AnalysisBasedWarnings.cpp revision 8adf837adc65b55a3f74643c02c1ee077dc26f06
1//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines analysis_warnings::[Policy,Executor].
11// Together they are used by Sema to issue warnings based on inexpensive
12// static analysis algorithms in libAnalysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/AnalysisBasedWarnings.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/EvaluatedExprVisitor.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/ParentMap.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
28#include "clang/Analysis/Analyses/Consumed.h"
29#include "clang/Analysis/Analyses/ReachableCode.h"
30#include "clang/Analysis/Analyses/ThreadSafety.h"
31#include "clang/Analysis/Analyses/UninitializedValues.h"
32#include "clang/Analysis/AnalysisContext.h"
33#include "clang/Analysis/CFG.h"
34#include "clang/Analysis/CFGStmtMap.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Lex/Lexer.h"
38#include "clang/Lex/Preprocessor.h"
39#include "clang/Sema/ScopeInfo.h"
40#include "clang/Sema/SemaInternal.h"
41#include "llvm/ADT/ArrayRef.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/FoldingSet.h"
44#include "llvm/ADT/ImmutableMap.h"
45#include "llvm/ADT/MapVector.h"
46#include "llvm/ADT/PostOrderIterator.h"
47#include "llvm/ADT/SmallString.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/StringRef.h"
50#include "llvm/Support/Casting.h"
51#include <algorithm>
52#include <deque>
53#include <iterator>
54#include <vector>
55
56using namespace clang;
57
58//===----------------------------------------------------------------------===//
59// Unreachable code analysis.
60//===----------------------------------------------------------------------===//
61
62namespace {
63  class UnreachableCodeHandler : public reachable_code::Callback {
64    Sema &S;
65  public:
66    UnreachableCodeHandler(Sema &s) : S(s) {}
67
68    void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
69      S.Diag(L, diag::warn_unreachable) << R1 << R2;
70    }
71  };
72}
73
74/// CheckUnreachable - Check for unreachable code.
75static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
76  UnreachableCodeHandler UC(S);
77  reachable_code::FindUnreachableCode(AC, UC);
78}
79
80//===----------------------------------------------------------------------===//
81// Check for missing return value.
82//===----------------------------------------------------------------------===//
83
84enum ControlFlowKind {
85  UnknownFallThrough,
86  NeverFallThrough,
87  MaybeFallThrough,
88  AlwaysFallThrough,
89  NeverFallThroughOrReturn
90};
91
92/// CheckFallThrough - Check that we don't fall off the end of a
93/// Statement that should return a value.
94///
95/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
96/// MaybeFallThrough iff we might or might not fall off the end,
97/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
98/// return.  We assume NeverFallThrough iff we never fall off the end of the
99/// statement but we may return.  We assume that functions not marked noreturn
100/// will return.
101static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
102  CFG *cfg = AC.getCFG();
103  if (cfg == 0) return UnknownFallThrough;
104
105  // The CFG leaves in dead things, and we don't want the dead code paths to
106  // confuse us, so we mark all live things first.
107  llvm::BitVector live(cfg->getNumBlockIDs());
108  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
109                                                          live);
110
111  bool AddEHEdges = AC.getAddEHEdges();
112  if (!AddEHEdges && count != cfg->getNumBlockIDs())
113    // When there are things remaining dead, and we didn't add EH edges
114    // from CallExprs to the catch clauses, we have to go back and
115    // mark them as live.
116    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
117      CFGBlock &b = **I;
118      if (!live[b.getBlockID()]) {
119        if (b.pred_begin() == b.pred_end()) {
120          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
121            // When not adding EH edges from calls, catch clauses
122            // can otherwise seem dead.  Avoid noting them as dead.
123            count += reachable_code::ScanReachableFromBlock(&b, live);
124          continue;
125        }
126      }
127    }
128
129  // Now we know what is live, we check the live precessors of the exit block
130  // and look for fall through paths, being careful to ignore normal returns,
131  // and exceptional paths.
132  bool HasLiveReturn = false;
133  bool HasFakeEdge = false;
134  bool HasPlainEdge = false;
135  bool HasAbnormalEdge = false;
136
137  // Ignore default cases that aren't likely to be reachable because all
138  // enums in a switch(X) have explicit case statements.
139  CFGBlock::FilterOptions FO;
140  FO.IgnoreDefaultsWithCoveredEnums = 1;
141
142  for (CFGBlock::filtered_pred_iterator
143	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
144    const CFGBlock& B = **I;
145    if (!live[B.getBlockID()])
146      continue;
147
148    // Skip blocks which contain an element marked as no-return. They don't
149    // represent actually viable edges into the exit block, so mark them as
150    // abnormal.
151    if (B.hasNoReturnElement()) {
152      HasAbnormalEdge = true;
153      continue;
154    }
155
156    // Destructors can appear after the 'return' in the CFG.  This is
157    // normal.  We need to look pass the destructors for the return
158    // statement (if it exists).
159    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
160
161    for ( ; ri != re ; ++ri)
162      if (ri->getAs<CFGStmt>())
163        break;
164
165    // No more CFGElements in the block?
166    if (ri == re) {
167      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
168        HasAbnormalEdge = true;
169        continue;
170      }
171      // A labeled empty statement, or the entry block...
172      HasPlainEdge = true;
173      continue;
174    }
175
176    CFGStmt CS = ri->castAs<CFGStmt>();
177    const Stmt *S = CS.getStmt();
178    if (isa<ReturnStmt>(S)) {
179      HasLiveReturn = true;
180      continue;
181    }
182    if (isa<ObjCAtThrowStmt>(S)) {
183      HasFakeEdge = true;
184      continue;
185    }
186    if (isa<CXXThrowExpr>(S)) {
187      HasFakeEdge = true;
188      continue;
189    }
190    if (isa<MSAsmStmt>(S)) {
191      // TODO: Verify this is correct.
192      HasFakeEdge = true;
193      HasLiveReturn = true;
194      continue;
195    }
196    if (isa<CXXTryStmt>(S)) {
197      HasAbnormalEdge = true;
198      continue;
199    }
200    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
201        == B.succ_end()) {
202      HasAbnormalEdge = true;
203      continue;
204    }
205
206    HasPlainEdge = true;
207  }
208  if (!HasPlainEdge) {
209    if (HasLiveReturn)
210      return NeverFallThrough;
211    return NeverFallThroughOrReturn;
212  }
213  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
214    return MaybeFallThrough;
215  // This says AlwaysFallThrough for calls to functions that are not marked
216  // noreturn, that don't return.  If people would like this warning to be more
217  // accurate, such functions should be marked as noreturn.
218  return AlwaysFallThrough;
219}
220
221namespace {
222
223struct CheckFallThroughDiagnostics {
224  unsigned diag_MaybeFallThrough_HasNoReturn;
225  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
226  unsigned diag_AlwaysFallThrough_HasNoReturn;
227  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
228  unsigned diag_NeverFallThroughOrReturn;
229  enum { Function, Block, Lambda } funMode;
230  SourceLocation FuncLoc;
231
232  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
233    CheckFallThroughDiagnostics D;
234    D.FuncLoc = Func->getLocation();
235    D.diag_MaybeFallThrough_HasNoReturn =
236      diag::warn_falloff_noreturn_function;
237    D.diag_MaybeFallThrough_ReturnsNonVoid =
238      diag::warn_maybe_falloff_nonvoid_function;
239    D.diag_AlwaysFallThrough_HasNoReturn =
240      diag::warn_falloff_noreturn_function;
241    D.diag_AlwaysFallThrough_ReturnsNonVoid =
242      diag::warn_falloff_nonvoid_function;
243
244    // Don't suggest that virtual functions be marked "noreturn", since they
245    // might be overridden by non-noreturn functions.
246    bool isVirtualMethod = false;
247    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
248      isVirtualMethod = Method->isVirtual();
249
250    // Don't suggest that template instantiations be marked "noreturn"
251    bool isTemplateInstantiation = false;
252    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
253      isTemplateInstantiation = Function->isTemplateInstantiation();
254
255    if (!isVirtualMethod && !isTemplateInstantiation)
256      D.diag_NeverFallThroughOrReturn =
257        diag::warn_suggest_noreturn_function;
258    else
259      D.diag_NeverFallThroughOrReturn = 0;
260
261    D.funMode = Function;
262    return D;
263  }
264
265  static CheckFallThroughDiagnostics MakeForBlock() {
266    CheckFallThroughDiagnostics D;
267    D.diag_MaybeFallThrough_HasNoReturn =
268      diag::err_noreturn_block_has_return_expr;
269    D.diag_MaybeFallThrough_ReturnsNonVoid =
270      diag::err_maybe_falloff_nonvoid_block;
271    D.diag_AlwaysFallThrough_HasNoReturn =
272      diag::err_noreturn_block_has_return_expr;
273    D.diag_AlwaysFallThrough_ReturnsNonVoid =
274      diag::err_falloff_nonvoid_block;
275    D.diag_NeverFallThroughOrReturn =
276      diag::warn_suggest_noreturn_block;
277    D.funMode = Block;
278    return D;
279  }
280
281  static CheckFallThroughDiagnostics MakeForLambda() {
282    CheckFallThroughDiagnostics D;
283    D.diag_MaybeFallThrough_HasNoReturn =
284      diag::err_noreturn_lambda_has_return_expr;
285    D.diag_MaybeFallThrough_ReturnsNonVoid =
286      diag::warn_maybe_falloff_nonvoid_lambda;
287    D.diag_AlwaysFallThrough_HasNoReturn =
288      diag::err_noreturn_lambda_has_return_expr;
289    D.diag_AlwaysFallThrough_ReturnsNonVoid =
290      diag::warn_falloff_nonvoid_lambda;
291    D.diag_NeverFallThroughOrReturn = 0;
292    D.funMode = Lambda;
293    return D;
294  }
295
296  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
297                        bool HasNoReturn) const {
298    if (funMode == Function) {
299      return (ReturnsVoid ||
300              D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
301                                   FuncLoc) == DiagnosticsEngine::Ignored)
302        && (!HasNoReturn ||
303            D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
304                                 FuncLoc) == DiagnosticsEngine::Ignored)
305        && (!ReturnsVoid ||
306            D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
307              == DiagnosticsEngine::Ignored);
308    }
309
310    // For blocks / lambdas.
311    return ReturnsVoid && !HasNoReturn
312            && ((funMode == Lambda) ||
313                D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
314                  == DiagnosticsEngine::Ignored);
315  }
316};
317
318}
319
320/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
321/// function that should return a value.  Check that we don't fall off the end
322/// of a noreturn function.  We assume that functions and blocks not marked
323/// noreturn will return.
324static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
325                                    const BlockExpr *blkExpr,
326                                    const CheckFallThroughDiagnostics& CD,
327                                    AnalysisDeclContext &AC) {
328
329  bool ReturnsVoid = false;
330  bool HasNoReturn = false;
331
332  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
333    ReturnsVoid = FD->getResultType()->isVoidType();
334    HasNoReturn = FD->isNoReturn();
335  }
336  else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
337    ReturnsVoid = MD->getResultType()->isVoidType();
338    HasNoReturn = MD->hasAttr<NoReturnAttr>();
339  }
340  else if (isa<BlockDecl>(D)) {
341    QualType BlockTy = blkExpr->getType();
342    if (const FunctionType *FT =
343          BlockTy->getPointeeType()->getAs<FunctionType>()) {
344      if (FT->getResultType()->isVoidType())
345        ReturnsVoid = true;
346      if (FT->getNoReturnAttr())
347        HasNoReturn = true;
348    }
349  }
350
351  DiagnosticsEngine &Diags = S.getDiagnostics();
352
353  // Short circuit for compilation speed.
354  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
355      return;
356
357  // FIXME: Function try block
358  if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
359    switch (CheckFallThrough(AC)) {
360      case UnknownFallThrough:
361        break;
362
363      case MaybeFallThrough:
364        if (HasNoReturn)
365          S.Diag(Compound->getRBracLoc(),
366                 CD.diag_MaybeFallThrough_HasNoReturn);
367        else if (!ReturnsVoid)
368          S.Diag(Compound->getRBracLoc(),
369                 CD.diag_MaybeFallThrough_ReturnsNonVoid);
370        break;
371      case AlwaysFallThrough:
372        if (HasNoReturn)
373          S.Diag(Compound->getRBracLoc(),
374                 CD.diag_AlwaysFallThrough_HasNoReturn);
375        else if (!ReturnsVoid)
376          S.Diag(Compound->getRBracLoc(),
377                 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
378        break;
379      case NeverFallThroughOrReturn:
380        if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
381          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
382            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
383              << 0 << FD;
384          } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
385            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
386              << 1 << MD;
387          } else {
388            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
389          }
390        }
391        break;
392      case NeverFallThrough:
393        break;
394    }
395  }
396}
397
398//===----------------------------------------------------------------------===//
399// -Wuninitialized
400//===----------------------------------------------------------------------===//
401
402namespace {
403/// ContainsReference - A visitor class to search for references to
404/// a particular declaration (the needle) within any evaluated component of an
405/// expression (recursively).
406class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
407  bool FoundReference;
408  const DeclRefExpr *Needle;
409
410public:
411  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
412    : EvaluatedExprVisitor<ContainsReference>(Context),
413      FoundReference(false), Needle(Needle) {}
414
415  void VisitExpr(Expr *E) {
416    // Stop evaluating if we already have a reference.
417    if (FoundReference)
418      return;
419
420    EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
421  }
422
423  void VisitDeclRefExpr(DeclRefExpr *E) {
424    if (E == Needle)
425      FoundReference = true;
426    else
427      EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
428  }
429
430  bool doesContainReference() const { return FoundReference; }
431};
432}
433
434static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
435  QualType VariableTy = VD->getType().getCanonicalType();
436  if (VariableTy->isBlockPointerType() &&
437      !VD->hasAttr<BlocksAttr>()) {
438    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName()
439    << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
440    return true;
441  }
442
443  // Don't issue a fixit if there is already an initializer.
444  if (VD->getInit())
445    return false;
446
447  // Don't suggest a fixit inside macros.
448  if (VD->getLocEnd().isMacroID())
449    return false;
450
451  SourceLocation Loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
452
453  // Suggest possible initialization (if any).
454  std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
455  if (Init.empty())
456    return false;
457
458  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
459    << FixItHint::CreateInsertion(Loc, Init);
460  return true;
461}
462
463/// Create a fixit to remove an if-like statement, on the assumption that its
464/// condition is CondVal.
465static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
466                          const Stmt *Else, bool CondVal,
467                          FixItHint &Fixit1, FixItHint &Fixit2) {
468  if (CondVal) {
469    // If condition is always true, remove all but the 'then'.
470    Fixit1 = FixItHint::CreateRemoval(
471        CharSourceRange::getCharRange(If->getLocStart(),
472                                      Then->getLocStart()));
473    if (Else) {
474      SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
475          Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
476      Fixit2 = FixItHint::CreateRemoval(
477          SourceRange(ElseKwLoc, Else->getLocEnd()));
478    }
479  } else {
480    // If condition is always false, remove all but the 'else'.
481    if (Else)
482      Fixit1 = FixItHint::CreateRemoval(
483          CharSourceRange::getCharRange(If->getLocStart(),
484                                        Else->getLocStart()));
485    else
486      Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
487  }
488}
489
490/// DiagUninitUse -- Helper function to produce a diagnostic for an
491/// uninitialized use of a variable.
492static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
493                          bool IsCapturedByBlock) {
494  bool Diagnosed = false;
495
496  switch (Use.getKind()) {
497  case UninitUse::Always:
498    S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
499        << VD->getDeclName() << IsCapturedByBlock
500        << Use.getUser()->getSourceRange();
501    return;
502
503  case UninitUse::AfterDecl:
504  case UninitUse::AfterCall:
505    S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
506      << VD->getDeclName() << IsCapturedByBlock
507      << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
508      << const_cast<DeclContext*>(VD->getLexicalDeclContext())
509      << VD->getSourceRange();
510    S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
511      << IsCapturedByBlock << Use.getUser()->getSourceRange();
512    return;
513
514  case UninitUse::Maybe:
515  case UninitUse::Sometimes:
516    // Carry on to report sometimes-uninitialized branches, if possible,
517    // or a 'may be used uninitialized' diagnostic otherwise.
518    break;
519  }
520
521  // Diagnose each branch which leads to a sometimes-uninitialized use.
522  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
523       I != E; ++I) {
524    assert(Use.getKind() == UninitUse::Sometimes);
525
526    const Expr *User = Use.getUser();
527    const Stmt *Term = I->Terminator;
528
529    // Information used when building the diagnostic.
530    unsigned DiagKind;
531    StringRef Str;
532    SourceRange Range;
533
534    // FixIts to suppress the diagnostic by removing the dead condition.
535    // For all binary terminators, branch 0 is taken if the condition is true,
536    // and branch 1 is taken if the condition is false.
537    int RemoveDiagKind = -1;
538    const char *FixitStr =
539        S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
540                                  : (I->Output ? "1" : "0");
541    FixItHint Fixit1, Fixit2;
542
543    switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
544    default:
545      // Don't know how to report this. Just fall back to 'may be used
546      // uninitialized'. FIXME: Can this happen?
547      continue;
548
549    // "condition is true / condition is false".
550    case Stmt::IfStmtClass: {
551      const IfStmt *IS = cast<IfStmt>(Term);
552      DiagKind = 0;
553      Str = "if";
554      Range = IS->getCond()->getSourceRange();
555      RemoveDiagKind = 0;
556      CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
557                    I->Output, Fixit1, Fixit2);
558      break;
559    }
560    case Stmt::ConditionalOperatorClass: {
561      const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
562      DiagKind = 0;
563      Str = "?:";
564      Range = CO->getCond()->getSourceRange();
565      RemoveDiagKind = 0;
566      CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
567                    I->Output, Fixit1, Fixit2);
568      break;
569    }
570    case Stmt::BinaryOperatorClass: {
571      const BinaryOperator *BO = cast<BinaryOperator>(Term);
572      if (!BO->isLogicalOp())
573        continue;
574      DiagKind = 0;
575      Str = BO->getOpcodeStr();
576      Range = BO->getLHS()->getSourceRange();
577      RemoveDiagKind = 0;
578      if ((BO->getOpcode() == BO_LAnd && I->Output) ||
579          (BO->getOpcode() == BO_LOr && !I->Output))
580        // true && y -> y, false || y -> y.
581        Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
582                                                      BO->getOperatorLoc()));
583      else
584        // false && y -> false, true || y -> true.
585        Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
586      break;
587    }
588
589    // "loop is entered / loop is exited".
590    case Stmt::WhileStmtClass:
591      DiagKind = 1;
592      Str = "while";
593      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
594      RemoveDiagKind = 1;
595      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
596      break;
597    case Stmt::ForStmtClass:
598      DiagKind = 1;
599      Str = "for";
600      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
601      RemoveDiagKind = 1;
602      if (I->Output)
603        Fixit1 = FixItHint::CreateRemoval(Range);
604      else
605        Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
606      break;
607    case Stmt::CXXForRangeStmtClass:
608      if (I->Output == 1) {
609        // The use occurs if a range-based for loop's body never executes.
610        // That may be impossible, and there's no syntactic fix for this,
611        // so treat it as a 'may be uninitialized' case.
612        continue;
613      }
614      DiagKind = 1;
615      Str = "for";
616      Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
617      break;
618
619    // "condition is true / loop is exited".
620    case Stmt::DoStmtClass:
621      DiagKind = 2;
622      Str = "do";
623      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
624      RemoveDiagKind = 1;
625      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
626      break;
627
628    // "switch case is taken".
629    case Stmt::CaseStmtClass:
630      DiagKind = 3;
631      Str = "case";
632      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
633      break;
634    case Stmt::DefaultStmtClass:
635      DiagKind = 3;
636      Str = "default";
637      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
638      break;
639    }
640
641    S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
642      << VD->getDeclName() << IsCapturedByBlock << DiagKind
643      << Str << I->Output << Range;
644    S.Diag(User->getLocStart(), diag::note_uninit_var_use)
645      << IsCapturedByBlock << User->getSourceRange();
646    if (RemoveDiagKind != -1)
647      S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
648        << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
649
650    Diagnosed = true;
651  }
652
653  if (!Diagnosed)
654    S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
655        << VD->getDeclName() << IsCapturedByBlock
656        << Use.getUser()->getSourceRange();
657}
658
659/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
660/// uninitialized variable. This manages the different forms of diagnostic
661/// emitted for particular types of uses. Returns true if the use was diagnosed
662/// as a warning. If a particular use is one we omit warnings for, returns
663/// false.
664static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
665                                     const UninitUse &Use,
666                                     bool alwaysReportSelfInit = false) {
667
668  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
669    // Inspect the initializer of the variable declaration which is
670    // being referenced prior to its initialization. We emit
671    // specialized diagnostics for self-initialization, and we
672    // specifically avoid warning about self references which take the
673    // form of:
674    //
675    //   int x = x;
676    //
677    // This is used to indicate to GCC that 'x' is intentionally left
678    // uninitialized. Proven code paths which access 'x' in
679    // an uninitialized state after this will still warn.
680    if (const Expr *Initializer = VD->getInit()) {
681      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
682        return false;
683
684      ContainsReference CR(S.Context, DRE);
685      CR.Visit(const_cast<Expr*>(Initializer));
686      if (CR.doesContainReference()) {
687        S.Diag(DRE->getLocStart(),
688               diag::warn_uninit_self_reference_in_init)
689          << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
690        return true;
691      }
692    }
693
694    DiagUninitUse(S, VD, Use, false);
695  } else {
696    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
697    if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
698      S.Diag(BE->getLocStart(),
699             diag::warn_uninit_byref_blockvar_captured_by_block)
700        << VD->getDeclName();
701    else
702      DiagUninitUse(S, VD, Use, true);
703  }
704
705  // Report where the variable was declared when the use wasn't within
706  // the initializer of that declaration & we didn't already suggest
707  // an initialization fixit.
708  if (!SuggestInitializationFixit(S, VD))
709    S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
710      << VD->getDeclName();
711
712  return true;
713}
714
715namespace {
716  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
717  public:
718    FallthroughMapper(Sema &S)
719      : FoundSwitchStatements(false),
720        S(S) {
721    }
722
723    bool foundSwitchStatements() const { return FoundSwitchStatements; }
724
725    void markFallthroughVisited(const AttributedStmt *Stmt) {
726      bool Found = FallthroughStmts.erase(Stmt);
727      assert(Found);
728      (void)Found;
729    }
730
731    typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
732
733    const AttrStmts &getFallthroughStmts() const {
734      return FallthroughStmts;
735    }
736
737    void fillReachableBlocks(CFG *Cfg) {
738      assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
739      std::deque<const CFGBlock *> BlockQueue;
740
741      ReachableBlocks.insert(&Cfg->getEntry());
742      BlockQueue.push_back(&Cfg->getEntry());
743      // Mark all case blocks reachable to avoid problems with switching on
744      // constants, covered enums, etc.
745      // These blocks can contain fall-through annotations, and we don't want to
746      // issue a warn_fallthrough_attr_unreachable for them.
747      for (CFG::iterator I = Cfg->begin(), E = Cfg->end(); I != E; ++I) {
748        const CFGBlock *B = *I;
749        const Stmt *L = B->getLabel();
750        if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B))
751          BlockQueue.push_back(B);
752      }
753
754      while (!BlockQueue.empty()) {
755        const CFGBlock *P = BlockQueue.front();
756        BlockQueue.pop_front();
757        for (CFGBlock::const_succ_iterator I = P->succ_begin(),
758                                           E = P->succ_end();
759             I != E; ++I) {
760          if (*I && ReachableBlocks.insert(*I))
761            BlockQueue.push_back(*I);
762        }
763      }
764    }
765
766    bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
767      assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
768
769      int UnannotatedCnt = 0;
770      AnnotatedCnt = 0;
771
772      std::deque<const CFGBlock*> BlockQueue;
773
774      std::copy(B.pred_begin(), B.pred_end(), std::back_inserter(BlockQueue));
775
776      while (!BlockQueue.empty()) {
777        const CFGBlock *P = BlockQueue.front();
778        BlockQueue.pop_front();
779
780        const Stmt *Term = P->getTerminator();
781        if (Term && isa<SwitchStmt>(Term))
782          continue; // Switch statement, good.
783
784        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
785        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
786          continue; // Previous case label has no statements, good.
787
788        const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
789        if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
790          continue; // Case label is preceded with a normal label, good.
791
792        if (!ReachableBlocks.count(P)) {
793          for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
794                                                ElemEnd = P->rend();
795               ElemIt != ElemEnd; ++ElemIt) {
796            if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
797              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
798                S.Diag(AS->getLocStart(),
799                       diag::warn_fallthrough_attr_unreachable);
800                markFallthroughVisited(AS);
801                ++AnnotatedCnt;
802                break;
803              }
804              // Don't care about other unreachable statements.
805            }
806          }
807          // If there are no unreachable statements, this may be a special
808          // case in CFG:
809          // case X: {
810          //    A a;  // A has a destructor.
811          //    break;
812          // }
813          // // <<<< This place is represented by a 'hanging' CFG block.
814          // case Y:
815          continue;
816        }
817
818        const Stmt *LastStmt = getLastStmt(*P);
819        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
820          markFallthroughVisited(AS);
821          ++AnnotatedCnt;
822          continue; // Fallthrough annotation, good.
823        }
824
825        if (!LastStmt) { // This block contains no executable statements.
826          // Traverse its predecessors.
827          std::copy(P->pred_begin(), P->pred_end(),
828                    std::back_inserter(BlockQueue));
829          continue;
830        }
831
832        ++UnannotatedCnt;
833      }
834      return !!UnannotatedCnt;
835    }
836
837    // RecursiveASTVisitor setup.
838    bool shouldWalkTypesOfTypeLocs() const { return false; }
839
840    bool VisitAttributedStmt(AttributedStmt *S) {
841      if (asFallThroughAttr(S))
842        FallthroughStmts.insert(S);
843      return true;
844    }
845
846    bool VisitSwitchStmt(SwitchStmt *S) {
847      FoundSwitchStatements = true;
848      return true;
849    }
850
851    // We don't want to traverse local type declarations. We analyze their
852    // methods separately.
853    bool TraverseDecl(Decl *D) { return true; }
854
855  private:
856
857    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
858      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
859        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
860          return AS;
861      }
862      return 0;
863    }
864
865    static const Stmt *getLastStmt(const CFGBlock &B) {
866      if (const Stmt *Term = B.getTerminator())
867        return Term;
868      for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
869                                            ElemEnd = B.rend();
870                                            ElemIt != ElemEnd; ++ElemIt) {
871        if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
872          return CS->getStmt();
873      }
874      // Workaround to detect a statement thrown out by CFGBuilder:
875      //   case X: {} case Y:
876      //   case X: ; case Y:
877      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
878        if (!isa<SwitchCase>(SW->getSubStmt()))
879          return SW->getSubStmt();
880
881      return 0;
882    }
883
884    bool FoundSwitchStatements;
885    AttrStmts FallthroughStmts;
886    Sema &S;
887    llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
888  };
889}
890
891static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
892                                            bool PerFunction) {
893  // Only perform this analysis when using C++11.  There is no good workflow
894  // for this warning when not using C++11.  There is no good way to silence
895  // the warning (no attribute is available) unless we are using C++11's support
896  // for generalized attributes.  Once could use pragmas to silence the warning,
897  // but as a general solution that is gross and not in the spirit of this
898  // warning.
899  //
900  // NOTE: This an intermediate solution.  There are on-going discussions on
901  // how to properly support this warning outside of C++11 with an annotation.
902  if (!AC.getASTContext().getLangOpts().CPlusPlus11)
903    return;
904
905  FallthroughMapper FM(S);
906  FM.TraverseStmt(AC.getBody());
907
908  if (!FM.foundSwitchStatements())
909    return;
910
911  if (PerFunction && FM.getFallthroughStmts().empty())
912    return;
913
914  CFG *Cfg = AC.getCFG();
915
916  if (!Cfg)
917    return;
918
919  FM.fillReachableBlocks(Cfg);
920
921  for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
922    const CFGBlock *B = *I;
923    const Stmt *Label = B->getLabel();
924
925    if (!Label || !isa<SwitchCase>(Label))
926      continue;
927
928    int AnnotatedCnt;
929
930    if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
931      continue;
932
933    S.Diag(Label->getLocStart(),
934        PerFunction ? diag::warn_unannotated_fallthrough_per_function
935                    : diag::warn_unannotated_fallthrough);
936
937    if (!AnnotatedCnt) {
938      SourceLocation L = Label->getLocStart();
939      if (L.isMacroID())
940        continue;
941      if (S.getLangOpts().CPlusPlus11) {
942        const Stmt *Term = B->getTerminator();
943        // Skip empty cases.
944        while (B->empty() && !Term && B->succ_size() == 1) {
945          B = *B->succ_begin();
946          Term = B->getTerminator();
947        }
948        if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
949          Preprocessor &PP = S.getPreprocessor();
950          TokenValue Tokens[] = {
951            tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
952            tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
953            tok::r_square, tok::r_square
954          };
955          StringRef AnnotationSpelling = "[[clang::fallthrough]]";
956          StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
957          if (!MacroName.empty())
958            AnnotationSpelling = MacroName;
959          SmallString<64> TextToInsert(AnnotationSpelling);
960          TextToInsert += "; ";
961          S.Diag(L, diag::note_insert_fallthrough_fixit) <<
962              AnnotationSpelling <<
963              FixItHint::CreateInsertion(L, TextToInsert);
964        }
965      }
966      S.Diag(L, diag::note_insert_break_fixit) <<
967        FixItHint::CreateInsertion(L, "break; ");
968    }
969  }
970
971  const FallthroughMapper::AttrStmts &Fallthroughs = FM.getFallthroughStmts();
972  for (FallthroughMapper::AttrStmts::const_iterator I = Fallthroughs.begin(),
973                                                    E = Fallthroughs.end();
974                                                    I != E; ++I) {
975    S.Diag((*I)->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
976  }
977
978}
979
980namespace {
981typedef std::pair<const Stmt *,
982                  sema::FunctionScopeInfo::WeakObjectUseMap::const_iterator>
983        StmtUsesPair;
984
985class StmtUseSorter {
986  const SourceManager &SM;
987
988public:
989  explicit StmtUseSorter(const SourceManager &SM) : SM(SM) { }
990
991  bool operator()(const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
992    return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
993                                        RHS.first->getLocStart());
994  }
995};
996}
997
998static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
999                     const Stmt *S) {
1000  assert(S);
1001
1002  do {
1003    switch (S->getStmtClass()) {
1004    case Stmt::ForStmtClass:
1005    case Stmt::WhileStmtClass:
1006    case Stmt::CXXForRangeStmtClass:
1007    case Stmt::ObjCForCollectionStmtClass:
1008      return true;
1009    case Stmt::DoStmtClass: {
1010      const Expr *Cond = cast<DoStmt>(S)->getCond();
1011      llvm::APSInt Val;
1012      if (!Cond->EvaluateAsInt(Val, Ctx))
1013        return true;
1014      return Val.getBoolValue();
1015    }
1016    default:
1017      break;
1018    }
1019  } while ((S = PM.getParent(S)));
1020
1021  return false;
1022}
1023
1024
1025static void diagnoseRepeatedUseOfWeak(Sema &S,
1026                                      const sema::FunctionScopeInfo *CurFn,
1027                                      const Decl *D,
1028                                      const ParentMap &PM) {
1029  typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1030  typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1031  typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1032
1033  ASTContext &Ctx = S.getASTContext();
1034
1035  const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1036
1037  // Extract all weak objects that are referenced more than once.
1038  SmallVector<StmtUsesPair, 8> UsesByStmt;
1039  for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1040       I != E; ++I) {
1041    const WeakUseVector &Uses = I->second;
1042
1043    // Find the first read of the weak object.
1044    WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1045    for ( ; UI != UE; ++UI) {
1046      if (UI->isUnsafe())
1047        break;
1048    }
1049
1050    // If there were only writes to this object, don't warn.
1051    if (UI == UE)
1052      continue;
1053
1054    // If there was only one read, followed by any number of writes, and the
1055    // read is not within a loop, don't warn. Additionally, don't warn in a
1056    // loop if the base object is a local variable -- local variables are often
1057    // changed in loops.
1058    if (UI == Uses.begin()) {
1059      WeakUseVector::const_iterator UI2 = UI;
1060      for (++UI2; UI2 != UE; ++UI2)
1061        if (UI2->isUnsafe())
1062          break;
1063
1064      if (UI2 == UE) {
1065        if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1066          continue;
1067
1068        const WeakObjectProfileTy &Profile = I->first;
1069        if (!Profile.isExactProfile())
1070          continue;
1071
1072        const NamedDecl *Base = Profile.getBase();
1073        if (!Base)
1074          Base = Profile.getProperty();
1075        assert(Base && "A profile always has a base or property.");
1076
1077        if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1078          if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1079            continue;
1080      }
1081    }
1082
1083    UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1084  }
1085
1086  if (UsesByStmt.empty())
1087    return;
1088
1089  // Sort by first use so that we emit the warnings in a deterministic order.
1090  std::sort(UsesByStmt.begin(), UsesByStmt.end(),
1091            StmtUseSorter(S.getSourceManager()));
1092
1093  // Classify the current code body for better warning text.
1094  // This enum should stay in sync with the cases in
1095  // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1096  // FIXME: Should we use a common classification enum and the same set of
1097  // possibilities all throughout Sema?
1098  enum {
1099    Function,
1100    Method,
1101    Block,
1102    Lambda
1103  } FunctionKind;
1104
1105  if (isa<sema::BlockScopeInfo>(CurFn))
1106    FunctionKind = Block;
1107  else if (isa<sema::LambdaScopeInfo>(CurFn))
1108    FunctionKind = Lambda;
1109  else if (isa<ObjCMethodDecl>(D))
1110    FunctionKind = Method;
1111  else
1112    FunctionKind = Function;
1113
1114  // Iterate through the sorted problems and emit warnings for each.
1115  for (SmallVectorImpl<StmtUsesPair>::const_iterator I = UsesByStmt.begin(),
1116                                                     E = UsesByStmt.end();
1117       I != E; ++I) {
1118    const Stmt *FirstRead = I->first;
1119    const WeakObjectProfileTy &Key = I->second->first;
1120    const WeakUseVector &Uses = I->second->second;
1121
1122    // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1123    // may not contain enough information to determine that these are different
1124    // properties. We can only be 100% sure of a repeated use in certain cases,
1125    // and we adjust the diagnostic kind accordingly so that the less certain
1126    // case can be turned off if it is too noisy.
1127    unsigned DiagKind;
1128    if (Key.isExactProfile())
1129      DiagKind = diag::warn_arc_repeated_use_of_weak;
1130    else
1131      DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1132
1133    // Classify the weak object being accessed for better warning text.
1134    // This enum should stay in sync with the cases in
1135    // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1136    enum {
1137      Variable,
1138      Property,
1139      ImplicitProperty,
1140      Ivar
1141    } ObjectKind;
1142
1143    const NamedDecl *D = Key.getProperty();
1144    if (isa<VarDecl>(D))
1145      ObjectKind = Variable;
1146    else if (isa<ObjCPropertyDecl>(D))
1147      ObjectKind = Property;
1148    else if (isa<ObjCMethodDecl>(D))
1149      ObjectKind = ImplicitProperty;
1150    else if (isa<ObjCIvarDecl>(D))
1151      ObjectKind = Ivar;
1152    else
1153      llvm_unreachable("Unexpected weak object kind!");
1154
1155    // Show the first time the object was read.
1156    S.Diag(FirstRead->getLocStart(), DiagKind)
1157      << int(ObjectKind) << D << int(FunctionKind)
1158      << FirstRead->getSourceRange();
1159
1160    // Print all the other accesses as notes.
1161    for (WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1162         UI != UE; ++UI) {
1163      if (UI->getUseExpr() == FirstRead)
1164        continue;
1165      S.Diag(UI->getUseExpr()->getLocStart(),
1166             diag::note_arc_weak_also_accessed_here)
1167        << UI->getUseExpr()->getSourceRange();
1168    }
1169  }
1170}
1171
1172
1173namespace {
1174struct SLocSort {
1175  bool operator()(const UninitUse &a, const UninitUse &b) {
1176    // Prefer a more confident report over a less confident one.
1177    if (a.getKind() != b.getKind())
1178      return a.getKind() > b.getKind();
1179    SourceLocation aLoc = a.getUser()->getLocStart();
1180    SourceLocation bLoc = b.getUser()->getLocStart();
1181    return aLoc.getRawEncoding() < bLoc.getRawEncoding();
1182  }
1183};
1184
1185class UninitValsDiagReporter : public UninitVariablesHandler {
1186  Sema &S;
1187  typedef SmallVector<UninitUse, 2> UsesVec;
1188  typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1189  // Prefer using MapVector to DenseMap, so that iteration order will be
1190  // the same as insertion order. This is needed to obtain a deterministic
1191  // order of diagnostics when calling flushDiagnostics().
1192  typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1193  UsesMap *uses;
1194
1195public:
1196  UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
1197  ~UninitValsDiagReporter() {
1198    flushDiagnostics();
1199  }
1200
1201  MappedType &getUses(const VarDecl *vd) {
1202    if (!uses)
1203      uses = new UsesMap();
1204
1205    MappedType &V = (*uses)[vd];
1206    if (!V.getPointer())
1207      V.setPointer(new UsesVec());
1208
1209    return V;
1210  }
1211
1212  void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) {
1213    getUses(vd).getPointer()->push_back(use);
1214  }
1215
1216  void handleSelfInit(const VarDecl *vd) {
1217    getUses(vd).setInt(true);
1218  }
1219
1220  void flushDiagnostics() {
1221    if (!uses)
1222      return;
1223
1224    for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
1225      const VarDecl *vd = i->first;
1226      const MappedType &V = i->second;
1227
1228      UsesVec *vec = V.getPointer();
1229      bool hasSelfInit = V.getInt();
1230
1231      // Specially handle the case where we have uses of an uninitialized
1232      // variable, but the root cause is an idiomatic self-init.  We want
1233      // to report the diagnostic at the self-init since that is the root cause.
1234      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1235        DiagnoseUninitializedUse(S, vd,
1236                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
1237                                           /* isAlwaysUninit */ true),
1238                                 /* alwaysReportSelfInit */ true);
1239      else {
1240        // Sort the uses by their SourceLocations.  While not strictly
1241        // guaranteed to produce them in line/column order, this will provide
1242        // a stable ordering.
1243        std::sort(vec->begin(), vec->end(), SLocSort());
1244
1245        for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
1246             ++vi) {
1247          // If we have self-init, downgrade all uses to 'may be uninitialized'.
1248          UninitUse Use = hasSelfInit ? UninitUse(vi->getUser(), false) : *vi;
1249
1250          if (DiagnoseUninitializedUse(S, vd, Use))
1251            // Skip further diagnostics for this variable. We try to warn only
1252            // on the first point at which a variable is used uninitialized.
1253            break;
1254        }
1255      }
1256
1257      // Release the uses vector.
1258      delete vec;
1259    }
1260    delete uses;
1261  }
1262
1263private:
1264  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1265  for (UsesVec::const_iterator i = vec->begin(), e = vec->end(); i != e; ++i) {
1266    if (i->getKind() == UninitUse::Always ||
1267        i->getKind() == UninitUse::AfterCall ||
1268        i->getKind() == UninitUse::AfterDecl) {
1269      return true;
1270    }
1271  }
1272  return false;
1273}
1274};
1275}
1276
1277namespace clang {
1278namespace {
1279typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1280typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1281typedef std::list<DelayedDiag> DiagList;
1282
1283struct SortDiagBySourceLocation {
1284  SourceManager &SM;
1285  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1286
1287  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1288    // Although this call will be slow, this is only called when outputting
1289    // multiple warnings.
1290    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1291  }
1292};
1293}}
1294
1295//===----------------------------------------------------------------------===//
1296// -Wthread-safety
1297//===----------------------------------------------------------------------===//
1298namespace clang {
1299namespace thread_safety {
1300namespace {
1301class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
1302  Sema &S;
1303  DiagList Warnings;
1304  SourceLocation FunLocation, FunEndLocation;
1305
1306  // Helper functions
1307  void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) {
1308    // Gracefully handle rare cases when the analysis can't get a more
1309    // precise source location.
1310    if (!Loc.isValid())
1311      Loc = FunLocation;
1312    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << LockName);
1313    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1314  }
1315
1316 public:
1317  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1318    : S(S), FunLocation(FL), FunEndLocation(FEL) {}
1319
1320  /// \brief Emit all buffered diagnostics in order of sourcelocation.
1321  /// We need to output diagnostics produced while iterating through
1322  /// the lockset in deterministic order, so this function orders diagnostics
1323  /// and outputs them.
1324  void emitDiagnostics() {
1325    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1326    for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
1327         I != E; ++I) {
1328      S.Diag(I->first.first, I->first.second);
1329      const OptionalNotes &Notes = I->second;
1330      for (unsigned NoteI = 0, NoteN = Notes.size(); NoteI != NoteN; ++NoteI)
1331        S.Diag(Notes[NoteI].first, Notes[NoteI].second);
1332    }
1333  }
1334
1335  void handleInvalidLockExp(SourceLocation Loc) {
1336    PartialDiagnosticAt Warning(Loc,
1337                                S.PDiag(diag::warn_cannot_resolve_lock) << Loc);
1338    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1339  }
1340  void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) {
1341    warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc);
1342  }
1343
1344  void handleDoubleLock(Name LockName, SourceLocation Loc) {
1345    warnLockMismatch(diag::warn_double_lock, LockName, Loc);
1346  }
1347
1348  void handleMutexHeldEndOfScope(Name LockName, SourceLocation LocLocked,
1349                                 SourceLocation LocEndOfScope,
1350                                 LockErrorKind LEK){
1351    unsigned DiagID = 0;
1352    switch (LEK) {
1353      case LEK_LockedSomePredecessors:
1354        DiagID = diag::warn_lock_some_predecessors;
1355        break;
1356      case LEK_LockedSomeLoopIterations:
1357        DiagID = diag::warn_expecting_lock_held_on_loop;
1358        break;
1359      case LEK_LockedAtEndOfFunction:
1360        DiagID = diag::warn_no_unlock;
1361        break;
1362      case LEK_NotLockedAtEndOfFunction:
1363        DiagID = diag::warn_expecting_locked;
1364        break;
1365    }
1366    if (LocEndOfScope.isInvalid())
1367      LocEndOfScope = FunEndLocation;
1368
1369    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << LockName);
1370    if (LocLocked.isValid()) {
1371      PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here));
1372      Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1373      return;
1374    }
1375    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1376  }
1377
1378
1379  void handleExclusiveAndShared(Name LockName, SourceLocation Loc1,
1380                                SourceLocation Loc2) {
1381    PartialDiagnosticAt Warning(
1382      Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName);
1383    PartialDiagnosticAt Note(
1384      Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << LockName);
1385    Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1386  }
1387
1388  void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
1389                         AccessKind AK, SourceLocation Loc) {
1390    assert((POK == POK_VarAccess || POK == POK_VarDereference)
1391             && "Only works for variables");
1392    unsigned DiagID = POK == POK_VarAccess?
1393                        diag::warn_variable_requires_any_lock:
1394                        diag::warn_var_deref_requires_any_lock;
1395    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1396      << D->getNameAsString() << getLockKindFromAccessKind(AK));
1397    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1398  }
1399
1400  void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK,
1401                          Name LockName, LockKind LK, SourceLocation Loc,
1402                          Name *PossibleMatch) {
1403    unsigned DiagID = 0;
1404    if (PossibleMatch) {
1405      switch (POK) {
1406        case POK_VarAccess:
1407          DiagID = diag::warn_variable_requires_lock_precise;
1408          break;
1409        case POK_VarDereference:
1410          DiagID = diag::warn_var_deref_requires_lock_precise;
1411          break;
1412        case POK_FunctionCall:
1413          DiagID = diag::warn_fun_requires_lock_precise;
1414          break;
1415      }
1416      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1417        << D->getNameAsString() << LockName << LK);
1418      PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1419                               << *PossibleMatch);
1420      Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1421    } else {
1422      switch (POK) {
1423        case POK_VarAccess:
1424          DiagID = diag::warn_variable_requires_lock;
1425          break;
1426        case POK_VarDereference:
1427          DiagID = diag::warn_var_deref_requires_lock;
1428          break;
1429        case POK_FunctionCall:
1430          DiagID = diag::warn_fun_requires_lock;
1431          break;
1432      }
1433      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1434        << D->getNameAsString() << LockName << LK);
1435      Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1436    }
1437  }
1438
1439  void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) {
1440    PartialDiagnosticAt Warning(Loc,
1441      S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName);
1442    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1443  }
1444};
1445}
1446}
1447}
1448
1449//===----------------------------------------------------------------------===//
1450// -Wconsumed
1451//===----------------------------------------------------------------------===//
1452
1453namespace clang {
1454namespace consumed {
1455namespace {
1456class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1457
1458  Sema &S;
1459  DiagList Warnings;
1460
1461public:
1462
1463  ConsumedWarningsHandler(Sema &S) : S(S) {}
1464
1465  void emitDiagnostics() {
1466    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1467
1468    for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
1469         I != E; ++I) {
1470
1471      const OptionalNotes &Notes = I->second;
1472      S.Diag(I->first.first, I->first.second);
1473
1474      for (unsigned NoteI = 0, NoteN = Notes.size(); NoteI != NoteN; ++NoteI) {
1475        S.Diag(Notes[NoteI].first, Notes[NoteI].second);
1476      }
1477    }
1478  }
1479
1480  void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1481                                              StringRef TypeName) {
1482    PartialDiagnosticAt Warning(Loc, S.PDiag(
1483      diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1484
1485    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1486  }
1487
1488  void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1489                                   StringRef ObservedState) {
1490
1491    PartialDiagnosticAt Warning(Loc, S.PDiag(
1492      diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1493
1494    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1495  }
1496
1497  void warnUnnecessaryTest(StringRef VariableName, StringRef VariableState,
1498                           SourceLocation Loc) {
1499
1500    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unnecessary_test) <<
1501                                 VariableName << VariableState);
1502
1503    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1504  }
1505
1506  void warnUseOfTempWhileConsumed(StringRef MethodName, SourceLocation Loc) {
1507
1508    PartialDiagnosticAt Warning(Loc, S.PDiag(
1509      diag::warn_use_of_temp_while_consumed) << MethodName);
1510
1511    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1512  }
1513
1514  void warnUseOfTempInUnknownState(StringRef MethodName, SourceLocation Loc) {
1515
1516    PartialDiagnosticAt Warning(Loc, S.PDiag(
1517      diag::warn_use_of_temp_in_unknown_state) << MethodName);
1518
1519    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1520  }
1521
1522  void warnUseWhileConsumed(StringRef MethodName, StringRef VariableName,
1523                            SourceLocation Loc) {
1524
1525    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_while_consumed) <<
1526                                MethodName << VariableName);
1527
1528    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1529  }
1530
1531  void warnUseInUnknownState(StringRef MethodName, StringRef VariableName,
1532                             SourceLocation Loc) {
1533
1534    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_unknown_state) <<
1535                                MethodName << VariableName);
1536
1537    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1538  }
1539};
1540}}}
1541
1542//===----------------------------------------------------------------------===//
1543// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1544//  warnings on a function, method, or block.
1545//===----------------------------------------------------------------------===//
1546
1547clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1548  enableCheckFallThrough = 1;
1549  enableCheckUnreachable = 0;
1550  enableThreadSafetyAnalysis = 0;
1551  enableConsumedAnalysis = 0;
1552}
1553
1554clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1555  : S(s),
1556    NumFunctionsAnalyzed(0),
1557    NumFunctionsWithBadCFGs(0),
1558    NumCFGBlocks(0),
1559    MaxCFGBlocksPerFunction(0),
1560    NumUninitAnalysisFunctions(0),
1561    NumUninitAnalysisVariables(0),
1562    MaxUninitAnalysisVariablesPerFunction(0),
1563    NumUninitAnalysisBlockVisits(0),
1564    MaxUninitAnalysisBlockVisitsPerFunction(0) {
1565  DiagnosticsEngine &D = S.getDiagnostics();
1566  DefaultPolicy.enableCheckUnreachable = (unsigned)
1567    (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
1568        DiagnosticsEngine::Ignored);
1569  DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
1570    (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
1571     DiagnosticsEngine::Ignored);
1572  DefaultPolicy.enableConsumedAnalysis = (unsigned)
1573    (D.getDiagnosticLevel(diag::warn_use_while_consumed, SourceLocation()) !=
1574     DiagnosticsEngine::Ignored);
1575}
1576
1577static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
1578  for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1579       i = fscope->PossiblyUnreachableDiags.begin(),
1580       e = fscope->PossiblyUnreachableDiags.end();
1581       i != e; ++i) {
1582    const sema::PossiblyUnreachableDiag &D = *i;
1583    S.Diag(D.Loc, D.PD);
1584  }
1585}
1586
1587void clang::sema::
1588AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1589                                     sema::FunctionScopeInfo *fscope,
1590                                     const Decl *D, const BlockExpr *blkExpr) {
1591
1592  // We avoid doing analysis-based warnings when there are errors for
1593  // two reasons:
1594  // (1) The CFGs often can't be constructed (if the body is invalid), so
1595  //     don't bother trying.
1596  // (2) The code already has problems; running the analysis just takes more
1597  //     time.
1598  DiagnosticsEngine &Diags = S.getDiagnostics();
1599
1600  // Do not do any analysis for declarations in system headers if we are
1601  // going to just ignore them.
1602  if (Diags.getSuppressSystemWarnings() &&
1603      S.SourceMgr.isInSystemHeader(D->getLocation()))
1604    return;
1605
1606  // For code in dependent contexts, we'll do this at instantiation time.
1607  if (cast<DeclContext>(D)->isDependentContext())
1608    return;
1609
1610  if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1611    // Flush out any possibly unreachable diagnostics.
1612    flushDiagnostics(S, fscope);
1613    return;
1614  }
1615
1616  const Stmt *Body = D->getBody();
1617  assert(Body);
1618
1619  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ 0, D);
1620
1621  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1622  // explosion for destructors that can result and the compile time hit.
1623  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1624  AC.getCFGBuildOptions().AddEHEdges = false;
1625  AC.getCFGBuildOptions().AddInitializers = true;
1626  AC.getCFGBuildOptions().AddImplicitDtors = true;
1627  AC.getCFGBuildOptions().AddTemporaryDtors = true;
1628
1629  // Force that certain expressions appear as CFGElements in the CFG.  This
1630  // is used to speed up various analyses.
1631  // FIXME: This isn't the right factoring.  This is here for initial
1632  // prototyping, but we need a way for analyses to say what expressions they
1633  // expect to always be CFGElements and then fill in the BuildOptions
1634  // appropriately.  This is essentially a layering violation.
1635  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
1636      P.enableConsumedAnalysis) {
1637    // Unreachable code analysis and thread safety require a linearized CFG.
1638    AC.getCFGBuildOptions().setAllAlwaysAdd();
1639  }
1640  else {
1641    AC.getCFGBuildOptions()
1642      .setAlwaysAdd(Stmt::BinaryOperatorClass)
1643      .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
1644      .setAlwaysAdd(Stmt::BlockExprClass)
1645      .setAlwaysAdd(Stmt::CStyleCastExprClass)
1646      .setAlwaysAdd(Stmt::DeclRefExprClass)
1647      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1648      .setAlwaysAdd(Stmt::UnaryOperatorClass)
1649      .setAlwaysAdd(Stmt::AttributedStmtClass);
1650  }
1651
1652  // Construct the analysis context with the specified CFG build options.
1653
1654  // Emit delayed diagnostics.
1655  if (!fscope->PossiblyUnreachableDiags.empty()) {
1656    bool analyzed = false;
1657
1658    // Register the expressions with the CFGBuilder.
1659    for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1660         i = fscope->PossiblyUnreachableDiags.begin(),
1661         e = fscope->PossiblyUnreachableDiags.end();
1662         i != e; ++i) {
1663      if (const Stmt *stmt = i->stmt)
1664        AC.registerForcedBlockExpression(stmt);
1665    }
1666
1667    if (AC.getCFG()) {
1668      analyzed = true;
1669      for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1670            i = fscope->PossiblyUnreachableDiags.begin(),
1671            e = fscope->PossiblyUnreachableDiags.end();
1672            i != e; ++i)
1673      {
1674        const sema::PossiblyUnreachableDiag &D = *i;
1675        bool processed = false;
1676        if (const Stmt *stmt = i->stmt) {
1677          const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
1678          CFGReverseBlockReachabilityAnalysis *cra =
1679              AC.getCFGReachablityAnalysis();
1680          // FIXME: We should be able to assert that block is non-null, but
1681          // the CFG analysis can skip potentially-evaluated expressions in
1682          // edge cases; see test/Sema/vla-2.c.
1683          if (block && cra) {
1684            // Can this block be reached from the entrance?
1685            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1686              S.Diag(D.Loc, D.PD);
1687            processed = true;
1688          }
1689        }
1690        if (!processed) {
1691          // Emit the warning anyway if we cannot map to a basic block.
1692          S.Diag(D.Loc, D.PD);
1693        }
1694      }
1695    }
1696
1697    if (!analyzed)
1698      flushDiagnostics(S, fscope);
1699  }
1700
1701
1702  // Warning: check missing 'return'
1703  if (P.enableCheckFallThrough) {
1704    const CheckFallThroughDiagnostics &CD =
1705      (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1706       : (isa<CXXMethodDecl>(D) &&
1707          cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
1708          cast<CXXMethodDecl>(D)->getParent()->isLambda())
1709            ? CheckFallThroughDiagnostics::MakeForLambda()
1710            : CheckFallThroughDiagnostics::MakeForFunction(D));
1711    CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1712  }
1713
1714  // Warning: check for unreachable code
1715  if (P.enableCheckUnreachable) {
1716    // Only check for unreachable code on non-template instantiations.
1717    // Different template instantiations can effectively change the control-flow
1718    // and it is very difficult to prove that a snippet of code in a template
1719    // is unreachable for all instantiations.
1720    bool isTemplateInstantiation = false;
1721    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
1722      isTemplateInstantiation = Function->isTemplateInstantiation();
1723    if (!isTemplateInstantiation)
1724      CheckUnreachable(S, AC);
1725  }
1726
1727  // Check for thread safety violations
1728  if (P.enableThreadSafetyAnalysis) {
1729    SourceLocation FL = AC.getDecl()->getLocation();
1730    SourceLocation FEL = AC.getDecl()->getLocEnd();
1731    thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
1732    if (Diags.getDiagnosticLevel(diag::warn_thread_safety_beta,D->getLocStart())
1733        != DiagnosticsEngine::Ignored)
1734      Reporter.setIssueBetaWarnings(true);
1735
1736    thread_safety::runThreadSafetyAnalysis(AC, Reporter);
1737    Reporter.emitDiagnostics();
1738  }
1739
1740  // Check for violations of consumed properties.
1741  if (P.enableConsumedAnalysis) {
1742    consumed::ConsumedWarningsHandler WarningHandler(S);
1743    consumed::ConsumedAnalyzer Analyzer(WarningHandler);
1744    Analyzer.run(AC);
1745  }
1746
1747  if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
1748      != DiagnosticsEngine::Ignored ||
1749      Diags.getDiagnosticLevel(diag::warn_sometimes_uninit_var,D->getLocStart())
1750      != DiagnosticsEngine::Ignored ||
1751      Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
1752      != DiagnosticsEngine::Ignored) {
1753    if (CFG *cfg = AC.getCFG()) {
1754      UninitValsDiagReporter reporter(S);
1755      UninitVariablesAnalysisStats stats;
1756      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
1757      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
1758                                        reporter, stats);
1759
1760      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
1761        ++NumUninitAnalysisFunctions;
1762        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
1763        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
1764        MaxUninitAnalysisVariablesPerFunction =
1765            std::max(MaxUninitAnalysisVariablesPerFunction,
1766                     stats.NumVariablesAnalyzed);
1767        MaxUninitAnalysisBlockVisitsPerFunction =
1768            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
1769                     stats.NumBlockVisits);
1770      }
1771    }
1772  }
1773
1774  bool FallThroughDiagFull =
1775      Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough,
1776                               D->getLocStart()) != DiagnosticsEngine::Ignored;
1777  bool FallThroughDiagPerFunction =
1778      Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough_per_function,
1779                               D->getLocStart()) != DiagnosticsEngine::Ignored;
1780  if (FallThroughDiagFull || FallThroughDiagPerFunction) {
1781    DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
1782  }
1783
1784  if (S.getLangOpts().ObjCARCWeak &&
1785      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1786                               D->getLocStart()) != DiagnosticsEngine::Ignored)
1787    diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
1788
1789  // Collect statistics about the CFG if it was built.
1790  if (S.CollectStats && AC.isCFGBuilt()) {
1791    ++NumFunctionsAnalyzed;
1792    if (CFG *cfg = AC.getCFG()) {
1793      // If we successfully built a CFG for this context, record some more
1794      // detail information about it.
1795      NumCFGBlocks += cfg->getNumBlockIDs();
1796      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
1797                                         cfg->getNumBlockIDs());
1798    } else {
1799      ++NumFunctionsWithBadCFGs;
1800    }
1801  }
1802}
1803
1804void clang::sema::AnalysisBasedWarnings::PrintStats() const {
1805  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
1806
1807  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
1808  unsigned AvgCFGBlocksPerFunction =
1809      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
1810  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
1811               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
1812               << "  " << NumCFGBlocks << " CFG blocks built.\n"
1813               << "  " << AvgCFGBlocksPerFunction
1814               << " average CFG blocks per function.\n"
1815               << "  " << MaxCFGBlocksPerFunction
1816               << " max CFG blocks per function.\n";
1817
1818  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
1819      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
1820  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
1821      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
1822  llvm::errs() << NumUninitAnalysisFunctions
1823               << " functions analyzed for uninitialiazed variables\n"
1824               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
1825               << "  " << AvgUninitVariablesPerFunction
1826               << " average variables per function.\n"
1827               << "  " << MaxUninitAnalysisVariablesPerFunction
1828               << " max variables per function.\n"
1829               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
1830               << "  " << AvgUninitBlockVisitsPerFunction
1831               << " average block visits per function.\n"
1832               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
1833               << " max block visits per function.\n";
1834}
1835