AnalysisBasedWarnings.cpp revision df8327c28d293cf7c6952b86dba26863235dcc0f
1//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines analysis_warnings::[Policy,Executor].
11// Together they are used by Sema to issue warnings based on inexpensive
12// static analysis algorithms in libAnalysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/AnalysisBasedWarnings.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Basic/SourceManager.h"
20#include "clang/Basic/SourceLocation.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/StmtVisitor.h"
30#include "clang/Analysis/AnalysisContext.h"
31#include "clang/Analysis/CFG.h"
32#include "clang/Analysis/Analyses/ReachableCode.h"
33#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
34#include "clang/Analysis/Analyses/ThreadSafety.h"
35#include "clang/Analysis/CFGStmtMap.h"
36#include "clang/Analysis/Analyses/UninitializedValues.h"
37#include "llvm/ADT/BitVector.h"
38#include "llvm/ADT/FoldingSet.h"
39#include "llvm/ADT/ImmutableMap.h"
40#include "llvm/ADT/PostOrderIterator.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/StringRef.h"
43#include "llvm/Support/Casting.h"
44#include <algorithm>
45#include <vector>
46
47using namespace clang;
48
49//===----------------------------------------------------------------------===//
50// Unreachable code analysis.
51//===----------------------------------------------------------------------===//
52
53namespace {
54  class UnreachableCodeHandler : public reachable_code::Callback {
55    Sema &S;
56  public:
57    UnreachableCodeHandler(Sema &s) : S(s) {}
58
59    void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
60      S.Diag(L, diag::warn_unreachable) << R1 << R2;
61    }
62  };
63}
64
65/// CheckUnreachable - Check for unreachable code.
66static void CheckUnreachable(Sema &S, AnalysisContext &AC) {
67  UnreachableCodeHandler UC(S);
68  reachable_code::FindUnreachableCode(AC, UC);
69}
70
71//===----------------------------------------------------------------------===//
72// Check for missing return value.
73//===----------------------------------------------------------------------===//
74
75enum ControlFlowKind {
76  UnknownFallThrough,
77  NeverFallThrough,
78  MaybeFallThrough,
79  AlwaysFallThrough,
80  NeverFallThroughOrReturn
81};
82
83/// CheckFallThrough - Check that we don't fall off the end of a
84/// Statement that should return a value.
85///
86/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
87/// MaybeFallThrough iff we might or might not fall off the end,
88/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
89/// return.  We assume NeverFallThrough iff we never fall off the end of the
90/// statement but we may return.  We assume that functions not marked noreturn
91/// will return.
92static ControlFlowKind CheckFallThrough(AnalysisContext &AC) {
93  CFG *cfg = AC.getCFG();
94  if (cfg == 0) return UnknownFallThrough;
95
96  // The CFG leaves in dead things, and we don't want the dead code paths to
97  // confuse us, so we mark all live things first.
98  llvm::BitVector live(cfg->getNumBlockIDs());
99  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
100                                                          live);
101
102  bool AddEHEdges = AC.getAddEHEdges();
103  if (!AddEHEdges && count != cfg->getNumBlockIDs())
104    // When there are things remaining dead, and we didn't add EH edges
105    // from CallExprs to the catch clauses, we have to go back and
106    // mark them as live.
107    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
108      CFGBlock &b = **I;
109      if (!live[b.getBlockID()]) {
110        if (b.pred_begin() == b.pred_end()) {
111          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
112            // When not adding EH edges from calls, catch clauses
113            // can otherwise seem dead.  Avoid noting them as dead.
114            count += reachable_code::ScanReachableFromBlock(&b, live);
115          continue;
116        }
117      }
118    }
119
120  // Now we know what is live, we check the live precessors of the exit block
121  // and look for fall through paths, being careful to ignore normal returns,
122  // and exceptional paths.
123  bool HasLiveReturn = false;
124  bool HasFakeEdge = false;
125  bool HasPlainEdge = false;
126  bool HasAbnormalEdge = false;
127
128  // Ignore default cases that aren't likely to be reachable because all
129  // enums in a switch(X) have explicit case statements.
130  CFGBlock::FilterOptions FO;
131  FO.IgnoreDefaultsWithCoveredEnums = 1;
132
133  for (CFGBlock::filtered_pred_iterator
134	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
135    const CFGBlock& B = **I;
136    if (!live[B.getBlockID()])
137      continue;
138
139    // Skip blocks which contain an element marked as no-return. They don't
140    // represent actually viable edges into the exit block, so mark them as
141    // abnormal.
142    if (B.hasNoReturnElement()) {
143      HasAbnormalEdge = true;
144      continue;
145    }
146
147    // Destructors can appear after the 'return' in the CFG.  This is
148    // normal.  We need to look pass the destructors for the return
149    // statement (if it exists).
150    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
151
152    for ( ; ri != re ; ++ri)
153      if (isa<CFGStmt>(*ri))
154        break;
155
156    // No more CFGElements in the block?
157    if (ri == re) {
158      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
159        HasAbnormalEdge = true;
160        continue;
161      }
162      // A labeled empty statement, or the entry block...
163      HasPlainEdge = true;
164      continue;
165    }
166
167    CFGStmt CS = cast<CFGStmt>(*ri);
168    const Stmt *S = CS.getStmt();
169    if (isa<ReturnStmt>(S)) {
170      HasLiveReturn = true;
171      continue;
172    }
173    if (isa<ObjCAtThrowStmt>(S)) {
174      HasFakeEdge = true;
175      continue;
176    }
177    if (isa<CXXThrowExpr>(S)) {
178      HasFakeEdge = true;
179      continue;
180    }
181    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
182      if (AS->isMSAsm()) {
183        HasFakeEdge = true;
184        HasLiveReturn = true;
185        continue;
186      }
187    }
188    if (isa<CXXTryStmt>(S)) {
189      HasAbnormalEdge = true;
190      continue;
191    }
192    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
193        == B.succ_end()) {
194      HasAbnormalEdge = true;
195      continue;
196    }
197
198    HasPlainEdge = true;
199  }
200  if (!HasPlainEdge) {
201    if (HasLiveReturn)
202      return NeverFallThrough;
203    return NeverFallThroughOrReturn;
204  }
205  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
206    return MaybeFallThrough;
207  // This says AlwaysFallThrough for calls to functions that are not marked
208  // noreturn, that don't return.  If people would like this warning to be more
209  // accurate, such functions should be marked as noreturn.
210  return AlwaysFallThrough;
211}
212
213namespace {
214
215struct CheckFallThroughDiagnostics {
216  unsigned diag_MaybeFallThrough_HasNoReturn;
217  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
218  unsigned diag_AlwaysFallThrough_HasNoReturn;
219  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
220  unsigned diag_NeverFallThroughOrReturn;
221  bool funMode;
222  SourceLocation FuncLoc;
223
224  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
225    CheckFallThroughDiagnostics D;
226    D.FuncLoc = Func->getLocation();
227    D.diag_MaybeFallThrough_HasNoReturn =
228      diag::warn_falloff_noreturn_function;
229    D.diag_MaybeFallThrough_ReturnsNonVoid =
230      diag::warn_maybe_falloff_nonvoid_function;
231    D.diag_AlwaysFallThrough_HasNoReturn =
232      diag::warn_falloff_noreturn_function;
233    D.diag_AlwaysFallThrough_ReturnsNonVoid =
234      diag::warn_falloff_nonvoid_function;
235
236    // Don't suggest that virtual functions be marked "noreturn", since they
237    // might be overridden by non-noreturn functions.
238    bool isVirtualMethod = false;
239    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
240      isVirtualMethod = Method->isVirtual();
241
242    if (!isVirtualMethod)
243      D.diag_NeverFallThroughOrReturn =
244        diag::warn_suggest_noreturn_function;
245    else
246      D.diag_NeverFallThroughOrReturn = 0;
247
248    D.funMode = true;
249    return D;
250  }
251
252  static CheckFallThroughDiagnostics MakeForBlock() {
253    CheckFallThroughDiagnostics D;
254    D.diag_MaybeFallThrough_HasNoReturn =
255      diag::err_noreturn_block_has_return_expr;
256    D.diag_MaybeFallThrough_ReturnsNonVoid =
257      diag::err_maybe_falloff_nonvoid_block;
258    D.diag_AlwaysFallThrough_HasNoReturn =
259      diag::err_noreturn_block_has_return_expr;
260    D.diag_AlwaysFallThrough_ReturnsNonVoid =
261      diag::err_falloff_nonvoid_block;
262    D.diag_NeverFallThroughOrReturn =
263      diag::warn_suggest_noreturn_block;
264    D.funMode = false;
265    return D;
266  }
267
268  bool checkDiagnostics(Diagnostic &D, bool ReturnsVoid,
269                        bool HasNoReturn) const {
270    if (funMode) {
271      return (ReturnsVoid ||
272              D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
273                                   FuncLoc) == Diagnostic::Ignored)
274        && (!HasNoReturn ||
275            D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
276                                 FuncLoc) == Diagnostic::Ignored)
277        && (!ReturnsVoid ||
278            D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
279              == Diagnostic::Ignored);
280    }
281
282    // For blocks.
283    return  ReturnsVoid && !HasNoReturn
284            && (!ReturnsVoid ||
285                D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
286                  == Diagnostic::Ignored);
287  }
288};
289
290}
291
292/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
293/// function that should return a value.  Check that we don't fall off the end
294/// of a noreturn function.  We assume that functions and blocks not marked
295/// noreturn will return.
296static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
297                                    const BlockExpr *blkExpr,
298                                    const CheckFallThroughDiagnostics& CD,
299                                    AnalysisContext &AC) {
300
301  bool ReturnsVoid = false;
302  bool HasNoReturn = false;
303
304  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
305    ReturnsVoid = FD->getResultType()->isVoidType();
306    HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
307       FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
308  }
309  else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
310    ReturnsVoid = MD->getResultType()->isVoidType();
311    HasNoReturn = MD->hasAttr<NoReturnAttr>();
312  }
313  else if (isa<BlockDecl>(D)) {
314    QualType BlockTy = blkExpr->getType();
315    if (const FunctionType *FT =
316          BlockTy->getPointeeType()->getAs<FunctionType>()) {
317      if (FT->getResultType()->isVoidType())
318        ReturnsVoid = true;
319      if (FT->getNoReturnAttr())
320        HasNoReturn = true;
321    }
322  }
323
324  Diagnostic &Diags = S.getDiagnostics();
325
326  // Short circuit for compilation speed.
327  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
328      return;
329
330  // FIXME: Function try block
331  if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
332    switch (CheckFallThrough(AC)) {
333      case UnknownFallThrough:
334        break;
335
336      case MaybeFallThrough:
337        if (HasNoReturn)
338          S.Diag(Compound->getRBracLoc(),
339                 CD.diag_MaybeFallThrough_HasNoReturn);
340        else if (!ReturnsVoid)
341          S.Diag(Compound->getRBracLoc(),
342                 CD.diag_MaybeFallThrough_ReturnsNonVoid);
343        break;
344      case AlwaysFallThrough:
345        if (HasNoReturn)
346          S.Diag(Compound->getRBracLoc(),
347                 CD.diag_AlwaysFallThrough_HasNoReturn);
348        else if (!ReturnsVoid)
349          S.Diag(Compound->getRBracLoc(),
350                 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
351        break;
352      case NeverFallThroughOrReturn:
353        if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
354          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
355            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
356              << 0 << FD;
357          } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
358            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
359              << 1 << MD;
360          } else {
361            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
362          }
363        }
364        break;
365      case NeverFallThrough:
366        break;
367    }
368  }
369}
370
371//===----------------------------------------------------------------------===//
372// -Wuninitialized
373//===----------------------------------------------------------------------===//
374
375namespace {
376/// ContainsReference - A visitor class to search for references to
377/// a particular declaration (the needle) within any evaluated component of an
378/// expression (recursively).
379class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
380  bool FoundReference;
381  const DeclRefExpr *Needle;
382
383public:
384  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
385    : EvaluatedExprVisitor<ContainsReference>(Context),
386      FoundReference(false), Needle(Needle) {}
387
388  void VisitExpr(Expr *E) {
389    // Stop evaluating if we already have a reference.
390    if (FoundReference)
391      return;
392
393    EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
394  }
395
396  void VisitDeclRefExpr(DeclRefExpr *E) {
397    if (E == Needle)
398      FoundReference = true;
399    else
400      EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
401  }
402
403  bool doesContainReference() const { return FoundReference; }
404};
405}
406
407static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
408  // Don't issue a fixit if there is already an initializer.
409  if (VD->getInit())
410    return false;
411
412  // Suggest possible initialization (if any).
413  const char *initialization = 0;
414  QualType VariableTy = VD->getType().getCanonicalType();
415
416  if (VariableTy->isObjCObjectPointerType() ||
417      VariableTy->isBlockPointerType()) {
418    // Check if 'nil' is defined.
419    if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("nil")))
420      initialization = " = nil";
421    else
422      initialization = " = 0";
423  }
424  else if (VariableTy->isRealFloatingType())
425    initialization = " = 0.0";
426  else if (VariableTy->isBooleanType() && S.Context.getLangOptions().CPlusPlus)
427    initialization = " = false";
428  else if (VariableTy->isEnumeralType())
429    return false;
430  else if (VariableTy->isPointerType() || VariableTy->isMemberPointerType()) {
431    if (S.Context.getLangOptions().CPlusPlus0x)
432      initialization = " = nullptr";
433    // Check if 'NULL' is defined.
434    else if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("NULL")))
435      initialization = " = NULL";
436    else
437      initialization = " = 0";
438  }
439  else if (VariableTy->isScalarType())
440    initialization = " = 0";
441
442  if (initialization) {
443    SourceLocation loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
444    S.Diag(loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
445      << FixItHint::CreateInsertion(loc, initialization);
446    return true;
447  }
448  return false;
449}
450
451/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
452/// uninitialized variable. This manages the different forms of diagnostic
453/// emitted for particular types of uses. Returns true if the use was diagnosed
454/// as a warning. If a pariticular use is one we omit warnings for, returns
455/// false.
456static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
457                                     const Expr *E, bool isAlwaysUninit) {
458  bool isSelfInit = false;
459
460  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
461    if (isAlwaysUninit) {
462      // Inspect the initializer of the variable declaration which is
463      // being referenced prior to its initialization. We emit
464      // specialized diagnostics for self-initialization, and we
465      // specifically avoid warning about self references which take the
466      // form of:
467      //
468      //   int x = x;
469      //
470      // This is used to indicate to GCC that 'x' is intentionally left
471      // uninitialized. Proven code paths which access 'x' in
472      // an uninitialized state after this will still warn.
473      //
474      // TODO: Should we suppress maybe-uninitialized warnings for
475      // variables initialized in this way?
476      if (const Expr *Initializer = VD->getInit()) {
477        if (DRE == Initializer->IgnoreParenImpCasts())
478          return false;
479
480        ContainsReference CR(S.Context, DRE);
481        CR.Visit(const_cast<Expr*>(Initializer));
482        isSelfInit = CR.doesContainReference();
483      }
484      if (isSelfInit) {
485        S.Diag(DRE->getLocStart(),
486               diag::warn_uninit_self_reference_in_init)
487        << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
488      } else {
489        S.Diag(DRE->getLocStart(), diag::warn_uninit_var)
490          << VD->getDeclName() << DRE->getSourceRange();
491      }
492    } else {
493      S.Diag(DRE->getLocStart(), diag::warn_maybe_uninit_var)
494        << VD->getDeclName() << DRE->getSourceRange();
495    }
496  } else {
497    const BlockExpr *BE = cast<BlockExpr>(E);
498    S.Diag(BE->getLocStart(),
499           isAlwaysUninit ? diag::warn_uninit_var_captured_by_block
500                          : diag::warn_maybe_uninit_var_captured_by_block)
501      << VD->getDeclName();
502  }
503
504  // Report where the variable was declared when the use wasn't within
505  // the initializer of that declaration & we didn't already suggest
506  // an initialization fixit.
507  if (!isSelfInit && !SuggestInitializationFixit(S, VD))
508    S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
509      << VD->getDeclName();
510
511  return true;
512}
513
514typedef std::pair<const Expr*, bool> UninitUse;
515
516namespace {
517struct SLocSort {
518  bool operator()(const UninitUse &a, const UninitUse &b) {
519    SourceLocation aLoc = a.first->getLocStart();
520    SourceLocation bLoc = b.first->getLocStart();
521    return aLoc.getRawEncoding() < bLoc.getRawEncoding();
522  }
523};
524
525class UninitValsDiagReporter : public UninitVariablesHandler {
526  Sema &S;
527  typedef SmallVector<UninitUse, 2> UsesVec;
528  typedef llvm::DenseMap<const VarDecl *, UsesVec*> UsesMap;
529  UsesMap *uses;
530
531public:
532  UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
533  ~UninitValsDiagReporter() {
534    flushDiagnostics();
535  }
536
537  void handleUseOfUninitVariable(const Expr *ex, const VarDecl *vd,
538                                 bool isAlwaysUninit) {
539    if (!uses)
540      uses = new UsesMap();
541
542    UsesVec *&vec = (*uses)[vd];
543    if (!vec)
544      vec = new UsesVec();
545
546    vec->push_back(std::make_pair(ex, isAlwaysUninit));
547  }
548
549  void flushDiagnostics() {
550    if (!uses)
551      return;
552
553    for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
554      const VarDecl *vd = i->first;
555      UsesVec *vec = i->second;
556
557      // Sort the uses by their SourceLocations.  While not strictly
558      // guaranteed to produce them in line/column order, this will provide
559      // a stable ordering.
560      std::sort(vec->begin(), vec->end(), SLocSort());
561
562      for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
563           ++vi) {
564        if (DiagnoseUninitializedUse(S, vd, vi->first,
565                                      /*isAlwaysUninit=*/vi->second))
566          // Skip further diagnostics for this variable. We try to warn only on
567          // the first point at which a variable is used uninitialized.
568          break;
569      }
570
571      delete vec;
572    }
573    delete uses;
574  }
575};
576}
577
578
579//===----------------------------------------------------------------------===//
580// -Wthread-safety
581//===----------------------------------------------------------------------===//
582namespace clang {
583namespace thread_safety {
584typedef std::pair<SourceLocation, PartialDiagnostic> DelayedDiag;
585typedef llvm::SmallVector<DelayedDiag, 4> DiagList;
586
587struct SortDiagBySourceLocation {
588  Sema &S;
589  SortDiagBySourceLocation(Sema &S) : S(S) {}
590
591  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
592    // Although this call will be slow, this is only called when outputting
593    // multiple warnings.
594    return S.getSourceManager().isBeforeInTranslationUnit(left.first,
595                                                          right.first);
596  }
597};
598
599class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
600  Sema &S;
601  DiagList Warnings;
602
603  // Helper functions
604  void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) {
605    PartialDiagnostic Warning = S.PDiag(DiagID) << LockName;
606    Warnings.push_back(DelayedDiag(Loc, Warning));
607  }
608
609 public:
610  ThreadSafetyReporter(Sema &S) : S(S) {}
611
612  /// \brief Emit all buffered diagnostics in order of sourcelocation.
613  /// We need to output diagnostics produced while iterating through
614  /// the lockset in deterministic order, so this function orders diagnostics
615  /// and outputs them.
616  void emitDiagnostics() {
617    SortDiagBySourceLocation SortDiagBySL(S);
618    sort(Warnings.begin(), Warnings.end(), SortDiagBySL);
619    for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
620         I != E; ++I)
621      S.Diag(I->first, I->second);
622  }
623
624  void handleInvalidLockExp(SourceLocation Loc) {
625    PartialDiagnostic Warning = S.PDiag(diag::warn_cannot_resolve_lock) << Loc;
626    Warnings.push_back(DelayedDiag(Loc, Warning));
627  }
628  void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) {
629    warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc);
630  }
631
632  void handleDoubleLock(Name LockName, SourceLocation Loc) {
633    warnLockMismatch(diag::warn_double_lock, LockName, Loc);
634  }
635
636  void handleMutexHeldEndOfScope(Name LockName, SourceLocation Loc){
637    warnLockMismatch(diag::warn_lock_at_end_of_scope, LockName, Loc);
638  }
639
640  void handleNoLockLoopEntry(Name LockName, SourceLocation Loc) {
641    warnLockMismatch(diag::warn_expecting_lock_held_on_loop, LockName, Loc);
642  }
643
644  void handleNoUnlock(Name LockName, llvm::StringRef FunName,
645                      SourceLocation Loc) {
646    PartialDiagnostic Warning =
647      S.PDiag(diag::warn_no_unlock) << LockName << FunName;
648    Warnings.push_back(DelayedDiag(Loc, Warning));
649  }
650
651  void handleExclusiveAndShared(Name LockName, SourceLocation Loc1,
652                                SourceLocation Loc2) {
653    PartialDiagnostic Warning =
654      S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName;
655    PartialDiagnostic Note =
656      S.PDiag(diag::note_lock_exclusive_and_shared) << LockName;
657    Warnings.push_back(DelayedDiag(Loc1, Warning));
658    Warnings.push_back(DelayedDiag(Loc2, Note));
659  }
660
661  void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
662                         AccessKind AK, SourceLocation Loc) {
663    assert((POK == POK_VarAccess || POK == POK_VarDereference)
664             && "Only works for variables");
665    unsigned DiagID = POK == POK_VarAccess?
666                        diag::warn_variable_requires_any_lock:
667                        diag::warn_var_deref_requires_any_lock;
668    PartialDiagnostic Warning = S.PDiag(DiagID)
669      << D->getName() << getLockKindFromAccessKind(AK);
670    Warnings.push_back(DelayedDiag(Loc, Warning));
671  }
672
673  void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK,
674                          Name LockName, LockKind LK, SourceLocation Loc) {
675    unsigned DiagID = 0;
676    switch (POK) {
677      case POK_VarAccess:
678        DiagID = diag::warn_variable_requires_lock;
679        break;
680      case POK_VarDereference:
681        DiagID = diag::warn_var_deref_requires_lock;
682        break;
683      case POK_FunctionCall:
684        DiagID = diag::warn_fun_requires_lock;
685        break;
686    }
687    PartialDiagnostic Warning = S.PDiag(DiagID)
688      << D->getName() << LockName << LK;
689    Warnings.push_back(DelayedDiag(Loc, Warning));
690  }
691
692  void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) {
693    PartialDiagnostic Warning =
694      S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName;
695    Warnings.push_back(DelayedDiag(Loc, Warning));
696  }
697};
698}
699}
700
701//===----------------------------------------------------------------------===//
702// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
703//  warnings on a function, method, or block.
704//===----------------------------------------------------------------------===//
705
706clang::sema::AnalysisBasedWarnings::Policy::Policy() {
707  enableCheckFallThrough = 1;
708  enableCheckUnreachable = 0;
709  enableThreadSafetyAnalysis = 0;
710}
711
712clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
713  : S(s),
714    NumFunctionsAnalyzed(0),
715    NumFunctionsWithBadCFGs(0),
716    NumCFGBlocks(0),
717    MaxCFGBlocksPerFunction(0),
718    NumUninitAnalysisFunctions(0),
719    NumUninitAnalysisVariables(0),
720    MaxUninitAnalysisVariablesPerFunction(0),
721    NumUninitAnalysisBlockVisits(0),
722    MaxUninitAnalysisBlockVisitsPerFunction(0) {
723  Diagnostic &D = S.getDiagnostics();
724  DefaultPolicy.enableCheckUnreachable = (unsigned)
725    (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
726        Diagnostic::Ignored);
727  DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
728    (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
729     Diagnostic::Ignored);
730
731}
732
733static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
734  for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
735       i = fscope->PossiblyUnreachableDiags.begin(),
736       e = fscope->PossiblyUnreachableDiags.end();
737       i != e; ++i) {
738    const sema::PossiblyUnreachableDiag &D = *i;
739    S.Diag(D.Loc, D.PD);
740  }
741}
742
743void clang::sema::
744AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
745                                     sema::FunctionScopeInfo *fscope,
746                                     const Decl *D, const BlockExpr *blkExpr) {
747
748  // We avoid doing analysis-based warnings when there are errors for
749  // two reasons:
750  // (1) The CFGs often can't be constructed (if the body is invalid), so
751  //     don't bother trying.
752  // (2) The code already has problems; running the analysis just takes more
753  //     time.
754  Diagnostic &Diags = S.getDiagnostics();
755
756  // Do not do any analysis for declarations in system headers if we are
757  // going to just ignore them.
758  if (Diags.getSuppressSystemWarnings() &&
759      S.SourceMgr.isInSystemHeader(D->getLocation()))
760    return;
761
762  // For code in dependent contexts, we'll do this at instantiation time.
763  if (cast<DeclContext>(D)->isDependentContext())
764    return;
765
766  if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
767    // Flush out any possibly unreachable diagnostics.
768    flushDiagnostics(S, fscope);
769    return;
770  }
771
772  const Stmt *Body = D->getBody();
773  assert(Body);
774
775  AnalysisContext AC(D, 0);
776
777  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
778  // explosion for destrutors that can result and the compile time hit.
779  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
780  AC.getCFGBuildOptions().AddEHEdges = false;
781  AC.getCFGBuildOptions().AddInitializers = true;
782  AC.getCFGBuildOptions().AddImplicitDtors = true;
783
784  // Force that certain expressions appear as CFGElements in the CFG.  This
785  // is used to speed up various analyses.
786  // FIXME: This isn't the right factoring.  This is here for initial
787  // prototyping, but we need a way for analyses to say what expressions they
788  // expect to always be CFGElements and then fill in the BuildOptions
789  // appropriately.  This is essentially a layering violation.
790  if (P.enableCheckUnreachable) {
791    // Unreachable code analysis requires a linearized CFG.
792    AC.getCFGBuildOptions().setAllAlwaysAdd();
793  }
794  else {
795    AC.getCFGBuildOptions()
796      .setAlwaysAdd(Stmt::BinaryOperatorClass)
797      .setAlwaysAdd(Stmt::BlockExprClass)
798      .setAlwaysAdd(Stmt::CStyleCastExprClass)
799      .setAlwaysAdd(Stmt::DeclRefExprClass)
800      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
801      .setAlwaysAdd(Stmt::UnaryOperatorClass);
802  }
803
804  // Construct the analysis context with the specified CFG build options.
805
806  // Emit delayed diagnostics.
807  if (!fscope->PossiblyUnreachableDiags.empty()) {
808    bool analyzed = false;
809
810    // Register the expressions with the CFGBuilder.
811    for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
812         i = fscope->PossiblyUnreachableDiags.begin(),
813         e = fscope->PossiblyUnreachableDiags.end();
814         i != e; ++i) {
815      if (const Stmt *stmt = i->stmt)
816        AC.registerForcedBlockExpression(stmt);
817    }
818
819    if (AC.getCFG()) {
820      analyzed = true;
821      for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
822            i = fscope->PossiblyUnreachableDiags.begin(),
823            e = fscope->PossiblyUnreachableDiags.end();
824            i != e; ++i)
825      {
826        const sema::PossiblyUnreachableDiag &D = *i;
827        bool processed = false;
828        if (const Stmt *stmt = i->stmt) {
829          const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
830          assert(block);
831          if (CFGReverseBlockReachabilityAnalysis *cra = AC.getCFGReachablityAnalysis()) {
832            // Can this block be reached from the entrance?
833            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
834              S.Diag(D.Loc, D.PD);
835            processed = true;
836          }
837        }
838        if (!processed) {
839          // Emit the warning anyway if we cannot map to a basic block.
840          S.Diag(D.Loc, D.PD);
841        }
842      }
843    }
844
845    if (!analyzed)
846      flushDiagnostics(S, fscope);
847  }
848
849
850  // Warning: check missing 'return'
851  if (P.enableCheckFallThrough) {
852    const CheckFallThroughDiagnostics &CD =
853      (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
854                         : CheckFallThroughDiagnostics::MakeForFunction(D));
855    CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
856  }
857
858  // Warning: check for unreachable code
859  if (P.enableCheckUnreachable)
860    CheckUnreachable(S, AC);
861
862  // Check for thread safety violations
863  if (P.enableThreadSafetyAnalysis) {
864    thread_safety::ThreadSafetyReporter Reporter(S);
865    thread_safety::runThreadSafetyAnalysis(AC, Reporter);
866    Reporter.emitDiagnostics();
867  }
868
869  if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
870      != Diagnostic::Ignored ||
871      Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
872      != Diagnostic::Ignored) {
873    if (CFG *cfg = AC.getCFG()) {
874      UninitValsDiagReporter reporter(S);
875      UninitVariablesAnalysisStats stats;
876      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
877      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
878                                        reporter, stats);
879
880      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
881        ++NumUninitAnalysisFunctions;
882        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
883        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
884        MaxUninitAnalysisVariablesPerFunction =
885            std::max(MaxUninitAnalysisVariablesPerFunction,
886                     stats.NumVariablesAnalyzed);
887        MaxUninitAnalysisBlockVisitsPerFunction =
888            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
889                     stats.NumBlockVisits);
890      }
891    }
892  }
893
894  // Collect statistics about the CFG if it was built.
895  if (S.CollectStats && AC.isCFGBuilt()) {
896    ++NumFunctionsAnalyzed;
897    if (CFG *cfg = AC.getCFG()) {
898      // If we successfully built a CFG for this context, record some more
899      // detail information about it.
900      NumCFGBlocks += cfg->getNumBlockIDs();
901      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
902                                         cfg->getNumBlockIDs());
903    } else {
904      ++NumFunctionsWithBadCFGs;
905    }
906  }
907}
908
909void clang::sema::AnalysisBasedWarnings::PrintStats() const {
910  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
911
912  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
913  unsigned AvgCFGBlocksPerFunction =
914      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
915  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
916               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
917               << "  " << NumCFGBlocks << " CFG blocks built.\n"
918               << "  " << AvgCFGBlocksPerFunction
919               << " average CFG blocks per function.\n"
920               << "  " << MaxCFGBlocksPerFunction
921               << " max CFG blocks per function.\n";
922
923  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
924      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
925  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
926      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
927  llvm::errs() << NumUninitAnalysisFunctions
928               << " functions analyzed for uninitialiazed variables\n"
929               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
930               << "  " << AvgUninitVariablesPerFunction
931               << " average variables per function.\n"
932               << "  " << MaxUninitAnalysisVariablesPerFunction
933               << " max variables per function.\n"
934               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
935               << "  " << AvgUninitBlockVisitsPerFunction
936               << " average block visits per function.\n"
937               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
938               << " max block visits per function.\n";
939}
940