AnalysisBasedWarnings.cpp revision 7348454025693dd20a411c2bcaabd4460cb87559
1//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines analysis_warnings::[Policy,Executor].
11// Together they are used by Sema to issue warnings based on inexpensive
12// static analysis algorithms in libAnalysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/AnalysisBasedWarnings.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/EvaluatedExprVisitor.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/ParentMap.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
28#include "clang/Analysis/Analyses/ReachableCode.h"
29#include "clang/Analysis/Analyses/ThreadSafety.h"
30#include "clang/Analysis/Analyses/UninitializedValues.h"
31#include "clang/Analysis/AnalysisContext.h"
32#include "clang/Analysis/CFG.h"
33#include "clang/Analysis/CFGStmtMap.h"
34#include "clang/Basic/SourceLocation.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Lex/Lexer.h"
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "llvm/ADT/ArrayRef.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/FoldingSet.h"
43#include "llvm/ADT/ImmutableMap.h"
44#include "llvm/ADT/MapVector.h"
45#include "llvm/ADT/PostOrderIterator.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/ADT/SmallVector.h"
48#include "llvm/ADT/StringRef.h"
49#include "llvm/Support/Casting.h"
50#include <algorithm>
51#include <deque>
52#include <iterator>
53#include <vector>
54
55using namespace clang;
56
57//===----------------------------------------------------------------------===//
58// Unreachable code analysis.
59//===----------------------------------------------------------------------===//
60
61namespace {
62  class UnreachableCodeHandler : public reachable_code::Callback {
63    Sema &S;
64  public:
65    UnreachableCodeHandler(Sema &s) : S(s) {}
66
67    void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
68      S.Diag(L, diag::warn_unreachable) << R1 << R2;
69    }
70  };
71}
72
73/// CheckUnreachable - Check for unreachable code.
74static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
75  UnreachableCodeHandler UC(S);
76  reachable_code::FindUnreachableCode(AC, UC);
77}
78
79//===----------------------------------------------------------------------===//
80// Check for missing return value.
81//===----------------------------------------------------------------------===//
82
83enum ControlFlowKind {
84  UnknownFallThrough,
85  NeverFallThrough,
86  MaybeFallThrough,
87  AlwaysFallThrough,
88  NeverFallThroughOrReturn
89};
90
91/// CheckFallThrough - Check that we don't fall off the end of a
92/// Statement that should return a value.
93///
94/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
95/// MaybeFallThrough iff we might or might not fall off the end,
96/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
97/// return.  We assume NeverFallThrough iff we never fall off the end of the
98/// statement but we may return.  We assume that functions not marked noreturn
99/// will return.
100static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
101  CFG *cfg = AC.getCFG();
102  if (cfg == 0) return UnknownFallThrough;
103
104  // The CFG leaves in dead things, and we don't want the dead code paths to
105  // confuse us, so we mark all live things first.
106  llvm::BitVector live(cfg->getNumBlockIDs());
107  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
108                                                          live);
109
110  bool AddEHEdges = AC.getAddEHEdges();
111  if (!AddEHEdges && count != cfg->getNumBlockIDs())
112    // When there are things remaining dead, and we didn't add EH edges
113    // from CallExprs to the catch clauses, we have to go back and
114    // mark them as live.
115    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
116      CFGBlock &b = **I;
117      if (!live[b.getBlockID()]) {
118        if (b.pred_begin() == b.pred_end()) {
119          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
120            // When not adding EH edges from calls, catch clauses
121            // can otherwise seem dead.  Avoid noting them as dead.
122            count += reachable_code::ScanReachableFromBlock(&b, live);
123          continue;
124        }
125      }
126    }
127
128  // Now we know what is live, we check the live precessors of the exit block
129  // and look for fall through paths, being careful to ignore normal returns,
130  // and exceptional paths.
131  bool HasLiveReturn = false;
132  bool HasFakeEdge = false;
133  bool HasPlainEdge = false;
134  bool HasAbnormalEdge = false;
135
136  // Ignore default cases that aren't likely to be reachable because all
137  // enums in a switch(X) have explicit case statements.
138  CFGBlock::FilterOptions FO;
139  FO.IgnoreDefaultsWithCoveredEnums = 1;
140
141  for (CFGBlock::filtered_pred_iterator
142	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
143    const CFGBlock& B = **I;
144    if (!live[B.getBlockID()])
145      continue;
146
147    // Skip blocks which contain an element marked as no-return. They don't
148    // represent actually viable edges into the exit block, so mark them as
149    // abnormal.
150    if (B.hasNoReturnElement()) {
151      HasAbnormalEdge = true;
152      continue;
153    }
154
155    // Destructors can appear after the 'return' in the CFG.  This is
156    // normal.  We need to look pass the destructors for the return
157    // statement (if it exists).
158    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
159
160    for ( ; ri != re ; ++ri)
161      if (ri->getAs<CFGStmt>())
162        break;
163
164    // No more CFGElements in the block?
165    if (ri == re) {
166      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
167        HasAbnormalEdge = true;
168        continue;
169      }
170      // A labeled empty statement, or the entry block...
171      HasPlainEdge = true;
172      continue;
173    }
174
175    CFGStmt CS = ri->castAs<CFGStmt>();
176    const Stmt *S = CS.getStmt();
177    if (isa<ReturnStmt>(S)) {
178      HasLiveReturn = true;
179      continue;
180    }
181    if (isa<ObjCAtThrowStmt>(S)) {
182      HasFakeEdge = true;
183      continue;
184    }
185    if (isa<CXXThrowExpr>(S)) {
186      HasFakeEdge = true;
187      continue;
188    }
189    if (isa<MSAsmStmt>(S)) {
190      // TODO: Verify this is correct.
191      HasFakeEdge = true;
192      HasLiveReturn = true;
193      continue;
194    }
195    if (isa<CXXTryStmt>(S)) {
196      HasAbnormalEdge = true;
197      continue;
198    }
199    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
200        == B.succ_end()) {
201      HasAbnormalEdge = true;
202      continue;
203    }
204
205    HasPlainEdge = true;
206  }
207  if (!HasPlainEdge) {
208    if (HasLiveReturn)
209      return NeverFallThrough;
210    return NeverFallThroughOrReturn;
211  }
212  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
213    return MaybeFallThrough;
214  // This says AlwaysFallThrough for calls to functions that are not marked
215  // noreturn, that don't return.  If people would like this warning to be more
216  // accurate, such functions should be marked as noreturn.
217  return AlwaysFallThrough;
218}
219
220namespace {
221
222struct CheckFallThroughDiagnostics {
223  unsigned diag_MaybeFallThrough_HasNoReturn;
224  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
225  unsigned diag_AlwaysFallThrough_HasNoReturn;
226  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
227  unsigned diag_NeverFallThroughOrReturn;
228  enum { Function, Block, Lambda } funMode;
229  SourceLocation FuncLoc;
230
231  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
232    CheckFallThroughDiagnostics D;
233    D.FuncLoc = Func->getLocation();
234    D.diag_MaybeFallThrough_HasNoReturn =
235      diag::warn_falloff_noreturn_function;
236    D.diag_MaybeFallThrough_ReturnsNonVoid =
237      diag::warn_maybe_falloff_nonvoid_function;
238    D.diag_AlwaysFallThrough_HasNoReturn =
239      diag::warn_falloff_noreturn_function;
240    D.diag_AlwaysFallThrough_ReturnsNonVoid =
241      diag::warn_falloff_nonvoid_function;
242
243    // Don't suggest that virtual functions be marked "noreturn", since they
244    // might be overridden by non-noreturn functions.
245    bool isVirtualMethod = false;
246    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
247      isVirtualMethod = Method->isVirtual();
248
249    // Don't suggest that template instantiations be marked "noreturn"
250    bool isTemplateInstantiation = false;
251    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
252      isTemplateInstantiation = Function->isTemplateInstantiation();
253
254    if (!isVirtualMethod && !isTemplateInstantiation)
255      D.diag_NeverFallThroughOrReturn =
256        diag::warn_suggest_noreturn_function;
257    else
258      D.diag_NeverFallThroughOrReturn = 0;
259
260    D.funMode = Function;
261    return D;
262  }
263
264  static CheckFallThroughDiagnostics MakeForBlock() {
265    CheckFallThroughDiagnostics D;
266    D.diag_MaybeFallThrough_HasNoReturn =
267      diag::err_noreturn_block_has_return_expr;
268    D.diag_MaybeFallThrough_ReturnsNonVoid =
269      diag::err_maybe_falloff_nonvoid_block;
270    D.diag_AlwaysFallThrough_HasNoReturn =
271      diag::err_noreturn_block_has_return_expr;
272    D.diag_AlwaysFallThrough_ReturnsNonVoid =
273      diag::err_falloff_nonvoid_block;
274    D.diag_NeverFallThroughOrReturn =
275      diag::warn_suggest_noreturn_block;
276    D.funMode = Block;
277    return D;
278  }
279
280  static CheckFallThroughDiagnostics MakeForLambda() {
281    CheckFallThroughDiagnostics D;
282    D.diag_MaybeFallThrough_HasNoReturn =
283      diag::err_noreturn_lambda_has_return_expr;
284    D.diag_MaybeFallThrough_ReturnsNonVoid =
285      diag::warn_maybe_falloff_nonvoid_lambda;
286    D.diag_AlwaysFallThrough_HasNoReturn =
287      diag::err_noreturn_lambda_has_return_expr;
288    D.diag_AlwaysFallThrough_ReturnsNonVoid =
289      diag::warn_falloff_nonvoid_lambda;
290    D.diag_NeverFallThroughOrReturn = 0;
291    D.funMode = Lambda;
292    return D;
293  }
294
295  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
296                        bool HasNoReturn) const {
297    if (funMode == Function) {
298      return (ReturnsVoid ||
299              D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
300                                   FuncLoc) == DiagnosticsEngine::Ignored)
301        && (!HasNoReturn ||
302            D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
303                                 FuncLoc) == DiagnosticsEngine::Ignored)
304        && (!ReturnsVoid ||
305            D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
306              == DiagnosticsEngine::Ignored);
307    }
308
309    // For blocks / lambdas.
310    return ReturnsVoid && !HasNoReturn
311            && ((funMode == Lambda) ||
312                D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
313                  == DiagnosticsEngine::Ignored);
314  }
315};
316
317}
318
319/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
320/// function that should return a value.  Check that we don't fall off the end
321/// of a noreturn function.  We assume that functions and blocks not marked
322/// noreturn will return.
323static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
324                                    const BlockExpr *blkExpr,
325                                    const CheckFallThroughDiagnostics& CD,
326                                    AnalysisDeclContext &AC) {
327
328  bool ReturnsVoid = false;
329  bool HasNoReturn = false;
330
331  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
332    ReturnsVoid = FD->getResultType()->isVoidType();
333    HasNoReturn = FD->isNoReturn();
334  }
335  else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
336    ReturnsVoid = MD->getResultType()->isVoidType();
337    HasNoReturn = MD->hasAttr<NoReturnAttr>();
338  }
339  else if (isa<BlockDecl>(D)) {
340    QualType BlockTy = blkExpr->getType();
341    if (const FunctionType *FT =
342          BlockTy->getPointeeType()->getAs<FunctionType>()) {
343      if (FT->getResultType()->isVoidType())
344        ReturnsVoid = true;
345      if (FT->getNoReturnAttr())
346        HasNoReturn = true;
347    }
348  }
349
350  DiagnosticsEngine &Diags = S.getDiagnostics();
351
352  // Short circuit for compilation speed.
353  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
354      return;
355
356  // FIXME: Function try block
357  if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
358    switch (CheckFallThrough(AC)) {
359      case UnknownFallThrough:
360        break;
361
362      case MaybeFallThrough:
363        if (HasNoReturn)
364          S.Diag(Compound->getRBracLoc(),
365                 CD.diag_MaybeFallThrough_HasNoReturn);
366        else if (!ReturnsVoid)
367          S.Diag(Compound->getRBracLoc(),
368                 CD.diag_MaybeFallThrough_ReturnsNonVoid);
369        break;
370      case AlwaysFallThrough:
371        if (HasNoReturn)
372          S.Diag(Compound->getRBracLoc(),
373                 CD.diag_AlwaysFallThrough_HasNoReturn);
374        else if (!ReturnsVoid)
375          S.Diag(Compound->getRBracLoc(),
376                 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
377        break;
378      case NeverFallThroughOrReturn:
379        if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
380          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
381            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
382              << 0 << FD;
383          } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
384            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
385              << 1 << MD;
386          } else {
387            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
388          }
389        }
390        break;
391      case NeverFallThrough:
392        break;
393    }
394  }
395}
396
397//===----------------------------------------------------------------------===//
398// -Wuninitialized
399//===----------------------------------------------------------------------===//
400
401namespace {
402/// ContainsReference - A visitor class to search for references to
403/// a particular declaration (the needle) within any evaluated component of an
404/// expression (recursively).
405class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
406  bool FoundReference;
407  const DeclRefExpr *Needle;
408
409public:
410  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
411    : EvaluatedExprVisitor<ContainsReference>(Context),
412      FoundReference(false), Needle(Needle) {}
413
414  void VisitExpr(Expr *E) {
415    // Stop evaluating if we already have a reference.
416    if (FoundReference)
417      return;
418
419    EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
420  }
421
422  void VisitDeclRefExpr(DeclRefExpr *E) {
423    if (E == Needle)
424      FoundReference = true;
425    else
426      EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
427  }
428
429  bool doesContainReference() const { return FoundReference; }
430};
431}
432
433static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
434  QualType VariableTy = VD->getType().getCanonicalType();
435  if (VariableTy->isBlockPointerType() &&
436      !VD->hasAttr<BlocksAttr>()) {
437    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName()
438    << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
439    return true;
440  }
441
442  // Don't issue a fixit if there is already an initializer.
443  if (VD->getInit())
444    return false;
445
446  // Suggest possible initialization (if any).
447  std::string Init = S.getFixItZeroInitializerForType(VariableTy);
448  if (Init.empty())
449    return false;
450
451  // Don't suggest a fixit inside macros.
452  if (VD->getLocEnd().isMacroID())
453    return false;
454
455  SourceLocation Loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
456
457  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
458    << FixItHint::CreateInsertion(Loc, Init);
459  return true;
460}
461
462/// Create a fixit to remove an if-like statement, on the assumption that its
463/// condition is CondVal.
464static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
465                          const Stmt *Else, bool CondVal,
466                          FixItHint &Fixit1, FixItHint &Fixit2) {
467  if (CondVal) {
468    // If condition is always true, remove all but the 'then'.
469    Fixit1 = FixItHint::CreateRemoval(
470        CharSourceRange::getCharRange(If->getLocStart(),
471                                      Then->getLocStart()));
472    if (Else) {
473      SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
474          Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
475      Fixit2 = FixItHint::CreateRemoval(
476          SourceRange(ElseKwLoc, Else->getLocEnd()));
477    }
478  } else {
479    // If condition is always false, remove all but the 'else'.
480    if (Else)
481      Fixit1 = FixItHint::CreateRemoval(
482          CharSourceRange::getCharRange(If->getLocStart(),
483                                        Else->getLocStart()));
484    else
485      Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
486  }
487}
488
489/// DiagUninitUse -- Helper function to produce a diagnostic for an
490/// uninitialized use of a variable.
491static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
492                          bool IsCapturedByBlock) {
493  bool Diagnosed = false;
494
495  // Diagnose each branch which leads to a sometimes-uninitialized use.
496  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
497       I != E; ++I) {
498    assert(Use.getKind() == UninitUse::Sometimes);
499
500    const Expr *User = Use.getUser();
501    const Stmt *Term = I->Terminator;
502
503    // Information used when building the diagnostic.
504    unsigned DiagKind;
505    StringRef Str;
506    SourceRange Range;
507
508    // FixIts to suppress the diagnostic by removing the dead condition.
509    // For all binary terminators, branch 0 is taken if the condition is true,
510    // and branch 1 is taken if the condition is false.
511    int RemoveDiagKind = -1;
512    const char *FixitStr =
513        S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
514                                  : (I->Output ? "1" : "0");
515    FixItHint Fixit1, Fixit2;
516
517    switch (Term->getStmtClass()) {
518    default:
519      // Don't know how to report this. Just fall back to 'may be used
520      // uninitialized'. This happens for range-based for, which the user
521      // can't explicitly fix.
522      // FIXME: This also happens if the first use of a variable is always
523      // uninitialized, eg "for (int n; n < 10; ++n)". We should report that
524      // with the 'is uninitialized' diagnostic.
525      continue;
526
527    // "condition is true / condition is false".
528    case Stmt::IfStmtClass: {
529      const IfStmt *IS = cast<IfStmt>(Term);
530      DiagKind = 0;
531      Str = "if";
532      Range = IS->getCond()->getSourceRange();
533      RemoveDiagKind = 0;
534      CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
535                    I->Output, Fixit1, Fixit2);
536      break;
537    }
538    case Stmt::ConditionalOperatorClass: {
539      const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
540      DiagKind = 0;
541      Str = "?:";
542      Range = CO->getCond()->getSourceRange();
543      RemoveDiagKind = 0;
544      CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
545                    I->Output, Fixit1, Fixit2);
546      break;
547    }
548    case Stmt::BinaryOperatorClass: {
549      const BinaryOperator *BO = cast<BinaryOperator>(Term);
550      if (!BO->isLogicalOp())
551        continue;
552      DiagKind = 0;
553      Str = BO->getOpcodeStr();
554      Range = BO->getLHS()->getSourceRange();
555      RemoveDiagKind = 0;
556      if ((BO->getOpcode() == BO_LAnd && I->Output) ||
557          (BO->getOpcode() == BO_LOr && !I->Output))
558        // true && y -> y, false || y -> y.
559        Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
560                                                      BO->getOperatorLoc()));
561      else
562        // false && y -> false, true || y -> true.
563        Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
564      break;
565    }
566
567    // "loop is entered / loop is exited".
568    case Stmt::WhileStmtClass:
569      DiagKind = 1;
570      Str = "while";
571      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
572      RemoveDiagKind = 1;
573      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
574      break;
575    case Stmt::ForStmtClass:
576      DiagKind = 1;
577      Str = "for";
578      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
579      RemoveDiagKind = 1;
580      if (I->Output)
581        Fixit1 = FixItHint::CreateRemoval(Range);
582      else
583        Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
584      break;
585
586    // "condition is true / loop is exited".
587    case Stmt::DoStmtClass:
588      DiagKind = 2;
589      Str = "do";
590      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
591      RemoveDiagKind = 1;
592      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
593      break;
594
595    // "switch case is taken".
596    case Stmt::CaseStmtClass:
597      DiagKind = 3;
598      Str = "case";
599      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
600      break;
601    case Stmt::DefaultStmtClass:
602      DiagKind = 3;
603      Str = "default";
604      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
605      break;
606    }
607
608    S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
609      << VD->getDeclName() << IsCapturedByBlock << DiagKind
610      << Str << I->Output << Range;
611    S.Diag(User->getLocStart(), diag::note_uninit_var_use)
612      << IsCapturedByBlock << User->getSourceRange();
613    if (RemoveDiagKind != -1)
614      S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
615        << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
616
617    Diagnosed = true;
618  }
619
620  if (!Diagnosed)
621    S.Diag(Use.getUser()->getLocStart(),
622           Use.getKind() == UninitUse::Always ? diag::warn_uninit_var
623                                              : diag::warn_maybe_uninit_var)
624        << VD->getDeclName() << IsCapturedByBlock
625        << Use.getUser()->getSourceRange();
626}
627
628/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
629/// uninitialized variable. This manages the different forms of diagnostic
630/// emitted for particular types of uses. Returns true if the use was diagnosed
631/// as a warning. If a particular use is one we omit warnings for, returns
632/// false.
633static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
634                                     const UninitUse &Use,
635                                     bool alwaysReportSelfInit = false) {
636
637  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
638    // Inspect the initializer of the variable declaration which is
639    // being referenced prior to its initialization. We emit
640    // specialized diagnostics for self-initialization, and we
641    // specifically avoid warning about self references which take the
642    // form of:
643    //
644    //   int x = x;
645    //
646    // This is used to indicate to GCC that 'x' is intentionally left
647    // uninitialized. Proven code paths which access 'x' in
648    // an uninitialized state after this will still warn.
649    if (const Expr *Initializer = VD->getInit()) {
650      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
651        return false;
652
653      ContainsReference CR(S.Context, DRE);
654      CR.Visit(const_cast<Expr*>(Initializer));
655      if (CR.doesContainReference()) {
656        S.Diag(DRE->getLocStart(),
657               diag::warn_uninit_self_reference_in_init)
658          << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
659        return true;
660      }
661    }
662
663    DiagUninitUse(S, VD, Use, false);
664  } else {
665    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
666    if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
667      S.Diag(BE->getLocStart(),
668             diag::warn_uninit_byref_blockvar_captured_by_block)
669        << VD->getDeclName();
670    else
671      DiagUninitUse(S, VD, Use, true);
672  }
673
674  // Report where the variable was declared when the use wasn't within
675  // the initializer of that declaration & we didn't already suggest
676  // an initialization fixit.
677  if (!SuggestInitializationFixit(S, VD))
678    S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
679      << VD->getDeclName();
680
681  return true;
682}
683
684namespace {
685  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
686  public:
687    FallthroughMapper(Sema &S)
688      : FoundSwitchStatements(false),
689        S(S) {
690    }
691
692    bool foundSwitchStatements() const { return FoundSwitchStatements; }
693
694    void markFallthroughVisited(const AttributedStmt *Stmt) {
695      bool Found = FallthroughStmts.erase(Stmt);
696      assert(Found);
697      (void)Found;
698    }
699
700    typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
701
702    const AttrStmts &getFallthroughStmts() const {
703      return FallthroughStmts;
704    }
705
706    void fillReachableBlocks(CFG *Cfg) {
707      assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
708      std::deque<const CFGBlock *> BlockQueue;
709
710      ReachableBlocks.insert(&Cfg->getEntry());
711      BlockQueue.push_back(&Cfg->getEntry());
712      // Mark all case blocks reachable to avoid problems with switching on
713      // constants, covered enums, etc.
714      // These blocks can contain fall-through annotations, and we don't want to
715      // issue a warn_fallthrough_attr_unreachable for them.
716      for (CFG::iterator I = Cfg->begin(), E = Cfg->end(); I != E; ++I) {
717        const CFGBlock *B = *I;
718        const Stmt *L = B->getLabel();
719        if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B))
720          BlockQueue.push_back(B);
721      }
722
723      while (!BlockQueue.empty()) {
724        const CFGBlock *P = BlockQueue.front();
725        BlockQueue.pop_front();
726        for (CFGBlock::const_succ_iterator I = P->succ_begin(),
727                                           E = P->succ_end();
728             I != E; ++I) {
729          if (*I && ReachableBlocks.insert(*I))
730            BlockQueue.push_back(*I);
731        }
732      }
733    }
734
735    bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
736      assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
737
738      int UnannotatedCnt = 0;
739      AnnotatedCnt = 0;
740
741      std::deque<const CFGBlock*> BlockQueue;
742
743      std::copy(B.pred_begin(), B.pred_end(), std::back_inserter(BlockQueue));
744
745      while (!BlockQueue.empty()) {
746        const CFGBlock *P = BlockQueue.front();
747        BlockQueue.pop_front();
748
749        const Stmt *Term = P->getTerminator();
750        if (Term && isa<SwitchStmt>(Term))
751          continue; // Switch statement, good.
752
753        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
754        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
755          continue; // Previous case label has no statements, good.
756
757        const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
758        if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
759          continue; // Case label is preceded with a normal label, good.
760
761        if (!ReachableBlocks.count(P)) {
762          for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
763                                                ElemEnd = P->rend();
764               ElemIt != ElemEnd; ++ElemIt) {
765            if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
766              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
767                S.Diag(AS->getLocStart(),
768                       diag::warn_fallthrough_attr_unreachable);
769                markFallthroughVisited(AS);
770                ++AnnotatedCnt;
771                break;
772              }
773              // Don't care about other unreachable statements.
774            }
775          }
776          // If there are no unreachable statements, this may be a special
777          // case in CFG:
778          // case X: {
779          //    A a;  // A has a destructor.
780          //    break;
781          // }
782          // // <<<< This place is represented by a 'hanging' CFG block.
783          // case Y:
784          continue;
785        }
786
787        const Stmt *LastStmt = getLastStmt(*P);
788        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
789          markFallthroughVisited(AS);
790          ++AnnotatedCnt;
791          continue; // Fallthrough annotation, good.
792        }
793
794        if (!LastStmt) { // This block contains no executable statements.
795          // Traverse its predecessors.
796          std::copy(P->pred_begin(), P->pred_end(),
797                    std::back_inserter(BlockQueue));
798          continue;
799        }
800
801        ++UnannotatedCnt;
802      }
803      return !!UnannotatedCnt;
804    }
805
806    // RecursiveASTVisitor setup.
807    bool shouldWalkTypesOfTypeLocs() const { return false; }
808
809    bool VisitAttributedStmt(AttributedStmt *S) {
810      if (asFallThroughAttr(S))
811        FallthroughStmts.insert(S);
812      return true;
813    }
814
815    bool VisitSwitchStmt(SwitchStmt *S) {
816      FoundSwitchStatements = true;
817      return true;
818    }
819
820    // We don't want to traverse local type declarations. We analyze their
821    // methods separately.
822    bool TraverseDecl(Decl *D) { return true; }
823
824  private:
825
826    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
827      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
828        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
829          return AS;
830      }
831      return 0;
832    }
833
834    static const Stmt *getLastStmt(const CFGBlock &B) {
835      if (const Stmt *Term = B.getTerminator())
836        return Term;
837      for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
838                                            ElemEnd = B.rend();
839                                            ElemIt != ElemEnd; ++ElemIt) {
840        if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
841          return CS->getStmt();
842      }
843      // Workaround to detect a statement thrown out by CFGBuilder:
844      //   case X: {} case Y:
845      //   case X: ; case Y:
846      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
847        if (!isa<SwitchCase>(SW->getSubStmt()))
848          return SW->getSubStmt();
849
850      return 0;
851    }
852
853    bool FoundSwitchStatements;
854    AttrStmts FallthroughStmts;
855    Sema &S;
856    llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
857  };
858}
859
860static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
861                                            bool PerFunction) {
862  // Only perform this analysis when using C++11.  There is no good workflow
863  // for this warning when not using C++11.  There is no good way to silence
864  // the warning (no attribute is available) unless we are using C++11's support
865  // for generalized attributes.  Once could use pragmas to silence the warning,
866  // but as a general solution that is gross and not in the spirit of this
867  // warning.
868  //
869  // NOTE: This an intermediate solution.  There are on-going discussions on
870  // how to properly support this warning outside of C++11 with an annotation.
871  if (!AC.getASTContext().getLangOpts().CPlusPlus11)
872    return;
873
874  FallthroughMapper FM(S);
875  FM.TraverseStmt(AC.getBody());
876
877  if (!FM.foundSwitchStatements())
878    return;
879
880  if (PerFunction && FM.getFallthroughStmts().empty())
881    return;
882
883  CFG *Cfg = AC.getCFG();
884
885  if (!Cfg)
886    return;
887
888  FM.fillReachableBlocks(Cfg);
889
890  for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
891    const CFGBlock *B = *I;
892    const Stmt *Label = B->getLabel();
893
894    if (!Label || !isa<SwitchCase>(Label))
895      continue;
896
897    int AnnotatedCnt;
898
899    if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
900      continue;
901
902    S.Diag(Label->getLocStart(),
903        PerFunction ? diag::warn_unannotated_fallthrough_per_function
904                    : diag::warn_unannotated_fallthrough);
905
906    if (!AnnotatedCnt) {
907      SourceLocation L = Label->getLocStart();
908      if (L.isMacroID())
909        continue;
910      if (S.getLangOpts().CPlusPlus11) {
911        const Stmt *Term = B->getTerminator();
912        // Skip empty cases.
913        while (B->empty() && !Term && B->succ_size() == 1) {
914          B = *B->succ_begin();
915          Term = B->getTerminator();
916        }
917        if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
918          Preprocessor &PP = S.getPreprocessor();
919          TokenValue Tokens[] = {
920            tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
921            tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
922            tok::r_square, tok::r_square
923          };
924          StringRef AnnotationSpelling = "[[clang::fallthrough]]";
925          StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
926          if (!MacroName.empty())
927            AnnotationSpelling = MacroName;
928          SmallString<64> TextToInsert(AnnotationSpelling);
929          TextToInsert += "; ";
930          S.Diag(L, diag::note_insert_fallthrough_fixit) <<
931              AnnotationSpelling <<
932              FixItHint::CreateInsertion(L, TextToInsert);
933        }
934      }
935      S.Diag(L, diag::note_insert_break_fixit) <<
936        FixItHint::CreateInsertion(L, "break; ");
937    }
938  }
939
940  const FallthroughMapper::AttrStmts &Fallthroughs = FM.getFallthroughStmts();
941  for (FallthroughMapper::AttrStmts::const_iterator I = Fallthroughs.begin(),
942                                                    E = Fallthroughs.end();
943                                                    I != E; ++I) {
944    S.Diag((*I)->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
945  }
946
947}
948
949namespace {
950typedef std::pair<const Stmt *,
951                  sema::FunctionScopeInfo::WeakObjectUseMap::const_iterator>
952        StmtUsesPair;
953
954class StmtUseSorter {
955  const SourceManager &SM;
956
957public:
958  explicit StmtUseSorter(const SourceManager &SM) : SM(SM) { }
959
960  bool operator()(const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
961    return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
962                                        RHS.first->getLocStart());
963  }
964};
965}
966
967static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
968                     const Stmt *S) {
969  assert(S);
970
971  do {
972    switch (S->getStmtClass()) {
973    case Stmt::ForStmtClass:
974    case Stmt::WhileStmtClass:
975    case Stmt::CXXForRangeStmtClass:
976    case Stmt::ObjCForCollectionStmtClass:
977      return true;
978    case Stmt::DoStmtClass: {
979      const Expr *Cond = cast<DoStmt>(S)->getCond();
980      llvm::APSInt Val;
981      if (!Cond->EvaluateAsInt(Val, Ctx))
982        return true;
983      return Val.getBoolValue();
984    }
985    default:
986      break;
987    }
988  } while ((S = PM.getParent(S)));
989
990  return false;
991}
992
993
994static void diagnoseRepeatedUseOfWeak(Sema &S,
995                                      const sema::FunctionScopeInfo *CurFn,
996                                      const Decl *D,
997                                      const ParentMap &PM) {
998  typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
999  typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1000  typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1001
1002  ASTContext &Ctx = S.getASTContext();
1003
1004  const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1005
1006  // Extract all weak objects that are referenced more than once.
1007  SmallVector<StmtUsesPair, 8> UsesByStmt;
1008  for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1009       I != E; ++I) {
1010    const WeakUseVector &Uses = I->second;
1011
1012    // Find the first read of the weak object.
1013    WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1014    for ( ; UI != UE; ++UI) {
1015      if (UI->isUnsafe())
1016        break;
1017    }
1018
1019    // If there were only writes to this object, don't warn.
1020    if (UI == UE)
1021      continue;
1022
1023    // If there was only one read, followed by any number of writes, and the
1024    // read is not within a loop, don't warn. Additionally, don't warn in a
1025    // loop if the base object is a local variable -- local variables are often
1026    // changed in loops.
1027    if (UI == Uses.begin()) {
1028      WeakUseVector::const_iterator UI2 = UI;
1029      for (++UI2; UI2 != UE; ++UI2)
1030        if (UI2->isUnsafe())
1031          break;
1032
1033      if (UI2 == UE) {
1034        if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1035          continue;
1036
1037        const WeakObjectProfileTy &Profile = I->first;
1038        if (!Profile.isExactProfile())
1039          continue;
1040
1041        const NamedDecl *Base = Profile.getBase();
1042        if (!Base)
1043          Base = Profile.getProperty();
1044        assert(Base && "A profile always has a base or property.");
1045
1046        if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1047          if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1048            continue;
1049      }
1050    }
1051
1052    UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1053  }
1054
1055  if (UsesByStmt.empty())
1056    return;
1057
1058  // Sort by first use so that we emit the warnings in a deterministic order.
1059  std::sort(UsesByStmt.begin(), UsesByStmt.end(),
1060            StmtUseSorter(S.getSourceManager()));
1061
1062  // Classify the current code body for better warning text.
1063  // This enum should stay in sync with the cases in
1064  // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1065  // FIXME: Should we use a common classification enum and the same set of
1066  // possibilities all throughout Sema?
1067  enum {
1068    Function,
1069    Method,
1070    Block,
1071    Lambda
1072  } FunctionKind;
1073
1074  if (isa<sema::BlockScopeInfo>(CurFn))
1075    FunctionKind = Block;
1076  else if (isa<sema::LambdaScopeInfo>(CurFn))
1077    FunctionKind = Lambda;
1078  else if (isa<ObjCMethodDecl>(D))
1079    FunctionKind = Method;
1080  else
1081    FunctionKind = Function;
1082
1083  // Iterate through the sorted problems and emit warnings for each.
1084  for (SmallVectorImpl<StmtUsesPair>::const_iterator I = UsesByStmt.begin(),
1085                                                     E = UsesByStmt.end();
1086       I != E; ++I) {
1087    const Stmt *FirstRead = I->first;
1088    const WeakObjectProfileTy &Key = I->second->first;
1089    const WeakUseVector &Uses = I->second->second;
1090
1091    // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1092    // may not contain enough information to determine that these are different
1093    // properties. We can only be 100% sure of a repeated use in certain cases,
1094    // and we adjust the diagnostic kind accordingly so that the less certain
1095    // case can be turned off if it is too noisy.
1096    unsigned DiagKind;
1097    if (Key.isExactProfile())
1098      DiagKind = diag::warn_arc_repeated_use_of_weak;
1099    else
1100      DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1101
1102    // Classify the weak object being accessed for better warning text.
1103    // This enum should stay in sync with the cases in
1104    // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1105    enum {
1106      Variable,
1107      Property,
1108      ImplicitProperty,
1109      Ivar
1110    } ObjectKind;
1111
1112    const NamedDecl *D = Key.getProperty();
1113    if (isa<VarDecl>(D))
1114      ObjectKind = Variable;
1115    else if (isa<ObjCPropertyDecl>(D))
1116      ObjectKind = Property;
1117    else if (isa<ObjCMethodDecl>(D))
1118      ObjectKind = ImplicitProperty;
1119    else if (isa<ObjCIvarDecl>(D))
1120      ObjectKind = Ivar;
1121    else
1122      llvm_unreachable("Unexpected weak object kind!");
1123
1124    // Show the first time the object was read.
1125    S.Diag(FirstRead->getLocStart(), DiagKind)
1126      << int(ObjectKind) << D << int(FunctionKind)
1127      << FirstRead->getSourceRange();
1128
1129    // Print all the other accesses as notes.
1130    for (WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1131         UI != UE; ++UI) {
1132      if (UI->getUseExpr() == FirstRead)
1133        continue;
1134      S.Diag(UI->getUseExpr()->getLocStart(),
1135             diag::note_arc_weak_also_accessed_here)
1136        << UI->getUseExpr()->getSourceRange();
1137    }
1138  }
1139}
1140
1141
1142namespace {
1143struct SLocSort {
1144  bool operator()(const UninitUse &a, const UninitUse &b) {
1145    // Prefer a more confident report over a less confident one.
1146    if (a.getKind() != b.getKind())
1147      return a.getKind() > b.getKind();
1148    SourceLocation aLoc = a.getUser()->getLocStart();
1149    SourceLocation bLoc = b.getUser()->getLocStart();
1150    return aLoc.getRawEncoding() < bLoc.getRawEncoding();
1151  }
1152};
1153
1154class UninitValsDiagReporter : public UninitVariablesHandler {
1155  Sema &S;
1156  typedef SmallVector<UninitUse, 2> UsesVec;
1157  typedef std::pair<UsesVec*, bool> MappedType;
1158  // Prefer using MapVector to DenseMap, so that iteration order will be
1159  // the same as insertion order. This is needed to obtain a deterministic
1160  // order of diagnostics when calling flushDiagnostics().
1161  typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1162  UsesMap *uses;
1163
1164public:
1165  UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
1166  ~UninitValsDiagReporter() {
1167    flushDiagnostics();
1168  }
1169
1170  MappedType &getUses(const VarDecl *vd) {
1171    if (!uses)
1172      uses = new UsesMap();
1173
1174    MappedType &V = (*uses)[vd];
1175    UsesVec *&vec = V.first;
1176    if (!vec)
1177      vec = new UsesVec();
1178
1179    return V;
1180  }
1181
1182  void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) {
1183    getUses(vd).first->push_back(use);
1184  }
1185
1186  void handleSelfInit(const VarDecl *vd) {
1187    getUses(vd).second = true;
1188  }
1189
1190  void flushDiagnostics() {
1191    if (!uses)
1192      return;
1193
1194    for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
1195      const VarDecl *vd = i->first;
1196      const MappedType &V = i->second;
1197
1198      UsesVec *vec = V.first;
1199      bool hasSelfInit = V.second;
1200
1201      // Specially handle the case where we have uses of an uninitialized
1202      // variable, but the root cause is an idiomatic self-init.  We want
1203      // to report the diagnostic at the self-init since that is the root cause.
1204      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1205        DiagnoseUninitializedUse(S, vd,
1206                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
1207                                           /* isAlwaysUninit */ true),
1208                                 /* alwaysReportSelfInit */ true);
1209      else {
1210        // Sort the uses by their SourceLocations.  While not strictly
1211        // guaranteed to produce them in line/column order, this will provide
1212        // a stable ordering.
1213        std::sort(vec->begin(), vec->end(), SLocSort());
1214
1215        for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
1216             ++vi) {
1217          // If we have self-init, downgrade all uses to 'may be uninitialized'.
1218          UninitUse Use = hasSelfInit ? UninitUse(vi->getUser(), false) : *vi;
1219
1220          if (DiagnoseUninitializedUse(S, vd, Use))
1221            // Skip further diagnostics for this variable. We try to warn only
1222            // on the first point at which a variable is used uninitialized.
1223            break;
1224        }
1225      }
1226
1227      // Release the uses vector.
1228      delete vec;
1229    }
1230    delete uses;
1231  }
1232
1233private:
1234  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1235  for (UsesVec::const_iterator i = vec->begin(), e = vec->end(); i != e; ++i) {
1236    if (i->getKind() == UninitUse::Always) {
1237      return true;
1238    }
1239  }
1240  return false;
1241}
1242};
1243}
1244
1245
1246//===----------------------------------------------------------------------===//
1247// -Wthread-safety
1248//===----------------------------------------------------------------------===//
1249namespace clang {
1250namespace thread_safety {
1251typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1252typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1253typedef std::list<DelayedDiag> DiagList;
1254
1255struct SortDiagBySourceLocation {
1256  SourceManager &SM;
1257  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1258
1259  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1260    // Although this call will be slow, this is only called when outputting
1261    // multiple warnings.
1262    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1263  }
1264};
1265
1266namespace {
1267class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
1268  Sema &S;
1269  DiagList Warnings;
1270  SourceLocation FunLocation, FunEndLocation;
1271
1272  // Helper functions
1273  void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) {
1274    // Gracefully handle rare cases when the analysis can't get a more
1275    // precise source location.
1276    if (!Loc.isValid())
1277      Loc = FunLocation;
1278    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << LockName);
1279    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1280  }
1281
1282 public:
1283  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1284    : S(S), FunLocation(FL), FunEndLocation(FEL) {}
1285
1286  /// \brief Emit all buffered diagnostics in order of sourcelocation.
1287  /// We need to output diagnostics produced while iterating through
1288  /// the lockset in deterministic order, so this function orders diagnostics
1289  /// and outputs them.
1290  void emitDiagnostics() {
1291    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1292    for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
1293         I != E; ++I) {
1294      S.Diag(I->first.first, I->first.second);
1295      const OptionalNotes &Notes = I->second;
1296      for (unsigned NoteI = 0, NoteN = Notes.size(); NoteI != NoteN; ++NoteI)
1297        S.Diag(Notes[NoteI].first, Notes[NoteI].second);
1298    }
1299  }
1300
1301  void handleInvalidLockExp(SourceLocation Loc) {
1302    PartialDiagnosticAt Warning(Loc,
1303                                S.PDiag(diag::warn_cannot_resolve_lock) << Loc);
1304    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1305  }
1306  void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) {
1307    warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc);
1308  }
1309
1310  void handleDoubleLock(Name LockName, SourceLocation Loc) {
1311    warnLockMismatch(diag::warn_double_lock, LockName, Loc);
1312  }
1313
1314  void handleMutexHeldEndOfScope(Name LockName, SourceLocation LocLocked,
1315                                 SourceLocation LocEndOfScope,
1316                                 LockErrorKind LEK){
1317    unsigned DiagID = 0;
1318    switch (LEK) {
1319      case LEK_LockedSomePredecessors:
1320        DiagID = diag::warn_lock_some_predecessors;
1321        break;
1322      case LEK_LockedSomeLoopIterations:
1323        DiagID = diag::warn_expecting_lock_held_on_loop;
1324        break;
1325      case LEK_LockedAtEndOfFunction:
1326        DiagID = diag::warn_no_unlock;
1327        break;
1328      case LEK_NotLockedAtEndOfFunction:
1329        DiagID = diag::warn_expecting_locked;
1330        break;
1331    }
1332    if (LocEndOfScope.isInvalid())
1333      LocEndOfScope = FunEndLocation;
1334
1335    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << LockName);
1336    if (LocLocked.isValid()) {
1337      PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here));
1338      Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1339      return;
1340    }
1341    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1342  }
1343
1344
1345  void handleExclusiveAndShared(Name LockName, SourceLocation Loc1,
1346                                SourceLocation Loc2) {
1347    PartialDiagnosticAt Warning(
1348      Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName);
1349    PartialDiagnosticAt Note(
1350      Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << LockName);
1351    Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1352  }
1353
1354  void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
1355                         AccessKind AK, SourceLocation Loc) {
1356    assert((POK == POK_VarAccess || POK == POK_VarDereference)
1357             && "Only works for variables");
1358    unsigned DiagID = POK == POK_VarAccess?
1359                        diag::warn_variable_requires_any_lock:
1360                        diag::warn_var_deref_requires_any_lock;
1361    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1362      << D->getNameAsString() << getLockKindFromAccessKind(AK));
1363    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1364  }
1365
1366  void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK,
1367                          Name LockName, LockKind LK, SourceLocation Loc,
1368                          Name *PossibleMatch) {
1369    unsigned DiagID = 0;
1370    if (PossibleMatch) {
1371      switch (POK) {
1372        case POK_VarAccess:
1373          DiagID = diag::warn_variable_requires_lock_precise;
1374          break;
1375        case POK_VarDereference:
1376          DiagID = diag::warn_var_deref_requires_lock_precise;
1377          break;
1378        case POK_FunctionCall:
1379          DiagID = diag::warn_fun_requires_lock_precise;
1380          break;
1381      }
1382      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1383        << D->getNameAsString() << LockName << LK);
1384      PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1385                               << *PossibleMatch);
1386      Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1387    } else {
1388      switch (POK) {
1389        case POK_VarAccess:
1390          DiagID = diag::warn_variable_requires_lock;
1391          break;
1392        case POK_VarDereference:
1393          DiagID = diag::warn_var_deref_requires_lock;
1394          break;
1395        case POK_FunctionCall:
1396          DiagID = diag::warn_fun_requires_lock;
1397          break;
1398      }
1399      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1400        << D->getNameAsString() << LockName << LK);
1401      Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1402    }
1403  }
1404
1405  void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) {
1406    PartialDiagnosticAt Warning(Loc,
1407      S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName);
1408    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1409  }
1410};
1411}
1412}
1413}
1414
1415//===----------------------------------------------------------------------===//
1416// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1417//  warnings on a function, method, or block.
1418//===----------------------------------------------------------------------===//
1419
1420clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1421  enableCheckFallThrough = 1;
1422  enableCheckUnreachable = 0;
1423  enableThreadSafetyAnalysis = 0;
1424}
1425
1426clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1427  : S(s),
1428    NumFunctionsAnalyzed(0),
1429    NumFunctionsWithBadCFGs(0),
1430    NumCFGBlocks(0),
1431    MaxCFGBlocksPerFunction(0),
1432    NumUninitAnalysisFunctions(0),
1433    NumUninitAnalysisVariables(0),
1434    MaxUninitAnalysisVariablesPerFunction(0),
1435    NumUninitAnalysisBlockVisits(0),
1436    MaxUninitAnalysisBlockVisitsPerFunction(0) {
1437  DiagnosticsEngine &D = S.getDiagnostics();
1438  DefaultPolicy.enableCheckUnreachable = (unsigned)
1439    (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
1440        DiagnosticsEngine::Ignored);
1441  DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
1442    (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
1443     DiagnosticsEngine::Ignored);
1444
1445}
1446
1447static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
1448  for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1449       i = fscope->PossiblyUnreachableDiags.begin(),
1450       e = fscope->PossiblyUnreachableDiags.end();
1451       i != e; ++i) {
1452    const sema::PossiblyUnreachableDiag &D = *i;
1453    S.Diag(D.Loc, D.PD);
1454  }
1455}
1456
1457void clang::sema::
1458AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1459                                     sema::FunctionScopeInfo *fscope,
1460                                     const Decl *D, const BlockExpr *blkExpr) {
1461
1462  // We avoid doing analysis-based warnings when there are errors for
1463  // two reasons:
1464  // (1) The CFGs often can't be constructed (if the body is invalid), so
1465  //     don't bother trying.
1466  // (2) The code already has problems; running the analysis just takes more
1467  //     time.
1468  DiagnosticsEngine &Diags = S.getDiagnostics();
1469
1470  // Do not do any analysis for declarations in system headers if we are
1471  // going to just ignore them.
1472  if (Diags.getSuppressSystemWarnings() &&
1473      S.SourceMgr.isInSystemHeader(D->getLocation()))
1474    return;
1475
1476  // For code in dependent contexts, we'll do this at instantiation time.
1477  if (cast<DeclContext>(D)->isDependentContext())
1478    return;
1479
1480  if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1481    // Flush out any possibly unreachable diagnostics.
1482    flushDiagnostics(S, fscope);
1483    return;
1484  }
1485
1486  const Stmt *Body = D->getBody();
1487  assert(Body);
1488
1489  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ 0, D);
1490
1491  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1492  // explosion for destrutors that can result and the compile time hit.
1493  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1494  AC.getCFGBuildOptions().AddEHEdges = false;
1495  AC.getCFGBuildOptions().AddInitializers = true;
1496  AC.getCFGBuildOptions().AddImplicitDtors = true;
1497  AC.getCFGBuildOptions().AddTemporaryDtors = true;
1498
1499  // Force that certain expressions appear as CFGElements in the CFG.  This
1500  // is used to speed up various analyses.
1501  // FIXME: This isn't the right factoring.  This is here for initial
1502  // prototyping, but we need a way for analyses to say what expressions they
1503  // expect to always be CFGElements and then fill in the BuildOptions
1504  // appropriately.  This is essentially a layering violation.
1505  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis) {
1506    // Unreachable code analysis and thread safety require a linearized CFG.
1507    AC.getCFGBuildOptions().setAllAlwaysAdd();
1508  }
1509  else {
1510    AC.getCFGBuildOptions()
1511      .setAlwaysAdd(Stmt::BinaryOperatorClass)
1512      .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
1513      .setAlwaysAdd(Stmt::BlockExprClass)
1514      .setAlwaysAdd(Stmt::CStyleCastExprClass)
1515      .setAlwaysAdd(Stmt::DeclRefExprClass)
1516      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1517      .setAlwaysAdd(Stmt::UnaryOperatorClass)
1518      .setAlwaysAdd(Stmt::AttributedStmtClass);
1519  }
1520
1521  // Construct the analysis context with the specified CFG build options.
1522
1523  // Emit delayed diagnostics.
1524  if (!fscope->PossiblyUnreachableDiags.empty()) {
1525    bool analyzed = false;
1526
1527    // Register the expressions with the CFGBuilder.
1528    for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1529         i = fscope->PossiblyUnreachableDiags.begin(),
1530         e = fscope->PossiblyUnreachableDiags.end();
1531         i != e; ++i) {
1532      if (const Stmt *stmt = i->stmt)
1533        AC.registerForcedBlockExpression(stmt);
1534    }
1535
1536    if (AC.getCFG()) {
1537      analyzed = true;
1538      for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1539            i = fscope->PossiblyUnreachableDiags.begin(),
1540            e = fscope->PossiblyUnreachableDiags.end();
1541            i != e; ++i)
1542      {
1543        const sema::PossiblyUnreachableDiag &D = *i;
1544        bool processed = false;
1545        if (const Stmt *stmt = i->stmt) {
1546          const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
1547          CFGReverseBlockReachabilityAnalysis *cra =
1548              AC.getCFGReachablityAnalysis();
1549          // FIXME: We should be able to assert that block is non-null, but
1550          // the CFG analysis can skip potentially-evaluated expressions in
1551          // edge cases; see test/Sema/vla-2.c.
1552          if (block && cra) {
1553            // Can this block be reached from the entrance?
1554            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1555              S.Diag(D.Loc, D.PD);
1556            processed = true;
1557          }
1558        }
1559        if (!processed) {
1560          // Emit the warning anyway if we cannot map to a basic block.
1561          S.Diag(D.Loc, D.PD);
1562        }
1563      }
1564    }
1565
1566    if (!analyzed)
1567      flushDiagnostics(S, fscope);
1568  }
1569
1570
1571  // Warning: check missing 'return'
1572  if (P.enableCheckFallThrough) {
1573    const CheckFallThroughDiagnostics &CD =
1574      (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1575       : (isa<CXXMethodDecl>(D) &&
1576          cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
1577          cast<CXXMethodDecl>(D)->getParent()->isLambda())
1578            ? CheckFallThroughDiagnostics::MakeForLambda()
1579            : CheckFallThroughDiagnostics::MakeForFunction(D));
1580    CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1581  }
1582
1583  // Warning: check for unreachable code
1584  if (P.enableCheckUnreachable) {
1585    // Only check for unreachable code on non-template instantiations.
1586    // Different template instantiations can effectively change the control-flow
1587    // and it is very difficult to prove that a snippet of code in a template
1588    // is unreachable for all instantiations.
1589    bool isTemplateInstantiation = false;
1590    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
1591      isTemplateInstantiation = Function->isTemplateInstantiation();
1592    if (!isTemplateInstantiation)
1593      CheckUnreachable(S, AC);
1594  }
1595
1596  // Check for thread safety violations
1597  if (P.enableThreadSafetyAnalysis) {
1598    SourceLocation FL = AC.getDecl()->getLocation();
1599    SourceLocation FEL = AC.getDecl()->getLocEnd();
1600    thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
1601    if (Diags.getDiagnosticLevel(diag::warn_thread_safety_beta,D->getLocStart())
1602        != DiagnosticsEngine::Ignored)
1603      Reporter.setIssueBetaWarnings(true);
1604
1605    thread_safety::runThreadSafetyAnalysis(AC, Reporter);
1606    Reporter.emitDiagnostics();
1607  }
1608
1609  if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
1610      != DiagnosticsEngine::Ignored ||
1611      Diags.getDiagnosticLevel(diag::warn_sometimes_uninit_var,D->getLocStart())
1612      != DiagnosticsEngine::Ignored ||
1613      Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
1614      != DiagnosticsEngine::Ignored) {
1615    if (CFG *cfg = AC.getCFG()) {
1616      UninitValsDiagReporter reporter(S);
1617      UninitVariablesAnalysisStats stats;
1618      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
1619      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
1620                                        reporter, stats);
1621
1622      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
1623        ++NumUninitAnalysisFunctions;
1624        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
1625        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
1626        MaxUninitAnalysisVariablesPerFunction =
1627            std::max(MaxUninitAnalysisVariablesPerFunction,
1628                     stats.NumVariablesAnalyzed);
1629        MaxUninitAnalysisBlockVisitsPerFunction =
1630            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
1631                     stats.NumBlockVisits);
1632      }
1633    }
1634  }
1635
1636  bool FallThroughDiagFull =
1637      Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough,
1638                               D->getLocStart()) != DiagnosticsEngine::Ignored;
1639  bool FallThroughDiagPerFunction =
1640      Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough_per_function,
1641                               D->getLocStart()) != DiagnosticsEngine::Ignored;
1642  if (FallThroughDiagFull || FallThroughDiagPerFunction) {
1643    DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
1644  }
1645
1646  if (S.getLangOpts().ObjCARCWeak &&
1647      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1648                               D->getLocStart()) != DiagnosticsEngine::Ignored)
1649    diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
1650
1651  // Collect statistics about the CFG if it was built.
1652  if (S.CollectStats && AC.isCFGBuilt()) {
1653    ++NumFunctionsAnalyzed;
1654    if (CFG *cfg = AC.getCFG()) {
1655      // If we successfully built a CFG for this context, record some more
1656      // detail information about it.
1657      NumCFGBlocks += cfg->getNumBlockIDs();
1658      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
1659                                         cfg->getNumBlockIDs());
1660    } else {
1661      ++NumFunctionsWithBadCFGs;
1662    }
1663  }
1664}
1665
1666void clang::sema::AnalysisBasedWarnings::PrintStats() const {
1667  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
1668
1669  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
1670  unsigned AvgCFGBlocksPerFunction =
1671      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
1672  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
1673               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
1674               << "  " << NumCFGBlocks << " CFG blocks built.\n"
1675               << "  " << AvgCFGBlocksPerFunction
1676               << " average CFG blocks per function.\n"
1677               << "  " << MaxCFGBlocksPerFunction
1678               << " max CFG blocks per function.\n";
1679
1680  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
1681      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
1682  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
1683      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
1684  llvm::errs() << NumUninitAnalysisFunctions
1685               << " functions analyzed for uninitialiazed variables\n"
1686               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
1687               << "  " << AvgUninitVariablesPerFunction
1688               << " average variables per function.\n"
1689               << "  " << MaxUninitAnalysisVariablesPerFunction
1690               << " max variables per function.\n"
1691               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
1692               << "  " << AvgUninitBlockVisitsPerFunction
1693               << " average block visits per function.\n"
1694               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
1695               << " max block visits per function.\n";
1696}
1697