SemaChecking.cpp revision 082d936a5b8323ac2c04558d8bca277a647831a3
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22using namespace clang;
23
24/// getLocationOfStringLiteralByte - Return a source location that points to the
25/// specified byte of the specified string literal.
26///
27/// Strings are amazingly complex.  They can be formed from multiple tokens and
28/// can have escape sequences in them in addition to the usual trigraph and
29/// escaped newline business.  This routine handles this complexity.
30///
31SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
32                                                    unsigned ByteNo) const {
33  assert(!SL->isWide() && "This doesn't work for wide strings yet");
34
35  // Loop over all of the tokens in this string until we find the one that
36  // contains the byte we're looking for.
37  unsigned TokNo = 0;
38  while (1) {
39    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
40    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
41
42    // Get the spelling of the string so that we can get the data that makes up
43    // the string literal, not the identifier for the macro it is potentially
44    // expanded through.
45    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
46
47    // Re-lex the token to get its length and original spelling.
48    std::pair<FileID, unsigned> LocInfo =
49      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
50    std::pair<const char *,const char *> Buffer =
51      SourceMgr.getBufferData(LocInfo.first);
52    const char *StrData = Buffer.first+LocInfo.second;
53
54    // Create a langops struct and enable trigraphs.  This is sufficient for
55    // relexing tokens.
56    LangOptions LangOpts;
57    LangOpts.Trigraphs = true;
58
59    // Create a lexer starting at the beginning of this token.
60    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
61                   Buffer.second);
62    Token TheTok;
63    TheLexer.LexFromRawLexer(TheTok);
64
65    // Use the StringLiteralParser to compute the length of the string in bytes.
66    StringLiteralParser SLP(&TheTok, 1, PP);
67    unsigned TokNumBytes = SLP.GetStringLength();
68
69    // If the byte is in this token, return the location of the byte.
70    if (ByteNo < TokNumBytes ||
71        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
72      unsigned Offset =
73        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
74
75      // Now that we know the offset of the token in the spelling, use the
76      // preprocessor to get the offset in the original source.
77      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
78    }
79
80    // Move to the next string token.
81    ++TokNo;
82    ByteNo -= TokNumBytes;
83  }
84}
85
86
87/// CheckFunctionCall - Check a direct function call for various correctness
88/// and safety properties not strictly enforced by the C type system.
89Action::OwningExprResult
90Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
91  OwningExprResult TheCallResult(Owned(TheCall));
92  // Get the IdentifierInfo* for the called function.
93  IdentifierInfo *FnInfo = FDecl->getIdentifier();
94
95  // None of the checks below are needed for functions that don't have
96  // simple names (e.g., C++ conversion functions).
97  if (!FnInfo)
98    return move(TheCallResult);
99
100  switch (FDecl->getBuiltinID(Context)) {
101  case Builtin::BI__builtin___CFStringMakeConstantString:
102    assert(TheCall->getNumArgs() == 1 &&
103           "Wrong # arguments to builtin CFStringMakeConstantString");
104    if (CheckObjCString(TheCall->getArg(0)))
105      return ExprError();
106    return move(TheCallResult);
107  case Builtin::BI__builtin_stdarg_start:
108  case Builtin::BI__builtin_va_start:
109    if (SemaBuiltinVAStart(TheCall))
110      return ExprError();
111    return move(TheCallResult);
112  case Builtin::BI__builtin_isgreater:
113  case Builtin::BI__builtin_isgreaterequal:
114  case Builtin::BI__builtin_isless:
115  case Builtin::BI__builtin_islessequal:
116  case Builtin::BI__builtin_islessgreater:
117  case Builtin::BI__builtin_isunordered:
118    if (SemaBuiltinUnorderedCompare(TheCall))
119      return ExprError();
120    return move(TheCallResult);
121  case Builtin::BI__builtin_return_address:
122  case Builtin::BI__builtin_frame_address:
123    if (SemaBuiltinStackAddress(TheCall))
124      return ExprError();
125    return move(TheCallResult);
126  case Builtin::BI__builtin_shufflevector:
127    return SemaBuiltinShuffleVector(TheCall);
128    // TheCall will be freed by the smart pointer here, but that's fine, since
129    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
130  case Builtin::BI__builtin_prefetch:
131    if (SemaBuiltinPrefetch(TheCall))
132      return ExprError();
133    return move(TheCallResult);
134  case Builtin::BI__builtin_object_size:
135    if (SemaBuiltinObjectSize(TheCall))
136      return ExprError();
137  }
138
139  // FIXME: This mechanism should be abstracted to be less fragile and
140  // more efficient. For example, just map function ids to custom
141  // handlers.
142
143  // Printf checking.
144  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
145    if (Format->getType() == "printf") {
146      bool HasVAListArg = Format->getFirstArg() == 0;
147      if (!HasVAListArg) {
148        if (const FunctionProtoType *Proto
149            = FDecl->getType()->getAsFunctionProtoType())
150        HasVAListArg = !Proto->isVariadic();
151      }
152      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
153                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
154    }
155  }
156
157  return move(TheCallResult);
158}
159
160/// CheckObjCString - Checks that the argument to the builtin
161/// CFString constructor is correct
162bool Sema::CheckObjCString(Expr *Arg) {
163  Arg = Arg->IgnoreParenCasts();
164  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
165
166  if (!Literal || Literal->isWide()) {
167    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
168      << Arg->getSourceRange();
169    return true;
170  }
171
172  const char *Data = Literal->getStrData();
173  unsigned Length = Literal->getByteLength();
174
175  for (unsigned i = 0; i < Length; ++i) {
176    if (!isascii(Data[i])) {
177      Diag(getLocationOfStringLiteralByte(Literal, i),
178           diag::warn_cfstring_literal_contains_non_ascii_character)
179        << Arg->getSourceRange();
180      break;
181    }
182
183    if (!Data[i]) {
184      Diag(getLocationOfStringLiteralByte(Literal, i),
185           diag::warn_cfstring_literal_contains_nul_character)
186        << Arg->getSourceRange();
187      break;
188    }
189  }
190
191  return false;
192}
193
194/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
195/// Emit an error and return true on failure, return false on success.
196bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
197  Expr *Fn = TheCall->getCallee();
198  if (TheCall->getNumArgs() > 2) {
199    Diag(TheCall->getArg(2)->getLocStart(),
200         diag::err_typecheck_call_too_many_args)
201      << 0 /*function call*/ << Fn->getSourceRange()
202      << SourceRange(TheCall->getArg(2)->getLocStart(),
203                     (*(TheCall->arg_end()-1))->getLocEnd());
204    return true;
205  }
206
207  if (TheCall->getNumArgs() < 2) {
208    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
209      << 0 /*function call*/;
210  }
211
212  // Determine whether the current function is variadic or not.
213  bool isVariadic;
214  if (getCurFunctionDecl()) {
215    if (FunctionProtoType* FTP =
216            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
217      isVariadic = FTP->isVariadic();
218    else
219      isVariadic = false;
220  } else {
221    isVariadic = getCurMethodDecl()->isVariadic();
222  }
223
224  if (!isVariadic) {
225    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
226    return true;
227  }
228
229  // Verify that the second argument to the builtin is the last argument of the
230  // current function or method.
231  bool SecondArgIsLastNamedArgument = false;
232  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
233
234  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
235    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
236      // FIXME: This isn't correct for methods (results in bogus warning).
237      // Get the last formal in the current function.
238      const ParmVarDecl *LastArg;
239      if (FunctionDecl *FD = getCurFunctionDecl())
240        LastArg = *(FD->param_end()-1);
241      else
242        LastArg = *(getCurMethodDecl()->param_end()-1);
243      SecondArgIsLastNamedArgument = PV == LastArg;
244    }
245  }
246
247  if (!SecondArgIsLastNamedArgument)
248    Diag(TheCall->getArg(1)->getLocStart(),
249         diag::warn_second_parameter_of_va_start_not_last_named_argument);
250  return false;
251}
252
253/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
254/// friends.  This is declared to take (...), so we have to check everything.
255bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
256  if (TheCall->getNumArgs() < 2)
257    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
258      << 0 /*function call*/;
259  if (TheCall->getNumArgs() > 2)
260    return Diag(TheCall->getArg(2)->getLocStart(),
261                diag::err_typecheck_call_too_many_args)
262      << 0 /*function call*/
263      << SourceRange(TheCall->getArg(2)->getLocStart(),
264                     (*(TheCall->arg_end()-1))->getLocEnd());
265
266  Expr *OrigArg0 = TheCall->getArg(0);
267  Expr *OrigArg1 = TheCall->getArg(1);
268
269  // Do standard promotions between the two arguments, returning their common
270  // type.
271  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
272
273  // Make sure any conversions are pushed back into the call; this is
274  // type safe since unordered compare builtins are declared as "_Bool
275  // foo(...)".
276  TheCall->setArg(0, OrigArg0);
277  TheCall->setArg(1, OrigArg1);
278
279  // If the common type isn't a real floating type, then the arguments were
280  // invalid for this operation.
281  if (!Res->isRealFloatingType())
282    return Diag(OrigArg0->getLocStart(),
283                diag::err_typecheck_call_invalid_ordered_compare)
284      << OrigArg0->getType() << OrigArg1->getType()
285      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
286
287  return false;
288}
289
290bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
291  // The signature for these builtins is exact; the only thing we need
292  // to check is that the argument is a constant.
293  SourceLocation Loc;
294  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
295    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
296
297  return false;
298}
299
300/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
301// This is declared to take (...), so we have to check everything.
302Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
303  if (TheCall->getNumArgs() < 3)
304    return ExprError(Diag(TheCall->getLocEnd(),
305                          diag::err_typecheck_call_too_few_args)
306      << 0 /*function call*/ << TheCall->getSourceRange());
307
308  QualType FAType = TheCall->getArg(0)->getType();
309  QualType SAType = TheCall->getArg(1)->getType();
310
311  if (!FAType->isVectorType() || !SAType->isVectorType()) {
312    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
313      << SourceRange(TheCall->getArg(0)->getLocStart(),
314                     TheCall->getArg(1)->getLocEnd());
315    return ExprError();
316  }
317
318  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
319      Context.getCanonicalType(SAType).getUnqualifiedType()) {
320    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
321      << SourceRange(TheCall->getArg(0)->getLocStart(),
322                     TheCall->getArg(1)->getLocEnd());
323    return ExprError();
324  }
325
326  unsigned numElements = FAType->getAsVectorType()->getNumElements();
327  if (TheCall->getNumArgs() != numElements+2) {
328    if (TheCall->getNumArgs() < numElements+2)
329      return ExprError(Diag(TheCall->getLocEnd(),
330                            diag::err_typecheck_call_too_few_args)
331               << 0 /*function call*/ << TheCall->getSourceRange());
332    return ExprError(Diag(TheCall->getLocEnd(),
333                          diag::err_typecheck_call_too_many_args)
334             << 0 /*function call*/ << TheCall->getSourceRange());
335  }
336
337  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
338    llvm::APSInt Result(32);
339    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
340      return ExprError(Diag(TheCall->getLocStart(),
341                  diag::err_shufflevector_nonconstant_argument)
342                << TheCall->getArg(i)->getSourceRange());
343
344    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
345      return ExprError(Diag(TheCall->getLocStart(),
346                  diag::err_shufflevector_argument_too_large)
347               << TheCall->getArg(i)->getSourceRange());
348  }
349
350  llvm::SmallVector<Expr*, 32> exprs;
351
352  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
353    exprs.push_back(TheCall->getArg(i));
354    TheCall->setArg(i, 0);
355  }
356
357  return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), numElements+2,
358                                            FAType,
359                                            TheCall->getCallee()->getLocStart(),
360                                            TheCall->getRParenLoc()));
361}
362
363/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
364// This is declared to take (const void*, ...) and can take two
365// optional constant int args.
366bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
367  unsigned NumArgs = TheCall->getNumArgs();
368
369  if (NumArgs > 3)
370    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
371             << 0 /*function call*/ << TheCall->getSourceRange();
372
373  // Argument 0 is checked for us and the remaining arguments must be
374  // constant integers.
375  for (unsigned i = 1; i != NumArgs; ++i) {
376    Expr *Arg = TheCall->getArg(i);
377    QualType RWType = Arg->getType();
378
379    const BuiltinType *BT = RWType->getAsBuiltinType();
380    llvm::APSInt Result;
381    if (!BT || BT->getKind() != BuiltinType::Int ||
382        !Arg->isIntegerConstantExpr(Result, Context))
383      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
384              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
385
386    // FIXME: gcc issues a warning and rewrites these to 0. These
387    // seems especially odd for the third argument since the default
388    // is 3.
389    if (i == 1) {
390      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
391        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
392             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
393    } else {
394      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
395        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
396            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
397    }
398  }
399
400  return false;
401}
402
403/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
404/// int type). This simply type checks that type is one of the defined
405/// constants (0-3).
406bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
407  Expr *Arg = TheCall->getArg(1);
408  QualType ArgType = Arg->getType();
409  const BuiltinType *BT = ArgType->getAsBuiltinType();
410  llvm::APSInt Result(32);
411  if (!BT || BT->getKind() != BuiltinType::Int ||
412      !Arg->isIntegerConstantExpr(Result, Context)) {
413    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
414             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
415  }
416
417  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
418    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
419             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
420  }
421
422  return false;
423}
424
425// Handle i > 1 ? "x" : "y", recursivelly
426bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
427                                  bool HasVAListArg,
428                                  unsigned format_idx, unsigned firstDataArg) {
429
430  switch (E->getStmtClass()) {
431  case Stmt::ConditionalOperatorClass: {
432    const ConditionalOperator *C = cast<ConditionalOperator>(E);
433    return SemaCheckStringLiteral(C->getLHS(), TheCall,
434                                  HasVAListArg, format_idx, firstDataArg)
435        && SemaCheckStringLiteral(C->getRHS(), TheCall,
436                                  HasVAListArg, format_idx, firstDataArg);
437  }
438
439  case Stmt::ImplicitCastExprClass: {
440    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
441    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
442                                  format_idx, firstDataArg);
443  }
444
445  case Stmt::ParenExprClass: {
446    const ParenExpr *Expr = cast<ParenExpr>(E);
447    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
448                                  format_idx, firstDataArg);
449  }
450
451  case Stmt::DeclRefExprClass: {
452    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
453
454    // As an exception, do not flag errors for variables binding to
455    // const string literals.
456    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
457      bool isConstant = false;
458      QualType T = DR->getType();
459
460      if (const ArrayType *AT = Context.getAsArrayType(T)) {
461        isConstant = AT->getElementType().isConstant(Context);
462      }
463      else if (const PointerType *PT = T->getAsPointerType()) {
464        isConstant = T.isConstant(Context) &&
465                     PT->getPointeeType().isConstant(Context);
466      }
467
468      if (isConstant) {
469        const VarDecl *Def = 0;
470        if (const Expr *Init = VD->getDefinition(Def))
471          return SemaCheckStringLiteral(Init, TheCall,
472                                        HasVAListArg, format_idx, firstDataArg);
473      }
474    }
475
476    return false;
477  }
478
479  case Stmt::ObjCStringLiteralClass:
480  case Stmt::StringLiteralClass: {
481    const StringLiteral *StrE = NULL;
482
483    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
484      StrE = ObjCFExpr->getString();
485    else
486      StrE = cast<StringLiteral>(E);
487
488    if (StrE) {
489      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
490                        firstDataArg);
491      return true;
492    }
493
494    return false;
495  }
496
497  default:
498    return false;
499  }
500}
501
502
503/// CheckPrintfArguments - Check calls to printf (and similar functions) for
504/// correct use of format strings.
505///
506///  HasVAListArg - A predicate indicating whether the printf-like
507///    function is passed an explicit va_arg argument (e.g., vprintf)
508///
509///  format_idx - The index into Args for the format string.
510///
511/// Improper format strings to functions in the printf family can be
512/// the source of bizarre bugs and very serious security holes.  A
513/// good source of information is available in the following paper
514/// (which includes additional references):
515///
516///  FormatGuard: Automatic Protection From printf Format String
517///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
518///
519/// Functionality implemented:
520///
521///  We can statically check the following properties for string
522///  literal format strings for non v.*printf functions (where the
523///  arguments are passed directly):
524//
525///  (1) Are the number of format conversions equal to the number of
526///      data arguments?
527///
528///  (2) Does each format conversion correctly match the type of the
529///      corresponding data argument?  (TODO)
530///
531/// Moreover, for all printf functions we can:
532///
533///  (3) Check for a missing format string (when not caught by type checking).
534///
535///  (4) Check for no-operation flags; e.g. using "#" with format
536///      conversion 'c'  (TODO)
537///
538///  (5) Check the use of '%n', a major source of security holes.
539///
540///  (6) Check for malformed format conversions that don't specify anything.
541///
542///  (7) Check for empty format strings.  e.g: printf("");
543///
544///  (8) Check that the format string is a wide literal.
545///
546///  (9) Also check the arguments of functions with the __format__ attribute.
547///      (TODO).
548///
549/// All of these checks can be done by parsing the format string.
550///
551/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
552void
553Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
554                           unsigned format_idx, unsigned firstDataArg) {
555  const Expr *Fn = TheCall->getCallee();
556
557  // CHECK: printf-like function is called with no format string.
558  if (format_idx >= TheCall->getNumArgs()) {
559    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
560      << Fn->getSourceRange();
561    return;
562  }
563
564  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
565
566  // CHECK: format string is not a string literal.
567  //
568  // Dynamically generated format strings are difficult to
569  // automatically vet at compile time.  Requiring that format strings
570  // are string literals: (1) permits the checking of format strings by
571  // the compiler and thereby (2) can practically remove the source of
572  // many format string exploits.
573
574  // Format string can be either ObjC string (e.g. @"%d") or
575  // C string (e.g. "%d")
576  // ObjC string uses the same format specifiers as C string, so we can use
577  // the same format string checking logic for both ObjC and C strings.
578  bool isFExpr = SemaCheckStringLiteral(OrigFormatExpr, TheCall,
579                                        HasVAListArg, format_idx,
580                                        firstDataArg);
581
582  if (!isFExpr) {
583    // For vprintf* functions (i.e., HasVAListArg==true), we add a
584    // special check to see if the format string is a function parameter
585    // of the function calling the printf function.  If the function
586    // has an attribute indicating it is a printf-like function, then we
587    // should suppress warnings concerning non-literals being used in a call
588    // to a vprintf function.  For example:
589    //
590    // void
591    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
592    //      va_list ap;
593    //      va_start(ap, fmt);
594    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
595    //      ...
596    //
597    //
598    //  FIXME: We don't have full attribute support yet, so just check to see
599    //    if the argument is a DeclRefExpr that references a parameter.  We'll
600    //    add proper support for checking the attribute later.
601    if (HasVAListArg)
602      if (const DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
603        if (isa<ParmVarDecl>(DR->getDecl()))
604          return;
605
606    Diag(TheCall->getArg(format_idx)->getLocStart(),
607         diag::warn_printf_not_string_constant)
608         << OrigFormatExpr->getSourceRange();
609    return;
610  }
611}
612
613void Sema::CheckPrintfString(const StringLiteral *FExpr,
614                             const Expr *OrigFormatExpr,
615                             const CallExpr *TheCall, bool HasVAListArg,
616                             unsigned format_idx, unsigned firstDataArg) {
617
618  const ObjCStringLiteral *ObjCFExpr =
619    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
620
621  // CHECK: is the format string a wide literal?
622  if (FExpr->isWide()) {
623    Diag(FExpr->getLocStart(),
624         diag::warn_printf_format_string_is_wide_literal)
625      << OrigFormatExpr->getSourceRange();
626    return;
627  }
628
629  // Str - The format string.  NOTE: this is NOT null-terminated!
630  const char * const Str = FExpr->getStrData();
631
632  // CHECK: empty format string?
633  const unsigned StrLen = FExpr->getByteLength();
634
635  if (StrLen == 0) {
636    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
637      << OrigFormatExpr->getSourceRange();
638    return;
639  }
640
641  // We process the format string using a binary state machine.  The
642  // current state is stored in CurrentState.
643  enum {
644    state_OrdChr,
645    state_Conversion
646  } CurrentState = state_OrdChr;
647
648  // numConversions - The number of conversions seen so far.  This is
649  //  incremented as we traverse the format string.
650  unsigned numConversions = 0;
651
652  // numDataArgs - The number of data arguments after the format
653  //  string.  This can only be determined for non vprintf-like
654  //  functions.  For those functions, this value is 1 (the sole
655  //  va_arg argument).
656  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
657
658  // Inspect the format string.
659  unsigned StrIdx = 0;
660
661  // LastConversionIdx - Index within the format string where we last saw
662  //  a '%' character that starts a new format conversion.
663  unsigned LastConversionIdx = 0;
664
665  for (; StrIdx < StrLen; ++StrIdx) {
666
667    // Is the number of detected conversion conversions greater than
668    // the number of matching data arguments?  If so, stop.
669    if (!HasVAListArg && numConversions > numDataArgs) break;
670
671    // Handle "\0"
672    if (Str[StrIdx] == '\0') {
673      // The string returned by getStrData() is not null-terminated,
674      // so the presence of a null character is likely an error.
675      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
676           diag::warn_printf_format_string_contains_null_char)
677        <<  OrigFormatExpr->getSourceRange();
678      return;
679    }
680
681    // Ordinary characters (not processing a format conversion).
682    if (CurrentState == state_OrdChr) {
683      if (Str[StrIdx] == '%') {
684        CurrentState = state_Conversion;
685        LastConversionIdx = StrIdx;
686      }
687      continue;
688    }
689
690    // Seen '%'.  Now processing a format conversion.
691    switch (Str[StrIdx]) {
692    // Handle dynamic precision or width specifier.
693    case '*': {
694      ++numConversions;
695
696      if (!HasVAListArg && numConversions > numDataArgs) {
697        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
698
699        if (Str[StrIdx-1] == '.')
700          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
701            << OrigFormatExpr->getSourceRange();
702        else
703          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
704            << OrigFormatExpr->getSourceRange();
705
706        // Don't do any more checking.  We'll just emit spurious errors.
707        return;
708      }
709
710      // Perform type checking on width/precision specifier.
711      const Expr *E = TheCall->getArg(format_idx+numConversions);
712      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
713        if (BT->getKind() == BuiltinType::Int)
714          break;
715
716      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
717
718      if (Str[StrIdx-1] == '.')
719        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
720          << E->getType() << E->getSourceRange();
721      else
722        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
723          << E->getType() << E->getSourceRange();
724
725      break;
726    }
727
728    // Characters which can terminate a format conversion
729    // (e.g. "%d").  Characters that specify length modifiers or
730    // other flags are handled by the default case below.
731    //
732    // FIXME: additional checks will go into the following cases.
733    case 'i':
734    case 'd':
735    case 'o':
736    case 'u':
737    case 'x':
738    case 'X':
739    case 'D':
740    case 'O':
741    case 'U':
742    case 'e':
743    case 'E':
744    case 'f':
745    case 'F':
746    case 'g':
747    case 'G':
748    case 'a':
749    case 'A':
750    case 'c':
751    case 'C':
752    case 'S':
753    case 's':
754    case 'p':
755      ++numConversions;
756      CurrentState = state_OrdChr;
757      break;
758
759    // CHECK: Are we using "%n"?  Issue a warning.
760    case 'n': {
761      ++numConversions;
762      CurrentState = state_OrdChr;
763      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
764                                                          LastConversionIdx);
765
766      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
767      break;
768    }
769
770    // Handle "%@"
771    case '@':
772      // %@ is allowed in ObjC format strings only.
773      if(ObjCFExpr != NULL)
774        CurrentState = state_OrdChr;
775      else {
776        // Issue a warning: invalid format conversion.
777        SourceLocation Loc =
778          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
779
780        Diag(Loc, diag::warn_printf_invalid_conversion)
781          <<  std::string(Str+LastConversionIdx,
782                          Str+std::min(LastConversionIdx+2, StrLen))
783          << OrigFormatExpr->getSourceRange();
784      }
785      ++numConversions;
786      break;
787
788    // Handle "%%"
789    case '%':
790      // Sanity check: Was the first "%" character the previous one?
791      // If not, we will assume that we have a malformed format
792      // conversion, and that the current "%" character is the start
793      // of a new conversion.
794      if (StrIdx - LastConversionIdx == 1)
795        CurrentState = state_OrdChr;
796      else {
797        // Issue a warning: invalid format conversion.
798        SourceLocation Loc =
799          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
800
801        Diag(Loc, diag::warn_printf_invalid_conversion)
802          << std::string(Str+LastConversionIdx, Str+StrIdx)
803          << OrigFormatExpr->getSourceRange();
804
805        // This conversion is broken.  Advance to the next format
806        // conversion.
807        LastConversionIdx = StrIdx;
808        ++numConversions;
809      }
810      break;
811
812    default:
813      // This case catches all other characters: flags, widths, etc.
814      // We should eventually process those as well.
815      break;
816    }
817  }
818
819  if (CurrentState == state_Conversion) {
820    // Issue a warning: invalid format conversion.
821    SourceLocation Loc =
822      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
823
824    Diag(Loc, diag::warn_printf_invalid_conversion)
825      << std::string(Str+LastConversionIdx,
826                     Str+std::min(LastConversionIdx+2, StrLen))
827      << OrigFormatExpr->getSourceRange();
828    return;
829  }
830
831  if (!HasVAListArg) {
832    // CHECK: Does the number of format conversions exceed the number
833    //        of data arguments?
834    if (numConversions > numDataArgs) {
835      SourceLocation Loc =
836        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
837
838      Diag(Loc, diag::warn_printf_insufficient_data_args)
839        << OrigFormatExpr->getSourceRange();
840    }
841    // CHECK: Does the number of data arguments exceed the number of
842    //        format conversions in the format string?
843    else if (numConversions < numDataArgs)
844      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
845           diag::warn_printf_too_many_data_args)
846        << OrigFormatExpr->getSourceRange();
847  }
848}
849
850//===--- CHECK: Return Address of Stack Variable --------------------------===//
851
852static DeclRefExpr* EvalVal(Expr *E);
853static DeclRefExpr* EvalAddr(Expr* E);
854
855/// CheckReturnStackAddr - Check if a return statement returns the address
856///   of a stack variable.
857void
858Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
859                           SourceLocation ReturnLoc) {
860
861  // Perform checking for returned stack addresses.
862  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
863    if (DeclRefExpr *DR = EvalAddr(RetValExp))
864      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
865       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
866
867    // Skip over implicit cast expressions when checking for block expressions.
868    if (ImplicitCastExpr *IcExpr =
869          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
870      RetValExp = IcExpr->getSubExpr();
871
872    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
873      Diag(C->getLocStart(), diag::err_ret_local_block)
874        << C->getSourceRange();
875  }
876  // Perform checking for stack values returned by reference.
877  else if (lhsType->isReferenceType()) {
878    // Check for a reference to the stack
879    if (DeclRefExpr *DR = EvalVal(RetValExp))
880      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
881        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
882  }
883}
884
885/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
886///  check if the expression in a return statement evaluates to an address
887///  to a location on the stack.  The recursion is used to traverse the
888///  AST of the return expression, with recursion backtracking when we
889///  encounter a subexpression that (1) clearly does not lead to the address
890///  of a stack variable or (2) is something we cannot determine leads to
891///  the address of a stack variable based on such local checking.
892///
893///  EvalAddr processes expressions that are pointers that are used as
894///  references (and not L-values).  EvalVal handles all other values.
895///  At the base case of the recursion is a check for a DeclRefExpr* in
896///  the refers to a stack variable.
897///
898///  This implementation handles:
899///
900///   * pointer-to-pointer casts
901///   * implicit conversions from array references to pointers
902///   * taking the address of fields
903///   * arbitrary interplay between "&" and "*" operators
904///   * pointer arithmetic from an address of a stack variable
905///   * taking the address of an array element where the array is on the stack
906static DeclRefExpr* EvalAddr(Expr *E) {
907  // We should only be called for evaluating pointer expressions.
908  assert((E->getType()->isPointerType() ||
909          E->getType()->isBlockPointerType() ||
910          E->getType()->isObjCQualifiedIdType()) &&
911         "EvalAddr only works on pointers");
912
913  // Our "symbolic interpreter" is just a dispatch off the currently
914  // viewed AST node.  We then recursively traverse the AST by calling
915  // EvalAddr and EvalVal appropriately.
916  switch (E->getStmtClass()) {
917  case Stmt::ParenExprClass:
918    // Ignore parentheses.
919    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
920
921  case Stmt::UnaryOperatorClass: {
922    // The only unary operator that make sense to handle here
923    // is AddrOf.  All others don't make sense as pointers.
924    UnaryOperator *U = cast<UnaryOperator>(E);
925
926    if (U->getOpcode() == UnaryOperator::AddrOf)
927      return EvalVal(U->getSubExpr());
928    else
929      return NULL;
930  }
931
932  case Stmt::BinaryOperatorClass: {
933    // Handle pointer arithmetic.  All other binary operators are not valid
934    // in this context.
935    BinaryOperator *B = cast<BinaryOperator>(E);
936    BinaryOperator::Opcode op = B->getOpcode();
937
938    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
939      return NULL;
940
941    Expr *Base = B->getLHS();
942
943    // Determine which argument is the real pointer base.  It could be
944    // the RHS argument instead of the LHS.
945    if (!Base->getType()->isPointerType()) Base = B->getRHS();
946
947    assert (Base->getType()->isPointerType());
948    return EvalAddr(Base);
949  }
950
951  // For conditional operators we need to see if either the LHS or RHS are
952  // valid DeclRefExpr*s.  If one of them is valid, we return it.
953  case Stmt::ConditionalOperatorClass: {
954    ConditionalOperator *C = cast<ConditionalOperator>(E);
955
956    // Handle the GNU extension for missing LHS.
957    if (Expr *lhsExpr = C->getLHS())
958      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
959        return LHS;
960
961     return EvalAddr(C->getRHS());
962  }
963
964  // For casts, we need to handle conversions from arrays to
965  // pointer values, and pointer-to-pointer conversions.
966  case Stmt::ImplicitCastExprClass:
967  case Stmt::CStyleCastExprClass:
968  case Stmt::CXXFunctionalCastExprClass: {
969    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
970    QualType T = SubExpr->getType();
971
972    if (SubExpr->getType()->isPointerType() ||
973        SubExpr->getType()->isBlockPointerType() ||
974        SubExpr->getType()->isObjCQualifiedIdType())
975      return EvalAddr(SubExpr);
976    else if (T->isArrayType())
977      return EvalVal(SubExpr);
978    else
979      return 0;
980  }
981
982  // C++ casts.  For dynamic casts, static casts, and const casts, we
983  // are always converting from a pointer-to-pointer, so we just blow
984  // through the cast.  In the case the dynamic cast doesn't fail (and
985  // return NULL), we take the conservative route and report cases
986  // where we return the address of a stack variable.  For Reinterpre
987  // FIXME: The comment about is wrong; we're not always converting
988  // from pointer to pointer. I'm guessing that this code should also
989  // handle references to objects.
990  case Stmt::CXXStaticCastExprClass:
991  case Stmt::CXXDynamicCastExprClass:
992  case Stmt::CXXConstCastExprClass:
993  case Stmt::CXXReinterpretCastExprClass: {
994      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
995      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
996        return EvalAddr(S);
997      else
998        return NULL;
999  }
1000
1001  // Everything else: we simply don't reason about them.
1002  default:
1003    return NULL;
1004  }
1005}
1006
1007
1008///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1009///   See the comments for EvalAddr for more details.
1010static DeclRefExpr* EvalVal(Expr *E) {
1011
1012  // We should only be called for evaluating non-pointer expressions, or
1013  // expressions with a pointer type that are not used as references but instead
1014  // are l-values (e.g., DeclRefExpr with a pointer type).
1015
1016  // Our "symbolic interpreter" is just a dispatch off the currently
1017  // viewed AST node.  We then recursively traverse the AST by calling
1018  // EvalAddr and EvalVal appropriately.
1019  switch (E->getStmtClass()) {
1020  case Stmt::DeclRefExprClass:
1021  case Stmt::QualifiedDeclRefExprClass: {
1022    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1023    //  at code that refers to a variable's name.  We check if it has local
1024    //  storage within the function, and if so, return the expression.
1025    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1026
1027    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1028      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1029
1030    return NULL;
1031  }
1032
1033  case Stmt::ParenExprClass:
1034    // Ignore parentheses.
1035    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1036
1037  case Stmt::UnaryOperatorClass: {
1038    // The only unary operator that make sense to handle here
1039    // is Deref.  All others don't resolve to a "name."  This includes
1040    // handling all sorts of rvalues passed to a unary operator.
1041    UnaryOperator *U = cast<UnaryOperator>(E);
1042
1043    if (U->getOpcode() == UnaryOperator::Deref)
1044      return EvalAddr(U->getSubExpr());
1045
1046    return NULL;
1047  }
1048
1049  case Stmt::ArraySubscriptExprClass: {
1050    // Array subscripts are potential references to data on the stack.  We
1051    // retrieve the DeclRefExpr* for the array variable if it indeed
1052    // has local storage.
1053    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1054  }
1055
1056  case Stmt::ConditionalOperatorClass: {
1057    // For conditional operators we need to see if either the LHS or RHS are
1058    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1059    ConditionalOperator *C = cast<ConditionalOperator>(E);
1060
1061    // Handle the GNU extension for missing LHS.
1062    if (Expr *lhsExpr = C->getLHS())
1063      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1064        return LHS;
1065
1066    return EvalVal(C->getRHS());
1067  }
1068
1069  // Accesses to members are potential references to data on the stack.
1070  case Stmt::MemberExprClass: {
1071    MemberExpr *M = cast<MemberExpr>(E);
1072
1073    // Check for indirect access.  We only want direct field accesses.
1074    if (!M->isArrow())
1075      return EvalVal(M->getBase());
1076    else
1077      return NULL;
1078  }
1079
1080  // Everything else: we simply don't reason about them.
1081  default:
1082    return NULL;
1083  }
1084}
1085
1086//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1087
1088/// Check for comparisons of floating point operands using != and ==.
1089/// Issue a warning if these are no self-comparisons, as they are not likely
1090/// to do what the programmer intended.
1091void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1092  bool EmitWarning = true;
1093
1094  Expr* LeftExprSansParen = lex->IgnoreParens();
1095  Expr* RightExprSansParen = rex->IgnoreParens();
1096
1097  // Special case: check for x == x (which is OK).
1098  // Do not emit warnings for such cases.
1099  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1100    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1101      if (DRL->getDecl() == DRR->getDecl())
1102        EmitWarning = false;
1103
1104
1105  // Special case: check for comparisons against literals that can be exactly
1106  //  represented by APFloat.  In such cases, do not emit a warning.  This
1107  //  is a heuristic: often comparison against such literals are used to
1108  //  detect if a value in a variable has not changed.  This clearly can
1109  //  lead to false negatives.
1110  if (EmitWarning) {
1111    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1112      if (FLL->isExact())
1113        EmitWarning = false;
1114    }
1115    else
1116      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1117        if (FLR->isExact())
1118          EmitWarning = false;
1119    }
1120  }
1121
1122  // Check for comparisons with builtin types.
1123  if (EmitWarning)
1124    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1125      if (CL->isBuiltinCall(Context))
1126        EmitWarning = false;
1127
1128  if (EmitWarning)
1129    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1130      if (CR->isBuiltinCall(Context))
1131        EmitWarning = false;
1132
1133  // Emit the diagnostic.
1134  if (EmitWarning)
1135    Diag(loc, diag::warn_floatingpoint_eq)
1136      << lex->getSourceRange() << rex->getSourceRange();
1137}
1138