SemaChecking.cpp revision 0d15c5321a11a5fee53b17ca8e9e0d72d6192b23
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/Analyses/PrintfFormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "clang/Basic/TargetBuiltins.h"
32#include "clang/Basic/TargetInfo.h"
33#include <limits>
34using namespace clang;
35
36/// getLocationOfStringLiteralByte - Return a source location that points to the
37/// specified byte of the specified string literal.
38///
39/// Strings are amazingly complex.  They can be formed from multiple tokens and
40/// can have escape sequences in them in addition to the usual trigraph and
41/// escaped newline business.  This routine handles this complexity.
42///
43SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
44                                                    unsigned ByteNo) const {
45  assert(!SL->isWide() && "This doesn't work for wide strings yet");
46
47  // Loop over all of the tokens in this string until we find the one that
48  // contains the byte we're looking for.
49  unsigned TokNo = 0;
50  while (1) {
51    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
52    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
53
54    // Get the spelling of the string so that we can get the data that makes up
55    // the string literal, not the identifier for the macro it is potentially
56    // expanded through.
57    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
58
59    // Re-lex the token to get its length and original spelling.
60    std::pair<FileID, unsigned> LocInfo =
61      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
62    bool Invalid = false;
63    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
64    if (Invalid)
65      return StrTokSpellingLoc;
66
67    const char *StrData = Buffer.data()+LocInfo.second;
68
69    // Create a langops struct and enable trigraphs.  This is sufficient for
70    // relexing tokens.
71    LangOptions LangOpts;
72    LangOpts.Trigraphs = true;
73
74    // Create a lexer starting at the beginning of this token.
75    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
76                   Buffer.end());
77    Token TheTok;
78    TheLexer.LexFromRawLexer(TheTok);
79
80    // Use the StringLiteralParser to compute the length of the string in bytes.
81    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
82    unsigned TokNumBytes = SLP.GetStringLength();
83
84    // If the byte is in this token, return the location of the byte.
85    if (ByteNo < TokNumBytes ||
86        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
87      unsigned Offset =
88        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
89                                                   /*Complain=*/false);
90
91      // Now that we know the offset of the token in the spelling, use the
92      // preprocessor to get the offset in the original source.
93      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
94    }
95
96    // Move to the next string token.
97    ++TokNo;
98    ByteNo -= TokNumBytes;
99  }
100}
101
102/// CheckablePrintfAttr - does a function call have a "printf" attribute
103/// and arguments that merit checking?
104bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
105  if (Format->getType() == "printf") return true;
106  if (Format->getType() == "printf0") {
107    // printf0 allows null "format" string; if so don't check format/args
108    unsigned format_idx = Format->getFormatIdx() - 1;
109    // Does the index refer to the implicit object argument?
110    if (isa<CXXMemberCallExpr>(TheCall)) {
111      if (format_idx == 0)
112        return false;
113      --format_idx;
114    }
115    if (format_idx < TheCall->getNumArgs()) {
116      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
117      if (!Format->isNullPointerConstant(Context,
118                                         Expr::NPC_ValueDependentIsNull))
119        return true;
120    }
121  }
122  return false;
123}
124
125Action::OwningExprResult
126Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
127  OwningExprResult TheCallResult(Owned(TheCall));
128
129  switch (BuiltinID) {
130  case Builtin::BI__builtin___CFStringMakeConstantString:
131    assert(TheCall->getNumArgs() == 1 &&
132           "Wrong # arguments to builtin CFStringMakeConstantString");
133    if (CheckObjCString(TheCall->getArg(0)))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_stdarg_start:
137  case Builtin::BI__builtin_va_start:
138    if (SemaBuiltinVAStart(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_isgreater:
142  case Builtin::BI__builtin_isgreaterequal:
143  case Builtin::BI__builtin_isless:
144  case Builtin::BI__builtin_islessequal:
145  case Builtin::BI__builtin_islessgreater:
146  case Builtin::BI__builtin_isunordered:
147    if (SemaBuiltinUnorderedCompare(TheCall))
148      return ExprError();
149    break;
150  case Builtin::BI__builtin_fpclassify:
151    if (SemaBuiltinFPClassification(TheCall, 6))
152      return ExprError();
153    break;
154  case Builtin::BI__builtin_isfinite:
155  case Builtin::BI__builtin_isinf:
156  case Builtin::BI__builtin_isinf_sign:
157  case Builtin::BI__builtin_isnan:
158  case Builtin::BI__builtin_isnormal:
159    if (SemaBuiltinFPClassification(TheCall, 1))
160      return ExprError();
161    break;
162  case Builtin::BI__builtin_return_address:
163  case Builtin::BI__builtin_frame_address: {
164    llvm::APSInt Result;
165    if (SemaBuiltinConstantArg(TheCall, 0, Result))
166      return ExprError();
167    break;
168  }
169  case Builtin::BI__builtin_eh_return_data_regno: {
170    llvm::APSInt Result;
171    if (SemaBuiltinConstantArg(TheCall, 0, Result))
172      return ExprError();
173    break;
174  }
175  case Builtin::BI__builtin_shufflevector:
176    return SemaBuiltinShuffleVector(TheCall);
177    // TheCall will be freed by the smart pointer here, but that's fine, since
178    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
179  case Builtin::BI__builtin_prefetch:
180    if (SemaBuiltinPrefetch(TheCall))
181      return ExprError();
182    break;
183  case Builtin::BI__builtin_object_size:
184    if (SemaBuiltinObjectSize(TheCall))
185      return ExprError();
186    break;
187  case Builtin::BI__builtin_longjmp:
188    if (SemaBuiltinLongjmp(TheCall))
189      return ExprError();
190    break;
191  case Builtin::BI__sync_fetch_and_add:
192  case Builtin::BI__sync_fetch_and_sub:
193  case Builtin::BI__sync_fetch_and_or:
194  case Builtin::BI__sync_fetch_and_and:
195  case Builtin::BI__sync_fetch_and_xor:
196  case Builtin::BI__sync_add_and_fetch:
197  case Builtin::BI__sync_sub_and_fetch:
198  case Builtin::BI__sync_and_and_fetch:
199  case Builtin::BI__sync_or_and_fetch:
200  case Builtin::BI__sync_xor_and_fetch:
201  case Builtin::BI__sync_val_compare_and_swap:
202  case Builtin::BI__sync_bool_compare_and_swap:
203  case Builtin::BI__sync_lock_test_and_set:
204  case Builtin::BI__sync_lock_release:
205    if (SemaBuiltinAtomicOverloaded(TheCall))
206      return ExprError();
207    break;
208  }
209
210  // Since the target specific builtins for each arch overlap, only check those
211  // of the arch we are compiling for.
212  if (BuiltinID >= Builtin::FirstTSBuiltin) {
213    switch (Context.Target.getTriple().getArch()) {
214      case llvm::Triple::arm:
215      case llvm::Triple::thumb:
216        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
217          return ExprError();
218        break;
219      case llvm::Triple::x86:
220      case llvm::Triple::x86_64:
221        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
222          return ExprError();
223        break;
224      default:
225        break;
226    }
227  }
228
229  return move(TheCallResult);
230}
231
232bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
233  switch (BuiltinID) {
234  case X86::BI__builtin_ia32_palignr128:
235  case X86::BI__builtin_ia32_palignr: {
236    llvm::APSInt Result;
237    if (SemaBuiltinConstantArg(TheCall, 2, Result))
238      return true;
239    break;
240  }
241  }
242  return false;
243}
244
245bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
246  llvm::APSInt Result;
247
248  unsigned mask = 0;
249  switch (BuiltinID) {
250  case ARM::BI__builtin_neon_vaba_v: mask = 0x707; break;
251  case ARM::BI__builtin_neon_vabaq_v: mask = 0x7070000; break;
252  case ARM::BI__builtin_neon_vabal_v: mask = 0xE0E0000; break;
253  case ARM::BI__builtin_neon_vabd_v: mask = 0x717; break;
254  case ARM::BI__builtin_neon_vabdq_v: mask = 0x7170000; break;
255  case ARM::BI__builtin_neon_vabdl_v: mask = 0xE0E0000; break;
256  case ARM::BI__builtin_neon_vabs_v: mask = 0x17; break;
257  case ARM::BI__builtin_neon_vabsq_v: mask = 0x170000; break;
258  case ARM::BI__builtin_neon_vaddhn_v: mask = 0x707; break;
259  case ARM::BI__builtin_neon_vaddl_v: mask = 0xE0E0000; break;
260  case ARM::BI__builtin_neon_vaddw_v: mask = 0xE0E0000; break;
261  case ARM::BI__builtin_neon_vcage_v: mask = 0x400; break;
262  case ARM::BI__builtin_neon_vcageq_v: mask = 0x4000000; break;
263  case ARM::BI__builtin_neon_vcagt_v: mask = 0x400; break;
264  case ARM::BI__builtin_neon_vcagtq_v: mask = 0x4000000; break;
265  case ARM::BI__builtin_neon_vcale_v: mask = 0x400; break;
266  case ARM::BI__builtin_neon_vcaleq_v: mask = 0x4000000; break;
267  case ARM::BI__builtin_neon_vcalt_v: mask = 0x400; break;
268  case ARM::BI__builtin_neon_vcaltq_v: mask = 0x4000000; break;
269  case ARM::BI__builtin_neon_vcls_v: mask = 0x7; break;
270  case ARM::BI__builtin_neon_vclsq_v: mask = 0x70000; break;
271  case ARM::BI__builtin_neon_vclz_v: mask = 0x707; break;
272  case ARM::BI__builtin_neon_vclzq_v: mask = 0x7070000; break;
273  case ARM::BI__builtin_neon_vcnt_v: mask = 0x121; break;
274  case ARM::BI__builtin_neon_vcntq_v: mask = 0x1210000; break;
275  case ARM::BI__builtin_neon_vcvt_f16_v: mask = 0x80; break;
276  case ARM::BI__builtin_neon_vcvt_f32_v: mask = 0x404; break;
277  case ARM::BI__builtin_neon_vcvtq_f32_v: mask = 0x4040000; break;
278  case ARM::BI__builtin_neon_vcvt_f32_f16: mask = 0x100000; break;
279  case ARM::BI__builtin_neon_vcvt_n_f32_v: mask = 0x404; break;
280  case ARM::BI__builtin_neon_vcvtq_n_f32_v: mask = 0x4040000; break;
281  case ARM::BI__builtin_neon_vcvt_n_s32_v: mask = 0x4; break;
282  case ARM::BI__builtin_neon_vcvtq_n_s32_v: mask = 0x40000; break;
283  case ARM::BI__builtin_neon_vcvt_n_u32_v: mask = 0x400; break;
284  case ARM::BI__builtin_neon_vcvtq_n_u32_v: mask = 0x4000000; break;
285  case ARM::BI__builtin_neon_vcvt_s32_v: mask = 0x4; break;
286  case ARM::BI__builtin_neon_vcvtq_s32_v: mask = 0x40000; break;
287  case ARM::BI__builtin_neon_vcvt_u32_v: mask = 0x400; break;
288  case ARM::BI__builtin_neon_vcvtq_u32_v: mask = 0x4000000; break;
289  case ARM::BI__builtin_neon_vext_v: mask = 0xF6F; break;
290  case ARM::BI__builtin_neon_vextq_v: mask = 0xF6F0000; break;
291  case ARM::BI__builtin_neon_vhadd_v: mask = 0x707; break;
292  case ARM::BI__builtin_neon_vhaddq_v: mask = 0x7070000; break;
293  case ARM::BI__builtin_neon_vhsub_v: mask = 0x707; break;
294  case ARM::BI__builtin_neon_vhsubq_v: mask = 0x7070000; break;
295  case ARM::BI__builtin_neon_vld1_v: mask = 0xFFF; break;
296  case ARM::BI__builtin_neon_vld1q_v: mask = 0xFFF0000; break;
297  case ARM::BI__builtin_neon_vld1_dup_v: mask = 0xFFF; break;
298  case ARM::BI__builtin_neon_vld1q_dup_v: mask = 0xFFF0000; break;
299  case ARM::BI__builtin_neon_vld1_lane_v: mask = 0xFFF; break;
300  case ARM::BI__builtin_neon_vld1q_lane_v: mask = 0xFFF0000; break;
301  case ARM::BI__builtin_neon_vld2_v: mask = 0xFFF; break;
302  case ARM::BI__builtin_neon_vld2q_v: mask = 0x7F70000; break;
303  case ARM::BI__builtin_neon_vld2_dup_v: mask = 0xFFF; break;
304  case ARM::BI__builtin_neon_vld2_lane_v: mask = 0x7F7; break;
305  case ARM::BI__builtin_neon_vld2q_lane_v: mask = 0x6D60000; break;
306  case ARM::BI__builtin_neon_vld3_v: mask = 0xFFF; break;
307  case ARM::BI__builtin_neon_vld3q_v: mask = 0x7F70000; break;
308  case ARM::BI__builtin_neon_vld3_dup_v: mask = 0xFFF; break;
309  case ARM::BI__builtin_neon_vld3_lane_v: mask = 0x7F7; break;
310  case ARM::BI__builtin_neon_vld3q_lane_v: mask = 0x6D60000; break;
311  case ARM::BI__builtin_neon_vld4_v: mask = 0xFFF; break;
312  case ARM::BI__builtin_neon_vld4q_v: mask = 0x7F70000; break;
313  case ARM::BI__builtin_neon_vld4_dup_v: mask = 0xFFF; break;
314  case ARM::BI__builtin_neon_vld4_lane_v: mask = 0x7F7; break;
315  case ARM::BI__builtin_neon_vld4q_lane_v: mask = 0x6D60000; break;
316  case ARM::BI__builtin_neon_vmax_v: mask = 0x717; break;
317  case ARM::BI__builtin_neon_vmaxq_v: mask = 0x7170000; break;
318  case ARM::BI__builtin_neon_vmin_v: mask = 0x717; break;
319  case ARM::BI__builtin_neon_vminq_v: mask = 0x7170000; break;
320  case ARM::BI__builtin_neon_vmlal_v: mask = 0xE0E0000; break;
321  case ARM::BI__builtin_neon_vmlal_lane_v: mask = 0xC0C0000; break;
322  case ARM::BI__builtin_neon_vmla_lane_v: mask = 0x616; break;
323  case ARM::BI__builtin_neon_vmlaq_lane_v: mask = 0x6160000; break;
324  case ARM::BI__builtin_neon_vmlsl_v: mask = 0xE0E0000; break;
325  case ARM::BI__builtin_neon_vmlsl_lane_v: mask = 0xC0C0000; break;
326  case ARM::BI__builtin_neon_vmls_lane_v: mask = 0x616; break;
327  case ARM::BI__builtin_neon_vmlsq_lane_v: mask = 0x6160000; break;
328  case ARM::BI__builtin_neon_vmovl_v: mask = 0xE0E0000; break;
329  case ARM::BI__builtin_neon_vmovn_v: mask = 0x707; break;
330  case ARM::BI__builtin_neon_vmull_v: mask = 0xE4E0000; break;
331  case ARM::BI__builtin_neon_vmull_lane_v: mask = 0xC0C0000; break;
332  case ARM::BI__builtin_neon_vpadal_v: mask = 0xE0E; break;
333  case ARM::BI__builtin_neon_vpadalq_v: mask = 0xE0E0000; break;
334  case ARM::BI__builtin_neon_vpadd_v: mask = 0x717; break;
335  case ARM::BI__builtin_neon_vpaddl_v: mask = 0xE0E; break;
336  case ARM::BI__builtin_neon_vpaddlq_v: mask = 0xE0E0000; break;
337  case ARM::BI__builtin_neon_vpmax_v: mask = 0x717; break;
338  case ARM::BI__builtin_neon_vpmin_v: mask = 0x717; break;
339  case ARM::BI__builtin_neon_vqabs_v: mask = 0x7; break;
340  case ARM::BI__builtin_neon_vqabsq_v: mask = 0x70000; break;
341  case ARM::BI__builtin_neon_vqadd_v: mask = 0xF0F; break;
342  case ARM::BI__builtin_neon_vqaddq_v: mask = 0xF0F0000; break;
343  case ARM::BI__builtin_neon_vqdmlal_v: mask = 0xC0000; break;
344  case ARM::BI__builtin_neon_vqdmlal_lane_v: mask = 0xC0000; break;
345  case ARM::BI__builtin_neon_vqdmlsl_v: mask = 0xC0000; break;
346  case ARM::BI__builtin_neon_vqdmlsl_lane_v: mask = 0xC0000; break;
347  case ARM::BI__builtin_neon_vqdmulh_v: mask = 0x6; break;
348  case ARM::BI__builtin_neon_vqdmulhq_v: mask = 0x60000; break;
349  case ARM::BI__builtin_neon_vqdmulh_lane_v: mask = 0x6; break;
350  case ARM::BI__builtin_neon_vqdmulhq_lane_v: mask = 0x60000; break;
351  case ARM::BI__builtin_neon_vqdmull_v: mask = 0xC0000; break;
352  case ARM::BI__builtin_neon_vqdmull_lane_v: mask = 0xC0000; break;
353  case ARM::BI__builtin_neon_vqmovn_v: mask = 0x707; break;
354  case ARM::BI__builtin_neon_vqmovun_v: mask = 0x700; break;
355  case ARM::BI__builtin_neon_vqneg_v: mask = 0x7; break;
356  case ARM::BI__builtin_neon_vqnegq_v: mask = 0x70000; break;
357  case ARM::BI__builtin_neon_vqrdmulh_v: mask = 0x6; break;
358  case ARM::BI__builtin_neon_vqrdmulhq_v: mask = 0x60000; break;
359  case ARM::BI__builtin_neon_vqrdmulh_lane_v: mask = 0x6; break;
360  case ARM::BI__builtin_neon_vqrdmulhq_lane_v: mask = 0x60000; break;
361  case ARM::BI__builtin_neon_vqrshl_v: mask = 0xF0F; break;
362  case ARM::BI__builtin_neon_vqrshlq_v: mask = 0xF0F0000; break;
363  case ARM::BI__builtin_neon_vqrshrn_n_v: mask = 0x707; break;
364  case ARM::BI__builtin_neon_vqrshrun_n_v: mask = 0x700; break;
365  case ARM::BI__builtin_neon_vqshl_v: mask = 0xF0F; break;
366  case ARM::BI__builtin_neon_vqshlq_v: mask = 0xF0F0000; break;
367  case ARM::BI__builtin_neon_vqshlu_n_v: mask = 0xF00; break;
368  case ARM::BI__builtin_neon_vqshluq_n_v: mask = 0xF000000; break;
369  case ARM::BI__builtin_neon_vqshl_n_v: mask = 0xF0F; break;
370  case ARM::BI__builtin_neon_vqshlq_n_v: mask = 0xF0F0000; break;
371  case ARM::BI__builtin_neon_vqshrn_n_v: mask = 0x707; break;
372  case ARM::BI__builtin_neon_vqshrun_n_v: mask = 0x700; break;
373  case ARM::BI__builtin_neon_vqsub_v: mask = 0xF0F; break;
374  case ARM::BI__builtin_neon_vqsubq_v: mask = 0xF0F0000; break;
375  case ARM::BI__builtin_neon_vraddhn_v: mask = 0x707; break;
376  case ARM::BI__builtin_neon_vrecpe_v: mask = 0x410; break;
377  case ARM::BI__builtin_neon_vrecpeq_v: mask = 0x4100000; break;
378  case ARM::BI__builtin_neon_vrecps_v: mask = 0x10; break;
379  case ARM::BI__builtin_neon_vrecpsq_v: mask = 0x100000; break;
380  case ARM::BI__builtin_neon_vrhadd_v: mask = 0x707; break;
381  case ARM::BI__builtin_neon_vrhaddq_v: mask = 0x7070000; break;
382  case ARM::BI__builtin_neon_vrshl_v: mask = 0xF0F; break;
383  case ARM::BI__builtin_neon_vrshlq_v: mask = 0xF0F0000; break;
384  case ARM::BI__builtin_neon_vrshrn_n_v: mask = 0x707; break;
385  case ARM::BI__builtin_neon_vrshr_n_v: mask = 0xF0F; break;
386  case ARM::BI__builtin_neon_vrshrq_n_v: mask = 0xF0F0000; break;
387  case ARM::BI__builtin_neon_vrsqrte_v: mask = 0x410; break;
388  case ARM::BI__builtin_neon_vrsqrteq_v: mask = 0x4100000; break;
389  case ARM::BI__builtin_neon_vrsqrts_v: mask = 0x10; break;
390  case ARM::BI__builtin_neon_vrsqrtsq_v: mask = 0x100000; break;
391  case ARM::BI__builtin_neon_vrsra_n_v: mask = 0xF0F; break;
392  case ARM::BI__builtin_neon_vrsraq_n_v: mask = 0xF0F0000; break;
393  case ARM::BI__builtin_neon_vrsubhn_v: mask = 0x707; break;
394  case ARM::BI__builtin_neon_vshl_v: mask = 0xF0F; break;
395  case ARM::BI__builtin_neon_vshlq_v: mask = 0xF0F0000; break;
396  case ARM::BI__builtin_neon_vshll_n_v: mask = 0xE0E0000; break;
397  case ARM::BI__builtin_neon_vshl_n_v: mask = 0xF0F; break;
398  case ARM::BI__builtin_neon_vshlq_n_v: mask = 0xF0F0000; break;
399  case ARM::BI__builtin_neon_vshrn_n_v: mask = 0x707; break;
400  case ARM::BI__builtin_neon_vshr_n_v: mask = 0xF0F; break;
401  case ARM::BI__builtin_neon_vshrq_n_v: mask = 0xF0F0000; break;
402  case ARM::BI__builtin_neon_vsli_n_v: mask = 0xF6F; break;
403  case ARM::BI__builtin_neon_vsliq_n_v: mask = 0xF6F0000; break;
404  case ARM::BI__builtin_neon_vsra_n_v: mask = 0xF0F; break;
405  case ARM::BI__builtin_neon_vsraq_n_v: mask = 0xF0F0000; break;
406  case ARM::BI__builtin_neon_vsri_n_v: mask = 0xF6F; break;
407  case ARM::BI__builtin_neon_vsriq_n_v: mask = 0xF6F0000; break;
408  case ARM::BI__builtin_neon_vst1_v: mask = 0x9F; break;
409  case ARM::BI__builtin_neon_vst1q_v: mask = 0x9F0000; break;
410  case ARM::BI__builtin_neon_vst1_lane_v: mask = 0x9F; break;
411  case ARM::BI__builtin_neon_vst1q_lane_v: mask = 0x9F0000; break;
412  case ARM::BI__builtin_neon_vst2_v: mask = 0x9F; break;
413  case ARM::BI__builtin_neon_vst2q_v: mask = 0x970000; break;
414  case ARM::BI__builtin_neon_vst2_lane_v: mask = 0x97; break;
415  case ARM::BI__builtin_neon_vst2q_lane_v: mask = 0x960000; break;
416  case ARM::BI__builtin_neon_vst3_v: mask = 0x9F; break;
417  case ARM::BI__builtin_neon_vst3q_v: mask = 0x970000; break;
418  case ARM::BI__builtin_neon_vst3_lane_v: mask = 0x97; break;
419  case ARM::BI__builtin_neon_vst3q_lane_v: mask = 0x960000; break;
420  case ARM::BI__builtin_neon_vst4_v: mask = 0x9F; break;
421  case ARM::BI__builtin_neon_vst4q_v: mask = 0x970000; break;
422  case ARM::BI__builtin_neon_vst4_lane_v: mask = 0x97; break;
423  case ARM::BI__builtin_neon_vst4q_lane_v: mask = 0x960000; break;
424  case ARM::BI__builtin_neon_vsubhn_v: mask = 0x707; break;
425  case ARM::BI__builtin_neon_vsubl_v: mask = 0xE0E0000; break;
426  case ARM::BI__builtin_neon_vsubw_v: mask = 0xE0E0000; break;
427  case ARM::BI__builtin_neon_vtbl1_v: mask = 0x121; break;
428  case ARM::BI__builtin_neon_vtbl2_v: mask = 0x121; break;
429  case ARM::BI__builtin_neon_vtbl3_v: mask = 0x121; break;
430  case ARM::BI__builtin_neon_vtbl4_v: mask = 0x121; break;
431  case ARM::BI__builtin_neon_vtbx1_v: mask = 0x121; break;
432  case ARM::BI__builtin_neon_vtbx2_v: mask = 0x121; break;
433  case ARM::BI__builtin_neon_vtbx3_v: mask = 0x121; break;
434  case ARM::BI__builtin_neon_vtbx4_v: mask = 0x121; break;
435  case ARM::BI__builtin_neon_vtrn_v: mask = 0x777; break;
436  case ARM::BI__builtin_neon_vtrnq_v: mask = 0x7770000; break;
437  case ARM::BI__builtin_neon_vtst_v: mask = 0x700; break;
438  case ARM::BI__builtin_neon_vtstq_v: mask = 0x7000000; break;
439  case ARM::BI__builtin_neon_vuzp_v: mask = 0x777; break;
440  case ARM::BI__builtin_neon_vuzpq_v: mask = 0x7770000; break;
441  case ARM::BI__builtin_neon_vzip_v: mask = 0x373; break;
442  case ARM::BI__builtin_neon_vzipq_v: mask = 0x7770000; break;
443  }
444
445  // For NEON intrinsics which are overloaded on vector element type, validate
446  // the immediate which specifies which variant to emit.
447  if (mask) {
448    unsigned ArgNo = TheCall->getNumArgs()-1;
449    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
450      return true;
451
452    unsigned Val = Result.getLimitedValue(32);
453    if ((Val > 31) || (mask & (1 << Val)) == 0)
454      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
455        << TheCall->getArg(ArgNo)->getSourceRange();
456  }
457
458  // For NEON intrinsics which take an immediate value as part of the
459  // instruction, range check them here.
460  unsigned i = 0, upper = 0;
461  switch (BuiltinID) {
462  default: return false;
463  };
464
465  if (SemaBuiltinConstantArg(TheCall, i, Result))
466    return true;
467
468  unsigned Val = Result.getZExtValue();
469  if (Val > upper)
470    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
471      << "0" << llvm::utostr(upper) << TheCall->getArg(i)->getSourceRange();
472
473  return false;
474}
475
476/// CheckFunctionCall - Check a direct function call for various correctness
477/// and safety properties not strictly enforced by the C type system.
478bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
479  // Get the IdentifierInfo* for the called function.
480  IdentifierInfo *FnInfo = FDecl->getIdentifier();
481
482  // None of the checks below are needed for functions that don't have
483  // simple names (e.g., C++ conversion functions).
484  if (!FnInfo)
485    return false;
486
487  // FIXME: This mechanism should be abstracted to be less fragile and
488  // more efficient. For example, just map function ids to custom
489  // handlers.
490
491  // Printf checking.
492  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
493    if (CheckablePrintfAttr(Format, TheCall)) {
494      bool HasVAListArg = Format->getFirstArg() == 0;
495      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
496                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
497    }
498  }
499
500  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
501       NonNull = NonNull->getNext<NonNullAttr>())
502    CheckNonNullArguments(NonNull, TheCall);
503
504  return false;
505}
506
507bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
508  // Printf checking.
509  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
510  if (!Format)
511    return false;
512
513  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
514  if (!V)
515    return false;
516
517  QualType Ty = V->getType();
518  if (!Ty->isBlockPointerType())
519    return false;
520
521  if (!CheckablePrintfAttr(Format, TheCall))
522    return false;
523
524  bool HasVAListArg = Format->getFirstArg() == 0;
525  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
526                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
527
528  return false;
529}
530
531/// SemaBuiltinAtomicOverloaded - We have a call to a function like
532/// __sync_fetch_and_add, which is an overloaded function based on the pointer
533/// type of its first argument.  The main ActOnCallExpr routines have already
534/// promoted the types of arguments because all of these calls are prototyped as
535/// void(...).
536///
537/// This function goes through and does final semantic checking for these
538/// builtins,
539bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
540  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
541  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
542
543  // Ensure that we have at least one argument to do type inference from.
544  if (TheCall->getNumArgs() < 1)
545    return Diag(TheCall->getLocEnd(),
546              diag::err_typecheck_call_too_few_args_at_least)
547              << 0 << 1 << TheCall->getNumArgs()
548              << TheCall->getCallee()->getSourceRange();
549
550  // Inspect the first argument of the atomic builtin.  This should always be
551  // a pointer type, whose element is an integral scalar or pointer type.
552  // Because it is a pointer type, we don't have to worry about any implicit
553  // casts here.
554  Expr *FirstArg = TheCall->getArg(0);
555  if (!FirstArg->getType()->isPointerType())
556    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
557             << FirstArg->getType() << FirstArg->getSourceRange();
558
559  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
560  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
561      !ValType->isBlockPointerType())
562    return Diag(DRE->getLocStart(),
563                diag::err_atomic_builtin_must_be_pointer_intptr)
564             << FirstArg->getType() << FirstArg->getSourceRange();
565
566  // We need to figure out which concrete builtin this maps onto.  For example,
567  // __sync_fetch_and_add with a 2 byte object turns into
568  // __sync_fetch_and_add_2.
569#define BUILTIN_ROW(x) \
570  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
571    Builtin::BI##x##_8, Builtin::BI##x##_16 }
572
573  static const unsigned BuiltinIndices[][5] = {
574    BUILTIN_ROW(__sync_fetch_and_add),
575    BUILTIN_ROW(__sync_fetch_and_sub),
576    BUILTIN_ROW(__sync_fetch_and_or),
577    BUILTIN_ROW(__sync_fetch_and_and),
578    BUILTIN_ROW(__sync_fetch_and_xor),
579
580    BUILTIN_ROW(__sync_add_and_fetch),
581    BUILTIN_ROW(__sync_sub_and_fetch),
582    BUILTIN_ROW(__sync_and_and_fetch),
583    BUILTIN_ROW(__sync_or_and_fetch),
584    BUILTIN_ROW(__sync_xor_and_fetch),
585
586    BUILTIN_ROW(__sync_val_compare_and_swap),
587    BUILTIN_ROW(__sync_bool_compare_and_swap),
588    BUILTIN_ROW(__sync_lock_test_and_set),
589    BUILTIN_ROW(__sync_lock_release)
590  };
591#undef BUILTIN_ROW
592
593  // Determine the index of the size.
594  unsigned SizeIndex;
595  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
596  case 1: SizeIndex = 0; break;
597  case 2: SizeIndex = 1; break;
598  case 4: SizeIndex = 2; break;
599  case 8: SizeIndex = 3; break;
600  case 16: SizeIndex = 4; break;
601  default:
602    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
603             << FirstArg->getType() << FirstArg->getSourceRange();
604  }
605
606  // Each of these builtins has one pointer argument, followed by some number of
607  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
608  // that we ignore.  Find out which row of BuiltinIndices to read from as well
609  // as the number of fixed args.
610  unsigned BuiltinID = FDecl->getBuiltinID();
611  unsigned BuiltinIndex, NumFixed = 1;
612  switch (BuiltinID) {
613  default: assert(0 && "Unknown overloaded atomic builtin!");
614  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
615  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
616  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
617  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
618  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
619
620  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
621  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
622  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
623  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
624  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
625
626  case Builtin::BI__sync_val_compare_and_swap:
627    BuiltinIndex = 10;
628    NumFixed = 2;
629    break;
630  case Builtin::BI__sync_bool_compare_and_swap:
631    BuiltinIndex = 11;
632    NumFixed = 2;
633    break;
634  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
635  case Builtin::BI__sync_lock_release:
636    BuiltinIndex = 13;
637    NumFixed = 0;
638    break;
639  }
640
641  // Now that we know how many fixed arguments we expect, first check that we
642  // have at least that many.
643  if (TheCall->getNumArgs() < 1+NumFixed)
644    return Diag(TheCall->getLocEnd(),
645            diag::err_typecheck_call_too_few_args_at_least)
646            << 0 << 1+NumFixed << TheCall->getNumArgs()
647            << TheCall->getCallee()->getSourceRange();
648
649
650  // Get the decl for the concrete builtin from this, we can tell what the
651  // concrete integer type we should convert to is.
652  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
653  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
654  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
655  FunctionDecl *NewBuiltinDecl =
656    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
657                                           TUScope, false, DRE->getLocStart()));
658  const FunctionProtoType *BuiltinFT =
659    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
660  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
661
662  // If the first type needs to be converted (e.g. void** -> int*), do it now.
663  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
664    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
665    TheCall->setArg(0, FirstArg);
666  }
667
668  // Next, walk the valid ones promoting to the right type.
669  for (unsigned i = 0; i != NumFixed; ++i) {
670    Expr *Arg = TheCall->getArg(i+1);
671
672    // If the argument is an implicit cast, then there was a promotion due to
673    // "...", just remove it now.
674    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
675      Arg = ICE->getSubExpr();
676      ICE->setSubExpr(0);
677      ICE->Destroy(Context);
678      TheCall->setArg(i+1, Arg);
679    }
680
681    // GCC does an implicit conversion to the pointer or integer ValType.  This
682    // can fail in some cases (1i -> int**), check for this error case now.
683    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
684    CXXBaseSpecifierArray BasePath;
685    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
686      return true;
687
688    // Okay, we have something that *can* be converted to the right type.  Check
689    // to see if there is a potentially weird extension going on here.  This can
690    // happen when you do an atomic operation on something like an char* and
691    // pass in 42.  The 42 gets converted to char.  This is even more strange
692    // for things like 45.123 -> char, etc.
693    // FIXME: Do this check.
694    ImpCastExprToType(Arg, ValType, Kind);
695    TheCall->setArg(i+1, Arg);
696  }
697
698  // Switch the DeclRefExpr to refer to the new decl.
699  DRE->setDecl(NewBuiltinDecl);
700  DRE->setType(NewBuiltinDecl->getType());
701
702  // Set the callee in the CallExpr.
703  // FIXME: This leaks the original parens and implicit casts.
704  Expr *PromotedCall = DRE;
705  UsualUnaryConversions(PromotedCall);
706  TheCall->setCallee(PromotedCall);
707
708
709  // Change the result type of the call to match the result type of the decl.
710  TheCall->setType(NewBuiltinDecl->getResultType());
711  return false;
712}
713
714
715/// CheckObjCString - Checks that the argument to the builtin
716/// CFString constructor is correct
717/// FIXME: GCC currently emits the following warning:
718/// "warning: input conversion stopped due to an input byte that does not
719///           belong to the input codeset UTF-8"
720/// Note: It might also make sense to do the UTF-16 conversion here (would
721/// simplify the backend).
722bool Sema::CheckObjCString(Expr *Arg) {
723  Arg = Arg->IgnoreParenCasts();
724  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
725
726  if (!Literal || Literal->isWide()) {
727    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
728      << Arg->getSourceRange();
729    return true;
730  }
731
732  const char *Data = Literal->getStrData();
733  unsigned Length = Literal->getByteLength();
734
735  for (unsigned i = 0; i < Length; ++i) {
736    if (!Data[i]) {
737      Diag(getLocationOfStringLiteralByte(Literal, i),
738           diag::warn_cfstring_literal_contains_nul_character)
739        << Arg->getSourceRange();
740      break;
741    }
742  }
743
744  return false;
745}
746
747/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
748/// Emit an error and return true on failure, return false on success.
749bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
750  Expr *Fn = TheCall->getCallee();
751  if (TheCall->getNumArgs() > 2) {
752    Diag(TheCall->getArg(2)->getLocStart(),
753         diag::err_typecheck_call_too_many_args)
754      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
755      << Fn->getSourceRange()
756      << SourceRange(TheCall->getArg(2)->getLocStart(),
757                     (*(TheCall->arg_end()-1))->getLocEnd());
758    return true;
759  }
760
761  if (TheCall->getNumArgs() < 2) {
762    return Diag(TheCall->getLocEnd(),
763      diag::err_typecheck_call_too_few_args_at_least)
764      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
765  }
766
767  // Determine whether the current function is variadic or not.
768  BlockScopeInfo *CurBlock = getCurBlock();
769  bool isVariadic;
770  if (CurBlock)
771    isVariadic = CurBlock->TheDecl->isVariadic();
772  else if (FunctionDecl *FD = getCurFunctionDecl())
773    isVariadic = FD->isVariadic();
774  else
775    isVariadic = getCurMethodDecl()->isVariadic();
776
777  if (!isVariadic) {
778    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
779    return true;
780  }
781
782  // Verify that the second argument to the builtin is the last argument of the
783  // current function or method.
784  bool SecondArgIsLastNamedArgument = false;
785  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
786
787  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
788    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
789      // FIXME: This isn't correct for methods (results in bogus warning).
790      // Get the last formal in the current function.
791      const ParmVarDecl *LastArg;
792      if (CurBlock)
793        LastArg = *(CurBlock->TheDecl->param_end()-1);
794      else if (FunctionDecl *FD = getCurFunctionDecl())
795        LastArg = *(FD->param_end()-1);
796      else
797        LastArg = *(getCurMethodDecl()->param_end()-1);
798      SecondArgIsLastNamedArgument = PV == LastArg;
799    }
800  }
801
802  if (!SecondArgIsLastNamedArgument)
803    Diag(TheCall->getArg(1)->getLocStart(),
804         diag::warn_second_parameter_of_va_start_not_last_named_argument);
805  return false;
806}
807
808/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
809/// friends.  This is declared to take (...), so we have to check everything.
810bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
811  if (TheCall->getNumArgs() < 2)
812    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
813      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
814  if (TheCall->getNumArgs() > 2)
815    return Diag(TheCall->getArg(2)->getLocStart(),
816                diag::err_typecheck_call_too_many_args)
817      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
818      << SourceRange(TheCall->getArg(2)->getLocStart(),
819                     (*(TheCall->arg_end()-1))->getLocEnd());
820
821  Expr *OrigArg0 = TheCall->getArg(0);
822  Expr *OrigArg1 = TheCall->getArg(1);
823
824  // Do standard promotions between the two arguments, returning their common
825  // type.
826  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
827
828  // Make sure any conversions are pushed back into the call; this is
829  // type safe since unordered compare builtins are declared as "_Bool
830  // foo(...)".
831  TheCall->setArg(0, OrigArg0);
832  TheCall->setArg(1, OrigArg1);
833
834  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
835    return false;
836
837  // If the common type isn't a real floating type, then the arguments were
838  // invalid for this operation.
839  if (!Res->isRealFloatingType())
840    return Diag(OrigArg0->getLocStart(),
841                diag::err_typecheck_call_invalid_ordered_compare)
842      << OrigArg0->getType() << OrigArg1->getType()
843      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
844
845  return false;
846}
847
848/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
849/// __builtin_isnan and friends.  This is declared to take (...), so we have
850/// to check everything. We expect the last argument to be a floating point
851/// value.
852bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
853  if (TheCall->getNumArgs() < NumArgs)
854    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
855      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
856  if (TheCall->getNumArgs() > NumArgs)
857    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
858                diag::err_typecheck_call_too_many_args)
859      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
860      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
861                     (*(TheCall->arg_end()-1))->getLocEnd());
862
863  Expr *OrigArg = TheCall->getArg(NumArgs-1);
864
865  if (OrigArg->isTypeDependent())
866    return false;
867
868  // This operation requires a non-_Complex floating-point number.
869  if (!OrigArg->getType()->isRealFloatingType())
870    return Diag(OrigArg->getLocStart(),
871                diag::err_typecheck_call_invalid_unary_fp)
872      << OrigArg->getType() << OrigArg->getSourceRange();
873
874  // If this is an implicit conversion from float -> double, remove it.
875  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
876    Expr *CastArg = Cast->getSubExpr();
877    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
878      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
879             "promotion from float to double is the only expected cast here");
880      Cast->setSubExpr(0);
881      Cast->Destroy(Context);
882      TheCall->setArg(NumArgs-1, CastArg);
883      OrigArg = CastArg;
884    }
885  }
886
887  return false;
888}
889
890/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
891// This is declared to take (...), so we have to check everything.
892Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
893  if (TheCall->getNumArgs() < 2)
894    return ExprError(Diag(TheCall->getLocEnd(),
895                          diag::err_typecheck_call_too_few_args_at_least)
896      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
897      << TheCall->getSourceRange());
898
899  // Determine which of the following types of shufflevector we're checking:
900  // 1) unary, vector mask: (lhs, mask)
901  // 2) binary, vector mask: (lhs, rhs, mask)
902  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
903  QualType resType = TheCall->getArg(0)->getType();
904  unsigned numElements = 0;
905
906  if (!TheCall->getArg(0)->isTypeDependent() &&
907      !TheCall->getArg(1)->isTypeDependent()) {
908    QualType LHSType = TheCall->getArg(0)->getType();
909    QualType RHSType = TheCall->getArg(1)->getType();
910
911    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
912      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
913        << SourceRange(TheCall->getArg(0)->getLocStart(),
914                       TheCall->getArg(1)->getLocEnd());
915      return ExprError();
916    }
917
918    numElements = LHSType->getAs<VectorType>()->getNumElements();
919    unsigned numResElements = TheCall->getNumArgs() - 2;
920
921    // Check to see if we have a call with 2 vector arguments, the unary shuffle
922    // with mask.  If so, verify that RHS is an integer vector type with the
923    // same number of elts as lhs.
924    if (TheCall->getNumArgs() == 2) {
925      if (!RHSType->isIntegerType() ||
926          RHSType->getAs<VectorType>()->getNumElements() != numElements)
927        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
928          << SourceRange(TheCall->getArg(1)->getLocStart(),
929                         TheCall->getArg(1)->getLocEnd());
930      numResElements = numElements;
931    }
932    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
933      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
934        << SourceRange(TheCall->getArg(0)->getLocStart(),
935                       TheCall->getArg(1)->getLocEnd());
936      return ExprError();
937    } else if (numElements != numResElements) {
938      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
939      resType = Context.getVectorType(eltType, numResElements, false, false);
940    }
941  }
942
943  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
944    if (TheCall->getArg(i)->isTypeDependent() ||
945        TheCall->getArg(i)->isValueDependent())
946      continue;
947
948    llvm::APSInt Result(32);
949    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
950      return ExprError(Diag(TheCall->getLocStart(),
951                  diag::err_shufflevector_nonconstant_argument)
952                << TheCall->getArg(i)->getSourceRange());
953
954    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
955      return ExprError(Diag(TheCall->getLocStart(),
956                  diag::err_shufflevector_argument_too_large)
957               << TheCall->getArg(i)->getSourceRange());
958  }
959
960  llvm::SmallVector<Expr*, 32> exprs;
961
962  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
963    exprs.push_back(TheCall->getArg(i));
964    TheCall->setArg(i, 0);
965  }
966
967  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
968                                            exprs.size(), resType,
969                                            TheCall->getCallee()->getLocStart(),
970                                            TheCall->getRParenLoc()));
971}
972
973/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
974// This is declared to take (const void*, ...) and can take two
975// optional constant int args.
976bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
977  unsigned NumArgs = TheCall->getNumArgs();
978
979  if (NumArgs > 3)
980    return Diag(TheCall->getLocEnd(),
981             diag::err_typecheck_call_too_many_args_at_most)
982             << 0 /*function call*/ << 3 << NumArgs
983             << TheCall->getSourceRange();
984
985  // Argument 0 is checked for us and the remaining arguments must be
986  // constant integers.
987  for (unsigned i = 1; i != NumArgs; ++i) {
988    Expr *Arg = TheCall->getArg(i);
989
990    llvm::APSInt Result;
991    if (SemaBuiltinConstantArg(TheCall, i, Result))
992      return true;
993
994    // FIXME: gcc issues a warning and rewrites these to 0. These
995    // seems especially odd for the third argument since the default
996    // is 3.
997    if (i == 1) {
998      if (Result.getLimitedValue() > 1)
999        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1000             << "0" << "1" << Arg->getSourceRange();
1001    } else {
1002      if (Result.getLimitedValue() > 3)
1003        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1004            << "0" << "3" << Arg->getSourceRange();
1005    }
1006  }
1007
1008  return false;
1009}
1010
1011/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1012/// TheCall is a constant expression.
1013bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1014                                  llvm::APSInt &Result) {
1015  Expr *Arg = TheCall->getArg(ArgNum);
1016  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1017  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1018
1019  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1020
1021  if (!Arg->isIntegerConstantExpr(Result, Context))
1022    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1023                << FDecl->getDeclName() <<  Arg->getSourceRange();
1024
1025  return false;
1026}
1027
1028/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1029/// int type). This simply type checks that type is one of the defined
1030/// constants (0-3).
1031// For compatability check 0-3, llvm only handles 0 and 2.
1032bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1033  llvm::APSInt Result;
1034
1035  // Check constant-ness first.
1036  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1037    return true;
1038
1039  Expr *Arg = TheCall->getArg(1);
1040  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1041    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1042             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1043  }
1044
1045  return false;
1046}
1047
1048/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1049/// This checks that val is a constant 1.
1050bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1051  Expr *Arg = TheCall->getArg(1);
1052  llvm::APSInt Result;
1053
1054  // TODO: This is less than ideal. Overload this to take a value.
1055  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1056    return true;
1057
1058  if (Result != 1)
1059    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1060             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1061
1062  return false;
1063}
1064
1065// Handle i > 1 ? "x" : "y", recursivelly
1066bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
1067                                  bool HasVAListArg,
1068                                  unsigned format_idx, unsigned firstDataArg) {
1069  if (E->isTypeDependent() || E->isValueDependent())
1070    return false;
1071
1072  switch (E->getStmtClass()) {
1073  case Stmt::ConditionalOperatorClass: {
1074    const ConditionalOperator *C = cast<ConditionalOperator>(E);
1075    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
1076                                  HasVAListArg, format_idx, firstDataArg)
1077        && SemaCheckStringLiteral(C->getRHS(), TheCall,
1078                                  HasVAListArg, format_idx, firstDataArg);
1079  }
1080
1081  case Stmt::ImplicitCastExprClass: {
1082    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
1083    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
1084                                  format_idx, firstDataArg);
1085  }
1086
1087  case Stmt::ParenExprClass: {
1088    const ParenExpr *Expr = cast<ParenExpr>(E);
1089    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
1090                                  format_idx, firstDataArg);
1091  }
1092
1093  case Stmt::DeclRefExprClass: {
1094    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1095
1096    // As an exception, do not flag errors for variables binding to
1097    // const string literals.
1098    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1099      bool isConstant = false;
1100      QualType T = DR->getType();
1101
1102      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1103        isConstant = AT->getElementType().isConstant(Context);
1104      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1105        isConstant = T.isConstant(Context) &&
1106                     PT->getPointeeType().isConstant(Context);
1107      }
1108
1109      if (isConstant) {
1110        if (const Expr *Init = VD->getAnyInitializer())
1111          return SemaCheckStringLiteral(Init, TheCall,
1112                                        HasVAListArg, format_idx, firstDataArg);
1113      }
1114
1115      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1116      // special check to see if the format string is a function parameter
1117      // of the function calling the printf function.  If the function
1118      // has an attribute indicating it is a printf-like function, then we
1119      // should suppress warnings concerning non-literals being used in a call
1120      // to a vprintf function.  For example:
1121      //
1122      // void
1123      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1124      //      va_list ap;
1125      //      va_start(ap, fmt);
1126      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1127      //      ...
1128      //
1129      //
1130      //  FIXME: We don't have full attribute support yet, so just check to see
1131      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1132      //    add proper support for checking the attribute later.
1133      if (HasVAListArg)
1134        if (isa<ParmVarDecl>(VD))
1135          return true;
1136    }
1137
1138    return false;
1139  }
1140
1141  case Stmt::CallExprClass: {
1142    const CallExpr *CE = cast<CallExpr>(E);
1143    if (const ImplicitCastExpr *ICE
1144          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1145      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1146        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1147          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1148            unsigned ArgIndex = FA->getFormatIdx();
1149            const Expr *Arg = CE->getArg(ArgIndex - 1);
1150
1151            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1152                                          format_idx, firstDataArg);
1153          }
1154        }
1155      }
1156    }
1157
1158    return false;
1159  }
1160  case Stmt::ObjCStringLiteralClass:
1161  case Stmt::StringLiteralClass: {
1162    const StringLiteral *StrE = NULL;
1163
1164    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1165      StrE = ObjCFExpr->getString();
1166    else
1167      StrE = cast<StringLiteral>(E);
1168
1169    if (StrE) {
1170      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
1171                        firstDataArg);
1172      return true;
1173    }
1174
1175    return false;
1176  }
1177
1178  default:
1179    return false;
1180  }
1181}
1182
1183void
1184Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1185                            const CallExpr *TheCall) {
1186  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
1187       i != e; ++i) {
1188    const Expr *ArgExpr = TheCall->getArg(*i);
1189    if (ArgExpr->isNullPointerConstant(Context,
1190                                       Expr::NPC_ValueDependentIsNotNull))
1191      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1192        << ArgExpr->getSourceRange();
1193  }
1194}
1195
1196/// CheckPrintfArguments - Check calls to printf (and similar functions) for
1197/// correct use of format strings.
1198///
1199///  HasVAListArg - A predicate indicating whether the printf-like
1200///    function is passed an explicit va_arg argument (e.g., vprintf)
1201///
1202///  format_idx - The index into Args for the format string.
1203///
1204/// Improper format strings to functions in the printf family can be
1205/// the source of bizarre bugs and very serious security holes.  A
1206/// good source of information is available in the following paper
1207/// (which includes additional references):
1208///
1209///  FormatGuard: Automatic Protection From printf Format String
1210///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
1211///
1212/// TODO:
1213/// Functionality implemented:
1214///
1215///  We can statically check the following properties for string
1216///  literal format strings for non v.*printf functions (where the
1217///  arguments are passed directly):
1218//
1219///  (1) Are the number of format conversions equal to the number of
1220///      data arguments?
1221///
1222///  (2) Does each format conversion correctly match the type of the
1223///      corresponding data argument?
1224///
1225/// Moreover, for all printf functions we can:
1226///
1227///  (3) Check for a missing format string (when not caught by type checking).
1228///
1229///  (4) Check for no-operation flags; e.g. using "#" with format
1230///      conversion 'c'  (TODO)
1231///
1232///  (5) Check the use of '%n', a major source of security holes.
1233///
1234///  (6) Check for malformed format conversions that don't specify anything.
1235///
1236///  (7) Check for empty format strings.  e.g: printf("");
1237///
1238///  (8) Check that the format string is a wide literal.
1239///
1240/// All of these checks can be done by parsing the format string.
1241///
1242void
1243Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
1244                           unsigned format_idx, unsigned firstDataArg) {
1245  const Expr *Fn = TheCall->getCallee();
1246
1247  // The way the format attribute works in GCC, the implicit this argument
1248  // of member functions is counted. However, it doesn't appear in our own
1249  // lists, so decrement format_idx in that case.
1250  if (isa<CXXMemberCallExpr>(TheCall)) {
1251    // Catch a format attribute mistakenly referring to the object argument.
1252    if (format_idx == 0)
1253      return;
1254    --format_idx;
1255    if(firstDataArg != 0)
1256      --firstDataArg;
1257  }
1258
1259  // CHECK: printf-like function is called with no format string.
1260  if (format_idx >= TheCall->getNumArgs()) {
1261    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
1262      << Fn->getSourceRange();
1263    return;
1264  }
1265
1266  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1267
1268  // CHECK: format string is not a string literal.
1269  //
1270  // Dynamically generated format strings are difficult to
1271  // automatically vet at compile time.  Requiring that format strings
1272  // are string literals: (1) permits the checking of format strings by
1273  // the compiler and thereby (2) can practically remove the source of
1274  // many format string exploits.
1275
1276  // Format string can be either ObjC string (e.g. @"%d") or
1277  // C string (e.g. "%d")
1278  // ObjC string uses the same format specifiers as C string, so we can use
1279  // the same format string checking logic for both ObjC and C strings.
1280  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1281                             firstDataArg))
1282    return;  // Literal format string found, check done!
1283
1284  // If there are no arguments specified, warn with -Wformat-security, otherwise
1285  // warn only with -Wformat-nonliteral.
1286  if (TheCall->getNumArgs() == format_idx+1)
1287    Diag(TheCall->getArg(format_idx)->getLocStart(),
1288         diag::warn_printf_nonliteral_noargs)
1289      << OrigFormatExpr->getSourceRange();
1290  else
1291    Diag(TheCall->getArg(format_idx)->getLocStart(),
1292         diag::warn_printf_nonliteral)
1293           << OrigFormatExpr->getSourceRange();
1294}
1295
1296namespace {
1297class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
1298  Sema &S;
1299  const StringLiteral *FExpr;
1300  const Expr *OrigFormatExpr;
1301  const unsigned FirstDataArg;
1302  const unsigned NumDataArgs;
1303  const bool IsObjCLiteral;
1304  const char *Beg; // Start of format string.
1305  const bool HasVAListArg;
1306  const CallExpr *TheCall;
1307  unsigned FormatIdx;
1308  llvm::BitVector CoveredArgs;
1309  bool usesPositionalArgs;
1310  bool atFirstArg;
1311public:
1312  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1313                     const Expr *origFormatExpr, unsigned firstDataArg,
1314                     unsigned numDataArgs, bool isObjCLiteral,
1315                     const char *beg, bool hasVAListArg,
1316                     const CallExpr *theCall, unsigned formatIdx)
1317    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1318      FirstDataArg(firstDataArg),
1319      NumDataArgs(numDataArgs),
1320      IsObjCLiteral(isObjCLiteral), Beg(beg),
1321      HasVAListArg(hasVAListArg),
1322      TheCall(theCall), FormatIdx(formatIdx),
1323      usesPositionalArgs(false), atFirstArg(true) {
1324        CoveredArgs.resize(numDataArgs);
1325        CoveredArgs.reset();
1326      }
1327
1328  void DoneProcessing();
1329
1330  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1331                                       unsigned specifierLen);
1332
1333  bool
1334  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1335                                   const char *startSpecifier,
1336                                   unsigned specifierLen);
1337
1338  virtual void HandleInvalidPosition(const char *startSpecifier,
1339                                     unsigned specifierLen,
1340                                     analyze_printf::PositionContext p);
1341
1342  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1343
1344  void HandleNullChar(const char *nullCharacter);
1345
1346  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1347                             const char *startSpecifier,
1348                             unsigned specifierLen);
1349private:
1350  SourceRange getFormatStringRange();
1351  SourceRange getFormatSpecifierRange(const char *startSpecifier,
1352                                      unsigned specifierLen);
1353  SourceLocation getLocationOfByte(const char *x);
1354
1355  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
1356                    const char *startSpecifier, unsigned specifierLen);
1357  void HandleFlags(const analyze_printf::FormatSpecifier &FS,
1358                   llvm::StringRef flag, llvm::StringRef cspec,
1359                   const char *startSpecifier, unsigned specifierLen);
1360
1361  const Expr *getDataArg(unsigned i) const;
1362};
1363}
1364
1365SourceRange CheckPrintfHandler::getFormatStringRange() {
1366  return OrigFormatExpr->getSourceRange();
1367}
1368
1369SourceRange CheckPrintfHandler::
1370getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1371  return SourceRange(getLocationOfByte(startSpecifier),
1372                     getLocationOfByte(startSpecifier+specifierLen-1));
1373}
1374
1375SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1376  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1377}
1378
1379void CheckPrintfHandler::
1380HandleIncompleteFormatSpecifier(const char *startSpecifier,
1381                                unsigned specifierLen) {
1382  SourceLocation Loc = getLocationOfByte(startSpecifier);
1383  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1384    << getFormatSpecifierRange(startSpecifier, specifierLen);
1385}
1386
1387void
1388CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1389                                          analyze_printf::PositionContext p) {
1390  SourceLocation Loc = getLocationOfByte(startPos);
1391  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
1392    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
1393}
1394
1395void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
1396                                            unsigned posLen) {
1397  SourceLocation Loc = getLocationOfByte(startPos);
1398  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
1399    << getFormatSpecifierRange(startPos, posLen);
1400}
1401
1402bool CheckPrintfHandler::
1403HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1404                                 const char *startSpecifier,
1405                                 unsigned specifierLen) {
1406
1407  unsigned argIndex = FS.getArgIndex();
1408  bool keepGoing = true;
1409  if (argIndex < NumDataArgs) {
1410    // Consider the argument coverered, even though the specifier doesn't
1411    // make sense.
1412    CoveredArgs.set(argIndex);
1413  }
1414  else {
1415    // If argIndex exceeds the number of data arguments we
1416    // don't issue a warning because that is just a cascade of warnings (and
1417    // they may have intended '%%' anyway). We don't want to continue processing
1418    // the format string after this point, however, as we will like just get
1419    // gibberish when trying to match arguments.
1420    keepGoing = false;
1421  }
1422
1423  const analyze_printf::ConversionSpecifier &CS =
1424    FS.getConversionSpecifier();
1425  SourceLocation Loc = getLocationOfByte(CS.getStart());
1426  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1427      << llvm::StringRef(CS.getStart(), CS.getLength())
1428      << getFormatSpecifierRange(startSpecifier, specifierLen);
1429
1430  return keepGoing;
1431}
1432
1433void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1434  // The presence of a null character is likely an error.
1435  S.Diag(getLocationOfByte(nullCharacter),
1436         diag::warn_printf_format_string_contains_null_char)
1437    << getFormatStringRange();
1438}
1439
1440const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1441  return TheCall->getArg(FirstDataArg + i);
1442}
1443
1444void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
1445                                     llvm::StringRef flag,
1446                                     llvm::StringRef cspec,
1447                                     const char *startSpecifier,
1448                                     unsigned specifierLen) {
1449  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1450  S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
1451    << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
1452}
1453
1454bool
1455CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1456                                 unsigned k, const char *startSpecifier,
1457                                 unsigned specifierLen) {
1458
1459  if (Amt.hasDataArgument()) {
1460    if (!HasVAListArg) {
1461      unsigned argIndex = Amt.getArgIndex();
1462      if (argIndex >= NumDataArgs) {
1463        S.Diag(getLocationOfByte(Amt.getStart()),
1464               diag::warn_printf_asterisk_missing_arg)
1465          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
1466        // Don't do any more checking.  We will just emit
1467        // spurious errors.
1468        return false;
1469      }
1470
1471      // Type check the data argument.  It should be an 'int'.
1472      // Although not in conformance with C99, we also allow the argument to be
1473      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1474      // doesn't emit a warning for that case.
1475      CoveredArgs.set(argIndex);
1476      const Expr *Arg = getDataArg(argIndex);
1477      QualType T = Arg->getType();
1478
1479      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1480      assert(ATR.isValid());
1481
1482      if (!ATR.matchesType(S.Context, T)) {
1483        S.Diag(getLocationOfByte(Amt.getStart()),
1484               diag::warn_printf_asterisk_wrong_type)
1485          << k
1486          << ATR.getRepresentativeType(S.Context) << T
1487          << getFormatSpecifierRange(startSpecifier, specifierLen)
1488          << Arg->getSourceRange();
1489        // Don't do any more checking.  We will just emit
1490        // spurious errors.
1491        return false;
1492      }
1493    }
1494  }
1495  return true;
1496}
1497
1498bool
1499CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
1500                                            &FS,
1501                                          const char *startSpecifier,
1502                                          unsigned specifierLen) {
1503
1504  using namespace analyze_printf;
1505  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1506
1507  if (atFirstArg) {
1508    atFirstArg = false;
1509    usesPositionalArgs = FS.usesPositionalArg();
1510  }
1511  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1512    // Cannot mix-and-match positional and non-positional arguments.
1513    S.Diag(getLocationOfByte(CS.getStart()),
1514           diag::warn_printf_mix_positional_nonpositional_args)
1515      << getFormatSpecifierRange(startSpecifier, specifierLen);
1516    return false;
1517  }
1518
1519  // First check if the field width, precision, and conversion specifier
1520  // have matching data arguments.
1521  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1522                    startSpecifier, specifierLen)) {
1523    return false;
1524  }
1525
1526  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1527                    startSpecifier, specifierLen)) {
1528    return false;
1529  }
1530
1531  if (!CS.consumesDataArgument()) {
1532    // FIXME: Technically specifying a precision or field width here
1533    // makes no sense.  Worth issuing a warning at some point.
1534    return true;
1535  }
1536
1537  // Consume the argument.
1538  unsigned argIndex = FS.getArgIndex();
1539  if (argIndex < NumDataArgs) {
1540    // The check to see if the argIndex is valid will come later.
1541    // We set the bit here because we may exit early from this
1542    // function if we encounter some other error.
1543    CoveredArgs.set(argIndex);
1544  }
1545
1546  // Check for using an Objective-C specific conversion specifier
1547  // in a non-ObjC literal.
1548  if (!IsObjCLiteral && CS.isObjCArg()) {
1549    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1550  }
1551
1552  // Are we using '%n'?  Issue a warning about this being
1553  // a possible security issue.
1554  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1555    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1556      << getFormatSpecifierRange(startSpecifier, specifierLen);
1557    // Continue checking the other format specifiers.
1558    return true;
1559  }
1560
1561  if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
1562    if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
1563      S.Diag(getLocationOfByte(CS.getStart()),
1564             diag::warn_printf_nonsensical_precision)
1565        << CS.getCharacters()
1566        << getFormatSpecifierRange(startSpecifier, specifierLen);
1567  }
1568  if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
1569      CS.getKind() == ConversionSpecifier::CStrArg) {
1570    // FIXME: Instead of using "0", "+", etc., eventually get them from
1571    // the FormatSpecifier.
1572    if (FS.hasLeadingZeros())
1573      HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
1574    if (FS.hasPlusPrefix())
1575      HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
1576    if (FS.hasSpacePrefix())
1577      HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
1578  }
1579
1580  // The remaining checks depend on the data arguments.
1581  if (HasVAListArg)
1582    return true;
1583
1584  if (argIndex >= NumDataArgs) {
1585    if (FS.usesPositionalArg())  {
1586      S.Diag(getLocationOfByte(CS.getStart()),
1587             diag::warn_printf_positional_arg_exceeds_data_args)
1588        << (argIndex+1) << NumDataArgs
1589        << getFormatSpecifierRange(startSpecifier, specifierLen);
1590    }
1591    else {
1592      S.Diag(getLocationOfByte(CS.getStart()),
1593             diag::warn_printf_insufficient_data_args)
1594        << getFormatSpecifierRange(startSpecifier, specifierLen);
1595    }
1596
1597    // Don't do any more checking.
1598    return false;
1599  }
1600
1601  // Now type check the data expression that matches the
1602  // format specifier.
1603  const Expr *Ex = getDataArg(argIndex);
1604  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1605  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1606    // Check if we didn't match because of an implicit cast from a 'char'
1607    // or 'short' to an 'int'.  This is done because printf is a varargs
1608    // function.
1609    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1610      if (ICE->getType() == S.Context.IntTy)
1611        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1612          return true;
1613
1614    // We may be able to offer a FixItHint if it is a supported type.
1615    FormatSpecifier fixedFS = FS;
1616    bool success = fixedFS.fixType(Ex->getType());
1617
1618    if (success) {
1619      // Get the fix string from the fixed format specifier
1620      llvm::SmallString<128> buf;
1621      llvm::raw_svector_ostream os(buf);
1622      fixedFS.toString(os);
1623
1624      S.Diag(getLocationOfByte(CS.getStart()),
1625          diag::warn_printf_conversion_argument_type_mismatch)
1626        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1627        << getFormatSpecifierRange(startSpecifier, specifierLen)
1628        << Ex->getSourceRange()
1629        << FixItHint::CreateReplacement(
1630            getFormatSpecifierRange(startSpecifier, specifierLen),
1631            os.str());
1632    }
1633    else {
1634      S.Diag(getLocationOfByte(CS.getStart()),
1635             diag::warn_printf_conversion_argument_type_mismatch)
1636        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1637        << getFormatSpecifierRange(startSpecifier, specifierLen)
1638        << Ex->getSourceRange();
1639    }
1640  }
1641
1642  return true;
1643}
1644
1645void CheckPrintfHandler::DoneProcessing() {
1646  // Does the number of data arguments exceed the number of
1647  // format conversions in the format string?
1648  if (!HasVAListArg) {
1649    // Find any arguments that weren't covered.
1650    CoveredArgs.flip();
1651    signed notCoveredArg = CoveredArgs.find_first();
1652    if (notCoveredArg >= 0) {
1653      assert((unsigned)notCoveredArg < NumDataArgs);
1654      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1655             diag::warn_printf_data_arg_not_used)
1656        << getFormatStringRange();
1657    }
1658  }
1659}
1660
1661void Sema::CheckPrintfString(const StringLiteral *FExpr,
1662                             const Expr *OrigFormatExpr,
1663                             const CallExpr *TheCall, bool HasVAListArg,
1664                             unsigned format_idx, unsigned firstDataArg) {
1665
1666  // CHECK: is the format string a wide literal?
1667  if (FExpr->isWide()) {
1668    Diag(FExpr->getLocStart(),
1669         diag::warn_printf_format_string_is_wide_literal)
1670    << OrigFormatExpr->getSourceRange();
1671    return;
1672  }
1673
1674  // Str - The format string.  NOTE: this is NOT null-terminated!
1675  const char *Str = FExpr->getStrData();
1676
1677  // CHECK: empty format string?
1678  unsigned StrLen = FExpr->getByteLength();
1679
1680  if (StrLen == 0) {
1681    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1682    << OrigFormatExpr->getSourceRange();
1683    return;
1684  }
1685
1686  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1687                       TheCall->getNumArgs() - firstDataArg,
1688                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1689                       HasVAListArg, TheCall, format_idx);
1690
1691  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
1692    H.DoneProcessing();
1693}
1694
1695//===--- CHECK: Return Address of Stack Variable --------------------------===//
1696
1697static DeclRefExpr* EvalVal(Expr *E);
1698static DeclRefExpr* EvalAddr(Expr* E);
1699
1700/// CheckReturnStackAddr - Check if a return statement returns the address
1701///   of a stack variable.
1702void
1703Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1704                           SourceLocation ReturnLoc) {
1705
1706  // Perform checking for returned stack addresses.
1707  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1708    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1709      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1710       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1711
1712    // Skip over implicit cast expressions when checking for block expressions.
1713    RetValExp = RetValExp->IgnoreParenCasts();
1714
1715    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1716      if (C->hasBlockDeclRefExprs())
1717        Diag(C->getLocStart(), diag::err_ret_local_block)
1718          << C->getSourceRange();
1719
1720    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1721      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1722        << ALE->getSourceRange();
1723
1724  } else if (lhsType->isReferenceType()) {
1725    // Perform checking for stack values returned by reference.
1726    // Check for a reference to the stack
1727    if (DeclRefExpr *DR = EvalVal(RetValExp))
1728      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1729        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1730  }
1731}
1732
1733/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1734///  check if the expression in a return statement evaluates to an address
1735///  to a location on the stack.  The recursion is used to traverse the
1736///  AST of the return expression, with recursion backtracking when we
1737///  encounter a subexpression that (1) clearly does not lead to the address
1738///  of a stack variable or (2) is something we cannot determine leads to
1739///  the address of a stack variable based on such local checking.
1740///
1741///  EvalAddr processes expressions that are pointers that are used as
1742///  references (and not L-values).  EvalVal handles all other values.
1743///  At the base case of the recursion is a check for a DeclRefExpr* in
1744///  the refers to a stack variable.
1745///
1746///  This implementation handles:
1747///
1748///   * pointer-to-pointer casts
1749///   * implicit conversions from array references to pointers
1750///   * taking the address of fields
1751///   * arbitrary interplay between "&" and "*" operators
1752///   * pointer arithmetic from an address of a stack variable
1753///   * taking the address of an array element where the array is on the stack
1754static DeclRefExpr* EvalAddr(Expr *E) {
1755  // We should only be called for evaluating pointer expressions.
1756  assert((E->getType()->isAnyPointerType() ||
1757          E->getType()->isBlockPointerType() ||
1758          E->getType()->isObjCQualifiedIdType()) &&
1759         "EvalAddr only works on pointers");
1760
1761  // Our "symbolic interpreter" is just a dispatch off the currently
1762  // viewed AST node.  We then recursively traverse the AST by calling
1763  // EvalAddr and EvalVal appropriately.
1764  switch (E->getStmtClass()) {
1765  case Stmt::ParenExprClass:
1766    // Ignore parentheses.
1767    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1768
1769  case Stmt::UnaryOperatorClass: {
1770    // The only unary operator that make sense to handle here
1771    // is AddrOf.  All others don't make sense as pointers.
1772    UnaryOperator *U = cast<UnaryOperator>(E);
1773
1774    if (U->getOpcode() == UnaryOperator::AddrOf)
1775      return EvalVal(U->getSubExpr());
1776    else
1777      return NULL;
1778  }
1779
1780  case Stmt::BinaryOperatorClass: {
1781    // Handle pointer arithmetic.  All other binary operators are not valid
1782    // in this context.
1783    BinaryOperator *B = cast<BinaryOperator>(E);
1784    BinaryOperator::Opcode op = B->getOpcode();
1785
1786    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1787      return NULL;
1788
1789    Expr *Base = B->getLHS();
1790
1791    // Determine which argument is the real pointer base.  It could be
1792    // the RHS argument instead of the LHS.
1793    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1794
1795    assert (Base->getType()->isPointerType());
1796    return EvalAddr(Base);
1797  }
1798
1799  // For conditional operators we need to see if either the LHS or RHS are
1800  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1801  case Stmt::ConditionalOperatorClass: {
1802    ConditionalOperator *C = cast<ConditionalOperator>(E);
1803
1804    // Handle the GNU extension for missing LHS.
1805    if (Expr *lhsExpr = C->getLHS())
1806      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1807        return LHS;
1808
1809     return EvalAddr(C->getRHS());
1810  }
1811
1812  // For casts, we need to handle conversions from arrays to
1813  // pointer values, and pointer-to-pointer conversions.
1814  case Stmt::ImplicitCastExprClass:
1815  case Stmt::CStyleCastExprClass:
1816  case Stmt::CXXFunctionalCastExprClass: {
1817    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1818    QualType T = SubExpr->getType();
1819
1820    if (SubExpr->getType()->isPointerType() ||
1821        SubExpr->getType()->isBlockPointerType() ||
1822        SubExpr->getType()->isObjCQualifiedIdType())
1823      return EvalAddr(SubExpr);
1824    else if (T->isArrayType())
1825      return EvalVal(SubExpr);
1826    else
1827      return 0;
1828  }
1829
1830  // C++ casts.  For dynamic casts, static casts, and const casts, we
1831  // are always converting from a pointer-to-pointer, so we just blow
1832  // through the cast.  In the case the dynamic cast doesn't fail (and
1833  // return NULL), we take the conservative route and report cases
1834  // where we return the address of a stack variable.  For Reinterpre
1835  // FIXME: The comment about is wrong; we're not always converting
1836  // from pointer to pointer. I'm guessing that this code should also
1837  // handle references to objects.
1838  case Stmt::CXXStaticCastExprClass:
1839  case Stmt::CXXDynamicCastExprClass:
1840  case Stmt::CXXConstCastExprClass:
1841  case Stmt::CXXReinterpretCastExprClass: {
1842      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1843      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1844        return EvalAddr(S);
1845      else
1846        return NULL;
1847  }
1848
1849  // Everything else: we simply don't reason about them.
1850  default:
1851    return NULL;
1852  }
1853}
1854
1855
1856///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1857///   See the comments for EvalAddr for more details.
1858static DeclRefExpr* EvalVal(Expr *E) {
1859
1860  // We should only be called for evaluating non-pointer expressions, or
1861  // expressions with a pointer type that are not used as references but instead
1862  // are l-values (e.g., DeclRefExpr with a pointer type).
1863
1864  // Our "symbolic interpreter" is just a dispatch off the currently
1865  // viewed AST node.  We then recursively traverse the AST by calling
1866  // EvalAddr and EvalVal appropriately.
1867  switch (E->getStmtClass()) {
1868  case Stmt::DeclRefExprClass: {
1869    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1870    //  at code that refers to a variable's name.  We check if it has local
1871    //  storage within the function, and if so, return the expression.
1872    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1873
1874    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1875      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1876
1877    return NULL;
1878  }
1879
1880  case Stmt::ParenExprClass:
1881    // Ignore parentheses.
1882    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1883
1884  case Stmt::UnaryOperatorClass: {
1885    // The only unary operator that make sense to handle here
1886    // is Deref.  All others don't resolve to a "name."  This includes
1887    // handling all sorts of rvalues passed to a unary operator.
1888    UnaryOperator *U = cast<UnaryOperator>(E);
1889
1890    if (U->getOpcode() == UnaryOperator::Deref)
1891      return EvalAddr(U->getSubExpr());
1892
1893    return NULL;
1894  }
1895
1896  case Stmt::ArraySubscriptExprClass: {
1897    // Array subscripts are potential references to data on the stack.  We
1898    // retrieve the DeclRefExpr* for the array variable if it indeed
1899    // has local storage.
1900    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1901  }
1902
1903  case Stmt::ConditionalOperatorClass: {
1904    // For conditional operators we need to see if either the LHS or RHS are
1905    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1906    ConditionalOperator *C = cast<ConditionalOperator>(E);
1907
1908    // Handle the GNU extension for missing LHS.
1909    if (Expr *lhsExpr = C->getLHS())
1910      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1911        return LHS;
1912
1913    return EvalVal(C->getRHS());
1914  }
1915
1916  // Accesses to members are potential references to data on the stack.
1917  case Stmt::MemberExprClass: {
1918    MemberExpr *M = cast<MemberExpr>(E);
1919
1920    // Check for indirect access.  We only want direct field accesses.
1921    if (!M->isArrow())
1922      return EvalVal(M->getBase());
1923    else
1924      return NULL;
1925  }
1926
1927  // Everything else: we simply don't reason about them.
1928  default:
1929    return NULL;
1930  }
1931}
1932
1933//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1934
1935/// Check for comparisons of floating point operands using != and ==.
1936/// Issue a warning if these are no self-comparisons, as they are not likely
1937/// to do what the programmer intended.
1938void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1939  bool EmitWarning = true;
1940
1941  Expr* LeftExprSansParen = lex->IgnoreParens();
1942  Expr* RightExprSansParen = rex->IgnoreParens();
1943
1944  // Special case: check for x == x (which is OK).
1945  // Do not emit warnings for such cases.
1946  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1947    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1948      if (DRL->getDecl() == DRR->getDecl())
1949        EmitWarning = false;
1950
1951
1952  // Special case: check for comparisons against literals that can be exactly
1953  //  represented by APFloat.  In such cases, do not emit a warning.  This
1954  //  is a heuristic: often comparison against such literals are used to
1955  //  detect if a value in a variable has not changed.  This clearly can
1956  //  lead to false negatives.
1957  if (EmitWarning) {
1958    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1959      if (FLL->isExact())
1960        EmitWarning = false;
1961    } else
1962      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1963        if (FLR->isExact())
1964          EmitWarning = false;
1965    }
1966  }
1967
1968  // Check for comparisons with builtin types.
1969  if (EmitWarning)
1970    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1971      if (CL->isBuiltinCall(Context))
1972        EmitWarning = false;
1973
1974  if (EmitWarning)
1975    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1976      if (CR->isBuiltinCall(Context))
1977        EmitWarning = false;
1978
1979  // Emit the diagnostic.
1980  if (EmitWarning)
1981    Diag(loc, diag::warn_floatingpoint_eq)
1982      << lex->getSourceRange() << rex->getSourceRange();
1983}
1984
1985//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1986//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1987
1988namespace {
1989
1990/// Structure recording the 'active' range of an integer-valued
1991/// expression.
1992struct IntRange {
1993  /// The number of bits active in the int.
1994  unsigned Width;
1995
1996  /// True if the int is known not to have negative values.
1997  bool NonNegative;
1998
1999  IntRange() {}
2000  IntRange(unsigned Width, bool NonNegative)
2001    : Width(Width), NonNegative(NonNegative)
2002  {}
2003
2004  // Returns the range of the bool type.
2005  static IntRange forBoolType() {
2006    return IntRange(1, true);
2007  }
2008
2009  // Returns the range of an integral type.
2010  static IntRange forType(ASTContext &C, QualType T) {
2011    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2012  }
2013
2014  // Returns the range of an integeral type based on its canonical
2015  // representation.
2016  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2017    assert(T->isCanonicalUnqualified());
2018
2019    if (const VectorType *VT = dyn_cast<VectorType>(T))
2020      T = VT->getElementType().getTypePtr();
2021    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2022      T = CT->getElementType().getTypePtr();
2023
2024    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2025      EnumDecl *Enum = ET->getDecl();
2026      unsigned NumPositive = Enum->getNumPositiveBits();
2027      unsigned NumNegative = Enum->getNumNegativeBits();
2028
2029      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2030    }
2031
2032    const BuiltinType *BT = cast<BuiltinType>(T);
2033    assert(BT->isInteger());
2034
2035    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2036  }
2037
2038  // Returns the supremum of two ranges: i.e. their conservative merge.
2039  static IntRange join(IntRange L, IntRange R) {
2040    return IntRange(std::max(L.Width, R.Width),
2041                    L.NonNegative && R.NonNegative);
2042  }
2043
2044  // Returns the infinum of two ranges: i.e. their aggressive merge.
2045  static IntRange meet(IntRange L, IntRange R) {
2046    return IntRange(std::min(L.Width, R.Width),
2047                    L.NonNegative || R.NonNegative);
2048  }
2049};
2050
2051IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2052  if (value.isSigned() && value.isNegative())
2053    return IntRange(value.getMinSignedBits(), false);
2054
2055  if (value.getBitWidth() > MaxWidth)
2056    value.trunc(MaxWidth);
2057
2058  // isNonNegative() just checks the sign bit without considering
2059  // signedness.
2060  return IntRange(value.getActiveBits(), true);
2061}
2062
2063IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2064                       unsigned MaxWidth) {
2065  if (result.isInt())
2066    return GetValueRange(C, result.getInt(), MaxWidth);
2067
2068  if (result.isVector()) {
2069    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2070    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2071      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2072      R = IntRange::join(R, El);
2073    }
2074    return R;
2075  }
2076
2077  if (result.isComplexInt()) {
2078    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2079    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2080    return IntRange::join(R, I);
2081  }
2082
2083  // This can happen with lossless casts to intptr_t of "based" lvalues.
2084  // Assume it might use arbitrary bits.
2085  // FIXME: The only reason we need to pass the type in here is to get
2086  // the sign right on this one case.  It would be nice if APValue
2087  // preserved this.
2088  assert(result.isLValue());
2089  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2090}
2091
2092/// Pseudo-evaluate the given integer expression, estimating the
2093/// range of values it might take.
2094///
2095/// \param MaxWidth - the width to which the value will be truncated
2096IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2097  E = E->IgnoreParens();
2098
2099  // Try a full evaluation first.
2100  Expr::EvalResult result;
2101  if (E->Evaluate(result, C))
2102    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2103
2104  // I think we only want to look through implicit casts here; if the
2105  // user has an explicit widening cast, we should treat the value as
2106  // being of the new, wider type.
2107  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2108    if (CE->getCastKind() == CastExpr::CK_NoOp)
2109      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2110
2111    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2112
2113    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
2114    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
2115      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2116
2117    // Assume that non-integer casts can span the full range of the type.
2118    if (!isIntegerCast)
2119      return OutputTypeRange;
2120
2121    IntRange SubRange
2122      = GetExprRange(C, CE->getSubExpr(),
2123                     std::min(MaxWidth, OutputTypeRange.Width));
2124
2125    // Bail out if the subexpr's range is as wide as the cast type.
2126    if (SubRange.Width >= OutputTypeRange.Width)
2127      return OutputTypeRange;
2128
2129    // Otherwise, we take the smaller width, and we're non-negative if
2130    // either the output type or the subexpr is.
2131    return IntRange(SubRange.Width,
2132                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2133  }
2134
2135  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2136    // If we can fold the condition, just take that operand.
2137    bool CondResult;
2138    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2139      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2140                                        : CO->getFalseExpr(),
2141                          MaxWidth);
2142
2143    // Otherwise, conservatively merge.
2144    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2145    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2146    return IntRange::join(L, R);
2147  }
2148
2149  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2150    switch (BO->getOpcode()) {
2151
2152    // Boolean-valued operations are single-bit and positive.
2153    case BinaryOperator::LAnd:
2154    case BinaryOperator::LOr:
2155    case BinaryOperator::LT:
2156    case BinaryOperator::GT:
2157    case BinaryOperator::LE:
2158    case BinaryOperator::GE:
2159    case BinaryOperator::EQ:
2160    case BinaryOperator::NE:
2161      return IntRange::forBoolType();
2162
2163    // The type of these compound assignments is the type of the LHS,
2164    // so the RHS is not necessarily an integer.
2165    case BinaryOperator::MulAssign:
2166    case BinaryOperator::DivAssign:
2167    case BinaryOperator::RemAssign:
2168    case BinaryOperator::AddAssign:
2169    case BinaryOperator::SubAssign:
2170      return IntRange::forType(C, E->getType());
2171
2172    // Operations with opaque sources are black-listed.
2173    case BinaryOperator::PtrMemD:
2174    case BinaryOperator::PtrMemI:
2175      return IntRange::forType(C, E->getType());
2176
2177    // Bitwise-and uses the *infinum* of the two source ranges.
2178    case BinaryOperator::And:
2179    case BinaryOperator::AndAssign:
2180      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2181                            GetExprRange(C, BO->getRHS(), MaxWidth));
2182
2183    // Left shift gets black-listed based on a judgement call.
2184    case BinaryOperator::Shl:
2185      // ...except that we want to treat '1 << (blah)' as logically
2186      // positive.  It's an important idiom.
2187      if (IntegerLiteral *I
2188            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2189        if (I->getValue() == 1) {
2190          IntRange R = IntRange::forType(C, E->getType());
2191          return IntRange(R.Width, /*NonNegative*/ true);
2192        }
2193      }
2194      // fallthrough
2195
2196    case BinaryOperator::ShlAssign:
2197      return IntRange::forType(C, E->getType());
2198
2199    // Right shift by a constant can narrow its left argument.
2200    case BinaryOperator::Shr:
2201    case BinaryOperator::ShrAssign: {
2202      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2203
2204      // If the shift amount is a positive constant, drop the width by
2205      // that much.
2206      llvm::APSInt shift;
2207      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2208          shift.isNonNegative()) {
2209        unsigned zext = shift.getZExtValue();
2210        if (zext >= L.Width)
2211          L.Width = (L.NonNegative ? 0 : 1);
2212        else
2213          L.Width -= zext;
2214      }
2215
2216      return L;
2217    }
2218
2219    // Comma acts as its right operand.
2220    case BinaryOperator::Comma:
2221      return GetExprRange(C, BO->getRHS(), MaxWidth);
2222
2223    // Black-list pointer subtractions.
2224    case BinaryOperator::Sub:
2225      if (BO->getLHS()->getType()->isPointerType())
2226        return IntRange::forType(C, E->getType());
2227      // fallthrough
2228
2229    default:
2230      break;
2231    }
2232
2233    // Treat every other operator as if it were closed on the
2234    // narrowest type that encompasses both operands.
2235    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2236    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2237    return IntRange::join(L, R);
2238  }
2239
2240  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2241    switch (UO->getOpcode()) {
2242    // Boolean-valued operations are white-listed.
2243    case UnaryOperator::LNot:
2244      return IntRange::forBoolType();
2245
2246    // Operations with opaque sources are black-listed.
2247    case UnaryOperator::Deref:
2248    case UnaryOperator::AddrOf: // should be impossible
2249    case UnaryOperator::OffsetOf:
2250      return IntRange::forType(C, E->getType());
2251
2252    default:
2253      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2254    }
2255  }
2256
2257  if (dyn_cast<OffsetOfExpr>(E)) {
2258    IntRange::forType(C, E->getType());
2259  }
2260
2261  FieldDecl *BitField = E->getBitField();
2262  if (BitField) {
2263    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2264    unsigned BitWidth = BitWidthAP.getZExtValue();
2265
2266    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2267  }
2268
2269  return IntRange::forType(C, E->getType());
2270}
2271
2272IntRange GetExprRange(ASTContext &C, Expr *E) {
2273  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2274}
2275
2276/// Checks whether the given value, which currently has the given
2277/// source semantics, has the same value when coerced through the
2278/// target semantics.
2279bool IsSameFloatAfterCast(const llvm::APFloat &value,
2280                          const llvm::fltSemantics &Src,
2281                          const llvm::fltSemantics &Tgt) {
2282  llvm::APFloat truncated = value;
2283
2284  bool ignored;
2285  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2286  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2287
2288  return truncated.bitwiseIsEqual(value);
2289}
2290
2291/// Checks whether the given value, which currently has the given
2292/// source semantics, has the same value when coerced through the
2293/// target semantics.
2294///
2295/// The value might be a vector of floats (or a complex number).
2296bool IsSameFloatAfterCast(const APValue &value,
2297                          const llvm::fltSemantics &Src,
2298                          const llvm::fltSemantics &Tgt) {
2299  if (value.isFloat())
2300    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2301
2302  if (value.isVector()) {
2303    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2304      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2305        return false;
2306    return true;
2307  }
2308
2309  assert(value.isComplexFloat());
2310  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2311          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2312}
2313
2314void AnalyzeImplicitConversions(Sema &S, Expr *E);
2315
2316bool IsZero(Sema &S, Expr *E) {
2317  llvm::APSInt Value;
2318  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2319}
2320
2321void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2322  BinaryOperator::Opcode op = E->getOpcode();
2323  if (op == BinaryOperator::LT && IsZero(S, E->getRHS())) {
2324    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2325      << "< 0" << "false"
2326      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2327  } else if (op == BinaryOperator::GE && IsZero(S, E->getRHS())) {
2328    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2329      << ">= 0" << "true"
2330      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2331  } else if (op == BinaryOperator::GT && IsZero(S, E->getLHS())) {
2332    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2333      << "0 >" << "false"
2334      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2335  } else if (op == BinaryOperator::LE && IsZero(S, E->getLHS())) {
2336    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2337      << "0 <=" << "true"
2338      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2339  }
2340}
2341
2342/// Analyze the operands of the given comparison.  Implements the
2343/// fallback case from AnalyzeComparison.
2344void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2345  AnalyzeImplicitConversions(S, E->getLHS());
2346  AnalyzeImplicitConversions(S, E->getRHS());
2347}
2348
2349/// \brief Implements -Wsign-compare.
2350///
2351/// \param lex the left-hand expression
2352/// \param rex the right-hand expression
2353/// \param OpLoc the location of the joining operator
2354/// \param BinOpc binary opcode or 0
2355void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2356  // The type the comparison is being performed in.
2357  QualType T = E->getLHS()->getType();
2358  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2359         && "comparison with mismatched types");
2360
2361  // We don't do anything special if this isn't an unsigned integral
2362  // comparison:  we're only interested in integral comparisons, and
2363  // signed comparisons only happen in cases we don't care to warn about.
2364  if (!T->isUnsignedIntegerType())
2365    return AnalyzeImpConvsInComparison(S, E);
2366
2367  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2368  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2369
2370  // Check to see if one of the (unmodified) operands is of different
2371  // signedness.
2372  Expr *signedOperand, *unsignedOperand;
2373  if (lex->getType()->isSignedIntegerType()) {
2374    assert(!rex->getType()->isSignedIntegerType() &&
2375           "unsigned comparison between two signed integer expressions?");
2376    signedOperand = lex;
2377    unsignedOperand = rex;
2378  } else if (rex->getType()->isSignedIntegerType()) {
2379    signedOperand = rex;
2380    unsignedOperand = lex;
2381  } else {
2382    CheckTrivialUnsignedComparison(S, E);
2383    return AnalyzeImpConvsInComparison(S, E);
2384  }
2385
2386  // Otherwise, calculate the effective range of the signed operand.
2387  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2388
2389  // Go ahead and analyze implicit conversions in the operands.  Note
2390  // that we skip the implicit conversions on both sides.
2391  AnalyzeImplicitConversions(S, lex);
2392  AnalyzeImplicitConversions(S, rex);
2393
2394  // If the signed range is non-negative, -Wsign-compare won't fire,
2395  // but we should still check for comparisons which are always true
2396  // or false.
2397  if (signedRange.NonNegative)
2398    return CheckTrivialUnsignedComparison(S, E);
2399
2400  // For (in)equality comparisons, if the unsigned operand is a
2401  // constant which cannot collide with a overflowed signed operand,
2402  // then reinterpreting the signed operand as unsigned will not
2403  // change the result of the comparison.
2404  if (E->isEqualityOp()) {
2405    unsigned comparisonWidth = S.Context.getIntWidth(T);
2406    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2407
2408    // We should never be unable to prove that the unsigned operand is
2409    // non-negative.
2410    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2411
2412    if (unsignedRange.Width < comparisonWidth)
2413      return;
2414  }
2415
2416  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2417    << lex->getType() << rex->getType()
2418    << lex->getSourceRange() << rex->getSourceRange();
2419}
2420
2421/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2422void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2423  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2424}
2425
2426void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2427                             bool *ICContext = 0) {
2428  if (E->isTypeDependent() || E->isValueDependent()) return;
2429
2430  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2431  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2432  if (Source == Target) return;
2433  if (Target->isDependentType()) return;
2434
2435  // Never diagnose implicit casts to bool.
2436  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2437    return;
2438
2439  // Strip vector types.
2440  if (isa<VectorType>(Source)) {
2441    if (!isa<VectorType>(Target))
2442      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2443
2444    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2445    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2446  }
2447
2448  // Strip complex types.
2449  if (isa<ComplexType>(Source)) {
2450    if (!isa<ComplexType>(Target))
2451      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2452
2453    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2454    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2455  }
2456
2457  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2458  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2459
2460  // If the source is floating point...
2461  if (SourceBT && SourceBT->isFloatingPoint()) {
2462    // ...and the target is floating point...
2463    if (TargetBT && TargetBT->isFloatingPoint()) {
2464      // ...then warn if we're dropping FP rank.
2465
2466      // Builtin FP kinds are ordered by increasing FP rank.
2467      if (SourceBT->getKind() > TargetBT->getKind()) {
2468        // Don't warn about float constants that are precisely
2469        // representable in the target type.
2470        Expr::EvalResult result;
2471        if (E->Evaluate(result, S.Context)) {
2472          // Value might be a float, a float vector, or a float complex.
2473          if (IsSameFloatAfterCast(result.Val,
2474                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2475                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2476            return;
2477        }
2478
2479        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2480      }
2481      return;
2482    }
2483
2484    // If the target is integral, always warn.
2485    if ((TargetBT && TargetBT->isInteger()))
2486      // TODO: don't warn for integer values?
2487      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2488
2489    return;
2490  }
2491
2492  if (!Source->isIntegerType() || !Target->isIntegerType())
2493    return;
2494
2495  IntRange SourceRange = GetExprRange(S.Context, E);
2496  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2497
2498  if (SourceRange.Width > TargetRange.Width) {
2499    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2500    // and by god we'll let them.
2501    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2502      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2503    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2504  }
2505
2506  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2507      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2508       SourceRange.Width == TargetRange.Width)) {
2509    unsigned DiagID = diag::warn_impcast_integer_sign;
2510
2511    // Traditionally, gcc has warned about this under -Wsign-compare.
2512    // We also want to warn about it in -Wconversion.
2513    // So if -Wconversion is off, use a completely identical diagnostic
2514    // in the sign-compare group.
2515    // The conditional-checking code will
2516    if (ICContext) {
2517      DiagID = diag::warn_impcast_integer_sign_conditional;
2518      *ICContext = true;
2519    }
2520
2521    return DiagnoseImpCast(S, E, T, DiagID);
2522  }
2523
2524  return;
2525}
2526
2527void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2528
2529void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2530                             bool &ICContext) {
2531  E = E->IgnoreParenImpCasts();
2532
2533  if (isa<ConditionalOperator>(E))
2534    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2535
2536  AnalyzeImplicitConversions(S, E);
2537  if (E->getType() != T)
2538    return CheckImplicitConversion(S, E, T, &ICContext);
2539  return;
2540}
2541
2542void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2543  AnalyzeImplicitConversions(S, E->getCond());
2544
2545  bool Suspicious = false;
2546  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2547  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2548
2549  // If -Wconversion would have warned about either of the candidates
2550  // for a signedness conversion to the context type...
2551  if (!Suspicious) return;
2552
2553  // ...but it's currently ignored...
2554  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2555    return;
2556
2557  // ...and -Wsign-compare isn't...
2558  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2559    return;
2560
2561  // ...then check whether it would have warned about either of the
2562  // candidates for a signedness conversion to the condition type.
2563  if (E->getType() != T) {
2564    Suspicious = false;
2565    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2566                            E->getType(), &Suspicious);
2567    if (!Suspicious)
2568      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2569                              E->getType(), &Suspicious);
2570    if (!Suspicious)
2571      return;
2572  }
2573
2574  // If so, emit a diagnostic under -Wsign-compare.
2575  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2576  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2577  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2578    << lex->getType() << rex->getType()
2579    << lex->getSourceRange() << rex->getSourceRange();
2580}
2581
2582/// AnalyzeImplicitConversions - Find and report any interesting
2583/// implicit conversions in the given expression.  There are a couple
2584/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2585void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2586  QualType T = OrigE->getType();
2587  Expr *E = OrigE->IgnoreParenImpCasts();
2588
2589  // For conditional operators, we analyze the arguments as if they
2590  // were being fed directly into the output.
2591  if (isa<ConditionalOperator>(E)) {
2592    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2593    CheckConditionalOperator(S, CO, T);
2594    return;
2595  }
2596
2597  // Go ahead and check any implicit conversions we might have skipped.
2598  // The non-canonical typecheck is just an optimization;
2599  // CheckImplicitConversion will filter out dead implicit conversions.
2600  if (E->getType() != T)
2601    CheckImplicitConversion(S, E, T);
2602
2603  // Now continue drilling into this expression.
2604
2605  // Skip past explicit casts.
2606  if (isa<ExplicitCastExpr>(E)) {
2607    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2608    return AnalyzeImplicitConversions(S, E);
2609  }
2610
2611  // Do a somewhat different check with comparison operators.
2612  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2613    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2614
2615  // These break the otherwise-useful invariant below.  Fortunately,
2616  // we don't really need to recurse into them, because any internal
2617  // expressions should have been analyzed already when they were
2618  // built into statements.
2619  if (isa<StmtExpr>(E)) return;
2620
2621  // Don't descend into unevaluated contexts.
2622  if (isa<SizeOfAlignOfExpr>(E)) return;
2623
2624  // Now just recurse over the expression's children.
2625  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2626         I != IE; ++I)
2627    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2628}
2629
2630} // end anonymous namespace
2631
2632/// Diagnoses "dangerous" implicit conversions within the given
2633/// expression (which is a full expression).  Implements -Wconversion
2634/// and -Wsign-compare.
2635void Sema::CheckImplicitConversions(Expr *E) {
2636  // Don't diagnose in unevaluated contexts.
2637  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2638    return;
2639
2640  // Don't diagnose for value- or type-dependent expressions.
2641  if (E->isTypeDependent() || E->isValueDependent())
2642    return;
2643
2644  AnalyzeImplicitConversions(*this, E);
2645}
2646
2647/// CheckParmsForFunctionDef - Check that the parameters of the given
2648/// function are appropriate for the definition of a function. This
2649/// takes care of any checks that cannot be performed on the
2650/// declaration itself, e.g., that the types of each of the function
2651/// parameters are complete.
2652bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2653  bool HasInvalidParm = false;
2654  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2655    ParmVarDecl *Param = FD->getParamDecl(p);
2656
2657    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2658    // function declarator that is part of a function definition of
2659    // that function shall not have incomplete type.
2660    //
2661    // This is also C++ [dcl.fct]p6.
2662    if (!Param->isInvalidDecl() &&
2663        RequireCompleteType(Param->getLocation(), Param->getType(),
2664                               diag::err_typecheck_decl_incomplete_type)) {
2665      Param->setInvalidDecl();
2666      HasInvalidParm = true;
2667    }
2668
2669    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2670    // declaration of each parameter shall include an identifier.
2671    if (Param->getIdentifier() == 0 &&
2672        !Param->isImplicit() &&
2673        !getLangOptions().CPlusPlus)
2674      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2675
2676    // C99 6.7.5.3p12:
2677    //   If the function declarator is not part of a definition of that
2678    //   function, parameters may have incomplete type and may use the [*]
2679    //   notation in their sequences of declarator specifiers to specify
2680    //   variable length array types.
2681    QualType PType = Param->getOriginalType();
2682    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2683      if (AT->getSizeModifier() == ArrayType::Star) {
2684        // FIXME: This diagnosic should point the the '[*]' if source-location
2685        // information is added for it.
2686        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2687      }
2688    }
2689  }
2690
2691  return HasInvalidParm;
2692}
2693