1//===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ access control semantics.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DependentDiagnostic.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/Sema/DelayedDiagnostic.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Lookup.h"
25
26using namespace clang;
27using namespace sema;
28
29/// A copy of Sema's enum without AR_delayed.
30enum AccessResult {
31  AR_accessible,
32  AR_inaccessible,
33  AR_dependent
34};
35
36/// SetMemberAccessSpecifier - Set the access specifier of a member.
37/// Returns true on error (when the previous member decl access specifier
38/// is different from the new member decl access specifier).
39bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                    NamedDecl *PrevMemberDecl,
41                                    AccessSpecifier LexicalAS) {
42  if (!PrevMemberDecl) {
43    // Use the lexical access specifier.
44    MemberDecl->setAccess(LexicalAS);
45    return false;
46  }
47
48  // C++ [class.access.spec]p3: When a member is redeclared its access
49  // specifier must be same as its initial declaration.
50  if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51    Diag(MemberDecl->getLocation(),
52         diag::err_class_redeclared_with_different_access)
53      << MemberDecl << LexicalAS;
54    Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55      << PrevMemberDecl << PrevMemberDecl->getAccess();
56
57    MemberDecl->setAccess(LexicalAS);
58    return true;
59  }
60
61  MemberDecl->setAccess(PrevMemberDecl->getAccess());
62  return false;
63}
64
65static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66  DeclContext *DC = D->getDeclContext();
67
68  // This can only happen at top: enum decls only "publish" their
69  // immediate members.
70  if (isa<EnumDecl>(DC))
71    DC = cast<EnumDecl>(DC)->getDeclContext();
72
73  CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74  while (DeclaringClass->isAnonymousStructOrUnion())
75    DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76  return DeclaringClass;
77}
78
79namespace {
80struct EffectiveContext {
81  EffectiveContext() : Inner(nullptr), Dependent(false) {}
82
83  explicit EffectiveContext(DeclContext *DC)
84    : Inner(DC),
85      Dependent(DC->isDependentContext()) {
86
87    // C++11 [class.access.nest]p1:
88    //   A nested class is a member and as such has the same access
89    //   rights as any other member.
90    // C++11 [class.access]p2:
91    //   A member of a class can also access all the names to which
92    //   the class has access.  A local class of a member function
93    //   may access the same names that the member function itself
94    //   may access.
95    // This almost implies that the privileges of nesting are transitive.
96    // Technically it says nothing about the local classes of non-member
97    // functions (which can gain privileges through friendship), but we
98    // take that as an oversight.
99    while (true) {
100      // We want to add canonical declarations to the EC lists for
101      // simplicity of checking, but we need to walk up through the
102      // actual current DC chain.  Otherwise, something like a local
103      // extern or friend which happens to be the canonical
104      // declaration will really mess us up.
105
106      if (isa<CXXRecordDecl>(DC)) {
107        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
108        Records.push_back(Record->getCanonicalDecl());
109        DC = Record->getDeclContext();
110      } else if (isa<FunctionDecl>(DC)) {
111        FunctionDecl *Function = cast<FunctionDecl>(DC);
112        Functions.push_back(Function->getCanonicalDecl());
113        if (Function->getFriendObjectKind())
114          DC = Function->getLexicalDeclContext();
115        else
116          DC = Function->getDeclContext();
117      } else if (DC->isFileContext()) {
118        break;
119      } else {
120        DC = DC->getParent();
121      }
122    }
123  }
124
125  bool isDependent() const { return Dependent; }
126
127  bool includesClass(const CXXRecordDecl *R) const {
128    R = R->getCanonicalDecl();
129    return std::find(Records.begin(), Records.end(), R)
130             != Records.end();
131  }
132
133  /// Retrieves the innermost "useful" context.  Can be null if we're
134  /// doing access-control without privileges.
135  DeclContext *getInnerContext() const {
136    return Inner;
137  }
138
139  typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
140
141  DeclContext *Inner;
142  SmallVector<FunctionDecl*, 4> Functions;
143  SmallVector<CXXRecordDecl*, 4> Records;
144  bool Dependent;
145};
146
147/// Like sema::AccessedEntity, but kindly lets us scribble all over
148/// it.
149struct AccessTarget : public AccessedEntity {
150  AccessTarget(const AccessedEntity &Entity)
151    : AccessedEntity(Entity) {
152    initialize();
153  }
154
155  AccessTarget(ASTContext &Context,
156               MemberNonce _,
157               CXXRecordDecl *NamingClass,
158               DeclAccessPair FoundDecl,
159               QualType BaseObjectType)
160    : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
161                     FoundDecl, BaseObjectType) {
162    initialize();
163  }
164
165  AccessTarget(ASTContext &Context,
166               BaseNonce _,
167               CXXRecordDecl *BaseClass,
168               CXXRecordDecl *DerivedClass,
169               AccessSpecifier Access)
170    : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
171                     Access) {
172    initialize();
173  }
174
175  bool isInstanceMember() const {
176    return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
177  }
178
179  bool hasInstanceContext() const {
180    return HasInstanceContext;
181  }
182
183  class SavedInstanceContext {
184  public:
185    ~SavedInstanceContext() {
186      Target.HasInstanceContext = Has;
187    }
188
189  private:
190    friend struct AccessTarget;
191    explicit SavedInstanceContext(AccessTarget &Target)
192      : Target(Target), Has(Target.HasInstanceContext) {}
193    AccessTarget &Target;
194    bool Has;
195  };
196
197  SavedInstanceContext saveInstanceContext() {
198    return SavedInstanceContext(*this);
199  }
200
201  void suppressInstanceContext() {
202    HasInstanceContext = false;
203  }
204
205  const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
206    assert(HasInstanceContext);
207    if (CalculatedInstanceContext)
208      return InstanceContext;
209
210    CalculatedInstanceContext = true;
211    DeclContext *IC = S.computeDeclContext(getBaseObjectType());
212    InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
213                          : nullptr);
214    return InstanceContext;
215  }
216
217  const CXXRecordDecl *getDeclaringClass() const {
218    return DeclaringClass;
219  }
220
221  /// The "effective" naming class is the canonical non-anonymous
222  /// class containing the actual naming class.
223  const CXXRecordDecl *getEffectiveNamingClass() const {
224    const CXXRecordDecl *namingClass = getNamingClass();
225    while (namingClass->isAnonymousStructOrUnion())
226      namingClass = cast<CXXRecordDecl>(namingClass->getParent());
227    return namingClass->getCanonicalDecl();
228  }
229
230private:
231  void initialize() {
232    HasInstanceContext = (isMemberAccess() &&
233                          !getBaseObjectType().isNull() &&
234                          getTargetDecl()->isCXXInstanceMember());
235    CalculatedInstanceContext = false;
236    InstanceContext = nullptr;
237
238    if (isMemberAccess())
239      DeclaringClass = FindDeclaringClass(getTargetDecl());
240    else
241      DeclaringClass = getBaseClass();
242    DeclaringClass = DeclaringClass->getCanonicalDecl();
243  }
244
245  bool HasInstanceContext : 1;
246  mutable bool CalculatedInstanceContext : 1;
247  mutable const CXXRecordDecl *InstanceContext;
248  const CXXRecordDecl *DeclaringClass;
249};
250
251}
252
253/// Checks whether one class might instantiate to the other.
254static bool MightInstantiateTo(const CXXRecordDecl *From,
255                               const CXXRecordDecl *To) {
256  // Declaration names are always preserved by instantiation.
257  if (From->getDeclName() != To->getDeclName())
258    return false;
259
260  const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
261  const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
262  if (FromDC == ToDC) return true;
263  if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
264
265  // Be conservative.
266  return true;
267}
268
269/// Checks whether one class is derived from another, inclusively.
270/// Properly indicates when it couldn't be determined due to
271/// dependence.
272///
273/// This should probably be donated to AST or at least Sema.
274static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
275                                           const CXXRecordDecl *Target) {
276  assert(Derived->getCanonicalDecl() == Derived);
277  assert(Target->getCanonicalDecl() == Target);
278
279  if (Derived == Target) return AR_accessible;
280
281  bool CheckDependent = Derived->isDependentContext();
282  if (CheckDependent && MightInstantiateTo(Derived, Target))
283    return AR_dependent;
284
285  AccessResult OnFailure = AR_inaccessible;
286  SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
287
288  while (true) {
289    if (Derived->isDependentContext() && !Derived->hasDefinition())
290      return AR_dependent;
291
292    for (const auto &I : Derived->bases()) {
293      const CXXRecordDecl *RD;
294
295      QualType T = I.getType();
296      if (const RecordType *RT = T->getAs<RecordType>()) {
297        RD = cast<CXXRecordDecl>(RT->getDecl());
298      } else if (const InjectedClassNameType *IT
299                   = T->getAs<InjectedClassNameType>()) {
300        RD = IT->getDecl();
301      } else {
302        assert(T->isDependentType() && "non-dependent base wasn't a record?");
303        OnFailure = AR_dependent;
304        continue;
305      }
306
307      RD = RD->getCanonicalDecl();
308      if (RD == Target) return AR_accessible;
309      if (CheckDependent && MightInstantiateTo(RD, Target))
310        OnFailure = AR_dependent;
311
312      Queue.push_back(RD);
313    }
314
315    if (Queue.empty()) break;
316
317    Derived = Queue.pop_back_val();
318  }
319
320  return OnFailure;
321}
322
323
324static bool MightInstantiateTo(Sema &S, DeclContext *Context,
325                               DeclContext *Friend) {
326  if (Friend == Context)
327    return true;
328
329  assert(!Friend->isDependentContext() &&
330         "can't handle friends with dependent contexts here");
331
332  if (!Context->isDependentContext())
333    return false;
334
335  if (Friend->isFileContext())
336    return false;
337
338  // TODO: this is very conservative
339  return true;
340}
341
342// Asks whether the type in 'context' can ever instantiate to the type
343// in 'friend'.
344static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
345  if (Friend == Context)
346    return true;
347
348  if (!Friend->isDependentType() && !Context->isDependentType())
349    return false;
350
351  // TODO: this is very conservative.
352  return true;
353}
354
355static bool MightInstantiateTo(Sema &S,
356                               FunctionDecl *Context,
357                               FunctionDecl *Friend) {
358  if (Context->getDeclName() != Friend->getDeclName())
359    return false;
360
361  if (!MightInstantiateTo(S,
362                          Context->getDeclContext(),
363                          Friend->getDeclContext()))
364    return false;
365
366  CanQual<FunctionProtoType> FriendTy
367    = S.Context.getCanonicalType(Friend->getType())
368         ->getAs<FunctionProtoType>();
369  CanQual<FunctionProtoType> ContextTy
370    = S.Context.getCanonicalType(Context->getType())
371         ->getAs<FunctionProtoType>();
372
373  // There isn't any way that I know of to add qualifiers
374  // during instantiation.
375  if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
376    return false;
377
378  if (FriendTy->getNumParams() != ContextTy->getNumParams())
379    return false;
380
381  if (!MightInstantiateTo(S, ContextTy->getReturnType(),
382                          FriendTy->getReturnType()))
383    return false;
384
385  for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
386    if (!MightInstantiateTo(S, ContextTy->getParamType(I),
387                            FriendTy->getParamType(I)))
388      return false;
389
390  return true;
391}
392
393static bool MightInstantiateTo(Sema &S,
394                               FunctionTemplateDecl *Context,
395                               FunctionTemplateDecl *Friend) {
396  return MightInstantiateTo(S,
397                            Context->getTemplatedDecl(),
398                            Friend->getTemplatedDecl());
399}
400
401static AccessResult MatchesFriend(Sema &S,
402                                  const EffectiveContext &EC,
403                                  const CXXRecordDecl *Friend) {
404  if (EC.includesClass(Friend))
405    return AR_accessible;
406
407  if (EC.isDependent()) {
408    CanQualType FriendTy
409      = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
410
411    for (EffectiveContext::record_iterator
412           I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
413      CanQualType ContextTy
414        = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
415      if (MightInstantiateTo(S, ContextTy, FriendTy))
416        return AR_dependent;
417    }
418  }
419
420  return AR_inaccessible;
421}
422
423static AccessResult MatchesFriend(Sema &S,
424                                  const EffectiveContext &EC,
425                                  CanQualType Friend) {
426  if (const RecordType *RT = Friend->getAs<RecordType>())
427    return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
428
429  // TODO: we can do better than this
430  if (Friend->isDependentType())
431    return AR_dependent;
432
433  return AR_inaccessible;
434}
435
436/// Determines whether the given friend class template matches
437/// anything in the effective context.
438static AccessResult MatchesFriend(Sema &S,
439                                  const EffectiveContext &EC,
440                                  ClassTemplateDecl *Friend) {
441  AccessResult OnFailure = AR_inaccessible;
442
443  // Check whether the friend is the template of a class in the
444  // context chain.
445  for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
446         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
447    CXXRecordDecl *Record = *I;
448
449    // Figure out whether the current class has a template:
450    ClassTemplateDecl *CTD;
451
452    // A specialization of the template...
453    if (isa<ClassTemplateSpecializationDecl>(Record)) {
454      CTD = cast<ClassTemplateSpecializationDecl>(Record)
455        ->getSpecializedTemplate();
456
457    // ... or the template pattern itself.
458    } else {
459      CTD = Record->getDescribedClassTemplate();
460      if (!CTD) continue;
461    }
462
463    // It's a match.
464    if (Friend == CTD->getCanonicalDecl())
465      return AR_accessible;
466
467    // If the context isn't dependent, it can't be a dependent match.
468    if (!EC.isDependent())
469      continue;
470
471    // If the template names don't match, it can't be a dependent
472    // match.
473    if (CTD->getDeclName() != Friend->getDeclName())
474      continue;
475
476    // If the class's context can't instantiate to the friend's
477    // context, it can't be a dependent match.
478    if (!MightInstantiateTo(S, CTD->getDeclContext(),
479                            Friend->getDeclContext()))
480      continue;
481
482    // Otherwise, it's a dependent match.
483    OnFailure = AR_dependent;
484  }
485
486  return OnFailure;
487}
488
489/// Determines whether the given friend function matches anything in
490/// the effective context.
491static AccessResult MatchesFriend(Sema &S,
492                                  const EffectiveContext &EC,
493                                  FunctionDecl *Friend) {
494  AccessResult OnFailure = AR_inaccessible;
495
496  for (SmallVectorImpl<FunctionDecl*>::const_iterator
497         I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
498    if (Friend == *I)
499      return AR_accessible;
500
501    if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
502      OnFailure = AR_dependent;
503  }
504
505  return OnFailure;
506}
507
508/// Determines whether the given friend function template matches
509/// anything in the effective context.
510static AccessResult MatchesFriend(Sema &S,
511                                  const EffectiveContext &EC,
512                                  FunctionTemplateDecl *Friend) {
513  if (EC.Functions.empty()) return AR_inaccessible;
514
515  AccessResult OnFailure = AR_inaccessible;
516
517  for (SmallVectorImpl<FunctionDecl*>::const_iterator
518         I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
519
520    FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
521    if (!FTD)
522      FTD = (*I)->getDescribedFunctionTemplate();
523    if (!FTD)
524      continue;
525
526    FTD = FTD->getCanonicalDecl();
527
528    if (Friend == FTD)
529      return AR_accessible;
530
531    if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
532      OnFailure = AR_dependent;
533  }
534
535  return OnFailure;
536}
537
538/// Determines whether the given friend declaration matches anything
539/// in the effective context.
540static AccessResult MatchesFriend(Sema &S,
541                                  const EffectiveContext &EC,
542                                  FriendDecl *FriendD) {
543  // Whitelist accesses if there's an invalid or unsupported friend
544  // declaration.
545  if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
546    return AR_accessible;
547
548  if (TypeSourceInfo *T = FriendD->getFriendType())
549    return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
550
551  NamedDecl *Friend
552    = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
553
554  // FIXME: declarations with dependent or templated scope.
555
556  if (isa<ClassTemplateDecl>(Friend))
557    return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
558
559  if (isa<FunctionTemplateDecl>(Friend))
560    return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
561
562  if (isa<CXXRecordDecl>(Friend))
563    return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
564
565  assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
566  return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
567}
568
569static AccessResult GetFriendKind(Sema &S,
570                                  const EffectiveContext &EC,
571                                  const CXXRecordDecl *Class) {
572  AccessResult OnFailure = AR_inaccessible;
573
574  // Okay, check friends.
575  for (auto *Friend : Class->friends()) {
576    switch (MatchesFriend(S, EC, Friend)) {
577    case AR_accessible:
578      return AR_accessible;
579
580    case AR_inaccessible:
581      continue;
582
583    case AR_dependent:
584      OnFailure = AR_dependent;
585      break;
586    }
587  }
588
589  // That's it, give up.
590  return OnFailure;
591}
592
593namespace {
594
595/// A helper class for checking for a friend which will grant access
596/// to a protected instance member.
597struct ProtectedFriendContext {
598  Sema &S;
599  const EffectiveContext &EC;
600  const CXXRecordDecl *NamingClass;
601  bool CheckDependent;
602  bool EverDependent;
603
604  /// The path down to the current base class.
605  SmallVector<const CXXRecordDecl*, 20> CurPath;
606
607  ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
608                         const CXXRecordDecl *InstanceContext,
609                         const CXXRecordDecl *NamingClass)
610    : S(S), EC(EC), NamingClass(NamingClass),
611      CheckDependent(InstanceContext->isDependentContext() ||
612                     NamingClass->isDependentContext()),
613      EverDependent(false) {}
614
615  /// Check classes in the current path for friendship, starting at
616  /// the given index.
617  bool checkFriendshipAlongPath(unsigned I) {
618    assert(I < CurPath.size());
619    for (unsigned E = CurPath.size(); I != E; ++I) {
620      switch (GetFriendKind(S, EC, CurPath[I])) {
621      case AR_accessible:   return true;
622      case AR_inaccessible: continue;
623      case AR_dependent:    EverDependent = true; continue;
624      }
625    }
626    return false;
627  }
628
629  /// Perform a search starting at the given class.
630  ///
631  /// PrivateDepth is the index of the last (least derived) class
632  /// along the current path such that a notional public member of
633  /// the final class in the path would have access in that class.
634  bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
635    // If we ever reach the naming class, check the current path for
636    // friendship.  We can also stop recursing because we obviously
637    // won't find the naming class there again.
638    if (Cur == NamingClass)
639      return checkFriendshipAlongPath(PrivateDepth);
640
641    if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
642      EverDependent = true;
643
644    // Recurse into the base classes.
645    for (const auto &I : Cur->bases()) {
646      // If this is private inheritance, then a public member of the
647      // base will not have any access in classes derived from Cur.
648      unsigned BasePrivateDepth = PrivateDepth;
649      if (I.getAccessSpecifier() == AS_private)
650        BasePrivateDepth = CurPath.size() - 1;
651
652      const CXXRecordDecl *RD;
653
654      QualType T = I.getType();
655      if (const RecordType *RT = T->getAs<RecordType>()) {
656        RD = cast<CXXRecordDecl>(RT->getDecl());
657      } else if (const InjectedClassNameType *IT
658                   = T->getAs<InjectedClassNameType>()) {
659        RD = IT->getDecl();
660      } else {
661        assert(T->isDependentType() && "non-dependent base wasn't a record?");
662        EverDependent = true;
663        continue;
664      }
665
666      // Recurse.  We don't need to clean up if this returns true.
667      CurPath.push_back(RD);
668      if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
669        return true;
670      CurPath.pop_back();
671    }
672
673    return false;
674  }
675
676  bool findFriendship(const CXXRecordDecl *Cur) {
677    assert(CurPath.empty());
678    CurPath.push_back(Cur);
679    return findFriendship(Cur, 0);
680  }
681};
682}
683
684/// Search for a class P that EC is a friend of, under the constraint
685///   InstanceContext <= P
686/// if InstanceContext exists, or else
687///   NamingClass <= P
688/// and with the additional restriction that a protected member of
689/// NamingClass would have some natural access in P, which implicitly
690/// imposes the constraint that P <= NamingClass.
691///
692/// This isn't quite the condition laid out in the standard.
693/// Instead of saying that a notional protected member of NamingClass
694/// would have to have some natural access in P, it says the actual
695/// target has to have some natural access in P, which opens up the
696/// possibility that the target (which is not necessarily a member
697/// of NamingClass) might be more accessible along some path not
698/// passing through it.  That's really a bad idea, though, because it
699/// introduces two problems:
700///   - Most importantly, it breaks encapsulation because you can
701///     access a forbidden base class's members by directly subclassing
702///     it elsewhere.
703///   - It also makes access substantially harder to compute because it
704///     breaks the hill-climbing algorithm: knowing that the target is
705///     accessible in some base class would no longer let you change
706///     the question solely to whether the base class is accessible,
707///     because the original target might have been more accessible
708///     because of crazy subclassing.
709/// So we don't implement that.
710static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
711                                           const CXXRecordDecl *InstanceContext,
712                                           const CXXRecordDecl *NamingClass) {
713  assert(InstanceContext == nullptr ||
714         InstanceContext->getCanonicalDecl() == InstanceContext);
715  assert(NamingClass->getCanonicalDecl() == NamingClass);
716
717  // If we don't have an instance context, our constraints give us
718  // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
719  // This is just the usual friendship check.
720  if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
721
722  ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
723  if (PRC.findFriendship(InstanceContext)) return AR_accessible;
724  if (PRC.EverDependent) return AR_dependent;
725  return AR_inaccessible;
726}
727
728static AccessResult HasAccess(Sema &S,
729                              const EffectiveContext &EC,
730                              const CXXRecordDecl *NamingClass,
731                              AccessSpecifier Access,
732                              const AccessTarget &Target) {
733  assert(NamingClass->getCanonicalDecl() == NamingClass &&
734         "declaration should be canonicalized before being passed here");
735
736  if (Access == AS_public) return AR_accessible;
737  assert(Access == AS_private || Access == AS_protected);
738
739  AccessResult OnFailure = AR_inaccessible;
740
741  for (EffectiveContext::record_iterator
742         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
743    // All the declarations in EC have been canonicalized, so pointer
744    // equality from this point on will work fine.
745    const CXXRecordDecl *ECRecord = *I;
746
747    // [B2] and [M2]
748    if (Access == AS_private) {
749      if (ECRecord == NamingClass)
750        return AR_accessible;
751
752      if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
753        OnFailure = AR_dependent;
754
755    // [B3] and [M3]
756    } else {
757      assert(Access == AS_protected);
758      switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
759      case AR_accessible: break;
760      case AR_inaccessible: continue;
761      case AR_dependent: OnFailure = AR_dependent; continue;
762      }
763
764      // C++ [class.protected]p1:
765      //   An additional access check beyond those described earlier in
766      //   [class.access] is applied when a non-static data member or
767      //   non-static member function is a protected member of its naming
768      //   class.  As described earlier, access to a protected member is
769      //   granted because the reference occurs in a friend or member of
770      //   some class C.  If the access is to form a pointer to member,
771      //   the nested-name-specifier shall name C or a class derived from
772      //   C. All other accesses involve a (possibly implicit) object
773      //   expression. In this case, the class of the object expression
774      //   shall be C or a class derived from C.
775      //
776      // We interpret this as a restriction on [M3].
777
778      // In this part of the code, 'C' is just our context class ECRecord.
779
780      // These rules are different if we don't have an instance context.
781      if (!Target.hasInstanceContext()) {
782        // If it's not an instance member, these restrictions don't apply.
783        if (!Target.isInstanceMember()) return AR_accessible;
784
785        // If it's an instance member, use the pointer-to-member rule
786        // that the naming class has to be derived from the effective
787        // context.
788
789        // Emulate a MSVC bug where the creation of pointer-to-member
790        // to protected member of base class is allowed but only from
791        // static member functions.
792        if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
793          if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
794            if (MD->isStatic()) return AR_accessible;
795
796        // Despite the standard's confident wording, there is a case
797        // where you can have an instance member that's neither in a
798        // pointer-to-member expression nor in a member access:  when
799        // it names a field in an unevaluated context that can't be an
800        // implicit member.  Pending clarification, we just apply the
801        // same naming-class restriction here.
802        //   FIXME: we're probably not correctly adding the
803        //   protected-member restriction when we retroactively convert
804        //   an expression to being evaluated.
805
806        // We know that ECRecord derives from NamingClass.  The
807        // restriction says to check whether NamingClass derives from
808        // ECRecord, but that's not really necessary: two distinct
809        // classes can't be recursively derived from each other.  So
810        // along this path, we just need to check whether the classes
811        // are equal.
812        if (NamingClass == ECRecord) return AR_accessible;
813
814        // Otherwise, this context class tells us nothing;  on to the next.
815        continue;
816      }
817
818      assert(Target.isInstanceMember());
819
820      const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
821      if (!InstanceContext) {
822        OnFailure = AR_dependent;
823        continue;
824      }
825
826      switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
827      case AR_accessible: return AR_accessible;
828      case AR_inaccessible: continue;
829      case AR_dependent: OnFailure = AR_dependent; continue;
830      }
831    }
832  }
833
834  // [M3] and [B3] say that, if the target is protected in N, we grant
835  // access if the access occurs in a friend or member of some class P
836  // that's a subclass of N and where the target has some natural
837  // access in P.  The 'member' aspect is easy to handle because P
838  // would necessarily be one of the effective-context records, and we
839  // address that above.  The 'friend' aspect is completely ridiculous
840  // to implement because there are no restrictions at all on P
841  // *unless* the [class.protected] restriction applies.  If it does,
842  // however, we should ignore whether the naming class is a friend,
843  // and instead rely on whether any potential P is a friend.
844  if (Access == AS_protected && Target.isInstanceMember()) {
845    // Compute the instance context if possible.
846    const CXXRecordDecl *InstanceContext = nullptr;
847    if (Target.hasInstanceContext()) {
848      InstanceContext = Target.resolveInstanceContext(S);
849      if (!InstanceContext) return AR_dependent;
850    }
851
852    switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
853    case AR_accessible: return AR_accessible;
854    case AR_inaccessible: return OnFailure;
855    case AR_dependent: return AR_dependent;
856    }
857    llvm_unreachable("impossible friendship kind");
858  }
859
860  switch (GetFriendKind(S, EC, NamingClass)) {
861  case AR_accessible: return AR_accessible;
862  case AR_inaccessible: return OnFailure;
863  case AR_dependent: return AR_dependent;
864  }
865
866  // Silence bogus warnings
867  llvm_unreachable("impossible friendship kind");
868}
869
870/// Finds the best path from the naming class to the declaring class,
871/// taking friend declarations into account.
872///
873/// C++0x [class.access.base]p5:
874///   A member m is accessible at the point R when named in class N if
875///   [M1] m as a member of N is public, or
876///   [M2] m as a member of N is private, and R occurs in a member or
877///        friend of class N, or
878///   [M3] m as a member of N is protected, and R occurs in a member or
879///        friend of class N, or in a member or friend of a class P
880///        derived from N, where m as a member of P is public, private,
881///        or protected, or
882///   [M4] there exists a base class B of N that is accessible at R, and
883///        m is accessible at R when named in class B.
884///
885/// C++0x [class.access.base]p4:
886///   A base class B of N is accessible at R, if
887///   [B1] an invented public member of B would be a public member of N, or
888///   [B2] R occurs in a member or friend of class N, and an invented public
889///        member of B would be a private or protected member of N, or
890///   [B3] R occurs in a member or friend of a class P derived from N, and an
891///        invented public member of B would be a private or protected member
892///        of P, or
893///   [B4] there exists a class S such that B is a base class of S accessible
894///        at R and S is a base class of N accessible at R.
895///
896/// Along a single inheritance path we can restate both of these
897/// iteratively:
898///
899/// First, we note that M1-4 are equivalent to B1-4 if the member is
900/// treated as a notional base of its declaring class with inheritance
901/// access equivalent to the member's access.  Therefore we need only
902/// ask whether a class B is accessible from a class N in context R.
903///
904/// Let B_1 .. B_n be the inheritance path in question (i.e. where
905/// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
906/// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
907/// closest accessible base in the path:
908///   Access(a, b) = (* access on the base specifier from a to b *)
909///   Merge(a, forbidden) = forbidden
910///   Merge(a, private) = forbidden
911///   Merge(a, b) = min(a,b)
912///   Accessible(c, forbidden) = false
913///   Accessible(c, private) = (R is c) || IsFriend(c, R)
914///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
915///   Accessible(c, public) = true
916///   ACAB(n) = public
917///   ACAB(i) =
918///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
919///     if Accessible(B_i, AccessToBase) then public else AccessToBase
920///
921/// B is an accessible base of N at R iff ACAB(1) = public.
922///
923/// \param FinalAccess the access of the "final step", or AS_public if
924///   there is no final step.
925/// \return null if friendship is dependent
926static CXXBasePath *FindBestPath(Sema &S,
927                                 const EffectiveContext &EC,
928                                 AccessTarget &Target,
929                                 AccessSpecifier FinalAccess,
930                                 CXXBasePaths &Paths) {
931  // Derive the paths to the desired base.
932  const CXXRecordDecl *Derived = Target.getNamingClass();
933  const CXXRecordDecl *Base = Target.getDeclaringClass();
934
935  // FIXME: fail correctly when there are dependent paths.
936  bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
937                                          Paths);
938  assert(isDerived && "derived class not actually derived from base");
939  (void) isDerived;
940
941  CXXBasePath *BestPath = nullptr;
942
943  assert(FinalAccess != AS_none && "forbidden access after declaring class");
944
945  bool AnyDependent = false;
946
947  // Derive the friend-modified access along each path.
948  for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
949         PI != PE; ++PI) {
950    AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
951
952    // Walk through the path backwards.
953    AccessSpecifier PathAccess = FinalAccess;
954    CXXBasePath::iterator I = PI->end(), E = PI->begin();
955    while (I != E) {
956      --I;
957
958      assert(PathAccess != AS_none);
959
960      // If the declaration is a private member of a base class, there
961      // is no level of friendship in derived classes that can make it
962      // accessible.
963      if (PathAccess == AS_private) {
964        PathAccess = AS_none;
965        break;
966      }
967
968      const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
969
970      AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
971      PathAccess = std::max(PathAccess, BaseAccess);
972
973      switch (HasAccess(S, EC, NC, PathAccess, Target)) {
974      case AR_inaccessible: break;
975      case AR_accessible:
976        PathAccess = AS_public;
977
978        // Future tests are not against members and so do not have
979        // instance context.
980        Target.suppressInstanceContext();
981        break;
982      case AR_dependent:
983        AnyDependent = true;
984        goto Next;
985      }
986    }
987
988    // Note that we modify the path's Access field to the
989    // friend-modified access.
990    if (BestPath == nullptr || PathAccess < BestPath->Access) {
991      BestPath = &*PI;
992      BestPath->Access = PathAccess;
993
994      // Short-circuit if we found a public path.
995      if (BestPath->Access == AS_public)
996        return BestPath;
997    }
998
999  Next: ;
1000  }
1001
1002  assert((!BestPath || BestPath->Access != AS_public) &&
1003         "fell out of loop with public path");
1004
1005  // We didn't find a public path, but at least one path was subject
1006  // to dependent friendship, so delay the check.
1007  if (AnyDependent)
1008    return nullptr;
1009
1010  return BestPath;
1011}
1012
1013/// Given that an entity has protected natural access, check whether
1014/// access might be denied because of the protected member access
1015/// restriction.
1016///
1017/// \return true if a note was emitted
1018static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1019                                       AccessTarget &Target) {
1020  // Only applies to instance accesses.
1021  if (!Target.isInstanceMember())
1022    return false;
1023
1024  assert(Target.isMemberAccess());
1025
1026  const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
1027
1028  for (EffectiveContext::record_iterator
1029         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1030    const CXXRecordDecl *ECRecord = *I;
1031    switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1032    case AR_accessible: break;
1033    case AR_inaccessible: continue;
1034    case AR_dependent: continue;
1035    }
1036
1037    // The effective context is a subclass of the declaring class.
1038    // Check whether the [class.protected] restriction is limiting
1039    // access.
1040
1041    // To get this exactly right, this might need to be checked more
1042    // holistically;  it's not necessarily the case that gaining
1043    // access here would grant us access overall.
1044
1045    NamedDecl *D = Target.getTargetDecl();
1046
1047    // If we don't have an instance context, [class.protected] says the
1048    // naming class has to equal the context class.
1049    if (!Target.hasInstanceContext()) {
1050      // If it does, the restriction doesn't apply.
1051      if (NamingClass == ECRecord) continue;
1052
1053      // TODO: it would be great to have a fixit here, since this is
1054      // such an obvious error.
1055      S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1056        << S.Context.getTypeDeclType(ECRecord);
1057      return true;
1058    }
1059
1060    const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1061    assert(InstanceContext && "diagnosing dependent access");
1062
1063    switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1064    case AR_accessible: continue;
1065    case AR_dependent: continue;
1066    case AR_inaccessible:
1067      break;
1068    }
1069
1070    // Okay, the restriction seems to be what's limiting us.
1071
1072    // Use a special diagnostic for constructors and destructors.
1073    if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1074        (isa<FunctionTemplateDecl>(D) &&
1075         isa<CXXConstructorDecl>(
1076                cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1077      return S.Diag(D->getLocation(),
1078                    diag::note_access_protected_restricted_ctordtor)
1079             << isa<CXXDestructorDecl>(D->getAsFunction());
1080    }
1081
1082    // Otherwise, use the generic diagnostic.
1083    return S.Diag(D->getLocation(),
1084                  diag::note_access_protected_restricted_object)
1085           << S.Context.getTypeDeclType(ECRecord);
1086  }
1087
1088  return false;
1089}
1090
1091/// We are unable to access a given declaration due to its direct
1092/// access control;  diagnose that.
1093static void diagnoseBadDirectAccess(Sema &S,
1094                                    const EffectiveContext &EC,
1095                                    AccessTarget &entity) {
1096  assert(entity.isMemberAccess());
1097  NamedDecl *D = entity.getTargetDecl();
1098
1099  if (D->getAccess() == AS_protected &&
1100      TryDiagnoseProtectedAccess(S, EC, entity))
1101    return;
1102
1103  // Find an original declaration.
1104  while (D->isOutOfLine()) {
1105    NamedDecl *PrevDecl = nullptr;
1106    if (VarDecl *VD = dyn_cast<VarDecl>(D))
1107      PrevDecl = VD->getPreviousDecl();
1108    else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1109      PrevDecl = FD->getPreviousDecl();
1110    else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1111      PrevDecl = TND->getPreviousDecl();
1112    else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1113      if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1114        break;
1115      PrevDecl = TD->getPreviousDecl();
1116    }
1117    if (!PrevDecl) break;
1118    D = PrevDecl;
1119  }
1120
1121  CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1122  Decl *ImmediateChild;
1123  if (D->getDeclContext() == DeclaringClass)
1124    ImmediateChild = D;
1125  else {
1126    DeclContext *DC = D->getDeclContext();
1127    while (DC->getParent() != DeclaringClass)
1128      DC = DC->getParent();
1129    ImmediateChild = cast<Decl>(DC);
1130  }
1131
1132  // Check whether there's an AccessSpecDecl preceding this in the
1133  // chain of the DeclContext.
1134  bool isImplicit = true;
1135  for (const auto *I : DeclaringClass->decls()) {
1136    if (I == ImmediateChild) break;
1137    if (isa<AccessSpecDecl>(I)) {
1138      isImplicit = false;
1139      break;
1140    }
1141  }
1142
1143  S.Diag(D->getLocation(), diag::note_access_natural)
1144    << (unsigned) (D->getAccess() == AS_protected)
1145    << isImplicit;
1146}
1147
1148/// Diagnose the path which caused the given declaration or base class
1149/// to become inaccessible.
1150static void DiagnoseAccessPath(Sema &S,
1151                               const EffectiveContext &EC,
1152                               AccessTarget &entity) {
1153  // Save the instance context to preserve invariants.
1154  AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
1155
1156  // This basically repeats the main algorithm but keeps some more
1157  // information.
1158
1159  // The natural access so far.
1160  AccessSpecifier accessSoFar = AS_public;
1161
1162  // Check whether we have special rights to the declaring class.
1163  if (entity.isMemberAccess()) {
1164    NamedDecl *D = entity.getTargetDecl();
1165    accessSoFar = D->getAccess();
1166    const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
1167
1168    switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
1169    // If the declaration is accessible when named in its declaring
1170    // class, then we must be constrained by the path.
1171    case AR_accessible:
1172      accessSoFar = AS_public;
1173      entity.suppressInstanceContext();
1174      break;
1175
1176    case AR_inaccessible:
1177      if (accessSoFar == AS_private ||
1178          declaringClass == entity.getEffectiveNamingClass())
1179        return diagnoseBadDirectAccess(S, EC, entity);
1180      break;
1181
1182    case AR_dependent:
1183      llvm_unreachable("cannot diagnose dependent access");
1184    }
1185  }
1186
1187  CXXBasePaths paths;
1188  CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
1189  assert(path.Access != AS_public);
1190
1191  CXXBasePath::iterator i = path.end(), e = path.begin();
1192  CXXBasePath::iterator constrainingBase = i;
1193  while (i != e) {
1194    --i;
1195
1196    assert(accessSoFar != AS_none && accessSoFar != AS_private);
1197
1198    // Is the entity accessible when named in the deriving class, as
1199    // modified by the base specifier?
1200    const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
1201    const CXXBaseSpecifier *base = i->Base;
1202
1203    // If the access to this base is worse than the access we have to
1204    // the declaration, remember it.
1205    AccessSpecifier baseAccess = base->getAccessSpecifier();
1206    if (baseAccess > accessSoFar) {
1207      constrainingBase = i;
1208      accessSoFar = baseAccess;
1209    }
1210
1211    switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
1212    case AR_inaccessible: break;
1213    case AR_accessible:
1214      accessSoFar = AS_public;
1215      entity.suppressInstanceContext();
1216      constrainingBase = nullptr;
1217      break;
1218    case AR_dependent:
1219      llvm_unreachable("cannot diagnose dependent access");
1220    }
1221
1222    // If this was private inheritance, but we don't have access to
1223    // the deriving class, we're done.
1224    if (accessSoFar == AS_private) {
1225      assert(baseAccess == AS_private);
1226      assert(constrainingBase == i);
1227      break;
1228    }
1229  }
1230
1231  // If we don't have a constraining base, the access failure must be
1232  // due to the original declaration.
1233  if (constrainingBase == path.end())
1234    return diagnoseBadDirectAccess(S, EC, entity);
1235
1236  // We're constrained by inheritance, but we want to say
1237  // "declared private here" if we're diagnosing a hierarchy
1238  // conversion and this is the final step.
1239  unsigned diagnostic;
1240  if (entity.isMemberAccess() ||
1241      constrainingBase + 1 != path.end()) {
1242    diagnostic = diag::note_access_constrained_by_path;
1243  } else {
1244    diagnostic = diag::note_access_natural;
1245  }
1246
1247  const CXXBaseSpecifier *base = constrainingBase->Base;
1248
1249  S.Diag(base->getSourceRange().getBegin(), diagnostic)
1250    << base->getSourceRange()
1251    << (base->getAccessSpecifier() == AS_protected)
1252    << (base->getAccessSpecifierAsWritten() == AS_none);
1253
1254  if (entity.isMemberAccess())
1255    S.Diag(entity.getTargetDecl()->getLocation(),
1256           diag::note_member_declared_at);
1257}
1258
1259static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1260                              const EffectiveContext &EC,
1261                              AccessTarget &Entity) {
1262  const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1263  const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1264  NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
1265
1266  S.Diag(Loc, Entity.getDiag())
1267    << (Entity.getAccess() == AS_protected)
1268    << (D ? D->getDeclName() : DeclarationName())
1269    << S.Context.getTypeDeclType(NamingClass)
1270    << S.Context.getTypeDeclType(DeclaringClass);
1271  DiagnoseAccessPath(S, EC, Entity);
1272}
1273
1274/// MSVC has a bug where if during an using declaration name lookup,
1275/// the declaration found is unaccessible (private) and that declaration
1276/// was bring into scope via another using declaration whose target
1277/// declaration is accessible (public) then no error is generated.
1278/// Example:
1279///   class A {
1280///   public:
1281///     int f();
1282///   };
1283///   class B : public A {
1284///   private:
1285///     using A::f;
1286///   };
1287///   class C : public B {
1288///   private:
1289///     using B::f;
1290///   };
1291///
1292/// Here, B::f is private so this should fail in Standard C++, but
1293/// because B::f refers to A::f which is public MSVC accepts it.
1294static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1295                                                 SourceLocation AccessLoc,
1296                                                 AccessTarget &Entity) {
1297  if (UsingShadowDecl *Shadow =
1298                         dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1299    const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1300    if (Entity.getTargetDecl()->getAccess() == AS_private &&
1301        (OrigDecl->getAccess() == AS_public ||
1302         OrigDecl->getAccess() == AS_protected)) {
1303      S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1304        << Shadow->getUsingDecl()->getQualifiedNameAsString()
1305        << OrigDecl->getQualifiedNameAsString();
1306      return true;
1307    }
1308  }
1309  return false;
1310}
1311
1312/// Determines whether the accessed entity is accessible.  Public members
1313/// have been weeded out by this point.
1314static AccessResult IsAccessible(Sema &S,
1315                                 const EffectiveContext &EC,
1316                                 AccessTarget &Entity) {
1317  // Determine the actual naming class.
1318  const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
1319
1320  AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1321  assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1322
1323  // Before we try to recalculate access paths, try to white-list
1324  // accesses which just trade in on the final step, i.e. accesses
1325  // which don't require [M4] or [B4]. These are by far the most
1326  // common forms of privileged access.
1327  if (UnprivilegedAccess != AS_none) {
1328    switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1329    case AR_dependent:
1330      // This is actually an interesting policy decision.  We don't
1331      // *have* to delay immediately here: we can do the full access
1332      // calculation in the hope that friendship on some intermediate
1333      // class will make the declaration accessible non-dependently.
1334      // But that's not cheap, and odds are very good (note: assertion
1335      // made without data) that the friend declaration will determine
1336      // access.
1337      return AR_dependent;
1338
1339    case AR_accessible: return AR_accessible;
1340    case AR_inaccessible: break;
1341    }
1342  }
1343
1344  AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1345
1346  // We lower member accesses to base accesses by pretending that the
1347  // member is a base class of its declaring class.
1348  AccessSpecifier FinalAccess;
1349
1350  if (Entity.isMemberAccess()) {
1351    // Determine if the declaration is accessible from EC when named
1352    // in its declaring class.
1353    NamedDecl *Target = Entity.getTargetDecl();
1354    const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1355
1356    FinalAccess = Target->getAccess();
1357    switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1358    case AR_accessible:
1359      // Target is accessible at EC when named in its declaring class.
1360      // We can now hill-climb and simply check whether the declaring
1361      // class is accessible as a base of the naming class.  This is
1362      // equivalent to checking the access of a notional public
1363      // member with no instance context.
1364      FinalAccess = AS_public;
1365      Entity.suppressInstanceContext();
1366      break;
1367    case AR_inaccessible: break;
1368    case AR_dependent: return AR_dependent; // see above
1369    }
1370
1371    if (DeclaringClass == NamingClass)
1372      return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1373  } else {
1374    FinalAccess = AS_public;
1375  }
1376
1377  assert(Entity.getDeclaringClass() != NamingClass);
1378
1379  // Append the declaration's access if applicable.
1380  CXXBasePaths Paths;
1381  CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1382  if (!Path)
1383    return AR_dependent;
1384
1385  assert(Path->Access <= UnprivilegedAccess &&
1386         "access along best path worse than direct?");
1387  if (Path->Access == AS_public)
1388    return AR_accessible;
1389  return AR_inaccessible;
1390}
1391
1392static void DelayDependentAccess(Sema &S,
1393                                 const EffectiveContext &EC,
1394                                 SourceLocation Loc,
1395                                 const AccessTarget &Entity) {
1396  assert(EC.isDependent() && "delaying non-dependent access");
1397  DeclContext *DC = EC.getInnerContext();
1398  assert(DC->isDependentContext() && "delaying non-dependent access");
1399  DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1400                              Loc,
1401                              Entity.isMemberAccess(),
1402                              Entity.getAccess(),
1403                              Entity.getTargetDecl(),
1404                              Entity.getNamingClass(),
1405                              Entity.getBaseObjectType(),
1406                              Entity.getDiag());
1407}
1408
1409/// Checks access to an entity from the given effective context.
1410static AccessResult CheckEffectiveAccess(Sema &S,
1411                                         const EffectiveContext &EC,
1412                                         SourceLocation Loc,
1413                                         AccessTarget &Entity) {
1414  assert(Entity.getAccess() != AS_public && "called for public access!");
1415
1416  switch (IsAccessible(S, EC, Entity)) {
1417  case AR_dependent:
1418    DelayDependentAccess(S, EC, Loc, Entity);
1419    return AR_dependent;
1420
1421  case AR_inaccessible:
1422    if (S.getLangOpts().MSVCCompat &&
1423        IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1424      return AR_accessible;
1425    if (!Entity.isQuiet())
1426      DiagnoseBadAccess(S, Loc, EC, Entity);
1427    return AR_inaccessible;
1428
1429  case AR_accessible:
1430    return AR_accessible;
1431  }
1432
1433  // silence unnecessary warning
1434  llvm_unreachable("invalid access result");
1435}
1436
1437static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1438                                      AccessTarget &Entity) {
1439  // If the access path is public, it's accessible everywhere.
1440  if (Entity.getAccess() == AS_public)
1441    return Sema::AR_accessible;
1442
1443  // If we're currently parsing a declaration, we may need to delay
1444  // access control checking, because our effective context might be
1445  // different based on what the declaration comes out as.
1446  //
1447  // For example, we might be parsing a declaration with a scope
1448  // specifier, like this:
1449  //   A::private_type A::foo() { ... }
1450  //
1451  // Or we might be parsing something that will turn out to be a friend:
1452  //   void foo(A::private_type);
1453  //   void B::foo(A::private_type);
1454  if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1455    S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1456    return Sema::AR_delayed;
1457  }
1458
1459  EffectiveContext EC(S.CurContext);
1460  switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1461  case AR_accessible: return Sema::AR_accessible;
1462  case AR_inaccessible: return Sema::AR_inaccessible;
1463  case AR_dependent: return Sema::AR_dependent;
1464  }
1465  llvm_unreachable("falling off end");
1466}
1467
1468void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
1469  // Access control for names used in the declarations of functions
1470  // and function templates should normally be evaluated in the context
1471  // of the declaration, just in case it's a friend of something.
1472  // However, this does not apply to local extern declarations.
1473
1474  DeclContext *DC = D->getDeclContext();
1475  if (D->isLocalExternDecl()) {
1476    DC = D->getLexicalDeclContext();
1477  } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
1478    DC = FN;
1479  } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
1480    DC = cast<DeclContext>(TD->getTemplatedDecl());
1481  }
1482
1483  EffectiveContext EC(DC);
1484
1485  AccessTarget Target(DD.getAccessData());
1486
1487  if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1488    DD.Triggered = true;
1489}
1490
1491void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1492                        const MultiLevelTemplateArgumentList &TemplateArgs) {
1493  SourceLocation Loc = DD.getAccessLoc();
1494  AccessSpecifier Access = DD.getAccess();
1495
1496  Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1497                                       TemplateArgs);
1498  if (!NamingD) return;
1499  Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1500                                       TemplateArgs);
1501  if (!TargetD) return;
1502
1503  if (DD.isAccessToMember()) {
1504    CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1505    NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1506    QualType BaseObjectType = DD.getAccessBaseObjectType();
1507    if (!BaseObjectType.isNull()) {
1508      BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1509                                 DeclarationName());
1510      if (BaseObjectType.isNull()) return;
1511    }
1512
1513    AccessTarget Entity(Context,
1514                        AccessTarget::Member,
1515                        NamingClass,
1516                        DeclAccessPair::make(TargetDecl, Access),
1517                        BaseObjectType);
1518    Entity.setDiag(DD.getDiagnostic());
1519    CheckAccess(*this, Loc, Entity);
1520  } else {
1521    AccessTarget Entity(Context,
1522                        AccessTarget::Base,
1523                        cast<CXXRecordDecl>(TargetD),
1524                        cast<CXXRecordDecl>(NamingD),
1525                        Access);
1526    Entity.setDiag(DD.getDiagnostic());
1527    CheckAccess(*this, Loc, Entity);
1528  }
1529}
1530
1531Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1532                                                     DeclAccessPair Found) {
1533  if (!getLangOpts().AccessControl ||
1534      !E->getNamingClass() ||
1535      Found.getAccess() == AS_public)
1536    return AR_accessible;
1537
1538  AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1539                      Found, QualType());
1540  Entity.setDiag(diag::err_access) << E->getSourceRange();
1541
1542  return CheckAccess(*this, E->getNameLoc(), Entity);
1543}
1544
1545/// Perform access-control checking on a previously-unresolved member
1546/// access which has now been resolved to a member.
1547Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1548                                                     DeclAccessPair Found) {
1549  if (!getLangOpts().AccessControl ||
1550      Found.getAccess() == AS_public)
1551    return AR_accessible;
1552
1553  QualType BaseType = E->getBaseType();
1554  if (E->isArrow())
1555    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1556
1557  AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1558                      Found, BaseType);
1559  Entity.setDiag(diag::err_access) << E->getSourceRange();
1560
1561  return CheckAccess(*this, E->getMemberLoc(), Entity);
1562}
1563
1564/// Is the given special member function accessible for the purposes of
1565/// deciding whether to define a special member function as deleted?
1566bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1567                                                AccessSpecifier access,
1568                                                QualType objectType) {
1569  // Fast path.
1570  if (access == AS_public || !getLangOpts().AccessControl) return true;
1571
1572  AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1573                      DeclAccessPair::make(decl, access), objectType);
1574
1575  // Suppress diagnostics.
1576  entity.setDiag(PDiag());
1577
1578  switch (CheckAccess(*this, SourceLocation(), entity)) {
1579  case AR_accessible: return true;
1580  case AR_inaccessible: return false;
1581  case AR_dependent: llvm_unreachable("dependent for =delete computation");
1582  case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1583  }
1584  llvm_unreachable("bad access result");
1585}
1586
1587Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1588                                               CXXDestructorDecl *Dtor,
1589                                               const PartialDiagnostic &PDiag,
1590                                               QualType ObjectTy) {
1591  if (!getLangOpts().AccessControl)
1592    return AR_accessible;
1593
1594  // There's never a path involved when checking implicit destructor access.
1595  AccessSpecifier Access = Dtor->getAccess();
1596  if (Access == AS_public)
1597    return AR_accessible;
1598
1599  CXXRecordDecl *NamingClass = Dtor->getParent();
1600  if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1601
1602  AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1603                      DeclAccessPair::make(Dtor, Access),
1604                      ObjectTy);
1605  Entity.setDiag(PDiag); // TODO: avoid copy
1606
1607  return CheckAccess(*this, Loc, Entity);
1608}
1609
1610/// Checks access to a constructor.
1611Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1612                                                CXXConstructorDecl *Constructor,
1613                                                const InitializedEntity &Entity,
1614                                                AccessSpecifier Access,
1615                                                bool IsCopyBindingRefToTemp) {
1616  if (!getLangOpts().AccessControl || Access == AS_public)
1617    return AR_accessible;
1618
1619  PartialDiagnostic PD(PDiag());
1620  switch (Entity.getKind()) {
1621  default:
1622    PD = PDiag(IsCopyBindingRefToTemp
1623                 ? diag::ext_rvalue_to_reference_access_ctor
1624                 : diag::err_access_ctor);
1625
1626    break;
1627
1628  case InitializedEntity::EK_Base:
1629    PD = PDiag(diag::err_access_base_ctor);
1630    PD << Entity.isInheritedVirtualBase()
1631       << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1632    break;
1633
1634  case InitializedEntity::EK_Member: {
1635    const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1636    PD = PDiag(diag::err_access_field_ctor);
1637    PD << Field->getType() << getSpecialMember(Constructor);
1638    break;
1639  }
1640
1641  case InitializedEntity::EK_LambdaCapture: {
1642    StringRef VarName = Entity.getCapturedVarName();
1643    PD = PDiag(diag::err_access_lambda_capture);
1644    PD << VarName << Entity.getType() << getSpecialMember(Constructor);
1645    break;
1646  }
1647
1648  }
1649
1650  return CheckConstructorAccess(UseLoc, Constructor, Entity, Access, PD);
1651}
1652
1653/// Checks access to a constructor.
1654Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1655                                                CXXConstructorDecl *Constructor,
1656                                                const InitializedEntity &Entity,
1657                                                AccessSpecifier Access,
1658                                                const PartialDiagnostic &PD) {
1659  if (!getLangOpts().AccessControl ||
1660      Access == AS_public)
1661    return AR_accessible;
1662
1663  CXXRecordDecl *NamingClass = Constructor->getParent();
1664
1665  // Initializing a base sub-object is an instance method call on an
1666  // object of the derived class.  Otherwise, we have an instance method
1667  // call on an object of the constructed type.
1668  CXXRecordDecl *ObjectClass;
1669  if (Entity.getKind() == InitializedEntity::EK_Base) {
1670    ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1671  } else {
1672    ObjectClass = NamingClass;
1673  }
1674
1675  AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1676                            DeclAccessPair::make(Constructor, Access),
1677                            Context.getTypeDeclType(ObjectClass));
1678  AccessEntity.setDiag(PD);
1679
1680  return CheckAccess(*this, UseLoc, AccessEntity);
1681}
1682
1683/// Checks access to an overloaded operator new or delete.
1684Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1685                                               SourceRange PlacementRange,
1686                                               CXXRecordDecl *NamingClass,
1687                                               DeclAccessPair Found,
1688                                               bool Diagnose) {
1689  if (!getLangOpts().AccessControl ||
1690      !NamingClass ||
1691      Found.getAccess() == AS_public)
1692    return AR_accessible;
1693
1694  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1695                      QualType());
1696  if (Diagnose)
1697    Entity.setDiag(diag::err_access)
1698      << PlacementRange;
1699
1700  return CheckAccess(*this, OpLoc, Entity);
1701}
1702
1703/// \brief Checks access to a member.
1704Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
1705                                           CXXRecordDecl *NamingClass,
1706                                           DeclAccessPair Found) {
1707  if (!getLangOpts().AccessControl ||
1708      !NamingClass ||
1709      Found.getAccess() == AS_public)
1710    return AR_accessible;
1711
1712  AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1713                      Found, QualType());
1714
1715  return CheckAccess(*this, UseLoc, Entity);
1716}
1717
1718/// Checks access to an overloaded member operator, including
1719/// conversion operators.
1720Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1721                                                   Expr *ObjectExpr,
1722                                                   Expr *ArgExpr,
1723                                                   DeclAccessPair Found) {
1724  if (!getLangOpts().AccessControl ||
1725      Found.getAccess() == AS_public)
1726    return AR_accessible;
1727
1728  const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1729  CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1730
1731  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1732                      ObjectExpr->getType());
1733  Entity.setDiag(diag::err_access)
1734    << ObjectExpr->getSourceRange()
1735    << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1736
1737  return CheckAccess(*this, OpLoc, Entity);
1738}
1739
1740/// Checks access to the target of a friend declaration.
1741Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1742  assert(isa<CXXMethodDecl>(target->getAsFunction()));
1743
1744  // Friendship lookup is a redeclaration lookup, so there's never an
1745  // inheritance path modifying access.
1746  AccessSpecifier access = target->getAccess();
1747
1748  if (!getLangOpts().AccessControl || access == AS_public)
1749    return AR_accessible;
1750
1751  CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
1752  assert(method->getQualifier());
1753
1754  AccessTarget entity(Context, AccessTarget::Member,
1755                      cast<CXXRecordDecl>(target->getDeclContext()),
1756                      DeclAccessPair::make(target, access),
1757                      /*no instance context*/ QualType());
1758  entity.setDiag(diag::err_access_friend_function)
1759    << method->getQualifierLoc().getSourceRange();
1760
1761  // We need to bypass delayed-diagnostics because we might be called
1762  // while the ParsingDeclarator is active.
1763  EffectiveContext EC(CurContext);
1764  switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1765  case AR_accessible: return Sema::AR_accessible;
1766  case AR_inaccessible: return Sema::AR_inaccessible;
1767  case AR_dependent: return Sema::AR_dependent;
1768  }
1769  llvm_unreachable("falling off end");
1770}
1771
1772Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1773                                                    DeclAccessPair Found) {
1774  if (!getLangOpts().AccessControl ||
1775      Found.getAccess() == AS_none ||
1776      Found.getAccess() == AS_public)
1777    return AR_accessible;
1778
1779  OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1780  CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1781
1782  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1783                      /*no instance context*/ QualType());
1784  Entity.setDiag(diag::err_access)
1785    << Ovl->getSourceRange();
1786
1787  return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1788}
1789
1790/// Checks access for a hierarchy conversion.
1791///
1792/// \param ForceCheck true if this check should be performed even if access
1793///     control is disabled;  some things rely on this for semantics
1794/// \param ForceUnprivileged true if this check should proceed as if the
1795///     context had no special privileges
1796Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1797                                              QualType Base,
1798                                              QualType Derived,
1799                                              const CXXBasePath &Path,
1800                                              unsigned DiagID,
1801                                              bool ForceCheck,
1802                                              bool ForceUnprivileged) {
1803  if (!ForceCheck && !getLangOpts().AccessControl)
1804    return AR_accessible;
1805
1806  if (Path.Access == AS_public)
1807    return AR_accessible;
1808
1809  CXXRecordDecl *BaseD, *DerivedD;
1810  BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1811  DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1812
1813  AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1814                      Path.Access);
1815  if (DiagID)
1816    Entity.setDiag(DiagID) << Derived << Base;
1817
1818  if (ForceUnprivileged) {
1819    switch (CheckEffectiveAccess(*this, EffectiveContext(),
1820                                 AccessLoc, Entity)) {
1821    case ::AR_accessible: return Sema::AR_accessible;
1822    case ::AR_inaccessible: return Sema::AR_inaccessible;
1823    case ::AR_dependent: return Sema::AR_dependent;
1824    }
1825    llvm_unreachable("unexpected result from CheckEffectiveAccess");
1826  }
1827  return CheckAccess(*this, AccessLoc, Entity);
1828}
1829
1830/// Checks access to all the declarations in the given result set.
1831void Sema::CheckLookupAccess(const LookupResult &R) {
1832  assert(getLangOpts().AccessControl
1833         && "performing access check without access control");
1834  assert(R.getNamingClass() && "performing access check without naming class");
1835
1836  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1837    if (I.getAccess() != AS_public) {
1838      AccessTarget Entity(Context, AccessedEntity::Member,
1839                          R.getNamingClass(), I.getPair(),
1840                          R.getBaseObjectType());
1841      Entity.setDiag(diag::err_access);
1842      CheckAccess(*this, R.getNameLoc(), Entity);
1843    }
1844  }
1845}
1846
1847/// Checks access to Decl from the given class. The check will take access
1848/// specifiers into account, but no member access expressions and such.
1849///
1850/// \param Decl the declaration to check if it can be accessed
1851/// \param Ctx the class/context from which to start the search
1852/// \return true if the Decl is accessible from the Class, false otherwise.
1853bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
1854  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
1855    if (!Decl->isCXXClassMember())
1856      return true;
1857
1858    QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
1859    AccessTarget Entity(Context, AccessedEntity::Member, Class,
1860                        DeclAccessPair::make(Decl, Decl->getAccess()),
1861                        qType);
1862    if (Entity.getAccess() == AS_public)
1863      return true;
1864
1865    EffectiveContext EC(CurContext);
1866    return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1867  }
1868
1869  if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
1870    // @public and @package ivars are always accessible.
1871    if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1872        Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1873      return true;
1874
1875    // If we are inside a class or category implementation, determine the
1876    // interface we're in.
1877    ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1878    if (ObjCMethodDecl *MD = getCurMethodDecl())
1879      ClassOfMethodDecl =  MD->getClassInterface();
1880    else if (FunctionDecl *FD = getCurFunctionDecl()) {
1881      if (ObjCImplDecl *Impl
1882            = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1883        if (ObjCImplementationDecl *IMPD
1884              = dyn_cast<ObjCImplementationDecl>(Impl))
1885          ClassOfMethodDecl = IMPD->getClassInterface();
1886        else if (ObjCCategoryImplDecl* CatImplClass
1887                   = dyn_cast<ObjCCategoryImplDecl>(Impl))
1888          ClassOfMethodDecl = CatImplClass->getClassInterface();
1889      }
1890    }
1891
1892    // If we're not in an interface, this ivar is inaccessible.
1893    if (!ClassOfMethodDecl)
1894      return false;
1895
1896    // If we're inside the same interface that owns the ivar, we're fine.
1897    if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1898      return true;
1899
1900    // If the ivar is private, it's inaccessible.
1901    if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1902      return false;
1903
1904    return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1905  }
1906
1907  return true;
1908}
1909