SemaChecking.cpp revision 183700f494ec9b6701b6efe82bcb25f4c79ba561
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22#include <limits>
23using namespace clang;
24
25/// getLocationOfStringLiteralByte - Return a source location that points to the
26/// specified byte of the specified string literal.
27///
28/// Strings are amazingly complex.  They can be formed from multiple tokens and
29/// can have escape sequences in them in addition to the usual trigraph and
30/// escaped newline business.  This routine handles this complexity.
31///
32SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
33                                                    unsigned ByteNo) const {
34  assert(!SL->isWide() && "This doesn't work for wide strings yet");
35
36  // Loop over all of the tokens in this string until we find the one that
37  // contains the byte we're looking for.
38  unsigned TokNo = 0;
39  while (1) {
40    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
41    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
42
43    // Get the spelling of the string so that we can get the data that makes up
44    // the string literal, not the identifier for the macro it is potentially
45    // expanded through.
46    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
47
48    // Re-lex the token to get its length and original spelling.
49    std::pair<FileID, unsigned> LocInfo =
50      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
51    std::pair<const char *,const char *> Buffer =
52      SourceMgr.getBufferData(LocInfo.first);
53    const char *StrData = Buffer.first+LocInfo.second;
54
55    // Create a langops struct and enable trigraphs.  This is sufficient for
56    // relexing tokens.
57    LangOptions LangOpts;
58    LangOpts.Trigraphs = true;
59
60    // Create a lexer starting at the beginning of this token.
61    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
62                   Buffer.second);
63    Token TheTok;
64    TheLexer.LexFromRawLexer(TheTok);
65
66    // Use the StringLiteralParser to compute the length of the string in bytes.
67    StringLiteralParser SLP(&TheTok, 1, PP);
68    unsigned TokNumBytes = SLP.GetStringLength();
69
70    // If the byte is in this token, return the location of the byte.
71    if (ByteNo < TokNumBytes ||
72        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
73      unsigned Offset =
74        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
75
76      // Now that we know the offset of the token in the spelling, use the
77      // preprocessor to get the offset in the original source.
78      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
79    }
80
81    // Move to the next string token.
82    ++TokNo;
83    ByteNo -= TokNumBytes;
84  }
85}
86
87/// CheckablePrintfAttr - does a function call have a "printf" attribute
88/// and arguments that merit checking?
89bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
90  if (Format->getType() == "printf") return true;
91  if (Format->getType() == "printf0") {
92    // printf0 allows null "format" string; if so don't check format/args
93    unsigned format_idx = Format->getFormatIdx() - 1;
94    if (format_idx < TheCall->getNumArgs()) {
95      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
96      if (!Format->isNullPointerConstant(Context))
97        return true;
98    }
99  }
100  return false;
101}
102
103Action::OwningExprResult
104Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
105  OwningExprResult TheCallResult(Owned(TheCall));
106
107  switch (BuiltinID) {
108  case Builtin::BI__builtin___CFStringMakeConstantString:
109    assert(TheCall->getNumArgs() == 1 &&
110           "Wrong # arguments to builtin CFStringMakeConstantString");
111    if (CheckObjCString(TheCall->getArg(0)))
112      return ExprError();
113    break;
114  case Builtin::BI__builtin_stdarg_start:
115  case Builtin::BI__builtin_va_start:
116    if (SemaBuiltinVAStart(TheCall))
117      return ExprError();
118    break;
119  case Builtin::BI__builtin_isgreater:
120  case Builtin::BI__builtin_isgreaterequal:
121  case Builtin::BI__builtin_isless:
122  case Builtin::BI__builtin_islessequal:
123  case Builtin::BI__builtin_islessgreater:
124  case Builtin::BI__builtin_isunordered:
125    if (SemaBuiltinUnorderedCompare(TheCall))
126      return ExprError();
127    break;
128  case Builtin::BI__builtin_isfinite:
129  case Builtin::BI__builtin_isinf:
130  case Builtin::BI__builtin_isinf_sign:
131  case Builtin::BI__builtin_isnan:
132  case Builtin::BI__builtin_isnormal:
133    if (SemaBuiltinUnaryFP(TheCall))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_return_address:
137  case Builtin::BI__builtin_frame_address:
138    if (SemaBuiltinStackAddress(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_shufflevector:
142    return SemaBuiltinShuffleVector(TheCall);
143    // TheCall will be freed by the smart pointer here, but that's fine, since
144    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
145  case Builtin::BI__builtin_prefetch:
146    if (SemaBuiltinPrefetch(TheCall))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_object_size:
150    if (SemaBuiltinObjectSize(TheCall))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_longjmp:
154    if (SemaBuiltinLongjmp(TheCall))
155      return ExprError();
156    break;
157  case Builtin::BI__sync_fetch_and_add:
158  case Builtin::BI__sync_fetch_and_sub:
159  case Builtin::BI__sync_fetch_and_or:
160  case Builtin::BI__sync_fetch_and_and:
161  case Builtin::BI__sync_fetch_and_xor:
162  case Builtin::BI__sync_fetch_and_nand:
163  case Builtin::BI__sync_add_and_fetch:
164  case Builtin::BI__sync_sub_and_fetch:
165  case Builtin::BI__sync_and_and_fetch:
166  case Builtin::BI__sync_or_and_fetch:
167  case Builtin::BI__sync_xor_and_fetch:
168  case Builtin::BI__sync_nand_and_fetch:
169  case Builtin::BI__sync_val_compare_and_swap:
170  case Builtin::BI__sync_bool_compare_and_swap:
171  case Builtin::BI__sync_lock_test_and_set:
172  case Builtin::BI__sync_lock_release:
173    if (SemaBuiltinAtomicOverloaded(TheCall))
174      return ExprError();
175    break;
176  }
177
178  return move(TheCallResult);
179}
180
181/// CheckFunctionCall - Check a direct function call for various correctness
182/// and safety properties not strictly enforced by the C type system.
183bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
184  // Get the IdentifierInfo* for the called function.
185  IdentifierInfo *FnInfo = FDecl->getIdentifier();
186
187  // None of the checks below are needed for functions that don't have
188  // simple names (e.g., C++ conversion functions).
189  if (!FnInfo)
190    return false;
191
192  // FIXME: This mechanism should be abstracted to be less fragile and
193  // more efficient. For example, just map function ids to custom
194  // handlers.
195
196  // Printf checking.
197  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
198    if (CheckablePrintfAttr(Format, TheCall)) {
199      bool HasVAListArg = Format->getFirstArg() == 0;
200      if (!HasVAListArg) {
201        if (const FunctionProtoType *Proto
202            = FDecl->getType()->getAs<FunctionProtoType>())
203        HasVAListArg = !Proto->isVariadic();
204      }
205      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
206                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
207    }
208  }
209
210  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
211       NonNull = NonNull->getNext<NonNullAttr>())
212    CheckNonNullArguments(NonNull, TheCall);
213
214  return false;
215}
216
217bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
218  // Printf checking.
219  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
220  if (!Format)
221    return false;
222
223  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
224  if (!V)
225    return false;
226
227  QualType Ty = V->getType();
228  if (!Ty->isBlockPointerType())
229    return false;
230
231  if (!CheckablePrintfAttr(Format, TheCall))
232    return false;
233
234  bool HasVAListArg = Format->getFirstArg() == 0;
235  if (!HasVAListArg) {
236    const FunctionType *FT =
237      Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
238    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
239      HasVAListArg = !Proto->isVariadic();
240  }
241  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
242                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
243
244  return false;
245}
246
247/// SemaBuiltinAtomicOverloaded - We have a call to a function like
248/// __sync_fetch_and_add, which is an overloaded function based on the pointer
249/// type of its first argument.  The main ActOnCallExpr routines have already
250/// promoted the types of arguments because all of these calls are prototyped as
251/// void(...).
252///
253/// This function goes through and does final semantic checking for these
254/// builtins,
255bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
256  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
257  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
258
259  // Ensure that we have at least one argument to do type inference from.
260  if (TheCall->getNumArgs() < 1)
261    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
262              << 0 << TheCall->getCallee()->getSourceRange();
263
264  // Inspect the first argument of the atomic builtin.  This should always be
265  // a pointer type, whose element is an integral scalar or pointer type.
266  // Because it is a pointer type, we don't have to worry about any implicit
267  // casts here.
268  Expr *FirstArg = TheCall->getArg(0);
269  if (!FirstArg->getType()->isPointerType())
270    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
271             << FirstArg->getType() << FirstArg->getSourceRange();
272
273  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
274  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
275      !ValType->isBlockPointerType())
276    return Diag(DRE->getLocStart(),
277                diag::err_atomic_builtin_must_be_pointer_intptr)
278             << FirstArg->getType() << FirstArg->getSourceRange();
279
280  // We need to figure out which concrete builtin this maps onto.  For example,
281  // __sync_fetch_and_add with a 2 byte object turns into
282  // __sync_fetch_and_add_2.
283#define BUILTIN_ROW(x) \
284  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
285    Builtin::BI##x##_8, Builtin::BI##x##_16 }
286
287  static const unsigned BuiltinIndices[][5] = {
288    BUILTIN_ROW(__sync_fetch_and_add),
289    BUILTIN_ROW(__sync_fetch_and_sub),
290    BUILTIN_ROW(__sync_fetch_and_or),
291    BUILTIN_ROW(__sync_fetch_and_and),
292    BUILTIN_ROW(__sync_fetch_and_xor),
293    BUILTIN_ROW(__sync_fetch_and_nand),
294
295    BUILTIN_ROW(__sync_add_and_fetch),
296    BUILTIN_ROW(__sync_sub_and_fetch),
297    BUILTIN_ROW(__sync_and_and_fetch),
298    BUILTIN_ROW(__sync_or_and_fetch),
299    BUILTIN_ROW(__sync_xor_and_fetch),
300    BUILTIN_ROW(__sync_nand_and_fetch),
301
302    BUILTIN_ROW(__sync_val_compare_and_swap),
303    BUILTIN_ROW(__sync_bool_compare_and_swap),
304    BUILTIN_ROW(__sync_lock_test_and_set),
305    BUILTIN_ROW(__sync_lock_release)
306  };
307#undef BUILTIN_ROW
308
309  // Determine the index of the size.
310  unsigned SizeIndex;
311  switch (Context.getTypeSize(ValType)/8) {
312  case 1: SizeIndex = 0; break;
313  case 2: SizeIndex = 1; break;
314  case 4: SizeIndex = 2; break;
315  case 8: SizeIndex = 3; break;
316  case 16: SizeIndex = 4; break;
317  default:
318    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
319             << FirstArg->getType() << FirstArg->getSourceRange();
320  }
321
322  // Each of these builtins has one pointer argument, followed by some number of
323  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
324  // that we ignore.  Find out which row of BuiltinIndices to read from as well
325  // as the number of fixed args.
326  unsigned BuiltinID = FDecl->getBuiltinID();
327  unsigned BuiltinIndex, NumFixed = 1;
328  switch (BuiltinID) {
329  default: assert(0 && "Unknown overloaded atomic builtin!");
330  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
331  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
332  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
333  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
334  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
335  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
336
337  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
338  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
339  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
340  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
341  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
342  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
343
344  case Builtin::BI__sync_val_compare_and_swap:
345    BuiltinIndex = 12;
346    NumFixed = 2;
347    break;
348  case Builtin::BI__sync_bool_compare_and_swap:
349    BuiltinIndex = 13;
350    NumFixed = 2;
351    break;
352  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
353  case Builtin::BI__sync_lock_release:
354    BuiltinIndex = 15;
355    NumFixed = 0;
356    break;
357  }
358
359  // Now that we know how many fixed arguments we expect, first check that we
360  // have at least that many.
361  if (TheCall->getNumArgs() < 1+NumFixed)
362    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
363            << 0 << TheCall->getCallee()->getSourceRange();
364
365
366  // Get the decl for the concrete builtin from this, we can tell what the
367  // concrete integer type we should convert to is.
368  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
369  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
370  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
371  FunctionDecl *NewBuiltinDecl =
372    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
373                                           TUScope, false, DRE->getLocStart()));
374  const FunctionProtoType *BuiltinFT =
375    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
376  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
377
378  // If the first type needs to be converted (e.g. void** -> int*), do it now.
379  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
380    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_Unknown,
381                      /*isLvalue=*/false);
382    TheCall->setArg(0, FirstArg);
383  }
384
385  // Next, walk the valid ones promoting to the right type.
386  for (unsigned i = 0; i != NumFixed; ++i) {
387    Expr *Arg = TheCall->getArg(i+1);
388
389    // If the argument is an implicit cast, then there was a promotion due to
390    // "...", just remove it now.
391    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
392      Arg = ICE->getSubExpr();
393      ICE->setSubExpr(0);
394      ICE->Destroy(Context);
395      TheCall->setArg(i+1, Arg);
396    }
397
398    // GCC does an implicit conversion to the pointer or integer ValType.  This
399    // can fail in some cases (1i -> int**), check for this error case now.
400    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
401    CXXMethodDecl *ConversionDecl = 0;
402    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
403                       ConversionDecl))
404      return true;
405
406    // Okay, we have something that *can* be converted to the right type.  Check
407    // to see if there is a potentially weird extension going on here.  This can
408    // happen when you do an atomic operation on something like an char* and
409    // pass in 42.  The 42 gets converted to char.  This is even more strange
410    // for things like 45.123 -> char, etc.
411    // FIXME: Do this check.
412    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
413    TheCall->setArg(i+1, Arg);
414  }
415
416  // Switch the DeclRefExpr to refer to the new decl.
417  DRE->setDecl(NewBuiltinDecl);
418  DRE->setType(NewBuiltinDecl->getType());
419
420  // Set the callee in the CallExpr.
421  // FIXME: This leaks the original parens and implicit casts.
422  Expr *PromotedCall = DRE;
423  UsualUnaryConversions(PromotedCall);
424  TheCall->setCallee(PromotedCall);
425
426
427  // Change the result type of the call to match the result type of the decl.
428  TheCall->setType(NewBuiltinDecl->getResultType());
429  return false;
430}
431
432
433/// CheckObjCString - Checks that the argument to the builtin
434/// CFString constructor is correct
435/// FIXME: GCC currently emits the following warning:
436/// "warning: input conversion stopped due to an input byte that does not
437///           belong to the input codeset UTF-8"
438/// Note: It might also make sense to do the UTF-16 conversion here (would
439/// simplify the backend).
440bool Sema::CheckObjCString(Expr *Arg) {
441  Arg = Arg->IgnoreParenCasts();
442  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
443
444  if (!Literal || Literal->isWide()) {
445    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
446      << Arg->getSourceRange();
447    return true;
448  }
449
450  const char *Data = Literal->getStrData();
451  unsigned Length = Literal->getByteLength();
452
453  for (unsigned i = 0; i < Length; ++i) {
454    if (!Data[i]) {
455      Diag(getLocationOfStringLiteralByte(Literal, i),
456           diag::warn_cfstring_literal_contains_nul_character)
457        << Arg->getSourceRange();
458      break;
459    }
460  }
461
462  return false;
463}
464
465/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
466/// Emit an error and return true on failure, return false on success.
467bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
468  Expr *Fn = TheCall->getCallee();
469  if (TheCall->getNumArgs() > 2) {
470    Diag(TheCall->getArg(2)->getLocStart(),
471         diag::err_typecheck_call_too_many_args)
472      << 0 /*function call*/ << Fn->getSourceRange()
473      << SourceRange(TheCall->getArg(2)->getLocStart(),
474                     (*(TheCall->arg_end()-1))->getLocEnd());
475    return true;
476  }
477
478  if (TheCall->getNumArgs() < 2) {
479    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
480      << 0 /*function call*/;
481  }
482
483  // Determine whether the current function is variadic or not.
484  bool isVariadic;
485  if (CurBlock)
486    isVariadic = CurBlock->isVariadic;
487  else if (getCurFunctionDecl()) {
488    if (FunctionProtoType* FTP =
489            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
490      isVariadic = FTP->isVariadic();
491    else
492      isVariadic = false;
493  } else {
494    isVariadic = getCurMethodDecl()->isVariadic();
495  }
496
497  if (!isVariadic) {
498    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
499    return true;
500  }
501
502  // Verify that the second argument to the builtin is the last argument of the
503  // current function or method.
504  bool SecondArgIsLastNamedArgument = false;
505  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
506
507  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
508    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
509      // FIXME: This isn't correct for methods (results in bogus warning).
510      // Get the last formal in the current function.
511      const ParmVarDecl *LastArg;
512      if (CurBlock)
513        LastArg = *(CurBlock->TheDecl->param_end()-1);
514      else if (FunctionDecl *FD = getCurFunctionDecl())
515        LastArg = *(FD->param_end()-1);
516      else
517        LastArg = *(getCurMethodDecl()->param_end()-1);
518      SecondArgIsLastNamedArgument = PV == LastArg;
519    }
520  }
521
522  if (!SecondArgIsLastNamedArgument)
523    Diag(TheCall->getArg(1)->getLocStart(),
524         diag::warn_second_parameter_of_va_start_not_last_named_argument);
525  return false;
526}
527
528/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
529/// friends.  This is declared to take (...), so we have to check everything.
530bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
531  if (TheCall->getNumArgs() < 2)
532    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
533      << 0 /*function call*/;
534  if (TheCall->getNumArgs() > 2)
535    return Diag(TheCall->getArg(2)->getLocStart(),
536                diag::err_typecheck_call_too_many_args)
537      << 0 /*function call*/
538      << SourceRange(TheCall->getArg(2)->getLocStart(),
539                     (*(TheCall->arg_end()-1))->getLocEnd());
540
541  Expr *OrigArg0 = TheCall->getArg(0);
542  Expr *OrigArg1 = TheCall->getArg(1);
543
544  // Do standard promotions between the two arguments, returning their common
545  // type.
546  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
547
548  // Make sure any conversions are pushed back into the call; this is
549  // type safe since unordered compare builtins are declared as "_Bool
550  // foo(...)".
551  TheCall->setArg(0, OrigArg0);
552  TheCall->setArg(1, OrigArg1);
553
554  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
555    return false;
556
557  // If the common type isn't a real floating type, then the arguments were
558  // invalid for this operation.
559  if (!Res->isRealFloatingType())
560    return Diag(OrigArg0->getLocStart(),
561                diag::err_typecheck_call_invalid_ordered_compare)
562      << OrigArg0->getType() << OrigArg1->getType()
563      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
564
565  return false;
566}
567
568/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isnan and
569/// friends.  This is declared to take (...), so we have to check everything.
570bool Sema::SemaBuiltinUnaryFP(CallExpr *TheCall) {
571  if (TheCall->getNumArgs() < 1)
572    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
573      << 0 /*function call*/;
574  if (TheCall->getNumArgs() > 1)
575    return Diag(TheCall->getArg(1)->getLocStart(),
576                diag::err_typecheck_call_too_many_args)
577      << 0 /*function call*/
578      << SourceRange(TheCall->getArg(1)->getLocStart(),
579                     (*(TheCall->arg_end()-1))->getLocEnd());
580
581  Expr *OrigArg = TheCall->getArg(0);
582
583  if (OrigArg->isTypeDependent())
584    return false;
585
586  // This operation requires a floating-point number
587  if (!OrigArg->getType()->isRealFloatingType())
588    return Diag(OrigArg->getLocStart(),
589                diag::err_typecheck_call_invalid_unary_fp)
590      << OrigArg->getType() << OrigArg->getSourceRange();
591
592  return false;
593}
594
595bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
596  // The signature for these builtins is exact; the only thing we need
597  // to check is that the argument is a constant.
598  SourceLocation Loc;
599  if (!TheCall->getArg(0)->isTypeDependent() &&
600      !TheCall->getArg(0)->isValueDependent() &&
601      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
602    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
603
604  return false;
605}
606
607/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
608// This is declared to take (...), so we have to check everything.
609Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
610  if (TheCall->getNumArgs() < 3)
611    return ExprError(Diag(TheCall->getLocEnd(),
612                          diag::err_typecheck_call_too_few_args)
613      << 0 /*function call*/ << TheCall->getSourceRange());
614
615  unsigned numElements = std::numeric_limits<unsigned>::max();
616  if (!TheCall->getArg(0)->isTypeDependent() &&
617      !TheCall->getArg(1)->isTypeDependent()) {
618    QualType FAType = TheCall->getArg(0)->getType();
619    QualType SAType = TheCall->getArg(1)->getType();
620
621    if (!FAType->isVectorType() || !SAType->isVectorType()) {
622      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
623        << SourceRange(TheCall->getArg(0)->getLocStart(),
624                       TheCall->getArg(1)->getLocEnd());
625      return ExprError();
626    }
627
628    if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
629        Context.getCanonicalType(SAType).getUnqualifiedType()) {
630      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
631        << SourceRange(TheCall->getArg(0)->getLocStart(),
632                       TheCall->getArg(1)->getLocEnd());
633      return ExprError();
634    }
635
636    numElements = FAType->getAs<VectorType>()->getNumElements();
637    if (TheCall->getNumArgs() != numElements+2) {
638      if (TheCall->getNumArgs() < numElements+2)
639        return ExprError(Diag(TheCall->getLocEnd(),
640                              diag::err_typecheck_call_too_few_args)
641                 << 0 /*function call*/ << TheCall->getSourceRange());
642      return ExprError(Diag(TheCall->getLocEnd(),
643                            diag::err_typecheck_call_too_many_args)
644                 << 0 /*function call*/ << TheCall->getSourceRange());
645    }
646  }
647
648  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
649    if (TheCall->getArg(i)->isTypeDependent() ||
650        TheCall->getArg(i)->isValueDependent())
651      continue;
652
653    llvm::APSInt Result(32);
654    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
655      return ExprError(Diag(TheCall->getLocStart(),
656                  diag::err_shufflevector_nonconstant_argument)
657                << TheCall->getArg(i)->getSourceRange());
658
659    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
660      return ExprError(Diag(TheCall->getLocStart(),
661                  diag::err_shufflevector_argument_too_large)
662               << TheCall->getArg(i)->getSourceRange());
663  }
664
665  llvm::SmallVector<Expr*, 32> exprs;
666
667  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
668    exprs.push_back(TheCall->getArg(i));
669    TheCall->setArg(i, 0);
670  }
671
672  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
673                                            exprs.size(), exprs[0]->getType(),
674                                            TheCall->getCallee()->getLocStart(),
675                                            TheCall->getRParenLoc()));
676}
677
678/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
679// This is declared to take (const void*, ...) and can take two
680// optional constant int args.
681bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
682  unsigned NumArgs = TheCall->getNumArgs();
683
684  if (NumArgs > 3)
685    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
686             << 0 /*function call*/ << TheCall->getSourceRange();
687
688  // Argument 0 is checked for us and the remaining arguments must be
689  // constant integers.
690  for (unsigned i = 1; i != NumArgs; ++i) {
691    Expr *Arg = TheCall->getArg(i);
692    if (Arg->isTypeDependent())
693      continue;
694
695    QualType RWType = Arg->getType();
696
697    const BuiltinType *BT = RWType->getAs<BuiltinType>();
698    llvm::APSInt Result;
699    if (!BT || BT->getKind() != BuiltinType::Int)
700      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
701              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
702
703    if (Arg->isValueDependent())
704      continue;
705
706    if (!Arg->isIntegerConstantExpr(Result, Context))
707      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
708        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
709
710    // FIXME: gcc issues a warning and rewrites these to 0. These
711    // seems especially odd for the third argument since the default
712    // is 3.
713    if (i == 1) {
714      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
715        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
716             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
717    } else {
718      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
719        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
720            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
721    }
722  }
723
724  return false;
725}
726
727/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
728/// int type). This simply type checks that type is one of the defined
729/// constants (0-3).
730bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
731  Expr *Arg = TheCall->getArg(1);
732  if (Arg->isTypeDependent())
733    return false;
734
735  QualType ArgType = Arg->getType();
736  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
737  llvm::APSInt Result(32);
738  if (!BT || BT->getKind() != BuiltinType::Int)
739    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
740             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
741
742  if (Arg->isValueDependent())
743    return false;
744
745  if (!Arg->isIntegerConstantExpr(Result, Context)) {
746    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
747             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
748  }
749
750  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
751    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
752             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
753  }
754
755  return false;
756}
757
758/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
759/// This checks that val is a constant 1.
760bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
761  Expr *Arg = TheCall->getArg(1);
762  if (Arg->isTypeDependent() || Arg->isValueDependent())
763    return false;
764
765  llvm::APSInt Result(32);
766  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
767    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
768             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
769
770  return false;
771}
772
773// Handle i > 1 ? "x" : "y", recursivelly
774bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
775                                  bool HasVAListArg,
776                                  unsigned format_idx, unsigned firstDataArg) {
777  if (E->isTypeDependent() || E->isValueDependent())
778    return false;
779
780  switch (E->getStmtClass()) {
781  case Stmt::ConditionalOperatorClass: {
782    const ConditionalOperator *C = cast<ConditionalOperator>(E);
783    return SemaCheckStringLiteral(C->getLHS(), TheCall,
784                                  HasVAListArg, format_idx, firstDataArg)
785        && SemaCheckStringLiteral(C->getRHS(), TheCall,
786                                  HasVAListArg, format_idx, firstDataArg);
787  }
788
789  case Stmt::ImplicitCastExprClass: {
790    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
791    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
792                                  format_idx, firstDataArg);
793  }
794
795  case Stmt::ParenExprClass: {
796    const ParenExpr *Expr = cast<ParenExpr>(E);
797    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
798                                  format_idx, firstDataArg);
799  }
800
801  case Stmt::DeclRefExprClass: {
802    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
803
804    // As an exception, do not flag errors for variables binding to
805    // const string literals.
806    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
807      bool isConstant = false;
808      QualType T = DR->getType();
809
810      if (const ArrayType *AT = Context.getAsArrayType(T)) {
811        isConstant = AT->getElementType().isConstant(Context);
812      } else if (const PointerType *PT = T->getAs<PointerType>()) {
813        isConstant = T.isConstant(Context) &&
814                     PT->getPointeeType().isConstant(Context);
815      }
816
817      if (isConstant) {
818        const VarDecl *Def = 0;
819        if (const Expr *Init = VD->getDefinition(Def))
820          return SemaCheckStringLiteral(Init, TheCall,
821                                        HasVAListArg, format_idx, firstDataArg);
822      }
823
824      // For vprintf* functions (i.e., HasVAListArg==true), we add a
825      // special check to see if the format string is a function parameter
826      // of the function calling the printf function.  If the function
827      // has an attribute indicating it is a printf-like function, then we
828      // should suppress warnings concerning non-literals being used in a call
829      // to a vprintf function.  For example:
830      //
831      // void
832      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
833      //      va_list ap;
834      //      va_start(ap, fmt);
835      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
836      //      ...
837      //
838      //
839      //  FIXME: We don't have full attribute support yet, so just check to see
840      //    if the argument is a DeclRefExpr that references a parameter.  We'll
841      //    add proper support for checking the attribute later.
842      if (HasVAListArg)
843        if (isa<ParmVarDecl>(VD))
844          return true;
845    }
846
847    return false;
848  }
849
850  case Stmt::CallExprClass: {
851    const CallExpr *CE = cast<CallExpr>(E);
852    if (const ImplicitCastExpr *ICE
853          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
854      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
855        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
856          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
857            unsigned ArgIndex = FA->getFormatIdx();
858            const Expr *Arg = CE->getArg(ArgIndex - 1);
859
860            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
861                                          format_idx, firstDataArg);
862          }
863        }
864      }
865    }
866
867    return false;
868  }
869  case Stmt::ObjCStringLiteralClass:
870  case Stmt::StringLiteralClass: {
871    const StringLiteral *StrE = NULL;
872
873    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
874      StrE = ObjCFExpr->getString();
875    else
876      StrE = cast<StringLiteral>(E);
877
878    if (StrE) {
879      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
880                        firstDataArg);
881      return true;
882    }
883
884    return false;
885  }
886
887  default:
888    return false;
889  }
890}
891
892void
893Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
894                            const CallExpr *TheCall) {
895  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
896       i != e; ++i) {
897    const Expr *ArgExpr = TheCall->getArg(*i);
898    if (ArgExpr->isNullPointerConstant(Context))
899      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
900        << ArgExpr->getSourceRange();
901  }
902}
903
904/// CheckPrintfArguments - Check calls to printf (and similar functions) for
905/// correct use of format strings.
906///
907///  HasVAListArg - A predicate indicating whether the printf-like
908///    function is passed an explicit va_arg argument (e.g., vprintf)
909///
910///  format_idx - The index into Args for the format string.
911///
912/// Improper format strings to functions in the printf family can be
913/// the source of bizarre bugs and very serious security holes.  A
914/// good source of information is available in the following paper
915/// (which includes additional references):
916///
917///  FormatGuard: Automatic Protection From printf Format String
918///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
919///
920/// Functionality implemented:
921///
922///  We can statically check the following properties for string
923///  literal format strings for non v.*printf functions (where the
924///  arguments are passed directly):
925//
926///  (1) Are the number of format conversions equal to the number of
927///      data arguments?
928///
929///  (2) Does each format conversion correctly match the type of the
930///      corresponding data argument?  (TODO)
931///
932/// Moreover, for all printf functions we can:
933///
934///  (3) Check for a missing format string (when not caught by type checking).
935///
936///  (4) Check for no-operation flags; e.g. using "#" with format
937///      conversion 'c'  (TODO)
938///
939///  (5) Check the use of '%n', a major source of security holes.
940///
941///  (6) Check for malformed format conversions that don't specify anything.
942///
943///  (7) Check for empty format strings.  e.g: printf("");
944///
945///  (8) Check that the format string is a wide literal.
946///
947///  (9) Also check the arguments of functions with the __format__ attribute.
948///      (TODO).
949///
950/// All of these checks can be done by parsing the format string.
951///
952/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
953void
954Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
955                           unsigned format_idx, unsigned firstDataArg) {
956  const Expr *Fn = TheCall->getCallee();
957
958  // CHECK: printf-like function is called with no format string.
959  if (format_idx >= TheCall->getNumArgs()) {
960    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
961      << Fn->getSourceRange();
962    return;
963  }
964
965  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
966
967  // CHECK: format string is not a string literal.
968  //
969  // Dynamically generated format strings are difficult to
970  // automatically vet at compile time.  Requiring that format strings
971  // are string literals: (1) permits the checking of format strings by
972  // the compiler and thereby (2) can practically remove the source of
973  // many format string exploits.
974
975  // Format string can be either ObjC string (e.g. @"%d") or
976  // C string (e.g. "%d")
977  // ObjC string uses the same format specifiers as C string, so we can use
978  // the same format string checking logic for both ObjC and C strings.
979  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
980                             firstDataArg))
981    return;  // Literal format string found, check done!
982
983  // If there are no arguments specified, warn with -Wformat-security, otherwise
984  // warn only with -Wformat-nonliteral.
985  if (TheCall->getNumArgs() == format_idx+1)
986    Diag(TheCall->getArg(format_idx)->getLocStart(),
987         diag::warn_printf_nonliteral_noargs)
988      << OrigFormatExpr->getSourceRange();
989  else
990    Diag(TheCall->getArg(format_idx)->getLocStart(),
991         diag::warn_printf_nonliteral)
992           << OrigFormatExpr->getSourceRange();
993}
994
995void Sema::CheckPrintfString(const StringLiteral *FExpr,
996                             const Expr *OrigFormatExpr,
997                             const CallExpr *TheCall, bool HasVAListArg,
998                             unsigned format_idx, unsigned firstDataArg) {
999
1000  const ObjCStringLiteral *ObjCFExpr =
1001    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
1002
1003  // CHECK: is the format string a wide literal?
1004  if (FExpr->isWide()) {
1005    Diag(FExpr->getLocStart(),
1006         diag::warn_printf_format_string_is_wide_literal)
1007      << OrigFormatExpr->getSourceRange();
1008    return;
1009  }
1010
1011  // Str - The format string.  NOTE: this is NOT null-terminated!
1012  const char *Str = FExpr->getStrData();
1013
1014  // CHECK: empty format string?
1015  unsigned StrLen = FExpr->getByteLength();
1016
1017  if (StrLen == 0) {
1018    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1019      << OrigFormatExpr->getSourceRange();
1020    return;
1021  }
1022
1023  // We process the format string using a binary state machine.  The
1024  // current state is stored in CurrentState.
1025  enum {
1026    state_OrdChr,
1027    state_Conversion
1028  } CurrentState = state_OrdChr;
1029
1030  // numConversions - The number of conversions seen so far.  This is
1031  //  incremented as we traverse the format string.
1032  unsigned numConversions = 0;
1033
1034  // numDataArgs - The number of data arguments after the format
1035  //  string.  This can only be determined for non vprintf-like
1036  //  functions.  For those functions, this value is 1 (the sole
1037  //  va_arg argument).
1038  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
1039
1040  // Inspect the format string.
1041  unsigned StrIdx = 0;
1042
1043  // LastConversionIdx - Index within the format string where we last saw
1044  //  a '%' character that starts a new format conversion.
1045  unsigned LastConversionIdx = 0;
1046
1047  for (; StrIdx < StrLen; ++StrIdx) {
1048
1049    // Is the number of detected conversion conversions greater than
1050    // the number of matching data arguments?  If so, stop.
1051    if (!HasVAListArg && numConversions > numDataArgs) break;
1052
1053    // Handle "\0"
1054    if (Str[StrIdx] == '\0') {
1055      // The string returned by getStrData() is not null-terminated,
1056      // so the presence of a null character is likely an error.
1057      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
1058           diag::warn_printf_format_string_contains_null_char)
1059        <<  OrigFormatExpr->getSourceRange();
1060      return;
1061    }
1062
1063    // Ordinary characters (not processing a format conversion).
1064    if (CurrentState == state_OrdChr) {
1065      if (Str[StrIdx] == '%') {
1066        CurrentState = state_Conversion;
1067        LastConversionIdx = StrIdx;
1068      }
1069      continue;
1070    }
1071
1072    // Seen '%'.  Now processing a format conversion.
1073    switch (Str[StrIdx]) {
1074    // Handle dynamic precision or width specifier.
1075    case '*': {
1076      ++numConversions;
1077
1078      if (!HasVAListArg) {
1079        if (numConversions > numDataArgs) {
1080          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1081
1082          if (Str[StrIdx-1] == '.')
1083            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
1084              << OrigFormatExpr->getSourceRange();
1085          else
1086            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
1087              << OrigFormatExpr->getSourceRange();
1088
1089          // Don't do any more checking.  We'll just emit spurious errors.
1090          return;
1091        }
1092
1093        // Perform type checking on width/precision specifier.
1094        const Expr *E = TheCall->getArg(format_idx+numConversions);
1095        if (const BuiltinType *BT = E->getType()->getAs<BuiltinType>())
1096          if (BT->getKind() == BuiltinType::Int)
1097            break;
1098
1099        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1100
1101        if (Str[StrIdx-1] == '.')
1102          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
1103          << E->getType() << E->getSourceRange();
1104        else
1105          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
1106          << E->getType() << E->getSourceRange();
1107
1108        break;
1109      }
1110    }
1111
1112    // Characters which can terminate a format conversion
1113    // (e.g. "%d").  Characters that specify length modifiers or
1114    // other flags are handled by the default case below.
1115    //
1116    // FIXME: additional checks will go into the following cases.
1117    case 'i':
1118    case 'd':
1119    case 'o':
1120    case 'u':
1121    case 'x':
1122    case 'X':
1123    case 'D':
1124    case 'O':
1125    case 'U':
1126    case 'e':
1127    case 'E':
1128    case 'f':
1129    case 'F':
1130    case 'g':
1131    case 'G':
1132    case 'a':
1133    case 'A':
1134    case 'c':
1135    case 'C':
1136    case 'S':
1137    case 's':
1138    case 'p':
1139      ++numConversions;
1140      CurrentState = state_OrdChr;
1141      break;
1142
1143    case 'm':
1144      // FIXME: Warn in situations where this isn't supported!
1145      CurrentState = state_OrdChr;
1146      break;
1147
1148    // CHECK: Are we using "%n"?  Issue a warning.
1149    case 'n': {
1150      ++numConversions;
1151      CurrentState = state_OrdChr;
1152      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1153                                                          LastConversionIdx);
1154
1155      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1156      break;
1157    }
1158
1159    // Handle "%@"
1160    case '@':
1161      // %@ is allowed in ObjC format strings only.
1162      if (ObjCFExpr != NULL)
1163        CurrentState = state_OrdChr;
1164      else {
1165        // Issue a warning: invalid format conversion.
1166        SourceLocation Loc =
1167          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1168
1169        Diag(Loc, diag::warn_printf_invalid_conversion)
1170          <<  std::string(Str+LastConversionIdx,
1171                          Str+std::min(LastConversionIdx+2, StrLen))
1172          << OrigFormatExpr->getSourceRange();
1173      }
1174      ++numConversions;
1175      break;
1176
1177    // Handle "%%"
1178    case '%':
1179      // Sanity check: Was the first "%" character the previous one?
1180      // If not, we will assume that we have a malformed format
1181      // conversion, and that the current "%" character is the start
1182      // of a new conversion.
1183      if (StrIdx - LastConversionIdx == 1)
1184        CurrentState = state_OrdChr;
1185      else {
1186        // Issue a warning: invalid format conversion.
1187        SourceLocation Loc =
1188          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1189
1190        Diag(Loc, diag::warn_printf_invalid_conversion)
1191          << std::string(Str+LastConversionIdx, Str+StrIdx)
1192          << OrigFormatExpr->getSourceRange();
1193
1194        // This conversion is broken.  Advance to the next format
1195        // conversion.
1196        LastConversionIdx = StrIdx;
1197        ++numConversions;
1198      }
1199      break;
1200
1201    default:
1202      // This case catches all other characters: flags, widths, etc.
1203      // We should eventually process those as well.
1204      break;
1205    }
1206  }
1207
1208  if (CurrentState == state_Conversion) {
1209    // Issue a warning: invalid format conversion.
1210    SourceLocation Loc =
1211      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1212
1213    Diag(Loc, diag::warn_printf_invalid_conversion)
1214      << std::string(Str+LastConversionIdx,
1215                     Str+std::min(LastConversionIdx+2, StrLen))
1216      << OrigFormatExpr->getSourceRange();
1217    return;
1218  }
1219
1220  if (!HasVAListArg) {
1221    // CHECK: Does the number of format conversions exceed the number
1222    //        of data arguments?
1223    if (numConversions > numDataArgs) {
1224      SourceLocation Loc =
1225        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1226
1227      Diag(Loc, diag::warn_printf_insufficient_data_args)
1228        << OrigFormatExpr->getSourceRange();
1229    }
1230    // CHECK: Does the number of data arguments exceed the number of
1231    //        format conversions in the format string?
1232    else if (numConversions < numDataArgs)
1233      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1234           diag::warn_printf_too_many_data_args)
1235        << OrigFormatExpr->getSourceRange();
1236  }
1237}
1238
1239//===--- CHECK: Return Address of Stack Variable --------------------------===//
1240
1241static DeclRefExpr* EvalVal(Expr *E);
1242static DeclRefExpr* EvalAddr(Expr* E);
1243
1244/// CheckReturnStackAddr - Check if a return statement returns the address
1245///   of a stack variable.
1246void
1247Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1248                           SourceLocation ReturnLoc) {
1249
1250  // Perform checking for returned stack addresses.
1251  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1252    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1253      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1254       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1255
1256    // Skip over implicit cast expressions when checking for block expressions.
1257    RetValExp = RetValExp->IgnoreParenCasts();
1258
1259    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
1260      if (C->hasBlockDeclRefExprs())
1261        Diag(C->getLocStart(), diag::err_ret_local_block)
1262          << C->getSourceRange();
1263  } else if (lhsType->isReferenceType()) {
1264    // Perform checking for stack values returned by reference.
1265    // Check for a reference to the stack
1266    if (DeclRefExpr *DR = EvalVal(RetValExp))
1267      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1268        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1269  }
1270}
1271
1272/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1273///  check if the expression in a return statement evaluates to an address
1274///  to a location on the stack.  The recursion is used to traverse the
1275///  AST of the return expression, with recursion backtracking when we
1276///  encounter a subexpression that (1) clearly does not lead to the address
1277///  of a stack variable or (2) is something we cannot determine leads to
1278///  the address of a stack variable based on such local checking.
1279///
1280///  EvalAddr processes expressions that are pointers that are used as
1281///  references (and not L-values).  EvalVal handles all other values.
1282///  At the base case of the recursion is a check for a DeclRefExpr* in
1283///  the refers to a stack variable.
1284///
1285///  This implementation handles:
1286///
1287///   * pointer-to-pointer casts
1288///   * implicit conversions from array references to pointers
1289///   * taking the address of fields
1290///   * arbitrary interplay between "&" and "*" operators
1291///   * pointer arithmetic from an address of a stack variable
1292///   * taking the address of an array element where the array is on the stack
1293static DeclRefExpr* EvalAddr(Expr *E) {
1294  // We should only be called for evaluating pointer expressions.
1295  assert((E->getType()->isAnyPointerType() ||
1296          E->getType()->isBlockPointerType() ||
1297          E->getType()->isObjCQualifiedIdType()) &&
1298         "EvalAddr only works on pointers");
1299
1300  // Our "symbolic interpreter" is just a dispatch off the currently
1301  // viewed AST node.  We then recursively traverse the AST by calling
1302  // EvalAddr and EvalVal appropriately.
1303  switch (E->getStmtClass()) {
1304  case Stmt::ParenExprClass:
1305    // Ignore parentheses.
1306    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1307
1308  case Stmt::UnaryOperatorClass: {
1309    // The only unary operator that make sense to handle here
1310    // is AddrOf.  All others don't make sense as pointers.
1311    UnaryOperator *U = cast<UnaryOperator>(E);
1312
1313    if (U->getOpcode() == UnaryOperator::AddrOf)
1314      return EvalVal(U->getSubExpr());
1315    else
1316      return NULL;
1317  }
1318
1319  case Stmt::BinaryOperatorClass: {
1320    // Handle pointer arithmetic.  All other binary operators are not valid
1321    // in this context.
1322    BinaryOperator *B = cast<BinaryOperator>(E);
1323    BinaryOperator::Opcode op = B->getOpcode();
1324
1325    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1326      return NULL;
1327
1328    Expr *Base = B->getLHS();
1329
1330    // Determine which argument is the real pointer base.  It could be
1331    // the RHS argument instead of the LHS.
1332    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1333
1334    assert (Base->getType()->isPointerType());
1335    return EvalAddr(Base);
1336  }
1337
1338  // For conditional operators we need to see if either the LHS or RHS are
1339  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1340  case Stmt::ConditionalOperatorClass: {
1341    ConditionalOperator *C = cast<ConditionalOperator>(E);
1342
1343    // Handle the GNU extension for missing LHS.
1344    if (Expr *lhsExpr = C->getLHS())
1345      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1346        return LHS;
1347
1348     return EvalAddr(C->getRHS());
1349  }
1350
1351  // For casts, we need to handle conversions from arrays to
1352  // pointer values, and pointer-to-pointer conversions.
1353  case Stmt::ImplicitCastExprClass:
1354  case Stmt::CStyleCastExprClass:
1355  case Stmt::CXXFunctionalCastExprClass: {
1356    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1357    QualType T = SubExpr->getType();
1358
1359    if (SubExpr->getType()->isPointerType() ||
1360        SubExpr->getType()->isBlockPointerType() ||
1361        SubExpr->getType()->isObjCQualifiedIdType())
1362      return EvalAddr(SubExpr);
1363    else if (T->isArrayType())
1364      return EvalVal(SubExpr);
1365    else
1366      return 0;
1367  }
1368
1369  // C++ casts.  For dynamic casts, static casts, and const casts, we
1370  // are always converting from a pointer-to-pointer, so we just blow
1371  // through the cast.  In the case the dynamic cast doesn't fail (and
1372  // return NULL), we take the conservative route and report cases
1373  // where we return the address of a stack variable.  For Reinterpre
1374  // FIXME: The comment about is wrong; we're not always converting
1375  // from pointer to pointer. I'm guessing that this code should also
1376  // handle references to objects.
1377  case Stmt::CXXStaticCastExprClass:
1378  case Stmt::CXXDynamicCastExprClass:
1379  case Stmt::CXXConstCastExprClass:
1380  case Stmt::CXXReinterpretCastExprClass: {
1381      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1382      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1383        return EvalAddr(S);
1384      else
1385        return NULL;
1386  }
1387
1388  // Everything else: we simply don't reason about them.
1389  default:
1390    return NULL;
1391  }
1392}
1393
1394
1395///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1396///   See the comments for EvalAddr for more details.
1397static DeclRefExpr* EvalVal(Expr *E) {
1398
1399  // We should only be called for evaluating non-pointer expressions, or
1400  // expressions with a pointer type that are not used as references but instead
1401  // are l-values (e.g., DeclRefExpr with a pointer type).
1402
1403  // Our "symbolic interpreter" is just a dispatch off the currently
1404  // viewed AST node.  We then recursively traverse the AST by calling
1405  // EvalAddr and EvalVal appropriately.
1406  switch (E->getStmtClass()) {
1407  case Stmt::DeclRefExprClass:
1408  case Stmt::QualifiedDeclRefExprClass: {
1409    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1410    //  at code that refers to a variable's name.  We check if it has local
1411    //  storage within the function, and if so, return the expression.
1412    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1413
1414    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1415      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1416
1417    return NULL;
1418  }
1419
1420  case Stmt::ParenExprClass:
1421    // Ignore parentheses.
1422    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1423
1424  case Stmt::UnaryOperatorClass: {
1425    // The only unary operator that make sense to handle here
1426    // is Deref.  All others don't resolve to a "name."  This includes
1427    // handling all sorts of rvalues passed to a unary operator.
1428    UnaryOperator *U = cast<UnaryOperator>(E);
1429
1430    if (U->getOpcode() == UnaryOperator::Deref)
1431      return EvalAddr(U->getSubExpr());
1432
1433    return NULL;
1434  }
1435
1436  case Stmt::ArraySubscriptExprClass: {
1437    // Array subscripts are potential references to data on the stack.  We
1438    // retrieve the DeclRefExpr* for the array variable if it indeed
1439    // has local storage.
1440    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1441  }
1442
1443  case Stmt::ConditionalOperatorClass: {
1444    // For conditional operators we need to see if either the LHS or RHS are
1445    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1446    ConditionalOperator *C = cast<ConditionalOperator>(E);
1447
1448    // Handle the GNU extension for missing LHS.
1449    if (Expr *lhsExpr = C->getLHS())
1450      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1451        return LHS;
1452
1453    return EvalVal(C->getRHS());
1454  }
1455
1456  // Accesses to members are potential references to data on the stack.
1457  case Stmt::MemberExprClass: {
1458    MemberExpr *M = cast<MemberExpr>(E);
1459
1460    // Check for indirect access.  We only want direct field accesses.
1461    if (!M->isArrow())
1462      return EvalVal(M->getBase());
1463    else
1464      return NULL;
1465  }
1466
1467  // Everything else: we simply don't reason about them.
1468  default:
1469    return NULL;
1470  }
1471}
1472
1473//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1474
1475/// Check for comparisons of floating point operands using != and ==.
1476/// Issue a warning if these are no self-comparisons, as they are not likely
1477/// to do what the programmer intended.
1478void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1479  bool EmitWarning = true;
1480
1481  Expr* LeftExprSansParen = lex->IgnoreParens();
1482  Expr* RightExprSansParen = rex->IgnoreParens();
1483
1484  // Special case: check for x == x (which is OK).
1485  // Do not emit warnings for such cases.
1486  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1487    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1488      if (DRL->getDecl() == DRR->getDecl())
1489        EmitWarning = false;
1490
1491
1492  // Special case: check for comparisons against literals that can be exactly
1493  //  represented by APFloat.  In such cases, do not emit a warning.  This
1494  //  is a heuristic: often comparison against such literals are used to
1495  //  detect if a value in a variable has not changed.  This clearly can
1496  //  lead to false negatives.
1497  if (EmitWarning) {
1498    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1499      if (FLL->isExact())
1500        EmitWarning = false;
1501    } else
1502      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1503        if (FLR->isExact())
1504          EmitWarning = false;
1505    }
1506  }
1507
1508  // Check for comparisons with builtin types.
1509  if (EmitWarning)
1510    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1511      if (CL->isBuiltinCall(Context))
1512        EmitWarning = false;
1513
1514  if (EmitWarning)
1515    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1516      if (CR->isBuiltinCall(Context))
1517        EmitWarning = false;
1518
1519  // Emit the diagnostic.
1520  if (EmitWarning)
1521    Diag(loc, diag::warn_floatingpoint_eq)
1522      << lex->getSourceRange() << rex->getSourceRange();
1523}
1524