SemaChecking.cpp revision 26e10bea3d2e9d2979194890e51b98ecea165a96
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "clang/Basic/TargetBuiltins.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Basic/ConvertUTF.h"
35#include <limits>
36using namespace clang;
37using namespace sema;
38
39SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
40                                                    unsigned ByteNo) const {
41  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
42                               PP.getLangOptions(), PP.getTargetInfo());
43}
44
45
46/// CheckablePrintfAttr - does a function call have a "printf" attribute
47/// and arguments that merit checking?
48bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
49  if (Format->getType() == "printf") return true;
50  if (Format->getType() == "printf0") {
51    // printf0 allows null "format" string; if so don't check format/args
52    unsigned format_idx = Format->getFormatIdx() - 1;
53    // Does the index refer to the implicit object argument?
54    if (isa<CXXMemberCallExpr>(TheCall)) {
55      if (format_idx == 0)
56        return false;
57      --format_idx;
58    }
59    if (format_idx < TheCall->getNumArgs()) {
60      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
61      if (!Format->isNullPointerConstant(Context,
62                                         Expr::NPC_ValueDependentIsNull))
63        return true;
64    }
65  }
66  return false;
67}
68
69ExprResult
70Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
71  ExprResult TheCallResult(Owned(TheCall));
72
73  // Find out if any arguments are required to be integer constant expressions.
74  unsigned ICEArguments = 0;
75  ASTContext::GetBuiltinTypeError Error;
76  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
77  if (Error != ASTContext::GE_None)
78    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
79
80  // If any arguments are required to be ICE's, check and diagnose.
81  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
82    // Skip arguments not required to be ICE's.
83    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
84
85    llvm::APSInt Result;
86    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
87      return true;
88    ICEArguments &= ~(1 << ArgNo);
89  }
90
91  switch (BuiltinID) {
92  case Builtin::BI__builtin___CFStringMakeConstantString:
93    assert(TheCall->getNumArgs() == 1 &&
94           "Wrong # arguments to builtin CFStringMakeConstantString");
95    if (CheckObjCString(TheCall->getArg(0)))
96      return ExprError();
97    break;
98  case Builtin::BI__builtin_stdarg_start:
99  case Builtin::BI__builtin_va_start:
100    if (SemaBuiltinVAStart(TheCall))
101      return ExprError();
102    break;
103  case Builtin::BI__builtin_isgreater:
104  case Builtin::BI__builtin_isgreaterequal:
105  case Builtin::BI__builtin_isless:
106  case Builtin::BI__builtin_islessequal:
107  case Builtin::BI__builtin_islessgreater:
108  case Builtin::BI__builtin_isunordered:
109    if (SemaBuiltinUnorderedCompare(TheCall))
110      return ExprError();
111    break;
112  case Builtin::BI__builtin_fpclassify:
113    if (SemaBuiltinFPClassification(TheCall, 6))
114      return ExprError();
115    break;
116  case Builtin::BI__builtin_isfinite:
117  case Builtin::BI__builtin_isinf:
118  case Builtin::BI__builtin_isinf_sign:
119  case Builtin::BI__builtin_isnan:
120  case Builtin::BI__builtin_isnormal:
121    if (SemaBuiltinFPClassification(TheCall, 1))
122      return ExprError();
123    break;
124  case Builtin::BI__builtin_shufflevector:
125    return SemaBuiltinShuffleVector(TheCall);
126    // TheCall will be freed by the smart pointer here, but that's fine, since
127    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
128  case Builtin::BI__builtin_prefetch:
129    if (SemaBuiltinPrefetch(TheCall))
130      return ExprError();
131    break;
132  case Builtin::BI__builtin_object_size:
133    if (SemaBuiltinObjectSize(TheCall))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_longjmp:
137    if (SemaBuiltinLongjmp(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_constant_p:
141    if (TheCall->getNumArgs() == 0)
142      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
143        << 0 /*function call*/ << 1 << 0 << TheCall->getSourceRange();
144    if (TheCall->getNumArgs() > 1)
145      return Diag(TheCall->getArg(1)->getLocStart(),
146                  diag::err_typecheck_call_too_many_args)
147        << 0 /*function call*/ << 1 << TheCall->getNumArgs()
148        << TheCall->getArg(1)->getSourceRange();
149    break;
150  case Builtin::BI__sync_fetch_and_add:
151  case Builtin::BI__sync_fetch_and_sub:
152  case Builtin::BI__sync_fetch_and_or:
153  case Builtin::BI__sync_fetch_and_and:
154  case Builtin::BI__sync_fetch_and_xor:
155  case Builtin::BI__sync_add_and_fetch:
156  case Builtin::BI__sync_sub_and_fetch:
157  case Builtin::BI__sync_and_and_fetch:
158  case Builtin::BI__sync_or_and_fetch:
159  case Builtin::BI__sync_xor_and_fetch:
160  case Builtin::BI__sync_val_compare_and_swap:
161  case Builtin::BI__sync_bool_compare_and_swap:
162  case Builtin::BI__sync_lock_test_and_set:
163  case Builtin::BI__sync_lock_release:
164    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
165  }
166
167  // Since the target specific builtins for each arch overlap, only check those
168  // of the arch we are compiling for.
169  if (BuiltinID >= Builtin::FirstTSBuiltin) {
170    switch (Context.Target.getTriple().getArch()) {
171      case llvm::Triple::arm:
172      case llvm::Triple::thumb:
173        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
174          return ExprError();
175        break;
176      default:
177        break;
178    }
179  }
180
181  return move(TheCallResult);
182}
183
184// Get the valid immediate range for the specified NEON type code.
185static unsigned RFT(unsigned t, bool shift = false) {
186  bool quad = t & 0x10;
187
188  switch (t & 0x7) {
189    case 0: // i8
190      return shift ? 7 : (8 << (int)quad) - 1;
191    case 1: // i16
192      return shift ? 15 : (4 << (int)quad) - 1;
193    case 2: // i32
194      return shift ? 31 : (2 << (int)quad) - 1;
195    case 3: // i64
196      return shift ? 63 : (1 << (int)quad) - 1;
197    case 4: // f32
198      assert(!shift && "cannot shift float types!");
199      return (2 << (int)quad) - 1;
200    case 5: // poly8
201      assert(!shift && "cannot shift polynomial types!");
202      return (8 << (int)quad) - 1;
203    case 6: // poly16
204      assert(!shift && "cannot shift polynomial types!");
205      return (4 << (int)quad) - 1;
206    case 7: // float16
207      assert(!shift && "cannot shift float types!");
208      return (4 << (int)quad) - 1;
209  }
210  return 0;
211}
212
213bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
214  llvm::APSInt Result;
215
216  unsigned mask = 0;
217  unsigned TV = 0;
218  switch (BuiltinID) {
219#define GET_NEON_OVERLOAD_CHECK
220#include "clang/Basic/arm_neon.inc"
221#undef GET_NEON_OVERLOAD_CHECK
222  }
223
224  // For NEON intrinsics which are overloaded on vector element type, validate
225  // the immediate which specifies which variant to emit.
226  if (mask) {
227    unsigned ArgNo = TheCall->getNumArgs()-1;
228    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
229      return true;
230
231    TV = Result.getLimitedValue(32);
232    if ((TV > 31) || (mask & (1 << TV)) == 0)
233      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
234        << TheCall->getArg(ArgNo)->getSourceRange();
235  }
236
237  // For NEON intrinsics which take an immediate value as part of the
238  // instruction, range check them here.
239  unsigned i = 0, l = 0, u = 0;
240  switch (BuiltinID) {
241  default: return false;
242  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
243  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
244  case ARM::BI__builtin_arm_vcvtr_f:
245  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
246#define GET_NEON_IMMEDIATE_CHECK
247#include "clang/Basic/arm_neon.inc"
248#undef GET_NEON_IMMEDIATE_CHECK
249  };
250
251  // Check that the immediate argument is actually a constant.
252  if (SemaBuiltinConstantArg(TheCall, i, Result))
253    return true;
254
255  // Range check against the upper/lower values for this isntruction.
256  unsigned Val = Result.getZExtValue();
257  if (Val < l || Val > (u + l))
258    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
259      << l << u+l << TheCall->getArg(i)->getSourceRange();
260
261  // FIXME: VFP Intrinsics should error if VFP not present.
262  return false;
263}
264
265/// CheckFunctionCall - Check a direct function call for various correctness
266/// and safety properties not strictly enforced by the C type system.
267bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
268  // Get the IdentifierInfo* for the called function.
269  IdentifierInfo *FnInfo = FDecl->getIdentifier();
270
271  // None of the checks below are needed for functions that don't have
272  // simple names (e.g., C++ conversion functions).
273  if (!FnInfo)
274    return false;
275
276  // FIXME: This mechanism should be abstracted to be less fragile and
277  // more efficient. For example, just map function ids to custom
278  // handlers.
279
280  // Printf and scanf checking.
281  for (specific_attr_iterator<FormatAttr>
282         i = FDecl->specific_attr_begin<FormatAttr>(),
283         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
284
285    const FormatAttr *Format = *i;
286    const bool b = Format->getType() == "scanf";
287    if (b || CheckablePrintfAttr(Format, TheCall)) {
288      bool HasVAListArg = Format->getFirstArg() == 0;
289      CheckPrintfScanfArguments(TheCall, HasVAListArg,
290                                Format->getFormatIdx() - 1,
291                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
292                                !b);
293    }
294  }
295
296  for (specific_attr_iterator<NonNullAttr>
297         i = FDecl->specific_attr_begin<NonNullAttr>(),
298         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
299    CheckNonNullArguments(*i, TheCall);
300  }
301
302  return false;
303}
304
305bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
306  // Printf checking.
307  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
308  if (!Format)
309    return false;
310
311  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
312  if (!V)
313    return false;
314
315  QualType Ty = V->getType();
316  if (!Ty->isBlockPointerType())
317    return false;
318
319  const bool b = Format->getType() == "scanf";
320  if (!b && !CheckablePrintfAttr(Format, TheCall))
321    return false;
322
323  bool HasVAListArg = Format->getFirstArg() == 0;
324  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
325                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
326
327  return false;
328}
329
330/// SemaBuiltinAtomicOverloaded - We have a call to a function like
331/// __sync_fetch_and_add, which is an overloaded function based on the pointer
332/// type of its first argument.  The main ActOnCallExpr routines have already
333/// promoted the types of arguments because all of these calls are prototyped as
334/// void(...).
335///
336/// This function goes through and does final semantic checking for these
337/// builtins,
338ExprResult
339Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
340  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
341  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
342  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
343
344  // Ensure that we have at least one argument to do type inference from.
345  if (TheCall->getNumArgs() < 1) {
346    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
347      << 0 << 1 << TheCall->getNumArgs()
348      << TheCall->getCallee()->getSourceRange();
349    return ExprError();
350  }
351
352  // Inspect the first argument of the atomic builtin.  This should always be
353  // a pointer type, whose element is an integral scalar or pointer type.
354  // Because it is a pointer type, we don't have to worry about any implicit
355  // casts here.
356  // FIXME: We don't allow floating point scalars as input.
357  Expr *FirstArg = TheCall->getArg(0);
358  if (!FirstArg->getType()->isPointerType()) {
359    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
360      << FirstArg->getType() << FirstArg->getSourceRange();
361    return ExprError();
362  }
363
364  QualType ValType =
365    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
366  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
367      !ValType->isBlockPointerType()) {
368    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
369      << FirstArg->getType() << FirstArg->getSourceRange();
370    return ExprError();
371  }
372
373  // The majority of builtins return a value, but a few have special return
374  // types, so allow them to override appropriately below.
375  QualType ResultType = ValType;
376
377  // We need to figure out which concrete builtin this maps onto.  For example,
378  // __sync_fetch_and_add with a 2 byte object turns into
379  // __sync_fetch_and_add_2.
380#define BUILTIN_ROW(x) \
381  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
382    Builtin::BI##x##_8, Builtin::BI##x##_16 }
383
384  static const unsigned BuiltinIndices[][5] = {
385    BUILTIN_ROW(__sync_fetch_and_add),
386    BUILTIN_ROW(__sync_fetch_and_sub),
387    BUILTIN_ROW(__sync_fetch_and_or),
388    BUILTIN_ROW(__sync_fetch_and_and),
389    BUILTIN_ROW(__sync_fetch_and_xor),
390
391    BUILTIN_ROW(__sync_add_and_fetch),
392    BUILTIN_ROW(__sync_sub_and_fetch),
393    BUILTIN_ROW(__sync_and_and_fetch),
394    BUILTIN_ROW(__sync_or_and_fetch),
395    BUILTIN_ROW(__sync_xor_and_fetch),
396
397    BUILTIN_ROW(__sync_val_compare_and_swap),
398    BUILTIN_ROW(__sync_bool_compare_and_swap),
399    BUILTIN_ROW(__sync_lock_test_and_set),
400    BUILTIN_ROW(__sync_lock_release)
401  };
402#undef BUILTIN_ROW
403
404  // Determine the index of the size.
405  unsigned SizeIndex;
406  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
407  case 1: SizeIndex = 0; break;
408  case 2: SizeIndex = 1; break;
409  case 4: SizeIndex = 2; break;
410  case 8: SizeIndex = 3; break;
411  case 16: SizeIndex = 4; break;
412  default:
413    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
414      << FirstArg->getType() << FirstArg->getSourceRange();
415    return ExprError();
416  }
417
418  // Each of these builtins has one pointer argument, followed by some number of
419  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
420  // that we ignore.  Find out which row of BuiltinIndices to read from as well
421  // as the number of fixed args.
422  unsigned BuiltinID = FDecl->getBuiltinID();
423  unsigned BuiltinIndex, NumFixed = 1;
424  switch (BuiltinID) {
425  default: assert(0 && "Unknown overloaded atomic builtin!");
426  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
427  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
428  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
429  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
430  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
431
432  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
433  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
434  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
435  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
436  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
437
438  case Builtin::BI__sync_val_compare_and_swap:
439    BuiltinIndex = 10;
440    NumFixed = 2;
441    break;
442  case Builtin::BI__sync_bool_compare_and_swap:
443    BuiltinIndex = 11;
444    NumFixed = 2;
445    ResultType = Context.BoolTy;
446    break;
447  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
448  case Builtin::BI__sync_lock_release:
449    BuiltinIndex = 13;
450    NumFixed = 0;
451    ResultType = Context.VoidTy;
452    break;
453  }
454
455  // Now that we know how many fixed arguments we expect, first check that we
456  // have at least that many.
457  if (TheCall->getNumArgs() < 1+NumFixed) {
458    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
459      << 0 << 1+NumFixed << TheCall->getNumArgs()
460      << TheCall->getCallee()->getSourceRange();
461    return ExprError();
462  }
463
464  // Get the decl for the concrete builtin from this, we can tell what the
465  // concrete integer type we should convert to is.
466  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
467  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
468  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
469  FunctionDecl *NewBuiltinDecl =
470    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
471                                           TUScope, false, DRE->getLocStart()));
472
473  // The first argument --- the pointer --- has a fixed type; we
474  // deduce the types of the rest of the arguments accordingly.  Walk
475  // the remaining arguments, converting them to the deduced value type.
476  for (unsigned i = 0; i != NumFixed; ++i) {
477    Expr *Arg = TheCall->getArg(i+1);
478
479    // If the argument is an implicit cast, then there was a promotion due to
480    // "...", just remove it now.
481    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
482      Arg = ICE->getSubExpr();
483      ICE->setSubExpr(0);
484      TheCall->setArg(i+1, Arg);
485    }
486
487    // GCC does an implicit conversion to the pointer or integer ValType.  This
488    // can fail in some cases (1i -> int**), check for this error case now.
489    CastKind Kind = CK_Invalid;
490    ExprValueKind VK = VK_RValue;
491    CXXCastPath BasePath;
492    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, VK, BasePath))
493      return ExprError();
494
495    // Okay, we have something that *can* be converted to the right type.  Check
496    // to see if there is a potentially weird extension going on here.  This can
497    // happen when you do an atomic operation on something like an char* and
498    // pass in 42.  The 42 gets converted to char.  This is even more strange
499    // for things like 45.123 -> char, etc.
500    // FIXME: Do this check.
501    ImpCastExprToType(Arg, ValType, Kind, VK, &BasePath);
502    TheCall->setArg(i+1, Arg);
503  }
504
505  // Switch the DeclRefExpr to refer to the new decl.
506  DRE->setDecl(NewBuiltinDecl);
507  DRE->setType(NewBuiltinDecl->getType());
508
509  // Set the callee in the CallExpr.
510  // FIXME: This leaks the original parens and implicit casts.
511  Expr *PromotedCall = DRE;
512  UsualUnaryConversions(PromotedCall);
513  TheCall->setCallee(PromotedCall);
514
515  // Change the result type of the call to match the original value type. This
516  // is arbitrary, but the codegen for these builtins ins design to handle it
517  // gracefully.
518  TheCall->setType(ResultType);
519
520  return move(TheCallResult);
521}
522
523
524/// CheckObjCString - Checks that the argument to the builtin
525/// CFString constructor is correct
526/// Note: It might also make sense to do the UTF-16 conversion here (would
527/// simplify the backend).
528bool Sema::CheckObjCString(Expr *Arg) {
529  Arg = Arg->IgnoreParenCasts();
530  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
531
532  if (!Literal || Literal->isWide()) {
533    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
534      << Arg->getSourceRange();
535    return true;
536  }
537
538  size_t NulPos = Literal->getString().find('\0');
539  if (NulPos != llvm::StringRef::npos) {
540    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
541         diag::warn_cfstring_literal_contains_nul_character)
542      << Arg->getSourceRange();
543  }
544  if (Literal->containsNonAsciiOrNull()) {
545    llvm::StringRef String = Literal->getString();
546    unsigned NumBytes = String.size();
547    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
548    const UTF8 *FromPtr = (UTF8 *)String.data();
549    UTF16 *ToPtr = &ToBuf[0];
550
551    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
552                                                 &ToPtr, ToPtr + NumBytes,
553                                                 strictConversion);
554    // Check for conversion failure.
555    if (Result != conversionOK)
556      Diag(Arg->getLocStart(),
557           diag::warn_cfstring_truncated) << Arg->getSourceRange();
558  }
559  return false;
560}
561
562/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
563/// Emit an error and return true on failure, return false on success.
564bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
565  Expr *Fn = TheCall->getCallee();
566  if (TheCall->getNumArgs() > 2) {
567    Diag(TheCall->getArg(2)->getLocStart(),
568         diag::err_typecheck_call_too_many_args)
569      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
570      << Fn->getSourceRange()
571      << SourceRange(TheCall->getArg(2)->getLocStart(),
572                     (*(TheCall->arg_end()-1))->getLocEnd());
573    return true;
574  }
575
576  if (TheCall->getNumArgs() < 2) {
577    return Diag(TheCall->getLocEnd(),
578      diag::err_typecheck_call_too_few_args_at_least)
579      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
580  }
581
582  // Determine whether the current function is variadic or not.
583  BlockScopeInfo *CurBlock = getCurBlock();
584  bool isVariadic;
585  if (CurBlock)
586    isVariadic = CurBlock->TheDecl->isVariadic();
587  else if (FunctionDecl *FD = getCurFunctionDecl())
588    isVariadic = FD->isVariadic();
589  else
590    isVariadic = getCurMethodDecl()->isVariadic();
591
592  if (!isVariadic) {
593    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
594    return true;
595  }
596
597  // Verify that the second argument to the builtin is the last argument of the
598  // current function or method.
599  bool SecondArgIsLastNamedArgument = false;
600  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
601
602  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
603    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
604      // FIXME: This isn't correct for methods (results in bogus warning).
605      // Get the last formal in the current function.
606      const ParmVarDecl *LastArg;
607      if (CurBlock)
608        LastArg = *(CurBlock->TheDecl->param_end()-1);
609      else if (FunctionDecl *FD = getCurFunctionDecl())
610        LastArg = *(FD->param_end()-1);
611      else
612        LastArg = *(getCurMethodDecl()->param_end()-1);
613      SecondArgIsLastNamedArgument = PV == LastArg;
614    }
615  }
616
617  if (!SecondArgIsLastNamedArgument)
618    Diag(TheCall->getArg(1)->getLocStart(),
619         diag::warn_second_parameter_of_va_start_not_last_named_argument);
620  return false;
621}
622
623/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
624/// friends.  This is declared to take (...), so we have to check everything.
625bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
626  if (TheCall->getNumArgs() < 2)
627    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
628      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
629  if (TheCall->getNumArgs() > 2)
630    return Diag(TheCall->getArg(2)->getLocStart(),
631                diag::err_typecheck_call_too_many_args)
632      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
633      << SourceRange(TheCall->getArg(2)->getLocStart(),
634                     (*(TheCall->arg_end()-1))->getLocEnd());
635
636  Expr *OrigArg0 = TheCall->getArg(0);
637  Expr *OrigArg1 = TheCall->getArg(1);
638
639  // Do standard promotions between the two arguments, returning their common
640  // type.
641  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
642
643  // Make sure any conversions are pushed back into the call; this is
644  // type safe since unordered compare builtins are declared as "_Bool
645  // foo(...)".
646  TheCall->setArg(0, OrigArg0);
647  TheCall->setArg(1, OrigArg1);
648
649  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
650    return false;
651
652  // If the common type isn't a real floating type, then the arguments were
653  // invalid for this operation.
654  if (!Res->isRealFloatingType())
655    return Diag(OrigArg0->getLocStart(),
656                diag::err_typecheck_call_invalid_ordered_compare)
657      << OrigArg0->getType() << OrigArg1->getType()
658      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
659
660  return false;
661}
662
663/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
664/// __builtin_isnan and friends.  This is declared to take (...), so we have
665/// to check everything. We expect the last argument to be a floating point
666/// value.
667bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
668  if (TheCall->getNumArgs() < NumArgs)
669    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
670      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
671  if (TheCall->getNumArgs() > NumArgs)
672    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
673                diag::err_typecheck_call_too_many_args)
674      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
675      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
676                     (*(TheCall->arg_end()-1))->getLocEnd());
677
678  Expr *OrigArg = TheCall->getArg(NumArgs-1);
679
680  if (OrigArg->isTypeDependent())
681    return false;
682
683  // This operation requires a non-_Complex floating-point number.
684  if (!OrigArg->getType()->isRealFloatingType())
685    return Diag(OrigArg->getLocStart(),
686                diag::err_typecheck_call_invalid_unary_fp)
687      << OrigArg->getType() << OrigArg->getSourceRange();
688
689  // If this is an implicit conversion from float -> double, remove it.
690  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
691    Expr *CastArg = Cast->getSubExpr();
692    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
693      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
694             "promotion from float to double is the only expected cast here");
695      Cast->setSubExpr(0);
696      TheCall->setArg(NumArgs-1, CastArg);
697      OrigArg = CastArg;
698    }
699  }
700
701  return false;
702}
703
704/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
705// This is declared to take (...), so we have to check everything.
706ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
707  if (TheCall->getNumArgs() < 2)
708    return ExprError(Diag(TheCall->getLocEnd(),
709                          diag::err_typecheck_call_too_few_args_at_least)
710      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
711      << TheCall->getSourceRange());
712
713  // Determine which of the following types of shufflevector we're checking:
714  // 1) unary, vector mask: (lhs, mask)
715  // 2) binary, vector mask: (lhs, rhs, mask)
716  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
717  QualType resType = TheCall->getArg(0)->getType();
718  unsigned numElements = 0;
719
720  if (!TheCall->getArg(0)->isTypeDependent() &&
721      !TheCall->getArg(1)->isTypeDependent()) {
722    QualType LHSType = TheCall->getArg(0)->getType();
723    QualType RHSType = TheCall->getArg(1)->getType();
724
725    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
726      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
727        << SourceRange(TheCall->getArg(0)->getLocStart(),
728                       TheCall->getArg(1)->getLocEnd());
729      return ExprError();
730    }
731
732    numElements = LHSType->getAs<VectorType>()->getNumElements();
733    unsigned numResElements = TheCall->getNumArgs() - 2;
734
735    // Check to see if we have a call with 2 vector arguments, the unary shuffle
736    // with mask.  If so, verify that RHS is an integer vector type with the
737    // same number of elts as lhs.
738    if (TheCall->getNumArgs() == 2) {
739      if (!RHSType->hasIntegerRepresentation() ||
740          RHSType->getAs<VectorType>()->getNumElements() != numElements)
741        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
742          << SourceRange(TheCall->getArg(1)->getLocStart(),
743                         TheCall->getArg(1)->getLocEnd());
744      numResElements = numElements;
745    }
746    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
747      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
748        << SourceRange(TheCall->getArg(0)->getLocStart(),
749                       TheCall->getArg(1)->getLocEnd());
750      return ExprError();
751    } else if (numElements != numResElements) {
752      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
753      resType = Context.getVectorType(eltType, numResElements,
754                                      VectorType::GenericVector);
755    }
756  }
757
758  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
759    if (TheCall->getArg(i)->isTypeDependent() ||
760        TheCall->getArg(i)->isValueDependent())
761      continue;
762
763    llvm::APSInt Result(32);
764    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
765      return ExprError(Diag(TheCall->getLocStart(),
766                  diag::err_shufflevector_nonconstant_argument)
767                << TheCall->getArg(i)->getSourceRange());
768
769    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
770      return ExprError(Diag(TheCall->getLocStart(),
771                  diag::err_shufflevector_argument_too_large)
772               << TheCall->getArg(i)->getSourceRange());
773  }
774
775  llvm::SmallVector<Expr*, 32> exprs;
776
777  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
778    exprs.push_back(TheCall->getArg(i));
779    TheCall->setArg(i, 0);
780  }
781
782  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
783                                            exprs.size(), resType,
784                                            TheCall->getCallee()->getLocStart(),
785                                            TheCall->getRParenLoc()));
786}
787
788/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
789// This is declared to take (const void*, ...) and can take two
790// optional constant int args.
791bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
792  unsigned NumArgs = TheCall->getNumArgs();
793
794  if (NumArgs > 3)
795    return Diag(TheCall->getLocEnd(),
796             diag::err_typecheck_call_too_many_args_at_most)
797             << 0 /*function call*/ << 3 << NumArgs
798             << TheCall->getSourceRange();
799
800  // Argument 0 is checked for us and the remaining arguments must be
801  // constant integers.
802  for (unsigned i = 1; i != NumArgs; ++i) {
803    Expr *Arg = TheCall->getArg(i);
804
805    llvm::APSInt Result;
806    if (SemaBuiltinConstantArg(TheCall, i, Result))
807      return true;
808
809    // FIXME: gcc issues a warning and rewrites these to 0. These
810    // seems especially odd for the third argument since the default
811    // is 3.
812    if (i == 1) {
813      if (Result.getLimitedValue() > 1)
814        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
815             << "0" << "1" << Arg->getSourceRange();
816    } else {
817      if (Result.getLimitedValue() > 3)
818        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
819            << "0" << "3" << Arg->getSourceRange();
820    }
821  }
822
823  return false;
824}
825
826/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
827/// TheCall is a constant expression.
828bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
829                                  llvm::APSInt &Result) {
830  Expr *Arg = TheCall->getArg(ArgNum);
831  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
832  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
833
834  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
835
836  if (!Arg->isIntegerConstantExpr(Result, Context))
837    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
838                << FDecl->getDeclName() <<  Arg->getSourceRange();
839
840  return false;
841}
842
843/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
844/// int type). This simply type checks that type is one of the defined
845/// constants (0-3).
846// For compatability check 0-3, llvm only handles 0 and 2.
847bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
848  llvm::APSInt Result;
849
850  // Check constant-ness first.
851  if (SemaBuiltinConstantArg(TheCall, 1, Result))
852    return true;
853
854  Expr *Arg = TheCall->getArg(1);
855  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
856    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
857             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
858  }
859
860  return false;
861}
862
863/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
864/// This checks that val is a constant 1.
865bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
866  Expr *Arg = TheCall->getArg(1);
867  llvm::APSInt Result;
868
869  // TODO: This is less than ideal. Overload this to take a value.
870  if (SemaBuiltinConstantArg(TheCall, 1, Result))
871    return true;
872
873  if (Result != 1)
874    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
875             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
876
877  return false;
878}
879
880// Handle i > 1 ? "x" : "y", recursivelly
881bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
882                                  bool HasVAListArg,
883                                  unsigned format_idx, unsigned firstDataArg,
884                                  bool isPrintf) {
885 tryAgain:
886  if (E->isTypeDependent() || E->isValueDependent())
887    return false;
888
889  switch (E->getStmtClass()) {
890  case Stmt::ConditionalOperatorClass: {
891    const ConditionalOperator *C = cast<ConditionalOperator>(E);
892    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
893                                  format_idx, firstDataArg, isPrintf)
894        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
895                                  format_idx, firstDataArg, isPrintf);
896  }
897
898  case Stmt::IntegerLiteralClass:
899    // Technically -Wformat-nonliteral does not warn about this case.
900    // The behavior of printf and friends in this case is implementation
901    // dependent.  Ideally if the format string cannot be null then
902    // it should have a 'nonnull' attribute in the function prototype.
903    return true;
904
905  case Stmt::ImplicitCastExprClass: {
906    E = cast<ImplicitCastExpr>(E)->getSubExpr();
907    goto tryAgain;
908  }
909
910  case Stmt::ParenExprClass: {
911    E = cast<ParenExpr>(E)->getSubExpr();
912    goto tryAgain;
913  }
914
915  case Stmt::DeclRefExprClass: {
916    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
917
918    // As an exception, do not flag errors for variables binding to
919    // const string literals.
920    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
921      bool isConstant = false;
922      QualType T = DR->getType();
923
924      if (const ArrayType *AT = Context.getAsArrayType(T)) {
925        isConstant = AT->getElementType().isConstant(Context);
926      } else if (const PointerType *PT = T->getAs<PointerType>()) {
927        isConstant = T.isConstant(Context) &&
928                     PT->getPointeeType().isConstant(Context);
929      }
930
931      if (isConstant) {
932        if (const Expr *Init = VD->getAnyInitializer())
933          return SemaCheckStringLiteral(Init, TheCall,
934                                        HasVAListArg, format_idx, firstDataArg,
935                                        isPrintf);
936      }
937
938      // For vprintf* functions (i.e., HasVAListArg==true), we add a
939      // special check to see if the format string is a function parameter
940      // of the function calling the printf function.  If the function
941      // has an attribute indicating it is a printf-like function, then we
942      // should suppress warnings concerning non-literals being used in a call
943      // to a vprintf function.  For example:
944      //
945      // void
946      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
947      //      va_list ap;
948      //      va_start(ap, fmt);
949      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
950      //      ...
951      //
952      //
953      //  FIXME: We don't have full attribute support yet, so just check to see
954      //    if the argument is a DeclRefExpr that references a parameter.  We'll
955      //    add proper support for checking the attribute later.
956      if (HasVAListArg)
957        if (isa<ParmVarDecl>(VD))
958          return true;
959    }
960
961    return false;
962  }
963
964  case Stmt::CallExprClass: {
965    const CallExpr *CE = cast<CallExpr>(E);
966    if (const ImplicitCastExpr *ICE
967          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
968      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
969        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
970          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
971            unsigned ArgIndex = FA->getFormatIdx();
972            const Expr *Arg = CE->getArg(ArgIndex - 1);
973
974            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
975                                          format_idx, firstDataArg, isPrintf);
976          }
977        }
978      }
979    }
980
981    return false;
982  }
983  case Stmt::ObjCStringLiteralClass:
984  case Stmt::StringLiteralClass: {
985    const StringLiteral *StrE = NULL;
986
987    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
988      StrE = ObjCFExpr->getString();
989    else
990      StrE = cast<StringLiteral>(E);
991
992    if (StrE) {
993      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
994                        firstDataArg, isPrintf);
995      return true;
996    }
997
998    return false;
999  }
1000
1001  default:
1002    return false;
1003  }
1004}
1005
1006void
1007Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1008                            const CallExpr *TheCall) {
1009  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1010                                  e = NonNull->args_end();
1011       i != e; ++i) {
1012    const Expr *ArgExpr = TheCall->getArg(*i);
1013    if (ArgExpr->isNullPointerConstant(Context,
1014                                       Expr::NPC_ValueDependentIsNotNull))
1015      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1016        << ArgExpr->getSourceRange();
1017  }
1018}
1019
1020/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1021/// functions) for correct use of format strings.
1022void
1023Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1024                                unsigned format_idx, unsigned firstDataArg,
1025                                bool isPrintf) {
1026
1027  const Expr *Fn = TheCall->getCallee();
1028
1029  // The way the format attribute works in GCC, the implicit this argument
1030  // of member functions is counted. However, it doesn't appear in our own
1031  // lists, so decrement format_idx in that case.
1032  if (isa<CXXMemberCallExpr>(TheCall)) {
1033    const CXXMethodDecl *method_decl =
1034      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1035    if (method_decl && method_decl->isInstance()) {
1036      // Catch a format attribute mistakenly referring to the object argument.
1037      if (format_idx == 0)
1038        return;
1039      --format_idx;
1040      if(firstDataArg != 0)
1041        --firstDataArg;
1042    }
1043  }
1044
1045  // CHECK: printf/scanf-like function is called with no format string.
1046  if (format_idx >= TheCall->getNumArgs()) {
1047    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1048      << Fn->getSourceRange();
1049    return;
1050  }
1051
1052  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1053
1054  // CHECK: format string is not a string literal.
1055  //
1056  // Dynamically generated format strings are difficult to
1057  // automatically vet at compile time.  Requiring that format strings
1058  // are string literals: (1) permits the checking of format strings by
1059  // the compiler and thereby (2) can practically remove the source of
1060  // many format string exploits.
1061
1062  // Format string can be either ObjC string (e.g. @"%d") or
1063  // C string (e.g. "%d")
1064  // ObjC string uses the same format specifiers as C string, so we can use
1065  // the same format string checking logic for both ObjC and C strings.
1066  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1067                             firstDataArg, isPrintf))
1068    return;  // Literal format string found, check done!
1069
1070  // If there are no arguments specified, warn with -Wformat-security, otherwise
1071  // warn only with -Wformat-nonliteral.
1072  if (TheCall->getNumArgs() == format_idx+1)
1073    Diag(TheCall->getArg(format_idx)->getLocStart(),
1074         diag::warn_format_nonliteral_noargs)
1075      << OrigFormatExpr->getSourceRange();
1076  else
1077    Diag(TheCall->getArg(format_idx)->getLocStart(),
1078         diag::warn_format_nonliteral)
1079           << OrigFormatExpr->getSourceRange();
1080}
1081
1082namespace {
1083class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1084protected:
1085  Sema &S;
1086  const StringLiteral *FExpr;
1087  const Expr *OrigFormatExpr;
1088  const unsigned FirstDataArg;
1089  const unsigned NumDataArgs;
1090  const bool IsObjCLiteral;
1091  const char *Beg; // Start of format string.
1092  const bool HasVAListArg;
1093  const CallExpr *TheCall;
1094  unsigned FormatIdx;
1095  llvm::BitVector CoveredArgs;
1096  bool usesPositionalArgs;
1097  bool atFirstArg;
1098public:
1099  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1100                     const Expr *origFormatExpr, unsigned firstDataArg,
1101                     unsigned numDataArgs, bool isObjCLiteral,
1102                     const char *beg, bool hasVAListArg,
1103                     const CallExpr *theCall, unsigned formatIdx)
1104    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1105      FirstDataArg(firstDataArg),
1106      NumDataArgs(numDataArgs),
1107      IsObjCLiteral(isObjCLiteral), Beg(beg),
1108      HasVAListArg(hasVAListArg),
1109      TheCall(theCall), FormatIdx(formatIdx),
1110      usesPositionalArgs(false), atFirstArg(true) {
1111        CoveredArgs.resize(numDataArgs);
1112        CoveredArgs.reset();
1113      }
1114
1115  void DoneProcessing();
1116
1117  void HandleIncompleteSpecifier(const char *startSpecifier,
1118                                 unsigned specifierLen);
1119
1120  virtual void HandleInvalidPosition(const char *startSpecifier,
1121                                     unsigned specifierLen,
1122                                     analyze_format_string::PositionContext p);
1123
1124  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1125
1126  void HandleNullChar(const char *nullCharacter);
1127
1128protected:
1129  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1130                                        const char *startSpec,
1131                                        unsigned specifierLen,
1132                                        const char *csStart, unsigned csLen);
1133
1134  SourceRange getFormatStringRange();
1135  CharSourceRange getSpecifierRange(const char *startSpecifier,
1136                                    unsigned specifierLen);
1137  SourceLocation getLocationOfByte(const char *x);
1138
1139  const Expr *getDataArg(unsigned i) const;
1140
1141  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1142                    const analyze_format_string::ConversionSpecifier &CS,
1143                    const char *startSpecifier, unsigned specifierLen,
1144                    unsigned argIndex);
1145};
1146}
1147
1148SourceRange CheckFormatHandler::getFormatStringRange() {
1149  return OrigFormatExpr->getSourceRange();
1150}
1151
1152CharSourceRange CheckFormatHandler::
1153getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1154  SourceLocation Start = getLocationOfByte(startSpecifier);
1155  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1156
1157  // Advance the end SourceLocation by one due to half-open ranges.
1158  End = End.getFileLocWithOffset(1);
1159
1160  return CharSourceRange::getCharRange(Start, End);
1161}
1162
1163SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1164  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1165}
1166
1167void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1168                                                   unsigned specifierLen){
1169  SourceLocation Loc = getLocationOfByte(startSpecifier);
1170  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1171    << getSpecifierRange(startSpecifier, specifierLen);
1172}
1173
1174void
1175CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1176                                     analyze_format_string::PositionContext p) {
1177  SourceLocation Loc = getLocationOfByte(startPos);
1178  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1179    << (unsigned) p << getSpecifierRange(startPos, posLen);
1180}
1181
1182void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1183                                            unsigned posLen) {
1184  SourceLocation Loc = getLocationOfByte(startPos);
1185  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1186    << getSpecifierRange(startPos, posLen);
1187}
1188
1189void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1190  // The presence of a null character is likely an error.
1191  S.Diag(getLocationOfByte(nullCharacter),
1192         diag::warn_printf_format_string_contains_null_char)
1193    << getFormatStringRange();
1194}
1195
1196const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1197  return TheCall->getArg(FirstDataArg + i);
1198}
1199
1200void CheckFormatHandler::DoneProcessing() {
1201    // Does the number of data arguments exceed the number of
1202    // format conversions in the format string?
1203  if (!HasVAListArg) {
1204      // Find any arguments that weren't covered.
1205    CoveredArgs.flip();
1206    signed notCoveredArg = CoveredArgs.find_first();
1207    if (notCoveredArg >= 0) {
1208      assert((unsigned)notCoveredArg < NumDataArgs);
1209      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1210             diag::warn_printf_data_arg_not_used)
1211      << getFormatStringRange();
1212    }
1213  }
1214}
1215
1216bool
1217CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1218                                                     SourceLocation Loc,
1219                                                     const char *startSpec,
1220                                                     unsigned specifierLen,
1221                                                     const char *csStart,
1222                                                     unsigned csLen) {
1223
1224  bool keepGoing = true;
1225  if (argIndex < NumDataArgs) {
1226    // Consider the argument coverered, even though the specifier doesn't
1227    // make sense.
1228    CoveredArgs.set(argIndex);
1229  }
1230  else {
1231    // If argIndex exceeds the number of data arguments we
1232    // don't issue a warning because that is just a cascade of warnings (and
1233    // they may have intended '%%' anyway). We don't want to continue processing
1234    // the format string after this point, however, as we will like just get
1235    // gibberish when trying to match arguments.
1236    keepGoing = false;
1237  }
1238
1239  S.Diag(Loc, diag::warn_format_invalid_conversion)
1240    << llvm::StringRef(csStart, csLen)
1241    << getSpecifierRange(startSpec, specifierLen);
1242
1243  return keepGoing;
1244}
1245
1246bool
1247CheckFormatHandler::CheckNumArgs(
1248  const analyze_format_string::FormatSpecifier &FS,
1249  const analyze_format_string::ConversionSpecifier &CS,
1250  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1251
1252  if (argIndex >= NumDataArgs) {
1253    if (FS.usesPositionalArg())  {
1254      S.Diag(getLocationOfByte(CS.getStart()),
1255             diag::warn_printf_positional_arg_exceeds_data_args)
1256      << (argIndex+1) << NumDataArgs
1257      << getSpecifierRange(startSpecifier, specifierLen);
1258    }
1259    else {
1260      S.Diag(getLocationOfByte(CS.getStart()),
1261             diag::warn_printf_insufficient_data_args)
1262      << getSpecifierRange(startSpecifier, specifierLen);
1263    }
1264
1265    return false;
1266  }
1267  return true;
1268}
1269
1270//===--- CHECK: Printf format string checking ------------------------------===//
1271
1272namespace {
1273class CheckPrintfHandler : public CheckFormatHandler {
1274public:
1275  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1276                     const Expr *origFormatExpr, unsigned firstDataArg,
1277                     unsigned numDataArgs, bool isObjCLiteral,
1278                     const char *beg, bool hasVAListArg,
1279                     const CallExpr *theCall, unsigned formatIdx)
1280  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1281                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1282                       theCall, formatIdx) {}
1283
1284
1285  bool HandleInvalidPrintfConversionSpecifier(
1286                                      const analyze_printf::PrintfSpecifier &FS,
1287                                      const char *startSpecifier,
1288                                      unsigned specifierLen);
1289
1290  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1291                             const char *startSpecifier,
1292                             unsigned specifierLen);
1293
1294  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1295                    const char *startSpecifier, unsigned specifierLen);
1296  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1297                           const analyze_printf::OptionalAmount &Amt,
1298                           unsigned type,
1299                           const char *startSpecifier, unsigned specifierLen);
1300  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1301                  const analyze_printf::OptionalFlag &flag,
1302                  const char *startSpecifier, unsigned specifierLen);
1303  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1304                         const analyze_printf::OptionalFlag &ignoredFlag,
1305                         const analyze_printf::OptionalFlag &flag,
1306                         const char *startSpecifier, unsigned specifierLen);
1307};
1308}
1309
1310bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1311                                      const analyze_printf::PrintfSpecifier &FS,
1312                                      const char *startSpecifier,
1313                                      unsigned specifierLen) {
1314  const analyze_printf::PrintfConversionSpecifier &CS =
1315    FS.getConversionSpecifier();
1316
1317  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1318                                          getLocationOfByte(CS.getStart()),
1319                                          startSpecifier, specifierLen,
1320                                          CS.getStart(), CS.getLength());
1321}
1322
1323bool CheckPrintfHandler::HandleAmount(
1324                               const analyze_format_string::OptionalAmount &Amt,
1325                               unsigned k, const char *startSpecifier,
1326                               unsigned specifierLen) {
1327
1328  if (Amt.hasDataArgument()) {
1329    if (!HasVAListArg) {
1330      unsigned argIndex = Amt.getArgIndex();
1331      if (argIndex >= NumDataArgs) {
1332        S.Diag(getLocationOfByte(Amt.getStart()),
1333               diag::warn_printf_asterisk_missing_arg)
1334          << k << getSpecifierRange(startSpecifier, specifierLen);
1335        // Don't do any more checking.  We will just emit
1336        // spurious errors.
1337        return false;
1338      }
1339
1340      // Type check the data argument.  It should be an 'int'.
1341      // Although not in conformance with C99, we also allow the argument to be
1342      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1343      // doesn't emit a warning for that case.
1344      CoveredArgs.set(argIndex);
1345      const Expr *Arg = getDataArg(argIndex);
1346      QualType T = Arg->getType();
1347
1348      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1349      assert(ATR.isValid());
1350
1351      if (!ATR.matchesType(S.Context, T)) {
1352        S.Diag(getLocationOfByte(Amt.getStart()),
1353               diag::warn_printf_asterisk_wrong_type)
1354          << k
1355          << ATR.getRepresentativeType(S.Context) << T
1356          << getSpecifierRange(startSpecifier, specifierLen)
1357          << Arg->getSourceRange();
1358        // Don't do any more checking.  We will just emit
1359        // spurious errors.
1360        return false;
1361      }
1362    }
1363  }
1364  return true;
1365}
1366
1367void CheckPrintfHandler::HandleInvalidAmount(
1368                                      const analyze_printf::PrintfSpecifier &FS,
1369                                      const analyze_printf::OptionalAmount &Amt,
1370                                      unsigned type,
1371                                      const char *startSpecifier,
1372                                      unsigned specifierLen) {
1373  const analyze_printf::PrintfConversionSpecifier &CS =
1374    FS.getConversionSpecifier();
1375  switch (Amt.getHowSpecified()) {
1376  case analyze_printf::OptionalAmount::Constant:
1377    S.Diag(getLocationOfByte(Amt.getStart()),
1378        diag::warn_printf_nonsensical_optional_amount)
1379      << type
1380      << CS.toString()
1381      << getSpecifierRange(startSpecifier, specifierLen)
1382      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1383          Amt.getConstantLength()));
1384    break;
1385
1386  default:
1387    S.Diag(getLocationOfByte(Amt.getStart()),
1388        diag::warn_printf_nonsensical_optional_amount)
1389      << type
1390      << CS.toString()
1391      << getSpecifierRange(startSpecifier, specifierLen);
1392    break;
1393  }
1394}
1395
1396void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1397                                    const analyze_printf::OptionalFlag &flag,
1398                                    const char *startSpecifier,
1399                                    unsigned specifierLen) {
1400  // Warn about pointless flag with a fixit removal.
1401  const analyze_printf::PrintfConversionSpecifier &CS =
1402    FS.getConversionSpecifier();
1403  S.Diag(getLocationOfByte(flag.getPosition()),
1404      diag::warn_printf_nonsensical_flag)
1405    << flag.toString() << CS.toString()
1406    << getSpecifierRange(startSpecifier, specifierLen)
1407    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1408}
1409
1410void CheckPrintfHandler::HandleIgnoredFlag(
1411                                const analyze_printf::PrintfSpecifier &FS,
1412                                const analyze_printf::OptionalFlag &ignoredFlag,
1413                                const analyze_printf::OptionalFlag &flag,
1414                                const char *startSpecifier,
1415                                unsigned specifierLen) {
1416  // Warn about ignored flag with a fixit removal.
1417  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1418      diag::warn_printf_ignored_flag)
1419    << ignoredFlag.toString() << flag.toString()
1420    << getSpecifierRange(startSpecifier, specifierLen)
1421    << FixItHint::CreateRemoval(getSpecifierRange(
1422        ignoredFlag.getPosition(), 1));
1423}
1424
1425bool
1426CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1427                                            &FS,
1428                                          const char *startSpecifier,
1429                                          unsigned specifierLen) {
1430
1431  using namespace analyze_format_string;
1432  using namespace analyze_printf;
1433  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1434
1435  if (FS.consumesDataArgument()) {
1436    if (atFirstArg) {
1437        atFirstArg = false;
1438        usesPositionalArgs = FS.usesPositionalArg();
1439    }
1440    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1441      // Cannot mix-and-match positional and non-positional arguments.
1442      S.Diag(getLocationOfByte(CS.getStart()),
1443             diag::warn_format_mix_positional_nonpositional_args)
1444        << getSpecifierRange(startSpecifier, specifierLen);
1445      return false;
1446    }
1447  }
1448
1449  // First check if the field width, precision, and conversion specifier
1450  // have matching data arguments.
1451  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1452                    startSpecifier, specifierLen)) {
1453    return false;
1454  }
1455
1456  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1457                    startSpecifier, specifierLen)) {
1458    return false;
1459  }
1460
1461  if (!CS.consumesDataArgument()) {
1462    // FIXME: Technically specifying a precision or field width here
1463    // makes no sense.  Worth issuing a warning at some point.
1464    return true;
1465  }
1466
1467  // Consume the argument.
1468  unsigned argIndex = FS.getArgIndex();
1469  if (argIndex < NumDataArgs) {
1470    // The check to see if the argIndex is valid will come later.
1471    // We set the bit here because we may exit early from this
1472    // function if we encounter some other error.
1473    CoveredArgs.set(argIndex);
1474  }
1475
1476  // Check for using an Objective-C specific conversion specifier
1477  // in a non-ObjC literal.
1478  if (!IsObjCLiteral && CS.isObjCArg()) {
1479    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1480                                                  specifierLen);
1481  }
1482
1483  // Check for invalid use of field width
1484  if (!FS.hasValidFieldWidth()) {
1485    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1486        startSpecifier, specifierLen);
1487  }
1488
1489  // Check for invalid use of precision
1490  if (!FS.hasValidPrecision()) {
1491    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1492        startSpecifier, specifierLen);
1493  }
1494
1495  // Check each flag does not conflict with any other component.
1496  if (!FS.hasValidLeadingZeros())
1497    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1498  if (!FS.hasValidPlusPrefix())
1499    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1500  if (!FS.hasValidSpacePrefix())
1501    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1502  if (!FS.hasValidAlternativeForm())
1503    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1504  if (!FS.hasValidLeftJustified())
1505    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1506
1507  // Check that flags are not ignored by another flag
1508  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1509    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1510        startSpecifier, specifierLen);
1511  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1512    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1513            startSpecifier, specifierLen);
1514
1515  // Check the length modifier is valid with the given conversion specifier.
1516  const LengthModifier &LM = FS.getLengthModifier();
1517  if (!FS.hasValidLengthModifier())
1518    S.Diag(getLocationOfByte(LM.getStart()),
1519        diag::warn_format_nonsensical_length)
1520      << LM.toString() << CS.toString()
1521      << getSpecifierRange(startSpecifier, specifierLen)
1522      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1523          LM.getLength()));
1524
1525  // Are we using '%n'?
1526  if (CS.getKind() == ConversionSpecifier::nArg) {
1527    // Issue a warning about this being a possible security issue.
1528    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1529      << getSpecifierRange(startSpecifier, specifierLen);
1530    // Continue checking the other format specifiers.
1531    return true;
1532  }
1533
1534  // The remaining checks depend on the data arguments.
1535  if (HasVAListArg)
1536    return true;
1537
1538  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1539    return false;
1540
1541  // Now type check the data expression that matches the
1542  // format specifier.
1543  const Expr *Ex = getDataArg(argIndex);
1544  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1545  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1546    // Check if we didn't match because of an implicit cast from a 'char'
1547    // or 'short' to an 'int'.  This is done because printf is a varargs
1548    // function.
1549    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1550      if (ICE->getType() == S.Context.IntTy) {
1551        // All further checking is done on the subexpression.
1552        Ex = ICE->getSubExpr();
1553        if (ATR.matchesType(S.Context, Ex->getType()))
1554          return true;
1555      }
1556
1557    // We may be able to offer a FixItHint if it is a supported type.
1558    PrintfSpecifier fixedFS = FS;
1559    bool success = fixedFS.fixType(Ex->getType());
1560
1561    if (success) {
1562      // Get the fix string from the fixed format specifier
1563      llvm::SmallString<128> buf;
1564      llvm::raw_svector_ostream os(buf);
1565      fixedFS.toString(os);
1566
1567      // FIXME: getRepresentativeType() perhaps should return a string
1568      // instead of a QualType to better handle when the representative
1569      // type is 'wint_t' (which is defined in the system headers).
1570      S.Diag(getLocationOfByte(CS.getStart()),
1571          diag::warn_printf_conversion_argument_type_mismatch)
1572        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1573        << getSpecifierRange(startSpecifier, specifierLen)
1574        << Ex->getSourceRange()
1575        << FixItHint::CreateReplacement(
1576            getSpecifierRange(startSpecifier, specifierLen),
1577            os.str());
1578    }
1579    else {
1580      S.Diag(getLocationOfByte(CS.getStart()),
1581             diag::warn_printf_conversion_argument_type_mismatch)
1582        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1583        << getSpecifierRange(startSpecifier, specifierLen)
1584        << Ex->getSourceRange();
1585    }
1586  }
1587
1588  return true;
1589}
1590
1591//===--- CHECK: Scanf format string checking ------------------------------===//
1592
1593namespace {
1594class CheckScanfHandler : public CheckFormatHandler {
1595public:
1596  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1597                    const Expr *origFormatExpr, unsigned firstDataArg,
1598                    unsigned numDataArgs, bool isObjCLiteral,
1599                    const char *beg, bool hasVAListArg,
1600                    const CallExpr *theCall, unsigned formatIdx)
1601  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1602                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1603                       theCall, formatIdx) {}
1604
1605  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1606                            const char *startSpecifier,
1607                            unsigned specifierLen);
1608
1609  bool HandleInvalidScanfConversionSpecifier(
1610          const analyze_scanf::ScanfSpecifier &FS,
1611          const char *startSpecifier,
1612          unsigned specifierLen);
1613
1614  void HandleIncompleteScanList(const char *start, const char *end);
1615};
1616}
1617
1618void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1619                                                 const char *end) {
1620  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1621    << getSpecifierRange(start, end - start);
1622}
1623
1624bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1625                                        const analyze_scanf::ScanfSpecifier &FS,
1626                                        const char *startSpecifier,
1627                                        unsigned specifierLen) {
1628
1629  const analyze_scanf::ScanfConversionSpecifier &CS =
1630    FS.getConversionSpecifier();
1631
1632  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1633                                          getLocationOfByte(CS.getStart()),
1634                                          startSpecifier, specifierLen,
1635                                          CS.getStart(), CS.getLength());
1636}
1637
1638bool CheckScanfHandler::HandleScanfSpecifier(
1639                                       const analyze_scanf::ScanfSpecifier &FS,
1640                                       const char *startSpecifier,
1641                                       unsigned specifierLen) {
1642
1643  using namespace analyze_scanf;
1644  using namespace analyze_format_string;
1645
1646  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1647
1648  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1649  // be used to decide if we are using positional arguments consistently.
1650  if (FS.consumesDataArgument()) {
1651    if (atFirstArg) {
1652      atFirstArg = false;
1653      usesPositionalArgs = FS.usesPositionalArg();
1654    }
1655    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1656      // Cannot mix-and-match positional and non-positional arguments.
1657      S.Diag(getLocationOfByte(CS.getStart()),
1658             diag::warn_format_mix_positional_nonpositional_args)
1659        << getSpecifierRange(startSpecifier, specifierLen);
1660      return false;
1661    }
1662  }
1663
1664  // Check if the field with is non-zero.
1665  const OptionalAmount &Amt = FS.getFieldWidth();
1666  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1667    if (Amt.getConstantAmount() == 0) {
1668      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1669                                                   Amt.getConstantLength());
1670      S.Diag(getLocationOfByte(Amt.getStart()),
1671             diag::warn_scanf_nonzero_width)
1672        << R << FixItHint::CreateRemoval(R);
1673    }
1674  }
1675
1676  if (!FS.consumesDataArgument()) {
1677    // FIXME: Technically specifying a precision or field width here
1678    // makes no sense.  Worth issuing a warning at some point.
1679    return true;
1680  }
1681
1682  // Consume the argument.
1683  unsigned argIndex = FS.getArgIndex();
1684  if (argIndex < NumDataArgs) {
1685      // The check to see if the argIndex is valid will come later.
1686      // We set the bit here because we may exit early from this
1687      // function if we encounter some other error.
1688    CoveredArgs.set(argIndex);
1689  }
1690
1691  // Check the length modifier is valid with the given conversion specifier.
1692  const LengthModifier &LM = FS.getLengthModifier();
1693  if (!FS.hasValidLengthModifier()) {
1694    S.Diag(getLocationOfByte(LM.getStart()),
1695           diag::warn_format_nonsensical_length)
1696      << LM.toString() << CS.toString()
1697      << getSpecifierRange(startSpecifier, specifierLen)
1698      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1699                                                    LM.getLength()));
1700  }
1701
1702  // The remaining checks depend on the data arguments.
1703  if (HasVAListArg)
1704    return true;
1705
1706  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1707    return false;
1708
1709  // FIXME: Check that the argument type matches the format specifier.
1710
1711  return true;
1712}
1713
1714void Sema::CheckFormatString(const StringLiteral *FExpr,
1715                             const Expr *OrigFormatExpr,
1716                             const CallExpr *TheCall, bool HasVAListArg,
1717                             unsigned format_idx, unsigned firstDataArg,
1718                             bool isPrintf) {
1719
1720  // CHECK: is the format string a wide literal?
1721  if (FExpr->isWide()) {
1722    Diag(FExpr->getLocStart(),
1723         diag::warn_format_string_is_wide_literal)
1724    << OrigFormatExpr->getSourceRange();
1725    return;
1726  }
1727
1728  // Str - The format string.  NOTE: this is NOT null-terminated!
1729  llvm::StringRef StrRef = FExpr->getString();
1730  const char *Str = StrRef.data();
1731  unsigned StrLen = StrRef.size();
1732
1733  // CHECK: empty format string?
1734  if (StrLen == 0) {
1735    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1736    << OrigFormatExpr->getSourceRange();
1737    return;
1738  }
1739
1740  if (isPrintf) {
1741    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1742                         TheCall->getNumArgs() - firstDataArg,
1743                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1744                         HasVAListArg, TheCall, format_idx);
1745
1746    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1747      H.DoneProcessing();
1748  }
1749  else {
1750    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1751                        TheCall->getNumArgs() - firstDataArg,
1752                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1753                        HasVAListArg, TheCall, format_idx);
1754
1755    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1756      H.DoneProcessing();
1757  }
1758}
1759
1760//===--- CHECK: Return Address of Stack Variable --------------------------===//
1761
1762static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1763static Expr *EvalAddr(Expr* E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1764
1765/// CheckReturnStackAddr - Check if a return statement returns the address
1766///   of a stack variable.
1767void
1768Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1769                           SourceLocation ReturnLoc) {
1770
1771  Expr *stackE = 0;
1772  llvm::SmallVector<DeclRefExpr *, 8> refVars;
1773
1774  // Perform checking for returned stack addresses, local blocks,
1775  // label addresses or references to temporaries.
1776  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1777    stackE = EvalAddr(RetValExp, refVars);
1778  } else if (lhsType->isReferenceType()) {
1779    stackE = EvalVal(RetValExp, refVars);
1780  }
1781
1782  if (stackE == 0)
1783    return; // Nothing suspicious was found.
1784
1785  SourceLocation diagLoc;
1786  SourceRange diagRange;
1787  if (refVars.empty()) {
1788    diagLoc = stackE->getLocStart();
1789    diagRange = stackE->getSourceRange();
1790  } else {
1791    // We followed through a reference variable. 'stackE' contains the
1792    // problematic expression but we will warn at the return statement pointing
1793    // at the reference variable. We will later display the "trail" of
1794    // reference variables using notes.
1795    diagLoc = refVars[0]->getLocStart();
1796    diagRange = refVars[0]->getSourceRange();
1797  }
1798
1799  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
1800    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
1801                                             : diag::warn_ret_stack_addr)
1802     << DR->getDecl()->getDeclName() << diagRange;
1803  } else if (isa<BlockExpr>(stackE)) { // local block.
1804    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
1805  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
1806    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
1807  } else { // local temporary.
1808    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
1809                                             : diag::warn_ret_local_temp_addr)
1810     << diagRange;
1811  }
1812
1813  // Display the "trail" of reference variables that we followed until we
1814  // found the problematic expression using notes.
1815  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
1816    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
1817    // If this var binds to another reference var, show the range of the next
1818    // var, otherwise the var binds to the problematic expression, in which case
1819    // show the range of the expression.
1820    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
1821                                  : stackE->getSourceRange();
1822    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
1823      << VD->getDeclName() << range;
1824  }
1825}
1826
1827/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1828///  check if the expression in a return statement evaluates to an address
1829///  to a location on the stack, a local block, an address of a label, or a
1830///  reference to local temporary. The recursion is used to traverse the
1831///  AST of the return expression, with recursion backtracking when we
1832///  encounter a subexpression that (1) clearly does not lead to one of the
1833///  above problematic expressions (2) is something we cannot determine leads to
1834///  a problematic expression based on such local checking.
1835///
1836///  Both EvalAddr and EvalVal follow through reference variables to evaluate
1837///  the expression that they point to. Such variables are added to the
1838///  'refVars' vector so that we know what the reference variable "trail" was.
1839///
1840///  EvalAddr processes expressions that are pointers that are used as
1841///  references (and not L-values).  EvalVal handles all other values.
1842///  At the base case of the recursion is a check for the above problematic
1843///  expressions.
1844///
1845///  This implementation handles:
1846///
1847///   * pointer-to-pointer casts
1848///   * implicit conversions from array references to pointers
1849///   * taking the address of fields
1850///   * arbitrary interplay between "&" and "*" operators
1851///   * pointer arithmetic from an address of a stack variable
1852///   * taking the address of an array element where the array is on the stack
1853static Expr *EvalAddr(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
1854  if (E->isTypeDependent())
1855      return NULL;
1856
1857  // We should only be called for evaluating pointer expressions.
1858  assert((E->getType()->isAnyPointerType() ||
1859          E->getType()->isBlockPointerType() ||
1860          E->getType()->isObjCQualifiedIdType()) &&
1861         "EvalAddr only works on pointers");
1862
1863  // Our "symbolic interpreter" is just a dispatch off the currently
1864  // viewed AST node.  We then recursively traverse the AST by calling
1865  // EvalAddr and EvalVal appropriately.
1866  switch (E->getStmtClass()) {
1867  case Stmt::ParenExprClass:
1868    // Ignore parentheses.
1869    return EvalAddr(cast<ParenExpr>(E)->getSubExpr(), refVars);
1870
1871  case Stmt::DeclRefExprClass: {
1872    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1873
1874    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1875      // If this is a reference variable, follow through to the expression that
1876      // it points to.
1877      if (V->hasLocalStorage() &&
1878          V->getType()->isReferenceType() && V->hasInit()) {
1879        // Add the reference variable to the "trail".
1880        refVars.push_back(DR);
1881        return EvalAddr(V->getInit(), refVars);
1882      }
1883
1884    return NULL;
1885  }
1886
1887  case Stmt::UnaryOperatorClass: {
1888    // The only unary operator that make sense to handle here
1889    // is AddrOf.  All others don't make sense as pointers.
1890    UnaryOperator *U = cast<UnaryOperator>(E);
1891
1892    if (U->getOpcode() == UO_AddrOf)
1893      return EvalVal(U->getSubExpr(), refVars);
1894    else
1895      return NULL;
1896  }
1897
1898  case Stmt::BinaryOperatorClass: {
1899    // Handle pointer arithmetic.  All other binary operators are not valid
1900    // in this context.
1901    BinaryOperator *B = cast<BinaryOperator>(E);
1902    BinaryOperatorKind op = B->getOpcode();
1903
1904    if (op != BO_Add && op != BO_Sub)
1905      return NULL;
1906
1907    Expr *Base = B->getLHS();
1908
1909    // Determine which argument is the real pointer base.  It could be
1910    // the RHS argument instead of the LHS.
1911    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1912
1913    assert (Base->getType()->isPointerType());
1914    return EvalAddr(Base, refVars);
1915  }
1916
1917  // For conditional operators we need to see if either the LHS or RHS are
1918  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1919  case Stmt::ConditionalOperatorClass: {
1920    ConditionalOperator *C = cast<ConditionalOperator>(E);
1921
1922    // Handle the GNU extension for missing LHS.
1923    if (Expr *lhsExpr = C->getLHS()) {
1924    // In C++, we can have a throw-expression, which has 'void' type.
1925      if (!lhsExpr->getType()->isVoidType())
1926        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
1927          return LHS;
1928    }
1929
1930    // In C++, we can have a throw-expression, which has 'void' type.
1931    if (C->getRHS()->getType()->isVoidType())
1932      return NULL;
1933
1934    return EvalAddr(C->getRHS(), refVars);
1935  }
1936
1937  case Stmt::BlockExprClass:
1938    if (cast<BlockExpr>(E)->hasBlockDeclRefExprs())
1939      return E; // local block.
1940    return NULL;
1941
1942  case Stmt::AddrLabelExprClass:
1943    return E; // address of label.
1944
1945  // For casts, we need to handle conversions from arrays to
1946  // pointer values, and pointer-to-pointer conversions.
1947  case Stmt::ImplicitCastExprClass:
1948  case Stmt::CStyleCastExprClass:
1949  case Stmt::CXXFunctionalCastExprClass: {
1950    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1951    QualType T = SubExpr->getType();
1952
1953    if (SubExpr->getType()->isPointerType() ||
1954        SubExpr->getType()->isBlockPointerType() ||
1955        SubExpr->getType()->isObjCQualifiedIdType())
1956      return EvalAddr(SubExpr, refVars);
1957    else if (T->isArrayType())
1958      return EvalVal(SubExpr, refVars);
1959    else
1960      return 0;
1961  }
1962
1963  // C++ casts.  For dynamic casts, static casts, and const casts, we
1964  // are always converting from a pointer-to-pointer, so we just blow
1965  // through the cast.  In the case the dynamic cast doesn't fail (and
1966  // return NULL), we take the conservative route and report cases
1967  // where we return the address of a stack variable.  For Reinterpre
1968  // FIXME: The comment about is wrong; we're not always converting
1969  // from pointer to pointer. I'm guessing that this code should also
1970  // handle references to objects.
1971  case Stmt::CXXStaticCastExprClass:
1972  case Stmt::CXXDynamicCastExprClass:
1973  case Stmt::CXXConstCastExprClass:
1974  case Stmt::CXXReinterpretCastExprClass: {
1975      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1976      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1977        return EvalAddr(S, refVars);
1978      else
1979        return NULL;
1980  }
1981
1982  // Everything else: we simply don't reason about them.
1983  default:
1984    return NULL;
1985  }
1986}
1987
1988
1989///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1990///   See the comments for EvalAddr for more details.
1991static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
1992do {
1993  // We should only be called for evaluating non-pointer expressions, or
1994  // expressions with a pointer type that are not used as references but instead
1995  // are l-values (e.g., DeclRefExpr with a pointer type).
1996
1997  // Our "symbolic interpreter" is just a dispatch off the currently
1998  // viewed AST node.  We then recursively traverse the AST by calling
1999  // EvalAddr and EvalVal appropriately.
2000  switch (E->getStmtClass()) {
2001  case Stmt::ImplicitCastExprClass: {
2002    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2003    if (IE->getValueKind() == VK_LValue) {
2004      E = IE->getSubExpr();
2005      continue;
2006    }
2007    return NULL;
2008  }
2009
2010  case Stmt::DeclRefExprClass: {
2011    // When we hit a DeclRefExpr we are looking at code that refers to a
2012    // variable's name. If it's not a reference variable we check if it has
2013    // local storage within the function, and if so, return the expression.
2014    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2015
2016    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2017      if (V->hasLocalStorage()) {
2018        if (!V->getType()->isReferenceType())
2019          return DR;
2020
2021        // Reference variable, follow through to the expression that
2022        // it points to.
2023        if (V->hasInit()) {
2024          // Add the reference variable to the "trail".
2025          refVars.push_back(DR);
2026          return EvalVal(V->getInit(), refVars);
2027        }
2028      }
2029
2030    return NULL;
2031  }
2032
2033  case Stmt::ParenExprClass: {
2034    // Ignore parentheses.
2035    E = cast<ParenExpr>(E)->getSubExpr();
2036    continue;
2037  }
2038
2039  case Stmt::UnaryOperatorClass: {
2040    // The only unary operator that make sense to handle here
2041    // is Deref.  All others don't resolve to a "name."  This includes
2042    // handling all sorts of rvalues passed to a unary operator.
2043    UnaryOperator *U = cast<UnaryOperator>(E);
2044
2045    if (U->getOpcode() == UO_Deref)
2046      return EvalAddr(U->getSubExpr(), refVars);
2047
2048    return NULL;
2049  }
2050
2051  case Stmt::ArraySubscriptExprClass: {
2052    // Array subscripts are potential references to data on the stack.  We
2053    // retrieve the DeclRefExpr* for the array variable if it indeed
2054    // has local storage.
2055    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2056  }
2057
2058  case Stmt::ConditionalOperatorClass: {
2059    // For conditional operators we need to see if either the LHS or RHS are
2060    // non-NULL Expr's.  If one is non-NULL, we return it.
2061    ConditionalOperator *C = cast<ConditionalOperator>(E);
2062
2063    // Handle the GNU extension for missing LHS.
2064    if (Expr *lhsExpr = C->getLHS())
2065      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2066        return LHS;
2067
2068    return EvalVal(C->getRHS(), refVars);
2069  }
2070
2071  // Accesses to members are potential references to data on the stack.
2072  case Stmt::MemberExprClass: {
2073    MemberExpr *M = cast<MemberExpr>(E);
2074
2075    // Check for indirect access.  We only want direct field accesses.
2076    if (M->isArrow())
2077      return NULL;
2078
2079    // Check whether the member type is itself a reference, in which case
2080    // we're not going to refer to the member, but to what the member refers to.
2081    if (M->getMemberDecl()->getType()->isReferenceType())
2082      return NULL;
2083
2084    return EvalVal(M->getBase(), refVars);
2085  }
2086
2087  default:
2088    // Check that we don't return or take the address of a reference to a
2089    // temporary. This is only useful in C++.
2090    if (!E->isTypeDependent() && E->isRValue())
2091      return E;
2092
2093    // Everything else: we simply don't reason about them.
2094    return NULL;
2095  }
2096} while (true);
2097}
2098
2099//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2100
2101/// Check for comparisons of floating point operands using != and ==.
2102/// Issue a warning if these are no self-comparisons, as they are not likely
2103/// to do what the programmer intended.
2104void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2105  bool EmitWarning = true;
2106
2107  Expr* LeftExprSansParen = lex->IgnoreParens();
2108  Expr* RightExprSansParen = rex->IgnoreParens();
2109
2110  // Special case: check for x == x (which is OK).
2111  // Do not emit warnings for such cases.
2112  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2113    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2114      if (DRL->getDecl() == DRR->getDecl())
2115        EmitWarning = false;
2116
2117
2118  // Special case: check for comparisons against literals that can be exactly
2119  //  represented by APFloat.  In such cases, do not emit a warning.  This
2120  //  is a heuristic: often comparison against such literals are used to
2121  //  detect if a value in a variable has not changed.  This clearly can
2122  //  lead to false negatives.
2123  if (EmitWarning) {
2124    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2125      if (FLL->isExact())
2126        EmitWarning = false;
2127    } else
2128      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2129        if (FLR->isExact())
2130          EmitWarning = false;
2131    }
2132  }
2133
2134  // Check for comparisons with builtin types.
2135  if (EmitWarning)
2136    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2137      if (CL->isBuiltinCall(Context))
2138        EmitWarning = false;
2139
2140  if (EmitWarning)
2141    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2142      if (CR->isBuiltinCall(Context))
2143        EmitWarning = false;
2144
2145  // Emit the diagnostic.
2146  if (EmitWarning)
2147    Diag(loc, diag::warn_floatingpoint_eq)
2148      << lex->getSourceRange() << rex->getSourceRange();
2149}
2150
2151//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2152//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2153
2154namespace {
2155
2156/// Structure recording the 'active' range of an integer-valued
2157/// expression.
2158struct IntRange {
2159  /// The number of bits active in the int.
2160  unsigned Width;
2161
2162  /// True if the int is known not to have negative values.
2163  bool NonNegative;
2164
2165  IntRange(unsigned Width, bool NonNegative)
2166    : Width(Width), NonNegative(NonNegative)
2167  {}
2168
2169  /// Returns the range of the bool type.
2170  static IntRange forBoolType() {
2171    return IntRange(1, true);
2172  }
2173
2174  /// Returns the range of an opaque value of the given integral type.
2175  static IntRange forValueOfType(ASTContext &C, QualType T) {
2176    return forValueOfCanonicalType(C,
2177                          T->getCanonicalTypeInternal().getTypePtr());
2178  }
2179
2180  /// Returns the range of an opaque value of a canonical integral type.
2181  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2182    assert(T->isCanonicalUnqualified());
2183
2184    if (const VectorType *VT = dyn_cast<VectorType>(T))
2185      T = VT->getElementType().getTypePtr();
2186    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2187      T = CT->getElementType().getTypePtr();
2188
2189    // For enum types, use the known bit width of the enumerators.
2190    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2191      EnumDecl *Enum = ET->getDecl();
2192      if (!Enum->isDefinition())
2193        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2194
2195      unsigned NumPositive = Enum->getNumPositiveBits();
2196      unsigned NumNegative = Enum->getNumNegativeBits();
2197
2198      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2199    }
2200
2201    const BuiltinType *BT = cast<BuiltinType>(T);
2202    assert(BT->isInteger());
2203
2204    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2205  }
2206
2207  /// Returns the "target" range of a canonical integral type, i.e.
2208  /// the range of values expressible in the type.
2209  ///
2210  /// This matches forValueOfCanonicalType except that enums have the
2211  /// full range of their type, not the range of their enumerators.
2212  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2213    assert(T->isCanonicalUnqualified());
2214
2215    if (const VectorType *VT = dyn_cast<VectorType>(T))
2216      T = VT->getElementType().getTypePtr();
2217    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2218      T = CT->getElementType().getTypePtr();
2219    if (const EnumType *ET = dyn_cast<EnumType>(T))
2220      T = ET->getDecl()->getIntegerType().getTypePtr();
2221
2222    const BuiltinType *BT = cast<BuiltinType>(T);
2223    assert(BT->isInteger());
2224
2225    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2226  }
2227
2228  /// Returns the supremum of two ranges: i.e. their conservative merge.
2229  static IntRange join(IntRange L, IntRange R) {
2230    return IntRange(std::max(L.Width, R.Width),
2231                    L.NonNegative && R.NonNegative);
2232  }
2233
2234  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2235  static IntRange meet(IntRange L, IntRange R) {
2236    return IntRange(std::min(L.Width, R.Width),
2237                    L.NonNegative || R.NonNegative);
2238  }
2239};
2240
2241IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2242  if (value.isSigned() && value.isNegative())
2243    return IntRange(value.getMinSignedBits(), false);
2244
2245  if (value.getBitWidth() > MaxWidth)
2246    value.trunc(MaxWidth);
2247
2248  // isNonNegative() just checks the sign bit without considering
2249  // signedness.
2250  return IntRange(value.getActiveBits(), true);
2251}
2252
2253IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2254                       unsigned MaxWidth) {
2255  if (result.isInt())
2256    return GetValueRange(C, result.getInt(), MaxWidth);
2257
2258  if (result.isVector()) {
2259    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2260    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2261      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2262      R = IntRange::join(R, El);
2263    }
2264    return R;
2265  }
2266
2267  if (result.isComplexInt()) {
2268    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2269    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2270    return IntRange::join(R, I);
2271  }
2272
2273  // This can happen with lossless casts to intptr_t of "based" lvalues.
2274  // Assume it might use arbitrary bits.
2275  // FIXME: The only reason we need to pass the type in here is to get
2276  // the sign right on this one case.  It would be nice if APValue
2277  // preserved this.
2278  assert(result.isLValue());
2279  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2280}
2281
2282/// Pseudo-evaluate the given integer expression, estimating the
2283/// range of values it might take.
2284///
2285/// \param MaxWidth - the width to which the value will be truncated
2286IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2287  E = E->IgnoreParens();
2288
2289  // Try a full evaluation first.
2290  Expr::EvalResult result;
2291  if (E->Evaluate(result, C))
2292    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2293
2294  // I think we only want to look through implicit casts here; if the
2295  // user has an explicit widening cast, we should treat the value as
2296  // being of the new, wider type.
2297  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2298    if (CE->getCastKind() == CK_NoOp)
2299      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2300
2301    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2302
2303    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2304
2305    // Assume that non-integer casts can span the full range of the type.
2306    if (!isIntegerCast)
2307      return OutputTypeRange;
2308
2309    IntRange SubRange
2310      = GetExprRange(C, CE->getSubExpr(),
2311                     std::min(MaxWidth, OutputTypeRange.Width));
2312
2313    // Bail out if the subexpr's range is as wide as the cast type.
2314    if (SubRange.Width >= OutputTypeRange.Width)
2315      return OutputTypeRange;
2316
2317    // Otherwise, we take the smaller width, and we're non-negative if
2318    // either the output type or the subexpr is.
2319    return IntRange(SubRange.Width,
2320                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2321  }
2322
2323  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2324    // If we can fold the condition, just take that operand.
2325    bool CondResult;
2326    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2327      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2328                                        : CO->getFalseExpr(),
2329                          MaxWidth);
2330
2331    // Otherwise, conservatively merge.
2332    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2333    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2334    return IntRange::join(L, R);
2335  }
2336
2337  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2338    switch (BO->getOpcode()) {
2339
2340    // Boolean-valued operations are single-bit and positive.
2341    case BO_LAnd:
2342    case BO_LOr:
2343    case BO_LT:
2344    case BO_GT:
2345    case BO_LE:
2346    case BO_GE:
2347    case BO_EQ:
2348    case BO_NE:
2349      return IntRange::forBoolType();
2350
2351    // The type of these compound assignments is the type of the LHS,
2352    // so the RHS is not necessarily an integer.
2353    case BO_MulAssign:
2354    case BO_DivAssign:
2355    case BO_RemAssign:
2356    case BO_AddAssign:
2357    case BO_SubAssign:
2358      return IntRange::forValueOfType(C, E->getType());
2359
2360    // Operations with opaque sources are black-listed.
2361    case BO_PtrMemD:
2362    case BO_PtrMemI:
2363      return IntRange::forValueOfType(C, E->getType());
2364
2365    // Bitwise-and uses the *infinum* of the two source ranges.
2366    case BO_And:
2367    case BO_AndAssign:
2368      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2369                            GetExprRange(C, BO->getRHS(), MaxWidth));
2370
2371    // Left shift gets black-listed based on a judgement call.
2372    case BO_Shl:
2373      // ...except that we want to treat '1 << (blah)' as logically
2374      // positive.  It's an important idiom.
2375      if (IntegerLiteral *I
2376            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2377        if (I->getValue() == 1) {
2378          IntRange R = IntRange::forValueOfType(C, E->getType());
2379          return IntRange(R.Width, /*NonNegative*/ true);
2380        }
2381      }
2382      // fallthrough
2383
2384    case BO_ShlAssign:
2385      return IntRange::forValueOfType(C, E->getType());
2386
2387    // Right shift by a constant can narrow its left argument.
2388    case BO_Shr:
2389    case BO_ShrAssign: {
2390      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2391
2392      // If the shift amount is a positive constant, drop the width by
2393      // that much.
2394      llvm::APSInt shift;
2395      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2396          shift.isNonNegative()) {
2397        unsigned zext = shift.getZExtValue();
2398        if (zext >= L.Width)
2399          L.Width = (L.NonNegative ? 0 : 1);
2400        else
2401          L.Width -= zext;
2402      }
2403
2404      return L;
2405    }
2406
2407    // Comma acts as its right operand.
2408    case BO_Comma:
2409      return GetExprRange(C, BO->getRHS(), MaxWidth);
2410
2411    // Black-list pointer subtractions.
2412    case BO_Sub:
2413      if (BO->getLHS()->getType()->isPointerType())
2414        return IntRange::forValueOfType(C, E->getType());
2415      // fallthrough
2416
2417    default:
2418      break;
2419    }
2420
2421    // Treat every other operator as if it were closed on the
2422    // narrowest type that encompasses both operands.
2423    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2424    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2425    return IntRange::join(L, R);
2426  }
2427
2428  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2429    switch (UO->getOpcode()) {
2430    // Boolean-valued operations are white-listed.
2431    case UO_LNot:
2432      return IntRange::forBoolType();
2433
2434    // Operations with opaque sources are black-listed.
2435    case UO_Deref:
2436    case UO_AddrOf: // should be impossible
2437      return IntRange::forValueOfType(C, E->getType());
2438
2439    default:
2440      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2441    }
2442  }
2443
2444  if (dyn_cast<OffsetOfExpr>(E)) {
2445    IntRange::forValueOfType(C, E->getType());
2446  }
2447
2448  FieldDecl *BitField = E->getBitField();
2449  if (BitField) {
2450    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2451    unsigned BitWidth = BitWidthAP.getZExtValue();
2452
2453    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2454  }
2455
2456  return IntRange::forValueOfType(C, E->getType());
2457}
2458
2459IntRange GetExprRange(ASTContext &C, Expr *E) {
2460  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2461}
2462
2463/// Checks whether the given value, which currently has the given
2464/// source semantics, has the same value when coerced through the
2465/// target semantics.
2466bool IsSameFloatAfterCast(const llvm::APFloat &value,
2467                          const llvm::fltSemantics &Src,
2468                          const llvm::fltSemantics &Tgt) {
2469  llvm::APFloat truncated = value;
2470
2471  bool ignored;
2472  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2473  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2474
2475  return truncated.bitwiseIsEqual(value);
2476}
2477
2478/// Checks whether the given value, which currently has the given
2479/// source semantics, has the same value when coerced through the
2480/// target semantics.
2481///
2482/// The value might be a vector of floats (or a complex number).
2483bool IsSameFloatAfterCast(const APValue &value,
2484                          const llvm::fltSemantics &Src,
2485                          const llvm::fltSemantics &Tgt) {
2486  if (value.isFloat())
2487    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2488
2489  if (value.isVector()) {
2490    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2491      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2492        return false;
2493    return true;
2494  }
2495
2496  assert(value.isComplexFloat());
2497  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2498          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2499}
2500
2501void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2502
2503static bool IsZero(Sema &S, Expr *E) {
2504  // Suppress cases where we are comparing against an enum constant.
2505  if (const DeclRefExpr *DR =
2506      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2507    if (isa<EnumConstantDecl>(DR->getDecl()))
2508      return false;
2509
2510  // Suppress cases where the '0' value is expanded from a macro.
2511  if (E->getLocStart().isMacroID())
2512    return false;
2513
2514  llvm::APSInt Value;
2515  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2516}
2517
2518static bool HasEnumType(Expr *E) {
2519  // Strip off implicit integral promotions.
2520  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2521    if (ICE->getCastKind() != CK_IntegralCast &&
2522        ICE->getCastKind() != CK_NoOp)
2523      break;
2524    E = ICE->getSubExpr();
2525  }
2526
2527  return E->getType()->isEnumeralType();
2528}
2529
2530void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2531  BinaryOperatorKind op = E->getOpcode();
2532  if (op == BO_LT && IsZero(S, E->getRHS())) {
2533    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2534      << "< 0" << "false" << HasEnumType(E->getLHS())
2535      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2536  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2537    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2538      << ">= 0" << "true" << HasEnumType(E->getLHS())
2539      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2540  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2541    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2542      << "0 >" << "false" << HasEnumType(E->getRHS())
2543      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2544  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2545    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2546      << "0 <=" << "true" << HasEnumType(E->getRHS())
2547      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2548  }
2549}
2550
2551/// Analyze the operands of the given comparison.  Implements the
2552/// fallback case from AnalyzeComparison.
2553void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2554  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2555  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2556}
2557
2558/// \brief Implements -Wsign-compare.
2559///
2560/// \param lex the left-hand expression
2561/// \param rex the right-hand expression
2562/// \param OpLoc the location of the joining operator
2563/// \param BinOpc binary opcode or 0
2564void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2565  // The type the comparison is being performed in.
2566  QualType T = E->getLHS()->getType();
2567  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2568         && "comparison with mismatched types");
2569
2570  // We don't do anything special if this isn't an unsigned integral
2571  // comparison:  we're only interested in integral comparisons, and
2572  // signed comparisons only happen in cases we don't care to warn about.
2573  if (!T->hasUnsignedIntegerRepresentation())
2574    return AnalyzeImpConvsInComparison(S, E);
2575
2576  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2577  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2578
2579  // Check to see if one of the (unmodified) operands is of different
2580  // signedness.
2581  Expr *signedOperand, *unsignedOperand;
2582  if (lex->getType()->hasSignedIntegerRepresentation()) {
2583    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2584           "unsigned comparison between two signed integer expressions?");
2585    signedOperand = lex;
2586    unsignedOperand = rex;
2587  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2588    signedOperand = rex;
2589    unsignedOperand = lex;
2590  } else {
2591    CheckTrivialUnsignedComparison(S, E);
2592    return AnalyzeImpConvsInComparison(S, E);
2593  }
2594
2595  // Otherwise, calculate the effective range of the signed operand.
2596  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2597
2598  // Go ahead and analyze implicit conversions in the operands.  Note
2599  // that we skip the implicit conversions on both sides.
2600  AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2601  AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2602
2603  // If the signed range is non-negative, -Wsign-compare won't fire,
2604  // but we should still check for comparisons which are always true
2605  // or false.
2606  if (signedRange.NonNegative)
2607    return CheckTrivialUnsignedComparison(S, E);
2608
2609  // For (in)equality comparisons, if the unsigned operand is a
2610  // constant which cannot collide with a overflowed signed operand,
2611  // then reinterpreting the signed operand as unsigned will not
2612  // change the result of the comparison.
2613  if (E->isEqualityOp()) {
2614    unsigned comparisonWidth = S.Context.getIntWidth(T);
2615    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2616
2617    // We should never be unable to prove that the unsigned operand is
2618    // non-negative.
2619    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2620
2621    if (unsignedRange.Width < comparisonWidth)
2622      return;
2623  }
2624
2625  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2626    << lex->getType() << rex->getType()
2627    << lex->getSourceRange() << rex->getSourceRange();
2628}
2629
2630/// Analyzes an attempt to assign the given value to a bitfield.
2631///
2632/// Returns true if there was something fishy about the attempt.
2633bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
2634                               SourceLocation InitLoc) {
2635  assert(Bitfield->isBitField());
2636  if (Bitfield->isInvalidDecl())
2637    return false;
2638
2639  // White-list bool bitfields.
2640  if (Bitfield->getType()->isBooleanType())
2641    return false;
2642
2643  Expr *OriginalInit = Init->IgnoreParenImpCasts();
2644
2645  llvm::APSInt Width(32);
2646  Expr::EvalResult InitValue;
2647  if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
2648      !OriginalInit->Evaluate(InitValue, S.Context) ||
2649      !InitValue.Val.isInt())
2650    return false;
2651
2652  const llvm::APSInt &Value = InitValue.Val.getInt();
2653  unsigned OriginalWidth = Value.getBitWidth();
2654  unsigned FieldWidth = Width.getZExtValue();
2655
2656  if (OriginalWidth <= FieldWidth)
2657    return false;
2658
2659  llvm::APSInt TruncatedValue = Value;
2660  TruncatedValue.trunc(FieldWidth);
2661
2662  // It's fairly common to write values into signed bitfields
2663  // that, if sign-extended, would end up becoming a different
2664  // value.  We don't want to warn about that.
2665  if (Value.isSigned() && Value.isNegative())
2666    TruncatedValue.sext(OriginalWidth);
2667  else
2668    TruncatedValue.zext(OriginalWidth);
2669
2670  if (Value == TruncatedValue)
2671    return false;
2672
2673  std::string PrettyValue = Value.toString(10);
2674  std::string PrettyTrunc = TruncatedValue.toString(10);
2675
2676  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
2677    << PrettyValue << PrettyTrunc << OriginalInit->getType()
2678    << Init->getSourceRange();
2679
2680  return true;
2681}
2682
2683/// Analyze the given simple or compound assignment for warning-worthy
2684/// operations.
2685void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
2686  // Just recurse on the LHS.
2687  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2688
2689  // We want to recurse on the RHS as normal unless we're assigning to
2690  // a bitfield.
2691  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
2692    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
2693                                  E->getOperatorLoc())) {
2694      // Recurse, ignoring any implicit conversions on the RHS.
2695      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
2696                                        E->getOperatorLoc());
2697    }
2698  }
2699
2700  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2701}
2702
2703/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2704void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
2705                     unsigned diag) {
2706  S.Diag(E->getExprLoc(), diag)
2707    << E->getType() << T << E->getSourceRange() << SourceRange(CContext);
2708}
2709
2710std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
2711  if (!Range.Width) return "0";
2712
2713  llvm::APSInt ValueInRange = Value;
2714  ValueInRange.setIsSigned(!Range.NonNegative);
2715  ValueInRange.trunc(Range.Width);
2716  return ValueInRange.toString(10);
2717}
2718
2719void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2720                             SourceLocation CC, bool *ICContext = 0) {
2721  if (E->isTypeDependent() || E->isValueDependent()) return;
2722
2723  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2724  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2725  if (Source == Target) return;
2726  if (Target->isDependentType()) return;
2727
2728  // If the conversion context location is invalid or instantiated
2729  // from a system macro, don't complain.
2730  if (CC.isInvalid() ||
2731      (CC.isMacroID() && S.Context.getSourceManager().isInSystemHeader(
2732                           S.Context.getSourceManager().getSpellingLoc(CC))))
2733    return;
2734
2735  // Never diagnose implicit casts to bool.
2736  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2737    return;
2738
2739  // Strip vector types.
2740  if (isa<VectorType>(Source)) {
2741    if (!isa<VectorType>(Target))
2742      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
2743
2744    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2745    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2746  }
2747
2748  // Strip complex types.
2749  if (isa<ComplexType>(Source)) {
2750    if (!isa<ComplexType>(Target))
2751      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
2752
2753    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2754    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2755  }
2756
2757  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2758  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2759
2760  // If the source is floating point...
2761  if (SourceBT && SourceBT->isFloatingPoint()) {
2762    // ...and the target is floating point...
2763    if (TargetBT && TargetBT->isFloatingPoint()) {
2764      // ...then warn if we're dropping FP rank.
2765
2766      // Builtin FP kinds are ordered by increasing FP rank.
2767      if (SourceBT->getKind() > TargetBT->getKind()) {
2768        // Don't warn about float constants that are precisely
2769        // representable in the target type.
2770        Expr::EvalResult result;
2771        if (E->Evaluate(result, S.Context)) {
2772          // Value might be a float, a float vector, or a float complex.
2773          if (IsSameFloatAfterCast(result.Val,
2774                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2775                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2776            return;
2777        }
2778
2779        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
2780      }
2781      return;
2782    }
2783
2784    // If the target is integral, always warn.
2785    if ((TargetBT && TargetBT->isInteger()))
2786      // TODO: don't warn for integer values?
2787      DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
2788
2789    return;
2790  }
2791
2792  if (!Source->isIntegerType() || !Target->isIntegerType())
2793    return;
2794
2795  IntRange SourceRange = GetExprRange(S.Context, E);
2796  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
2797
2798  if (SourceRange.Width > TargetRange.Width) {
2799    // If the source is a constant, use a default-on diagnostic.
2800    // TODO: this should happen for bitfield stores, too.
2801    llvm::APSInt Value(32);
2802    if (E->isIntegerConstantExpr(Value, S.Context)) {
2803      std::string PrettySourceValue = Value.toString(10);
2804      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
2805
2806      S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
2807        << PrettySourceValue << PrettyTargetValue
2808        << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
2809      return;
2810    }
2811
2812    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2813    // and by god we'll let them.
2814    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2815      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
2816    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
2817  }
2818
2819  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2820      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2821       SourceRange.Width == TargetRange.Width)) {
2822    unsigned DiagID = diag::warn_impcast_integer_sign;
2823
2824    // Traditionally, gcc has warned about this under -Wsign-compare.
2825    // We also want to warn about it in -Wconversion.
2826    // So if -Wconversion is off, use a completely identical diagnostic
2827    // in the sign-compare group.
2828    // The conditional-checking code will
2829    if (ICContext) {
2830      DiagID = diag::warn_impcast_integer_sign_conditional;
2831      *ICContext = true;
2832    }
2833
2834    return DiagnoseImpCast(S, E, T, CC, DiagID);
2835  }
2836
2837  return;
2838}
2839
2840void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2841
2842void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2843                             SourceLocation CC, bool &ICContext) {
2844  E = E->IgnoreParenImpCasts();
2845
2846  if (isa<ConditionalOperator>(E))
2847    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2848
2849  AnalyzeImplicitConversions(S, E, CC);
2850  if (E->getType() != T)
2851    return CheckImplicitConversion(S, E, T, CC, &ICContext);
2852  return;
2853}
2854
2855void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2856  SourceLocation CC = E->getQuestionLoc();
2857
2858  AnalyzeImplicitConversions(S, E->getCond(), CC);
2859
2860  bool Suspicious = false;
2861  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
2862  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
2863
2864  // If -Wconversion would have warned about either of the candidates
2865  // for a signedness conversion to the context type...
2866  if (!Suspicious) return;
2867
2868  // ...but it's currently ignored...
2869  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2870    return;
2871
2872  // ...and -Wsign-compare isn't...
2873  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2874    return;
2875
2876  // ...then check whether it would have warned about either of the
2877  // candidates for a signedness conversion to the condition type.
2878  if (E->getType() != T) {
2879    Suspicious = false;
2880    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2881                            E->getType(), CC, &Suspicious);
2882    if (!Suspicious)
2883      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2884                              E->getType(), CC, &Suspicious);
2885    if (!Suspicious)
2886      return;
2887  }
2888
2889  // If so, emit a diagnostic under -Wsign-compare.
2890  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2891  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2892  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2893    << lex->getType() << rex->getType()
2894    << lex->getSourceRange() << rex->getSourceRange();
2895}
2896
2897/// AnalyzeImplicitConversions - Find and report any interesting
2898/// implicit conversions in the given expression.  There are a couple
2899/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2900void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
2901  QualType T = OrigE->getType();
2902  Expr *E = OrigE->IgnoreParenImpCasts();
2903
2904  // For conditional operators, we analyze the arguments as if they
2905  // were being fed directly into the output.
2906  if (isa<ConditionalOperator>(E)) {
2907    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2908    CheckConditionalOperator(S, CO, T);
2909    return;
2910  }
2911
2912  // Go ahead and check any implicit conversions we might have skipped.
2913  // The non-canonical typecheck is just an optimization;
2914  // CheckImplicitConversion will filter out dead implicit conversions.
2915  if (E->getType() != T)
2916    CheckImplicitConversion(S, E, T, CC);
2917
2918  // Now continue drilling into this expression.
2919
2920  // Skip past explicit casts.
2921  if (isa<ExplicitCastExpr>(E)) {
2922    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2923    return AnalyzeImplicitConversions(S, E, CC);
2924  }
2925
2926  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2927    // Do a somewhat different check with comparison operators.
2928    if (BO->isComparisonOp())
2929      return AnalyzeComparison(S, BO);
2930
2931    // And with assignments and compound assignments.
2932    if (BO->isAssignmentOp())
2933      return AnalyzeAssignment(S, BO);
2934  }
2935
2936  // These break the otherwise-useful invariant below.  Fortunately,
2937  // we don't really need to recurse into them, because any internal
2938  // expressions should have been analyzed already when they were
2939  // built into statements.
2940  if (isa<StmtExpr>(E)) return;
2941
2942  // Don't descend into unevaluated contexts.
2943  if (isa<SizeOfAlignOfExpr>(E)) return;
2944
2945  // Now just recurse over the expression's children.
2946  CC = E->getExprLoc();
2947  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2948         I != IE; ++I)
2949    AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
2950}
2951
2952} // end anonymous namespace
2953
2954/// Diagnoses "dangerous" implicit conversions within the given
2955/// expression (which is a full expression).  Implements -Wconversion
2956/// and -Wsign-compare.
2957///
2958/// \param CC the "context" location of the implicit conversion, i.e.
2959///   the most location of the syntactic entity requiring the implicit
2960///   conversion
2961void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
2962  // Don't diagnose in unevaluated contexts.
2963  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2964    return;
2965
2966  // Don't diagnose for value- or type-dependent expressions.
2967  if (E->isTypeDependent() || E->isValueDependent())
2968    return;
2969
2970  // This is not the right CC for (e.g.) a variable initialization.
2971  AnalyzeImplicitConversions(*this, E, CC);
2972}
2973
2974void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
2975                                       FieldDecl *BitField,
2976                                       Expr *Init) {
2977  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
2978}
2979
2980/// CheckParmsForFunctionDef - Check that the parameters of the given
2981/// function are appropriate for the definition of a function. This
2982/// takes care of any checks that cannot be performed on the
2983/// declaration itself, e.g., that the types of each of the function
2984/// parameters are complete.
2985bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
2986                                    bool CheckParameterNames) {
2987  bool HasInvalidParm = false;
2988  for (; P != PEnd; ++P) {
2989    ParmVarDecl *Param = *P;
2990
2991    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2992    // function declarator that is part of a function definition of
2993    // that function shall not have incomplete type.
2994    //
2995    // This is also C++ [dcl.fct]p6.
2996    if (!Param->isInvalidDecl() &&
2997        RequireCompleteType(Param->getLocation(), Param->getType(),
2998                               diag::err_typecheck_decl_incomplete_type)) {
2999      Param->setInvalidDecl();
3000      HasInvalidParm = true;
3001    }
3002
3003    // C99 6.9.1p5: If the declarator includes a parameter type list, the
3004    // declaration of each parameter shall include an identifier.
3005    if (CheckParameterNames &&
3006        Param->getIdentifier() == 0 &&
3007        !Param->isImplicit() &&
3008        !getLangOptions().CPlusPlus)
3009      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3010
3011    // C99 6.7.5.3p12:
3012    //   If the function declarator is not part of a definition of that
3013    //   function, parameters may have incomplete type and may use the [*]
3014    //   notation in their sequences of declarator specifiers to specify
3015    //   variable length array types.
3016    QualType PType = Param->getOriginalType();
3017    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3018      if (AT->getSizeModifier() == ArrayType::Star) {
3019        // FIXME: This diagnosic should point the the '[*]' if source-location
3020        // information is added for it.
3021        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3022      }
3023    }
3024  }
3025
3026  return HasInvalidParm;
3027}
3028
3029/// CheckCastAlign - Implements -Wcast-align, which warns when a
3030/// pointer cast increases the alignment requirements.
3031void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3032  // This is actually a lot of work to potentially be doing on every
3033  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3034  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
3035        == Diagnostic::Ignored)
3036    return;
3037
3038  // Ignore dependent types.
3039  if (T->isDependentType() || Op->getType()->isDependentType())
3040    return;
3041
3042  // Require that the destination be a pointer type.
3043  const PointerType *DestPtr = T->getAs<PointerType>();
3044  if (!DestPtr) return;
3045
3046  // If the destination has alignment 1, we're done.
3047  QualType DestPointee = DestPtr->getPointeeType();
3048  if (DestPointee->isIncompleteType()) return;
3049  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3050  if (DestAlign.isOne()) return;
3051
3052  // Require that the source be a pointer type.
3053  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3054  if (!SrcPtr) return;
3055  QualType SrcPointee = SrcPtr->getPointeeType();
3056
3057  // Whitelist casts from cv void*.  We already implicitly
3058  // whitelisted casts to cv void*, since they have alignment 1.
3059  // Also whitelist casts involving incomplete types, which implicitly
3060  // includes 'void'.
3061  if (SrcPointee->isIncompleteType()) return;
3062
3063  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3064  if (SrcAlign >= DestAlign) return;
3065
3066  Diag(TRange.getBegin(), diag::warn_cast_align)
3067    << Op->getType() << T
3068    << static_cast<unsigned>(SrcAlign.getQuantity())
3069    << static_cast<unsigned>(DestAlign.getQuantity())
3070    << TRange << Op->getSourceRange();
3071}
3072
3073