AnalysisBasedWarnings.cpp revision b0656ec72e25e5c8e463c2dc39914636f0cb06d1
1//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines analysis_warnings::[Policy,Executor].
11// Together they are used by Sema to issue warnings based on inexpensive
12// static analysis algorithms in libAnalysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/AnalysisBasedWarnings.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Basic/SourceManager.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/Analysis/AnalysisContext.h"
30#include "clang/Analysis/CFG.h"
31#include "clang/Analysis/Analyses/ReachableCode.h"
32#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
33#include "clang/Analysis/CFGStmtMap.h"
34#include "clang/Analysis/Analyses/UninitializedValues.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/ImmutableMap.h"
38#include "llvm/ADT/PostOrderIterator.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Support/Casting.h"
41#include <algorithm>
42#include <vector>
43
44using namespace clang;
45
46//===----------------------------------------------------------------------===//
47// Unreachable code analysis.
48//===----------------------------------------------------------------------===//
49
50namespace {
51  class UnreachableCodeHandler : public reachable_code::Callback {
52    Sema &S;
53  public:
54    UnreachableCodeHandler(Sema &s) : S(s) {}
55
56    void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
57      S.Diag(L, diag::warn_unreachable) << R1 << R2;
58    }
59  };
60}
61
62/// CheckUnreachable - Check for unreachable code.
63static void CheckUnreachable(Sema &S, AnalysisContext &AC) {
64  UnreachableCodeHandler UC(S);
65  reachable_code::FindUnreachableCode(AC, UC);
66}
67
68//===----------------------------------------------------------------------===//
69// Check for missing return value.
70//===----------------------------------------------------------------------===//
71
72enum ControlFlowKind {
73  UnknownFallThrough,
74  NeverFallThrough,
75  MaybeFallThrough,
76  AlwaysFallThrough,
77  NeverFallThroughOrReturn
78};
79
80/// CheckFallThrough - Check that we don't fall off the end of a
81/// Statement that should return a value.
82///
83/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
84/// MaybeFallThrough iff we might or might not fall off the end,
85/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
86/// return.  We assume NeverFallThrough iff we never fall off the end of the
87/// statement but we may return.  We assume that functions not marked noreturn
88/// will return.
89static ControlFlowKind CheckFallThrough(AnalysisContext &AC) {
90  CFG *cfg = AC.getCFG();
91  if (cfg == 0) return UnknownFallThrough;
92
93  // The CFG leaves in dead things, and we don't want the dead code paths to
94  // confuse us, so we mark all live things first.
95  llvm::BitVector live(cfg->getNumBlockIDs());
96  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
97                                                          live);
98
99  bool AddEHEdges = AC.getAddEHEdges();
100  if (!AddEHEdges && count != cfg->getNumBlockIDs())
101    // When there are things remaining dead, and we didn't add EH edges
102    // from CallExprs to the catch clauses, we have to go back and
103    // mark them as live.
104    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
105      CFGBlock &b = **I;
106      if (!live[b.getBlockID()]) {
107        if (b.pred_begin() == b.pred_end()) {
108          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
109            // When not adding EH edges from calls, catch clauses
110            // can otherwise seem dead.  Avoid noting them as dead.
111            count += reachable_code::ScanReachableFromBlock(&b, live);
112          continue;
113        }
114      }
115    }
116
117  // Now we know what is live, we check the live precessors of the exit block
118  // and look for fall through paths, being careful to ignore normal returns,
119  // and exceptional paths.
120  bool HasLiveReturn = false;
121  bool HasFakeEdge = false;
122  bool HasPlainEdge = false;
123  bool HasAbnormalEdge = false;
124
125  // Ignore default cases that aren't likely to be reachable because all
126  // enums in a switch(X) have explicit case statements.
127  CFGBlock::FilterOptions FO;
128  FO.IgnoreDefaultsWithCoveredEnums = 1;
129
130  for (CFGBlock::filtered_pred_iterator
131	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
132    const CFGBlock& B = **I;
133    if (!live[B.getBlockID()])
134      continue;
135
136    // Destructors can appear after the 'return' in the CFG.  This is
137    // normal.  We need to look pass the destructors for the return
138    // statement (if it exists).
139    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
140    bool hasNoReturnDtor = false;
141
142    for ( ; ri != re ; ++ri) {
143      CFGElement CE = *ri;
144
145      // FIXME: The right solution is to just sever the edges in the
146      // CFG itself.
147      if (const CFGImplicitDtor *iDtor = ri->getAs<CFGImplicitDtor>())
148        if (iDtor->isNoReturn(AC.getASTContext())) {
149          hasNoReturnDtor = true;
150          HasFakeEdge = true;
151          break;
152        }
153
154      if (isa<CFGStmt>(CE))
155        break;
156    }
157
158    if (hasNoReturnDtor)
159      continue;
160
161    // No more CFGElements in the block?
162    if (ri == re) {
163      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
164        HasAbnormalEdge = true;
165        continue;
166      }
167      // A labeled empty statement, or the entry block...
168      HasPlainEdge = true;
169      continue;
170    }
171
172    CFGStmt CS = cast<CFGStmt>(*ri);
173    const Stmt *S = CS.getStmt();
174    if (isa<ReturnStmt>(S)) {
175      HasLiveReturn = true;
176      continue;
177    }
178    if (isa<ObjCAtThrowStmt>(S)) {
179      HasFakeEdge = true;
180      continue;
181    }
182    if (isa<CXXThrowExpr>(S)) {
183      HasFakeEdge = true;
184      continue;
185    }
186    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
187      if (AS->isMSAsm()) {
188        HasFakeEdge = true;
189        HasLiveReturn = true;
190        continue;
191      }
192    }
193    if (isa<CXXTryStmt>(S)) {
194      HasAbnormalEdge = true;
195      continue;
196    }
197
198    bool NoReturnEdge = false;
199    if (const CallExpr *C = dyn_cast<CallExpr>(S)) {
200      if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
201            == B.succ_end()) {
202        HasAbnormalEdge = true;
203        continue;
204      }
205      const Expr *CEE = C->getCallee()->IgnoreParenCasts();
206      QualType calleeType = CEE->getType();
207      if (calleeType == AC.getASTContext().BoundMemberTy) {
208        calleeType = Expr::findBoundMemberType(CEE);
209        assert(!calleeType.isNull() && "analyzing unresolved call?");
210      }
211      if (getFunctionExtInfo(calleeType).getNoReturn()) {
212        NoReturnEdge = true;
213        HasFakeEdge = true;
214      } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
215        const ValueDecl *VD = DRE->getDecl();
216        if (VD->hasAttr<NoReturnAttr>()) {
217          NoReturnEdge = true;
218          HasFakeEdge = true;
219        }
220      }
221    }
222    // FIXME: Add noreturn message sends.
223    if (NoReturnEdge == false)
224      HasPlainEdge = true;
225  }
226  if (!HasPlainEdge) {
227    if (HasLiveReturn)
228      return NeverFallThrough;
229    return NeverFallThroughOrReturn;
230  }
231  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
232    return MaybeFallThrough;
233  // This says AlwaysFallThrough for calls to functions that are not marked
234  // noreturn, that don't return.  If people would like this warning to be more
235  // accurate, such functions should be marked as noreturn.
236  return AlwaysFallThrough;
237}
238
239namespace {
240
241struct CheckFallThroughDiagnostics {
242  unsigned diag_MaybeFallThrough_HasNoReturn;
243  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
244  unsigned diag_AlwaysFallThrough_HasNoReturn;
245  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
246  unsigned diag_NeverFallThroughOrReturn;
247  bool funMode;
248  SourceLocation FuncLoc;
249
250  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
251    CheckFallThroughDiagnostics D;
252    D.FuncLoc = Func->getLocation();
253    D.diag_MaybeFallThrough_HasNoReturn =
254      diag::warn_falloff_noreturn_function;
255    D.diag_MaybeFallThrough_ReturnsNonVoid =
256      diag::warn_maybe_falloff_nonvoid_function;
257    D.diag_AlwaysFallThrough_HasNoReturn =
258      diag::warn_falloff_noreturn_function;
259    D.diag_AlwaysFallThrough_ReturnsNonVoid =
260      diag::warn_falloff_nonvoid_function;
261
262    // Don't suggest that virtual functions be marked "noreturn", since they
263    // might be overridden by non-noreturn functions.
264    bool isVirtualMethod = false;
265    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
266      isVirtualMethod = Method->isVirtual();
267
268    if (!isVirtualMethod)
269      D.diag_NeverFallThroughOrReturn =
270        diag::warn_suggest_noreturn_function;
271    else
272      D.diag_NeverFallThroughOrReturn = 0;
273
274    D.funMode = true;
275    return D;
276  }
277
278  static CheckFallThroughDiagnostics MakeForBlock() {
279    CheckFallThroughDiagnostics D;
280    D.diag_MaybeFallThrough_HasNoReturn =
281      diag::err_noreturn_block_has_return_expr;
282    D.diag_MaybeFallThrough_ReturnsNonVoid =
283      diag::err_maybe_falloff_nonvoid_block;
284    D.diag_AlwaysFallThrough_HasNoReturn =
285      diag::err_noreturn_block_has_return_expr;
286    D.diag_AlwaysFallThrough_ReturnsNonVoid =
287      diag::err_falloff_nonvoid_block;
288    D.diag_NeverFallThroughOrReturn =
289      diag::warn_suggest_noreturn_block;
290    D.funMode = false;
291    return D;
292  }
293
294  bool checkDiagnostics(Diagnostic &D, bool ReturnsVoid,
295                        bool HasNoReturn) const {
296    if (funMode) {
297      return (ReturnsVoid ||
298              D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
299                                   FuncLoc) == Diagnostic::Ignored)
300        && (!HasNoReturn ||
301            D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
302                                 FuncLoc) == Diagnostic::Ignored)
303        && (!ReturnsVoid ||
304            D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
305              == Diagnostic::Ignored);
306    }
307
308    // For blocks.
309    return  ReturnsVoid && !HasNoReturn
310            && (!ReturnsVoid ||
311                D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
312                  == Diagnostic::Ignored);
313  }
314};
315
316}
317
318/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
319/// function that should return a value.  Check that we don't fall off the end
320/// of a noreturn function.  We assume that functions and blocks not marked
321/// noreturn will return.
322static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
323                                    const BlockExpr *blkExpr,
324                                    const CheckFallThroughDiagnostics& CD,
325                                    AnalysisContext &AC) {
326
327  bool ReturnsVoid = false;
328  bool HasNoReturn = false;
329
330  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
331    ReturnsVoid = FD->getResultType()->isVoidType();
332    HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
333       FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
334  }
335  else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
336    ReturnsVoid = MD->getResultType()->isVoidType();
337    HasNoReturn = MD->hasAttr<NoReturnAttr>();
338  }
339  else if (isa<BlockDecl>(D)) {
340    QualType BlockTy = blkExpr->getType();
341    if (const FunctionType *FT =
342          BlockTy->getPointeeType()->getAs<FunctionType>()) {
343      if (FT->getResultType()->isVoidType())
344        ReturnsVoid = true;
345      if (FT->getNoReturnAttr())
346        HasNoReturn = true;
347    }
348  }
349
350  Diagnostic &Diags = S.getDiagnostics();
351
352  // Short circuit for compilation speed.
353  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
354      return;
355
356  // FIXME: Function try block
357  if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
358    switch (CheckFallThrough(AC)) {
359      case UnknownFallThrough:
360        break;
361
362      case MaybeFallThrough:
363        if (HasNoReturn)
364          S.Diag(Compound->getRBracLoc(),
365                 CD.diag_MaybeFallThrough_HasNoReturn);
366        else if (!ReturnsVoid)
367          S.Diag(Compound->getRBracLoc(),
368                 CD.diag_MaybeFallThrough_ReturnsNonVoid);
369        break;
370      case AlwaysFallThrough:
371        if (HasNoReturn)
372          S.Diag(Compound->getRBracLoc(),
373                 CD.diag_AlwaysFallThrough_HasNoReturn);
374        else if (!ReturnsVoid)
375          S.Diag(Compound->getRBracLoc(),
376                 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
377        break;
378      case NeverFallThroughOrReturn:
379        if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
380          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
381            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
382              << FD;
383          } else {
384            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
385          }
386        }
387        break;
388      case NeverFallThrough:
389        break;
390    }
391  }
392}
393
394//===----------------------------------------------------------------------===//
395// -Wuninitialized
396//===----------------------------------------------------------------------===//
397
398namespace {
399/// ContainsReference - A visitor class to search for references to
400/// a particular declaration (the needle) within any evaluated component of an
401/// expression (recursively).
402class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
403  bool FoundReference;
404  const DeclRefExpr *Needle;
405
406public:
407  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
408    : EvaluatedExprVisitor<ContainsReference>(Context),
409      FoundReference(false), Needle(Needle) {}
410
411  void VisitExpr(Expr *E) {
412    // Stop evaluating if we already have a reference.
413    if (FoundReference)
414      return;
415
416    EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
417  }
418
419  void VisitDeclRefExpr(DeclRefExpr *E) {
420    if (E == Needle)
421      FoundReference = true;
422    else
423      EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
424  }
425
426  bool doesContainReference() const { return FoundReference; }
427};
428}
429
430/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
431/// uninitialized variable. This manages the different forms of diagnostic
432/// emitted for particular types of uses. Returns true if the use was diagnosed
433/// as a warning. If a pariticular use is one we omit warnings for, returns
434/// false.
435static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
436                                     const Expr *E, bool isAlwaysUninit) {
437  bool isSelfInit = false;
438
439  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
440    if (isAlwaysUninit) {
441      // Inspect the initializer of the variable declaration which is
442      // being referenced prior to its initialization. We emit
443      // specialized diagnostics for self-initialization, and we
444      // specifically avoid warning about self references which take the
445      // form of:
446      //
447      //   int x = x;
448      //
449      // This is used to indicate to GCC that 'x' is intentionally left
450      // uninitialized. Proven code paths which access 'x' in
451      // an uninitialized state after this will still warn.
452      //
453      // TODO: Should we suppress maybe-uninitialized warnings for
454      // variables initialized in this way?
455      if (const Expr *Initializer = VD->getInit()) {
456        if (DRE == Initializer->IgnoreParenImpCasts())
457          return false;
458
459        ContainsReference CR(S.Context, DRE);
460        CR.Visit(const_cast<Expr*>(Initializer));
461        isSelfInit = CR.doesContainReference();
462      }
463      if (isSelfInit) {
464        S.Diag(DRE->getLocStart(),
465               diag::warn_uninit_self_reference_in_init)
466        << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
467      } else {
468        S.Diag(DRE->getLocStart(), diag::warn_uninit_var)
469          << VD->getDeclName() << DRE->getSourceRange();
470      }
471    } else {
472      S.Diag(DRE->getLocStart(), diag::warn_maybe_uninit_var)
473        << VD->getDeclName() << DRE->getSourceRange();
474    }
475  } else {
476    const BlockExpr *BE = cast<BlockExpr>(E);
477    S.Diag(BE->getLocStart(),
478           isAlwaysUninit ? diag::warn_uninit_var_captured_by_block
479                          : diag::warn_maybe_uninit_var_captured_by_block)
480      << VD->getDeclName();
481  }
482
483  // Report where the variable was declared when the use wasn't within
484  // the initializer of that declaration.
485  if (!isSelfInit)
486    S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
487      << VD->getDeclName();
488
489  return true;
490}
491
492static void SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
493  // Don't issue a fixit if there is already an initializer.
494  if (VD->getInit())
495    return;
496
497  // Suggest possible initialization (if any).
498  const char *initialization = 0;
499  QualType VariableTy = VD->getType().getCanonicalType();
500
501  if (VariableTy->isObjCObjectPointerType() ||
502      VariableTy->isBlockPointerType()) {
503    // Check if 'nil' is defined.
504    if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("nil")))
505      initialization = " = nil";
506    else
507      initialization = " = 0";
508  }
509  else if (VariableTy->isRealFloatingType())
510    initialization = " = 0.0";
511  else if (VariableTy->isBooleanType() && S.Context.getLangOptions().CPlusPlus)
512    initialization = " = false";
513  else if (VariableTy->isEnumeralType())
514    return;
515  else if (VariableTy->isPointerType() || VariableTy->isMemberPointerType()) {
516    if (S.Context.getLangOptions().CPlusPlus0x)
517      initialization = " = nullptr";
518    // Check if 'NULL' is defined.
519    else if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("NULL")))
520      initialization = " = NULL";
521    else
522      initialization = " = 0";
523  }
524  else if (VariableTy->isScalarType())
525    initialization = " = 0";
526
527  if (initialization) {
528    SourceLocation loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
529    S.Diag(loc, diag::note_var_fixit_add_initialization)
530      << FixItHint::CreateInsertion(loc, initialization);
531  }
532}
533
534typedef std::pair<const Expr*, bool> UninitUse;
535
536namespace {
537struct SLocSort {
538  bool operator()(const UninitUse &a, const UninitUse &b) {
539    SourceLocation aLoc = a.first->getLocStart();
540    SourceLocation bLoc = b.first->getLocStart();
541    return aLoc.getRawEncoding() < bLoc.getRawEncoding();
542  }
543};
544
545class UninitValsDiagReporter : public UninitVariablesHandler {
546  Sema &S;
547  typedef SmallVector<UninitUse, 2> UsesVec;
548  typedef llvm::DenseMap<const VarDecl *, UsesVec*> UsesMap;
549  UsesMap *uses;
550
551public:
552  UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
553  ~UninitValsDiagReporter() {
554    flushDiagnostics();
555  }
556
557  void handleUseOfUninitVariable(const Expr *ex, const VarDecl *vd,
558                                 bool isAlwaysUninit) {
559    if (!uses)
560      uses = new UsesMap();
561
562    UsesVec *&vec = (*uses)[vd];
563    if (!vec)
564      vec = new UsesVec();
565
566    vec->push_back(std::make_pair(ex, isAlwaysUninit));
567  }
568
569  void flushDiagnostics() {
570    if (!uses)
571      return;
572
573    for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
574      const VarDecl *vd = i->first;
575      UsesVec *vec = i->second;
576
577      // Sort the uses by their SourceLocations.  While not strictly
578      // guaranteed to produce them in line/column order, this will provide
579      // a stable ordering.
580      std::sort(vec->begin(), vec->end(), SLocSort());
581
582      for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
583           ++vi) {
584        if (!DiagnoseUninitializedUse(S, vd, vi->first,
585                                      /*isAlwaysUninit=*/vi->second))
586          continue;
587
588        SuggestInitializationFixit(S, vd);
589
590        // Skip further diagnostics for this variable. We try to warn only on
591        // the first point at which a variable is used uninitialized.
592        break;
593      }
594
595      delete vec;
596    }
597    delete uses;
598  }
599};
600}
601
602
603//===----------------------------------------------------------------------===//
604// -Wthread-safety
605//===----------------------------------------------------------------------===//
606
607namespace {
608/// \brief Implements a set of CFGBlocks using a BitVector.
609///
610/// This class contains a minimal interface, primarily dictated by the SetType
611/// template parameter of the llvm::po_iterator template, as used with external
612/// storage. We also use this set to keep track of which CFGBlocks we visit
613/// during the analysis.
614class CFGBlockSet {
615  llvm::BitVector VisitedBlockIDs;
616
617public:
618  // po_iterator requires this iterator, but the only interface needed is the
619  // value_type typedef.
620  struct iterator {
621    typedef const CFGBlock *value_type;
622  };
623
624  CFGBlockSet() {}
625  CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
626
627  /// \brief Set the bit associated with a particular CFGBlock.
628  /// This is the important method for the SetType template parameter.
629  bool insert(const CFGBlock *Block) {
630    // Note that insert() is called by po_iterator, which doesn't check to make
631    // sure that Block is non-null.  Moreover, the CFGBlock iterator will
632    // occasionally hand out null pointers for pruned edges, so we catch those
633    // here.
634    if (Block == 0)
635      return false;  // if an edge is trivially false.
636    if (VisitedBlockIDs.test(Block->getBlockID()))
637      return false;
638    VisitedBlockIDs.set(Block->getBlockID());
639    return true;
640  }
641
642  /// \brief Check if the bit for a CFGBlock has been already set.
643  /// This method is for tracking visited blocks in the main threadsafety loop.
644  /// Block must not be null.
645  bool alreadySet(const CFGBlock *Block) {
646    return VisitedBlockIDs.test(Block->getBlockID());
647  }
648};
649
650/// \brief We create a helper class which we use to iterate through CFGBlocks in
651/// the topological order.
652class TopologicallySortedCFG {
653  typedef llvm::po_iterator<const CFG*, CFGBlockSet, true>  po_iterator;
654
655  std::vector<const CFGBlock*> Blocks;
656
657public:
658  typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
659
660  TopologicallySortedCFG(const CFG *CFGraph) {
661    Blocks.reserve(CFGraph->getNumBlockIDs());
662    CFGBlockSet BSet(CFGraph);
663
664    for (po_iterator I = po_iterator::begin(CFGraph, BSet),
665         E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
666      Blocks.push_back(*I);
667    }
668  }
669
670  iterator begin() {
671    return Blocks.rbegin();
672  }
673
674  iterator end() {
675    return Blocks.rend();
676  }
677};
678
679/// \brief A LockID object uniquely identifies a particular lock acquired, and
680/// is built from an Expr* (i.e. calling a lock function).
681///
682/// Thread-safety analysis works by comparing lock expressions.  Within the
683/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
684/// a particular lock object at run-time.  Subsequent occurrences of the same
685/// expression (where "same" means syntactic equality) will refer to the same
686/// run-time object if three conditions hold:
687/// (1) Local variables in the expression, such as "x" have not changed.
688/// (2) Values on the heap that affect the expression have not changed.
689/// (3) The expression involves only pure function calls.
690/// The current implementation assumes, but does not verify, that multiple uses
691/// of the same lock expression satisfies these criteria.
692///
693/// Clang introduces an additional wrinkle, which is that it is difficult to
694/// derive canonical expressions, or compare expressions directly for equality.
695/// Thus, we identify a lock not by an Expr, but by the set of named
696/// declarations that are referenced by the Expr.  In other words,
697/// x->foo->bar.mu will be a four element vector with the Decls for
698/// mu, bar, and foo, and x.  The vector will uniquely identify the expression
699/// for all practical purposes.
700///
701/// Note we will need to perform substitution on "this" and function parameter
702/// names when constructing a lock expression.
703///
704/// For example:
705/// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
706/// void myFunc(C *X) { ... X->lock() ... }
707/// The original expression for the lock acquired by myFunc is "this->Mu", but
708/// "X" is substituted for "this" so we get X->Mu();
709///
710/// For another example:
711/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
712/// MyList *MyL;
713/// foo(MyL);  // requires lock MyL->Mu to be held
714///
715/// FIXME: In C++0x Mutexes are the objects that control access to shared
716/// variables, while Locks are the objects that acquire and release Mutexes. We
717/// may want to switch to this new terminology soon, in which case we should
718/// rename this class "Mutex" and rename "LockId" to "MutexId", as well as
719/// making sure that the terms Lock and Mutex throughout this code are
720/// consistent with C++0x
721///
722/// FIXME: We should also pick one and canonicalize all usage of lock vs acquire
723/// and unlock vs release as verbs.
724class LockID {
725  SmallVector<NamedDecl*, 2> DeclSeq;
726
727  /// Build a Decl sequence representing the lock from the given expression.
728  /// Recursive function that bottoms out when the final DeclRefExpr is reached.
729  void buildLock(Expr *Exp) {
730    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
731      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
732      DeclSeq.push_back(ND);
733    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
734      NamedDecl *ND = ME->getMemberDecl();
735      DeclSeq.push_back(ND);
736      buildLock(ME->getBase());
737    } else {
738      // FIXME: add diagnostic
739      llvm::report_fatal_error("Expected lock expression!");
740    }
741  }
742
743public:
744  LockID(Expr *LExpr) {
745    buildLock(LExpr);
746    assert(!DeclSeq.empty());
747  }
748
749  bool operator==(const LockID &other) const {
750    return DeclSeq == other.DeclSeq;
751  }
752
753  bool operator!=(const LockID &other) const {
754    return !(*this == other);
755  }
756
757  // SmallVector overloads Operator< to do lexicographic ordering. Note that
758  // we use pointer equality (and <) to compare NamedDecls. This means the order
759  // of LockIDs in a lockset is nondeterministic. In order to output
760  // diagnostics in a deterministic ordering, we must order all diagnostics to
761  // output by SourceLocation when iterating through this lockset.
762  bool operator<(const LockID &other) const {
763    return DeclSeq < other.DeclSeq;
764  }
765
766  /// \brief Returns the name of the first Decl in the list for a given LockID;
767  /// e.g. the lock expression foo.bar() has name "bar".
768  /// The caret will point unambiguously to the lock expression, so using this
769  /// name in diagnostics is a way to get simple, and consistent, lock names.
770  /// We do not want to output the entire expression text for security reasons.
771  StringRef getName() const {
772    return DeclSeq.front()->getName();
773  }
774
775  void Profile(llvm::FoldingSetNodeID &ID) const {
776    for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
777         E = DeclSeq.end(); I != E; ++I) {
778      ID.AddPointer(*I);
779    }
780  }
781};
782
783/// \brief This is a helper class that stores info about the most recent
784/// accquire of a Lock.
785///
786/// The main body of the analysis maps LockIDs to LockDatas.
787struct LockData {
788  SourceLocation AcquireLoc;
789
790  LockData(SourceLocation Loc) : AcquireLoc(Loc) {}
791
792  bool operator==(const LockData &other) const {
793    return AcquireLoc == other.AcquireLoc;
794  }
795
796  bool operator!=(const LockData &other) const {
797    return !(*this == other);
798  }
799
800  void Profile(llvm::FoldingSetNodeID &ID) const {
801    ID.AddInteger(AcquireLoc.getRawEncoding());
802  }
803};
804
805/// A Lockset maps each LockID (defined above) to information about how it has
806/// been locked.
807typedef llvm::ImmutableMap<LockID, LockData> Lockset;
808
809/// \brief We use this class to visit different types of expressions in
810/// CFGBlocks, and build up the lockset.
811/// An expression may cause us to add or remove locks from the lockset, or else
812/// output error messages related to missing locks.
813/// FIXME: In future, we may be able to not inherit from a visitor.
814class BuildLockset : public StmtVisitor<BuildLockset> {
815  Sema &S;
816  Lockset LSet;
817  Lockset::Factory &LocksetFactory;
818
819  // Helper functions
820  void removeLock(SourceLocation UnlockLoc, Expr *LockExp);
821  void addLock(SourceLocation LockLoc, Expr *LockExp);
822  const ValueDecl *getValueDecl(Expr *Exp);
823  void checkAccess(Expr *Exp);
824  void checkDereference(Expr *Exp);
825
826public:
827  BuildLockset(Sema &S, Lockset LS, Lockset::Factory &F)
828    : StmtVisitor<BuildLockset>(), S(S), LSet(LS),
829      LocksetFactory(F) {}
830
831  Lockset getLockset() {
832    return LSet;
833  }
834
835  void VisitUnaryOperator(UnaryOperator *UO);
836  void VisitBinaryOperator(BinaryOperator *BO);
837  void VisitCastExpr(CastExpr *CE);
838  void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
839};
840
841/// \brief Add a new lock to the lockset, warning if the lock is already there.
842/// \param LockLoc The source location of the acquire
843/// \param LockExp The lock expression corresponding to the lock to be added
844void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp) {
845  LockID Lock(LockExp);
846  LockData NewLockData(LockLoc);
847
848  if (LSet.contains(Lock))
849    S.Diag(LockLoc, diag::warn_double_lock) << Lock.getName();
850
851  LSet = LocksetFactory.add(LSet, Lock, NewLockData);
852}
853
854/// \brief Remove a lock from the lockset, warning if the lock is not there.
855/// \param LockExp The lock expression corresponding to the lock to be removed
856/// \param UnlockLoc The source location of the unlock (only used in error msg)
857void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp) {
858  LockID Lock(LockExp);
859
860  Lockset NewLSet = LocksetFactory.remove(LSet, Lock);
861  if(NewLSet == LSet)
862    S.Diag(UnlockLoc, diag::warn_unlock_but_no_acquire) << Lock.getName();
863
864  LSet = NewLSet;
865}
866
867/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
868const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
869  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
870    return DR->getDecl();
871
872  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
873    return ME->getMemberDecl();
874
875  return 0;
876}
877
878/// \brief This method identifies variable dereferences and checks pt_guarded_by
879/// and pt_guarded_var annotations. Note that we only check these annotations
880/// at the time a pointer is dereferenced.
881/// FIXME: We need to check for other types of pointer dereferences
882/// (e.g. [], ->) and deal with them here.
883/// \param Exp An expression that has been read or written.
884void BuildLockset::checkDereference(Expr *Exp) {
885  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
886  if (!UO || UO->getOpcode() != clang::UO_Deref)
887    return;
888  Exp = UO->getSubExpr()->IgnoreParenCasts();
889
890  const ValueDecl *D = getValueDecl(Exp);
891  if(!D || !D->hasAttrs())
892    return;
893
894  if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
895    S.Diag(Exp->getExprLoc(), diag::warn_var_deref_requires_any_lock)
896      << D->getName();
897
898  const AttrVec &ArgAttrs = D->getAttrs();
899  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) {
900    if (ArgAttrs[i]->getKind() != attr::PtGuardedBy)
901      continue;
902    PtGuardedByAttr *PGBAttr = cast<PtGuardedByAttr>(ArgAttrs[i]);
903    LockID Lock(PGBAttr->getArg());
904    if (!LSet.contains(Lock))
905      S.Diag(Exp->getExprLoc(), diag::warn_var_deref_requires_lock)
906        << D->getName() << Lock.getName();
907  }
908}
909
910/// \brief Checks guarded_by and guarded_var attributes.
911/// Whenever we identify an access (read or write) of a DeclRefExpr or
912/// MemberExpr, we need to check whether there are any guarded_by or
913/// guarded_var attributes, and make sure we hold the appropriate locks.
914void BuildLockset::checkAccess(Expr *Exp) {
915  const ValueDecl *D = getValueDecl(Exp);
916  if(!D || !D->hasAttrs())
917    return;
918
919  if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
920    S.Diag(Exp->getExprLoc(), diag::warn_variable_requires_any_lock)
921      << D->getName();
922
923  const AttrVec &ArgAttrs = D->getAttrs();
924  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) {
925    if (ArgAttrs[i]->getKind() != attr::GuardedBy)
926      continue;
927    GuardedByAttr *GBAttr = cast<GuardedByAttr>(ArgAttrs[i]);
928    LockID Lock(GBAttr->getArg());
929    if (!LSet.contains(Lock))
930      S.Diag(Exp->getExprLoc(), diag::warn_variable_requires_lock)
931        << D->getName() << Lock.getName();
932  }
933}
934
935/// \brief For unary operations which read and write a variable, we need to
936/// check whether we hold any required locks. Reads are checked in
937/// VisitCastExpr.
938void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
939  switch (UO->getOpcode()) {
940    case clang::UO_PostDec:
941    case clang::UO_PostInc:
942    case clang::UO_PreDec:
943    case clang::UO_PreInc: {
944      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
945      checkAccess(SubExp);
946      checkDereference(SubExp);
947      break;
948    }
949    default:
950      break;
951  }
952}
953
954/// For binary operations which assign to a variable (writes), we need to check
955/// whether we hold any required locks.
956/// FIXME: Deal with non-primitive types.
957void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
958  if (!BO->isAssignmentOp())
959    return;
960  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
961  checkAccess(LHSExp);
962  checkDereference(LHSExp);
963}
964
965/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
966/// need to ensure we hold any required locks.
967/// FIXME: Deal with non-primitive types.
968void BuildLockset::VisitCastExpr(CastExpr *CE) {
969  if (CE->getCastKind() != CK_LValueToRValue)
970    return;
971  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
972  checkAccess(SubExp);
973  checkDereference(SubExp);
974}
975
976
977/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
978/// the method that is being called and add, remove or check locks in the
979/// lockset accordingly.
980///
981/// FIXME: For classes annotated with one of the guarded annotations, we need
982/// to treat const method calls as reads and non-const method calls as writes,
983/// and check that the appropriate locks are held. Non-const method calls with
984/// the same signature as const method calls can be also treated as reads.
985void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
986  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
987
988  SourceLocation ExpLocation = Exp->getExprLoc();
989  Expr *Parent = Exp->getImplicitObjectArgument();
990
991  if(!D || !D->hasAttrs())
992    return;
993
994  AttrVec &ArgAttrs = D->getAttrs();
995  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
996    Attr *Attr = ArgAttrs[i];
997    switch (Attr->getKind()) {
998      // When we encounter an exclusive lock function, we need to add the lock
999      // to our lockset.
1000      case attr::ExclusiveLockFunction: {
1001        ExclusiveLockFunctionAttr *ELFAttr =
1002          cast<ExclusiveLockFunctionAttr>(Attr);
1003
1004        if (ELFAttr->args_size() == 0) {// The lock held is the "this" object.
1005          addLock(ExpLocation, Parent);
1006          break;
1007        }
1008
1009        for (ExclusiveLockFunctionAttr::args_iterator I = ELFAttr->args_begin(),
1010             E = ELFAttr->args_end(); I != E; ++I)
1011          addLock(ExpLocation, *I);
1012        // FIXME: acquired_after/acquired_before annotations
1013        break;
1014      }
1015
1016      // When we encounter an unlock function, we need to remove unlocked locks
1017      // from the lockset, and flag a warning if they are not there.
1018      case attr::UnlockFunction: {
1019        UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
1020
1021        if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
1022          removeLock(ExpLocation, Parent);
1023          break;
1024        }
1025
1026        for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
1027            E = UFAttr->args_end(); I != E; ++I)
1028          removeLock(ExpLocation, *I);
1029        break;
1030      }
1031
1032      // Ignore other (non thread-safety) attributes
1033      default:
1034        break;
1035    }
1036  }
1037}
1038
1039typedef std::pair<SourceLocation, PartialDiagnostic> DelayedDiag;
1040typedef llvm::SmallVector<DelayedDiag, 4> DiagList;
1041
1042struct SortDiagBySourceLocation {
1043  Sema &S;
1044
1045  SortDiagBySourceLocation(Sema &S) : S(S) {}
1046
1047  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1048    // Although this call will be slow, this is only called when outputting
1049    // multiple warnings.
1050    return S.getSourceManager().isBeforeInTranslationUnit(left.first,
1051                                                          right.first);
1052  }
1053};
1054} // end anonymous namespace
1055
1056/// \brief Emit all buffered diagnostics in order of sourcelocation.
1057/// We need to output diagnostics produced while iterating through
1058/// the lockset in deterministic order, so this function orders diagnostics
1059/// and outputs them.
1060static void EmitDiagnostics(Sema &S, DiagList &D) {
1061  SortDiagBySourceLocation SortDiagBySL(S);
1062  sort(D.begin(), D.end(), SortDiagBySL);
1063  for (DiagList::iterator I = D.begin(), E = D.end(); I != E; ++I)
1064    S.Diag(I->first, I->second);
1065}
1066
1067/// \brief Compute the intersection of two locksets and issue warnings for any
1068/// locks in the symmetric difference.
1069///
1070/// This function is used at a merge point in the CFG when comparing the lockset
1071/// of each branch being merged. For example, given the following sequence:
1072/// A; if () then B; else C; D; we need to check that the lockset after B and C
1073/// are the same. In the event of a difference, we use the intersection of these
1074/// two locksets at the start of D.
1075static Lockset intersectAndWarn(Sema &S, Lockset LSet1, Lockset LSet2,
1076                                Lockset::Factory &Fact) {
1077  Lockset Intersection = LSet1;
1078  DiagList Warnings;
1079
1080  for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
1081    if (!LSet1.contains(I.getKey())) {
1082      const LockID &MissingLock = I.getKey();
1083      const LockData &MissingLockData = I.getData();
1084      PartialDiagnostic Warning =
1085        S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
1086      Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
1087    }
1088  }
1089
1090  for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
1091    if (!LSet2.contains(I.getKey())) {
1092      const LockID &MissingLock = I.getKey();
1093      const LockData &MissingLockData = I.getData();
1094      PartialDiagnostic Warning =
1095        S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
1096      Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
1097      Intersection = Fact.remove(Intersection, MissingLock);
1098    }
1099  }
1100
1101  EmitDiagnostics(S, Warnings);
1102  return Intersection;
1103}
1104
1105/// \brief Returns the location of the first Stmt in a Block.
1106static SourceLocation getFirstStmtLocation(CFGBlock *Block) {
1107  SourceLocation Loc;
1108  for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
1109       BI != BE; ++BI) {
1110    if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
1111      Loc = CfgStmt->getStmt()->getLocStart();
1112      if (Loc.isValid()) return Loc;
1113    }
1114  }
1115  if (Stmt *S = Block->getTerminator().getStmt()) {
1116    Loc = S->getLocStart();
1117    if (Loc.isValid()) return Loc;
1118  }
1119  return Loc;
1120}
1121
1122/// \brief Warn about different locksets along backedges of loops.
1123/// This function is called when we encounter a back edge. At that point,
1124/// we need to verify that the lockset before taking the backedge is the
1125/// same as the lockset before entering the loop.
1126///
1127/// \param LoopEntrySet Locks held before starting the loop
1128/// \param LoopReentrySet Locks held in the last CFG block of the loop
1129static void warnBackEdgeUnequalLocksets(Sema &S, const Lockset LoopReentrySet,
1130                                        const Lockset LoopEntrySet,
1131                                        SourceLocation FirstLocInLoop) {
1132  assert(FirstLocInLoop.isValid());
1133  DiagList Warnings;
1134
1135  // Warn for locks held at the start of the loop, but not the end.
1136  for (Lockset::iterator I = LoopEntrySet.begin(), E = LoopEntrySet.end();
1137       I != E; ++I) {
1138    if (!LoopReentrySet.contains(I.getKey())) {
1139      const LockID &MissingLock = I.getKey();
1140      // We report this error at the location of the first statement in a loop
1141      PartialDiagnostic Warning =
1142        S.PDiag(diag::warn_expecting_lock_held_on_loop)
1143          << MissingLock.getName();
1144      Warnings.push_back(DelayedDiag(FirstLocInLoop, Warning));
1145    }
1146  }
1147
1148  // Warn for locks held at the end of the loop, but not at the start.
1149  for (Lockset::iterator I = LoopReentrySet.begin(), E = LoopReentrySet.end();
1150       I != E; ++I) {
1151    if (!LoopEntrySet.contains(I.getKey())) {
1152      const LockID &MissingLock = I.getKey();
1153      const LockData &MissingLockData = I.getData();
1154      PartialDiagnostic Warning =
1155        S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
1156      Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
1157    }
1158  }
1159
1160  EmitDiagnostics(S, Warnings);
1161}
1162
1163/// \brief Check a function's CFG for thread-safety violations.
1164///
1165/// We traverse the blocks in the CFG, compute the set of locks that are held
1166/// at the end of each block, and issue warnings for thread safety violations.
1167/// Each block in the CFG is traversed exactly once.
1168static void checkThreadSafety(Sema &S, AnalysisContext &AC) {
1169  CFG *CFGraph = AC.getCFG();
1170  if (!CFGraph) return;
1171
1172  Lockset::Factory LocksetFactory;
1173
1174  // FIXME: Swith to SmallVector? Otherwise improve performance impact?
1175  std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
1176                                     LocksetFactory.getEmptyMap());
1177  std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
1178                                    LocksetFactory.getEmptyMap());
1179
1180  // We need to explore the CFG via a "topological" ordering.
1181  // That way, we will be guaranteed to have information about required
1182  // predecessor locksets when exploring a new block.
1183  TopologicallySortedCFG SortedGraph(CFGraph);
1184  CFGBlockSet VisitedBlocks(CFGraph);
1185
1186  for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
1187       E = SortedGraph.end(); I!= E; ++I) {
1188    const CFGBlock *CurrBlock = *I;
1189    int CurrBlockID = CurrBlock->getBlockID();
1190
1191    VisitedBlocks.insert(CurrBlock);
1192
1193    // Use the default initial lockset in case there are no predecessors.
1194    Lockset &Entryset = EntryLocksets[CurrBlockID];
1195    Lockset &Exitset = ExitLocksets[CurrBlockID];
1196
1197    // Iterate through the predecessor blocks and warn if the lockset for all
1198    // predecessors is not the same. We take the entry lockset of the current
1199    // block to be the intersection of all previous locksets.
1200    // FIXME: By keeping the intersection, we may output more errors in future
1201    // for a lock which is not in the intersection, but was in the union. We
1202    // may want to also keep the union in future. As an example, let's say
1203    // the intersection contains Lock L, and the union contains L and M.
1204    // Later we unlock M. At this point, we would output an error because we
1205    // never locked M; although the real error is probably that we forgot to
1206    // lock M on all code paths. Conversely, let's say that later we lock M.
1207    // In this case, we should compare against the intersection instead of the
1208    // union because the real error is probably that we forgot to unlock M on
1209    // all code paths.
1210    bool LocksetInitialized = false;
1211    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1212         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1213
1214      // if *PI -> CurrBlock is a back edge
1215      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
1216        continue;
1217
1218      int PrevBlockID = (*PI)->getBlockID();
1219      if (!LocksetInitialized) {
1220        Entryset = ExitLocksets[PrevBlockID];
1221        LocksetInitialized = true;
1222      } else {
1223        Entryset = intersectAndWarn(S, Entryset, ExitLocksets[PrevBlockID],
1224                                LocksetFactory);
1225      }
1226    }
1227
1228    BuildLockset LocksetBuilder(S, Entryset, LocksetFactory);
1229    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1230         BE = CurrBlock->end(); BI != BE; ++BI) {
1231      if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
1232        LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
1233    }
1234    Exitset = LocksetBuilder.getLockset();
1235
1236    // For every back edge from CurrBlock (the end of the loop) to another block
1237    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
1238    // the one held at the beginning of FirstLoopBlock. We can look up the
1239    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
1240    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1241         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1242
1243      // if CurrBlock -> *SI is *not* a back edge
1244      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1245        continue;
1246
1247      CFGBlock *FirstLoopBlock = *SI;
1248      SourceLocation FirstLoopLocation = getFirstStmtLocation(FirstLoopBlock);
1249
1250      assert(FirstLoopLocation.isValid());
1251      // Fail gracefully in release code.
1252      if (!FirstLoopLocation.isValid())
1253        continue;
1254
1255      Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
1256      Lockset LoopEnd = ExitLocksets[CurrBlockID];
1257      warnBackEdgeUnequalLocksets(S, LoopEnd, PreLoop, FirstLoopLocation);
1258    }
1259  }
1260
1261  Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
1262  if (!FinalLockset.isEmpty()) {
1263    DiagList Warnings;
1264    for (Lockset::iterator I=FinalLockset.begin(), E=FinalLockset.end();
1265         I != E; ++I) {
1266      const LockID &MissingLock = I.getKey();
1267      const LockData &MissingLockData = I.getData();
1268
1269      std::string FunName = "<unknown>";
1270      if (const NamedDecl *ContextDecl = dyn_cast<NamedDecl>(AC.getDecl())) {
1271        FunName = ContextDecl->getDeclName().getAsString();
1272      }
1273
1274      PartialDiagnostic Warning =
1275        S.PDiag(diag::warn_locks_not_released)
1276          << MissingLock.getName() << FunName;
1277      Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
1278    }
1279    EmitDiagnostics(S, Warnings);
1280  }
1281}
1282
1283
1284//===----------------------------------------------------------------------===//
1285// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1286//  warnings on a function, method, or block.
1287//===----------------------------------------------------------------------===//
1288
1289clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1290  enableCheckFallThrough = 1;
1291  enableCheckUnreachable = 0;
1292  enableThreadSafetyAnalysis = 0;
1293}
1294
1295clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1296  : S(s),
1297    NumFunctionsAnalyzed(0),
1298    NumFunctionsWithBadCFGs(0),
1299    NumCFGBlocks(0),
1300    MaxCFGBlocksPerFunction(0),
1301    NumUninitAnalysisFunctions(0),
1302    NumUninitAnalysisVariables(0),
1303    MaxUninitAnalysisVariablesPerFunction(0),
1304    NumUninitAnalysisBlockVisits(0),
1305    MaxUninitAnalysisBlockVisitsPerFunction(0) {
1306  Diagnostic &D = S.getDiagnostics();
1307  DefaultPolicy.enableCheckUnreachable = (unsigned)
1308    (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
1309        Diagnostic::Ignored);
1310  DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
1311    (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
1312     Diagnostic::Ignored);
1313
1314}
1315
1316static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
1317  for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1318       i = fscope->PossiblyUnreachableDiags.begin(),
1319       e = fscope->PossiblyUnreachableDiags.end();
1320       i != e; ++i) {
1321    const sema::PossiblyUnreachableDiag &D = *i;
1322    S.Diag(D.Loc, D.PD);
1323  }
1324}
1325
1326void clang::sema::
1327AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1328                                     sema::FunctionScopeInfo *fscope,
1329                                     const Decl *D, const BlockExpr *blkExpr) {
1330
1331  // We avoid doing analysis-based warnings when there are errors for
1332  // two reasons:
1333  // (1) The CFGs often can't be constructed (if the body is invalid), so
1334  //     don't bother trying.
1335  // (2) The code already has problems; running the analysis just takes more
1336  //     time.
1337  Diagnostic &Diags = S.getDiagnostics();
1338
1339  // Do not do any analysis for declarations in system headers if we are
1340  // going to just ignore them.
1341  if (Diags.getSuppressSystemWarnings() &&
1342      S.SourceMgr.isInSystemHeader(D->getLocation()))
1343    return;
1344
1345  // For code in dependent contexts, we'll do this at instantiation time.
1346  if (cast<DeclContext>(D)->isDependentContext())
1347    return;
1348
1349  if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1350    // Flush out any possibly unreachable diagnostics.
1351    flushDiagnostics(S, fscope);
1352    return;
1353  }
1354
1355  const Stmt *Body = D->getBody();
1356  assert(Body);
1357
1358  AnalysisContext AC(D, 0);
1359
1360  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1361  // explosion for destrutors that can result and the compile time hit.
1362  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1363  AC.getCFGBuildOptions().AddEHEdges = false;
1364  AC.getCFGBuildOptions().AddInitializers = true;
1365  AC.getCFGBuildOptions().AddImplicitDtors = true;
1366
1367  // Force that certain expressions appear as CFGElements in the CFG.  This
1368  // is used to speed up various analyses.
1369  // FIXME: This isn't the right factoring.  This is here for initial
1370  // prototyping, but we need a way for analyses to say what expressions they
1371  // expect to always be CFGElements and then fill in the BuildOptions
1372  // appropriately.  This is essentially a layering violation.
1373  if (P.enableCheckUnreachable) {
1374    // Unreachable code analysis requires a linearized CFG.
1375    AC.getCFGBuildOptions().setAllAlwaysAdd();
1376  }
1377  else {
1378    AC.getCFGBuildOptions()
1379      .setAlwaysAdd(Stmt::BinaryOperatorClass)
1380      .setAlwaysAdd(Stmt::BlockExprClass)
1381      .setAlwaysAdd(Stmt::CStyleCastExprClass)
1382      .setAlwaysAdd(Stmt::DeclRefExprClass)
1383      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1384      .setAlwaysAdd(Stmt::UnaryOperatorClass);
1385  }
1386
1387  // Construct the analysis context with the specified CFG build options.
1388
1389  // Emit delayed diagnostics.
1390  if (!fscope->PossiblyUnreachableDiags.empty()) {
1391    bool analyzed = false;
1392
1393    // Register the expressions with the CFGBuilder.
1394    for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1395         i = fscope->PossiblyUnreachableDiags.begin(),
1396         e = fscope->PossiblyUnreachableDiags.end();
1397         i != e; ++i) {
1398      if (const Stmt *stmt = i->stmt)
1399        AC.registerForcedBlockExpression(stmt);
1400    }
1401
1402    if (AC.getCFG()) {
1403      analyzed = true;
1404      for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1405            i = fscope->PossiblyUnreachableDiags.begin(),
1406            e = fscope->PossiblyUnreachableDiags.end();
1407            i != e; ++i)
1408      {
1409        const sema::PossiblyUnreachableDiag &D = *i;
1410        bool processed = false;
1411        if (const Stmt *stmt = i->stmt) {
1412          const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
1413          assert(block);
1414          if (CFGReverseBlockReachabilityAnalysis *cra = AC.getCFGReachablityAnalysis()) {
1415            // Can this block be reached from the entrance?
1416            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1417              S.Diag(D.Loc, D.PD);
1418            processed = true;
1419          }
1420        }
1421        if (!processed) {
1422          // Emit the warning anyway if we cannot map to a basic block.
1423          S.Diag(D.Loc, D.PD);
1424        }
1425      }
1426    }
1427
1428    if (!analyzed)
1429      flushDiagnostics(S, fscope);
1430  }
1431
1432
1433  // Warning: check missing 'return'
1434  if (P.enableCheckFallThrough) {
1435    const CheckFallThroughDiagnostics &CD =
1436      (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1437                         : CheckFallThroughDiagnostics::MakeForFunction(D));
1438    CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1439  }
1440
1441  // Warning: check for unreachable code
1442  if (P.enableCheckUnreachable)
1443    CheckUnreachable(S, AC);
1444
1445  // Check for thread safety violations
1446  if (P.enableThreadSafetyAnalysis)
1447    checkThreadSafety(S, AC);
1448
1449  if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
1450      != Diagnostic::Ignored ||
1451      Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
1452      != Diagnostic::Ignored) {
1453    if (CFG *cfg = AC.getCFG()) {
1454      UninitValsDiagReporter reporter(S);
1455      UninitVariablesAnalysisStats stats;
1456      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
1457      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
1458                                        reporter, stats);
1459
1460      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
1461        ++NumUninitAnalysisFunctions;
1462        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
1463        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
1464        MaxUninitAnalysisVariablesPerFunction =
1465            std::max(MaxUninitAnalysisVariablesPerFunction,
1466                     stats.NumVariablesAnalyzed);
1467        MaxUninitAnalysisBlockVisitsPerFunction =
1468            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
1469                     stats.NumBlockVisits);
1470      }
1471    }
1472  }
1473
1474  // Collect statistics about the CFG if it was built.
1475  if (S.CollectStats && AC.isCFGBuilt()) {
1476    ++NumFunctionsAnalyzed;
1477    if (CFG *cfg = AC.getCFG()) {
1478      // If we successfully built a CFG for this context, record some more
1479      // detail information about it.
1480      NumCFGBlocks += cfg->getNumBlockIDs();
1481      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
1482                                         cfg->getNumBlockIDs());
1483    } else {
1484      ++NumFunctionsWithBadCFGs;
1485    }
1486  }
1487}
1488
1489void clang::sema::AnalysisBasedWarnings::PrintStats() const {
1490  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
1491
1492  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
1493  unsigned AvgCFGBlocksPerFunction =
1494      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
1495  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
1496               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
1497               << "  " << NumCFGBlocks << " CFG blocks built.\n"
1498               << "  " << AvgCFGBlocksPerFunction
1499               << " average CFG blocks per function.\n"
1500               << "  " << MaxCFGBlocksPerFunction
1501               << " max CFG blocks per function.\n";
1502
1503  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
1504      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
1505  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
1506      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
1507  llvm::errs() << NumUninitAnalysisFunctions
1508               << " functions analyzed for uninitialiazed variables\n"
1509               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
1510               << "  " << AvgUninitVariablesPerFunction
1511               << " average variables per function.\n"
1512               << "  " << MaxUninitAnalysisVariablesPerFunction
1513               << " max variables per function.\n"
1514               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
1515               << "  " << AvgUninitBlockVisitsPerFunction
1516               << " average block visits per function.\n"
1517               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
1518               << " max block visits per function.\n";
1519}
1520