjectType, EnteringContext, SS))
378        SS.SetInvalid(SourceRange(IdLoc, CCLoc));
379
380      continue;
381    }
382
383    CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
384
385    // nested-name-specifier:
386    //   type-name '<'
387    if (Next.is(tok::less)) {
388      TemplateTy Template;
389      UnqualifiedId TemplateName;
390      TemplateName.setIdentifier(&II, Tok.getLocation());
391      bool MemberOfUnknownSpecialization;
392      if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
393                                              /*hasTemplateKeyword=*/false,
394                                                        TemplateName,
395                                                        ObjectType,
396                                                        EnteringContext,
397                                                        Template,
398                                              MemberOfUnknownSpecialization)) {
399        // We have found a template name, so annotate this token
400        // with a template-id annotation. We do not permit the
401        // template-id to be translated into a type annotation,
402        // because some clients (e.g., the parsing of class template
403        // specializations) still want to see the original template-id
404        // token.
405        ConsumeToken();
406        if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
407                                    TemplateName, false))
408          return true;
409        continue;
410      }
411
412      if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
413          (IsTypename || IsTemplateArgumentList(1))) {
414        // We have something like t::getAs<T>, where getAs is a
415        // member of an unknown specialization. However, this will only
416        // parse correctly as a template, so suggest the keyword 'template'
417        // before 'getAs' and treat this as a dependent template name.
418        unsigned DiagID = diag::err_missing_dependent_template_keyword;
419        if (getLangOpts().MicrosoftExt)
420          DiagID = diag::warn_missing_dependent_template_keyword;
421
422        Diag(Tok.getLocation(), DiagID)
423          << II.getName()
424          << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
425
426        if (TemplateNameKind TNK
427              = Actions.ActOnDependentTemplateName(getCurScope(),
428                                                   SS, SourceLocation(),
429                                                   TemplateName, ObjectType,
430                                                   EnteringContext, Template)) {
431          // Consume the identifier.
432          ConsumeToken();
433          if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
434                                      TemplateName, false))
435            return true;
436        }
437        else
438          return true;
439
440        continue;
441      }
442    }
443
444    // We don't have any tokens that form the beginning of a
445    // nested-name-specifier, so we're done.
446    break;
447  }
448
449  // Even if we didn't see any pieces of a nested-name-specifier, we
450  // still check whether there is a tilde in this position, which
451  // indicates a potential pseudo-destructor.
452  if (CheckForDestructor && Tok.is(tok::tilde))
453    *MayBePseudoDestructor = true;
454
455  return false;
456}
457
458/// ParseCXXIdExpression - Handle id-expression.
459///
460///       id-expression:
461///         unqualified-id
462///         qualified-id
463///
464///       qualified-id:
465///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
466///         '::' identifier
467///         '::' operator-function-id
468///         '::' template-id
469///
470/// NOTE: The standard specifies that, for qualified-id, the parser does not
471/// expect:
472///
473///   '::' conversion-function-id
474///   '::' '~' class-name
475///
476/// This may cause a slight inconsistency on diagnostics:
477///
478/// class C {};
479/// namespace A {}
480/// void f() {
481///   :: A :: ~ C(); // Some Sema error about using destructor with a
482///                  // namespace.
483///   :: ~ C(); // Some Parser error like 'unexpected ~'.
484/// }
485///
486/// We simplify the parser a bit and make it work like:
487///
488///       qualified-id:
489///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
490///         '::' unqualified-id
491///
492/// That way Sema can handle and report similar errors for namespaces and the
493/// global scope.
494///
495/// The isAddressOfOperand parameter indicates that this id-expression is a
496/// direct operand of the address-of operator. This is, besides member contexts,
497/// the only place where a qualified-id naming a non-static class member may
498/// appear.
499///
500ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
501  // qualified-id:
502  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
503  //   '::' unqualified-id
504  //
505  CXXScopeSpec SS;
506  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
507
508  SourceLocation TemplateKWLoc;
509  UnqualifiedId Name;
510  if (ParseUnqualifiedId(SS,
511                         /*EnteringContext=*/false,
512                         /*AllowDestructorName=*/false,
513                         /*AllowConstructorName=*/false,
514                         /*ObjectType=*/ ParsedType(),
515                         TemplateKWLoc,
516                         Name))
517    return ExprError();
518
519  // This is only the direct operand of an & operator if it is not
520  // followed by a postfix-expression suffix.
521  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
522    isAddressOfOperand = false;
523
524  return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
525                                   Tok.is(tok::l_paren), isAddressOfOperand);
526}
527
528/// ParseLambdaExpression - Parse a C++0x lambda expression.
529///
530///       lambda-expression:
531///         lambda-introducer lambda-declarator[opt] compound-statement
532///
533///       lambda-introducer:
534///         '[' lambda-capture[opt] ']'
535///
536///       lambda-capture:
537///         capture-default
538///         capture-list
539///         capture-default ',' capture-list
540///
541///       capture-default:
542///         '&'
543///         '='
544///
545///       capture-list:
546///         capture
547///         capture-list ',' capture
548///
549///       capture:
550///         identifier
551///         '&' identifier
552///         'this'
553///
554///       lambda-declarator:
555///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
556///           'mutable'[opt] exception-specification[opt]
557///           trailing-return-type[opt]
558///
559ExprResult Parser::ParseLambdaExpression() {
560  // Parse lambda-introducer.
561  LambdaIntroducer Intro;
562
563  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
564  if (DiagID) {
565    Diag(Tok, DiagID.getValue());
566    SkipUntil(tok::r_square);
567    SkipUntil(tok::l_brace);
568    SkipUntil(tok::r_brace);
569    return ExprError();
570  }
571
572  return ParseLambdaExpressionAfterIntroducer(Intro);
573}
574
575/// TryParseLambdaExpression - Use lookahead and potentially tentative
576/// parsing to determine if we are looking at a C++0x lambda expression, and parse
577/// it if we are.
578///
579/// If we are not looking at a lambda expression, returns ExprError().
580ExprResult Parser::TryParseLambdaExpression() {
581  assert(getLangOpts().CPlusPlus0x
582         && Tok.is(tok::l_square)
583         && "Not at the start of a possible lambda expression.");
584
585  const Token Next = NextToken(), After = GetLookAheadToken(2);
586
587  // If lookahead indicates this is a lambda...
588  if (Next.is(tok::r_square) ||     // []
589      Next.is(tok::equal) ||        // [=
590      (Next.is(tok::amp) &&         // [&] or [&,
591       (After.is(tok::r_square) ||
592        After.is(tok::comma))) ||
593      (Next.is(tok::identifier) &&  // [identifier]
594       After.is(tok::r_square))) {
595    return ParseLambdaExpression();
596  }
597
598  // If lookahead indicates an ObjC message send...
599  // [identifier identifier
600  if (Next.is(tok::identifier) && After.is(tok::identifier)) {
601    return ExprEmpty();
602  }
603
604  // Here, we're stuck: lambda introducers and Objective-C message sends are
605  // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
606  // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
607  // writing two routines to parse a lambda introducer, just try to parse
608  // a lambda introducer first, and fall back if that fails.
609  // (TryParseLambdaIntroducer never produces any diagnostic output.)
610  LambdaIntroducer Intro;
611  if (TryParseLambdaIntroducer(Intro))
612    return ExprEmpty();
613  return ParseLambdaExpressionAfterIntroducer(Intro);
614}
615
616/// ParseLambdaExpression - Parse a lambda introducer.
617///
618/// Returns a DiagnosticID if it hit something unexpected.
619llvm::Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro){
620  typedef llvm::Optional<unsigned> DiagResult;
621
622  assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
623  BalancedDelimiterTracker T(*this, tok::l_square);
624  T.consumeOpen();
625
626  Intro.Range.setBegin(T.getOpenLocation());
627
628  bool first = true;
629
630  // Parse capture-default.
631  if (Tok.is(tok::amp) &&
632      (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
633    Intro.Default = LCD_ByRef;
634    Intro.DefaultLoc = ConsumeToken();
635    first = false;
636  } else if (Tok.is(tok::equal)) {
637    Intro.Default = LCD_ByCopy;
638    Intro.DefaultLoc = ConsumeToken();
639    first = false;
640  }
641
642  while (Tok.isNot(tok::r_square)) {
643    if (!first) {
644      if (Tok.isNot(tok::comma)) {
645        if (Tok.is(tok::code_completion)) {
646          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
647                                               /*AfterAmpersand=*/false);
648          ConsumeCodeCompletionToken();
649          break;
650        }
651
652        return DiagResult(diag::err_expected_comma_or_rsquare);
653      }
654      ConsumeToken();
655    }
656
657    if (Tok.is(tok::code_completion)) {
658      // If we're in Objective-C++ and we have a bare '[', then this is more
659      // likely to be a message receiver.
660      if (getLangOpts().ObjC1 && first)
661        Actions.CodeCompleteObjCMessageReceiver(getCurScope());
662      else
663        Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
664                                             /*AfterAmpersand=*/false);
665      ConsumeCodeCompletionToken();
666      break;
667    }
668
669    first = false;
670
671    // Parse capture.
672    LambdaCaptureKind Kind = LCK_ByCopy;
673    SourceLocation Loc;
674    IdentifierInfo* Id = 0;
675    SourceLocation EllipsisLoc;
676
677    if (Tok.is(tok::kw_this)) {
678      Kind = LCK_This;
679      Loc = ConsumeToken();
680    } else {
681      if (Tok.is(tok::amp)) {
682        Kind = LCK_ByRef;
683        ConsumeToken();
684
685        if (Tok.is(tok::code_completion)) {
686          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
687                                               /*AfterAmpersand=*/true);
688          ConsumeCodeCompletionToken();
689          break;
690        }
691      }
692
693      if (Tok.is(tok::identifier)) {
694        Id = Tok.getIdentifierInfo();
695        Loc = ConsumeToken();
696
697        if (Tok.is(tok::ellipsis))
698          EllipsisLoc = ConsumeToken();
699      } else if (Tok.is(tok::kw_this)) {
700        // FIXME: If we want to suggest a fixit here, will need to return more
701        // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
702        // Clear()ed to prevent emission in case of tentative parsing?
703        return DiagResult(diag::err_this_captured_by_reference);
704      } else {
705        return DiagResult(diag::err_expected_capture);
706      }
707    }
708
709    Intro.addCapture(Kind, Loc, Id, EllipsisLoc);
710  }
711
712  T.consumeClose();
713  Intro.Range.setEnd(T.getCloseLocation());
714
715  return DiagResult();
716}
717
718/// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
719///
720/// Returns true if it hit something unexpected.
721bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
722  TentativeParsingAction PA(*this);
723
724  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
725
726  if (DiagID) {
727    PA.Revert();
728    return true;
729  }
730
731  PA.Commit();
732  return false;
733}
734
735/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
736/// expression.
737ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
738                     LambdaIntroducer &Intro) {
739  SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
740  Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
741
742  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
743                                "lambda expression parsing");
744
745  // Parse lambda-declarator[opt].
746  DeclSpec DS(AttrFactory);
747  Declarator D(DS, Declarator::LambdaExprContext);
748
749  if (Tok.is(tok::l_paren)) {
750    ParseScope PrototypeScope(this,
751                              Scope::FunctionPrototypeScope |
752                              Scope::DeclScope);
753
754    SourceLocation DeclLoc, DeclEndLoc;
755    BalancedDelimiterTracker T(*this, tok::l_paren);
756    T.consumeOpen();
757    DeclLoc = T.getOpenLocation();
758
759    // Parse parameter-declaration-clause.
760    ParsedAttributes Attr(AttrFactory);
761    llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
762    SourceLocation EllipsisLoc;
763
764    if (Tok.isNot(tok::r_paren))
765      ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
766
767    T.consumeClose();
768    DeclEndLoc = T.getCloseLocation();
769
770    // Parse 'mutable'[opt].
771    SourceLocation MutableLoc;
772    if (Tok.is(tok::kw_mutable)) {
773      MutableLoc = ConsumeToken();
774      DeclEndLoc = MutableLoc;
775    }
776
777    // Parse exception-specification[opt].
778    ExceptionSpecificationType ESpecType = EST_None;
779    SourceRange ESpecRange;
780    llvm::SmallVector<ParsedType, 2> DynamicExceptions;
781    llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
782    ExprResult NoexceptExpr;
783    ESpecType = MaybeParseExceptionSpecification(ESpecRange,
784                                                 DynamicExceptions,
785                                                 DynamicExceptionRanges,
786                                                 NoexceptExpr);
787
788    if (ESpecType != EST_None)
789      DeclEndLoc = ESpecRange.getEnd();
790
791    // Parse attribute-specifier[opt].
792    MaybeParseCXX0XAttributes(Attr, &DeclEndLoc);
793
794    // Parse trailing-return-type[opt].
795    ParsedType TrailingReturnType;
796    if (Tok.is(tok::arrow)) {
797      SourceRange Range;
798      TrailingReturnType = ParseTrailingReturnType(Range).get();
799      if (Range.getEnd().isValid())
800        DeclEndLoc = Range.getEnd();
801    }
802
803    PrototypeScope.Exit();
804
805    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
806                                           /*isVariadic=*/EllipsisLoc.isValid(),
807                                           EllipsisLoc,
808                                           ParamInfo.data(), ParamInfo.size(),
809                                           DS.getTypeQualifiers(),
810                                           /*RefQualifierIsLValueRef=*/true,
811                                           /*RefQualifierLoc=*/SourceLocation(),
812                                         /*ConstQualifierLoc=*/SourceLocation(),
813                                      /*VolatileQualifierLoc=*/SourceLocation(),
814                                           MutableLoc,
815                                           ESpecType, ESpecRange.getBegin(),
816                                           DynamicExceptions.data(),
817                                           DynamicExceptionRanges.data(),
818                                           DynamicExceptions.size(),
819                                           NoexceptExpr.isUsable() ?
820                                             NoexceptExpr.get() : 0,
821                                           DeclLoc, DeclEndLoc, D,
822                                           TrailingReturnType),
823                  Attr, DeclEndLoc);
824  } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow)) {
825    // It's common to forget that one needs '()' before 'mutable' or the
826    // result type. Deal with this.
827    Diag(Tok, diag::err_lambda_missing_parens)
828      << Tok.is(tok::arrow)
829      << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
830    SourceLocation DeclLoc = Tok.getLocation();
831    SourceLocation DeclEndLoc = DeclLoc;
832
833    // Parse 'mutable', if it's there.
834    SourceLocation MutableLoc;
835    if (Tok.is(tok::kw_mutable)) {
836      MutableLoc = ConsumeToken();
837      DeclEndLoc = MutableLoc;
838    }
839
840    // Parse the return type, if there is one.
841    ParsedType TrailingReturnType;
842    if (Tok.is(tok::arrow)) {
843      SourceRange Range;
844      TrailingReturnType = ParseTrailingReturnType(Range).get();
845      if (Range.getEnd().isValid())
846        DeclEndLoc = Range.getEnd();
847    }
848
849    ParsedAttributes Attr(AttrFactory);
850    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
851                     /*isVariadic=*/false,
852                     /*EllipsisLoc=*/SourceLocation(),
853                     /*Params=*/0, /*NumParams=*/0,
854                     /*TypeQuals=*/0,
855                     /*RefQualifierIsLValueRef=*/true,
856                     /*RefQualifierLoc=*/SourceLocation(),
857                     /*ConstQualifierLoc=*/SourceLocation(),
858                     /*VolatileQualifierLoc=*/SourceLocation(),
859                     MutableLoc,
860                     EST_None,
861                     /*ESpecLoc=*/SourceLocation(),
862                     /*Exceptions=*/0,
863                     /*ExceptionRanges=*/0,
864                     /*NumExceptions=*/0,
865                     /*NoexceptExpr=*/0,
866                     DeclLoc, DeclEndLoc, D,
867                     TrailingReturnType),
868                  Attr, DeclEndLoc);
869  }
870
871
872  // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
873  // it.
874  unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
875  if (getCurScope()->getFlags() & Scope::ThisScope)
876    ScopeFlags |= Scope::ThisScope;
877  ParseScope BodyScope(this, ScopeFlags);
878
879  Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
880
881  // Parse compound-statement.
882  if (!Tok.is(tok::l_brace)) {
883    Diag(Tok, diag::err_expected_lambda_body);
884    Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
885    return ExprError();
886  }
887
888  StmtResult Stmt(ParseCompoundStatementBody());
889  BodyScope.Exit();
890
891  if (!Stmt.isInvalid())
892    return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.take(), getCurScope());
893
894  Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
895  return ExprError();
896}
897
898/// ParseCXXCasts - This handles the various ways to cast expressions to another
899/// type.
900///
901///       postfix-expression: [C++ 5.2p1]
902///         'dynamic_cast' '<' type-name '>' '(' expression ')'
903///         'static_cast' '<' type-name '>' '(' expression ')'
904///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
905///         'const_cast' '<' type-name '>' '(' expression ')'
906///
907ExprResult Parser::ParseCXXCasts() {
908  tok::TokenKind Kind = Tok.getKind();
909  const char *CastName = 0;     // For error messages
910
911  switch (Kind) {
912  default: llvm_unreachable("Unknown C++ cast!");
913  case tok::kw_const_cast:       CastName = "const_cast";       break;
914  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
915  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
916  case tok::kw_static_cast:      CastName = "static_cast";      break;
917  }
918
919  SourceLocation OpLoc = ConsumeToken();
920  SourceLocation LAngleBracketLoc = Tok.getLocation();
921
922  // Check for "<::" which is parsed as "[:".  If found, fix token stream,
923  // diagnose error, suggest fix, and recover parsing.
924  Token Next = NextToken();
925  if (Tok.is(tok::l_square) && Tok.getLength() == 2 && Next.is(tok::colon) &&
926      AreTokensAdjacent(PP, Tok, Next))
927    FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
928
929  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
930    return ExprError();
931
932  // Parse the common declaration-specifiers piece.
933  DeclSpec DS(AttrFactory);
934  ParseSpecifierQualifierList(DS);
935
936  // Parse the abstract-declarator, if present.
937  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
938  ParseDeclarator(DeclaratorInfo);
939
940  SourceLocation RAngleBracketLoc = Tok.getLocation();
941
942  if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
943    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
944
945  SourceLocation LParenLoc, RParenLoc;
946  BalancedDelimiterTracker T(*this, tok::l_paren);
947
948  if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
949    return ExprError();
950
951  ExprResult Result = ParseExpression();
952
953  // Match the ')'.
954  T.consumeClose();
955
956  if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
957    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
958                                       LAngleBracketLoc, DeclaratorInfo,
959                                       RAngleBracketLoc,
960                                       T.getOpenLocation(), Result.take(),
961                                       T.getCloseLocation());
962
963  return move(Result);
964}
965
966/// ParseCXXTypeid - This handles the C++ typeid expression.
967///
968///       postfix-expression: [C++ 5.2p1]
969///         'typeid' '(' expression ')'
970///         'typeid' '(' type-id ')'
971///
972ExprResult Parser::ParseCXXTypeid() {
973  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
974
975  SourceLocation OpLoc = ConsumeToken();
976  SourceLocation LParenLoc, RParenLoc;
977  BalancedDelimiterTracker T(*this, tok::l_paren);
978
979  // typeid expressions are always parenthesized.
980  if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
981    return ExprError();
982  LParenLoc = T.getOpenLocation();
983
984  ExprResult Result;
985
986  if (isTypeIdInParens()) {
987    TypeResult Ty = ParseTypeName();
988
989    // Match the ')'.
990    T.consumeClose();
991    RParenLoc = T.getCloseLocation();
992    if (Ty.isInvalid() || RParenLoc.isInvalid())
993      return ExprError();
994
995    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
996                                    Ty.get().getAsOpaquePtr(), RParenLoc);
997  } else {
998    // C++0x [expr.typeid]p3:
999    //   When typeid is applied to an expression other than an lvalue of a
1000    //   polymorphic class type [...] The expression is an unevaluated
1001    //   operand (Clause 5).
1002    //
1003    // Note that we can't tell whether the expression is an lvalue of a
1004    // polymorphic class type until after we've parsed the expression; we
1005    // speculatively assume the subexpression is unevaluated, and fix it up
1006    // later.
1007    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1008    Result = ParseExpression();
1009
1010    // Match the ')'.
1011    if (Result.isInvalid())
1012      SkipUntil(tok::r_paren);
1013    else {
1014      T.consumeClose();
1015      RParenLoc = T.getCloseLocation();
1016      if (RParenLoc.isInvalid())
1017        return ExprError();
1018
1019      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1020                                      Result.release(), RParenLoc);
1021    }
1022  }
1023
1024  return move(Result);
1025}
1026
1027/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1028///
1029///         '__uuidof' '(' expression ')'
1030///         '__uuidof' '(' type-id ')'
1031///
1032ExprResult Parser::ParseCXXUuidof() {
1033  assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1034
1035  SourceLocation OpLoc = ConsumeToken();
1036  BalancedDelimiterTracker T(*this, tok::l_paren);
1037
1038  // __uuidof expressions are always parenthesized.
1039  if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1040    return ExprError();
1041
1042  ExprResult Result;
1043
1044  if (isTypeIdInParens()) {
1045    TypeResult Ty = ParseTypeName();
1046
1047    // Match the ')'.
1048    T.consumeClose();
1049
1050    if (Ty.isInvalid())
1051      return ExprError();
1052
1053    Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1054                                    Ty.get().getAsOpaquePtr(),
1055                                    T.getCloseLocation());
1056  } else {
1057    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1058    Result = ParseExpression();
1059
1060    // Match the ')'.
1061    if (Result.isInvalid())
1062      SkipUntil(tok::r_paren);
1063    else {
1064      T.consumeClose();
1065
1066      Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1067                                      /*isType=*/false,
1068                                      Result.release(), T.getCloseLocation());
1069    }
1070  }
1071
1072  return move(Result);
1073}
1074
1075/// \brief Parse a C++ pseudo-destructor expression after the base,
1076/// . or -> operator, and nested-name-specifier have already been
1077/// parsed.
1078///
1079///       postfix-expression: [C++ 5.2]
1080///         postfix-expression . pseudo-destructor-name
1081///         postfix-expression -> pseudo-destructor-name
1082///
1083///       pseudo-destructor-name:
1084///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1085///         ::[opt] nested-name-specifier template simple-template-id ::
1086///                 ~type-name
1087///         ::[opt] nested-name-specifier[opt] ~type-name
1088///
1089ExprResult
1090Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
1091                                 tok::TokenKind OpKind,
1092                                 CXXScopeSpec &SS,
1093                                 ParsedType ObjectType) {
1094  // We're parsing either a pseudo-destructor-name or a dependent
1095  // member access that has the same form as a
1096  // pseudo-destructor-name. We parse both in the same way and let
1097  // the action model sort them out.
1098  //
1099  // Note that the ::[opt] nested-name-specifier[opt] has already
1100  // been parsed, and if there was a simple-template-id, it has
1101  // been coalesced into a template-id annotation token.
1102  UnqualifiedId FirstTypeName;
1103  SourceLocation CCLoc;
1104  if (Tok.is(tok::identifier)) {
1105    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1106    ConsumeToken();
1107    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1108    CCLoc = ConsumeToken();
1109  } else if (Tok.is(tok::annot_template_id)) {
1110    // FIXME: retrieve TemplateKWLoc from template-id annotation and
1111    // store it in the pseudo-dtor node (to be used when instantiating it).
1112    FirstTypeName.setTemplateId(
1113                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
1114    ConsumeToken();
1115    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1116    CCLoc = ConsumeToken();
1117  } else {
1118    FirstTypeName.setIdentifier(0, SourceLocation());
1119  }
1120
1121  // Parse the tilde.
1122  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1123  SourceLocation TildeLoc = ConsumeToken();
1124
1125  if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1126    DeclSpec DS(AttrFactory);
1127    ParseDecltypeSpecifier(DS);
1128    if (DS.getTypeSpecType() == TST_error)
1129      return ExprError();
1130    return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc,
1131                                             OpKind, TildeLoc, DS,
1132                                             Tok.is(tok::l_paren));
1133  }
1134
1135  if (!Tok.is(tok::identifier)) {
1136    Diag(Tok, diag::err_destructor_tilde_identifier);
1137    return ExprError();
1138  }
1139
1140  // Parse the second type.
1141  UnqualifiedId SecondTypeName;
1142  IdentifierInfo *Name = Tok.getIdentifierInfo();
1143  SourceLocation NameLoc = ConsumeToken();
1144  SecondTypeName.setIdentifier(Name, NameLoc);
1145
1146  // If there is a '<', the second type name is a template-id. Parse
1147  // it as such.
1148  if (Tok.is(tok::less) &&
1149      ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1150                                   Name, NameLoc,
1151                                   false, ObjectType, SecondTypeName,
1152                                   /*AssumeTemplateName=*/true))
1153    return ExprError();
1154
1155  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
1156                                           OpLoc, OpKind,
1157                                           SS, FirstTypeName, CCLoc,
1158                                           TildeLoc, SecondTypeName,
1159                                           Tok.is(tok::l_paren));
1160}
1161
1162/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1163///
1164///       boolean-literal: [C++ 2.13.5]
1165///         'true'
1166///         'false'
1167ExprResult Parser::ParseCXXBoolLiteral() {
1168  tok::TokenKind Kind = Tok.getKind();
1169  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1170}
1171
1172/// ParseThrowExpression - This handles the C++ throw expression.
1173///
1174///       throw-expression: [C++ 15]
1175///         'throw' assignment-expression[opt]
1176ExprResult Parser::ParseThrowExpression() {
1177  assert(Tok.is(tok::kw_throw) && "Not throw!");
1178  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1179
1180  // If the current token isn't the start of an assignment-expression,
1181  // then the expression is not present.  This handles things like:
1182  //   "C ? throw : (void)42", which is crazy but legal.
1183  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1184  case tok::semi:
1185  case tok::r_paren:
1186  case tok::r_square:
1187  case tok::r_brace:
1188  case tok::colon:
1189  case tok::comma:
1190    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, 0);
1191
1192  default:
1193    ExprResult Expr(ParseAssignmentExpression());
1194    if (Expr.isInvalid()) return move(Expr);
1195    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.take());
1196  }
1197}
1198
1199/// ParseCXXThis - This handles the C++ 'this' pointer.
1200///
1201/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1202/// a non-lvalue expression whose value is the address of the object for which
1203/// the function is called.
1204ExprResult Parser::ParseCXXThis() {
1205  assert(Tok.is(tok::kw_this) && "Not 'this'!");
1206  SourceLocation ThisLoc = ConsumeToken();
1207  return Actions.ActOnCXXThis(ThisLoc);
1208}
1209
1210/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1211/// Can be interpreted either as function-style casting ("int(x)")
1212/// or class type construction ("ClassType(x,y,z)")
1213/// or creation of a value-initialized type ("int()").
1214/// See [C++ 5.2.3].
1215///
1216///       postfix-expression: [C++ 5.2p1]
1217///         simple-type-specifier '(' expression-list[opt] ')'
1218/// [C++0x] simple-type-specifier braced-init-list
1219///         typename-specifier '(' expression-list[opt] ')'
1220/// [C++0x] typename-specifier braced-init-list
1221///
1222ExprResult
1223Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1224  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1225  ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1226
1227  assert((Tok.is(tok::l_paren) ||
1228          (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)))
1229         && "Expected '(' or '{'!");
1230
1231  if (Tok.is(tok::l_brace)) {
1232    ExprResult Init = ParseBraceInitializer();
1233    if (Init.isInvalid())
1234      return Init;
1235    Expr *InitList = Init.take();
1236    return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1237                                             MultiExprArg(&InitList, 1),
1238                                             SourceLocation());
1239  } else {
1240    GreaterThanIsOperatorScope G(GreaterThanIsOperator, true);
1241
1242    BalancedDelimiterTracker T(*this, tok::l_paren);
1243    T.consumeOpen();
1244
1245    ExprVector Exprs(Actions);
1246    CommaLocsTy CommaLocs;
1247
1248    if (Tok.isNot(tok::r_paren)) {
1249      if (ParseExpressionList(Exprs, CommaLocs)) {
1250        SkipUntil(tok::r_paren);
1251        return ExprError();
1252      }
1253    }
1254
1255    // Match the ')'.
1256    T.consumeClose();
1257
1258    // TypeRep could be null, if it references an invalid typedef.
1259    if (!TypeRep)
1260      return ExprError();
1261
1262    assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1263           "Unexpected number of commas!");
1264    return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1265                                             move_arg(Exprs),
1266                                             T.getCloseLocation());
1267  }
1268}
1269
1270/// ParseCXXCondition - if/switch/while condition expression.
1271///
1272///       condition:
1273///         expression
1274///         type-specifier-seq declarator '=' assignment-expression
1275/// [C++11] type-specifier-seq declarator '=' initializer-clause
1276/// [C++11] type-specifier-seq declarator braced-init-list
1277/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1278///             '=' assignment-expression
1279///
1280/// \param ExprResult if the condition was parsed as an expression, the
1281/// parsed expression.
1282///
1283/// \param DeclResult if the condition was parsed as a declaration, the
1284/// parsed declaration.
1285///
1286/// \param Loc The location of the start of the statement that requires this
1287/// condition, e.g., the "for" in a for loop.
1288///
1289/// \param ConvertToBoolean Whether the condition expression should be
1290/// converted to a boolean value.
1291///
1292/// \returns true if there was a parsing, false otherwise.
1293bool Parser::ParseCXXCondition(ExprResult &ExprOut,
1294                               Decl *&DeclOut,
1295                               SourceLocation Loc,
1296                               bool ConvertToBoolean) {
1297  if (Tok.is(tok::code_completion)) {
1298    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1299    cutOffParsing();
1300    return true;
1301  }
1302
1303  if (!isCXXConditionDeclaration()) {
1304    // Parse the expression.
1305    ExprOut = ParseExpression(); // expression
1306    DeclOut = 0;
1307    if (ExprOut.isInvalid())
1308      return true;
1309
1310    // If required, convert to a boolean value.
1311    if (ConvertToBoolean)
1312      ExprOut
1313        = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
1314    return ExprOut.isInvalid();
1315  }
1316
1317  // type-specifier-seq
1318  DeclSpec DS(AttrFactory);
1319  ParseSpecifierQualifierList(DS);
1320
1321  // declarator
1322  Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1323  ParseDeclarator(DeclaratorInfo);
1324
1325  // simple-asm-expr[opt]
1326  if (Tok.is(tok::kw_asm)) {
1327    SourceLocation Loc;
1328    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1329    if (AsmLabel.isInvalid()) {
1330      SkipUntil(tok::semi);
1331      return true;
1332    }
1333    DeclaratorInfo.setAsmLabel(AsmLabel.release());
1334    DeclaratorInfo.SetRangeEnd(Loc);
1335  }
1336
1337  // If attributes are present, parse them.
1338  MaybeParseGNUAttributes(DeclaratorInfo);
1339
1340  // Type-check the declaration itself.
1341  DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
1342                                                        DeclaratorInfo);
1343  DeclOut = Dcl.get();
1344  ExprOut = ExprError();
1345
1346  // '=' assignment-expression
1347  // If a '==' or '+=' is found, suggest a fixit to '='.
1348  bool CopyInitialization = isTokenEqualOrEqualTypo();
1349  if (CopyInitialization)
1350    ConsumeToken();
1351
1352  ExprResult InitExpr = ExprError();
1353  if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1354    Diag(Tok.getLocation(),
1355         diag::warn_cxx98_compat_generalized_initializer_lists);
1356    InitExpr = ParseBraceInitializer();
1357  } else if (CopyInitialization) {
1358    InitExpr = ParseAssignmentExpression();
1359  } else if (Tok.is(tok::l_paren)) {
1360    // This was probably an attempt to initialize the variable.
1361    SourceLocation LParen = ConsumeParen(), RParen = LParen;
1362    if (SkipUntil(tok::r_paren, true, /*DontConsume=*/true))
1363      RParen = ConsumeParen();
1364    Diag(DeclOut ? DeclOut->getLocation() : LParen,
1365         diag::err_expected_init_in_condition_lparen)
1366      << SourceRange(LParen, RParen);
1367  } else {
1368    Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
1369         diag::err_expected_init_in_condition);
1370  }
1371
1372  if (!InitExpr.isInvalid())
1373    Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization,
1374                                 DS.getTypeSpecType() == DeclSpec::TST_auto);
1375
1376  // FIXME: Build a reference to this declaration? Convert it to bool?
1377  // (This is currently handled by Sema).
1378
1379  Actions.FinalizeDeclaration(DeclOut);
1380
1381  return false;
1382}
1383
1384/// \brief Determine whether the current token starts a C++
1385/// simple-type-specifier.
1386bool Parser::isCXXSimpleTypeSpecifier() const {
1387  switch (Tok.getKind()) {
1388  case tok::annot_typename:
1389  case tok::kw_short:
1390  case tok::kw_long:
1391  case tok::kw___int64:
1392  case tok::kw___int128:
1393  case tok::kw_signed:
1394  case tok::kw_unsigned:
1395  case tok::kw_void:
1396  case tok::kw_char:
1397  case tok::kw_int:
1398  case tok::kw_half:
1399  case tok::kw_float:
1400  case tok::kw_double:
1401  case tok::kw_wchar_t:
1402  case tok::kw_char16_t:
1403  case tok::kw_char32_t:
1404  case tok::kw_bool:
1405  case tok::kw_decltype:
1406  case tok::kw_typeof:
1407  case tok::kw___underlying_type:
1408    return true;
1409
1410  default:
1411    break;
1412  }
1413
1414  return false;
1415}
1416
1417/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1418/// This should only be called when the current token is known to be part of
1419/// simple-type-specifier.
1420///
1421///       simple-type-specifier:
1422///         '::'[opt] nested-name-specifier[opt] type-name
1423///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1424///         char
1425///         wchar_t
1426///         bool
1427///         short
1428///         int
1429///         long
1430///         signed
1431///         unsigned
1432///         float
1433///         double
1434///         void
1435/// [GNU]   typeof-specifier
1436/// [C++0x] auto               [TODO]
1437///
1438///       type-name:
1439///         class-name
1440///         enum-name
1441///         typedef-name
1442///
1443void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1444  DS.SetRangeStart(Tok.getLocation());
1445  const char *PrevSpec;
1446  unsigned DiagID;
1447  SourceLocation Loc = Tok.getLocation();
1448
1449  switch (Tok.getKind()) {
1450  case tok::identifier:   // foo::bar
1451  case tok::coloncolon:   // ::foo::bar
1452    llvm_unreachable("Annotation token should already be formed!");
1453  default:
1454    llvm_unreachable("Not a simple-type-specifier token!");
1455
1456  // type-name
1457  case tok::annot_typename: {
1458    if (getTypeAnnotation(Tok))
1459      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1460                         getTypeAnnotation(Tok));
1461    else
1462      DS.SetTypeSpecError();
1463
1464    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1465    ConsumeToken();
1466
1467    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1468    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1469    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1470    // just a normal reference to a typedef name.
1471    if (Tok.is(tok::less) && getLangOpts().ObjC1)
1472      ParseObjCProtocolQualifiers(DS);
1473
1474    DS.Finish(Diags, PP);
1475    return;
1476  }
1477
1478  // builtin types
1479  case tok::kw_short:
1480    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1481    break;
1482  case tok::kw_long:
1483    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
1484    break;
1485  case tok::kw___int64:
1486    DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID);
1487    break;
1488  case tok::kw_signed:
1489    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1490    break;
1491  case tok::kw_unsigned:
1492    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1493    break;
1494  case tok::kw_void:
1495    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1496    break;
1497  case tok::kw_char:
1498    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1499    break;
1500  case tok::kw_int:
1501    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1502    break;
1503  case tok::kw___int128:
1504    DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID);
1505    break;
1506  case tok::kw_half:
1507    DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
1508    break;
1509  case tok::kw_float:
1510    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1511    break;
1512  case tok::kw_double:
1513    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1514    break;
1515  case tok::kw_wchar_t:
1516    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1517    break;
1518  case tok::kw_char16_t:
1519    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1520    break;
1521  case tok::kw_char32_t:
1522    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1523    break;
1524  case tok::kw_bool:
1525    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1526    break;
1527  case tok::annot_decltype:
1528  case tok::kw_decltype:
1529    DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1530    return DS.Finish(Diags, PP);
1531
1532  // GNU typeof support.
1533  case tok::kw_typeof:
1534    ParseTypeofSpecifier(DS);
1535    DS.Finish(Diags, PP);
1536    return;
1537  }
1538  if (Tok.is(tok::annot_typename))
1539    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1540  else
1541    DS.SetRangeEnd(Tok.getLocation());
1542  ConsumeToken();
1543  DS.Finish(Diags, PP);
1544}
1545
1546/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1547/// [dcl.name]), which is a non-empty sequence of type-specifiers,
1548/// e.g., "const short int". Note that the DeclSpec is *not* finished
1549/// by parsing the type-specifier-seq, because these sequences are
1550/// typically followed by some form of declarator. Returns true and
1551/// emits diagnostics if this is not a type-specifier-seq, false
1552/// otherwise.
1553///
1554///   type-specifier-seq: [C++ 8.1]
1555///     type-specifier type-specifier-seq[opt]
1556///
1557bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1558  ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
1559  DS.Finish(Diags, PP);
1560  return false;
1561}
1562
1563/// \brief Finish parsing a C++ unqualified-id that is a template-id of
1564/// some form.
1565///
1566/// This routine is invoked when a '<' is encountered after an identifier or
1567/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1568/// whether the unqualified-id is actually a template-id. This routine will
1569/// then parse the template arguments and form the appropriate template-id to
1570/// return to the caller.
1571///
1572/// \param SS the nested-name-specifier that precedes this template-id, if
1573/// we're actually parsing a qualified-id.
1574///
1575/// \param Name for constructor and destructor names, this is the actual
1576/// identifier that may be a template-name.
1577///
1578/// \param NameLoc the location of the class-name in a constructor or
1579/// destructor.
1580///
1581/// \param EnteringContext whether we're entering the scope of the
1582/// nested-name-specifier.
1583///
1584/// \param ObjectType if this unqualified-id occurs within a member access
1585/// expression, the type of the base object whose member is being accessed.
1586///
1587/// \param Id as input, describes the template-name or operator-function-id
1588/// that precedes the '<'. If template arguments were parsed successfully,
1589/// will be updated with the template-id.
1590///
1591/// \param AssumeTemplateId When true, this routine will assume that the name
1592/// refers to a template without performing name lookup to verify.
1593///
1594/// \returns true if a parse error occurred, false otherwise.
1595bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1596                                          SourceLocation TemplateKWLoc,
1597                                          IdentifierInfo *Name,
1598                                          SourceLocation NameLoc,
1599                                          bool EnteringContext,
1600                                          ParsedType ObjectType,
1601                                          UnqualifiedId &Id,
1602                                          bool AssumeTemplateId) {
1603  assert((AssumeTemplateId || Tok.is(tok::less)) &&
1604         "Expected '<' to finish parsing a template-id");
1605
1606  TemplateTy Template;
1607  TemplateNameKind TNK = TNK_Non_template;
1608  switch (Id.getKind()) {
1609  case UnqualifiedId::IK_Identifier:
1610  case UnqualifiedId::IK_OperatorFunctionId:
1611  case UnqualifiedId::IK_LiteralOperatorId:
1612    if (AssumeTemplateId) {
1613      TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
1614                                               Id, ObjectType, EnteringContext,
1615                                               Template);
1616      if (TNK == TNK_Non_template)
1617        return true;
1618    } else {
1619      bool MemberOfUnknownSpecialization;
1620      TNK = Actions.isTemplateName(getCurScope(), SS,
1621                                   TemplateKWLoc.isValid(), Id,
1622                                   ObjectType, EnteringContext, Template,
1623                                   MemberOfUnknownSpecialization);
1624
1625      if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1626          ObjectType && IsTemplateArgumentList()) {
1627        // We have something like t->getAs<T>(), where getAs is a
1628        // member of an unknown specialization. However, this will only
1629        // parse correctly as a template, so suggest the keyword 'template'
1630        // before 'getAs' and treat this as a dependent template name.
1631        std::string Name;
1632        if (Id.getKind() == UnqualifiedId::IK_Identifier)
1633          Name = Id.Identifier->getName();
1634        else {
1635          Name = "operator ";
1636          if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1637            Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1638          else
1639            Name += Id.Identifier->getName();
1640        }
1641        Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1642          << Name
1643          << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1644        TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1645                                                 SS, TemplateKWLoc, Id,
1646                                                 ObjectType, EnteringContext,
1647                                                 Template);
1648        if (TNK == TNK_Non_template)
1649          return true;
1650      }
1651    }
1652    break;
1653
1654  case UnqualifiedId::IK_ConstructorName: {
1655    UnqualifiedId TemplateName;
1656    bool MemberOfUnknownSpecialization;
1657    TemplateName.setIdentifier(Name, NameLoc);
1658    TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1659                                 TemplateName, ObjectType,
1660                                 EnteringContext, Template,
1661                                 MemberOfUnknownSpecialization);
1662    break;
1663  }
1664
1665  case UnqualifiedId::IK_DestructorName: {
1666    UnqualifiedId TemplateName;
1667    bool MemberOfUnknownSpecialization;
1668    TemplateName.setIdentifier(Name, NameLoc);
1669    if (ObjectType) {
1670      TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1671                                               SS, TemplateKWLoc, TemplateName,
1672                                               ObjectType, EnteringContext,
1673                                               Template);
1674      if (TNK == TNK_Non_template)
1675        return true;
1676    } else {
1677      TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1678                                   TemplateName, ObjectType,
1679                                   EnteringContext, Template,
1680                                   MemberOfUnknownSpecialization);
1681
1682      if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1683        Diag(NameLoc, diag::err_destructor_template_id)
1684          << Name << SS.getRange();
1685        return true;
1686      }
1687    }
1688    break;
1689  }
1690
1691  default:
1692    return false;
1693  }
1694
1695  if (TNK == TNK_Non_template)
1696    return false;
1697
1698  // Parse the enclosed template argument list.
1699  SourceLocation LAngleLoc, RAngleLoc;
1700  TemplateArgList TemplateArgs;
1701  if (Tok.is(tok::less) &&
1702      ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1703                                       SS, true, LAngleLoc,
1704                                       TemplateArgs,
1705                                       RAngleLoc))
1706    return true;
1707
1708  if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1709      Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1710      Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1711    // Form a parsed representation of the template-id to be stored in the
1712    // UnqualifiedId.
1713    TemplateIdAnnotation *TemplateId
1714      = TemplateIdAnnotation::Allocate(TemplateArgs.size());
1715
1716    if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1717      TemplateId->Name = Id.Identifier;
1718      TemplateId->Operator = OO_None;
1719      TemplateId->TemplateNameLoc = Id.StartLocation;
1720    } else {
1721      TemplateId->Name = 0;
1722      TemplateId->Operator = Id.OperatorFunctionId.Operator;
1723      TemplateId->TemplateNameLoc = Id.StartLocation;
1724    }
1725
1726    TemplateId->SS = SS;
1727    TemplateId->TemplateKWLoc = TemplateKWLoc;
1728    TemplateId->Template = Template;
1729    TemplateId->Kind = TNK;
1730    TemplateId->LAngleLoc = LAngleLoc;
1731    TemplateId->RAngleLoc = RAngleLoc;
1732    ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1733    for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1734         Arg != ArgEnd; ++Arg)
1735      Args[Arg] = TemplateArgs[Arg];
1736
1737    Id.setTemplateId(TemplateId);
1738    return false;
1739  }
1740
1741  // Bundle the template arguments together.
1742  ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1743                                     TemplateArgs.size());
1744
1745  // Constructor and destructor names.
1746  TypeResult Type
1747    = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
1748                                  Template, NameLoc,
1749                                  LAngleLoc, TemplateArgsPtr, RAngleLoc,
1750                                  /*IsCtorOrDtorName=*/true);
1751  if (Type.isInvalid())
1752    return true;
1753
1754  if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1755    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1756  else
1757    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1758
1759  return false;
1760}
1761
1762/// \brief Parse an operator-function-id or conversion-function-id as part
1763/// of a C++ unqualified-id.
1764///
1765/// This routine is responsible only for parsing the operator-function-id or
1766/// conversion-function-id; it does not handle template arguments in any way.
1767///
1768/// \code
1769///       operator-function-id: [C++ 13.5]
1770///         'operator' operator
1771///
1772///       operator: one of
1773///            new   delete  new[]   delete[]
1774///            +     -    *  /    %  ^    &   |   ~
1775///            !     =    <  >    += -=   *=  /=  %=
1776///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1777///            <=    >=   && ||   ++ --   ,   ->* ->
1778///            ()    []
1779///
1780///       conversion-function-id: [C++ 12.3.2]
1781///         operator conversion-type-id
1782///
1783///       conversion-type-id:
1784///         type-specifier-seq conversion-declarator[opt]
1785///
1786///       conversion-declarator:
1787///         ptr-operator conversion-declarator[opt]
1788/// \endcode
1789///
1790/// \param The nested-name-specifier that preceded this unqualified-id. If
1791/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1792///
1793/// \param EnteringContext whether we are entering the scope of the
1794/// nested-name-specifier.
1795///
1796/// \param ObjectType if this unqualified-id occurs within a member access
1797/// expression, the type of the base object whose member is being accessed.
1798///
1799/// \param Result on a successful parse, contains the parsed unqualified-id.
1800///
1801/// \returns true if parsing fails, false otherwise.
1802bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1803                                        ParsedType ObjectType,
1804                                        UnqualifiedId &Result) {
1805  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1806
1807  // Consume the 'operator' keyword.
1808  SourceLocation KeywordLoc = ConsumeToken();
1809
1810  // Determine what kind of operator name we have.
1811  unsigned SymbolIdx = 0;
1812  SourceLocation SymbolLocations[3];
1813  OverloadedOperatorKind Op = OO_None;
1814  switch (Tok.getKind()) {
1815    case tok::kw_new:
1816    case tok::kw_delete: {
1817      bool isNew = Tok.getKind() == tok::kw_new;
1818      // Consume the 'new' or 'delete'.
1819      SymbolLocations[SymbolIdx++] = ConsumeToken();
1820      // Check for array new/delete.
1821      if (Tok.is(tok::l_square) &&
1822          (!getLangOpts().CPlusPlus0x || NextToken().isNot(tok::l_square))) {
1823        // Consume the '[' and ']'.
1824        BalancedDelimiterTracker T(*this, tok::l_square);
1825        T.consumeOpen();
1826        T.consumeClose();
1827        if (T.getCloseLocation().isInvalid())
1828          return true;
1829
1830        SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1831        SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1832        Op = isNew? OO_Array_New : OO_Array_Delete;
1833      } else {
1834        Op = isNew? OO_New : OO_Delete;
1835      }
1836      break;
1837    }
1838
1839#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1840    case tok::Token:                                                     \
1841      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1842      Op = OO_##Name;                                                    \
1843      break;
1844#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1845#include "clang/Basic/OperatorKinds.def"
1846
1847    case tok::l_paren: {
1848      // Consume the '(' and ')'.
1849      BalancedDelimiterTracker T(*this, tok::l_paren);
1850      T.consumeOpen();
1851      T.consumeClose();
1852      if (T.getCloseLocation().isInvalid())
1853        return true;
1854
1855      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1856      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1857      Op = OO_Call;
1858      break;
1859    }
1860
1861    case tok::l_square: {
1862      // Consume the '[' and ']'.
1863      BalancedDelimiterTracker T(*this, tok::l_square);
1864      T.consumeOpen();
1865      T.consumeClose();
1866      if (T.getCloseLocation().isInvalid())
1867        return true;
1868
1869      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1870      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1871      Op = OO_Subscript;
1872      break;
1873    }
1874
1875    case tok::code_completion: {
1876      // Code completion for the operator name.
1877      Actions.CodeCompleteOperatorName(getCurScope());
1878      cutOffParsing();
1879      // Don't try to parse any further.
1880      return true;
1881    }
1882
1883    default:
1884      break;
1885  }
1886
1887  if (Op != OO_None) {
1888    // We have parsed an operator-function-id.
1889    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1890    return false;
1891  }
1892
1893  // Parse a literal-operator-id.
1894  //
1895  //   literal-operator-id: [C++0x 13.5.8]
1896  //     operator "" identifier
1897
1898  if (getLangOpts().CPlusPlus0x && isTokenStringLiteral()) {
1899    Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
1900
1901    SourceLocation DiagLoc;
1902    unsigned DiagId = 0;
1903
1904    // We're past translation phase 6, so perform string literal concatenation
1905    // before checking for "".
1906    llvm::SmallVector<Token, 4> Toks;
1907    llvm::SmallVector<SourceLocation, 4> TokLocs;
1908    while (isTokenStringLiteral()) {
1909      if (!Tok.is(tok::string_literal) && !DiagId) {
1910        DiagLoc = Tok.getLocation();
1911        DiagId = diag::err_literal_operator_string_prefix;
1912      }
1913      Toks.push_back(Tok);
1914      TokLocs.push_back(ConsumeStringToken());
1915    }
1916
1917    StringLiteralParser Literal(Toks.data(), Toks.size(), PP);
1918    if (Literal.hadError)
1919      return true;
1920
1921    // Grab the literal operator's suffix, which will be either the next token
1922    // or a ud-suffix from the string literal.
1923    IdentifierInfo *II = 0;
1924    SourceLocation SuffixLoc;
1925    if (!Literal.getUDSuffix().empty()) {
1926      II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
1927      SuffixLoc =
1928        Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
1929                                       Literal.getUDSuffixOffset(),
1930                                       PP.getSourceManager(), getLangOpts());
1931      // This form is not permitted by the standard (yet).
1932      DiagLoc = SuffixLoc;
1933      DiagId = diag::err_literal_operator_missing_space;
1934    } else if (Tok.is(tok::identifier)) {
1935      II = Tok.getIdentifierInfo();
1936      SuffixLoc = ConsumeToken();
1937      TokLocs.push_back(SuffixLoc);
1938    } else {
1939      Diag(Tok.getLocation(), diag::err_expected_ident);
1940      return true;
1941    }
1942
1943    // The string literal must be empty.
1944    if (!Literal.GetString().empty() || Literal.Pascal) {
1945      DiagLoc = TokLocs.front();
1946      DiagId = diag::err_literal_operator_string_not_empty;
1947    }
1948
1949    if (DiagId) {
1950      // This isn't a valid literal-operator-id, but we think we know
1951      // what the user meant. Tell them what they should have written.
1952      llvm::SmallString<32> Str;
1953      Str += "\"\" ";
1954      Str += II->getName();
1955      Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
1956          SourceRange(TokLocs.front(), TokLocs.back()), Str);
1957    }
1958
1959    Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
1960    return false;
1961  }
1962
1963  // Parse a conversion-function-id.
1964  //
1965  //   conversion-function-id: [C++ 12.3.2]
1966  //     operator conversion-type-id
1967  //
1968  //   conversion-type-id:
1969  //     type-specifier-seq conversion-declarator[opt]
1970  //
1971  //   conversion-declarator:
1972  //     ptr-operator conversion-declarator[opt]
1973
1974  // Parse the type-specifier-seq.
1975  DeclSpec DS(AttrFactory);
1976  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1977    return true;
1978
1979  // Parse the conversion-declarator, which is merely a sequence of
1980  // ptr-operators.
1981  Declarator D(DS, Declarator::TypeNameContext);
1982  ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1983
1984  // Finish up the type.
1985  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
1986  if (Ty.isInvalid())
1987    return true;
1988
1989  // Note that this is a conversion-function-id.
1990  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1991                                 D.getSourceRange().getEnd());
1992  return false;
1993}
1994
1995/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1996/// name of an entity.
1997///
1998/// \code
1999///       unqualified-id: [C++ expr.prim.general]
2000///         identifier
2001///         operator-function-id
2002///         conversion-function-id
2003/// [C++0x] literal-operator-id [TODO]
2004///         ~ class-name
2005///         template-id
2006///
2007/// \endcode
2008///
2009/// \param The nested-name-specifier that preceded this unqualified-id. If
2010/// non-empty, then we are parsing the unqualified-id of a qualified-id.
2011///
2012/// \param EnteringContext whether we are entering the scope of the
2013/// nested-name-specifier.
2014///
2015/// \param AllowDestructorName whether we allow parsing of a destructor name.
2016///
2017/// \param AllowConstructorName whether we allow parsing a constructor name.
2018///
2019/// \param ObjectType if this unqualified-id occurs within a member access
2020/// expression, the type of the base object whose member is being accessed.
2021///
2022/// \param Result on a successful parse, contains the parsed unqualified-id.
2023///
2024/// \returns true if parsing fails, false otherwise.
2025bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2026                                bool AllowDestructorName,
2027                                bool AllowConstructorName,
2028                                ParsedType ObjectType,
2029                                SourceLocation& TemplateKWLoc,
2030                                UnqualifiedId &Result) {
2031
2032  // Handle 'A::template B'. This is for template-ids which have not
2033  // already been annotated by ParseOptionalCXXScopeSpecifier().
2034  bool TemplateSpecified = false;
2035  if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2036      (ObjectType || SS.isSet())) {
2037    TemplateSpecified = true;
2038    TemplateKWLoc = ConsumeToken();
2039  }
2040
2041  // unqualified-id:
2042  //   identifier
2043  //   template-id (when it hasn't already been annotated)
2044  if (Tok.is(tok::identifier)) {
2045    // Consume the identifier.
2046    IdentifierInfo *Id = Tok.getIdentifierInfo();
2047    SourceLocation IdLoc = ConsumeToken();
2048
2049    if (!getLangOpts().CPlusPlus) {
2050      // If we're not in C++, only identifiers matter. Record the
2051      // identifier and return.
2052      Result.setIdentifier(Id, IdLoc);
2053      return false;
2054    }
2055
2056    if (AllowConstructorName &&
2057        Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2058      // We have parsed a constructor name.
2059      ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
2060                                          &SS, false, false,
2061                                          ParsedType(),
2062                                          /*IsCtorOrDtorName=*/true,
2063                                          /*NonTrivialTypeSourceInfo=*/true);
2064      Result.setConstructorName(Ty, IdLoc, IdLoc);
2065    } else {
2066      // We have parsed an identifier.
2067      Result.setIdentifier(Id, IdLoc);
2068    }
2069
2070    // If the next token is a '<', we may have a template.
2071    if (TemplateSpecified || Tok.is(tok::less))
2072      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2073                                          EnteringContext, ObjectType,
2074                                          Result, TemplateSpecified);
2075
2076    return false;
2077  }
2078
2079  // unqualified-id:
2080  //   template-id (already parsed and annotated)
2081  if (Tok.is(tok::annot_template_id)) {
2082    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2083
2084    // If the template-name names the current class, then this is a constructor
2085    if (AllowConstructorName && TemplateId->Name &&
2086        Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2087      if (SS.isSet()) {
2088        // C++ [class.qual]p2 specifies that a qualified template-name
2089        // is taken as the constructor name where a constructor can be
2090        // declared. Thus, the template arguments are extraneous, so
2091        // complain about them and remove them entirely.
2092        Diag(TemplateId->TemplateNameLoc,
2093             diag::err_out_of_line_constructor_template_id)
2094          << TemplateId->Name
2095          << FixItHint::CreateRemoval(
2096                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2097        ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
2098                                            TemplateId->TemplateNameLoc,
2099                                            getCurScope(),
2100                                            &SS, false, false,
2101                                            ParsedType(),
2102                                            /*IsCtorOrDtorName=*/true,
2103                                            /*NontrivialTypeSourceInfo=*/true);
2104        Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2105                                  TemplateId->RAngleLoc);
2106        ConsumeToken();
2107        return false;
2108      }
2109
2110      Result.setConstructorTemplateId(TemplateId);
2111      ConsumeToken();
2112      return false;
2113    }
2114
2115    // We have already parsed a template-id; consume the annotation token as
2116    // our unqualified-id.
2117    Result.setTemplateId(TemplateId);
2118    TemplateKWLoc = TemplateId->TemplateKWLoc;
2119    ConsumeToken();
2120    return false;
2121  }
2122
2123  // unqualified-id:
2124  //   operator-function-id
2125  //   conversion-function-id
2126  if (Tok.is(tok::kw_operator)) {
2127    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2128      return true;
2129
2130    // If we have an operator-function-id or a literal-operator-id and the next
2131    // token is a '<', we may have a
2132    //
2133    //   template-id:
2134    //     operator-function-id < template-argument-list[opt] >
2135    if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2136         Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2137        (TemplateSpecified || Tok.is(tok::less)))
2138      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2139                                          0, SourceLocation(),
2140                                          EnteringContext, ObjectType,
2141                                          Result, TemplateSpecified);
2142
2143    return false;
2144  }
2145
2146  if (getLangOpts().CPlusPlus &&
2147      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2148    // C++ [expr.unary.op]p10:
2149    //   There is an ambiguity in the unary-expression ~X(), where X is a
2150    //   class-name. The ambiguity is resolved in favor of treating ~ as a
2151    //    unary complement rather than treating ~X as referring to a destructor.
2152
2153    // Parse the '~'.
2154    SourceLocation TildeLoc = ConsumeToken();
2155
2156    if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2157      DeclSpec DS(AttrFactory);
2158      SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2159      if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2160        Result.setDestructorName(TildeLoc, Type, EndLoc);
2161        return false;
2162      }
2163      return true;
2164    }
2165
2166    // Parse the class-name.
2167    if (Tok.isNot(tok::identifier)) {
2168      Diag(Tok, diag::err_destructor_tilde_identifier);
2169      return true;
2170    }
2171
2172    // Parse the class-name (or template-name in a simple-template-id).
2173    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2174    SourceLocation ClassNameLoc = ConsumeToken();
2175
2176    if (TemplateSpecified || Tok.is(tok::less)) {
2177      Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
2178      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2179                                          ClassName, ClassNameLoc,
2180                                          EnteringContext, ObjectType,
2181                                          Result, TemplateSpecified);
2182    }
2183
2184    // Note that this is a destructor name.
2185    ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2186                                              ClassNameLoc, getCurScope(),
2187                                              SS, ObjectType,
2188                                              EnteringContext);
2189    if (!Ty)
2190      return true;
2191
2192    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2193    return false;
2194  }
2195
2196  Diag(Tok, diag::err_expected_unqualified_id)
2197    << getLangOpts().CPlusPlus;
2198  return true;
2199}
2200
2201/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2202/// memory in a typesafe manner and call constructors.
2203///
2204/// This method is called to parse the new expression after the optional :: has
2205/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
2206/// is its location.  Otherwise, "Start" is the location of the 'new' token.
2207///
2208///        new-expression:
2209///                   '::'[opt] 'new' new-placement[opt] new-type-id
2210///                                     new-initializer[opt]
2211///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2212///                                     new-initializer[opt]
2213///
2214///        new-placement:
2215///                   '(' expression-list ')'
2216///
2217///        new-type-id:
2218///                   type-specifier-seq new-declarator[opt]
2219/// [GNU]             attributes type-specifier-seq new-declarator[opt]
2220///
2221///        new-declarator:
2222///                   ptr-operator new-declarator[opt]
2223///                   direct-new-declarator
2224///
2225///        new-initializer:
2226///                   '(' expression-list[opt] ')'
2227/// [C++0x]           braced-init-list
2228///
2229ExprResult
2230Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2231  assert(Tok.is(tok::kw_new) && "expected 'new' token");
2232  ConsumeToken();   // Consume 'new'
2233
2234  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2235  // second form of new-expression. It can't be a new-type-id.
2236
2237  ExprVector PlacementArgs(Actions);
2238  SourceLocation PlacementLParen, PlacementRParen;
2239
2240  SourceRange TypeIdParens;
2241  DeclSpec DS(AttrFactory);
2242  Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2243  if (Tok.is(tok::l_paren)) {
2244    // If it turns out to be a placement, we change the type location.
2245    BalancedDelimiterTracker T(*this, tok::l_paren);
2246    T.consumeOpen();
2247    PlacementLParen = T.getOpenLocation();
2248    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2249      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2250      return ExprError();
2251    }
2252
2253    T.consumeClose();
2254    PlacementRParen = T.getCloseLocation();
2255    if (PlacementRParen.isInvalid()) {
2256      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2257      return ExprError();
2258    }
2259
2260    if (PlacementArgs.empty()) {
2261      // Reset the placement locations. There was no placement.
2262      TypeIdParens = T.getRange();
2263      PlacementLParen = PlacementRParen = SourceLocation();
2264    } else {
2265      // We still need the type.
2266      if (Tok.is(tok::l_paren)) {
2267        BalancedDelimiterTracker T(*this, tok::l_paren);
2268        T.consumeOpen();
2269        MaybeParseGNUAttributes(DeclaratorInfo);
2270        ParseSpecifierQualifierList(DS);
2271        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2272        ParseDeclarator(DeclaratorInfo);
2273        T.consumeClose();
2274        TypeIdParens = T.getRange();
2275      } else {
2276        MaybeParseGNUAttributes(DeclaratorInfo);
2277        if (ParseCXXTypeSpecifierSeq(DS))
2278          DeclaratorInfo.setInvalidType(true);
2279        else {
2280          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2281          ParseDeclaratorInternal(DeclaratorInfo,
2282                                  &Parser::ParseDirectNewDeclarator);
2283        }
2284      }
2285    }
2286  } else {
2287    // A new-type-id is a simplified type-id, where essentially the
2288    // direct-declarator is replaced by a direct-new-declarator.
2289    MaybeParseGNUAttributes(DeclaratorInfo);
2290    if (ParseCXXTypeSpecifierSeq(DS))
2291      DeclaratorInfo.setInvalidType(true);
2292    else {
2293      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2294      ParseDeclaratorInternal(DeclaratorInfo,
2295                              &Parser::ParseDirectNewDeclarator);
2296    }
2297  }
2298  if (DeclaratorInfo.isInvalidType()) {
2299    SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2300    return ExprError();
2301  }
2302
2303  ExprResult Initializer;
2304
2305  if (Tok.is(tok::l_paren)) {
2306    SourceLocation ConstructorLParen, ConstructorRParen;
2307    ExprVector ConstructorArgs(Actions);
2308    BalancedDelimiterTracker T(*this, tok::l_paren);
2309    T.consumeOpen();
2310    ConstructorLParen = T.getOpenLocation();
2311    if (Tok.isNot(tok::r_paren)) {
2312      CommaLocsTy CommaLocs;
2313      if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
2314        SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2315        return ExprError();
2316      }
2317    }
2318    T.consumeClose();
2319    ConstructorRParen = T.getCloseLocation();
2320    if (ConstructorRParen.isInvalid()) {
2321      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2322      return ExprError();
2323    }
2324    Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2325                                             ConstructorRParen,
2326                                             move_arg(ConstructorArgs));
2327  } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus0x) {
2328    Diag(Tok.getLocation(),
2329         diag::warn_cxx98_compat_generalized_initializer_lists);
2330    Initializer = ParseBraceInitializer();
2331  }
2332  if (Initializer.isInvalid())
2333    return Initializer;
2334
2335  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2336                             move_arg(PlacementArgs), PlacementRParen,
2337                             TypeIdParens, DeclaratorInfo, Initializer.take());
2338}
2339
2340/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2341/// passed to ParseDeclaratorInternal.
2342///
2343///        direct-new-declarator:
2344///                   '[' expression ']'
2345///                   direct-new-declarator '[' constant-expression ']'
2346///
2347void Parser::ParseDirectNewDeclarator(Declarator &D) {
2348  // Parse the array dimensions.
2349  bool first = true;
2350  while (Tok.is(tok::l_square)) {
2351    // An array-size expression can't start with a lambda.
2352    if (CheckProhibitedCXX11Attribute())
2353      continue;
2354
2355    BalancedDelimiterTracker T(*this, tok::l_square);
2356    T.consumeOpen();
2357
2358    ExprResult Size(first ? ParseExpression()
2359                                : ParseConstantExpression());
2360    if (Size.isInvalid()) {
2361      // Recover
2362      SkipUntil(tok::r_square);
2363      return;
2364    }
2365    first = false;
2366
2367    T.consumeClose();
2368
2369    // Attributes here appertain to the array type. C++11 [expr.new]p5.
2370    ParsedAttributes Attrs(AttrFactory);
2371    MaybeParseCXX0XAttributes(Attrs);
2372
2373    D.AddTypeInfo(DeclaratorChunk::getArray(0,
2374                                            /*static=*/false, /*star=*/false,
2375                                            Size.release(),
2376                                            T.getOpenLocation(),
2377                                            T.getCloseLocation()),
2378                  Attrs, T.getCloseLocation());
2379
2380    if (T.getCloseLocation().isInvalid())
2381      return;
2382  }
2383}
2384
2385/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2386/// This ambiguity appears in the syntax of the C++ new operator.
2387///
2388///        new-expression:
2389///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2390///                                     new-initializer[opt]
2391///
2392///        new-placement:
2393///                   '(' expression-list ')'
2394///
2395bool Parser::ParseExpressionListOrTypeId(
2396                                   SmallVectorImpl<Expr*> &PlacementArgs,
2397                                         Declarator &D) {
2398  // The '(' was already consumed.
2399  if (isTypeIdInParens()) {
2400    ParseSpecifierQualifierList(D.getMutableDeclSpec());
2401    D.SetSourceRange(D.getDeclSpec().getSourceRange());
2402    ParseDeclarator(D);
2403    return D.isInvalidType();
2404  }
2405
2406  // It's not a type, it has to be an expression list.
2407  // Discard the comma locations - ActOnCXXNew has enough parameters.
2408  CommaLocsTy CommaLocs;
2409  return ParseExpressionList(PlacementArgs, CommaLocs);
2410}
2411
2412/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2413/// to free memory allocated by new.
2414///
2415/// This method is called to parse the 'delete' expression after the optional
2416/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
2417/// and "Start" is its location.  Otherwise, "Start" is the location of the
2418/// 'delete' token.
2419///
2420///        delete-expression:
2421///                   '::'[opt] 'delete' cast-expression
2422///                   '::'[opt] 'delete' '[' ']' cast-expression
2423ExprResult
2424Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2425  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2426  ConsumeToken(); // Consume 'delete'
2427
2428  // Array delete?
2429  bool ArrayDelete = false;
2430  if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
2431    // FIXME: This could be the start of a lambda-expression. We should
2432    // disambiguate this, but that will require arbitrary lookahead if
2433    // the next token is '(':
2434    //   delete [](int*){ /* ... */
2435    ArrayDelete = true;
2436    BalancedDelimiterTracker T(*this, tok::l_square);
2437
2438    T.consumeOpen();
2439    T.consumeClose();
2440    if (T.getCloseLocation().isInvalid())
2441      return ExprError();
2442  }
2443
2444  ExprResult Operand(ParseCastExpression(false));
2445  if (Operand.isInvalid())
2446    return move(Operand);
2447
2448  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
2449}
2450
2451static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
2452  switch(kind) {
2453  default: llvm_unreachable("Not a known unary type trait.");
2454  case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
2455  case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
2456  case tok::kw___has_nothrow_copy:           return UTT_HasNothrowCopy;
2457  case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
2458  case tok::kw___has_trivial_constructor:
2459                                    return UTT_HasTrivialDefaultConstructor;
2460  case tok::kw___has_trivial_copy:           return UTT_HasTrivialCopy;
2461  case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
2462  case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
2463  case tok::kw___is_abstract:             return UTT_IsAbstract;
2464  case tok::kw___is_arithmetic:              return UTT_IsArithmetic;
2465  case tok::kw___is_array:                   return UTT_IsArray;
2466  case tok::kw___is_class:                return UTT_IsClass;
2467  case tok::kw___is_complete_type:           return UTT_IsCompleteType;
2468  case tok::kw___is_compound:                return UTT_IsCompound;
2469  case tok::kw___is_const:                   return UTT_IsConst;
2470  case tok::kw___is_empty:                return UTT_IsEmpty;
2471  case tok::kw___is_enum:                 return UTT_IsEnum;
2472  case tok::kw___is_final:                 return UTT_IsFinal;
2473  case tok::kw___is_floating_point:          return UTT_IsFloatingPoint;
2474  case tok::kw___is_function:                return UTT_IsFunction;
2475  case tok::kw___is_fundamental:             return UTT_IsFundamental;
2476  case tok::kw___is_integral:                return UTT_IsIntegral;
2477  case tok::kw___is_lvalue_reference:        return UTT_IsLvalueReference;
2478  case tok::kw___is_member_function_pointer: return UTT_IsMemberFunctionPointer;
2479  case tok::kw___is_member_object_pointer:   return UTT_IsMemberObjectPointer;
2480  case tok::kw___is_member_pointer:          return UTT_IsMemberPointer;
2481  case tok::kw___is_object:                  return UTT_IsObject;
2482  case tok::kw___is_literal:              return UTT_IsLiteral;
2483  case tok::kw___is_literal_type:         return UTT_IsLiteral;
2484  case tok::kw___is_pod:                  return UTT_IsPOD;
2485  case tok::kw___is_pointer:                 return UTT_IsPointer;
2486  case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
2487  case tok::kw___is_reference:               return UTT_IsReference;
2488  case tok::kw___is_rvalue_reference:        return UTT_IsRvalueReference;
2489  case tok::kw___is_scalar:                  return UTT_IsScalar;
2490  case tok::kw___is_signed:                  return UTT_IsSigned;
2491  case tok::kw___is_standard_layout:         return UTT_IsStandardLayout;
2492  case tok::kw___is_trivial:                 return UTT_IsTrivial;
2493  case tok::kw___is_trivially_copyable:      return UTT_IsTriviallyCopyable;
2494  case tok::kw___is_union:                return UTT_IsUnion;
2495  case tok::kw___is_unsigned:                return UTT_IsUnsigned;
2496  case tok::kw___is_void:                    return UTT_IsVoid;
2497  case tok::kw___is_volatile:                return UTT_IsVolatile;
2498  }
2499}
2500
2501static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
2502  switch(kind) {
2503  default: llvm_unreachable("Not a known binary type trait");
2504  case tok::kw___is_base_of:                 return BTT_IsBaseOf;
2505  case tok::kw___is_convertible:             return BTT_IsConvertible;
2506  case tok::kw___is_same:                    return BTT_IsSame;
2507  case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
2508  case tok::kw___is_convertible_to:          return BTT_IsConvertibleTo;
2509  case tok::kw___is_trivially_assignable:    return BTT_IsTriviallyAssignable;
2510  }
2511}
2512
2513static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2514  switch (kind) {
2515  default: llvm_unreachable("Not a known type trait");
2516  case tok::kw___is_trivially_constructible:
2517    return TT_IsTriviallyConstructible;
2518  }
2519}
2520
2521static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2522  switch(kind) {
2523  default: llvm_unreachable("Not a known binary type trait");
2524  case tok::kw___array_rank:                 return ATT_ArrayRank;
2525  case tok::kw___array_extent:               return ATT_ArrayExtent;
2526  }
2527}
2528
2529static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2530  switch(kind) {
2531  default: llvm_unreachable("Not a known unary expression trait.");
2532  case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
2533  case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
2534  }
2535}
2536
2537/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
2538/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2539/// templates.
2540///
2541///       primary-expression:
2542/// [GNU]             unary-type-trait '(' type-id ')'
2543///
2544ExprResult Parser::ParseUnaryTypeTrait() {
2545  UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
2546  SourceLocation Loc = ConsumeToken();
2547
2548  BalancedDelimiterTracker T(*this, tok::l_paren);
2549  if (T.expectAndConsume(diag::err_expected_lparen))
2550    return ExprError();
2551
2552  // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
2553  // there will be cryptic errors about mismatched parentheses and missing
2554  // specifiers.
2555  TypeResult Ty = ParseTypeName();
2556
2557  T.consumeClose();
2558
2559  if (Ty.isInvalid())
2560    return ExprError();
2561
2562  return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), T.getCloseLocation());
2563}
2564
2565/// ParseBinaryTypeTrait - Parse the built-in binary type-trait
2566/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2567/// templates.
2568///
2569///       primary-expression:
2570/// [GNU]             binary-type-trait '(' type-id ',' type-id ')'
2571///
2572ExprResult Parser::ParseBinaryTypeTrait() {
2573  BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
2574  SourceLocation Loc = ConsumeToken();
2575
2576  BalancedDelimiterTracker T(*this, tok::l_paren);
2577  if (T.expectAndConsume(diag::err_expected_lparen))
2578    return ExprError();
2579
2580  TypeResult LhsTy = ParseTypeName();
2581  if (LhsTy.isInvalid()) {
2582    SkipUntil(tok::r_paren);
2583    return ExprError();
2584  }
2585
2586  if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2587    SkipUntil(tok::r_paren);
2588    return ExprError();
2589  }
2590
2591  TypeResult RhsTy = ParseTypeName();
2592  if (RhsTy.isInvalid()) {
2593    SkipUntil(tok::r_paren);
2594    return ExprError();
2595  }
2596
2597  T.consumeClose();
2598
2599  return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(),
2600                                      T.getCloseLocation());
2601}
2602
2603/// \brief Parse the built-in type-trait pseudo-functions that allow
2604/// implementation of the TR1/C++11 type traits templates.
2605///
2606///       primary-expression:
2607///          type-trait '(' type-id-seq ')'
2608///
2609///       type-id-seq:
2610///          type-id ...[opt] type-id-seq[opt]
2611///
2612ExprResult Parser::ParseTypeTrait() {
2613  TypeTrait Kind = TypeTraitFromTokKind(Tok.getKind());
2614  SourceLocation Loc = ConsumeToken();
2615
2616  BalancedDelimiterTracker Parens(*this, tok::l_paren);
2617  if (Parens.expectAndConsume(diag::err_expected_lparen))
2618    return ExprError();
2619
2620  llvm::SmallVector<ParsedType, 2> Args;
2621  do {
2622    // Parse the next type.
2623    TypeResult Ty = ParseTypeName();
2624    if (Ty.isInvalid()) {
2625      Parens.skipToEnd();
2626      return ExprError();
2627    }
2628
2629    // Parse the ellipsis, if present.
2630    if (Tok.is(tok::ellipsis)) {
2631      Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2632      if (Ty.isInvalid()) {
2633        Parens.skipToEnd();
2634        return ExprError();
2635      }
2636    }
2637
2638    // Add this type to the list of arguments.
2639    Args.push_back(Ty.get());
2640
2641    if (Tok.is(tok::comma)) {
2642      ConsumeToken();
2643      continue;
2644    }
2645
2646    break;
2647  } while (true);
2648
2649  if (Parens.consumeClose())
2650    return ExprError();
2651
2652  return Actions.ActOnTypeTrait(Kind, Loc, Args, Parens.getCloseLocation());
2653}
2654
2655/// ParseArrayTypeTrait - Parse the built-in array type-trait
2656/// pseudo-functions.
2657///
2658///       primary-expression:
2659/// [Embarcadero]     '__array_rank' '(' type-id ')'
2660/// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
2661///
2662ExprResult Parser::ParseArrayTypeTrait() {
2663  ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
2664  SourceLocation Loc = ConsumeToken();
2665
2666  BalancedDelimiterTracker T(*this, tok::l_paren);
2667  if (T.expectAndConsume(diag::err_expected_lparen))
2668    return ExprError();
2669
2670  TypeResult Ty = ParseTypeName();
2671  if (Ty.isInvalid()) {
2672    SkipUntil(tok::comma);
2673    SkipUntil(tok::r_paren);
2674    return ExprError();
2675  }
2676
2677  switch (ATT) {
2678  case ATT_ArrayRank: {
2679    T.consumeClose();
2680    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), NULL,
2681                                       T.getCloseLocation());
2682  }
2683  case ATT_ArrayExtent: {
2684    if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2685      SkipUntil(tok::r_paren);
2686      return ExprError();
2687    }
2688
2689    ExprResult DimExpr = ParseExpression();
2690    T.consumeClose();
2691
2692    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
2693                                       T.getCloseLocation());
2694  }
2695  }
2696  llvm_unreachable("Invalid ArrayTypeTrait!");
2697}
2698
2699/// ParseExpressionTrait - Parse built-in expression-trait
2700/// pseudo-functions like __is_lvalue_expr( xxx ).
2701///
2702///       primary-expression:
2703/// [Embarcadero]     expression-trait '(' expression ')'
2704///
2705ExprResult Parser::ParseExpressionTrait() {
2706  ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
2707  SourceLocation Loc = ConsumeToken();
2708
2709  BalancedDelimiterTracker T(*this, tok::l_paren);
2710  if (T.expectAndConsume(diag::err_expected_lparen))
2711    return ExprError();
2712
2713  ExprResult Expr = ParseExpression();
2714
2715  T.consumeClose();
2716
2717  return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
2718                                      T.getCloseLocation());
2719}
2720
2721
2722/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
2723/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
2724/// based on the context past the parens.
2725ExprResult
2726Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
2727                                         ParsedType &CastTy,
2728                                         BalancedDelimiterTracker &Tracker) {
2729  assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
2730  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
2731  assert(isTypeIdInParens() && "Not a type-id!");
2732
2733  ExprResult Result(true);
2734  CastTy = ParsedType();
2735
2736  // We need to disambiguate a very ugly part of the C++ syntax:
2737  //
2738  // (T())x;  - type-id
2739  // (T())*x; - type-id
2740  // (T())/x; - expression
2741  // (T());   - expression
2742  //
2743  // The bad news is that we cannot use the specialized tentative parser, since
2744  // it can only verify that the thing inside the parens can be parsed as
2745  // type-id, it is not useful for determining the context past the parens.
2746  //
2747  // The good news is that the parser can disambiguate this part without
2748  // making any unnecessary Action calls.
2749  //
2750  // It uses a scheme similar to parsing inline methods. The parenthesized
2751  // tokens are cached, the context that follows is determined (possibly by
2752  // parsing a cast-expression), and then we re-introduce the cached tokens
2753  // into the token stream and parse them appropriately.
2754
2755  ParenParseOption ParseAs;
2756  CachedTokens Toks;
2757
2758  // Store the tokens of the parentheses. We will parse them after we determine
2759  // the context that follows them.
2760  if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
2761    // We didn't find the ')' we expected.
2762    Tracker.consumeClose();
2763    return ExprError();
2764  }
2765
2766  if (Tok.is(tok::l_brace)) {
2767    ParseAs = CompoundLiteral;
2768  } else {
2769    bool NotCastExpr;
2770    // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
2771    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
2772      NotCastExpr = true;
2773    } else {
2774      // Try parsing the cast-expression that may follow.
2775      // If it is not a cast-expression, NotCastExpr will be true and no token
2776      // will be consumed.
2777      Result = ParseCastExpression(false/*isUnaryExpression*/,
2778                                   false/*isAddressofOperand*/,
2779                                   NotCastExpr,
2780                                   // type-id has priority.
2781                                   IsTypeCast);
2782    }
2783
2784    // If we parsed a cast-expression, it's really a type-id, otherwise it's
2785    // an expression.
2786    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
2787  }
2788
2789  // The current token should go after the cached tokens.
2790  Toks.push_back(Tok);
2791  // Re-enter the stored parenthesized tokens into the token stream, so we may
2792  // parse them now.
2793  PP.EnterTokenStream(Toks.data(), Toks.size(),
2794                      true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
2795  // Drop the current token and bring the first cached one. It's the same token
2796  // as when we entered this function.
2797  ConsumeAnyToken();
2798
2799  if (ParseAs >= CompoundLiteral) {
2800    // Parse the type declarator.
2801    DeclSpec DS(AttrFactory);
2802    ParseSpecifierQualifierList(DS);
2803    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2804    ParseDeclarator(DeclaratorInfo);
2805
2806    // Match the ')'.
2807    Tracker.consumeClose();
2808
2809    if (ParseAs == CompoundLiteral) {
2810      ExprType = CompoundLiteral;
2811      TypeResult Ty = ParseTypeName();
2812       return ParseCompoundLiteralExpression(Ty.get(),
2813                                            Tracker.getOpenLocation(),
2814                                            Tracker.getCloseLocation());
2815    }
2816
2817    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
2818    assert(ParseAs == CastExpr);
2819
2820    if (DeclaratorInfo.isInvalidType())
2821      return ExprError();
2822
2823    // Result is what ParseCastExpression returned earlier.
2824    if (!Result.isInvalid())
2825      Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
2826                                    DeclaratorInfo, CastTy,
2827                                    Tracker.getCloseLocation(), Result.take());
2828    return move(Result);
2829  }
2830
2831  // Not a compound literal, and not followed by a cast-expression.
2832  assert(ParseAs == SimpleExpr);
2833
2834  ExprType = SimpleExpr;
2835  Result = ParseExpression();
2836  if (!Result.isInvalid() && Tok.is(tok::r_paren))
2837    Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
2838                                    Tok.getLocation(), Result.take());
2839
2840  // Match the ')'.
2841  if (Result.isInvalid()) {
2842    SkipUntil(tok::r_paren);
2843    return ExprError();
2844  }
2845
2846  Tracker.consumeClose();
2847  return move(Result);
2848}
2849