SemaChecking.cpp revision 0eb23307222bda7ad95d968eac4e1ab30864b213
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "SemaUtil.h"
23using namespace clang;
24
25/// CheckFunctionCall - Check a direct function call for various correctness
26/// and safety properties not strictly enforced by the C type system.
27Action::OwningExprResult
28Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
29  OwningExprResult TheCallResult(Owned(TheCall));
30  // Get the IdentifierInfo* for the called function.
31  IdentifierInfo *FnInfo = FDecl->getIdentifier();
32
33  // None of the checks below are needed for functions that don't have
34  // simple names (e.g., C++ conversion functions).
35  if (!FnInfo)
36    return move(TheCallResult);
37
38  switch (FnInfo->getBuiltinID()) {
39  case Builtin::BI__builtin___CFStringMakeConstantString:
40    assert(TheCall->getNumArgs() == 1 &&
41           "Wrong # arguments to builtin CFStringMakeConstantString");
42    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
43      return ExprError();
44    return move(TheCallResult);
45  case Builtin::BI__builtin_stdarg_start:
46  case Builtin::BI__builtin_va_start:
47    if (SemaBuiltinVAStart(TheCall))
48      return ExprError();
49    return move(TheCallResult);
50  case Builtin::BI__builtin_isgreater:
51  case Builtin::BI__builtin_isgreaterequal:
52  case Builtin::BI__builtin_isless:
53  case Builtin::BI__builtin_islessequal:
54  case Builtin::BI__builtin_islessgreater:
55  case Builtin::BI__builtin_isunordered:
56    if (SemaBuiltinUnorderedCompare(TheCall))
57      return ExprError();
58    return move(TheCallResult);
59  case Builtin::BI__builtin_return_address:
60  case Builtin::BI__builtin_frame_address:
61    if (SemaBuiltinStackAddress(TheCall))
62      return ExprError();
63    return move(TheCallResult);
64  case Builtin::BI__builtin_shufflevector:
65    return SemaBuiltinShuffleVector(TheCall);
66    // TheCall will be freed by the smart pointer here, but that's fine, since
67    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
68  case Builtin::BI__builtin_prefetch:
69    if (SemaBuiltinPrefetch(TheCall))
70      return ExprError();
71    return move(TheCallResult);
72  case Builtin::BI__builtin_object_size:
73    if (SemaBuiltinObjectSize(TheCall))
74      return ExprError();
75  }
76
77  // FIXME: This mechanism should be abstracted to be less fragile and
78  // more efficient. For example, just map function ids to custom
79  // handlers.
80
81  // Search the KnownFunctionIDs for the identifier.
82  unsigned i = 0, e = id_num_known_functions;
83  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
84  if (i == e) return move(TheCallResult);
85
86  // Printf checking.
87  if (i <= id_vprintf) {
88    // Retrieve the index of the format string parameter and determine
89    // if the function is passed a va_arg argument.
90    unsigned format_idx = 0;
91    bool HasVAListArg = false;
92
93    switch (i) {
94    default: assert(false && "No format string argument index.");
95    case id_NSLog:         format_idx = 0; break;
96    case id_asprintf:      format_idx = 1; break;
97    case id_fprintf:       format_idx = 1; break;
98    case id_printf:        format_idx = 0; break;
99    case id_snprintf:      format_idx = 2; break;
100    case id_snprintf_chk:  format_idx = 4; break;
101    case id_sprintf:       format_idx = 1; break;
102    case id_sprintf_chk:   format_idx = 3; break;
103    case id_vasprintf:     format_idx = 1; HasVAListArg = true; break;
104    case id_vfprintf:      format_idx = 1; HasVAListArg = true; break;
105    case id_vsnprintf:     format_idx = 2; HasVAListArg = true; break;
106    case id_vsnprintf_chk: format_idx = 4; HasVAListArg = true; break;
107    case id_vsprintf:      format_idx = 1; HasVAListArg = true; break;
108    case id_vsprintf_chk:  format_idx = 3; HasVAListArg = true; break;
109    case id_vprintf:       format_idx = 0; HasVAListArg = true; break;
110    }
111
112    CheckPrintfArguments(TheCall, HasVAListArg, format_idx);
113  }
114
115  return move(TheCallResult);
116}
117
118/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
119/// CFString constructor is correct
120bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
121  Arg = Arg->IgnoreParenCasts();
122
123  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
124
125  if (!Literal || Literal->isWide()) {
126    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
127      << Arg->getSourceRange();
128    return true;
129  }
130
131  const char *Data = Literal->getStrData();
132  unsigned Length = Literal->getByteLength();
133
134  for (unsigned i = 0; i < Length; ++i) {
135    if (!isascii(Data[i])) {
136      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
137           diag::warn_cfstring_literal_contains_non_ascii_character)
138        << Arg->getSourceRange();
139      break;
140    }
141
142    if (!Data[i]) {
143      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
144           diag::warn_cfstring_literal_contains_nul_character)
145        << Arg->getSourceRange();
146      break;
147    }
148  }
149
150  return false;
151}
152
153/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
154/// Emit an error and return true on failure, return false on success.
155bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
156  Expr *Fn = TheCall->getCallee();
157  if (TheCall->getNumArgs() > 2) {
158    Diag(TheCall->getArg(2)->getLocStart(),
159         diag::err_typecheck_call_too_many_args)
160      << 0 /*function call*/ << Fn->getSourceRange()
161      << SourceRange(TheCall->getArg(2)->getLocStart(),
162                     (*(TheCall->arg_end()-1))->getLocEnd());
163    return true;
164  }
165
166  if (TheCall->getNumArgs() < 2) {
167    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
168      << 0 /*function call*/;
169  }
170
171  // Determine whether the current function is variadic or not.
172  bool isVariadic;
173  if (getCurFunctionDecl()) {
174    if (FunctionTypeProto* FTP =
175            dyn_cast<FunctionTypeProto>(getCurFunctionDecl()->getType()))
176      isVariadic = FTP->isVariadic();
177    else
178      isVariadic = false;
179  } else {
180    isVariadic = getCurMethodDecl()->isVariadic();
181  }
182
183  if (!isVariadic) {
184    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
185    return true;
186  }
187
188  // Verify that the second argument to the builtin is the last argument of the
189  // current function or method.
190  bool SecondArgIsLastNamedArgument = false;
191  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
192
193  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
194    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
195      // FIXME: This isn't correct for methods (results in bogus warning).
196      // Get the last formal in the current function.
197      const ParmVarDecl *LastArg;
198      if (FunctionDecl *FD = getCurFunctionDecl())
199        LastArg = *(FD->param_end()-1);
200      else
201        LastArg = *(getCurMethodDecl()->param_end()-1);
202      SecondArgIsLastNamedArgument = PV == LastArg;
203    }
204  }
205
206  if (!SecondArgIsLastNamedArgument)
207    Diag(TheCall->getArg(1)->getLocStart(),
208         diag::warn_second_parameter_of_va_start_not_last_named_argument);
209  return false;
210}
211
212/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
213/// friends.  This is declared to take (...), so we have to check everything.
214bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
215  if (TheCall->getNumArgs() < 2)
216    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
217      << 0 /*function call*/;
218  if (TheCall->getNumArgs() > 2)
219    return Diag(TheCall->getArg(2)->getLocStart(),
220                diag::err_typecheck_call_too_many_args)
221      << 0 /*function call*/
222      << SourceRange(TheCall->getArg(2)->getLocStart(),
223                     (*(TheCall->arg_end()-1))->getLocEnd());
224
225  Expr *OrigArg0 = TheCall->getArg(0);
226  Expr *OrigArg1 = TheCall->getArg(1);
227
228  // Do standard promotions between the two arguments, returning their common
229  // type.
230  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
231
232  // If the common type isn't a real floating type, then the arguments were
233  // invalid for this operation.
234  if (!Res->isRealFloatingType())
235    return Diag(OrigArg0->getLocStart(),
236                diag::err_typecheck_call_invalid_ordered_compare)
237      << OrigArg0->getType() << OrigArg1->getType()
238      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
239
240  return false;
241}
242
243bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
244  // The signature for these builtins is exact; the only thing we need
245  // to check is that the argument is a constant.
246  SourceLocation Loc;
247  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
248    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
249
250  return false;
251}
252
253/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
254// This is declared to take (...), so we have to check everything.
255Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
256  if (TheCall->getNumArgs() < 3)
257    return ExprError(Diag(TheCall->getLocEnd(),
258                          diag::err_typecheck_call_too_few_args)
259      << 0 /*function call*/ << TheCall->getSourceRange());
260
261  QualType FAType = TheCall->getArg(0)->getType();
262  QualType SAType = TheCall->getArg(1)->getType();
263
264  if (!FAType->isVectorType() || !SAType->isVectorType()) {
265    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
266      << SourceRange(TheCall->getArg(0)->getLocStart(),
267                     TheCall->getArg(1)->getLocEnd());
268    return ExprError();
269  }
270
271  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
272      Context.getCanonicalType(SAType).getUnqualifiedType()) {
273    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
274      << SourceRange(TheCall->getArg(0)->getLocStart(),
275                     TheCall->getArg(1)->getLocEnd());
276    return ExprError();
277  }
278
279  unsigned numElements = FAType->getAsVectorType()->getNumElements();
280  if (TheCall->getNumArgs() != numElements+2) {
281    if (TheCall->getNumArgs() < numElements+2)
282      return ExprError(Diag(TheCall->getLocEnd(),
283                            diag::err_typecheck_call_too_few_args)
284               << 0 /*function call*/ << TheCall->getSourceRange());
285    return ExprError(Diag(TheCall->getLocEnd(),
286                          diag::err_typecheck_call_too_many_args)
287             << 0 /*function call*/ << TheCall->getSourceRange());
288  }
289
290  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
291    llvm::APSInt Result(32);
292    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
293      return ExprError(Diag(TheCall->getLocStart(),
294                  diag::err_shufflevector_nonconstant_argument)
295                << TheCall->getArg(i)->getSourceRange());
296
297    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
298      return ExprError(Diag(TheCall->getLocStart(),
299                  diag::err_shufflevector_argument_too_large)
300               << TheCall->getArg(i)->getSourceRange());
301  }
302
303  llvm::SmallVector<Expr*, 32> exprs;
304
305  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
306    exprs.push_back(TheCall->getArg(i));
307    TheCall->setArg(i, 0);
308  }
309
310  return Owned(new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
311                                     TheCall->getCallee()->getLocStart(),
312                                     TheCall->getRParenLoc()));
313}
314
315/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
316// This is declared to take (const void*, ...) and can take two
317// optional constant int args.
318bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
319  unsigned NumArgs = TheCall->getNumArgs();
320
321  if (NumArgs > 3)
322    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
323             << 0 /*function call*/ << TheCall->getSourceRange();
324
325  // Argument 0 is checked for us and the remaining arguments must be
326  // constant integers.
327  for (unsigned i = 1; i != NumArgs; ++i) {
328    Expr *Arg = TheCall->getArg(i);
329    QualType RWType = Arg->getType();
330
331    const BuiltinType *BT = RWType->getAsBuiltinType();
332    llvm::APSInt Result;
333    if (!BT || BT->getKind() != BuiltinType::Int ||
334        !Arg->isIntegerConstantExpr(Result, Context))
335      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
336              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
337
338    // FIXME: gcc issues a warning and rewrites these to 0. These
339    // seems especially odd for the third argument since the default
340    // is 3.
341    if (i == 1) {
342      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
343        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
344             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
345    } else {
346      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
347        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
348            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
349    }
350  }
351
352  return false;
353}
354
355/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
356/// int type). This simply type checks that type is one of the defined
357/// constants (0-3).
358bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
359  Expr *Arg = TheCall->getArg(1);
360  QualType ArgType = Arg->getType();
361  const BuiltinType *BT = ArgType->getAsBuiltinType();
362  llvm::APSInt Result(32);
363  if (!BT || BT->getKind() != BuiltinType::Int ||
364      !Arg->isIntegerConstantExpr(Result, Context)) {
365    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
366             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
367  }
368
369  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
370    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
371             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
372  }
373
374  return false;
375}
376
377// Handle i > 1 ? "x" : "y", recursivelly
378bool Sema::SemaCheckStringLiteral(Expr *E, CallExpr *TheCall, bool HasVAListArg,
379                                  unsigned format_idx) {
380
381  switch (E->getStmtClass()) {
382  case Stmt::ConditionalOperatorClass: {
383    ConditionalOperator *C = cast<ConditionalOperator>(E);
384    return SemaCheckStringLiteral(C->getLHS(), TheCall,
385                                  HasVAListArg, format_idx)
386        && SemaCheckStringLiteral(C->getRHS(), TheCall,
387                                  HasVAListArg, format_idx);
388  }
389
390  case Stmt::ImplicitCastExprClass: {
391    ImplicitCastExpr *Expr = dyn_cast<ImplicitCastExpr>(E);
392    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
393                                  format_idx);
394  }
395
396  case Stmt::ParenExprClass: {
397    ParenExpr *Expr = dyn_cast<ParenExpr>(E);
398    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
399                                  format_idx);
400  }
401
402  default: {
403    ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E);
404    StringLiteral *StrE = NULL;
405
406    if (ObjCFExpr)
407      StrE = ObjCFExpr->getString();
408    else
409      StrE = dyn_cast<StringLiteral>(E);
410
411    if (StrE) {
412      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx);
413      return true;
414    }
415
416    return false;
417  }
418  }
419}
420
421
422/// CheckPrintfArguments - Check calls to printf (and similar functions) for
423/// correct use of format strings.
424///
425///  HasVAListArg - A predicate indicating whether the printf-like
426///    function is passed an explicit va_arg argument (e.g., vprintf)
427///
428///  format_idx - The index into Args for the format string.
429///
430/// Improper format strings to functions in the printf family can be
431/// the source of bizarre bugs and very serious security holes.  A
432/// good source of information is available in the following paper
433/// (which includes additional references):
434///
435///  FormatGuard: Automatic Protection From printf Format String
436///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
437///
438/// Functionality implemented:
439///
440///  We can statically check the following properties for string
441///  literal format strings for non v.*printf functions (where the
442///  arguments are passed directly):
443//
444///  (1) Are the number of format conversions equal to the number of
445///      data arguments?
446///
447///  (2) Does each format conversion correctly match the type of the
448///      corresponding data argument?  (TODO)
449///
450/// Moreover, for all printf functions we can:
451///
452///  (3) Check for a missing format string (when not caught by type checking).
453///
454///  (4) Check for no-operation flags; e.g. using "#" with format
455///      conversion 'c'  (TODO)
456///
457///  (5) Check the use of '%n', a major source of security holes.
458///
459///  (6) Check for malformed format conversions that don't specify anything.
460///
461///  (7) Check for empty format strings.  e.g: printf("");
462///
463///  (8) Check that the format string is a wide literal.
464///
465///  (9) Also check the arguments of functions with the __format__ attribute.
466///      (TODO).
467///
468/// All of these checks can be done by parsing the format string.
469///
470/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
471void
472Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
473                           unsigned format_idx) {
474  Expr *Fn = TheCall->getCallee();
475
476  // CHECK: printf-like function is called with no format string.
477  if (format_idx >= TheCall->getNumArgs()) {
478    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
479      << Fn->getSourceRange();
480    return;
481  }
482
483  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
484
485  // CHECK: format string is not a string literal.
486  //
487  // Dynamically generated format strings are difficult to
488  // automatically vet at compile time.  Requiring that format strings
489  // are string literals: (1) permits the checking of format strings by
490  // the compiler and thereby (2) can practically remove the source of
491  // many format string exploits.
492
493  // Format string can be either ObjC string (e.g. @"%d") or
494  // C string (e.g. "%d")
495  // ObjC string uses the same format specifiers as C string, so we can use
496  // the same format string checking logic for both ObjC and C strings.
497  bool isFExpr = SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx);
498
499  if (!isFExpr) {
500    // For vprintf* functions (i.e., HasVAListArg==true), we add a
501    // special check to see if the format string is a function parameter
502    // of the function calling the printf function.  If the function
503    // has an attribute indicating it is a printf-like function, then we
504    // should suppress warnings concerning non-literals being used in a call
505    // to a vprintf function.  For example:
506    //
507    // void
508    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
509    //      va_list ap;
510    //      va_start(ap, fmt);
511    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
512    //      ...
513    //
514    //
515    //  FIXME: We don't have full attribute support yet, so just check to see
516    //    if the argument is a DeclRefExpr that references a parameter.  We'll
517    //    add proper support for checking the attribute later.
518    if (HasVAListArg)
519      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
520        if (isa<ParmVarDecl>(DR->getDecl()))
521          return;
522
523    Diag(TheCall->getArg(format_idx)->getLocStart(),
524         diag::warn_printf_not_string_constant)
525      << OrigFormatExpr->getSourceRange();
526    return;
527  }
528}
529
530void Sema::CheckPrintfString(StringLiteral *FExpr, Expr *OrigFormatExpr,
531      CallExpr *TheCall, bool HasVAListArg, unsigned format_idx) {
532
533  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
534  // CHECK: is the format string a wide literal?
535  if (FExpr->isWide()) {
536    Diag(FExpr->getLocStart(),
537         diag::warn_printf_format_string_is_wide_literal)
538      << OrigFormatExpr->getSourceRange();
539    return;
540  }
541
542  // Str - The format string.  NOTE: this is NOT null-terminated!
543  const char * const Str = FExpr->getStrData();
544
545  // CHECK: empty format string?
546  const unsigned StrLen = FExpr->getByteLength();
547
548  if (StrLen == 0) {
549    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
550      << OrigFormatExpr->getSourceRange();
551    return;
552  }
553
554  // We process the format string using a binary state machine.  The
555  // current state is stored in CurrentState.
556  enum {
557    state_OrdChr,
558    state_Conversion
559  } CurrentState = state_OrdChr;
560
561  // numConversions - The number of conversions seen so far.  This is
562  //  incremented as we traverse the format string.
563  unsigned numConversions = 0;
564
565  // numDataArgs - The number of data arguments after the format
566  //  string.  This can only be determined for non vprintf-like
567  //  functions.  For those functions, this value is 1 (the sole
568  //  va_arg argument).
569  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
570
571  // Inspect the format string.
572  unsigned StrIdx = 0;
573
574  // LastConversionIdx - Index within the format string where we last saw
575  //  a '%' character that starts a new format conversion.
576  unsigned LastConversionIdx = 0;
577
578  for (; StrIdx < StrLen; ++StrIdx) {
579
580    // Is the number of detected conversion conversions greater than
581    // the number of matching data arguments?  If so, stop.
582    if (!HasVAListArg && numConversions > numDataArgs) break;
583
584    // Handle "\0"
585    if (Str[StrIdx] == '\0') {
586      // The string returned by getStrData() is not null-terminated,
587      // so the presence of a null character is likely an error.
588      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
589           diag::warn_printf_format_string_contains_null_char)
590        <<  OrigFormatExpr->getSourceRange();
591      return;
592    }
593
594    // Ordinary characters (not processing a format conversion).
595    if (CurrentState == state_OrdChr) {
596      if (Str[StrIdx] == '%') {
597        CurrentState = state_Conversion;
598        LastConversionIdx = StrIdx;
599      }
600      continue;
601    }
602
603    // Seen '%'.  Now processing a format conversion.
604    switch (Str[StrIdx]) {
605    // Handle dynamic precision or width specifier.
606    case '*': {
607      ++numConversions;
608
609      if (!HasVAListArg && numConversions > numDataArgs) {
610        SourceLocation Loc = FExpr->getLocStart();
611        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
612
613        if (Str[StrIdx-1] == '.')
614          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
615            << OrigFormatExpr->getSourceRange();
616        else
617          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
618            << OrigFormatExpr->getSourceRange();
619
620        // Don't do any more checking.  We'll just emit spurious errors.
621        return;
622      }
623
624      // Perform type checking on width/precision specifier.
625      Expr *E = TheCall->getArg(format_idx+numConversions);
626      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
627        if (BT->getKind() == BuiltinType::Int)
628          break;
629
630      SourceLocation Loc =
631        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
632
633      if (Str[StrIdx-1] == '.')
634        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
635          << E->getType() << E->getSourceRange();
636      else
637        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
638          << E->getType() << E->getSourceRange();
639
640      break;
641    }
642
643    // Characters which can terminate a format conversion
644    // (e.g. "%d").  Characters that specify length modifiers or
645    // other flags are handled by the default case below.
646    //
647    // FIXME: additional checks will go into the following cases.
648    case 'i':
649    case 'd':
650    case 'o':
651    case 'u':
652    case 'x':
653    case 'X':
654    case 'D':
655    case 'O':
656    case 'U':
657    case 'e':
658    case 'E':
659    case 'f':
660    case 'F':
661    case 'g':
662    case 'G':
663    case 'a':
664    case 'A':
665    case 'c':
666    case 'C':
667    case 'S':
668    case 's':
669    case 'p':
670      ++numConversions;
671      CurrentState = state_OrdChr;
672      break;
673
674    // CHECK: Are we using "%n"?  Issue a warning.
675    case 'n': {
676      ++numConversions;
677      CurrentState = state_OrdChr;
678      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
679                                                      LastConversionIdx+1);
680
681      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
682      break;
683    }
684
685    // Handle "%@"
686    case '@':
687      // %@ is allowed in ObjC format strings only.
688      if(ObjCFExpr != NULL)
689        CurrentState = state_OrdChr;
690      else {
691        // Issue a warning: invalid format conversion.
692        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
693                                                    LastConversionIdx+1);
694
695        Diag(Loc, diag::warn_printf_invalid_conversion)
696          <<  std::string(Str+LastConversionIdx,
697                          Str+std::min(LastConversionIdx+2, StrLen))
698          << OrigFormatExpr->getSourceRange();
699      }
700      ++numConversions;
701      break;
702
703    // Handle "%%"
704    case '%':
705      // Sanity check: Was the first "%" character the previous one?
706      // If not, we will assume that we have a malformed format
707      // conversion, and that the current "%" character is the start
708      // of a new conversion.
709      if (StrIdx - LastConversionIdx == 1)
710        CurrentState = state_OrdChr;
711      else {
712        // Issue a warning: invalid format conversion.
713        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
714                                                        LastConversionIdx+1);
715
716        Diag(Loc, diag::warn_printf_invalid_conversion)
717          << std::string(Str+LastConversionIdx, Str+StrIdx)
718          << OrigFormatExpr->getSourceRange();
719
720        // This conversion is broken.  Advance to the next format
721        // conversion.
722        LastConversionIdx = StrIdx;
723        ++numConversions;
724      }
725      break;
726
727    default:
728      // This case catches all other characters: flags, widths, etc.
729      // We should eventually process those as well.
730      break;
731    }
732  }
733
734  if (CurrentState == state_Conversion) {
735    // Issue a warning: invalid format conversion.
736    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
737                                                    LastConversionIdx+1);
738
739    Diag(Loc, diag::warn_printf_invalid_conversion)
740      << std::string(Str+LastConversionIdx,
741                     Str+std::min(LastConversionIdx+2, StrLen))
742      << OrigFormatExpr->getSourceRange();
743    return;
744  }
745
746  if (!HasVAListArg) {
747    // CHECK: Does the number of format conversions exceed the number
748    //        of data arguments?
749    if (numConversions > numDataArgs) {
750      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
751                                                      LastConversionIdx);
752
753      Diag(Loc, diag::warn_printf_insufficient_data_args)
754        << OrigFormatExpr->getSourceRange();
755    }
756    // CHECK: Does the number of data arguments exceed the number of
757    //        format conversions in the format string?
758    else if (numConversions < numDataArgs)
759      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
760           diag::warn_printf_too_many_data_args)
761        << OrigFormatExpr->getSourceRange();
762  }
763}
764
765//===--- CHECK: Return Address of Stack Variable --------------------------===//
766
767static DeclRefExpr* EvalVal(Expr *E);
768static DeclRefExpr* EvalAddr(Expr* E);
769
770/// CheckReturnStackAddr - Check if a return statement returns the address
771///   of a stack variable.
772void
773Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
774                           SourceLocation ReturnLoc) {
775
776  // Perform checking for returned stack addresses.
777  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
778    if (DeclRefExpr *DR = EvalAddr(RetValExp))
779      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
780       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
781
782    // Skip over implicit cast expressions when checking for block expressions.
783    if (ImplicitCastExpr *IcExpr =
784          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
785      RetValExp = IcExpr->getSubExpr();
786
787    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
788      Diag(C->getLocStart(), diag::err_ret_local_block)
789        << C->getSourceRange();
790  }
791  // Perform checking for stack values returned by reference.
792  else if (lhsType->isReferenceType()) {
793    // Check for a reference to the stack
794    if (DeclRefExpr *DR = EvalVal(RetValExp))
795      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
796        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
797  }
798}
799
800/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
801///  check if the expression in a return statement evaluates to an address
802///  to a location on the stack.  The recursion is used to traverse the
803///  AST of the return expression, with recursion backtracking when we
804///  encounter a subexpression that (1) clearly does not lead to the address
805///  of a stack variable or (2) is something we cannot determine leads to
806///  the address of a stack variable based on such local checking.
807///
808///  EvalAddr processes expressions that are pointers that are used as
809///  references (and not L-values).  EvalVal handles all other values.
810///  At the base case of the recursion is a check for a DeclRefExpr* in
811///  the refers to a stack variable.
812///
813///  This implementation handles:
814///
815///   * pointer-to-pointer casts
816///   * implicit conversions from array references to pointers
817///   * taking the address of fields
818///   * arbitrary interplay between "&" and "*" operators
819///   * pointer arithmetic from an address of a stack variable
820///   * taking the address of an array element where the array is on the stack
821static DeclRefExpr* EvalAddr(Expr *E) {
822  // We should only be called for evaluating pointer expressions.
823  assert((E->getType()->isPointerType() ||
824          E->getType()->isBlockPointerType() ||
825          E->getType()->isObjCQualifiedIdType()) &&
826         "EvalAddr only works on pointers");
827
828  // Our "symbolic interpreter" is just a dispatch off the currently
829  // viewed AST node.  We then recursively traverse the AST by calling
830  // EvalAddr and EvalVal appropriately.
831  switch (E->getStmtClass()) {
832  case Stmt::ParenExprClass:
833    // Ignore parentheses.
834    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
835
836  case Stmt::UnaryOperatorClass: {
837    // The only unary operator that make sense to handle here
838    // is AddrOf.  All others don't make sense as pointers.
839    UnaryOperator *U = cast<UnaryOperator>(E);
840
841    if (U->getOpcode() == UnaryOperator::AddrOf)
842      return EvalVal(U->getSubExpr());
843    else
844      return NULL;
845  }
846
847  case Stmt::BinaryOperatorClass: {
848    // Handle pointer arithmetic.  All other binary operators are not valid
849    // in this context.
850    BinaryOperator *B = cast<BinaryOperator>(E);
851    BinaryOperator::Opcode op = B->getOpcode();
852
853    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
854      return NULL;
855
856    Expr *Base = B->getLHS();
857
858    // Determine which argument is the real pointer base.  It could be
859    // the RHS argument instead of the LHS.
860    if (!Base->getType()->isPointerType()) Base = B->getRHS();
861
862    assert (Base->getType()->isPointerType());
863    return EvalAddr(Base);
864  }
865
866  // For conditional operators we need to see if either the LHS or RHS are
867  // valid DeclRefExpr*s.  If one of them is valid, we return it.
868  case Stmt::ConditionalOperatorClass: {
869    ConditionalOperator *C = cast<ConditionalOperator>(E);
870
871    // Handle the GNU extension for missing LHS.
872    if (Expr *lhsExpr = C->getLHS())
873      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
874        return LHS;
875
876     return EvalAddr(C->getRHS());
877  }
878
879  // For casts, we need to handle conversions from arrays to
880  // pointer values, and pointer-to-pointer conversions.
881  case Stmt::ImplicitCastExprClass:
882  case Stmt::CStyleCastExprClass:
883  case Stmt::CXXFunctionalCastExprClass: {
884    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
885    QualType T = SubExpr->getType();
886
887    if (SubExpr->getType()->isPointerType() ||
888        SubExpr->getType()->isBlockPointerType() ||
889        SubExpr->getType()->isObjCQualifiedIdType())
890      return EvalAddr(SubExpr);
891    else if (T->isArrayType())
892      return EvalVal(SubExpr);
893    else
894      return 0;
895  }
896
897  // C++ casts.  For dynamic casts, static casts, and const casts, we
898  // are always converting from a pointer-to-pointer, so we just blow
899  // through the cast.  In the case the dynamic cast doesn't fail (and
900  // return NULL), we take the conservative route and report cases
901  // where we return the address of a stack variable.  For Reinterpre
902  // FIXME: The comment about is wrong; we're not always converting
903  // from pointer to pointer. I'm guessing that this code should also
904  // handle references to objects.
905  case Stmt::CXXStaticCastExprClass:
906  case Stmt::CXXDynamicCastExprClass:
907  case Stmt::CXXConstCastExprClass:
908  case Stmt::CXXReinterpretCastExprClass: {
909      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
910      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
911        return EvalAddr(S);
912      else
913        return NULL;
914  }
915
916  // Everything else: we simply don't reason about them.
917  default:
918    return NULL;
919  }
920}
921
922
923///  EvalVal - This function is complements EvalAddr in the mutual recursion.
924///   See the comments for EvalAddr for more details.
925static DeclRefExpr* EvalVal(Expr *E) {
926
927  // We should only be called for evaluating non-pointer expressions, or
928  // expressions with a pointer type that are not used as references but instead
929  // are l-values (e.g., DeclRefExpr with a pointer type).
930
931  // Our "symbolic interpreter" is just a dispatch off the currently
932  // viewed AST node.  We then recursively traverse the AST by calling
933  // EvalAddr and EvalVal appropriately.
934  switch (E->getStmtClass()) {
935  case Stmt::DeclRefExprClass:
936  case Stmt::QualifiedDeclRefExprClass: {
937    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
938    //  at code that refers to a variable's name.  We check if it has local
939    //  storage within the function, and if so, return the expression.
940    DeclRefExpr *DR = cast<DeclRefExpr>(E);
941
942    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
943      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
944
945    return NULL;
946  }
947
948  case Stmt::ParenExprClass:
949    // Ignore parentheses.
950    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
951
952  case Stmt::UnaryOperatorClass: {
953    // The only unary operator that make sense to handle here
954    // is Deref.  All others don't resolve to a "name."  This includes
955    // handling all sorts of rvalues passed to a unary operator.
956    UnaryOperator *U = cast<UnaryOperator>(E);
957
958    if (U->getOpcode() == UnaryOperator::Deref)
959      return EvalAddr(U->getSubExpr());
960
961    return NULL;
962  }
963
964  case Stmt::ArraySubscriptExprClass: {
965    // Array subscripts are potential references to data on the stack.  We
966    // retrieve the DeclRefExpr* for the array variable if it indeed
967    // has local storage.
968    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
969  }
970
971  case Stmt::ConditionalOperatorClass: {
972    // For conditional operators we need to see if either the LHS or RHS are
973    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
974    ConditionalOperator *C = cast<ConditionalOperator>(E);
975
976    // Handle the GNU extension for missing LHS.
977    if (Expr *lhsExpr = C->getLHS())
978      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
979        return LHS;
980
981    return EvalVal(C->getRHS());
982  }
983
984  // Accesses to members are potential references to data on the stack.
985  case Stmt::MemberExprClass: {
986    MemberExpr *M = cast<MemberExpr>(E);
987
988    // Check for indirect access.  We only want direct field accesses.
989    if (!M->isArrow())
990      return EvalVal(M->getBase());
991    else
992      return NULL;
993  }
994
995  // Everything else: we simply don't reason about them.
996  default:
997    return NULL;
998  }
999}
1000
1001//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1002
1003/// Check for comparisons of floating point operands using != and ==.
1004/// Issue a warning if these are no self-comparisons, as they are not likely
1005/// to do what the programmer intended.
1006void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1007  bool EmitWarning = true;
1008
1009  Expr* LeftExprSansParen = lex->IgnoreParens();
1010  Expr* RightExprSansParen = rex->IgnoreParens();
1011
1012  // Special case: check for x == x (which is OK).
1013  // Do not emit warnings for such cases.
1014  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1015    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1016      if (DRL->getDecl() == DRR->getDecl())
1017        EmitWarning = false;
1018
1019
1020  // Special case: check for comparisons against literals that can be exactly
1021  //  represented by APFloat.  In such cases, do not emit a warning.  This
1022  //  is a heuristic: often comparison against such literals are used to
1023  //  detect if a value in a variable has not changed.  This clearly can
1024  //  lead to false negatives.
1025  if (EmitWarning) {
1026    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1027      if (FLL->isExact())
1028        EmitWarning = false;
1029    }
1030    else
1031      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1032        if (FLR->isExact())
1033          EmitWarning = false;
1034    }
1035  }
1036
1037  // Check for comparisons with builtin types.
1038  if (EmitWarning)
1039    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1040      if (isCallBuiltin(CL))
1041        EmitWarning = false;
1042
1043  if (EmitWarning)
1044    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1045      if (isCallBuiltin(CR))
1046        EmitWarning = false;
1047
1048  // Emit the diagnostic.
1049  if (EmitWarning)
1050    Diag(loc, diag::warn_floatingpoint_eq)
1051      << lex->getSourceRange() << rex->getSourceRange();
1052}
1053