SemaChecking.cpp revision 0835a3cdeefe714b4959d31127ea155e56393125
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
55821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// License. See LICENSE.TXT for details.
75821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
85821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
95821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//  This file implements extra semantic analysis beyond what is enforced
115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//  by the C type system.
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "Sema.h"
165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/ASTContext.h"
175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "SemaUtil.h"
23using namespace clang;
24
25/// CheckFunctionCall - Check a direct function call for various correctness
26/// and safety properties not strictly enforced by the C type system.
27Action::ExprResult
28Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
29  llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
30  // Get the IdentifierInfo* for the called function.
31  IdentifierInfo *FnInfo = FDecl->getIdentifier();
32
33  switch (FnInfo->getBuiltinID()) {
34  case Builtin::BI__builtin___CFStringMakeConstantString:
35    assert(TheCall->getNumArgs() == 1 &&
36           "Wrong # arguments to builtin CFStringMakeConstantString");
37    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
38      return true;
39    return TheCall.take();
40  case Builtin::BI__builtin_stdarg_start:
41  case Builtin::BI__builtin_va_start:
42    if (SemaBuiltinVAStart(TheCall.get()))
43      return true;
44    return TheCall.take();
45  case Builtin::BI__builtin_isgreater:
46  case Builtin::BI__builtin_isgreaterequal:
47  case Builtin::BI__builtin_isless:
48  case Builtin::BI__builtin_islessequal:
49  case Builtin::BI__builtin_islessgreater:
50  case Builtin::BI__builtin_isunordered:
51    if (SemaBuiltinUnorderedCompare(TheCall.get()))
52      return true;
53    return TheCall.take();
54  case Builtin::BI__builtin_return_address:
55  case Builtin::BI__builtin_frame_address:
56    if (SemaBuiltinStackAddress(TheCall.get()))
57      return true;
58    return TheCall.take();
59  case Builtin::BI__builtin_shufflevector:
60    return SemaBuiltinShuffleVector(TheCall.get());
61  case Builtin::BI__builtin_prefetch:
62    if (SemaBuiltinPrefetch(TheCall.get()))
63      return true;
64    return TheCall.take();
65  }
66
67  // Search the KnownFunctionIDs for the identifier.
68  unsigned i = 0, e = id_num_known_functions;
69  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
70  if (i == e) return TheCall.take();
71
72  // Printf checking.
73  if (i <= id_vprintf) {
74    // Retrieve the index of the format string parameter and determine
75    // if the function is passed a va_arg argument.
76    unsigned format_idx = 0;
77    bool HasVAListArg = false;
78
79    switch (i) {
80    default: assert(false && "No format string argument index.");
81    case id_printf:    format_idx = 0; break;
82    case id_fprintf:   format_idx = 1; break;
83    case id_sprintf:   format_idx = 1; break;
84    case id_snprintf:  format_idx = 2; break;
85    case id_asprintf:  format_idx = 1; break;
86    case id_NSLog:     format_idx = 0; break;
87    case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
88    case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
89    case id_vfprintf:  format_idx = 1; HasVAListArg = true; break;
90    case id_vsprintf:  format_idx = 1; HasVAListArg = true; break;
91    case id_vprintf:   format_idx = 0; HasVAListArg = true; break;
92    }
93
94    CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
95  }
96
97  return TheCall.take();
98}
99
100/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
101/// CFString constructor is correct
102bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
103  Arg = Arg->IgnoreParenCasts();
104
105  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
106
107  if (!Literal || Literal->isWide()) {
108    Diag(Arg->getLocStart(),
109         diag::err_cfstring_literal_not_string_constant,
110         Arg->getSourceRange());
111    return true;
112  }
113
114  const char *Data = Literal->getStrData();
115  unsigned Length = Literal->getByteLength();
116
117  for (unsigned i = 0; i < Length; ++i) {
118    if (!isascii(Data[i])) {
119      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
120           diag::warn_cfstring_literal_contains_non_ascii_character,
121           Arg->getSourceRange());
122      break;
123    }
124
125    if (!Data[i]) {
126      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
127           diag::warn_cfstring_literal_contains_nul_character,
128           Arg->getSourceRange());
129      break;
130    }
131  }
132
133  return false;
134}
135
136/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
137/// Emit an error and return true on failure, return false on success.
138bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
139  Expr *Fn = TheCall->getCallee();
140  if (TheCall->getNumArgs() > 2) {
141    Diag(TheCall->getArg(2)->getLocStart(),
142         diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
143         SourceRange(TheCall->getArg(2)->getLocStart(),
144                     (*(TheCall->arg_end()-1))->getLocEnd()));
145    return true;
146  }
147
148  // Determine whether the current function is variadic or not.
149  bool isVariadic;
150  if (getCurFunctionDecl())
151    isVariadic =
152      cast<FunctionTypeProto>(getCurFunctionDecl()->getType())->isVariadic();
153  else
154    isVariadic = getCurMethodDecl()->isVariadic();
155
156  if (!isVariadic) {
157    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
158    return true;
159  }
160
161  // Verify that the second argument to the builtin is the last argument of the
162  // current function or method.
163  bool SecondArgIsLastNamedArgument = false;
164  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
165
166  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
167    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
168      // FIXME: This isn't correct for methods (results in bogus warning).
169      // Get the last formal in the current function.
170      const ParmVarDecl *LastArg;
171      if (getCurFunctionDecl())
172        LastArg = *(getCurFunctionDecl()->param_end()-1);
173      else
174        LastArg = *(getCurMethodDecl()->param_end()-1);
175      SecondArgIsLastNamedArgument = PV == LastArg;
176    }
177  }
178
179  if (!SecondArgIsLastNamedArgument)
180    Diag(TheCall->getArg(1)->getLocStart(),
181         diag::warn_second_parameter_of_va_start_not_last_named_argument);
182  return false;
183}
184
185/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
186/// friends.  This is declared to take (...), so we have to check everything.
187bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
188  if (TheCall->getNumArgs() < 2)
189    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args);
190  if (TheCall->getNumArgs() > 2)
191    return Diag(TheCall->getArg(2)->getLocStart(),
192                diag::err_typecheck_call_too_many_args,
193                SourceRange(TheCall->getArg(2)->getLocStart(),
194                            (*(TheCall->arg_end()-1))->getLocEnd()));
195
196  Expr *OrigArg0 = TheCall->getArg(0);
197  Expr *OrigArg1 = TheCall->getArg(1);
198
199  // Do standard promotions between the two arguments, returning their common
200  // type.
201  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
202
203  // If the common type isn't a real floating type, then the arguments were
204  // invalid for this operation.
205  if (!Res->isRealFloatingType())
206    return Diag(OrigArg0->getLocStart(),
207                diag::err_typecheck_call_invalid_ordered_compare,
208                OrigArg0->getType().getAsString(),
209                OrigArg1->getType().getAsString(),
210                SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd()));
211
212  return false;
213}
214
215bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
216  // The signature for these builtins is exact; the only thing we need
217  // to check is that the argument is a constant.
218  SourceLocation Loc;
219  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
220    return Diag(Loc, diag::err_stack_const_level, TheCall->getSourceRange());
221
222  return false;
223}
224
225/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
226// This is declared to take (...), so we have to check everything.
227Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
228  if (TheCall->getNumArgs() < 3)
229    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
230                TheCall->getSourceRange());
231
232  QualType FAType = TheCall->getArg(0)->getType();
233  QualType SAType = TheCall->getArg(1)->getType();
234
235  if (!FAType->isVectorType() || !SAType->isVectorType()) {
236    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector,
237         SourceRange(TheCall->getArg(0)->getLocStart(),
238                     TheCall->getArg(1)->getLocEnd()));
239    return true;
240  }
241
242  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
243      Context.getCanonicalType(SAType).getUnqualifiedType()) {
244    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector,
245         SourceRange(TheCall->getArg(0)->getLocStart(),
246                     TheCall->getArg(1)->getLocEnd()));
247    return true;
248  }
249
250  unsigned numElements = FAType->getAsVectorType()->getNumElements();
251  if (TheCall->getNumArgs() != numElements+2) {
252    if (TheCall->getNumArgs() < numElements+2)
253      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
254                  TheCall->getSourceRange());
255    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
256                TheCall->getSourceRange());
257  }
258
259  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
260    llvm::APSInt Result(32);
261    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
262      return Diag(TheCall->getLocStart(),
263                  diag::err_shufflevector_nonconstant_argument,
264                  TheCall->getArg(i)->getSourceRange());
265
266    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
267      return Diag(TheCall->getLocStart(),
268                  diag::err_shufflevector_argument_too_large,
269                  TheCall->getArg(i)->getSourceRange());
270  }
271
272  llvm::SmallVector<Expr*, 32> exprs;
273
274  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
275    exprs.push_back(TheCall->getArg(i));
276    TheCall->setArg(i, 0);
277  }
278
279  return new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
280                               TheCall->getCallee()->getLocStart(),
281                               TheCall->getRParenLoc());
282}
283
284/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
285// This is declared to take (const void*, ...) and can take two
286// optional constant int args.
287bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
288  unsigned numArgs = TheCall->getNumArgs();
289  bool res = false;
290
291  if (numArgs > 3) {
292    res |= Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
293                TheCall->getSourceRange());
294  }
295
296  // Argument 0 is checked for us and the remaining arguments must be
297  // constant integers.
298  for (unsigned i=1; i<numArgs; ++i) {
299    Expr *Arg = TheCall->getArg(i);
300    QualType RWType = Arg->getType();
301
302    const BuiltinType *BT = RWType->getAsBuiltinType();
303    // FIXME: 32 is wrong, needs to be proper width of Int
304    llvm::APSInt Result(32);
305    if (!BT || BT->getKind() != BuiltinType::Int ||
306        !Arg->isIntegerConstantExpr(Result, Context)) {
307      if (Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument,
308               SourceRange(Arg->getLocStart(), Arg->getLocEnd()))) {
309        res = true;
310        continue;
311      }
312    }
313
314    // FIXME: gcc issues a warning and rewrites these to 0. These
315    // seems especially odd for the third argument since the default
316    // is 3.
317    if (i==1) {
318      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
319        res |= Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_range,
320                    "0", "1",
321                    SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
322    } else {
323      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
324        res |= Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_range,
325                    "0", "3",
326                    SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
327    }
328  }
329
330  return res;
331}
332
333/// CheckPrintfArguments - Check calls to printf (and similar functions) for
334/// correct use of format strings.
335///
336///  HasVAListArg - A predicate indicating whether the printf-like
337///    function is passed an explicit va_arg argument (e.g., vprintf)
338///
339///  format_idx - The index into Args for the format string.
340///
341/// Improper format strings to functions in the printf family can be
342/// the source of bizarre bugs and very serious security holes.  A
343/// good source of information is available in the following paper
344/// (which includes additional references):
345///
346///  FormatGuard: Automatic Protection From printf Format String
347///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
348///
349/// Functionality implemented:
350///
351///  We can statically check the following properties for string
352///  literal format strings for non v.*printf functions (where the
353///  arguments are passed directly):
354//
355///  (1) Are the number of format conversions equal to the number of
356///      data arguments?
357///
358///  (2) Does each format conversion correctly match the type of the
359///      corresponding data argument?  (TODO)
360///
361/// Moreover, for all printf functions we can:
362///
363///  (3) Check for a missing format string (when not caught by type checking).
364///
365///  (4) Check for no-operation flags; e.g. using "#" with format
366///      conversion 'c'  (TODO)
367///
368///  (5) Check the use of '%n', a major source of security holes.
369///
370///  (6) Check for malformed format conversions that don't specify anything.
371///
372///  (7) Check for empty format strings.  e.g: printf("");
373///
374///  (8) Check that the format string is a wide literal.
375///
376///  (9) Also check the arguments of functions with the __format__ attribute.
377///      (TODO).
378///
379/// All of these checks can be done by parsing the format string.
380///
381/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
382void
383Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
384                           unsigned format_idx) {
385  Expr *Fn = TheCall->getCallee();
386
387  // CHECK: printf-like function is called with no format string.
388  if (format_idx >= TheCall->getNumArgs()) {
389    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string,
390         Fn->getSourceRange());
391    return;
392  }
393
394  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
395
396  // CHECK: format string is not a string literal.
397  //
398  // Dynamically generated format strings are difficult to
399  // automatically vet at compile time.  Requiring that format strings
400  // are string literals: (1) permits the checking of format strings by
401  // the compiler and thereby (2) can practically remove the source of
402  // many format string exploits.
403
404  // Format string can be either ObjC string (e.g. @"%d") or
405  // C string (e.g. "%d")
406  // ObjC string uses the same format specifiers as C string, so we can use
407  // the same format string checking logic for both ObjC and C strings.
408  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
409  StringLiteral *FExpr = NULL;
410
411  if(ObjCFExpr != NULL)
412    FExpr = ObjCFExpr->getString();
413  else
414    FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
415
416  if (FExpr == NULL) {
417    // For vprintf* functions (i.e., HasVAListArg==true), we add a
418    // special check to see if the format string is a function parameter
419    // of the function calling the printf function.  If the function
420    // has an attribute indicating it is a printf-like function, then we
421    // should suppress warnings concerning non-literals being used in a call
422    // to a vprintf function.  For example:
423    //
424    // void
425    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
426    //      va_list ap;
427    //      va_start(ap, fmt);
428    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
429    //      ...
430    //
431    //
432    //  FIXME: We don't have full attribute support yet, so just check to see
433    //    if the argument is a DeclRefExpr that references a parameter.  We'll
434    //    add proper support for checking the attribute later.
435    if (HasVAListArg)
436      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
437        if (isa<ParmVarDecl>(DR->getDecl()))
438          return;
439
440    Diag(TheCall->getArg(format_idx)->getLocStart(),
441         diag::warn_printf_not_string_constant,
442         OrigFormatExpr->getSourceRange());
443    return;
444  }
445
446  // CHECK: is the format string a wide literal?
447  if (FExpr->isWide()) {
448    Diag(FExpr->getLocStart(),
449         diag::warn_printf_format_string_is_wide_literal,
450         OrigFormatExpr->getSourceRange());
451    return;
452  }
453
454  // Str - The format string.  NOTE: this is NOT null-terminated!
455  const char * const Str = FExpr->getStrData();
456
457  // CHECK: empty format string?
458  const unsigned StrLen = FExpr->getByteLength();
459
460  if (StrLen == 0) {
461    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string,
462         OrigFormatExpr->getSourceRange());
463    return;
464  }
465
466  // We process the format string using a binary state machine.  The
467  // current state is stored in CurrentState.
468  enum {
469    state_OrdChr,
470    state_Conversion
471  } CurrentState = state_OrdChr;
472
473  // numConversions - The number of conversions seen so far.  This is
474  //  incremented as we traverse the format string.
475  unsigned numConversions = 0;
476
477  // numDataArgs - The number of data arguments after the format
478  //  string.  This can only be determined for non vprintf-like
479  //  functions.  For those functions, this value is 1 (the sole
480  //  va_arg argument).
481  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
482
483  // Inspect the format string.
484  unsigned StrIdx = 0;
485
486  // LastConversionIdx - Index within the format string where we last saw
487  //  a '%' character that starts a new format conversion.
488  unsigned LastConversionIdx = 0;
489
490  for (; StrIdx < StrLen; ++StrIdx) {
491
492    // Is the number of detected conversion conversions greater than
493    // the number of matching data arguments?  If so, stop.
494    if (!HasVAListArg && numConversions > numDataArgs) break;
495
496    // Handle "\0"
497    if (Str[StrIdx] == '\0') {
498      // The string returned by getStrData() is not null-terminated,
499      // so the presence of a null character is likely an error.
500      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
501           diag::warn_printf_format_string_contains_null_char,
502           OrigFormatExpr->getSourceRange());
503      return;
504    }
505
506    // Ordinary characters (not processing a format conversion).
507    if (CurrentState == state_OrdChr) {
508      if (Str[StrIdx] == '%') {
509        CurrentState = state_Conversion;
510        LastConversionIdx = StrIdx;
511      }
512      continue;
513    }
514
515    // Seen '%'.  Now processing a format conversion.
516    switch (Str[StrIdx]) {
517    // Handle dynamic precision or width specifier.
518    case '*': {
519      ++numConversions;
520
521      if (!HasVAListArg && numConversions > numDataArgs) {
522        SourceLocation Loc = FExpr->getLocStart();
523        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
524
525        if (Str[StrIdx-1] == '.')
526          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg,
527               OrigFormatExpr->getSourceRange());
528        else
529          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg,
530               OrigFormatExpr->getSourceRange());
531
532        // Don't do any more checking.  We'll just emit spurious errors.
533        return;
534      }
535
536      // Perform type checking on width/precision specifier.
537      Expr *E = TheCall->getArg(format_idx+numConversions);
538      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
539        if (BT->getKind() == BuiltinType::Int)
540          break;
541
542      SourceLocation Loc =
543        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
544
545      if (Str[StrIdx-1] == '.')
546        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type,
547             E->getType().getAsString(), E->getSourceRange());
548      else
549        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type,
550             E->getType().getAsString(), E->getSourceRange());
551
552      break;
553    }
554
555    // Characters which can terminate a format conversion
556    // (e.g. "%d").  Characters that specify length modifiers or
557    // other flags are handled by the default case below.
558    //
559    // FIXME: additional checks will go into the following cases.
560    case 'i':
561    case 'd':
562    case 'o':
563    case 'u':
564    case 'x':
565    case 'X':
566    case 'D':
567    case 'O':
568    case 'U':
569    case 'e':
570    case 'E':
571    case 'f':
572    case 'F':
573    case 'g':
574    case 'G':
575    case 'a':
576    case 'A':
577    case 'c':
578    case 'C':
579    case 'S':
580    case 's':
581    case 'p':
582      ++numConversions;
583      CurrentState = state_OrdChr;
584      break;
585
586    // CHECK: Are we using "%n"?  Issue a warning.
587    case 'n': {
588      ++numConversions;
589      CurrentState = state_OrdChr;
590      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
591                                                      LastConversionIdx+1);
592
593      Diag(Loc, diag::warn_printf_write_back, OrigFormatExpr->getSourceRange());
594      break;
595    }
596
597    // Handle "%@"
598    case '@':
599      // %@ is allowed in ObjC format strings only.
600      if(ObjCFExpr != NULL)
601        CurrentState = state_OrdChr;
602      else {
603        // Issue a warning: invalid format conversion.
604        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
605                                                    LastConversionIdx+1);
606
607        Diag(Loc, diag::warn_printf_invalid_conversion,
608          std::string(Str+LastConversionIdx,
609          Str+std::min(LastConversionIdx+2, StrLen)),
610          OrigFormatExpr->getSourceRange());
611      }
612      ++numConversions;
613      break;
614
615    // Handle "%%"
616    case '%':
617      // Sanity check: Was the first "%" character the previous one?
618      // If not, we will assume that we have a malformed format
619      // conversion, and that the current "%" character is the start
620      // of a new conversion.
621      if (StrIdx - LastConversionIdx == 1)
622        CurrentState = state_OrdChr;
623      else {
624        // Issue a warning: invalid format conversion.
625        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
626                                                        LastConversionIdx+1);
627
628        Diag(Loc, diag::warn_printf_invalid_conversion,
629             std::string(Str+LastConversionIdx, Str+StrIdx),
630             OrigFormatExpr->getSourceRange());
631
632        // This conversion is broken.  Advance to the next format
633        // conversion.
634        LastConversionIdx = StrIdx;
635        ++numConversions;
636      }
637      break;
638
639    default:
640      // This case catches all other characters: flags, widths, etc.
641      // We should eventually process those as well.
642      break;
643    }
644  }
645
646  if (CurrentState == state_Conversion) {
647    // Issue a warning: invalid format conversion.
648    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
649                                                    LastConversionIdx+1);
650
651    Diag(Loc, diag::warn_printf_invalid_conversion,
652         std::string(Str+LastConversionIdx,
653                     Str+std::min(LastConversionIdx+2, StrLen)),
654         OrigFormatExpr->getSourceRange());
655    return;
656  }
657
658  if (!HasVAListArg) {
659    // CHECK: Does the number of format conversions exceed the number
660    //        of data arguments?
661    if (numConversions > numDataArgs) {
662      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
663                                                      LastConversionIdx);
664
665      Diag(Loc, diag::warn_printf_insufficient_data_args,
666           OrigFormatExpr->getSourceRange());
667    }
668    // CHECK: Does the number of data arguments exceed the number of
669    //        format conversions in the format string?
670    else if (numConversions < numDataArgs)
671      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
672           diag::warn_printf_too_many_data_args,
673           OrigFormatExpr->getSourceRange());
674  }
675}
676
677//===--- CHECK: Return Address of Stack Variable --------------------------===//
678
679static DeclRefExpr* EvalVal(Expr *E);
680static DeclRefExpr* EvalAddr(Expr* E);
681
682/// CheckReturnStackAddr - Check if a return statement returns the address
683///   of a stack variable.
684void
685Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
686                           SourceLocation ReturnLoc) {
687
688  // Perform checking for returned stack addresses.
689  if (lhsType->isPointerType()) {
690    if (DeclRefExpr *DR = EvalAddr(RetValExp))
691      Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
692           DR->getDecl()->getIdentifier()->getName(),
693           RetValExp->getSourceRange());
694  }
695  // Perform checking for stack values returned by reference.
696  else if (lhsType->isReferenceType()) {
697    // Check for an implicit cast to a reference.
698    if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp))
699      if (DeclRefExpr *DR = EvalVal(I->getSubExpr()))
700        Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
701             DR->getDecl()->getIdentifier()->getName(),
702             RetValExp->getSourceRange());
703  }
704}
705
706/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
707///  check if the expression in a return statement evaluates to an address
708///  to a location on the stack.  The recursion is used to traverse the
709///  AST of the return expression, with recursion backtracking when we
710///  encounter a subexpression that (1) clearly does not lead to the address
711///  of a stack variable or (2) is something we cannot determine leads to
712///  the address of a stack variable based on such local checking.
713///
714///  EvalAddr processes expressions that are pointers that are used as
715///  references (and not L-values).  EvalVal handles all other values.
716///  At the base case of the recursion is a check for a DeclRefExpr* in
717///  the refers to a stack variable.
718///
719///  This implementation handles:
720///
721///   * pointer-to-pointer casts
722///   * implicit conversions from array references to pointers
723///   * taking the address of fields
724///   * arbitrary interplay between "&" and "*" operators
725///   * pointer arithmetic from an address of a stack variable
726///   * taking the address of an array element where the array is on the stack
727static DeclRefExpr* EvalAddr(Expr *E) {
728  // We should only be called for evaluating pointer expressions.
729  assert((E->getType()->isPointerType() ||
730          E->getType()->isObjCQualifiedIdType()) &&
731         "EvalAddr only works on pointers");
732
733  // Our "symbolic interpreter" is just a dispatch off the currently
734  // viewed AST node.  We then recursively traverse the AST by calling
735  // EvalAddr and EvalVal appropriately.
736  switch (E->getStmtClass()) {
737  case Stmt::ParenExprClass:
738    // Ignore parentheses.
739    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
740
741  case Stmt::UnaryOperatorClass: {
742    // The only unary operator that make sense to handle here
743    // is AddrOf.  All others don't make sense as pointers.
744    UnaryOperator *U = cast<UnaryOperator>(E);
745
746    if (U->getOpcode() == UnaryOperator::AddrOf)
747      return EvalVal(U->getSubExpr());
748    else
749      return NULL;
750  }
751
752  case Stmt::BinaryOperatorClass: {
753    // Handle pointer arithmetic.  All other binary operators are not valid
754    // in this context.
755    BinaryOperator *B = cast<BinaryOperator>(E);
756    BinaryOperator::Opcode op = B->getOpcode();
757
758    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
759      return NULL;
760
761    Expr *Base = B->getLHS();
762
763    // Determine which argument is the real pointer base.  It could be
764    // the RHS argument instead of the LHS.
765    if (!Base->getType()->isPointerType()) Base = B->getRHS();
766
767    assert (Base->getType()->isPointerType());
768    return EvalAddr(Base);
769  }
770
771  // For conditional operators we need to see if either the LHS or RHS are
772  // valid DeclRefExpr*s.  If one of them is valid, we return it.
773  case Stmt::ConditionalOperatorClass: {
774    ConditionalOperator *C = cast<ConditionalOperator>(E);
775
776    // Handle the GNU extension for missing LHS.
777    if (Expr *lhsExpr = C->getLHS())
778      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
779        return LHS;
780
781     return EvalAddr(C->getRHS());
782  }
783
784  // For casts, we need to handle conversions from arrays to
785  // pointer values, and pointer-to-pointer conversions.
786  case Stmt::ExplicitCastExprClass:
787  case Stmt::ImplicitCastExprClass: {
788
789    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
790    QualType T = SubExpr->getType();
791
792    if (T->isPointerType() || T->isObjCQualifiedIdType())
793      return EvalAddr(SubExpr);
794    else if (T->isArrayType())
795      return EvalVal(SubExpr);
796    else
797      return 0;
798  }
799
800  // C++ casts.  For dynamic casts, static casts, and const casts, we
801  // are always converting from a pointer-to-pointer, so we just blow
802  // through the cast.  In the case the dynamic cast doesn't fail
803  // (and return NULL), we take the conservative route and report cases
804  // where we return the address of a stack variable.  For Reinterpre
805  case Stmt::CXXCastExprClass: {
806    CXXCastExpr *C = cast<CXXCastExpr>(E);
807
808    if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
809      Expr *S = C->getSubExpr();
810      if (S->getType()->isPointerType())
811        return EvalAddr(S);
812      else
813        return NULL;
814    }
815    else
816      return EvalAddr(C->getSubExpr());
817  }
818
819  // Everything else: we simply don't reason about them.
820  default:
821    return NULL;
822  }
823}
824
825
826///  EvalVal - This function is complements EvalAddr in the mutual recursion.
827///   See the comments for EvalAddr for more details.
828static DeclRefExpr* EvalVal(Expr *E) {
829
830  // We should only be called for evaluating non-pointer expressions, or
831  // expressions with a pointer type that are not used as references but instead
832  // are l-values (e.g., DeclRefExpr with a pointer type).
833
834  // Our "symbolic interpreter" is just a dispatch off the currently
835  // viewed AST node.  We then recursively traverse the AST by calling
836  // EvalAddr and EvalVal appropriately.
837  switch (E->getStmtClass()) {
838  case Stmt::DeclRefExprClass: {
839    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
840    //  at code that refers to a variable's name.  We check if it has local
841    //  storage within the function, and if so, return the expression.
842    DeclRefExpr *DR = cast<DeclRefExpr>(E);
843
844    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
845      if(V->hasLocalStorage()) return DR;
846
847    return NULL;
848  }
849
850  case Stmt::ParenExprClass:
851    // Ignore parentheses.
852    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
853
854  case Stmt::UnaryOperatorClass: {
855    // The only unary operator that make sense to handle here
856    // is Deref.  All others don't resolve to a "name."  This includes
857    // handling all sorts of rvalues passed to a unary operator.
858    UnaryOperator *U = cast<UnaryOperator>(E);
859
860    if (U->getOpcode() == UnaryOperator::Deref)
861      return EvalAddr(U->getSubExpr());
862
863    return NULL;
864  }
865
866  case Stmt::ArraySubscriptExprClass: {
867    // Array subscripts are potential references to data on the stack.  We
868    // retrieve the DeclRefExpr* for the array variable if it indeed
869    // has local storage.
870    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
871  }
872
873  case Stmt::ConditionalOperatorClass: {
874    // For conditional operators we need to see if either the LHS or RHS are
875    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
876    ConditionalOperator *C = cast<ConditionalOperator>(E);
877
878    // Handle the GNU extension for missing LHS.
879    if (Expr *lhsExpr = C->getLHS())
880      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
881        return LHS;
882
883    return EvalVal(C->getRHS());
884  }
885
886  // Accesses to members are potential references to data on the stack.
887  case Stmt::MemberExprClass: {
888    MemberExpr *M = cast<MemberExpr>(E);
889
890    // Check for indirect access.  We only want direct field accesses.
891    if (!M->isArrow())
892      return EvalVal(M->getBase());
893    else
894      return NULL;
895  }
896
897  // Everything else: we simply don't reason about them.
898  default:
899    return NULL;
900  }
901}
902
903//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
904
905/// Check for comparisons of floating point operands using != and ==.
906/// Issue a warning if these are no self-comparisons, as they are not likely
907/// to do what the programmer intended.
908void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
909  bool EmitWarning = true;
910
911  Expr* LeftExprSansParen = lex->IgnoreParens();
912  Expr* RightExprSansParen = rex->IgnoreParens();
913
914  // Special case: check for x == x (which is OK).
915  // Do not emit warnings for such cases.
916  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
917    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
918      if (DRL->getDecl() == DRR->getDecl())
919        EmitWarning = false;
920
921
922  // Special case: check for comparisons against literals that can be exactly
923  //  represented by APFloat.  In such cases, do not emit a warning.  This
924  //  is a heuristic: often comparison against such literals are used to
925  //  detect if a value in a variable has not changed.  This clearly can
926  //  lead to false negatives.
927  if (EmitWarning) {
928    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
929      if (FLL->isExact())
930        EmitWarning = false;
931    }
932    else
933      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
934        if (FLR->isExact())
935          EmitWarning = false;
936    }
937  }
938
939  // Check for comparisons with builtin types.
940  if (EmitWarning)
941    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
942      if (isCallBuiltin(CL))
943        EmitWarning = false;
944
945  if (EmitWarning)
946    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
947      if (isCallBuiltin(CR))
948        EmitWarning = false;
949
950  // Emit the diagnostic.
951  if (EmitWarning)
952    Diag(loc, diag::warn_floatingpoint_eq,
953         lex->getSourceRange(),rex->getSourceRange());
954}
955