AnalysisBasedWarnings.cpp revision 6cfa78f6bd4e7d5e23366a0907f8f8792366bc4c
1//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines analysis_warnings::[Policy,Executor].
11// Together they are used by Sema to issue warnings based on inexpensive
12// static analysis algorithms in libAnalysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/AnalysisBasedWarnings.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Basic/SourceManager.h"
20#include "clang/Basic/SourceLocation.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Lex/Lexer.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/EvaluatedExprVisitor.h"
30#include "clang/AST/StmtVisitor.h"
31#include "clang/AST/RecursiveASTVisitor.h"
32#include "clang/Analysis/AnalysisContext.h"
33#include "clang/Analysis/CFG.h"
34#include "clang/Analysis/Analyses/ReachableCode.h"
35#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
36#include "clang/Analysis/Analyses/ThreadSafety.h"
37#include "clang/Analysis/CFGStmtMap.h"
38#include "clang/Analysis/Analyses/UninitializedValues.h"
39#include "llvm/ADT/BitVector.h"
40#include "llvm/ADT/FoldingSet.h"
41#include "llvm/ADT/ImmutableMap.h"
42#include "llvm/ADT/PostOrderIterator.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/StringRef.h"
45#include "llvm/Support/Casting.h"
46#include <algorithm>
47#include <iterator>
48#include <vector>
49#include <deque>
50
51using namespace clang;
52
53//===----------------------------------------------------------------------===//
54// Unreachable code analysis.
55//===----------------------------------------------------------------------===//
56
57namespace {
58  class UnreachableCodeHandler : public reachable_code::Callback {
59    Sema &S;
60  public:
61    UnreachableCodeHandler(Sema &s) : S(s) {}
62
63    void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
64      S.Diag(L, diag::warn_unreachable) << R1 << R2;
65    }
66  };
67}
68
69/// CheckUnreachable - Check for unreachable code.
70static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
71  UnreachableCodeHandler UC(S);
72  reachable_code::FindUnreachableCode(AC, UC);
73}
74
75//===----------------------------------------------------------------------===//
76// Check for missing return value.
77//===----------------------------------------------------------------------===//
78
79enum ControlFlowKind {
80  UnknownFallThrough,
81  NeverFallThrough,
82  MaybeFallThrough,
83  AlwaysFallThrough,
84  NeverFallThroughOrReturn
85};
86
87/// CheckFallThrough - Check that we don't fall off the end of a
88/// Statement that should return a value.
89///
90/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
91/// MaybeFallThrough iff we might or might not fall off the end,
92/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
93/// return.  We assume NeverFallThrough iff we never fall off the end of the
94/// statement but we may return.  We assume that functions not marked noreturn
95/// will return.
96static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
97  CFG *cfg = AC.getCFG();
98  if (cfg == 0) return UnknownFallThrough;
99
100  // The CFG leaves in dead things, and we don't want the dead code paths to
101  // confuse us, so we mark all live things first.
102  llvm::BitVector live(cfg->getNumBlockIDs());
103  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
104                                                          live);
105
106  bool AddEHEdges = AC.getAddEHEdges();
107  if (!AddEHEdges && count != cfg->getNumBlockIDs())
108    // When there are things remaining dead, and we didn't add EH edges
109    // from CallExprs to the catch clauses, we have to go back and
110    // mark them as live.
111    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
112      CFGBlock &b = **I;
113      if (!live[b.getBlockID()]) {
114        if (b.pred_begin() == b.pred_end()) {
115          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
116            // When not adding EH edges from calls, catch clauses
117            // can otherwise seem dead.  Avoid noting them as dead.
118            count += reachable_code::ScanReachableFromBlock(&b, live);
119          continue;
120        }
121      }
122    }
123
124  // Now we know what is live, we check the live precessors of the exit block
125  // and look for fall through paths, being careful to ignore normal returns,
126  // and exceptional paths.
127  bool HasLiveReturn = false;
128  bool HasFakeEdge = false;
129  bool HasPlainEdge = false;
130  bool HasAbnormalEdge = false;
131
132  // Ignore default cases that aren't likely to be reachable because all
133  // enums in a switch(X) have explicit case statements.
134  CFGBlock::FilterOptions FO;
135  FO.IgnoreDefaultsWithCoveredEnums = 1;
136
137  for (CFGBlock::filtered_pred_iterator
138	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
139    const CFGBlock& B = **I;
140    if (!live[B.getBlockID()])
141      continue;
142
143    // Skip blocks which contain an element marked as no-return. They don't
144    // represent actually viable edges into the exit block, so mark them as
145    // abnormal.
146    if (B.hasNoReturnElement()) {
147      HasAbnormalEdge = true;
148      continue;
149    }
150
151    // Destructors can appear after the 'return' in the CFG.  This is
152    // normal.  We need to look pass the destructors for the return
153    // statement (if it exists).
154    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
155
156    for ( ; ri != re ; ++ri)
157      if (isa<CFGStmt>(*ri))
158        break;
159
160    // No more CFGElements in the block?
161    if (ri == re) {
162      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
163        HasAbnormalEdge = true;
164        continue;
165      }
166      // A labeled empty statement, or the entry block...
167      HasPlainEdge = true;
168      continue;
169    }
170
171    CFGStmt CS = cast<CFGStmt>(*ri);
172    const Stmt *S = CS.getStmt();
173    if (isa<ReturnStmt>(S)) {
174      HasLiveReturn = true;
175      continue;
176    }
177    if (isa<ObjCAtThrowStmt>(S)) {
178      HasFakeEdge = true;
179      continue;
180    }
181    if (isa<CXXThrowExpr>(S)) {
182      HasFakeEdge = true;
183      continue;
184    }
185    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
186      if (AS->isMSAsm()) {
187        HasFakeEdge = true;
188        HasLiveReturn = true;
189        continue;
190      }
191    }
192    if (isa<MSAsmStmt>(S)) {
193      // TODO: Verify this is correct.
194      HasFakeEdge = true;
195      HasLiveReturn = true;
196      continue;
197    }
198    if (isa<CXXTryStmt>(S)) {
199      HasAbnormalEdge = true;
200      continue;
201    }
202    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
203        == B.succ_end()) {
204      HasAbnormalEdge = true;
205      continue;
206    }
207
208    HasPlainEdge = true;
209  }
210  if (!HasPlainEdge) {
211    if (HasLiveReturn)
212      return NeverFallThrough;
213    return NeverFallThroughOrReturn;
214  }
215  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
216    return MaybeFallThrough;
217  // This says AlwaysFallThrough for calls to functions that are not marked
218  // noreturn, that don't return.  If people would like this warning to be more
219  // accurate, such functions should be marked as noreturn.
220  return AlwaysFallThrough;
221}
222
223namespace {
224
225struct CheckFallThroughDiagnostics {
226  unsigned diag_MaybeFallThrough_HasNoReturn;
227  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
228  unsigned diag_AlwaysFallThrough_HasNoReturn;
229  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
230  unsigned diag_NeverFallThroughOrReturn;
231  enum { Function, Block, Lambda } funMode;
232  SourceLocation FuncLoc;
233
234  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
235    CheckFallThroughDiagnostics D;
236    D.FuncLoc = Func->getLocation();
237    D.diag_MaybeFallThrough_HasNoReturn =
238      diag::warn_falloff_noreturn_function;
239    D.diag_MaybeFallThrough_ReturnsNonVoid =
240      diag::warn_maybe_falloff_nonvoid_function;
241    D.diag_AlwaysFallThrough_HasNoReturn =
242      diag::warn_falloff_noreturn_function;
243    D.diag_AlwaysFallThrough_ReturnsNonVoid =
244      diag::warn_falloff_nonvoid_function;
245
246    // Don't suggest that virtual functions be marked "noreturn", since they
247    // might be overridden by non-noreturn functions.
248    bool isVirtualMethod = false;
249    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
250      isVirtualMethod = Method->isVirtual();
251
252    // Don't suggest that template instantiations be marked "noreturn"
253    bool isTemplateInstantiation = false;
254    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
255      isTemplateInstantiation = Function->isTemplateInstantiation();
256
257    if (!isVirtualMethod && !isTemplateInstantiation)
258      D.diag_NeverFallThroughOrReturn =
259        diag::warn_suggest_noreturn_function;
260    else
261      D.diag_NeverFallThroughOrReturn = 0;
262
263    D.funMode = Function;
264    return D;
265  }
266
267  static CheckFallThroughDiagnostics MakeForBlock() {
268    CheckFallThroughDiagnostics D;
269    D.diag_MaybeFallThrough_HasNoReturn =
270      diag::err_noreturn_block_has_return_expr;
271    D.diag_MaybeFallThrough_ReturnsNonVoid =
272      diag::err_maybe_falloff_nonvoid_block;
273    D.diag_AlwaysFallThrough_HasNoReturn =
274      diag::err_noreturn_block_has_return_expr;
275    D.diag_AlwaysFallThrough_ReturnsNonVoid =
276      diag::err_falloff_nonvoid_block;
277    D.diag_NeverFallThroughOrReturn =
278      diag::warn_suggest_noreturn_block;
279    D.funMode = Block;
280    return D;
281  }
282
283  static CheckFallThroughDiagnostics MakeForLambda() {
284    CheckFallThroughDiagnostics D;
285    D.diag_MaybeFallThrough_HasNoReturn =
286      diag::err_noreturn_lambda_has_return_expr;
287    D.diag_MaybeFallThrough_ReturnsNonVoid =
288      diag::warn_maybe_falloff_nonvoid_lambda;
289    D.diag_AlwaysFallThrough_HasNoReturn =
290      diag::err_noreturn_lambda_has_return_expr;
291    D.diag_AlwaysFallThrough_ReturnsNonVoid =
292      diag::warn_falloff_nonvoid_lambda;
293    D.diag_NeverFallThroughOrReturn = 0;
294    D.funMode = Lambda;
295    return D;
296  }
297
298  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
299                        bool HasNoReturn) const {
300    if (funMode == Function) {
301      return (ReturnsVoid ||
302              D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
303                                   FuncLoc) == DiagnosticsEngine::Ignored)
304        && (!HasNoReturn ||
305            D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
306                                 FuncLoc) == DiagnosticsEngine::Ignored)
307        && (!ReturnsVoid ||
308            D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
309              == DiagnosticsEngine::Ignored);
310    }
311
312    // For blocks / lambdas.
313    return ReturnsVoid && !HasNoReturn
314            && ((funMode == Lambda) ||
315                D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
316                  == DiagnosticsEngine::Ignored);
317  }
318};
319
320}
321
322/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
323/// function that should return a value.  Check that we don't fall off the end
324/// of a noreturn function.  We assume that functions and blocks not marked
325/// noreturn will return.
326static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
327                                    const BlockExpr *blkExpr,
328                                    const CheckFallThroughDiagnostics& CD,
329                                    AnalysisDeclContext &AC) {
330
331  bool ReturnsVoid = false;
332  bool HasNoReturn = false;
333
334  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
335    ReturnsVoid = FD->getResultType()->isVoidType();
336    HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
337       FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
338  }
339  else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
340    ReturnsVoid = MD->getResultType()->isVoidType();
341    HasNoReturn = MD->hasAttr<NoReturnAttr>();
342  }
343  else if (isa<BlockDecl>(D)) {
344    QualType BlockTy = blkExpr->getType();
345    if (const FunctionType *FT =
346          BlockTy->getPointeeType()->getAs<FunctionType>()) {
347      if (FT->getResultType()->isVoidType())
348        ReturnsVoid = true;
349      if (FT->getNoReturnAttr())
350        HasNoReturn = true;
351    }
352  }
353
354  DiagnosticsEngine &Diags = S.getDiagnostics();
355
356  // Short circuit for compilation speed.
357  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
358      return;
359
360  // FIXME: Function try block
361  if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
362    switch (CheckFallThrough(AC)) {
363      case UnknownFallThrough:
364        break;
365
366      case MaybeFallThrough:
367        if (HasNoReturn)
368          S.Diag(Compound->getRBracLoc(),
369                 CD.diag_MaybeFallThrough_HasNoReturn);
370        else if (!ReturnsVoid)
371          S.Diag(Compound->getRBracLoc(),
372                 CD.diag_MaybeFallThrough_ReturnsNonVoid);
373        break;
374      case AlwaysFallThrough:
375        if (HasNoReturn)
376          S.Diag(Compound->getRBracLoc(),
377                 CD.diag_AlwaysFallThrough_HasNoReturn);
378        else if (!ReturnsVoid)
379          S.Diag(Compound->getRBracLoc(),
380                 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
381        break;
382      case NeverFallThroughOrReturn:
383        if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
384          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
385            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
386              << 0 << FD;
387          } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
388            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
389              << 1 << MD;
390          } else {
391            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
392          }
393        }
394        break;
395      case NeverFallThrough:
396        break;
397    }
398  }
399}
400
401//===----------------------------------------------------------------------===//
402// -Wuninitialized
403//===----------------------------------------------------------------------===//
404
405namespace {
406/// ContainsReference - A visitor class to search for references to
407/// a particular declaration (the needle) within any evaluated component of an
408/// expression (recursively).
409class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
410  bool FoundReference;
411  const DeclRefExpr *Needle;
412
413public:
414  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
415    : EvaluatedExprVisitor<ContainsReference>(Context),
416      FoundReference(false), Needle(Needle) {}
417
418  void VisitExpr(Expr *E) {
419    // Stop evaluating if we already have a reference.
420    if (FoundReference)
421      return;
422
423    EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
424  }
425
426  void VisitDeclRefExpr(DeclRefExpr *E) {
427    if (E == Needle)
428      FoundReference = true;
429    else
430      EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
431  }
432
433  bool doesContainReference() const { return FoundReference; }
434};
435}
436
437static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
438  QualType VariableTy = VD->getType().getCanonicalType();
439  if (VariableTy->isBlockPointerType() &&
440      !VD->hasAttr<BlocksAttr>()) {
441    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName()
442    << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
443    return true;
444  }
445
446  // Don't issue a fixit if there is already an initializer.
447  if (VD->getInit())
448    return false;
449
450  // Suggest possible initialization (if any).
451  std::string Init = S.getFixItZeroInitializerForType(VariableTy);
452  if (Init.empty())
453    return false;
454
455  // Don't suggest a fixit inside macros.
456  if (VD->getLocEnd().isMacroID())
457    return false;
458
459  SourceLocation Loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
460
461  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
462    << FixItHint::CreateInsertion(Loc, Init);
463  return true;
464}
465
466/// Create a fixit to remove an if-like statement, on the assumption that its
467/// condition is CondVal.
468static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
469                          const Stmt *Else, bool CondVal,
470                          FixItHint &Fixit1, FixItHint &Fixit2) {
471  if (CondVal) {
472    // If condition is always true, remove all but the 'then'.
473    Fixit1 = FixItHint::CreateRemoval(
474        CharSourceRange::getCharRange(If->getLocStart(),
475                                      Then->getLocStart()));
476    if (Else) {
477      SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
478          Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
479      Fixit2 = FixItHint::CreateRemoval(
480          SourceRange(ElseKwLoc, Else->getLocEnd()));
481    }
482  } else {
483    // If condition is always false, remove all but the 'else'.
484    if (Else)
485      Fixit1 = FixItHint::CreateRemoval(
486          CharSourceRange::getCharRange(If->getLocStart(),
487                                        Else->getLocStart()));
488    else
489      Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
490  }
491}
492
493/// DiagUninitUse -- Helper function to produce a diagnostic for an
494/// uninitialized use of a variable.
495static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
496                          bool IsCapturedByBlock) {
497  bool Diagnosed = false;
498
499  // Diagnose each branch which leads to a sometimes-uninitialized use.
500  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
501       I != E; ++I) {
502    assert(Use.getKind() == UninitUse::Sometimes);
503
504    const Expr *User = Use.getUser();
505    const Stmt *Term = I->Terminator;
506
507    // Information used when building the diagnostic.
508    unsigned DiagKind;
509    const char *Str;
510    SourceRange Range;
511
512    // FixIts to suppress the diagnosic by removing the dead condition.
513    // For all binary terminators, branch 0 is taken if the condition is true,
514    // and branch 1 is taken if the condition is false.
515    int RemoveDiagKind = -1;
516    const char *FixitStr =
517        S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
518                                  : (I->Output ? "1" : "0");
519    FixItHint Fixit1, Fixit2;
520
521    switch (Term->getStmtClass()) {
522    default:
523      // Don't know how to report this. Just fall back to 'may be used
524      // uninitialized'. This happens for range-based for, which the user
525      // can't explicitly fix.
526      // FIXME: This also happens if the first use of a variable is always
527      // uninitialized, eg "for (int n; n < 10; ++n)". We should report that
528      // with the 'is uninitialized' diagnostic.
529      continue;
530
531    // "condition is true / condition is false".
532    case Stmt::IfStmtClass: {
533      const IfStmt *IS = cast<IfStmt>(Term);
534      DiagKind = 0;
535      Str = "if";
536      Range = IS->getCond()->getSourceRange();
537      RemoveDiagKind = 0;
538      CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
539                    I->Output, Fixit1, Fixit2);
540      break;
541    }
542    case Stmt::ConditionalOperatorClass: {
543      const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
544      DiagKind = 0;
545      Str = "?:";
546      Range = CO->getCond()->getSourceRange();
547      RemoveDiagKind = 0;
548      CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
549                    I->Output, Fixit1, Fixit2);
550      break;
551    }
552    case Stmt::BinaryOperatorClass: {
553      const BinaryOperator *BO = cast<BinaryOperator>(Term);
554      if (!BO->isLogicalOp())
555        continue;
556      DiagKind = 0;
557      Str = BO->getOpcodeStr();
558      Range = BO->getLHS()->getSourceRange();
559      RemoveDiagKind = 0;
560      if ((BO->getOpcode() == BO_LAnd && I->Output) ||
561          (BO->getOpcode() == BO_LOr && !I->Output))
562        // true && y -> y, false || y -> y.
563        Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
564                                                      BO->getOperatorLoc()));
565      else
566        // false && y -> false, true || y -> true.
567        Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
568      break;
569    }
570
571    // "loop is entered / loop is exited".
572    case Stmt::WhileStmtClass:
573      DiagKind = 1;
574      Str = "while";
575      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
576      RemoveDiagKind = 1;
577      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
578      break;
579    case Stmt::ForStmtClass:
580      DiagKind = 1;
581      Str = "for";
582      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
583      RemoveDiagKind = 1;
584      if (I->Output)
585        Fixit1 = FixItHint::CreateRemoval(Range);
586      else
587        Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
588      break;
589
590    // "condition is true / loop is exited".
591    case Stmt::DoStmtClass:
592      DiagKind = 2;
593      Str = "do";
594      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
595      RemoveDiagKind = 1;
596      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
597      break;
598
599    // "switch case is taken".
600    case Stmt::CaseStmtClass:
601      DiagKind = 3;
602      Str = "case";
603      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
604      break;
605    case Stmt::DefaultStmtClass:
606      DiagKind = 3;
607      Str = "default";
608      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
609      break;
610    }
611
612    S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
613      << VD->getDeclName() << IsCapturedByBlock << DiagKind
614      << Str << I->Output << Range;
615    S.Diag(User->getLocStart(), diag::note_uninit_var_use)
616      << IsCapturedByBlock << User->getSourceRange();
617    if (RemoveDiagKind != -1)
618      S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
619        << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
620
621    Diagnosed = true;
622  }
623
624  if (!Diagnosed)
625    S.Diag(Use.getUser()->getLocStart(),
626           Use.getKind() == UninitUse::Always ? diag::warn_uninit_var
627                                              : diag::warn_maybe_uninit_var)
628        << VD->getDeclName() << IsCapturedByBlock
629        << Use.getUser()->getSourceRange();
630}
631
632/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
633/// uninitialized variable. This manages the different forms of diagnostic
634/// emitted for particular types of uses. Returns true if the use was diagnosed
635/// as a warning. If a particular use is one we omit warnings for, returns
636/// false.
637static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
638                                     const UninitUse &Use,
639                                     bool alwaysReportSelfInit = false) {
640
641  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
642    // Inspect the initializer of the variable declaration which is
643    // being referenced prior to its initialization. We emit
644    // specialized diagnostics for self-initialization, and we
645    // specifically avoid warning about self references which take the
646    // form of:
647    //
648    //   int x = x;
649    //
650    // This is used to indicate to GCC that 'x' is intentionally left
651    // uninitialized. Proven code paths which access 'x' in
652    // an uninitialized state after this will still warn.
653    if (const Expr *Initializer = VD->getInit()) {
654      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
655        return false;
656
657      ContainsReference CR(S.Context, DRE);
658      CR.Visit(const_cast<Expr*>(Initializer));
659      if (CR.doesContainReference()) {
660        S.Diag(DRE->getLocStart(),
661               diag::warn_uninit_self_reference_in_init)
662          << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
663        return true;
664      }
665    }
666
667    DiagUninitUse(S, VD, Use, false);
668  } else {
669    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
670    if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
671      S.Diag(BE->getLocStart(),
672             diag::warn_uninit_byref_blockvar_captured_by_block)
673        << VD->getDeclName();
674    else
675      DiagUninitUse(S, VD, Use, true);
676  }
677
678  // Report where the variable was declared when the use wasn't within
679  // the initializer of that declaration & we didn't already suggest
680  // an initialization fixit.
681  if (!SuggestInitializationFixit(S, VD))
682    S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
683      << VD->getDeclName();
684
685  return true;
686}
687
688namespace {
689  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
690  public:
691    FallthroughMapper(Sema &S)
692      : FoundSwitchStatements(false),
693        S(S) {
694    }
695
696    bool foundSwitchStatements() const { return FoundSwitchStatements; }
697
698    void markFallthroughVisited(const AttributedStmt *Stmt) {
699      bool Found = FallthroughStmts.erase(Stmt);
700      assert(Found);
701      (void)Found;
702    }
703
704    typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
705
706    const AttrStmts &getFallthroughStmts() const {
707      return FallthroughStmts;
708    }
709
710    bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
711      int UnannotatedCnt = 0;
712      AnnotatedCnt = 0;
713
714      std::deque<const CFGBlock*> BlockQueue;
715
716      std::copy(B.pred_begin(), B.pred_end(), std::back_inserter(BlockQueue));
717
718      while (!BlockQueue.empty()) {
719        const CFGBlock *P = BlockQueue.front();
720        BlockQueue.pop_front();
721
722        const Stmt *Term = P->getTerminator();
723        if (Term && isa<SwitchStmt>(Term))
724          continue; // Switch statement, good.
725
726        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
727        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
728          continue; // Previous case label has no statements, good.
729
730        if (P->pred_begin() == P->pred_end()) {  // The block is unreachable.
731          // This only catches trivially unreachable blocks.
732          for (CFGBlock::const_iterator ElIt = P->begin(), ElEnd = P->end();
733               ElIt != ElEnd; ++ElIt) {
734            if (const CFGStmt *CS = ElIt->getAs<CFGStmt>()){
735              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
736                S.Diag(AS->getLocStart(),
737                       diag::warn_fallthrough_attr_unreachable);
738                markFallthroughVisited(AS);
739                ++AnnotatedCnt;
740              }
741              // Don't care about other unreachable statements.
742            }
743          }
744          // If there are no unreachable statements, this may be a special
745          // case in CFG:
746          // case X: {
747          //    A a;  // A has a destructor.
748          //    break;
749          // }
750          // // <<<< This place is represented by a 'hanging' CFG block.
751          // case Y:
752          continue;
753        }
754
755        const Stmt *LastStmt = getLastStmt(*P);
756        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
757          markFallthroughVisited(AS);
758          ++AnnotatedCnt;
759          continue; // Fallthrough annotation, good.
760        }
761
762        if (!LastStmt) { // This block contains no executable statements.
763          // Traverse its predecessors.
764          std::copy(P->pred_begin(), P->pred_end(),
765                    std::back_inserter(BlockQueue));
766          continue;
767        }
768
769        ++UnannotatedCnt;
770      }
771      return !!UnannotatedCnt;
772    }
773
774    // RecursiveASTVisitor setup.
775    bool shouldWalkTypesOfTypeLocs() const { return false; }
776
777    bool VisitAttributedStmt(AttributedStmt *S) {
778      if (asFallThroughAttr(S))
779        FallthroughStmts.insert(S);
780      return true;
781    }
782
783    bool VisitSwitchStmt(SwitchStmt *S) {
784      FoundSwitchStatements = true;
785      return true;
786    }
787
788  private:
789
790    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
791      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
792        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
793          return AS;
794      }
795      return 0;
796    }
797
798    static const Stmt *getLastStmt(const CFGBlock &B) {
799      if (const Stmt *Term = B.getTerminator())
800        return Term;
801      for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
802                                            ElemEnd = B.rend();
803                                            ElemIt != ElemEnd; ++ElemIt) {
804        if (const CFGStmt *CS = ElemIt->getAs<CFGStmt>())
805          return CS->getStmt();
806      }
807      // Workaround to detect a statement thrown out by CFGBuilder:
808      //   case X: {} case Y:
809      //   case X: ; case Y:
810      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
811        if (!isa<SwitchCase>(SW->getSubStmt()))
812          return SW->getSubStmt();
813
814      return 0;
815    }
816
817    bool FoundSwitchStatements;
818    AttrStmts FallthroughStmts;
819    Sema &S;
820  };
821}
822
823static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
824                                            bool PerFunction) {
825  FallthroughMapper FM(S);
826  FM.TraverseStmt(AC.getBody());
827
828  if (!FM.foundSwitchStatements())
829    return;
830
831  if (PerFunction && FM.getFallthroughStmts().empty())
832    return;
833
834  CFG *Cfg = AC.getCFG();
835
836  if (!Cfg)
837    return;
838
839  int AnnotatedCnt;
840
841  for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
842    const CFGBlock &B = **I;
843    const Stmt *Label = B.getLabel();
844
845    if (!Label || !isa<SwitchCase>(Label))
846      continue;
847
848    if (!FM.checkFallThroughIntoBlock(B, AnnotatedCnt))
849      continue;
850
851    S.Diag(Label->getLocStart(),
852        PerFunction ? diag::warn_unannotated_fallthrough_per_function
853                    : diag::warn_unannotated_fallthrough);
854
855    if (!AnnotatedCnt) {
856      SourceLocation L = Label->getLocStart();
857      if (L.isMacroID())
858        continue;
859      if (S.getLangOpts().CPlusPlus0x) {
860        const Stmt *Term = B.getTerminator();
861        if (!(B.empty() && Term && isa<BreakStmt>(Term))) {
862          S.Diag(L, diag::note_insert_fallthrough_fixit) <<
863            FixItHint::CreateInsertion(L, "[[clang::fallthrough]]; ");
864        }
865      }
866      S.Diag(L, diag::note_insert_break_fixit) <<
867        FixItHint::CreateInsertion(L, "break; ");
868    }
869  }
870
871  const FallthroughMapper::AttrStmts &Fallthroughs = FM.getFallthroughStmts();
872  for (FallthroughMapper::AttrStmts::const_iterator I = Fallthroughs.begin(),
873                                                    E = Fallthroughs.end();
874                                                    I != E; ++I) {
875    S.Diag((*I)->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
876  }
877
878}
879
880namespace {
881struct SLocSort {
882  bool operator()(const UninitUse &a, const UninitUse &b) {
883    // Prefer a more confident report over a less confident one.
884    if (a.getKind() != b.getKind())
885      return a.getKind() > b.getKind();
886    SourceLocation aLoc = a.getUser()->getLocStart();
887    SourceLocation bLoc = b.getUser()->getLocStart();
888    return aLoc.getRawEncoding() < bLoc.getRawEncoding();
889  }
890};
891
892class UninitValsDiagReporter : public UninitVariablesHandler {
893  Sema &S;
894  typedef SmallVector<UninitUse, 2> UsesVec;
895  typedef llvm::DenseMap<const VarDecl *, std::pair<UsesVec*, bool> > UsesMap;
896  UsesMap *uses;
897
898public:
899  UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
900  ~UninitValsDiagReporter() {
901    flushDiagnostics();
902  }
903
904  std::pair<UsesVec*, bool> &getUses(const VarDecl *vd) {
905    if (!uses)
906      uses = new UsesMap();
907
908    UsesMap::mapped_type &V = (*uses)[vd];
909    UsesVec *&vec = V.first;
910    if (!vec)
911      vec = new UsesVec();
912
913    return V;
914  }
915
916  void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) {
917    getUses(vd).first->push_back(use);
918  }
919
920  void handleSelfInit(const VarDecl *vd) {
921    getUses(vd).second = true;
922  }
923
924  void flushDiagnostics() {
925    if (!uses)
926      return;
927
928    // FIXME: This iteration order, and thus the resulting diagnostic order,
929    //        is nondeterministic.
930    for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
931      const VarDecl *vd = i->first;
932      const UsesMap::mapped_type &V = i->second;
933
934      UsesVec *vec = V.first;
935      bool hasSelfInit = V.second;
936
937      // Specially handle the case where we have uses of an uninitialized
938      // variable, but the root cause is an idiomatic self-init.  We want
939      // to report the diagnostic at the self-init since that is the root cause.
940      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
941        DiagnoseUninitializedUse(S, vd,
942                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
943                                           /* isAlwaysUninit */ true),
944                                 /* alwaysReportSelfInit */ true);
945      else {
946        // Sort the uses by their SourceLocations.  While not strictly
947        // guaranteed to produce them in line/column order, this will provide
948        // a stable ordering.
949        std::sort(vec->begin(), vec->end(), SLocSort());
950
951        for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
952             ++vi) {
953          // If we have self-init, downgrade all uses to 'may be uninitialized'.
954          UninitUse Use = hasSelfInit ? UninitUse(vi->getUser(), false) : *vi;
955
956          if (DiagnoseUninitializedUse(S, vd, Use))
957            // Skip further diagnostics for this variable. We try to warn only
958            // on the first point at which a variable is used uninitialized.
959            break;
960        }
961      }
962
963      // Release the uses vector.
964      delete vec;
965    }
966    delete uses;
967  }
968
969private:
970  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
971  for (UsesVec::const_iterator i = vec->begin(), e = vec->end(); i != e; ++i) {
972    if (i->getKind() == UninitUse::Always) {
973      return true;
974    }
975  }
976  return false;
977}
978};
979}
980
981
982//===----------------------------------------------------------------------===//
983// -Wthread-safety
984//===----------------------------------------------------------------------===//
985namespace clang {
986namespace thread_safety {
987typedef llvm::SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
988typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
989typedef std::list<DelayedDiag> DiagList;
990
991struct SortDiagBySourceLocation {
992  SourceManager &SM;
993  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
994
995  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
996    // Although this call will be slow, this is only called when outputting
997    // multiple warnings.
998    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
999  }
1000};
1001
1002namespace {
1003class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
1004  Sema &S;
1005  DiagList Warnings;
1006  SourceLocation FunLocation, FunEndLocation;
1007
1008  // Helper functions
1009  void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) {
1010    // Gracefully handle rare cases when the analysis can't get a more
1011    // precise source location.
1012    if (!Loc.isValid())
1013      Loc = FunLocation;
1014    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << LockName);
1015    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1016  }
1017
1018 public:
1019  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1020    : S(S), FunLocation(FL), FunEndLocation(FEL) {}
1021
1022  /// \brief Emit all buffered diagnostics in order of sourcelocation.
1023  /// We need to output diagnostics produced while iterating through
1024  /// the lockset in deterministic order, so this function orders diagnostics
1025  /// and outputs them.
1026  void emitDiagnostics() {
1027    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1028    for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
1029         I != E; ++I) {
1030      S.Diag(I->first.first, I->first.second);
1031      const OptionalNotes &Notes = I->second;
1032      for (unsigned NoteI = 0, NoteN = Notes.size(); NoteI != NoteN; ++NoteI)
1033        S.Diag(Notes[NoteI].first, Notes[NoteI].second);
1034    }
1035  }
1036
1037  void handleInvalidLockExp(SourceLocation Loc) {
1038    PartialDiagnosticAt Warning(Loc,
1039                                S.PDiag(diag::warn_cannot_resolve_lock) << Loc);
1040    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1041  }
1042  void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) {
1043    warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc);
1044  }
1045
1046  void handleDoubleLock(Name LockName, SourceLocation Loc) {
1047    warnLockMismatch(diag::warn_double_lock, LockName, Loc);
1048  }
1049
1050  void handleMutexHeldEndOfScope(Name LockName, SourceLocation LocLocked,
1051                                 SourceLocation LocEndOfScope,
1052                                 LockErrorKind LEK){
1053    unsigned DiagID = 0;
1054    switch (LEK) {
1055      case LEK_LockedSomePredecessors:
1056        DiagID = diag::warn_lock_some_predecessors;
1057        break;
1058      case LEK_LockedSomeLoopIterations:
1059        DiagID = diag::warn_expecting_lock_held_on_loop;
1060        break;
1061      case LEK_LockedAtEndOfFunction:
1062        DiagID = diag::warn_no_unlock;
1063        break;
1064      case LEK_NotLockedAtEndOfFunction:
1065        DiagID = diag::warn_expecting_locked;
1066        break;
1067    }
1068    if (LocEndOfScope.isInvalid())
1069      LocEndOfScope = FunEndLocation;
1070
1071    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << LockName);
1072    PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here));
1073    Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1074  }
1075
1076
1077  void handleExclusiveAndShared(Name LockName, SourceLocation Loc1,
1078                                SourceLocation Loc2) {
1079    PartialDiagnosticAt Warning(
1080      Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName);
1081    PartialDiagnosticAt Note(
1082      Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << LockName);
1083    Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1084  }
1085
1086  void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
1087                         AccessKind AK, SourceLocation Loc) {
1088    assert((POK == POK_VarAccess || POK == POK_VarDereference)
1089             && "Only works for variables");
1090    unsigned DiagID = POK == POK_VarAccess?
1091                        diag::warn_variable_requires_any_lock:
1092                        diag::warn_var_deref_requires_any_lock;
1093    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1094      << D->getName() << getLockKindFromAccessKind(AK));
1095    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1096  }
1097
1098  void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK,
1099                          Name LockName, LockKind LK, SourceLocation Loc) {
1100    unsigned DiagID = 0;
1101    switch (POK) {
1102      case POK_VarAccess:
1103        DiagID = diag::warn_variable_requires_lock;
1104        break;
1105      case POK_VarDereference:
1106        DiagID = diag::warn_var_deref_requires_lock;
1107        break;
1108      case POK_FunctionCall:
1109        DiagID = diag::warn_fun_requires_lock;
1110        break;
1111    }
1112    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1113      << D->getName() << LockName << LK);
1114    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1115  }
1116
1117  void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) {
1118    PartialDiagnosticAt Warning(Loc,
1119      S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName);
1120    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1121  }
1122};
1123}
1124}
1125}
1126
1127//===----------------------------------------------------------------------===//
1128// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1129//  warnings on a function, method, or block.
1130//===----------------------------------------------------------------------===//
1131
1132clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1133  enableCheckFallThrough = 1;
1134  enableCheckUnreachable = 0;
1135  enableThreadSafetyAnalysis = 0;
1136}
1137
1138clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1139  : S(s),
1140    NumFunctionsAnalyzed(0),
1141    NumFunctionsWithBadCFGs(0),
1142    NumCFGBlocks(0),
1143    MaxCFGBlocksPerFunction(0),
1144    NumUninitAnalysisFunctions(0),
1145    NumUninitAnalysisVariables(0),
1146    MaxUninitAnalysisVariablesPerFunction(0),
1147    NumUninitAnalysisBlockVisits(0),
1148    MaxUninitAnalysisBlockVisitsPerFunction(0) {
1149  DiagnosticsEngine &D = S.getDiagnostics();
1150  DefaultPolicy.enableCheckUnreachable = (unsigned)
1151    (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
1152        DiagnosticsEngine::Ignored);
1153  DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
1154    (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
1155     DiagnosticsEngine::Ignored);
1156
1157}
1158
1159static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
1160  for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1161       i = fscope->PossiblyUnreachableDiags.begin(),
1162       e = fscope->PossiblyUnreachableDiags.end();
1163       i != e; ++i) {
1164    const sema::PossiblyUnreachableDiag &D = *i;
1165    S.Diag(D.Loc, D.PD);
1166  }
1167}
1168
1169void clang::sema::
1170AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1171                                     sema::FunctionScopeInfo *fscope,
1172                                     const Decl *D, const BlockExpr *blkExpr) {
1173
1174  // We avoid doing analysis-based warnings when there are errors for
1175  // two reasons:
1176  // (1) The CFGs often can't be constructed (if the body is invalid), so
1177  //     don't bother trying.
1178  // (2) The code already has problems; running the analysis just takes more
1179  //     time.
1180  DiagnosticsEngine &Diags = S.getDiagnostics();
1181
1182  // Do not do any analysis for declarations in system headers if we are
1183  // going to just ignore them.
1184  if (Diags.getSuppressSystemWarnings() &&
1185      S.SourceMgr.isInSystemHeader(D->getLocation()))
1186    return;
1187
1188  // For code in dependent contexts, we'll do this at instantiation time.
1189  if (cast<DeclContext>(D)->isDependentContext())
1190    return;
1191
1192  if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1193    // Flush out any possibly unreachable diagnostics.
1194    flushDiagnostics(S, fscope);
1195    return;
1196  }
1197
1198  const Stmt *Body = D->getBody();
1199  assert(Body);
1200
1201  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ 0, D);
1202
1203  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1204  // explosion for destrutors that can result and the compile time hit.
1205  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1206  AC.getCFGBuildOptions().AddEHEdges = false;
1207  AC.getCFGBuildOptions().AddInitializers = true;
1208  AC.getCFGBuildOptions().AddImplicitDtors = true;
1209
1210  // Force that certain expressions appear as CFGElements in the CFG.  This
1211  // is used to speed up various analyses.
1212  // FIXME: This isn't the right factoring.  This is here for initial
1213  // prototyping, but we need a way for analyses to say what expressions they
1214  // expect to always be CFGElements and then fill in the BuildOptions
1215  // appropriately.  This is essentially a layering violation.
1216  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis) {
1217    // Unreachable code analysis and thread safety require a linearized CFG.
1218    AC.getCFGBuildOptions().setAllAlwaysAdd();
1219  }
1220  else {
1221    AC.getCFGBuildOptions()
1222      .setAlwaysAdd(Stmt::BinaryOperatorClass)
1223      .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
1224      .setAlwaysAdd(Stmt::BlockExprClass)
1225      .setAlwaysAdd(Stmt::CStyleCastExprClass)
1226      .setAlwaysAdd(Stmt::DeclRefExprClass)
1227      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1228      .setAlwaysAdd(Stmt::UnaryOperatorClass)
1229      .setAlwaysAdd(Stmt::AttributedStmtClass);
1230  }
1231
1232  // Construct the analysis context with the specified CFG build options.
1233
1234  // Emit delayed diagnostics.
1235  if (!fscope->PossiblyUnreachableDiags.empty()) {
1236    bool analyzed = false;
1237
1238    // Register the expressions with the CFGBuilder.
1239    for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1240         i = fscope->PossiblyUnreachableDiags.begin(),
1241         e = fscope->PossiblyUnreachableDiags.end();
1242         i != e; ++i) {
1243      if (const Stmt *stmt = i->stmt)
1244        AC.registerForcedBlockExpression(stmt);
1245    }
1246
1247    if (AC.getCFG()) {
1248      analyzed = true;
1249      for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1250            i = fscope->PossiblyUnreachableDiags.begin(),
1251            e = fscope->PossiblyUnreachableDiags.end();
1252            i != e; ++i)
1253      {
1254        const sema::PossiblyUnreachableDiag &D = *i;
1255        bool processed = false;
1256        if (const Stmt *stmt = i->stmt) {
1257          const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
1258          CFGReverseBlockReachabilityAnalysis *cra =
1259              AC.getCFGReachablityAnalysis();
1260          // FIXME: We should be able to assert that block is non-null, but
1261          // the CFG analysis can skip potentially-evaluated expressions in
1262          // edge cases; see test/Sema/vla-2.c.
1263          if (block && cra) {
1264            // Can this block be reached from the entrance?
1265            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1266              S.Diag(D.Loc, D.PD);
1267            processed = true;
1268          }
1269        }
1270        if (!processed) {
1271          // Emit the warning anyway if we cannot map to a basic block.
1272          S.Diag(D.Loc, D.PD);
1273        }
1274      }
1275    }
1276
1277    if (!analyzed)
1278      flushDiagnostics(S, fscope);
1279  }
1280
1281
1282  // Warning: check missing 'return'
1283  if (P.enableCheckFallThrough) {
1284    const CheckFallThroughDiagnostics &CD =
1285      (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1286       : (isa<CXXMethodDecl>(D) &&
1287          cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
1288          cast<CXXMethodDecl>(D)->getParent()->isLambda())
1289            ? CheckFallThroughDiagnostics::MakeForLambda()
1290            : CheckFallThroughDiagnostics::MakeForFunction(D));
1291    CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1292  }
1293
1294  // Warning: check for unreachable code
1295  if (P.enableCheckUnreachable) {
1296    // Only check for unreachable code on non-template instantiations.
1297    // Different template instantiations can effectively change the control-flow
1298    // and it is very difficult to prove that a snippet of code in a template
1299    // is unreachable for all instantiations.
1300    bool isTemplateInstantiation = false;
1301    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
1302      isTemplateInstantiation = Function->isTemplateInstantiation();
1303    if (!isTemplateInstantiation)
1304      CheckUnreachable(S, AC);
1305  }
1306
1307  // Check for thread safety violations
1308  if (P.enableThreadSafetyAnalysis) {
1309    SourceLocation FL = AC.getDecl()->getLocation();
1310    SourceLocation FEL = AC.getDecl()->getLocEnd();
1311    thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
1312    thread_safety::runThreadSafetyAnalysis(AC, Reporter);
1313    Reporter.emitDiagnostics();
1314  }
1315
1316  if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
1317      != DiagnosticsEngine::Ignored ||
1318      Diags.getDiagnosticLevel(diag::warn_sometimes_uninit_var,D->getLocStart())
1319      != DiagnosticsEngine::Ignored ||
1320      Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
1321      != DiagnosticsEngine::Ignored) {
1322    if (CFG *cfg = AC.getCFG()) {
1323      UninitValsDiagReporter reporter(S);
1324      UninitVariablesAnalysisStats stats;
1325      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
1326      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
1327                                        reporter, stats);
1328
1329      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
1330        ++NumUninitAnalysisFunctions;
1331        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
1332        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
1333        MaxUninitAnalysisVariablesPerFunction =
1334            std::max(MaxUninitAnalysisVariablesPerFunction,
1335                     stats.NumVariablesAnalyzed);
1336        MaxUninitAnalysisBlockVisitsPerFunction =
1337            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
1338                     stats.NumBlockVisits);
1339      }
1340    }
1341  }
1342
1343  bool FallThroughDiagFull =
1344      Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough,
1345                               D->getLocStart()) != DiagnosticsEngine::Ignored;
1346  bool FallThroughDiagPerFunction =
1347      Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough_per_function,
1348                               D->getLocStart()) != DiagnosticsEngine::Ignored;
1349  if (FallThroughDiagFull || FallThroughDiagPerFunction) {
1350    DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
1351  }
1352
1353  // Collect statistics about the CFG if it was built.
1354  if (S.CollectStats && AC.isCFGBuilt()) {
1355    ++NumFunctionsAnalyzed;
1356    if (CFG *cfg = AC.getCFG()) {
1357      // If we successfully built a CFG for this context, record some more
1358      // detail information about it.
1359      NumCFGBlocks += cfg->getNumBlockIDs();
1360      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
1361                                         cfg->getNumBlockIDs());
1362    } else {
1363      ++NumFunctionsWithBadCFGs;
1364    }
1365  }
1366}
1367
1368void clang::sema::AnalysisBasedWarnings::PrintStats() const {
1369  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
1370
1371  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
1372  unsigned AvgCFGBlocksPerFunction =
1373      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
1374  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
1375               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
1376               << "  " << NumCFGBlocks << " CFG blocks built.\n"
1377               << "  " << AvgCFGBlocksPerFunction
1378               << " average CFG blocks per function.\n"
1379               << "  " << MaxCFGBlocksPerFunction
1380               << " max CFG blocks per function.\n";
1381
1382  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
1383      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
1384  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
1385      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
1386  llvm::errs() << NumUninitAnalysisFunctions
1387               << " functions analyzed for uninitialiazed variables\n"
1388               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
1389               << "  " << AvgUninitVariablesPerFunction
1390               << " average variables per function.\n"
1391               << "  " << MaxUninitAnalysisVariablesPerFunction
1392               << " max variables per function.\n"
1393               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
1394               << "  " << AvgUninitBlockVisitsPerFunction
1395               << " average block visits per function.\n"
1396               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
1397               << " max block visits per function.\n";
1398}
1399