SemaCXXScopeSpec.cpp revision e737f5041a36d0befb39ffeed8d50ba15916d3da
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25
26/// \brief Find the current instantiation that associated with the given type.
27static CXXRecordDecl *getCurrentInstantiationOf(QualType T) {
28  if (T.isNull())
29    return 0;
30
31  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
32  if (isa<RecordType>(Ty))
33    return cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
34  else if (isa<InjectedClassNameType>(Ty))
35    return cast<InjectedClassNameType>(Ty)->getDecl();
36  else
37    return 0;
38}
39
40/// \brief Compute the DeclContext that is associated with the given type.
41///
42/// \param T the type for which we are attempting to find a DeclContext.
43///
44/// \returns the declaration context represented by the type T,
45/// or NULL if the declaration context cannot be computed (e.g., because it is
46/// dependent and not the current instantiation).
47DeclContext *Sema::computeDeclContext(QualType T) {
48  if (const TagType *Tag = T->getAs<TagType>())
49    return Tag->getDecl();
50
51  return ::getCurrentInstantiationOf(T);
52}
53
54/// \brief Compute the DeclContext that is associated with the given
55/// scope specifier.
56///
57/// \param SS the C++ scope specifier as it appears in the source
58///
59/// \param EnteringContext when true, we will be entering the context of
60/// this scope specifier, so we can retrieve the declaration context of a
61/// class template or class template partial specialization even if it is
62/// not the current instantiation.
63///
64/// \returns the declaration context represented by the scope specifier @p SS,
65/// or NULL if the declaration context cannot be computed (e.g., because it is
66/// dependent and not the current instantiation).
67DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
68                                      bool EnteringContext) {
69  if (!SS.isSet() || SS.isInvalid())
70    return 0;
71
72  NestedNameSpecifier *NNS
73    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
74  if (NNS->isDependent()) {
75    // If this nested-name-specifier refers to the current
76    // instantiation, return its DeclContext.
77    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
78      return Record;
79
80    if (EnteringContext) {
81      const Type *NNSType = NNS->getAsType();
82      if (!NNSType) {
83        // do nothing, fall out
84      } else if (const TemplateSpecializationType *SpecType
85                   = NNSType->getAs<TemplateSpecializationType>()) {
86        // We are entering the context of the nested name specifier, so try to
87        // match the nested name specifier to either a primary class template
88        // or a class template partial specialization.
89        if (ClassTemplateDecl *ClassTemplate
90              = dyn_cast_or_null<ClassTemplateDecl>(
91                            SpecType->getTemplateName().getAsTemplateDecl())) {
92          QualType ContextType
93            = Context.getCanonicalType(QualType(SpecType, 0));
94
95          // If the type of the nested name specifier is the same as the
96          // injected class name of the named class template, we're entering
97          // into that class template definition.
98          QualType Injected
99            = ClassTemplate->getInjectedClassNameSpecialization();
100          if (Context.hasSameType(Injected, ContextType))
101            return ClassTemplate->getTemplatedDecl();
102
103          // If the type of the nested name specifier is the same as the
104          // type of one of the class template's class template partial
105          // specializations, we're entering into the definition of that
106          // class template partial specialization.
107          if (ClassTemplatePartialSpecializationDecl *PartialSpec
108                = ClassTemplate->findPartialSpecialization(ContextType))
109            return PartialSpec;
110        }
111      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
112        // The nested name specifier refers to a member of a class template.
113        return RecordT->getDecl();
114      }
115    }
116
117    return 0;
118  }
119
120  switch (NNS->getKind()) {
121  case NestedNameSpecifier::Identifier:
122    assert(false && "Dependent nested-name-specifier has no DeclContext");
123    break;
124
125  case NestedNameSpecifier::Namespace:
126    return NNS->getAsNamespace();
127
128  case NestedNameSpecifier::TypeSpec:
129  case NestedNameSpecifier::TypeSpecWithTemplate: {
130    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
131    assert(Tag && "Non-tag type in nested-name-specifier");
132    return Tag->getDecl();
133  } break;
134
135  case NestedNameSpecifier::Global:
136    return Context.getTranslationUnitDecl();
137  }
138
139  // Required to silence a GCC warning.
140  return 0;
141}
142
143bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
144  if (!SS.isSet() || SS.isInvalid())
145    return false;
146
147  NestedNameSpecifier *NNS
148    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
149  return NNS->isDependent();
150}
151
152// \brief Determine whether this C++ scope specifier refers to an
153// unknown specialization, i.e., a dependent type that is not the
154// current instantiation.
155bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
156  if (!isDependentScopeSpecifier(SS))
157    return false;
158
159  NestedNameSpecifier *NNS
160    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
161  return getCurrentInstantiationOf(NNS) == 0;
162}
163
164/// \brief If the given nested name specifier refers to the current
165/// instantiation, return the declaration that corresponds to that
166/// current instantiation (C++0x [temp.dep.type]p1).
167///
168/// \param NNS a dependent nested name specifier.
169CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
170  assert(getLangOptions().CPlusPlus && "Only callable in C++");
171  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
172
173  if (!NNS->getAsType())
174    return 0;
175
176  QualType T = QualType(NNS->getAsType(), 0);
177  return ::getCurrentInstantiationOf(T);
178}
179
180/// \brief Require that the context specified by SS be complete.
181///
182/// If SS refers to a type, this routine checks whether the type is
183/// complete enough (or can be made complete enough) for name lookup
184/// into the DeclContext. A type that is not yet completed can be
185/// considered "complete enough" if it is a class/struct/union/enum
186/// that is currently being defined. Or, if we have a type that names
187/// a class template specialization that is not a complete type, we
188/// will attempt to instantiate that class template.
189bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
190                                      DeclContext *DC) {
191  assert(DC != 0 && "given null context");
192
193  if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
194    // If this is a dependent type, then we consider it complete.
195    if (Tag->isDependentContext())
196      return false;
197
198    // If we're currently defining this type, then lookup into the
199    // type is okay: don't complain that it isn't complete yet.
200    const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
201    if (TagT && TagT->isBeingDefined())
202      return false;
203
204    // The type must be complete.
205    if (RequireCompleteType(SS.getRange().getBegin(),
206                            Context.getTypeDeclType(Tag),
207                            PDiag(diag::err_incomplete_nested_name_spec)
208                              << SS.getRange())) {
209      SS.setScopeRep(0);  // Mark the ScopeSpec invalid.
210      return true;
211    }
212  }
213
214  return false;
215}
216
217/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
218/// global scope ('::').
219Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
220                                                     SourceLocation CCLoc) {
221  return NestedNameSpecifier::GlobalSpecifier(Context);
222}
223
224/// \brief Determines whether the given declaration is an valid acceptable
225/// result for name lookup of a nested-name-specifier.
226bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
227  if (!SD)
228    return false;
229
230  // Namespace and namespace aliases are fine.
231  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
232    return true;
233
234  if (!isa<TypeDecl>(SD))
235    return false;
236
237  // Determine whether we have a class (or, in C++0x, an enum) or
238  // a typedef thereof. If so, build the nested-name-specifier.
239  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
240  if (T->isDependentType())
241    return true;
242  else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
243    if (TD->getUnderlyingType()->isRecordType() ||
244        (Context.getLangOptions().CPlusPlus0x &&
245         TD->getUnderlyingType()->isEnumeralType()))
246      return true;
247  } else if (isa<RecordDecl>(SD) ||
248             (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
249    return true;
250
251  return false;
252}
253
254/// \brief If the given nested-name-specifier begins with a bare identifier
255/// (e.g., Base::), perform name lookup for that identifier as a
256/// nested-name-specifier within the given scope, and return the result of that
257/// name lookup.
258NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
259  if (!S || !NNS)
260    return 0;
261
262  while (NNS->getPrefix())
263    NNS = NNS->getPrefix();
264
265  if (NNS->getKind() != NestedNameSpecifier::Identifier)
266    return 0;
267
268  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
269                     LookupNestedNameSpecifierName);
270  LookupName(Found, S);
271  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
272
273  if (!Found.isSingleResult())
274    return 0;
275
276  NamedDecl *Result = Found.getFoundDecl();
277  if (isAcceptableNestedNameSpecifier(Result))
278    return Result;
279
280  return 0;
281}
282
283bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
284                                        SourceLocation IdLoc,
285                                        IdentifierInfo &II,
286                                        TypeTy *ObjectTypePtr) {
287  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
288  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
289
290  // Determine where to perform name lookup
291  DeclContext *LookupCtx = 0;
292  bool isDependent = false;
293  if (!ObjectType.isNull()) {
294    // This nested-name-specifier occurs in a member access expression, e.g.,
295    // x->B::f, and we are looking into the type of the object.
296    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
297    LookupCtx = computeDeclContext(ObjectType);
298    isDependent = ObjectType->isDependentType();
299  } else if (SS.isSet()) {
300    // This nested-name-specifier occurs after another nested-name-specifier,
301    // so long into the context associated with the prior nested-name-specifier.
302    LookupCtx = computeDeclContext(SS, false);
303    isDependent = isDependentScopeSpecifier(SS);
304    Found.setContextRange(SS.getRange());
305  }
306
307  if (LookupCtx) {
308    // Perform "qualified" name lookup into the declaration context we
309    // computed, which is either the type of the base of a member access
310    // expression or the declaration context associated with a prior
311    // nested-name-specifier.
312
313    // The declaration context must be complete.
314    if (!LookupCtx->isDependentContext() &&
315        RequireCompleteDeclContext(SS, LookupCtx))
316      return false;
317
318    LookupQualifiedName(Found, LookupCtx);
319  } else if (isDependent) {
320    return false;
321  } else {
322    LookupName(Found, S);
323  }
324  Found.suppressDiagnostics();
325
326  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
327    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
328
329  return false;
330}
331
332/// \brief Build a new nested-name-specifier for "identifier::", as described
333/// by ActOnCXXNestedNameSpecifier.
334///
335/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
336/// that it contains an extra parameter \p ScopeLookupResult, which provides
337/// the result of name lookup within the scope of the nested-name-specifier
338/// that was computed at template definition time.
339///
340/// If ErrorRecoveryLookup is true, then this call is used to improve error
341/// recovery.  This means that it should not emit diagnostics, it should
342/// just return null on failure.  It also means it should only return a valid
343/// scope if it *knows* that the result is correct.  It should not return in a
344/// dependent context, for example.
345Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S,
346                                                    CXXScopeSpec &SS,
347                                                    SourceLocation IdLoc,
348                                                    SourceLocation CCLoc,
349                                                    IdentifierInfo &II,
350                                                    QualType ObjectType,
351                                                  NamedDecl *ScopeLookupResult,
352                                                    bool EnteringContext,
353                                                    bool ErrorRecoveryLookup) {
354  NestedNameSpecifier *Prefix
355    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
356
357  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
358
359  // Determine where to perform name lookup
360  DeclContext *LookupCtx = 0;
361  bool isDependent = false;
362  if (!ObjectType.isNull()) {
363    // This nested-name-specifier occurs in a member access expression, e.g.,
364    // x->B::f, and we are looking into the type of the object.
365    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
366    LookupCtx = computeDeclContext(ObjectType);
367    isDependent = ObjectType->isDependentType();
368  } else if (SS.isSet()) {
369    // This nested-name-specifier occurs after another nested-name-specifier,
370    // so long into the context associated with the prior nested-name-specifier.
371    LookupCtx = computeDeclContext(SS, EnteringContext);
372    isDependent = isDependentScopeSpecifier(SS);
373    Found.setContextRange(SS.getRange());
374  }
375
376
377  bool ObjectTypeSearchedInScope = false;
378  if (LookupCtx) {
379    // Perform "qualified" name lookup into the declaration context we
380    // computed, which is either the type of the base of a member access
381    // expression or the declaration context associated with a prior
382    // nested-name-specifier.
383
384    // The declaration context must be complete.
385    if (!LookupCtx->isDependentContext() &&
386        RequireCompleteDeclContext(SS, LookupCtx))
387      return 0;
388
389    LookupQualifiedName(Found, LookupCtx);
390
391    if (!ObjectType.isNull() && Found.empty()) {
392      // C++ [basic.lookup.classref]p4:
393      //   If the id-expression in a class member access is a qualified-id of
394      //   the form
395      //
396      //        class-name-or-namespace-name::...
397      //
398      //   the class-name-or-namespace-name following the . or -> operator is
399      //   looked up both in the context of the entire postfix-expression and in
400      //   the scope of the class of the object expression. If the name is found
401      //   only in the scope of the class of the object expression, the name
402      //   shall refer to a class-name. If the name is found only in the
403      //   context of the entire postfix-expression, the name shall refer to a
404      //   class-name or namespace-name. [...]
405      //
406      // Qualified name lookup into a class will not find a namespace-name,
407      // so we do not need to diagnoste that case specifically. However,
408      // this qualified name lookup may find nothing. In that case, perform
409      // unqualified name lookup in the given scope (if available) or
410      // reconstruct the result from when name lookup was performed at template
411      // definition time.
412      if (S)
413        LookupName(Found, S);
414      else if (ScopeLookupResult)
415        Found.addDecl(ScopeLookupResult);
416
417      ObjectTypeSearchedInScope = true;
418    }
419  } else if (!isDependent) {
420    // Perform unqualified name lookup in the current scope.
421    LookupName(Found, S);
422  }
423
424  // If we performed lookup into a dependent context and did not find anything,
425  // that's fine: just build a dependent nested-name-specifier.
426  if (Found.empty() && isDependent &&
427      !(LookupCtx && LookupCtx->isRecord() &&
428        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
429         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
430    // Don't speculate if we're just trying to improve error recovery.
431    if (ErrorRecoveryLookup)
432      return 0;
433
434    // We were not able to compute the declaration context for a dependent
435    // base object type or prior nested-name-specifier, so this
436    // nested-name-specifier refers to an unknown specialization. Just build
437    // a dependent nested-name-specifier.
438    if (!Prefix)
439      return NestedNameSpecifier::Create(Context, &II);
440
441    return NestedNameSpecifier::Create(Context, Prefix, &II);
442  }
443
444  // FIXME: Deal with ambiguities cleanly.
445
446  if (Found.empty() && !ErrorRecoveryLookup) {
447    // We haven't found anything, and we're not recovering from a
448    // different kind of error, so look for typos.
449    DeclarationName Name = Found.getLookupName();
450    if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext,
451                    CTC_NoKeywords) &&
452        Found.isSingleResult() &&
453        isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) {
454      if (LookupCtx)
455        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
456          << Name << LookupCtx << Found.getLookupName() << SS.getRange()
457          << FixItHint::CreateReplacement(Found.getNameLoc(),
458                                          Found.getLookupName().getAsString());
459      else
460        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
461          << Name << Found.getLookupName()
462          << FixItHint::CreateReplacement(Found.getNameLoc(),
463                                          Found.getLookupName().getAsString());
464
465      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
466        Diag(ND->getLocation(), diag::note_previous_decl)
467          << ND->getDeclName();
468    } else {
469      Found.clear();
470      Found.setLookupName(&II);
471    }
472  }
473
474  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
475  if (isAcceptableNestedNameSpecifier(SD)) {
476    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
477      // C++ [basic.lookup.classref]p4:
478      //   [...] If the name is found in both contexts, the
479      //   class-name-or-namespace-name shall refer to the same entity.
480      //
481      // We already found the name in the scope of the object. Now, look
482      // into the current scope (the scope of the postfix-expression) to
483      // see if we can find the same name there. As above, if there is no
484      // scope, reconstruct the result from the template instantiation itself.
485      NamedDecl *OuterDecl;
486      if (S) {
487        LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName);
488        LookupName(FoundOuter, S);
489        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
490      } else
491        OuterDecl = ScopeLookupResult;
492
493      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
494          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
495          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
496           !Context.hasSameType(
497                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
498                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
499             if (ErrorRecoveryLookup)
500               return 0;
501
502             Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
503               << &II;
504             Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
505               << ObjectType;
506             Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
507
508             // Fall through so that we'll pick the name we found in the object
509             // type, since that's probably what the user wanted anyway.
510           }
511    }
512
513    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
514      return NestedNameSpecifier::Create(Context, Prefix, Namespace);
515
516    // FIXME: It would be nice to maintain the namespace alias name, then
517    // see through that alias when resolving the nested-name-specifier down to
518    // a declaration context.
519    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
520      return NestedNameSpecifier::Create(Context, Prefix,
521
522                                         Alias->getNamespace());
523
524    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
525    return NestedNameSpecifier::Create(Context, Prefix, false,
526                                       T.getTypePtr());
527  }
528
529  // Otherwise, we have an error case.  If we don't want diagnostics, just
530  // return an error now.
531  if (ErrorRecoveryLookup)
532    return 0;
533
534  // If we didn't find anything during our lookup, try again with
535  // ordinary name lookup, which can help us produce better error
536  // messages.
537  if (Found.empty()) {
538    Found.clear(LookupOrdinaryName);
539    LookupName(Found, S);
540  }
541
542  unsigned DiagID;
543  if (!Found.empty())
544    DiagID = diag::err_expected_class_or_namespace;
545  else if (SS.isSet()) {
546    Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange();
547    return 0;
548  } else
549    DiagID = diag::err_undeclared_var_use;
550
551  if (SS.isSet())
552    Diag(IdLoc, DiagID) << &II << SS.getRange();
553  else
554    Diag(IdLoc, DiagID) << &II;
555
556  return 0;
557}
558
559/// ActOnCXXNestedNameSpecifier - Called during parsing of a
560/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
561/// we want to resolve "bar::". 'SS' is empty or the previously parsed
562/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
563/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
564/// Returns a CXXScopeTy* object representing the C++ scope.
565Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
566                                                    CXXScopeSpec &SS,
567                                                    SourceLocation IdLoc,
568                                                    SourceLocation CCLoc,
569                                                    IdentifierInfo &II,
570                                                    TypeTy *ObjectTypePtr,
571                                                    bool EnteringContext) {
572  return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II,
573                                     QualType::getFromOpaquePtr(ObjectTypePtr),
574                                     /*ScopeLookupResult=*/0, EnteringContext,
575                                     false);
576}
577
578/// IsInvalidUnlessNestedName - This method is used for error recovery
579/// purposes to determine whether the specified identifier is only valid as
580/// a nested name specifier, for example a namespace name.  It is
581/// conservatively correct to always return false from this method.
582///
583/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
584bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
585                                     IdentifierInfo &II, TypeTy *ObjectType,
586                                     bool EnteringContext) {
587  return BuildCXXNestedNameSpecifier(S, SS, SourceLocation(), SourceLocation(),
588                                     II, QualType::getFromOpaquePtr(ObjectType),
589                                     /*ScopeLookupResult=*/0, EnteringContext,
590                                     true);
591}
592
593Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
594                                                    const CXXScopeSpec &SS,
595                                                    TypeTy *Ty,
596                                                    SourceRange TypeRange,
597                                                    SourceLocation CCLoc) {
598  NestedNameSpecifier *Prefix
599    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
600  QualType T = GetTypeFromParser(Ty);
601  return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
602                                     T.getTypePtr());
603}
604
605bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
606  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
607
608  NestedNameSpecifier *Qualifier =
609    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
610
611  // There are only two places a well-formed program may qualify a
612  // declarator: first, when defining a namespace or class member
613  // out-of-line, and second, when naming an explicitly-qualified
614  // friend function.  The latter case is governed by
615  // C++03 [basic.lookup.unqual]p10:
616  //   In a friend declaration naming a member function, a name used
617  //   in the function declarator and not part of a template-argument
618  //   in a template-id is first looked up in the scope of the member
619  //   function's class. If it is not found, or if the name is part of
620  //   a template-argument in a template-id, the look up is as
621  //   described for unqualified names in the definition of the class
622  //   granting friendship.
623  // i.e. we don't push a scope unless it's a class member.
624
625  switch (Qualifier->getKind()) {
626  case NestedNameSpecifier::Global:
627  case NestedNameSpecifier::Namespace:
628    // These are always namespace scopes.  We never want to enter a
629    // namespace scope from anything but a file context.
630    return CurContext->getLookupContext()->isFileContext();
631
632  case NestedNameSpecifier::Identifier:
633  case NestedNameSpecifier::TypeSpec:
634  case NestedNameSpecifier::TypeSpecWithTemplate:
635    // These are never namespace scopes.
636    return true;
637  }
638
639  // Silence bogus warning.
640  return false;
641}
642
643/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
644/// scope or nested-name-specifier) is parsed, part of a declarator-id.
645/// After this method is called, according to [C++ 3.4.3p3], names should be
646/// looked up in the declarator-id's scope, until the declarator is parsed and
647/// ActOnCXXExitDeclaratorScope is called.
648/// The 'SS' should be a non-empty valid CXXScopeSpec.
649bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
650  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
651
652  if (SS.isInvalid()) return true;
653
654  DeclContext *DC = computeDeclContext(SS, true);
655  if (!DC) return true;
656
657  // Before we enter a declarator's context, we need to make sure that
658  // it is a complete declaration context.
659  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
660    return true;
661
662  EnterDeclaratorContext(S, DC);
663
664  // Rebuild the nested name specifier for the new scope.
665  if (DC->isDependentContext())
666    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
667
668  return false;
669}
670
671/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
672/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
673/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
674/// Used to indicate that names should revert to being looked up in the
675/// defining scope.
676void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
677  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
678  if (SS.isInvalid())
679    return;
680  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
681         "exiting declarator scope we never really entered");
682  ExitDeclaratorContext(S);
683}
684