SemaChecking.cpp revision 08631c5fa053867146b5ee8be658c229f6bf127c
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "SemaUtil.h"
23using namespace clang;
24
25/// CheckFunctionCall - Check a direct function call for various correctness
26/// and safety properties not strictly enforced by the C type system.
27Action::ExprResult
28Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
29  llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
30  // Get the IdentifierInfo* for the called function.
31  IdentifierInfo *FnInfo = FDecl->getIdentifier();
32
33  // None of the checks below are needed for functions that don't have
34  // simple names (e.g., C++ conversion functions).
35  if (!FnInfo)
36    return TheCall.take();
37
38  switch (FnInfo->getBuiltinID()) {
39  case Builtin::BI__builtin___CFStringMakeConstantString:
40    assert(TheCall->getNumArgs() == 1 &&
41           "Wrong # arguments to builtin CFStringMakeConstantString");
42    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
43      return true;
44    return TheCall.take();
45  case Builtin::BI__builtin_stdarg_start:
46  case Builtin::BI__builtin_va_start:
47    if (SemaBuiltinVAStart(TheCall.get()))
48      return true;
49    return TheCall.take();
50  case Builtin::BI__builtin_isgreater:
51  case Builtin::BI__builtin_isgreaterequal:
52  case Builtin::BI__builtin_isless:
53  case Builtin::BI__builtin_islessequal:
54  case Builtin::BI__builtin_islessgreater:
55  case Builtin::BI__builtin_isunordered:
56    if (SemaBuiltinUnorderedCompare(TheCall.get()))
57      return true;
58    return TheCall.take();
59  case Builtin::BI__builtin_return_address:
60  case Builtin::BI__builtin_frame_address:
61    if (SemaBuiltinStackAddress(TheCall.get()))
62      return true;
63    return TheCall.take();
64  case Builtin::BI__builtin_shufflevector:
65    return SemaBuiltinShuffleVector(TheCall.get());
66  case Builtin::BI__builtin_prefetch:
67    if (SemaBuiltinPrefetch(TheCall.get()))
68      return true;
69    return TheCall.take();
70  case Builtin::BI__builtin_object_size:
71    if (SemaBuiltinObjectSize(TheCall.get()))
72      return true;
73  }
74
75  // FIXME: This mechanism should be abstracted to be less fragile and
76  // more efficient. For example, just map function ids to custom
77  // handlers.
78
79  // Search the KnownFunctionIDs for the identifier.
80  unsigned i = 0, e = id_num_known_functions;
81  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
82  if (i == e) return TheCall.take();
83
84  // Printf checking.
85  if (i <= id_vprintf) {
86    // Retrieve the index of the format string parameter and determine
87    // if the function is passed a va_arg argument.
88    unsigned format_idx = 0;
89    bool HasVAListArg = false;
90
91    switch (i) {
92    default: assert(false && "No format string argument index.");
93    case id_NSLog:         format_idx = 0; break;
94    case id_asprintf:      format_idx = 1; break;
95    case id_fprintf:       format_idx = 1; break;
96    case id_printf:        format_idx = 0; break;
97    case id_snprintf:      format_idx = 2; break;
98    case id_snprintf_chk:  format_idx = 4; break;
99    case id_sprintf:       format_idx = 1; break;
100    case id_sprintf_chk:   format_idx = 3; break;
101    case id_vasprintf:     format_idx = 1; HasVAListArg = true; break;
102    case id_vfprintf:      format_idx = 1; HasVAListArg = true; break;
103    case id_vsnprintf:     format_idx = 2; HasVAListArg = true; break;
104    case id_vsnprintf_chk: format_idx = 4; HasVAListArg = true; break;
105    case id_vsprintf:      format_idx = 1; HasVAListArg = true; break;
106    case id_vsprintf_chk:  format_idx = 3; HasVAListArg = true; break;
107    case id_vprintf:       format_idx = 0; HasVAListArg = true; break;
108    }
109
110    CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
111  }
112
113  return TheCall.take();
114}
115
116/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
117/// CFString constructor is correct
118bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
119  Arg = Arg->IgnoreParenCasts();
120
121  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
122
123  if (!Literal || Literal->isWide()) {
124    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
125      << Arg->getSourceRange();
126    return true;
127  }
128
129  const char *Data = Literal->getStrData();
130  unsigned Length = Literal->getByteLength();
131
132  for (unsigned i = 0; i < Length; ++i) {
133    if (!isascii(Data[i])) {
134      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
135           diag::warn_cfstring_literal_contains_non_ascii_character)
136        << Arg->getSourceRange();
137      break;
138    }
139
140    if (!Data[i]) {
141      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
142           diag::warn_cfstring_literal_contains_nul_character)
143        << Arg->getSourceRange();
144      break;
145    }
146  }
147
148  return false;
149}
150
151/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
152/// Emit an error and return true on failure, return false on success.
153bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
154  Expr *Fn = TheCall->getCallee();
155  if (TheCall->getNumArgs() > 2) {
156    Diag(TheCall->getArg(2)->getLocStart(),
157         diag::err_typecheck_call_too_many_args)
158      << 0 /*function call*/ << Fn->getSourceRange()
159      << SourceRange(TheCall->getArg(2)->getLocStart(),
160                     (*(TheCall->arg_end()-1))->getLocEnd());
161    return true;
162  }
163
164  // Determine whether the current function is variadic or not.
165  bool isVariadic;
166  if (getCurFunctionDecl())
167    isVariadic =
168      cast<FunctionTypeProto>(getCurFunctionDecl()->getType())->isVariadic();
169  else
170    isVariadic = getCurMethodDecl()->isVariadic();
171
172  if (!isVariadic) {
173    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
174    return true;
175  }
176
177  // Verify that the second argument to the builtin is the last argument of the
178  // current function or method.
179  bool SecondArgIsLastNamedArgument = false;
180  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
181
182  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
183    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
184      // FIXME: This isn't correct for methods (results in bogus warning).
185      // Get the last formal in the current function.
186      const ParmVarDecl *LastArg;
187      if (getCurFunctionDecl())
188        LastArg = *(getCurFunctionDecl()->param_end()-1);
189      else
190        LastArg = *(getCurMethodDecl()->param_end()-1);
191      SecondArgIsLastNamedArgument = PV == LastArg;
192    }
193  }
194
195  if (!SecondArgIsLastNamedArgument)
196    Diag(TheCall->getArg(1)->getLocStart(),
197         diag::warn_second_parameter_of_va_start_not_last_named_argument);
198  return false;
199}
200
201/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
202/// friends.  This is declared to take (...), so we have to check everything.
203bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
204  if (TheCall->getNumArgs() < 2)
205    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
206      << 0 /*function call*/;
207  if (TheCall->getNumArgs() > 2)
208    return Diag(TheCall->getArg(2)->getLocStart(),
209                diag::err_typecheck_call_too_many_args)
210      << 0 /*function call*/
211      << SourceRange(TheCall->getArg(2)->getLocStart(),
212                     (*(TheCall->arg_end()-1))->getLocEnd());
213
214  Expr *OrigArg0 = TheCall->getArg(0);
215  Expr *OrigArg1 = TheCall->getArg(1);
216
217  // Do standard promotions between the two arguments, returning their common
218  // type.
219  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
220
221  // If the common type isn't a real floating type, then the arguments were
222  // invalid for this operation.
223  if (!Res->isRealFloatingType())
224    return Diag(OrigArg0->getLocStart(),
225                diag::err_typecheck_call_invalid_ordered_compare)
226      << OrigArg0->getType().getAsString() << OrigArg1->getType().getAsString()
227      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
228
229  return false;
230}
231
232bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
233  // The signature for these builtins is exact; the only thing we need
234  // to check is that the argument is a constant.
235  SourceLocation Loc;
236  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
237    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
238
239  return false;
240}
241
242/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
243// This is declared to take (...), so we have to check everything.
244Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
245  if (TheCall->getNumArgs() < 3)
246    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
247      << 0 /*function call*/ << TheCall->getSourceRange();
248
249  QualType FAType = TheCall->getArg(0)->getType();
250  QualType SAType = TheCall->getArg(1)->getType();
251
252  if (!FAType->isVectorType() || !SAType->isVectorType()) {
253    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
254      << SourceRange(TheCall->getArg(0)->getLocStart(),
255                     TheCall->getArg(1)->getLocEnd());
256    return true;
257  }
258
259  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
260      Context.getCanonicalType(SAType).getUnqualifiedType()) {
261    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
262      << SourceRange(TheCall->getArg(0)->getLocStart(),
263                     TheCall->getArg(1)->getLocEnd());
264    return true;
265  }
266
267  unsigned numElements = FAType->getAsVectorType()->getNumElements();
268  if (TheCall->getNumArgs() != numElements+2) {
269    if (TheCall->getNumArgs() < numElements+2)
270      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
271               << 0 /*function call*/ << TheCall->getSourceRange();
272    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
273             << 0 /*function call*/ << TheCall->getSourceRange();
274  }
275
276  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
277    llvm::APSInt Result(32);
278    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
279      return Diag(TheCall->getLocStart(),
280                  diag::err_shufflevector_nonconstant_argument)
281                << TheCall->getArg(i)->getSourceRange();
282
283    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
284      return Diag(TheCall->getLocStart(),
285                  diag::err_shufflevector_argument_too_large)
286               << TheCall->getArg(i)->getSourceRange();
287  }
288
289  llvm::SmallVector<Expr*, 32> exprs;
290
291  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
292    exprs.push_back(TheCall->getArg(i));
293    TheCall->setArg(i, 0);
294  }
295
296  return new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
297                               TheCall->getCallee()->getLocStart(),
298                               TheCall->getRParenLoc());
299}
300
301/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
302// This is declared to take (const void*, ...) and can take two
303// optional constant int args.
304bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
305  unsigned NumArgs = TheCall->getNumArgs();
306
307  if (NumArgs > 3)
308    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
309             << 0 /*function call*/ << TheCall->getSourceRange();
310
311  // Argument 0 is checked for us and the remaining arguments must be
312  // constant integers.
313  for (unsigned i = 1; i != NumArgs; ++i) {
314    Expr *Arg = TheCall->getArg(i);
315    QualType RWType = Arg->getType();
316
317    const BuiltinType *BT = RWType->getAsBuiltinType();
318    llvm::APSInt Result;
319    if (!BT || BT->getKind() != BuiltinType::Int ||
320        !Arg->isIntegerConstantExpr(Result, Context))
321      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
322              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
323
324    // FIXME: gcc issues a warning and rewrites these to 0. These
325    // seems especially odd for the third argument since the default
326    // is 3.
327    if (i == 1) {
328      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
329        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
330             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
331    } else {
332      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
333        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
334            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
335    }
336  }
337
338  return false;
339}
340
341/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
342/// int type). This simply type checks that type is one of the defined
343/// constants (0-3).
344bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
345  Expr *Arg = TheCall->getArg(1);
346  QualType ArgType = Arg->getType();
347  const BuiltinType *BT = ArgType->getAsBuiltinType();
348  llvm::APSInt Result(32);
349  if (!BT || BT->getKind() != BuiltinType::Int ||
350      !Arg->isIntegerConstantExpr(Result, Context)) {
351    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
352             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
353  }
354
355  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
356    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
357             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
358  }
359
360  return false;
361}
362
363/// CheckPrintfArguments - Check calls to printf (and similar functions) for
364/// correct use of format strings.
365///
366///  HasVAListArg - A predicate indicating whether the printf-like
367///    function is passed an explicit va_arg argument (e.g., vprintf)
368///
369///  format_idx - The index into Args for the format string.
370///
371/// Improper format strings to functions in the printf family can be
372/// the source of bizarre bugs and very serious security holes.  A
373/// good source of information is available in the following paper
374/// (which includes additional references):
375///
376///  FormatGuard: Automatic Protection From printf Format String
377///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
378///
379/// Functionality implemented:
380///
381///  We can statically check the following properties for string
382///  literal format strings for non v.*printf functions (where the
383///  arguments are passed directly):
384//
385///  (1) Are the number of format conversions equal to the number of
386///      data arguments?
387///
388///  (2) Does each format conversion correctly match the type of the
389///      corresponding data argument?  (TODO)
390///
391/// Moreover, for all printf functions we can:
392///
393///  (3) Check for a missing format string (when not caught by type checking).
394///
395///  (4) Check for no-operation flags; e.g. using "#" with format
396///      conversion 'c'  (TODO)
397///
398///  (5) Check the use of '%n', a major source of security holes.
399///
400///  (6) Check for malformed format conversions that don't specify anything.
401///
402///  (7) Check for empty format strings.  e.g: printf("");
403///
404///  (8) Check that the format string is a wide literal.
405///
406///  (9) Also check the arguments of functions with the __format__ attribute.
407///      (TODO).
408///
409/// All of these checks can be done by parsing the format string.
410///
411/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
412void
413Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
414                           unsigned format_idx) {
415  Expr *Fn = TheCall->getCallee();
416
417  // CHECK: printf-like function is called with no format string.
418  if (format_idx >= TheCall->getNumArgs()) {
419    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
420      << Fn->getSourceRange();
421    return;
422  }
423
424  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
425
426  // CHECK: format string is not a string literal.
427  //
428  // Dynamically generated format strings are difficult to
429  // automatically vet at compile time.  Requiring that format strings
430  // are string literals: (1) permits the checking of format strings by
431  // the compiler and thereby (2) can practically remove the source of
432  // many format string exploits.
433
434  // Format string can be either ObjC string (e.g. @"%d") or
435  // C string (e.g. "%d")
436  // ObjC string uses the same format specifiers as C string, so we can use
437  // the same format string checking logic for both ObjC and C strings.
438  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
439  StringLiteral *FExpr = NULL;
440
441  if(ObjCFExpr != NULL)
442    FExpr = ObjCFExpr->getString();
443  else
444    FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
445
446  if (FExpr == NULL) {
447    // For vprintf* functions (i.e., HasVAListArg==true), we add a
448    // special check to see if the format string is a function parameter
449    // of the function calling the printf function.  If the function
450    // has an attribute indicating it is a printf-like function, then we
451    // should suppress warnings concerning non-literals being used in a call
452    // to a vprintf function.  For example:
453    //
454    // void
455    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
456    //      va_list ap;
457    //      va_start(ap, fmt);
458    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
459    //      ...
460    //
461    //
462    //  FIXME: We don't have full attribute support yet, so just check to see
463    //    if the argument is a DeclRefExpr that references a parameter.  We'll
464    //    add proper support for checking the attribute later.
465    if (HasVAListArg)
466      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
467        if (isa<ParmVarDecl>(DR->getDecl()))
468          return;
469
470    Diag(TheCall->getArg(format_idx)->getLocStart(),
471         diag::warn_printf_not_string_constant)
472      << OrigFormatExpr->getSourceRange();
473    return;
474  }
475
476  // CHECK: is the format string a wide literal?
477  if (FExpr->isWide()) {
478    Diag(FExpr->getLocStart(),
479         diag::warn_printf_format_string_is_wide_literal)
480      << OrigFormatExpr->getSourceRange();
481    return;
482  }
483
484  // Str - The format string.  NOTE: this is NOT null-terminated!
485  const char * const Str = FExpr->getStrData();
486
487  // CHECK: empty format string?
488  const unsigned StrLen = FExpr->getByteLength();
489
490  if (StrLen == 0) {
491    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
492      << OrigFormatExpr->getSourceRange();
493    return;
494  }
495
496  // We process the format string using a binary state machine.  The
497  // current state is stored in CurrentState.
498  enum {
499    state_OrdChr,
500    state_Conversion
501  } CurrentState = state_OrdChr;
502
503  // numConversions - The number of conversions seen so far.  This is
504  //  incremented as we traverse the format string.
505  unsigned numConversions = 0;
506
507  // numDataArgs - The number of data arguments after the format
508  //  string.  This can only be determined for non vprintf-like
509  //  functions.  For those functions, this value is 1 (the sole
510  //  va_arg argument).
511  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
512
513  // Inspect the format string.
514  unsigned StrIdx = 0;
515
516  // LastConversionIdx - Index within the format string where we last saw
517  //  a '%' character that starts a new format conversion.
518  unsigned LastConversionIdx = 0;
519
520  for (; StrIdx < StrLen; ++StrIdx) {
521
522    // Is the number of detected conversion conversions greater than
523    // the number of matching data arguments?  If so, stop.
524    if (!HasVAListArg && numConversions > numDataArgs) break;
525
526    // Handle "\0"
527    if (Str[StrIdx] == '\0') {
528      // The string returned by getStrData() is not null-terminated,
529      // so the presence of a null character is likely an error.
530      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
531           diag::warn_printf_format_string_contains_null_char)
532        <<  OrigFormatExpr->getSourceRange();
533      return;
534    }
535
536    // Ordinary characters (not processing a format conversion).
537    if (CurrentState == state_OrdChr) {
538      if (Str[StrIdx] == '%') {
539        CurrentState = state_Conversion;
540        LastConversionIdx = StrIdx;
541      }
542      continue;
543    }
544
545    // Seen '%'.  Now processing a format conversion.
546    switch (Str[StrIdx]) {
547    // Handle dynamic precision or width specifier.
548    case '*': {
549      ++numConversions;
550
551      if (!HasVAListArg && numConversions > numDataArgs) {
552        SourceLocation Loc = FExpr->getLocStart();
553        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
554
555        if (Str[StrIdx-1] == '.')
556          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
557            << OrigFormatExpr->getSourceRange();
558        else
559          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
560            << OrigFormatExpr->getSourceRange();
561
562        // Don't do any more checking.  We'll just emit spurious errors.
563        return;
564      }
565
566      // Perform type checking on width/precision specifier.
567      Expr *E = TheCall->getArg(format_idx+numConversions);
568      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
569        if (BT->getKind() == BuiltinType::Int)
570          break;
571
572      SourceLocation Loc =
573        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
574
575      if (Str[StrIdx-1] == '.')
576        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
577          << E->getType().getAsString() << E->getSourceRange();
578      else
579        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
580          << E->getType().getAsString() << E->getSourceRange();
581
582      break;
583    }
584
585    // Characters which can terminate a format conversion
586    // (e.g. "%d").  Characters that specify length modifiers or
587    // other flags are handled by the default case below.
588    //
589    // FIXME: additional checks will go into the following cases.
590    case 'i':
591    case 'd':
592    case 'o':
593    case 'u':
594    case 'x':
595    case 'X':
596    case 'D':
597    case 'O':
598    case 'U':
599    case 'e':
600    case 'E':
601    case 'f':
602    case 'F':
603    case 'g':
604    case 'G':
605    case 'a':
606    case 'A':
607    case 'c':
608    case 'C':
609    case 'S':
610    case 's':
611    case 'p':
612      ++numConversions;
613      CurrentState = state_OrdChr;
614      break;
615
616    // CHECK: Are we using "%n"?  Issue a warning.
617    case 'n': {
618      ++numConversions;
619      CurrentState = state_OrdChr;
620      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
621                                                      LastConversionIdx+1);
622
623      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
624      break;
625    }
626
627    // Handle "%@"
628    case '@':
629      // %@ is allowed in ObjC format strings only.
630      if(ObjCFExpr != NULL)
631        CurrentState = state_OrdChr;
632      else {
633        // Issue a warning: invalid format conversion.
634        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
635                                                    LastConversionIdx+1);
636
637        Diag(Loc, diag::warn_printf_invalid_conversion)
638          <<  std::string(Str+LastConversionIdx,
639                          Str+std::min(LastConversionIdx+2, StrLen))
640          << OrigFormatExpr->getSourceRange();
641      }
642      ++numConversions;
643      break;
644
645    // Handle "%%"
646    case '%':
647      // Sanity check: Was the first "%" character the previous one?
648      // If not, we will assume that we have a malformed format
649      // conversion, and that the current "%" character is the start
650      // of a new conversion.
651      if (StrIdx - LastConversionIdx == 1)
652        CurrentState = state_OrdChr;
653      else {
654        // Issue a warning: invalid format conversion.
655        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
656                                                        LastConversionIdx+1);
657
658        Diag(Loc, diag::warn_printf_invalid_conversion)
659          << std::string(Str+LastConversionIdx, Str+StrIdx)
660          << OrigFormatExpr->getSourceRange();
661
662        // This conversion is broken.  Advance to the next format
663        // conversion.
664        LastConversionIdx = StrIdx;
665        ++numConversions;
666      }
667      break;
668
669    default:
670      // This case catches all other characters: flags, widths, etc.
671      // We should eventually process those as well.
672      break;
673    }
674  }
675
676  if (CurrentState == state_Conversion) {
677    // Issue a warning: invalid format conversion.
678    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
679                                                    LastConversionIdx+1);
680
681    Diag(Loc, diag::warn_printf_invalid_conversion)
682      << std::string(Str+LastConversionIdx,
683                     Str+std::min(LastConversionIdx+2, StrLen))
684      << OrigFormatExpr->getSourceRange();
685    return;
686  }
687
688  if (!HasVAListArg) {
689    // CHECK: Does the number of format conversions exceed the number
690    //        of data arguments?
691    if (numConversions > numDataArgs) {
692      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
693                                                      LastConversionIdx);
694
695      Diag(Loc, diag::warn_printf_insufficient_data_args)
696        << OrigFormatExpr->getSourceRange();
697    }
698    // CHECK: Does the number of data arguments exceed the number of
699    //        format conversions in the format string?
700    else if (numConversions < numDataArgs)
701      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
702           diag::warn_printf_too_many_data_args)
703        << OrigFormatExpr->getSourceRange();
704  }
705}
706
707//===--- CHECK: Return Address of Stack Variable --------------------------===//
708
709static DeclRefExpr* EvalVal(Expr *E);
710static DeclRefExpr* EvalAddr(Expr* E);
711
712/// CheckReturnStackAddr - Check if a return statement returns the address
713///   of a stack variable.
714void
715Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
716                           SourceLocation ReturnLoc) {
717
718  // Perform checking for returned stack addresses.
719  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
720    if (DeclRefExpr *DR = EvalAddr(RetValExp))
721      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
722       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
723
724    // Skip over implicit cast expressions when checking for block expressions.
725    if (ImplicitCastExpr *IcExpr =
726          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
727      RetValExp = IcExpr->getSubExpr();
728
729    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
730      Diag(C->getLocStart(), diag::err_ret_local_block)
731        << C->getSourceRange();
732  }
733  // Perform checking for stack values returned by reference.
734  else if (lhsType->isReferenceType()) {
735    // Check for a reference to the stack
736    if (DeclRefExpr *DR = EvalVal(RetValExp))
737      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
738        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
739  }
740}
741
742/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
743///  check if the expression in a return statement evaluates to an address
744///  to a location on the stack.  The recursion is used to traverse the
745///  AST of the return expression, with recursion backtracking when we
746///  encounter a subexpression that (1) clearly does not lead to the address
747///  of a stack variable or (2) is something we cannot determine leads to
748///  the address of a stack variable based on such local checking.
749///
750///  EvalAddr processes expressions that are pointers that are used as
751///  references (and not L-values).  EvalVal handles all other values.
752///  At the base case of the recursion is a check for a DeclRefExpr* in
753///  the refers to a stack variable.
754///
755///  This implementation handles:
756///
757///   * pointer-to-pointer casts
758///   * implicit conversions from array references to pointers
759///   * taking the address of fields
760///   * arbitrary interplay between "&" and "*" operators
761///   * pointer arithmetic from an address of a stack variable
762///   * taking the address of an array element where the array is on the stack
763static DeclRefExpr* EvalAddr(Expr *E) {
764  // We should only be called for evaluating pointer expressions.
765  assert((E->getType()->isPointerType() ||
766          E->getType()->isBlockPointerType() ||
767          E->getType()->isObjCQualifiedIdType()) &&
768         "EvalAddr only works on pointers");
769
770  // Our "symbolic interpreter" is just a dispatch off the currently
771  // viewed AST node.  We then recursively traverse the AST by calling
772  // EvalAddr and EvalVal appropriately.
773  switch (E->getStmtClass()) {
774  case Stmt::ParenExprClass:
775    // Ignore parentheses.
776    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
777
778  case Stmt::UnaryOperatorClass: {
779    // The only unary operator that make sense to handle here
780    // is AddrOf.  All others don't make sense as pointers.
781    UnaryOperator *U = cast<UnaryOperator>(E);
782
783    if (U->getOpcode() == UnaryOperator::AddrOf)
784      return EvalVal(U->getSubExpr());
785    else
786      return NULL;
787  }
788
789  case Stmt::BinaryOperatorClass: {
790    // Handle pointer arithmetic.  All other binary operators are not valid
791    // in this context.
792    BinaryOperator *B = cast<BinaryOperator>(E);
793    BinaryOperator::Opcode op = B->getOpcode();
794
795    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
796      return NULL;
797
798    Expr *Base = B->getLHS();
799
800    // Determine which argument is the real pointer base.  It could be
801    // the RHS argument instead of the LHS.
802    if (!Base->getType()->isPointerType()) Base = B->getRHS();
803
804    assert (Base->getType()->isPointerType());
805    return EvalAddr(Base);
806  }
807
808  // For conditional operators we need to see if either the LHS or RHS are
809  // valid DeclRefExpr*s.  If one of them is valid, we return it.
810  case Stmt::ConditionalOperatorClass: {
811    ConditionalOperator *C = cast<ConditionalOperator>(E);
812
813    // Handle the GNU extension for missing LHS.
814    if (Expr *lhsExpr = C->getLHS())
815      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
816        return LHS;
817
818     return EvalAddr(C->getRHS());
819  }
820
821  // For casts, we need to handle conversions from arrays to
822  // pointer values, and pointer-to-pointer conversions.
823  case Stmt::ImplicitCastExprClass:
824  case Stmt::CStyleCastExprClass:
825  case Stmt::CXXFunctionalCastExprClass: {
826    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
827    QualType T = SubExpr->getType();
828
829    if (SubExpr->getType()->isPointerType() ||
830        SubExpr->getType()->isBlockPointerType() ||
831        SubExpr->getType()->isObjCQualifiedIdType())
832      return EvalAddr(SubExpr);
833    else if (T->isArrayType())
834      return EvalVal(SubExpr);
835    else
836      return 0;
837  }
838
839  // C++ casts.  For dynamic casts, static casts, and const casts, we
840  // are always converting from a pointer-to-pointer, so we just blow
841  // through the cast.  In the case the dynamic cast doesn't fail (and
842  // return NULL), we take the conservative route and report cases
843  // where we return the address of a stack variable.  For Reinterpre
844  // FIXME: The comment about is wrong; we're not always converting
845  // from pointer to pointer. I'm guessing that this code should also
846  // handle references to objects.
847  case Stmt::CXXStaticCastExprClass:
848  case Stmt::CXXDynamicCastExprClass:
849  case Stmt::CXXConstCastExprClass:
850  case Stmt::CXXReinterpretCastExprClass: {
851      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
852      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
853        return EvalAddr(S);
854      else
855        return NULL;
856  }
857
858  // Everything else: we simply don't reason about them.
859  default:
860    return NULL;
861  }
862}
863
864
865///  EvalVal - This function is complements EvalAddr in the mutual recursion.
866///   See the comments for EvalAddr for more details.
867static DeclRefExpr* EvalVal(Expr *E) {
868
869  // We should only be called for evaluating non-pointer expressions, or
870  // expressions with a pointer type that are not used as references but instead
871  // are l-values (e.g., DeclRefExpr with a pointer type).
872
873  // Our "symbolic interpreter" is just a dispatch off the currently
874  // viewed AST node.  We then recursively traverse the AST by calling
875  // EvalAddr and EvalVal appropriately.
876  switch (E->getStmtClass()) {
877  case Stmt::DeclRefExprClass: {
878    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
879    //  at code that refers to a variable's name.  We check if it has local
880    //  storage within the function, and if so, return the expression.
881    DeclRefExpr *DR = cast<DeclRefExpr>(E);
882
883    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
884      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
885
886    return NULL;
887  }
888
889  case Stmt::ParenExprClass:
890    // Ignore parentheses.
891    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
892
893  case Stmt::UnaryOperatorClass: {
894    // The only unary operator that make sense to handle here
895    // is Deref.  All others don't resolve to a "name."  This includes
896    // handling all sorts of rvalues passed to a unary operator.
897    UnaryOperator *U = cast<UnaryOperator>(E);
898
899    if (U->getOpcode() == UnaryOperator::Deref)
900      return EvalAddr(U->getSubExpr());
901
902    return NULL;
903  }
904
905  case Stmt::ArraySubscriptExprClass: {
906    // Array subscripts are potential references to data on the stack.  We
907    // retrieve the DeclRefExpr* for the array variable if it indeed
908    // has local storage.
909    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
910  }
911
912  case Stmt::ConditionalOperatorClass: {
913    // For conditional operators we need to see if either the LHS or RHS are
914    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
915    ConditionalOperator *C = cast<ConditionalOperator>(E);
916
917    // Handle the GNU extension for missing LHS.
918    if (Expr *lhsExpr = C->getLHS())
919      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
920        return LHS;
921
922    return EvalVal(C->getRHS());
923  }
924
925  // Accesses to members are potential references to data on the stack.
926  case Stmt::MemberExprClass: {
927    MemberExpr *M = cast<MemberExpr>(E);
928
929    // Check for indirect access.  We only want direct field accesses.
930    if (!M->isArrow())
931      return EvalVal(M->getBase());
932    else
933      return NULL;
934  }
935
936  // Everything else: we simply don't reason about them.
937  default:
938    return NULL;
939  }
940}
941
942//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
943
944/// Check for comparisons of floating point operands using != and ==.
945/// Issue a warning if these are no self-comparisons, as they are not likely
946/// to do what the programmer intended.
947void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
948  bool EmitWarning = true;
949
950  Expr* LeftExprSansParen = lex->IgnoreParens();
951  Expr* RightExprSansParen = rex->IgnoreParens();
952
953  // Special case: check for x == x (which is OK).
954  // Do not emit warnings for such cases.
955  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
956    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
957      if (DRL->getDecl() == DRR->getDecl())
958        EmitWarning = false;
959
960
961  // Special case: check for comparisons against literals that can be exactly
962  //  represented by APFloat.  In such cases, do not emit a warning.  This
963  //  is a heuristic: often comparison against such literals are used to
964  //  detect if a value in a variable has not changed.  This clearly can
965  //  lead to false negatives.
966  if (EmitWarning) {
967    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
968      if (FLL->isExact())
969        EmitWarning = false;
970    }
971    else
972      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
973        if (FLR->isExact())
974          EmitWarning = false;
975    }
976  }
977
978  // Check for comparisons with builtin types.
979  if (EmitWarning)
980    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
981      if (isCallBuiltin(CL))
982        EmitWarning = false;
983
984  if (EmitWarning)
985    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
986      if (isCallBuiltin(CR))
987        EmitWarning = false;
988
989  // Emit the diagnostic.
990  if (EmitWarning)
991    Diag(loc, diag::warn_floatingpoint_eq)
992      << lex->getSourceRange() << rex->getSourceRange();
993}
994