SemaChecking.cpp revision 12b97ff9ce1412e388444f03049bfa6ad1bb5eb9
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22#include <limits>
23using namespace clang;
24
25/// getLocationOfStringLiteralByte - Return a source location that points to the
26/// specified byte of the specified string literal.
27///
28/// Strings are amazingly complex.  They can be formed from multiple tokens and
29/// can have escape sequences in them in addition to the usual trigraph and
30/// escaped newline business.  This routine handles this complexity.
31///
32SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
33                                                    unsigned ByteNo) const {
34  assert(!SL->isWide() && "This doesn't work for wide strings yet");
35
36  // Loop over all of the tokens in this string until we find the one that
37  // contains the byte we're looking for.
38  unsigned TokNo = 0;
39  while (1) {
40    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
41    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
42
43    // Get the spelling of the string so that we can get the data that makes up
44    // the string literal, not the identifier for the macro it is potentially
45    // expanded through.
46    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
47
48    // Re-lex the token to get its length and original spelling.
49    std::pair<FileID, unsigned> LocInfo =
50      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
51    std::pair<const char *,const char *> Buffer =
52      SourceMgr.getBufferData(LocInfo.first);
53    const char *StrData = Buffer.first+LocInfo.second;
54
55    // Create a langops struct and enable trigraphs.  This is sufficient for
56    // relexing tokens.
57    LangOptions LangOpts;
58    LangOpts.Trigraphs = true;
59
60    // Create a lexer starting at the beginning of this token.
61    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
62                   Buffer.second);
63    Token TheTok;
64    TheLexer.LexFromRawLexer(TheTok);
65
66    // Use the StringLiteralParser to compute the length of the string in bytes.
67    StringLiteralParser SLP(&TheTok, 1, PP);
68    unsigned TokNumBytes = SLP.GetStringLength();
69
70    // If the byte is in this token, return the location of the byte.
71    if (ByteNo < TokNumBytes ||
72        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
73      unsigned Offset =
74        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
75
76      // Now that we know the offset of the token in the spelling, use the
77      // preprocessor to get the offset in the original source.
78      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
79    }
80
81    // Move to the next string token.
82    ++TokNo;
83    ByteNo -= TokNumBytes;
84  }
85}
86
87
88/// CheckFunctionCall - Check a direct function call for various correctness
89/// and safety properties not strictly enforced by the C type system.
90Action::OwningExprResult
91Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
92  OwningExprResult TheCallResult(Owned(TheCall));
93  // Get the IdentifierInfo* for the called function.
94  IdentifierInfo *FnInfo = FDecl->getIdentifier();
95
96  // None of the checks below are needed for functions that don't have
97  // simple names (e.g., C++ conversion functions).
98  if (!FnInfo)
99    return move(TheCallResult);
100
101  switch (FDecl->getBuiltinID(Context)) {
102  case Builtin::BI__builtin___CFStringMakeConstantString:
103    assert(TheCall->getNumArgs() == 1 &&
104           "Wrong # arguments to builtin CFStringMakeConstantString");
105    if (CheckObjCString(TheCall->getArg(0)))
106      return ExprError();
107    return move(TheCallResult);
108  case Builtin::BI__builtin_stdarg_start:
109  case Builtin::BI__builtin_va_start:
110    if (SemaBuiltinVAStart(TheCall))
111      return ExprError();
112    return move(TheCallResult);
113  case Builtin::BI__builtin_isgreater:
114  case Builtin::BI__builtin_isgreaterequal:
115  case Builtin::BI__builtin_isless:
116  case Builtin::BI__builtin_islessequal:
117  case Builtin::BI__builtin_islessgreater:
118  case Builtin::BI__builtin_isunordered:
119    if (SemaBuiltinUnorderedCompare(TheCall))
120      return ExprError();
121    return move(TheCallResult);
122  case Builtin::BI__builtin_return_address:
123  case Builtin::BI__builtin_frame_address:
124    if (SemaBuiltinStackAddress(TheCall))
125      return ExprError();
126    return move(TheCallResult);
127  case Builtin::BI__builtin_shufflevector:
128    return SemaBuiltinShuffleVector(TheCall);
129    // TheCall will be freed by the smart pointer here, but that's fine, since
130    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
131  case Builtin::BI__builtin_prefetch:
132    if (SemaBuiltinPrefetch(TheCall))
133      return ExprError();
134    return move(TheCallResult);
135  case Builtin::BI__builtin_object_size:
136    if (SemaBuiltinObjectSize(TheCall))
137      return ExprError();
138    return move(TheCallResult);
139  case Builtin::BI__builtin_longjmp:
140    if (SemaBuiltinLongjmp(TheCall))
141      return ExprError();
142    return move(TheCallResult);
143  case Builtin::BI__sync_fetch_and_add:
144  case Builtin::BI__sync_fetch_and_sub:
145  case Builtin::BI__sync_fetch_and_or:
146  case Builtin::BI__sync_fetch_and_and:
147  case Builtin::BI__sync_fetch_and_xor:
148  case Builtin::BI__sync_fetch_and_nand:
149  case Builtin::BI__sync_add_and_fetch:
150  case Builtin::BI__sync_sub_and_fetch:
151  case Builtin::BI__sync_and_and_fetch:
152  case Builtin::BI__sync_or_and_fetch:
153  case Builtin::BI__sync_xor_and_fetch:
154  case Builtin::BI__sync_nand_and_fetch:
155  case Builtin::BI__sync_val_compare_and_swap:
156  case Builtin::BI__sync_bool_compare_and_swap:
157  case Builtin::BI__sync_lock_test_and_set:
158  case Builtin::BI__sync_lock_release:
159    if (SemaBuiltinAtomicOverloaded(TheCall))
160      return ExprError();
161    return move(TheCallResult);
162  }
163
164  // FIXME: This mechanism should be abstracted to be less fragile and
165  // more efficient. For example, just map function ids to custom
166  // handlers.
167
168  // Printf checking.
169  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
170    if (Format->getType() == "printf") {
171      bool HasVAListArg = Format->getFirstArg() == 0;
172      if (!HasVAListArg) {
173        if (const FunctionProtoType *Proto
174            = FDecl->getType()->getAsFunctionProtoType())
175        HasVAListArg = !Proto->isVariadic();
176      }
177      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
178                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
179    }
180  }
181  for (const Attr *attr = FDecl->getAttrs(); attr; attr = attr->getNext()) {
182    if (const NonNullAttr *NonNull = dyn_cast<NonNullAttr>(attr))
183      CheckNonNullArguments(NonNull, TheCall);
184  }
185
186  return move(TheCallResult);
187}
188
189Action::OwningExprResult
190Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
191
192  OwningExprResult TheCallResult(Owned(TheCall));
193  // Printf checking.
194  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
195  if (!Format)
196    return move(TheCallResult);
197  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
198  if (!V)
199    return move(TheCallResult);
200  QualType Ty = V->getType();
201  if (!Ty->isBlockPointerType())
202    return move(TheCallResult);
203  if (Format->getType() == "printf") {
204      bool HasVAListArg = Format->getFirstArg() == 0;
205      if (!HasVAListArg) {
206        const FunctionType *FT =
207          Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
208        if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
209          HasVAListArg = !Proto->isVariadic();
210      }
211      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
212                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
213  }
214  return move(TheCallResult);
215}
216
217/// SemaBuiltinAtomicOverloaded - We have a call to a function like
218/// __sync_fetch_and_add, which is an overloaded function based on the pointer
219/// type of its first argument.  The main ActOnCallExpr routines have already
220/// promoted the types of arguments because all of these calls are prototyped as
221/// void(...).
222///
223/// This function goes through and does final semantic checking for these
224/// builtins,
225bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
226  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
227  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
228
229  // Ensure that we have at least one argument to do type inference from.
230  if (TheCall->getNumArgs() < 1)
231    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
232              << 0 << TheCall->getCallee()->getSourceRange();
233
234  // Inspect the first argument of the atomic builtin.  This should always be
235  // a pointer type, whose element is an integral scalar or pointer type.
236  // Because it is a pointer type, we don't have to worry about any implicit
237  // casts here.
238  Expr *FirstArg = TheCall->getArg(0);
239  if (!FirstArg->getType()->isPointerType())
240    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
241             << FirstArg->getType() << FirstArg->getSourceRange();
242
243  QualType ValType = FirstArg->getType()->getAsPointerType()->getPointeeType();
244  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
245      !ValType->isBlockPointerType())
246    return Diag(DRE->getLocStart(),
247                diag::err_atomic_builtin_must_be_pointer_intptr)
248             << FirstArg->getType() << FirstArg->getSourceRange();
249
250  // We need to figure out which concrete builtin this maps onto.  For example,
251  // __sync_fetch_and_add with a 2 byte object turns into
252  // __sync_fetch_and_add_2.
253#define BUILTIN_ROW(x) \
254  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
255    Builtin::BI##x##_8, Builtin::BI##x##_16 }
256
257  static const unsigned BuiltinIndices[][5] = {
258    BUILTIN_ROW(__sync_fetch_and_add),
259    BUILTIN_ROW(__sync_fetch_and_sub),
260    BUILTIN_ROW(__sync_fetch_and_or),
261    BUILTIN_ROW(__sync_fetch_and_and),
262    BUILTIN_ROW(__sync_fetch_and_xor),
263    BUILTIN_ROW(__sync_fetch_and_nand),
264
265    BUILTIN_ROW(__sync_add_and_fetch),
266    BUILTIN_ROW(__sync_sub_and_fetch),
267    BUILTIN_ROW(__sync_and_and_fetch),
268    BUILTIN_ROW(__sync_or_and_fetch),
269    BUILTIN_ROW(__sync_xor_and_fetch),
270    BUILTIN_ROW(__sync_nand_and_fetch),
271
272    BUILTIN_ROW(__sync_val_compare_and_swap),
273    BUILTIN_ROW(__sync_bool_compare_and_swap),
274    BUILTIN_ROW(__sync_lock_test_and_set),
275    BUILTIN_ROW(__sync_lock_release)
276  };
277#undef BUILTIN_ROW
278
279  // Determine the index of the size.
280  unsigned SizeIndex;
281  switch (Context.getTypeSize(ValType)/8) {
282  case 1: SizeIndex = 0; break;
283  case 2: SizeIndex = 1; break;
284  case 4: SizeIndex = 2; break;
285  case 8: SizeIndex = 3; break;
286  case 16: SizeIndex = 4; break;
287  default:
288    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
289             << FirstArg->getType() << FirstArg->getSourceRange();
290  }
291
292  // Each of these builtins has one pointer argument, followed by some number of
293  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
294  // that we ignore.  Find out which row of BuiltinIndices to read from as well
295  // as the number of fixed args.
296  unsigned BuiltinID = FDecl->getBuiltinID(Context);
297  unsigned BuiltinIndex, NumFixed = 1;
298  switch (BuiltinID) {
299  default: assert(0 && "Unknown overloaded atomic builtin!");
300  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
301  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
302  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
303  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
304  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
305  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
306
307  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
308  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
309  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
310  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
311  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
312  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
313
314  case Builtin::BI__sync_val_compare_and_swap:
315    BuiltinIndex = 12;
316    NumFixed = 2;
317    break;
318  case Builtin::BI__sync_bool_compare_and_swap:
319    BuiltinIndex = 13;
320    NumFixed = 2;
321    break;
322  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
323  case Builtin::BI__sync_lock_release:
324    BuiltinIndex = 15;
325    NumFixed = 0;
326    break;
327  }
328
329  // Now that we know how many fixed arguments we expect, first check that we
330  // have at least that many.
331  if (TheCall->getNumArgs() < 1+NumFixed)
332    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
333            << 0 << TheCall->getCallee()->getSourceRange();
334
335
336  // Get the decl for the concrete builtin from this, we can tell what the
337  // concrete integer type we should convert to is.
338  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
339  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
340  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
341  FunctionDecl *NewBuiltinDecl =
342    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
343                                           TUScope, false, DRE->getLocStart()));
344  const FunctionProtoType *BuiltinFT =
345    NewBuiltinDecl->getType()->getAsFunctionProtoType();
346  ValType = BuiltinFT->getArgType(0)->getAsPointerType()->getPointeeType();
347
348  // If the first type needs to be converted (e.g. void** -> int*), do it now.
349  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
350    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), false);
351    TheCall->setArg(0, FirstArg);
352  }
353
354  // Next, walk the valid ones promoting to the right type.
355  for (unsigned i = 0; i != NumFixed; ++i) {
356    Expr *Arg = TheCall->getArg(i+1);
357
358    // If the argument is an implicit cast, then there was a promotion due to
359    // "...", just remove it now.
360    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
361      Arg = ICE->getSubExpr();
362      ICE->setSubExpr(0);
363      ICE->Destroy(Context);
364      TheCall->setArg(i+1, Arg);
365    }
366
367    // GCC does an implicit conversion to the pointer or integer ValType.  This
368    // can fail in some cases (1i -> int**), check for this error case now.
369    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg))
370      return true;
371
372    // Okay, we have something that *can* be converted to the right type.  Check
373    // to see if there is a potentially weird extension going on here.  This can
374    // happen when you do an atomic operation on something like an char* and
375    // pass in 42.  The 42 gets converted to char.  This is even more strange
376    // for things like 45.123 -> char, etc.
377    // FIXME: Do this check.
378    ImpCastExprToType(Arg, ValType, false);
379    TheCall->setArg(i+1, Arg);
380  }
381
382  // Switch the DeclRefExpr to refer to the new decl.
383  DRE->setDecl(NewBuiltinDecl);
384  DRE->setType(NewBuiltinDecl->getType());
385
386  // Set the callee in the CallExpr.
387  // FIXME: This leaks the original parens and implicit casts.
388  Expr *PromotedCall = DRE;
389  UsualUnaryConversions(PromotedCall);
390  TheCall->setCallee(PromotedCall);
391
392
393  // Change the result type of the call to match the result type of the decl.
394  TheCall->setType(NewBuiltinDecl->getResultType());
395  return false;
396}
397
398
399/// CheckObjCString - Checks that the argument to the builtin
400/// CFString constructor is correct
401/// FIXME: GCC currently emits the following warning:
402/// "warning: input conversion stopped due to an input byte that does not
403///           belong to the input codeset UTF-8"
404/// Note: It might also make sense to do the UTF-16 conversion here (would
405/// simplify the backend).
406bool Sema::CheckObjCString(Expr *Arg) {
407  Arg = Arg->IgnoreParenCasts();
408  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
409
410  if (!Literal || Literal->isWide()) {
411    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
412      << Arg->getSourceRange();
413    return true;
414  }
415
416  const char *Data = Literal->getStrData();
417  unsigned Length = Literal->getByteLength();
418
419  for (unsigned i = 0; i < Length; ++i) {
420    if (!Data[i]) {
421      Diag(getLocationOfStringLiteralByte(Literal, i),
422           diag::warn_cfstring_literal_contains_nul_character)
423        << Arg->getSourceRange();
424      break;
425    }
426  }
427
428  return false;
429}
430
431/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
432/// Emit an error and return true on failure, return false on success.
433bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
434  Expr *Fn = TheCall->getCallee();
435  if (TheCall->getNumArgs() > 2) {
436    Diag(TheCall->getArg(2)->getLocStart(),
437         diag::err_typecheck_call_too_many_args)
438      << 0 /*function call*/ << Fn->getSourceRange()
439      << SourceRange(TheCall->getArg(2)->getLocStart(),
440                     (*(TheCall->arg_end()-1))->getLocEnd());
441    return true;
442  }
443
444  if (TheCall->getNumArgs() < 2) {
445    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
446      << 0 /*function call*/;
447  }
448
449  // Determine whether the current function is variadic or not.
450  bool isVariadic;
451  if (CurBlock)
452    isVariadic = CurBlock->isVariadic;
453  else if (getCurFunctionDecl()) {
454    if (FunctionProtoType* FTP =
455            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
456      isVariadic = FTP->isVariadic();
457    else
458      isVariadic = false;
459  } else {
460    isVariadic = getCurMethodDecl()->isVariadic();
461  }
462
463  if (!isVariadic) {
464    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
465    return true;
466  }
467
468  // Verify that the second argument to the builtin is the last argument of the
469  // current function or method.
470  bool SecondArgIsLastNamedArgument = false;
471  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
472
473  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
474    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
475      // FIXME: This isn't correct for methods (results in bogus warning).
476      // Get the last formal in the current function.
477      const ParmVarDecl *LastArg;
478      if (CurBlock)
479        LastArg = *(CurBlock->TheDecl->param_end()-1);
480      else if (FunctionDecl *FD = getCurFunctionDecl())
481        LastArg = *(FD->param_end()-1);
482      else
483        LastArg = *(getCurMethodDecl()->param_end()-1);
484      SecondArgIsLastNamedArgument = PV == LastArg;
485    }
486  }
487
488  if (!SecondArgIsLastNamedArgument)
489    Diag(TheCall->getArg(1)->getLocStart(),
490         diag::warn_second_parameter_of_va_start_not_last_named_argument);
491  return false;
492}
493
494/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
495/// friends.  This is declared to take (...), so we have to check everything.
496bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
497  if (TheCall->getNumArgs() < 2)
498    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
499      << 0 /*function call*/;
500  if (TheCall->getNumArgs() > 2)
501    return Diag(TheCall->getArg(2)->getLocStart(),
502                diag::err_typecheck_call_too_many_args)
503      << 0 /*function call*/
504      << SourceRange(TheCall->getArg(2)->getLocStart(),
505                     (*(TheCall->arg_end()-1))->getLocEnd());
506
507  Expr *OrigArg0 = TheCall->getArg(0);
508  Expr *OrigArg1 = TheCall->getArg(1);
509
510  // Do standard promotions between the two arguments, returning their common
511  // type.
512  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
513
514  // Make sure any conversions are pushed back into the call; this is
515  // type safe since unordered compare builtins are declared as "_Bool
516  // foo(...)".
517  TheCall->setArg(0, OrigArg0);
518  TheCall->setArg(1, OrigArg1);
519
520  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
521    return false;
522
523  // If the common type isn't a real floating type, then the arguments were
524  // invalid for this operation.
525  if (!Res->isRealFloatingType())
526    return Diag(OrigArg0->getLocStart(),
527                diag::err_typecheck_call_invalid_ordered_compare)
528      << OrigArg0->getType() << OrigArg1->getType()
529      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
530
531  return false;
532}
533
534bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
535  // The signature for these builtins is exact; the only thing we need
536  // to check is that the argument is a constant.
537  SourceLocation Loc;
538  if (!TheCall->getArg(0)->isTypeDependent() &&
539      !TheCall->getArg(0)->isValueDependent() &&
540      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
541    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
542
543  return false;
544}
545
546/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
547// This is declared to take (...), so we have to check everything.
548Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
549  if (TheCall->getNumArgs() < 3)
550    return ExprError(Diag(TheCall->getLocEnd(),
551                          diag::err_typecheck_call_too_few_args)
552      << 0 /*function call*/ << TheCall->getSourceRange());
553
554  unsigned numElements = std::numeric_limits<unsigned>::max();
555  if (!TheCall->getArg(0)->isTypeDependent() &&
556      !TheCall->getArg(1)->isTypeDependent()) {
557    QualType FAType = TheCall->getArg(0)->getType();
558    QualType SAType = TheCall->getArg(1)->getType();
559
560    if (!FAType->isVectorType() || !SAType->isVectorType()) {
561      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
562        << SourceRange(TheCall->getArg(0)->getLocStart(),
563                       TheCall->getArg(1)->getLocEnd());
564      return ExprError();
565    }
566
567    if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
568        Context.getCanonicalType(SAType).getUnqualifiedType()) {
569      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
570        << SourceRange(TheCall->getArg(0)->getLocStart(),
571                       TheCall->getArg(1)->getLocEnd());
572      return ExprError();
573    }
574
575    numElements = FAType->getAsVectorType()->getNumElements();
576    if (TheCall->getNumArgs() != numElements+2) {
577      if (TheCall->getNumArgs() < numElements+2)
578        return ExprError(Diag(TheCall->getLocEnd(),
579                              diag::err_typecheck_call_too_few_args)
580                 << 0 /*function call*/ << TheCall->getSourceRange());
581      return ExprError(Diag(TheCall->getLocEnd(),
582                            diag::err_typecheck_call_too_many_args)
583                 << 0 /*function call*/ << TheCall->getSourceRange());
584    }
585  }
586
587  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
588    if (TheCall->getArg(i)->isTypeDependent() ||
589        TheCall->getArg(i)->isValueDependent())
590      continue;
591
592    llvm::APSInt Result(32);
593    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
594      return ExprError(Diag(TheCall->getLocStart(),
595                  diag::err_shufflevector_nonconstant_argument)
596                << TheCall->getArg(i)->getSourceRange());
597
598    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
599      return ExprError(Diag(TheCall->getLocStart(),
600                  diag::err_shufflevector_argument_too_large)
601               << TheCall->getArg(i)->getSourceRange());
602  }
603
604  llvm::SmallVector<Expr*, 32> exprs;
605
606  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
607    exprs.push_back(TheCall->getArg(i));
608    TheCall->setArg(i, 0);
609  }
610
611  return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), exprs.size(),
612                                               exprs[0]->getType(),
613                                            TheCall->getCallee()->getLocStart(),
614                                            TheCall->getRParenLoc()));
615}
616
617/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
618// This is declared to take (const void*, ...) and can take two
619// optional constant int args.
620bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
621  unsigned NumArgs = TheCall->getNumArgs();
622
623  if (NumArgs > 3)
624    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
625             << 0 /*function call*/ << TheCall->getSourceRange();
626
627  // Argument 0 is checked for us and the remaining arguments must be
628  // constant integers.
629  for (unsigned i = 1; i != NumArgs; ++i) {
630    Expr *Arg = TheCall->getArg(i);
631    if (Arg->isTypeDependent())
632      continue;
633
634    QualType RWType = Arg->getType();
635
636    const BuiltinType *BT = RWType->getAsBuiltinType();
637    llvm::APSInt Result;
638    if (!BT || BT->getKind() != BuiltinType::Int)
639      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
640              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
641
642    if (Arg->isValueDependent())
643      continue;
644
645    if (!Arg->isIntegerConstantExpr(Result, Context))
646      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
647        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
648
649    // FIXME: gcc issues a warning and rewrites these to 0. These
650    // seems especially odd for the third argument since the default
651    // is 3.
652    if (i == 1) {
653      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
654        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
655             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
656    } else {
657      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
658        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
659            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
660    }
661  }
662
663  return false;
664}
665
666/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
667/// int type). This simply type checks that type is one of the defined
668/// constants (0-3).
669bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
670  Expr *Arg = TheCall->getArg(1);
671  if (Arg->isTypeDependent())
672    return false;
673
674  QualType ArgType = Arg->getType();
675  const BuiltinType *BT = ArgType->getAsBuiltinType();
676  llvm::APSInt Result(32);
677  if (!BT || BT->getKind() != BuiltinType::Int)
678    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
679             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
680
681  if (Arg->isValueDependent())
682    return false;
683
684  if (!Arg->isIntegerConstantExpr(Result, Context)) {
685    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
686             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
687  }
688
689  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
690    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
691             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
692  }
693
694  return false;
695}
696
697/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
698/// This checks that val is a constant 1.
699bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
700  Expr *Arg = TheCall->getArg(1);
701  if (Arg->isTypeDependent() || Arg->isValueDependent())
702    return false;
703
704  llvm::APSInt Result(32);
705  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
706    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
707             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
708
709  return false;
710}
711
712// Handle i > 1 ? "x" : "y", recursivelly
713bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
714                                  bool HasVAListArg,
715                                  unsigned format_idx, unsigned firstDataArg) {
716  if (E->isTypeDependent() || E->isValueDependent())
717    return false;
718
719  switch (E->getStmtClass()) {
720  case Stmt::ConditionalOperatorClass: {
721    const ConditionalOperator *C = cast<ConditionalOperator>(E);
722    return SemaCheckStringLiteral(C->getLHS(), TheCall,
723                                  HasVAListArg, format_idx, firstDataArg)
724        && SemaCheckStringLiteral(C->getRHS(), TheCall,
725                                  HasVAListArg, format_idx, firstDataArg);
726  }
727
728  case Stmt::ImplicitCastExprClass: {
729    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
730    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
731                                  format_idx, firstDataArg);
732  }
733
734  case Stmt::ParenExprClass: {
735    const ParenExpr *Expr = cast<ParenExpr>(E);
736    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
737                                  format_idx, firstDataArg);
738  }
739
740  case Stmt::DeclRefExprClass: {
741    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
742
743    // As an exception, do not flag errors for variables binding to
744    // const string literals.
745    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
746      bool isConstant = false;
747      QualType T = DR->getType();
748
749      if (const ArrayType *AT = Context.getAsArrayType(T)) {
750        isConstant = AT->getElementType().isConstant(Context);
751      }
752      else if (const PointerType *PT = T->getAsPointerType()) {
753        isConstant = T.isConstant(Context) &&
754                     PT->getPointeeType().isConstant(Context);
755      }
756
757      if (isConstant) {
758        const VarDecl *Def = 0;
759        if (const Expr *Init = VD->getDefinition(Def))
760          return SemaCheckStringLiteral(Init, TheCall,
761                                        HasVAListArg, format_idx, firstDataArg);
762      }
763    }
764
765    return false;
766  }
767
768  case Stmt::ObjCStringLiteralClass:
769  case Stmt::StringLiteralClass: {
770    const StringLiteral *StrE = NULL;
771
772    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
773      StrE = ObjCFExpr->getString();
774    else
775      StrE = cast<StringLiteral>(E);
776
777    if (StrE) {
778      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
779                        firstDataArg);
780      return true;
781    }
782
783    return false;
784  }
785
786  default:
787    return false;
788  }
789}
790
791void
792Sema::CheckNonNullArguments(const NonNullAttr *NonNull, const CallExpr *TheCall)
793{
794  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
795       i != e; ++i) {
796    const Expr *ArgExpr = TheCall->getArg(*i);
797    if (ArgExpr->isNullPointerConstant(Context))
798      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
799        << ArgExpr->getSourceRange();
800  }
801}
802
803/// CheckPrintfArguments - Check calls to printf (and similar functions) for
804/// correct use of format strings.
805///
806///  HasVAListArg - A predicate indicating whether the printf-like
807///    function is passed an explicit va_arg argument (e.g., vprintf)
808///
809///  format_idx - The index into Args for the format string.
810///
811/// Improper format strings to functions in the printf family can be
812/// the source of bizarre bugs and very serious security holes.  A
813/// good source of information is available in the following paper
814/// (which includes additional references):
815///
816///  FormatGuard: Automatic Protection From printf Format String
817///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
818///
819/// Functionality implemented:
820///
821///  We can statically check the following properties for string
822///  literal format strings for non v.*printf functions (where the
823///  arguments are passed directly):
824//
825///  (1) Are the number of format conversions equal to the number of
826///      data arguments?
827///
828///  (2) Does each format conversion correctly match the type of the
829///      corresponding data argument?  (TODO)
830///
831/// Moreover, for all printf functions we can:
832///
833///  (3) Check for a missing format string (when not caught by type checking).
834///
835///  (4) Check for no-operation flags; e.g. using "#" with format
836///      conversion 'c'  (TODO)
837///
838///  (5) Check the use of '%n', a major source of security holes.
839///
840///  (6) Check for malformed format conversions that don't specify anything.
841///
842///  (7) Check for empty format strings.  e.g: printf("");
843///
844///  (8) Check that the format string is a wide literal.
845///
846///  (9) Also check the arguments of functions with the __format__ attribute.
847///      (TODO).
848///
849/// All of these checks can be done by parsing the format string.
850///
851/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
852void
853Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
854                           unsigned format_idx, unsigned firstDataArg) {
855  const Expr *Fn = TheCall->getCallee();
856
857  // CHECK: printf-like function is called with no format string.
858  if (format_idx >= TheCall->getNumArgs()) {
859    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
860      << Fn->getSourceRange();
861    return;
862  }
863
864  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
865
866  // CHECK: format string is not a string literal.
867  //
868  // Dynamically generated format strings are difficult to
869  // automatically vet at compile time.  Requiring that format strings
870  // are string literals: (1) permits the checking of format strings by
871  // the compiler and thereby (2) can practically remove the source of
872  // many format string exploits.
873
874  // Format string can be either ObjC string (e.g. @"%d") or
875  // C string (e.g. "%d")
876  // ObjC string uses the same format specifiers as C string, so we can use
877  // the same format string checking logic for both ObjC and C strings.
878  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
879                             firstDataArg))
880    return;  // Literal format string found, check done!
881
882  // For vprintf* functions (i.e., HasVAListArg==true), we add a
883  // special check to see if the format string is a function parameter
884  // of the function calling the printf function.  If the function
885  // has an attribute indicating it is a printf-like function, then we
886  // should suppress warnings concerning non-literals being used in a call
887  // to a vprintf function.  For example:
888  //
889  // void
890  // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
891  //      va_list ap;
892  //      va_start(ap, fmt);
893  //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
894  //      ...
895  //
896  //
897  //  FIXME: We don't have full attribute support yet, so just check to see
898  //    if the argument is a DeclRefExpr that references a parameter.  We'll
899  //    add proper support for checking the attribute later.
900  if (HasVAListArg)
901    if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
902      if (isa<ParmVarDecl>(DR->getDecl()))
903        return;
904
905  // If there are no arguments specified, warn with -Wformat-security, otherwise
906  // warn only with -Wformat-nonliteral.
907  if (TheCall->getNumArgs() == format_idx+1)
908    Diag(TheCall->getArg(format_idx)->getLocStart(),
909         diag::warn_printf_nonliteral_noargs)
910      << OrigFormatExpr->getSourceRange();
911  else
912    Diag(TheCall->getArg(format_idx)->getLocStart(),
913         diag::warn_printf_nonliteral)
914           << OrigFormatExpr->getSourceRange();
915}
916
917void Sema::CheckPrintfString(const StringLiteral *FExpr,
918                             const Expr *OrigFormatExpr,
919                             const CallExpr *TheCall, bool HasVAListArg,
920                             unsigned format_idx, unsigned firstDataArg) {
921
922  const ObjCStringLiteral *ObjCFExpr =
923    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
924
925  // CHECK: is the format string a wide literal?
926  if (FExpr->isWide()) {
927    Diag(FExpr->getLocStart(),
928         diag::warn_printf_format_string_is_wide_literal)
929      << OrigFormatExpr->getSourceRange();
930    return;
931  }
932
933  // Str - The format string.  NOTE: this is NOT null-terminated!
934  const char *Str = FExpr->getStrData();
935
936  // CHECK: empty format string?
937  unsigned StrLen = FExpr->getByteLength();
938
939  if (StrLen == 0) {
940    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
941      << OrigFormatExpr->getSourceRange();
942    return;
943  }
944
945  // We process the format string using a binary state machine.  The
946  // current state is stored in CurrentState.
947  enum {
948    state_OrdChr,
949    state_Conversion
950  } CurrentState = state_OrdChr;
951
952  // numConversions - The number of conversions seen so far.  This is
953  //  incremented as we traverse the format string.
954  unsigned numConversions = 0;
955
956  // numDataArgs - The number of data arguments after the format
957  //  string.  This can only be determined for non vprintf-like
958  //  functions.  For those functions, this value is 1 (the sole
959  //  va_arg argument).
960  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
961
962  // Inspect the format string.
963  unsigned StrIdx = 0;
964
965  // LastConversionIdx - Index within the format string where we last saw
966  //  a '%' character that starts a new format conversion.
967  unsigned LastConversionIdx = 0;
968
969  for (; StrIdx < StrLen; ++StrIdx) {
970
971    // Is the number of detected conversion conversions greater than
972    // the number of matching data arguments?  If so, stop.
973    if (!HasVAListArg && numConversions > numDataArgs) break;
974
975    // Handle "\0"
976    if (Str[StrIdx] == '\0') {
977      // The string returned by getStrData() is not null-terminated,
978      // so the presence of a null character is likely an error.
979      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
980           diag::warn_printf_format_string_contains_null_char)
981        <<  OrigFormatExpr->getSourceRange();
982      return;
983    }
984
985    // Ordinary characters (not processing a format conversion).
986    if (CurrentState == state_OrdChr) {
987      if (Str[StrIdx] == '%') {
988        CurrentState = state_Conversion;
989        LastConversionIdx = StrIdx;
990      }
991      continue;
992    }
993
994    // Seen '%'.  Now processing a format conversion.
995    switch (Str[StrIdx]) {
996    // Handle dynamic precision or width specifier.
997    case '*': {
998      ++numConversions;
999
1000      if (!HasVAListArg) {
1001        if (numConversions > numDataArgs) {
1002          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1003
1004          if (Str[StrIdx-1] == '.')
1005            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
1006              << OrigFormatExpr->getSourceRange();
1007          else
1008            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
1009              << OrigFormatExpr->getSourceRange();
1010
1011          // Don't do any more checking.  We'll just emit spurious errors.
1012          return;
1013        }
1014
1015        // Perform type checking on width/precision specifier.
1016        const Expr *E = TheCall->getArg(format_idx+numConversions);
1017        if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
1018          if (BT->getKind() == BuiltinType::Int)
1019            break;
1020
1021        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1022
1023        if (Str[StrIdx-1] == '.')
1024          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
1025          << E->getType() << E->getSourceRange();
1026        else
1027          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
1028          << E->getType() << E->getSourceRange();
1029
1030        break;
1031      }
1032    }
1033
1034    // Characters which can terminate a format conversion
1035    // (e.g. "%d").  Characters that specify length modifiers or
1036    // other flags are handled by the default case below.
1037    //
1038    // FIXME: additional checks will go into the following cases.
1039    case 'i':
1040    case 'd':
1041    case 'o':
1042    case 'u':
1043    case 'x':
1044    case 'X':
1045    case 'D':
1046    case 'O':
1047    case 'U':
1048    case 'e':
1049    case 'E':
1050    case 'f':
1051    case 'F':
1052    case 'g':
1053    case 'G':
1054    case 'a':
1055    case 'A':
1056    case 'c':
1057    case 'C':
1058    case 'S':
1059    case 's':
1060    case 'p':
1061      ++numConversions;
1062      CurrentState = state_OrdChr;
1063      break;
1064
1065    // CHECK: Are we using "%n"?  Issue a warning.
1066    case 'n': {
1067      ++numConversions;
1068      CurrentState = state_OrdChr;
1069      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1070                                                          LastConversionIdx);
1071
1072      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1073      break;
1074    }
1075
1076    // Handle "%@"
1077    case '@':
1078      // %@ is allowed in ObjC format strings only.
1079      if(ObjCFExpr != NULL)
1080        CurrentState = state_OrdChr;
1081      else {
1082        // Issue a warning: invalid format conversion.
1083        SourceLocation Loc =
1084          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1085
1086        Diag(Loc, diag::warn_printf_invalid_conversion)
1087          <<  std::string(Str+LastConversionIdx,
1088                          Str+std::min(LastConversionIdx+2, StrLen))
1089          << OrigFormatExpr->getSourceRange();
1090      }
1091      ++numConversions;
1092      break;
1093
1094    // Handle "%%"
1095    case '%':
1096      // Sanity check: Was the first "%" character the previous one?
1097      // If not, we will assume that we have a malformed format
1098      // conversion, and that the current "%" character is the start
1099      // of a new conversion.
1100      if (StrIdx - LastConversionIdx == 1)
1101        CurrentState = state_OrdChr;
1102      else {
1103        // Issue a warning: invalid format conversion.
1104        SourceLocation Loc =
1105          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1106
1107        Diag(Loc, diag::warn_printf_invalid_conversion)
1108          << std::string(Str+LastConversionIdx, Str+StrIdx)
1109          << OrigFormatExpr->getSourceRange();
1110
1111        // This conversion is broken.  Advance to the next format
1112        // conversion.
1113        LastConversionIdx = StrIdx;
1114        ++numConversions;
1115      }
1116      break;
1117
1118    default:
1119      // This case catches all other characters: flags, widths, etc.
1120      // We should eventually process those as well.
1121      break;
1122    }
1123  }
1124
1125  if (CurrentState == state_Conversion) {
1126    // Issue a warning: invalid format conversion.
1127    SourceLocation Loc =
1128      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1129
1130    Diag(Loc, diag::warn_printf_invalid_conversion)
1131      << std::string(Str+LastConversionIdx,
1132                     Str+std::min(LastConversionIdx+2, StrLen))
1133      << OrigFormatExpr->getSourceRange();
1134    return;
1135  }
1136
1137  if (!HasVAListArg) {
1138    // CHECK: Does the number of format conversions exceed the number
1139    //        of data arguments?
1140    if (numConversions > numDataArgs) {
1141      SourceLocation Loc =
1142        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1143
1144      Diag(Loc, diag::warn_printf_insufficient_data_args)
1145        << OrigFormatExpr->getSourceRange();
1146    }
1147    // CHECK: Does the number of data arguments exceed the number of
1148    //        format conversions in the format string?
1149    else if (numConversions < numDataArgs)
1150      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1151           diag::warn_printf_too_many_data_args)
1152        << OrigFormatExpr->getSourceRange();
1153  }
1154}
1155
1156//===--- CHECK: Return Address of Stack Variable --------------------------===//
1157
1158static DeclRefExpr* EvalVal(Expr *E);
1159static DeclRefExpr* EvalAddr(Expr* E);
1160
1161/// CheckReturnStackAddr - Check if a return statement returns the address
1162///   of a stack variable.
1163void
1164Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1165                           SourceLocation ReturnLoc) {
1166
1167  // Perform checking for returned stack addresses.
1168  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1169    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1170      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1171       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1172
1173    // Skip over implicit cast expressions when checking for block expressions.
1174    if (ImplicitCastExpr *IcExpr =
1175          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
1176      RetValExp = IcExpr->getSubExpr();
1177
1178    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
1179      if (C->hasBlockDeclRefExprs())
1180        Diag(C->getLocStart(), diag::err_ret_local_block)
1181          << C->getSourceRange();
1182  }
1183  // Perform checking for stack values returned by reference.
1184  else if (lhsType->isReferenceType()) {
1185    // Check for a reference to the stack
1186    if (DeclRefExpr *DR = EvalVal(RetValExp))
1187      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1188        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1189  }
1190}
1191
1192/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1193///  check if the expression in a return statement evaluates to an address
1194///  to a location on the stack.  The recursion is used to traverse the
1195///  AST of the return expression, with recursion backtracking when we
1196///  encounter a subexpression that (1) clearly does not lead to the address
1197///  of a stack variable or (2) is something we cannot determine leads to
1198///  the address of a stack variable based on such local checking.
1199///
1200///  EvalAddr processes expressions that are pointers that are used as
1201///  references (and not L-values).  EvalVal handles all other values.
1202///  At the base case of the recursion is a check for a DeclRefExpr* in
1203///  the refers to a stack variable.
1204///
1205///  This implementation handles:
1206///
1207///   * pointer-to-pointer casts
1208///   * implicit conversions from array references to pointers
1209///   * taking the address of fields
1210///   * arbitrary interplay between "&" and "*" operators
1211///   * pointer arithmetic from an address of a stack variable
1212///   * taking the address of an array element where the array is on the stack
1213static DeclRefExpr* EvalAddr(Expr *E) {
1214  // We should only be called for evaluating pointer expressions.
1215  assert((E->getType()->isPointerType() ||
1216          E->getType()->isBlockPointerType() ||
1217          E->getType()->isObjCQualifiedIdType()) &&
1218         "EvalAddr only works on pointers");
1219
1220  // Our "symbolic interpreter" is just a dispatch off the currently
1221  // viewed AST node.  We then recursively traverse the AST by calling
1222  // EvalAddr and EvalVal appropriately.
1223  switch (E->getStmtClass()) {
1224  case Stmt::ParenExprClass:
1225    // Ignore parentheses.
1226    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1227
1228  case Stmt::UnaryOperatorClass: {
1229    // The only unary operator that make sense to handle here
1230    // is AddrOf.  All others don't make sense as pointers.
1231    UnaryOperator *U = cast<UnaryOperator>(E);
1232
1233    if (U->getOpcode() == UnaryOperator::AddrOf)
1234      return EvalVal(U->getSubExpr());
1235    else
1236      return NULL;
1237  }
1238
1239  case Stmt::BinaryOperatorClass: {
1240    // Handle pointer arithmetic.  All other binary operators are not valid
1241    // in this context.
1242    BinaryOperator *B = cast<BinaryOperator>(E);
1243    BinaryOperator::Opcode op = B->getOpcode();
1244
1245    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1246      return NULL;
1247
1248    Expr *Base = B->getLHS();
1249
1250    // Determine which argument is the real pointer base.  It could be
1251    // the RHS argument instead of the LHS.
1252    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1253
1254    assert (Base->getType()->isPointerType());
1255    return EvalAddr(Base);
1256  }
1257
1258  // For conditional operators we need to see if either the LHS or RHS are
1259  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1260  case Stmt::ConditionalOperatorClass: {
1261    ConditionalOperator *C = cast<ConditionalOperator>(E);
1262
1263    // Handle the GNU extension for missing LHS.
1264    if (Expr *lhsExpr = C->getLHS())
1265      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1266        return LHS;
1267
1268     return EvalAddr(C->getRHS());
1269  }
1270
1271  // For casts, we need to handle conversions from arrays to
1272  // pointer values, and pointer-to-pointer conversions.
1273  case Stmt::ImplicitCastExprClass:
1274  case Stmt::CStyleCastExprClass:
1275  case Stmt::CXXFunctionalCastExprClass: {
1276    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1277    QualType T = SubExpr->getType();
1278
1279    if (SubExpr->getType()->isPointerType() ||
1280        SubExpr->getType()->isBlockPointerType() ||
1281        SubExpr->getType()->isObjCQualifiedIdType())
1282      return EvalAddr(SubExpr);
1283    else if (T->isArrayType())
1284      return EvalVal(SubExpr);
1285    else
1286      return 0;
1287  }
1288
1289  // C++ casts.  For dynamic casts, static casts, and const casts, we
1290  // are always converting from a pointer-to-pointer, so we just blow
1291  // through the cast.  In the case the dynamic cast doesn't fail (and
1292  // return NULL), we take the conservative route and report cases
1293  // where we return the address of a stack variable.  For Reinterpre
1294  // FIXME: The comment about is wrong; we're not always converting
1295  // from pointer to pointer. I'm guessing that this code should also
1296  // handle references to objects.
1297  case Stmt::CXXStaticCastExprClass:
1298  case Stmt::CXXDynamicCastExprClass:
1299  case Stmt::CXXConstCastExprClass:
1300  case Stmt::CXXReinterpretCastExprClass: {
1301      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1302      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1303        return EvalAddr(S);
1304      else
1305        return NULL;
1306  }
1307
1308  // Everything else: we simply don't reason about them.
1309  default:
1310    return NULL;
1311  }
1312}
1313
1314
1315///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1316///   See the comments for EvalAddr for more details.
1317static DeclRefExpr* EvalVal(Expr *E) {
1318
1319  // We should only be called for evaluating non-pointer expressions, or
1320  // expressions with a pointer type that are not used as references but instead
1321  // are l-values (e.g., DeclRefExpr with a pointer type).
1322
1323  // Our "symbolic interpreter" is just a dispatch off the currently
1324  // viewed AST node.  We then recursively traverse the AST by calling
1325  // EvalAddr and EvalVal appropriately.
1326  switch (E->getStmtClass()) {
1327  case Stmt::DeclRefExprClass:
1328  case Stmt::QualifiedDeclRefExprClass: {
1329    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1330    //  at code that refers to a variable's name.  We check if it has local
1331    //  storage within the function, and if so, return the expression.
1332    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1333
1334    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1335      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1336
1337    return NULL;
1338  }
1339
1340  case Stmt::ParenExprClass:
1341    // Ignore parentheses.
1342    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1343
1344  case Stmt::UnaryOperatorClass: {
1345    // The only unary operator that make sense to handle here
1346    // is Deref.  All others don't resolve to a "name."  This includes
1347    // handling all sorts of rvalues passed to a unary operator.
1348    UnaryOperator *U = cast<UnaryOperator>(E);
1349
1350    if (U->getOpcode() == UnaryOperator::Deref)
1351      return EvalAddr(U->getSubExpr());
1352
1353    return NULL;
1354  }
1355
1356  case Stmt::ArraySubscriptExprClass: {
1357    // Array subscripts are potential references to data on the stack.  We
1358    // retrieve the DeclRefExpr* for the array variable if it indeed
1359    // has local storage.
1360    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1361  }
1362
1363  case Stmt::ConditionalOperatorClass: {
1364    // For conditional operators we need to see if either the LHS or RHS are
1365    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1366    ConditionalOperator *C = cast<ConditionalOperator>(E);
1367
1368    // Handle the GNU extension for missing LHS.
1369    if (Expr *lhsExpr = C->getLHS())
1370      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1371        return LHS;
1372
1373    return EvalVal(C->getRHS());
1374  }
1375
1376  // Accesses to members are potential references to data on the stack.
1377  case Stmt::MemberExprClass: {
1378    MemberExpr *M = cast<MemberExpr>(E);
1379
1380    // Check for indirect access.  We only want direct field accesses.
1381    if (!M->isArrow())
1382      return EvalVal(M->getBase());
1383    else
1384      return NULL;
1385  }
1386
1387  // Everything else: we simply don't reason about them.
1388  default:
1389    return NULL;
1390  }
1391}
1392
1393//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1394
1395/// Check for comparisons of floating point operands using != and ==.
1396/// Issue a warning if these are no self-comparisons, as they are not likely
1397/// to do what the programmer intended.
1398void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1399  bool EmitWarning = true;
1400
1401  Expr* LeftExprSansParen = lex->IgnoreParens();
1402  Expr* RightExprSansParen = rex->IgnoreParens();
1403
1404  // Special case: check for x == x (which is OK).
1405  // Do not emit warnings for such cases.
1406  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1407    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1408      if (DRL->getDecl() == DRR->getDecl())
1409        EmitWarning = false;
1410
1411
1412  // Special case: check for comparisons against literals that can be exactly
1413  //  represented by APFloat.  In such cases, do not emit a warning.  This
1414  //  is a heuristic: often comparison against such literals are used to
1415  //  detect if a value in a variable has not changed.  This clearly can
1416  //  lead to false negatives.
1417  if (EmitWarning) {
1418    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1419      if (FLL->isExact())
1420        EmitWarning = false;
1421    }
1422    else
1423      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1424        if (FLR->isExact())
1425          EmitWarning = false;
1426    }
1427  }
1428
1429  // Check for comparisons with builtin types.
1430  if (EmitWarning)
1431    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1432      if (CL->isBuiltinCall(Context))
1433        EmitWarning = false;
1434
1435  if (EmitWarning)
1436    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1437      if (CR->isBuiltinCall(Context))
1438        EmitWarning = false;
1439
1440  // Emit the diagnostic.
1441  if (EmitWarning)
1442    Diag(loc, diag::warn_floatingpoint_eq)
1443      << lex->getSourceRange() << rex->getSourceRange();
1444}
1445