SemaCXXScopeSpec.cpp revision e885f84e7a6e363a54b9100afd1c63364808d959
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25
26/// \brief Find the current instantiation that associated with the given type.
27static CXXRecordDecl *
28getCurrentInstantiationOf(ASTContext &Context, DeclContext *CurContext,
29                          QualType T) {
30  if (T.isNull())
31    return 0;
32
33  T = Context.getCanonicalType(T).getUnqualifiedType();
34
35  for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
36    // If we've hit a namespace or the global scope, then the
37    // nested-name-specifier can't refer to the current instantiation.
38    if (Ctx->isFileContext())
39      return 0;
40
41    // Skip non-class contexts.
42    CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
43    if (!Record)
44      continue;
45
46    // If this record type is not dependent,
47    if (!Record->isDependentType())
48      return 0;
49
50    // C++ [temp.dep.type]p1:
51    //
52    //   In the definition of a class template, a nested class of a
53    //   class template, a member of a class template, or a member of a
54    //   nested class of a class template, a name refers to the current
55    //   instantiation if it is
56    //     -- the injected-class-name (9) of the class template or
57    //        nested class,
58    //     -- in the definition of a primary class template, the name
59    //        of the class template followed by the template argument
60    //        list of the primary template (as described below)
61    //        enclosed in <>,
62    //     -- in the definition of a nested class of a class template,
63    //        the name of the nested class referenced as a member of
64    //        the current instantiation, or
65    //     -- in the definition of a partial specialization, the name
66    //        of the class template followed by the template argument
67    //        list of the partial specialization enclosed in <>. If
68    //        the nth template parameter is a parameter pack, the nth
69    //        template argument is a pack expansion (14.6.3) whose
70    //        pattern is the name of the parameter pack.
71    //        (FIXME: parameter packs)
72    //
73    // All of these options come down to having the
74    // nested-name-specifier type that is equivalent to the
75    // injected-class-name of one of the types that is currently in
76    // our context.
77    if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T)
78      return Record;
79  }
80
81  return 0;
82}
83
84/// \brief Compute the DeclContext that is associated with the given type.
85///
86/// \param T the type for which we are attempting to find a DeclContext.
87///
88/// \returns the declaration context represented by the type T,
89/// or NULL if the declaration context cannot be computed (e.g., because it is
90/// dependent and not the current instantiation).
91DeclContext *Sema::computeDeclContext(QualType T) {
92  if (const TagType *Tag = T->getAs<TagType>())
93    return Tag->getDecl();
94
95  return ::getCurrentInstantiationOf(Context, CurContext, T);
96}
97
98/// \brief Compute the DeclContext that is associated with the given
99/// scope specifier.
100///
101/// \param SS the C++ scope specifier as it appears in the source
102///
103/// \param EnteringContext when true, we will be entering the context of
104/// this scope specifier, so we can retrieve the declaration context of a
105/// class template or class template partial specialization even if it is
106/// not the current instantiation.
107///
108/// \returns the declaration context represented by the scope specifier @p SS,
109/// or NULL if the declaration context cannot be computed (e.g., because it is
110/// dependent and not the current instantiation).
111DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
112                                      bool EnteringContext) {
113  if (!SS.isSet() || SS.isInvalid())
114    return 0;
115
116  NestedNameSpecifier *NNS
117    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
118  if (NNS->isDependent()) {
119    // If this nested-name-specifier refers to the current
120    // instantiation, return its DeclContext.
121    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
122      return Record;
123
124    if (EnteringContext) {
125      const Type *NNSType = NNS->getAsType();
126      if (!NNSType) {
127        // do nothing, fall out
128      } else if (const TemplateSpecializationType *SpecType
129                   = NNSType->getAs<TemplateSpecializationType>()) {
130        // We are entering the context of the nested name specifier, so try to
131        // match the nested name specifier to either a primary class template
132        // or a class template partial specialization.
133        if (ClassTemplateDecl *ClassTemplate
134              = dyn_cast_or_null<ClassTemplateDecl>(
135                            SpecType->getTemplateName().getAsTemplateDecl())) {
136          QualType ContextType
137            = Context.getCanonicalType(QualType(SpecType, 0));
138
139          // If the type of the nested name specifier is the same as the
140          // injected class name of the named class template, we're entering
141          // into that class template definition.
142          QualType Injected
143            = ClassTemplate->getInjectedClassNameSpecialization(Context);
144          if (Context.hasSameType(Injected, ContextType))
145            return ClassTemplate->getTemplatedDecl();
146
147          // If the type of the nested name specifier is the same as the
148          // type of one of the class template's class template partial
149          // specializations, we're entering into the definition of that
150          // class template partial specialization.
151          if (ClassTemplatePartialSpecializationDecl *PartialSpec
152                = ClassTemplate->findPartialSpecialization(ContextType))
153            return PartialSpec;
154        }
155      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
156        // The nested name specifier refers to a member of a class template.
157        return RecordT->getDecl();
158      }
159    }
160
161    return 0;
162  }
163
164  switch (NNS->getKind()) {
165  case NestedNameSpecifier::Identifier:
166    assert(false && "Dependent nested-name-specifier has no DeclContext");
167    break;
168
169  case NestedNameSpecifier::Namespace:
170    return NNS->getAsNamespace();
171
172  case NestedNameSpecifier::TypeSpec:
173  case NestedNameSpecifier::TypeSpecWithTemplate: {
174    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
175    assert(Tag && "Non-tag type in nested-name-specifier");
176    return Tag->getDecl();
177  } break;
178
179  case NestedNameSpecifier::Global:
180    return Context.getTranslationUnitDecl();
181  }
182
183  // Required to silence a GCC warning.
184  return 0;
185}
186
187bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
188  if (!SS.isSet() || SS.isInvalid())
189    return false;
190
191  NestedNameSpecifier *NNS
192    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
193  return NNS->isDependent();
194}
195
196// \brief Determine whether this C++ scope specifier refers to an
197// unknown specialization, i.e., a dependent type that is not the
198// current instantiation.
199bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
200  if (!isDependentScopeSpecifier(SS))
201    return false;
202
203  NestedNameSpecifier *NNS
204    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
205  return getCurrentInstantiationOf(NNS) == 0;
206}
207
208/// \brief If the given nested name specifier refers to the current
209/// instantiation, return the declaration that corresponds to that
210/// current instantiation (C++0x [temp.dep.type]p1).
211///
212/// \param NNS a dependent nested name specifier.
213CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
214  assert(getLangOptions().CPlusPlus && "Only callable in C++");
215  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
216
217  if (!NNS->getAsType())
218    return 0;
219
220  QualType T = QualType(NNS->getAsType(), 0);
221  return ::getCurrentInstantiationOf(Context, CurContext, T);
222}
223
224/// \brief Require that the context specified by SS be complete.
225///
226/// If SS refers to a type, this routine checks whether the type is
227/// complete enough (or can be made complete enough) for name lookup
228/// into the DeclContext. A type that is not yet completed can be
229/// considered "complete enough" if it is a class/struct/union/enum
230/// that is currently being defined. Or, if we have a type that names
231/// a class template specialization that is not a complete type, we
232/// will attempt to instantiate that class template.
233bool Sema::RequireCompleteDeclContext(const CXXScopeSpec &SS) {
234  if (!SS.isSet() || SS.isInvalid())
235    return false;
236
237  DeclContext *DC = computeDeclContext(SS, true);
238  if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
239    // If this is a dependent type, then we consider it complete.
240    if (Tag->isDependentContext())
241      return false;
242
243    // If we're currently defining this type, then lookup into the
244    // type is okay: don't complain that it isn't complete yet.
245    const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
246    if (TagT && TagT->isBeingDefined())
247      return false;
248
249    // The type must be complete.
250    return RequireCompleteType(SS.getRange().getBegin(),
251                               Context.getTypeDeclType(Tag),
252                               PDiag(diag::err_incomplete_nested_name_spec)
253                                 << SS.getRange());
254  }
255
256  return false;
257}
258
259/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
260/// global scope ('::').
261Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
262                                                     SourceLocation CCLoc) {
263  return NestedNameSpecifier::GlobalSpecifier(Context);
264}
265
266/// \brief Determines whether the given declaration is an valid acceptable
267/// result for name lookup of a nested-name-specifier.
268bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
269  if (!SD)
270    return false;
271
272  // Namespace and namespace aliases are fine.
273  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
274    return true;
275
276  if (!isa<TypeDecl>(SD))
277    return false;
278
279  // Determine whether we have a class (or, in C++0x, an enum) or
280  // a typedef thereof. If so, build the nested-name-specifier.
281  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
282  if (T->isDependentType())
283    return true;
284  else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
285    if (TD->getUnderlyingType()->isRecordType() ||
286        (Context.getLangOptions().CPlusPlus0x &&
287         TD->getUnderlyingType()->isEnumeralType()))
288      return true;
289  } else if (isa<RecordDecl>(SD) ||
290             (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
291    return true;
292
293  return false;
294}
295
296/// \brief If the given nested-name-specifier begins with a bare identifier
297/// (e.g., Base::), perform name lookup for that identifier as a
298/// nested-name-specifier within the given scope, and return the result of that
299/// name lookup.
300NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
301  if (!S || !NNS)
302    return 0;
303
304  while (NNS->getPrefix())
305    NNS = NNS->getPrefix();
306
307  if (NNS->getKind() != NestedNameSpecifier::Identifier)
308    return 0;
309
310  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
311                     LookupNestedNameSpecifierName);
312  LookupName(Found, S);
313  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
314
315  if (!Found.isSingleResult())
316    return 0;
317
318  NamedDecl *Result = Found.getFoundDecl();
319  if (isAcceptableNestedNameSpecifier(Result))
320    return Result;
321
322  return 0;
323}
324
325bool Sema::isNonTypeNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS,
326                                        SourceLocation IdLoc,
327                                        IdentifierInfo &II,
328                                        TypeTy *ObjectTypePtr) {
329  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
330  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
331
332  // Determine where to perform name lookup
333  DeclContext *LookupCtx = 0;
334  bool isDependent = false;
335  if (!ObjectType.isNull()) {
336    // This nested-name-specifier occurs in a member access expression, e.g.,
337    // x->B::f, and we are looking into the type of the object.
338    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
339    LookupCtx = computeDeclContext(ObjectType);
340    isDependent = ObjectType->isDependentType();
341  } else if (SS.isSet()) {
342    // This nested-name-specifier occurs after another nested-name-specifier,
343    // so long into the context associated with the prior nested-name-specifier.
344    LookupCtx = computeDeclContext(SS, false);
345    isDependent = isDependentScopeSpecifier(SS);
346    Found.setContextRange(SS.getRange());
347  }
348
349  if (LookupCtx) {
350    // Perform "qualified" name lookup into the declaration context we
351    // computed, which is either the type of the base of a member access
352    // expression or the declaration context associated with a prior
353    // nested-name-specifier.
354
355    // The declaration context must be complete.
356    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS))
357      return false;
358
359    LookupQualifiedName(Found, LookupCtx);
360  } else if (isDependent) {
361    return false;
362  } else {
363    LookupName(Found, S);
364  }
365  Found.suppressDiagnostics();
366
367  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
368    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
369
370  return false;
371}
372
373/// \brief Build a new nested-name-specifier for "identifier::", as described
374/// by ActOnCXXNestedNameSpecifier.
375///
376/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
377/// that it contains an extra parameter \p ScopeLookupResult, which provides
378/// the result of name lookup within the scope of the nested-name-specifier
379/// that was computed at template definition time.
380///
381/// If ErrorRecoveryLookup is true, then this call is used to improve error
382/// recovery.  This means that it should not emit diagnostics, it should
383/// just return null on failure.  It also means it should only return a valid
384/// scope if it *knows* that the result is correct.  It should not return in a
385/// dependent context, for example.
386Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S,
387                                                    const CXXScopeSpec &SS,
388                                                    SourceLocation IdLoc,
389                                                    SourceLocation CCLoc,
390                                                    IdentifierInfo &II,
391                                                    QualType ObjectType,
392                                                  NamedDecl *ScopeLookupResult,
393                                                    bool EnteringContext,
394                                                    bool ErrorRecoveryLookup) {
395  NestedNameSpecifier *Prefix
396    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
397
398  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
399
400  // Determine where to perform name lookup
401  DeclContext *LookupCtx = 0;
402  bool isDependent = false;
403  if (!ObjectType.isNull()) {
404    // This nested-name-specifier occurs in a member access expression, e.g.,
405    // x->B::f, and we are looking into the type of the object.
406    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
407    LookupCtx = computeDeclContext(ObjectType);
408    isDependent = ObjectType->isDependentType();
409  } else if (SS.isSet()) {
410    // This nested-name-specifier occurs after another nested-name-specifier,
411    // so long into the context associated with the prior nested-name-specifier.
412    LookupCtx = computeDeclContext(SS, EnteringContext);
413    isDependent = isDependentScopeSpecifier(SS);
414    Found.setContextRange(SS.getRange());
415  }
416
417
418  bool ObjectTypeSearchedInScope = false;
419  if (LookupCtx) {
420    // Perform "qualified" name lookup into the declaration context we
421    // computed, which is either the type of the base of a member access
422    // expression or the declaration context associated with a prior
423    // nested-name-specifier.
424
425    // The declaration context must be complete.
426    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS))
427      return 0;
428
429    LookupQualifiedName(Found, LookupCtx);
430
431    if (!ObjectType.isNull() && Found.empty()) {
432      // C++ [basic.lookup.classref]p4:
433      //   If the id-expression in a class member access is a qualified-id of
434      //   the form
435      //
436      //        class-name-or-namespace-name::...
437      //
438      //   the class-name-or-namespace-name following the . or -> operator is
439      //   looked up both in the context of the entire postfix-expression and in
440      //   the scope of the class of the object expression. If the name is found
441      //   only in the scope of the class of the object expression, the name
442      //   shall refer to a class-name. If the name is found only in the
443      //   context of the entire postfix-expression, the name shall refer to a
444      //   class-name or namespace-name. [...]
445      //
446      // Qualified name lookup into a class will not find a namespace-name,
447      // so we do not need to diagnoste that case specifically. However,
448      // this qualified name lookup may find nothing. In that case, perform
449      // unqualified name lookup in the given scope (if available) or
450      // reconstruct the result from when name lookup was performed at template
451      // definition time.
452      if (S)
453        LookupName(Found, S);
454      else if (ScopeLookupResult)
455        Found.addDecl(ScopeLookupResult);
456
457      ObjectTypeSearchedInScope = true;
458    }
459  } else if (isDependent) {
460    // Don't speculate if we're just trying to improve error recovery.
461    if (ErrorRecoveryLookup)
462      return 0;
463
464    // We were not able to compute the declaration context for a dependent
465    // base object type or prior nested-name-specifier, so this
466    // nested-name-specifier refers to an unknown specialization. Just build
467    // a dependent nested-name-specifier.
468    if (!Prefix)
469      return NestedNameSpecifier::Create(Context, &II);
470
471    return NestedNameSpecifier::Create(Context, Prefix, &II);
472  } else {
473    // Perform unqualified name lookup in the current scope.
474    LookupName(Found, S);
475  }
476
477  // FIXME: Deal with ambiguities cleanly.
478
479  if (Found.empty() && !ErrorRecoveryLookup) {
480    // We haven't found anything, and we're not recovering from a
481    // different kind of error, so look for typos.
482    DeclarationName Name = Found.getLookupName();
483    if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext) &&
484        Found.isSingleResult() &&
485        isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) {
486      if (LookupCtx)
487        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
488          << Name << LookupCtx << Found.getLookupName() << SS.getRange()
489          << FixItHint::CreateReplacement(Found.getNameLoc(),
490                                          Found.getLookupName().getAsString());
491      else
492        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
493          << Name << Found.getLookupName()
494          << FixItHint::CreateReplacement(Found.getNameLoc(),
495                                          Found.getLookupName().getAsString());
496
497      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
498        Diag(ND->getLocation(), diag::note_previous_decl)
499          << ND->getDeclName();
500    } else
501      Found.clear();
502  }
503
504  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
505  if (isAcceptableNestedNameSpecifier(SD)) {
506    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
507      // C++ [basic.lookup.classref]p4:
508      //   [...] If the name is found in both contexts, the
509      //   class-name-or-namespace-name shall refer to the same entity.
510      //
511      // We already found the name in the scope of the object. Now, look
512      // into the current scope (the scope of the postfix-expression) to
513      // see if we can find the same name there. As above, if there is no
514      // scope, reconstruct the result from the template instantiation itself.
515      NamedDecl *OuterDecl;
516      if (S) {
517        LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName);
518        LookupName(FoundOuter, S);
519        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
520      } else
521        OuterDecl = ScopeLookupResult;
522
523      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
524          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
525          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
526           !Context.hasSameType(
527                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
528                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
529             if (ErrorRecoveryLookup)
530               return 0;
531
532             Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
533               << &II;
534             Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
535               << ObjectType;
536             Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
537
538             // Fall through so that we'll pick the name we found in the object
539             // type, since that's probably what the user wanted anyway.
540           }
541    }
542
543    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
544      return NestedNameSpecifier::Create(Context, Prefix, Namespace);
545
546    // FIXME: It would be nice to maintain the namespace alias name, then
547    // see through that alias when resolving the nested-name-specifier down to
548    // a declaration context.
549    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
550      return NestedNameSpecifier::Create(Context, Prefix,
551
552                                         Alias->getNamespace());
553
554    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
555    return NestedNameSpecifier::Create(Context, Prefix, false,
556                                       T.getTypePtr());
557  }
558
559  // Otherwise, we have an error case.  If we don't want diagnostics, just
560  // return an error now.
561  if (ErrorRecoveryLookup)
562    return 0;
563
564  // If we didn't find anything during our lookup, try again with
565  // ordinary name lookup, which can help us produce better error
566  // messages.
567  if (Found.empty()) {
568    Found.clear(LookupOrdinaryName);
569    LookupName(Found, S);
570  }
571
572  unsigned DiagID;
573  if (!Found.empty())
574    DiagID = diag::err_expected_class_or_namespace;
575  else if (SS.isSet()) {
576    Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange();
577    return 0;
578  } else
579    DiagID = diag::err_undeclared_var_use;
580
581  if (SS.isSet())
582    Diag(IdLoc, DiagID) << &II << SS.getRange();
583  else
584    Diag(IdLoc, DiagID) << &II;
585
586  return 0;
587}
588
589/// ActOnCXXNestedNameSpecifier - Called during parsing of a
590/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
591/// we want to resolve "bar::". 'SS' is empty or the previously parsed
592/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
593/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
594/// Returns a CXXScopeTy* object representing the C++ scope.
595Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
596                                                    const CXXScopeSpec &SS,
597                                                    SourceLocation IdLoc,
598                                                    SourceLocation CCLoc,
599                                                    IdentifierInfo &II,
600                                                    TypeTy *ObjectTypePtr,
601                                                    bool EnteringContext) {
602  return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II,
603                                     QualType::getFromOpaquePtr(ObjectTypePtr),
604                                     /*ScopeLookupResult=*/0, EnteringContext,
605                                     false);
606}
607
608/// IsInvalidUnlessNestedName - This method is used for error recovery
609/// purposes to determine whether the specified identifier is only valid as
610/// a nested name specifier, for example a namespace name.  It is
611/// conservatively correct to always return false from this method.
612///
613/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
614bool Sema::IsInvalidUnlessNestedName(Scope *S, const CXXScopeSpec &SS,
615                                     IdentifierInfo &II, TypeTy *ObjectType,
616                                     bool EnteringContext) {
617  return BuildCXXNestedNameSpecifier(S, SS, SourceLocation(), SourceLocation(),
618                                     II, QualType::getFromOpaquePtr(ObjectType),
619                                     /*ScopeLookupResult=*/0, EnteringContext,
620                                     true);
621}
622
623Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
624                                                    const CXXScopeSpec &SS,
625                                                    TypeTy *Ty,
626                                                    SourceRange TypeRange,
627                                                    SourceLocation CCLoc) {
628  NestedNameSpecifier *Prefix
629    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
630  QualType T = GetTypeFromParser(Ty);
631  return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
632                                     T.getTypePtr());
633}
634
635bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
636  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
637
638  NestedNameSpecifier *Qualifier =
639    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
640
641  // There are only two places a well-formed program may qualify a
642  // declarator: first, when defining a namespace or class member
643  // out-of-line, and second, when naming an explicitly-qualified
644  // friend function.  The latter case is governed by
645  // C++03 [basic.lookup.unqual]p10:
646  //   In a friend declaration naming a member function, a name used
647  //   in the function declarator and not part of a template-argument
648  //   in a template-id is first looked up in the scope of the member
649  //   function's class. If it is not found, or if the name is part of
650  //   a template-argument in a template-id, the look up is as
651  //   described for unqualified names in the definition of the class
652  //   granting friendship.
653  // i.e. we don't push a scope unless it's a class member.
654
655  switch (Qualifier->getKind()) {
656  case NestedNameSpecifier::Global:
657  case NestedNameSpecifier::Namespace:
658    // These are always namespace scopes.  We never want to enter a
659    // namespace scope from anything but a file context.
660    return CurContext->getLookupContext()->isFileContext();
661
662  case NestedNameSpecifier::Identifier:
663  case NestedNameSpecifier::TypeSpec:
664  case NestedNameSpecifier::TypeSpecWithTemplate:
665    // These are never namespace scopes.
666    return true;
667  }
668
669  // Silence bogus warning.
670  return false;
671}
672
673/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
674/// scope or nested-name-specifier) is parsed, part of a declarator-id.
675/// After this method is called, according to [C++ 3.4.3p3], names should be
676/// looked up in the declarator-id's scope, until the declarator is parsed and
677/// ActOnCXXExitDeclaratorScope is called.
678/// The 'SS' should be a non-empty valid CXXScopeSpec.
679bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
680  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
681
682  if (SS.isInvalid()) return true;
683
684  DeclContext *DC = computeDeclContext(SS, true);
685  if (!DC) return true;
686
687  // Before we enter a declarator's context, we need to make sure that
688  // it is a complete declaration context.
689  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS))
690    return true;
691
692  EnterDeclaratorContext(S, DC);
693  return false;
694}
695
696/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
697/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
698/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
699/// Used to indicate that names should revert to being looked up in the
700/// defining scope.
701void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
702  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
703  if (SS.isInvalid())
704    return;
705  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
706         "exiting declarator scope we never really entered");
707  ExitDeclaratorContext(S);
708}
709