SemaChecking.cpp revision 287f24d3991994b9a263af9e2a873f4feadfb8fa
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98ExprResult
99Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
100  ExprResult TheCallResult(Owned(TheCall));
101
102  // Find out if any arguments are required to be integer constant expressions.
103  unsigned ICEArguments = 0;
104  ASTContext::GetBuiltinTypeError Error;
105  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
106  if (Error != ASTContext::GE_None)
107    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
108
109  // If any arguments are required to be ICE's, check and diagnose.
110  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
111    // Skip arguments not required to be ICE's.
112    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
113
114    llvm::APSInt Result;
115    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
116      return true;
117    ICEArguments &= ~(1 << ArgNo);
118  }
119
120  switch (BuiltinID) {
121  case Builtin::BI__builtin___CFStringMakeConstantString:
122    assert(TheCall->getNumArgs() == 1 &&
123           "Wrong # arguments to builtin CFStringMakeConstantString");
124    if (CheckObjCString(TheCall->getArg(0)))
125      return ExprError();
126    break;
127  case Builtin::BI__builtin_stdarg_start:
128  case Builtin::BI__builtin_va_start:
129    if (SemaBuiltinVAStart(TheCall))
130      return ExprError();
131    break;
132  case Builtin::BI__builtin_isgreater:
133  case Builtin::BI__builtin_isgreaterequal:
134  case Builtin::BI__builtin_isless:
135  case Builtin::BI__builtin_islessequal:
136  case Builtin::BI__builtin_islessgreater:
137  case Builtin::BI__builtin_isunordered:
138    if (SemaBuiltinUnorderedCompare(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_fpclassify:
142    if (SemaBuiltinFPClassification(TheCall, 6))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_isfinite:
146  case Builtin::BI__builtin_isinf:
147  case Builtin::BI__builtin_isinf_sign:
148  case Builtin::BI__builtin_isnan:
149  case Builtin::BI__builtin_isnormal:
150    if (SemaBuiltinFPClassification(TheCall, 1))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_shufflevector:
154    return SemaBuiltinShuffleVector(TheCall);
155    // TheCall will be freed by the smart pointer here, but that's fine, since
156    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
157  case Builtin::BI__builtin_prefetch:
158    if (SemaBuiltinPrefetch(TheCall))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_object_size:
162    if (SemaBuiltinObjectSize(TheCall))
163      return ExprError();
164    break;
165  case Builtin::BI__builtin_longjmp:
166    if (SemaBuiltinLongjmp(TheCall))
167      return ExprError();
168    break;
169
170  case Builtin::BI__builtin_classify_type:
171    if (checkArgCount(*this, TheCall, 1)) return true;
172    TheCall->setType(Context.IntTy);
173    break;
174  case Builtin::BI__builtin_constant_p:
175    if (checkArgCount(*this, TheCall, 1)) return true;
176    TheCall->setType(Context.IntTy);
177    break;
178  case Builtin::BI__sync_fetch_and_add:
179  case Builtin::BI__sync_fetch_and_add_1:
180  case Builtin::BI__sync_fetch_and_add_2:
181  case Builtin::BI__sync_fetch_and_add_4:
182  case Builtin::BI__sync_fetch_and_add_8:
183  case Builtin::BI__sync_fetch_and_add_16:
184  case Builtin::BI__sync_fetch_and_sub:
185  case Builtin::BI__sync_fetch_and_sub_1:
186  case Builtin::BI__sync_fetch_and_sub_2:
187  case Builtin::BI__sync_fetch_and_sub_4:
188  case Builtin::BI__sync_fetch_and_sub_8:
189  case Builtin::BI__sync_fetch_and_sub_16:
190  case Builtin::BI__sync_fetch_and_or:
191  case Builtin::BI__sync_fetch_and_or_1:
192  case Builtin::BI__sync_fetch_and_or_2:
193  case Builtin::BI__sync_fetch_and_or_4:
194  case Builtin::BI__sync_fetch_and_or_8:
195  case Builtin::BI__sync_fetch_and_or_16:
196  case Builtin::BI__sync_fetch_and_and:
197  case Builtin::BI__sync_fetch_and_and_1:
198  case Builtin::BI__sync_fetch_and_and_2:
199  case Builtin::BI__sync_fetch_and_and_4:
200  case Builtin::BI__sync_fetch_and_and_8:
201  case Builtin::BI__sync_fetch_and_and_16:
202  case Builtin::BI__sync_fetch_and_xor:
203  case Builtin::BI__sync_fetch_and_xor_1:
204  case Builtin::BI__sync_fetch_and_xor_2:
205  case Builtin::BI__sync_fetch_and_xor_4:
206  case Builtin::BI__sync_fetch_and_xor_8:
207  case Builtin::BI__sync_fetch_and_xor_16:
208  case Builtin::BI__sync_add_and_fetch:
209  case Builtin::BI__sync_add_and_fetch_1:
210  case Builtin::BI__sync_add_and_fetch_2:
211  case Builtin::BI__sync_add_and_fetch_4:
212  case Builtin::BI__sync_add_and_fetch_8:
213  case Builtin::BI__sync_add_and_fetch_16:
214  case Builtin::BI__sync_sub_and_fetch:
215  case Builtin::BI__sync_sub_and_fetch_1:
216  case Builtin::BI__sync_sub_and_fetch_2:
217  case Builtin::BI__sync_sub_and_fetch_4:
218  case Builtin::BI__sync_sub_and_fetch_8:
219  case Builtin::BI__sync_sub_and_fetch_16:
220  case Builtin::BI__sync_and_and_fetch:
221  case Builtin::BI__sync_and_and_fetch_1:
222  case Builtin::BI__sync_and_and_fetch_2:
223  case Builtin::BI__sync_and_and_fetch_4:
224  case Builtin::BI__sync_and_and_fetch_8:
225  case Builtin::BI__sync_and_and_fetch_16:
226  case Builtin::BI__sync_or_and_fetch:
227  case Builtin::BI__sync_or_and_fetch_1:
228  case Builtin::BI__sync_or_and_fetch_2:
229  case Builtin::BI__sync_or_and_fetch_4:
230  case Builtin::BI__sync_or_and_fetch_8:
231  case Builtin::BI__sync_or_and_fetch_16:
232  case Builtin::BI__sync_xor_and_fetch:
233  case Builtin::BI__sync_xor_and_fetch_1:
234  case Builtin::BI__sync_xor_and_fetch_2:
235  case Builtin::BI__sync_xor_and_fetch_4:
236  case Builtin::BI__sync_xor_and_fetch_8:
237  case Builtin::BI__sync_xor_and_fetch_16:
238  case Builtin::BI__sync_val_compare_and_swap:
239  case Builtin::BI__sync_val_compare_and_swap_1:
240  case Builtin::BI__sync_val_compare_and_swap_2:
241  case Builtin::BI__sync_val_compare_and_swap_4:
242  case Builtin::BI__sync_val_compare_and_swap_8:
243  case Builtin::BI__sync_val_compare_and_swap_16:
244  case Builtin::BI__sync_bool_compare_and_swap:
245  case Builtin::BI__sync_bool_compare_and_swap_1:
246  case Builtin::BI__sync_bool_compare_and_swap_2:
247  case Builtin::BI__sync_bool_compare_and_swap_4:
248  case Builtin::BI__sync_bool_compare_and_swap_8:
249  case Builtin::BI__sync_bool_compare_and_swap_16:
250  case Builtin::BI__sync_lock_test_and_set:
251  case Builtin::BI__sync_lock_test_and_set_1:
252  case Builtin::BI__sync_lock_test_and_set_2:
253  case Builtin::BI__sync_lock_test_and_set_4:
254  case Builtin::BI__sync_lock_test_and_set_8:
255  case Builtin::BI__sync_lock_test_and_set_16:
256  case Builtin::BI__sync_lock_release:
257  case Builtin::BI__sync_lock_release_1:
258  case Builtin::BI__sync_lock_release_2:
259  case Builtin::BI__sync_lock_release_4:
260  case Builtin::BI__sync_lock_release_8:
261  case Builtin::BI__sync_lock_release_16:
262  case Builtin::BI__sync_swap:
263  case Builtin::BI__sync_swap_1:
264  case Builtin::BI__sync_swap_2:
265  case Builtin::BI__sync_swap_4:
266  case Builtin::BI__sync_swap_8:
267  case Builtin::BI__sync_swap_16:
268    return SemaBuiltinAtomicOverloaded(TheCallResult);
269#define BUILTIN(ID, TYPE, ATTRS)
270#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
271  case Builtin::BI##ID: \
272    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
273#include "clang/Basic/Builtins.def"
274  case Builtin::BI__builtin_annotation:
275    if (SemaBuiltinAnnotation(*this, TheCall))
276      return ExprError();
277    break;
278  }
279
280  // Since the target specific builtins for each arch overlap, only check those
281  // of the arch we are compiling for.
282  if (BuiltinID >= Builtin::FirstTSBuiltin) {
283    switch (Context.getTargetInfo().getTriple().getArch()) {
284      case llvm::Triple::arm:
285      case llvm::Triple::thumb:
286        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
287          return ExprError();
288        break;
289      case llvm::Triple::mips:
290      case llvm::Triple::mipsel:
291      case llvm::Triple::mips64:
292      case llvm::Triple::mips64el:
293        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
294          return ExprError();
295        break;
296      default:
297        break;
298    }
299  }
300
301  return TheCallResult;
302}
303
304// Get the valid immediate range for the specified NEON type code.
305static unsigned RFT(unsigned t, bool shift = false) {
306  NeonTypeFlags Type(t);
307  int IsQuad = Type.isQuad();
308  switch (Type.getEltType()) {
309  case NeonTypeFlags::Int8:
310  case NeonTypeFlags::Poly8:
311    return shift ? 7 : (8 << IsQuad) - 1;
312  case NeonTypeFlags::Int16:
313  case NeonTypeFlags::Poly16:
314    return shift ? 15 : (4 << IsQuad) - 1;
315  case NeonTypeFlags::Int32:
316    return shift ? 31 : (2 << IsQuad) - 1;
317  case NeonTypeFlags::Int64:
318    return shift ? 63 : (1 << IsQuad) - 1;
319  case NeonTypeFlags::Float16:
320    assert(!shift && "cannot shift float types!");
321    return (4 << IsQuad) - 1;
322  case NeonTypeFlags::Float32:
323    assert(!shift && "cannot shift float types!");
324    return (2 << IsQuad) - 1;
325  }
326  llvm_unreachable("Invalid NeonTypeFlag!");
327}
328
329/// getNeonEltType - Return the QualType corresponding to the elements of
330/// the vector type specified by the NeonTypeFlags.  This is used to check
331/// the pointer arguments for Neon load/store intrinsics.
332static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
333  switch (Flags.getEltType()) {
334  case NeonTypeFlags::Int8:
335    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
336  case NeonTypeFlags::Int16:
337    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
338  case NeonTypeFlags::Int32:
339    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
340  case NeonTypeFlags::Int64:
341    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
342  case NeonTypeFlags::Poly8:
343    return Context.SignedCharTy;
344  case NeonTypeFlags::Poly16:
345    return Context.ShortTy;
346  case NeonTypeFlags::Float16:
347    return Context.UnsignedShortTy;
348  case NeonTypeFlags::Float32:
349    return Context.FloatTy;
350  }
351  llvm_unreachable("Invalid NeonTypeFlag!");
352}
353
354bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
355  llvm::APSInt Result;
356
357  uint64_t mask = 0;
358  unsigned TV = 0;
359  int PtrArgNum = -1;
360  bool HasConstPtr = false;
361  switch (BuiltinID) {
362#define GET_NEON_OVERLOAD_CHECK
363#include "clang/Basic/arm_neon.inc"
364#undef GET_NEON_OVERLOAD_CHECK
365  }
366
367  // For NEON intrinsics which are overloaded on vector element type, validate
368  // the immediate which specifies which variant to emit.
369  unsigned ImmArg = TheCall->getNumArgs()-1;
370  if (mask) {
371    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
372      return true;
373
374    TV = Result.getLimitedValue(64);
375    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
376      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
377        << TheCall->getArg(ImmArg)->getSourceRange();
378  }
379
380  if (PtrArgNum >= 0) {
381    // Check that pointer arguments have the specified type.
382    Expr *Arg = TheCall->getArg(PtrArgNum);
383    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
384      Arg = ICE->getSubExpr();
385    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
386    QualType RHSTy = RHS.get()->getType();
387    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
388    if (HasConstPtr)
389      EltTy = EltTy.withConst();
390    QualType LHSTy = Context.getPointerType(EltTy);
391    AssignConvertType ConvTy;
392    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
393    if (RHS.isInvalid())
394      return true;
395    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
396                                 RHS.get(), AA_Assigning))
397      return true;
398  }
399
400  // For NEON intrinsics which take an immediate value as part of the
401  // instruction, range check them here.
402  unsigned i = 0, l = 0, u = 0;
403  switch (BuiltinID) {
404  default: return false;
405  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
406  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
407  case ARM::BI__builtin_arm_vcvtr_f:
408  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
409#define GET_NEON_IMMEDIATE_CHECK
410#include "clang/Basic/arm_neon.inc"
411#undef GET_NEON_IMMEDIATE_CHECK
412  };
413
414  // We can't check the value of a dependent argument.
415  if (TheCall->getArg(i)->isTypeDependent() ||
416      TheCall->getArg(i)->isValueDependent())
417    return false;
418
419  // Check that the immediate argument is actually a constant.
420  if (SemaBuiltinConstantArg(TheCall, i, Result))
421    return true;
422
423  // Range check against the upper/lower values for this isntruction.
424  unsigned Val = Result.getZExtValue();
425  if (Val < l || Val > (u + l))
426    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
427      << l << u+l << TheCall->getArg(i)->getSourceRange();
428
429  // FIXME: VFP Intrinsics should error if VFP not present.
430  return false;
431}
432
433bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
434  unsigned i = 0, l = 0, u = 0;
435  switch (BuiltinID) {
436  default: return false;
437  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
438  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
439  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
440  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
441  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
442  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
443  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
444  };
445
446  // We can't check the value of a dependent argument.
447  if (TheCall->getArg(i)->isTypeDependent() ||
448      TheCall->getArg(i)->isValueDependent())
449    return false;
450
451  // Check that the immediate argument is actually a constant.
452  llvm::APSInt Result;
453  if (SemaBuiltinConstantArg(TheCall, i, Result))
454    return true;
455
456  // Range check against the upper/lower values for this instruction.
457  unsigned Val = Result.getZExtValue();
458  if (Val < l || Val > u)
459    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
460      << l << u << TheCall->getArg(i)->getSourceRange();
461
462  return false;
463}
464
465/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
466/// parameter with the FormatAttr's correct format_idx and firstDataArg.
467/// Returns true when the format fits the function and the FormatStringInfo has
468/// been populated.
469bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
470                               FormatStringInfo *FSI) {
471  FSI->HasVAListArg = Format->getFirstArg() == 0;
472  FSI->FormatIdx = Format->getFormatIdx() - 1;
473  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
474
475  // The way the format attribute works in GCC, the implicit this argument
476  // of member functions is counted. However, it doesn't appear in our own
477  // lists, so decrement format_idx in that case.
478  if (IsCXXMember) {
479    if(FSI->FormatIdx == 0)
480      return false;
481    --FSI->FormatIdx;
482    if (FSI->FirstDataArg != 0)
483      --FSI->FirstDataArg;
484  }
485  return true;
486}
487
488/// Handles the checks for format strings, non-POD arguments to vararg
489/// functions, and NULL arguments passed to non-NULL parameters.
490void Sema::checkCall(NamedDecl *FDecl,
491                     ArrayRef<const Expr *> Args,
492                     unsigned NumProtoArgs,
493                     bool IsMemberFunction,
494                     SourceLocation Loc,
495                     SourceRange Range,
496                     VariadicCallType CallType) {
497  if (CurContext->isDependentContext())
498    return;
499
500  // Printf and scanf checking.
501  bool HandledFormatString = false;
502  for (specific_attr_iterator<FormatAttr>
503         I = FDecl->specific_attr_begin<FormatAttr>(),
504         E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
505    if (CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range))
506        HandledFormatString = true;
507
508  // Refuse POD arguments that weren't caught by the format string
509  // checks above.
510  if (!HandledFormatString && CallType != VariadicDoesNotApply)
511    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
512      // Args[ArgIdx] can be null in malformed code.
513      if (const Expr *Arg = Args[ArgIdx])
514        variadicArgumentPODCheck(Arg, CallType);
515    }
516
517  for (specific_attr_iterator<NonNullAttr>
518         I = FDecl->specific_attr_begin<NonNullAttr>(),
519         E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
520    CheckNonNullArguments(*I, Args.data(), Loc);
521
522  // Type safety checking.
523  for (specific_attr_iterator<ArgumentWithTypeTagAttr>
524         i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
525         e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
526    CheckArgumentWithTypeTag(*i, Args.data());
527  }
528}
529
530/// CheckConstructorCall - Check a constructor call for correctness and safety
531/// properties not enforced by the C type system.
532void Sema::CheckConstructorCall(FunctionDecl *FDecl,
533                                ArrayRef<const Expr *> Args,
534                                const FunctionProtoType *Proto,
535                                SourceLocation Loc) {
536  VariadicCallType CallType =
537    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
538  checkCall(FDecl, Args, Proto->getNumArgs(),
539            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
540}
541
542/// CheckFunctionCall - Check a direct function call for various correctness
543/// and safety properties not strictly enforced by the C type system.
544bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
545                             const FunctionProtoType *Proto) {
546  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
547                              isa<CXXMethodDecl>(FDecl);
548  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
549                          IsMemberOperatorCall;
550  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
551                                                  TheCall->getCallee());
552  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
553  Expr** Args = TheCall->getArgs();
554  unsigned NumArgs = TheCall->getNumArgs();
555  if (IsMemberOperatorCall) {
556    // If this is a call to a member operator, hide the first argument
557    // from checkCall.
558    // FIXME: Our choice of AST representation here is less than ideal.
559    ++Args;
560    --NumArgs;
561  }
562  checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
563            NumProtoArgs,
564            IsMemberFunction, TheCall->getRParenLoc(),
565            TheCall->getCallee()->getSourceRange(), CallType);
566
567  IdentifierInfo *FnInfo = FDecl->getIdentifier();
568  // None of the checks below are needed for functions that don't have
569  // simple names (e.g., C++ conversion functions).
570  if (!FnInfo)
571    return false;
572
573  unsigned CMId = FDecl->getMemoryFunctionKind();
574  if (CMId == 0)
575    return false;
576
577  // Handle memory setting and copying functions.
578  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
579    CheckStrlcpycatArguments(TheCall, FnInfo);
580  else if (CMId == Builtin::BIstrncat)
581    CheckStrncatArguments(TheCall, FnInfo);
582  else
583    CheckMemaccessArguments(TheCall, CMId, FnInfo);
584
585  return false;
586}
587
588bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
589                               ArrayRef<const Expr *> Args) {
590  VariadicCallType CallType =
591      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
592
593  checkCall(Method, Args, Method->param_size(),
594            /*IsMemberFunction=*/false,
595            lbrac, Method->getSourceRange(), CallType);
596
597  return false;
598}
599
600bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
601                          const FunctionProtoType *Proto) {
602  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
603  if (!V)
604    return false;
605
606  QualType Ty = V->getType();
607  if (!Ty->isBlockPointerType())
608    return false;
609
610  VariadicCallType CallType =
611      Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
612  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
613
614  checkCall(NDecl,
615            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
616                                             TheCall->getNumArgs()),
617            NumProtoArgs, /*IsMemberFunction=*/false,
618            TheCall->getRParenLoc(),
619            TheCall->getCallee()->getSourceRange(), CallType);
620
621  return false;
622}
623
624ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
625                                         AtomicExpr::AtomicOp Op) {
626  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
627  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
628
629  // All these operations take one of the following forms:
630  enum {
631    // C    __c11_atomic_init(A *, C)
632    Init,
633    // C    __c11_atomic_load(A *, int)
634    Load,
635    // void __atomic_load(A *, CP, int)
636    Copy,
637    // C    __c11_atomic_add(A *, M, int)
638    Arithmetic,
639    // C    __atomic_exchange_n(A *, CP, int)
640    Xchg,
641    // void __atomic_exchange(A *, C *, CP, int)
642    GNUXchg,
643    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
644    C11CmpXchg,
645    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
646    GNUCmpXchg
647  } Form = Init;
648  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
649  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
650  // where:
651  //   C is an appropriate type,
652  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
653  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
654  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
655  //   the int parameters are for orderings.
656
657  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
658         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
659         && "need to update code for modified C11 atomics");
660  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
661               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
662  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
663             Op == AtomicExpr::AO__atomic_store_n ||
664             Op == AtomicExpr::AO__atomic_exchange_n ||
665             Op == AtomicExpr::AO__atomic_compare_exchange_n;
666  bool IsAddSub = false;
667
668  switch (Op) {
669  case AtomicExpr::AO__c11_atomic_init:
670    Form = Init;
671    break;
672
673  case AtomicExpr::AO__c11_atomic_load:
674  case AtomicExpr::AO__atomic_load_n:
675    Form = Load;
676    break;
677
678  case AtomicExpr::AO__c11_atomic_store:
679  case AtomicExpr::AO__atomic_load:
680  case AtomicExpr::AO__atomic_store:
681  case AtomicExpr::AO__atomic_store_n:
682    Form = Copy;
683    break;
684
685  case AtomicExpr::AO__c11_atomic_fetch_add:
686  case AtomicExpr::AO__c11_atomic_fetch_sub:
687  case AtomicExpr::AO__atomic_fetch_add:
688  case AtomicExpr::AO__atomic_fetch_sub:
689  case AtomicExpr::AO__atomic_add_fetch:
690  case AtomicExpr::AO__atomic_sub_fetch:
691    IsAddSub = true;
692    // Fall through.
693  case AtomicExpr::AO__c11_atomic_fetch_and:
694  case AtomicExpr::AO__c11_atomic_fetch_or:
695  case AtomicExpr::AO__c11_atomic_fetch_xor:
696  case AtomicExpr::AO__atomic_fetch_and:
697  case AtomicExpr::AO__atomic_fetch_or:
698  case AtomicExpr::AO__atomic_fetch_xor:
699  case AtomicExpr::AO__atomic_fetch_nand:
700  case AtomicExpr::AO__atomic_and_fetch:
701  case AtomicExpr::AO__atomic_or_fetch:
702  case AtomicExpr::AO__atomic_xor_fetch:
703  case AtomicExpr::AO__atomic_nand_fetch:
704    Form = Arithmetic;
705    break;
706
707  case AtomicExpr::AO__c11_atomic_exchange:
708  case AtomicExpr::AO__atomic_exchange_n:
709    Form = Xchg;
710    break;
711
712  case AtomicExpr::AO__atomic_exchange:
713    Form = GNUXchg;
714    break;
715
716  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
717  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
718    Form = C11CmpXchg;
719    break;
720
721  case AtomicExpr::AO__atomic_compare_exchange:
722  case AtomicExpr::AO__atomic_compare_exchange_n:
723    Form = GNUCmpXchg;
724    break;
725  }
726
727  // Check we have the right number of arguments.
728  if (TheCall->getNumArgs() < NumArgs[Form]) {
729    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
730      << 0 << NumArgs[Form] << TheCall->getNumArgs()
731      << TheCall->getCallee()->getSourceRange();
732    return ExprError();
733  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
734    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
735         diag::err_typecheck_call_too_many_args)
736      << 0 << NumArgs[Form] << TheCall->getNumArgs()
737      << TheCall->getCallee()->getSourceRange();
738    return ExprError();
739  }
740
741  // Inspect the first argument of the atomic operation.
742  Expr *Ptr = TheCall->getArg(0);
743  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
744  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
745  if (!pointerType) {
746    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
747      << Ptr->getType() << Ptr->getSourceRange();
748    return ExprError();
749  }
750
751  // For a __c11 builtin, this should be a pointer to an _Atomic type.
752  QualType AtomTy = pointerType->getPointeeType(); // 'A'
753  QualType ValType = AtomTy; // 'C'
754  if (IsC11) {
755    if (!AtomTy->isAtomicType()) {
756      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
757        << Ptr->getType() << Ptr->getSourceRange();
758      return ExprError();
759    }
760    if (AtomTy.isConstQualified()) {
761      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
762        << Ptr->getType() << Ptr->getSourceRange();
763      return ExprError();
764    }
765    ValType = AtomTy->getAs<AtomicType>()->getValueType();
766  }
767
768  // For an arithmetic operation, the implied arithmetic must be well-formed.
769  if (Form == Arithmetic) {
770    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
771    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
772      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
773        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
774      return ExprError();
775    }
776    if (!IsAddSub && !ValType->isIntegerType()) {
777      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
778        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
779      return ExprError();
780    }
781  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
782    // For __atomic_*_n operations, the value type must be a scalar integral or
783    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
784    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
785      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
786    return ExprError();
787  }
788
789  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
790    // For GNU atomics, require a trivially-copyable type. This is not part of
791    // the GNU atomics specification, but we enforce it for sanity.
792    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
793      << Ptr->getType() << Ptr->getSourceRange();
794    return ExprError();
795  }
796
797  // FIXME: For any builtin other than a load, the ValType must not be
798  // const-qualified.
799
800  switch (ValType.getObjCLifetime()) {
801  case Qualifiers::OCL_None:
802  case Qualifiers::OCL_ExplicitNone:
803    // okay
804    break;
805
806  case Qualifiers::OCL_Weak:
807  case Qualifiers::OCL_Strong:
808  case Qualifiers::OCL_Autoreleasing:
809    // FIXME: Can this happen? By this point, ValType should be known
810    // to be trivially copyable.
811    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
812      << ValType << Ptr->getSourceRange();
813    return ExprError();
814  }
815
816  QualType ResultType = ValType;
817  if (Form == Copy || Form == GNUXchg || Form == Init)
818    ResultType = Context.VoidTy;
819  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
820    ResultType = Context.BoolTy;
821
822  // The type of a parameter passed 'by value'. In the GNU atomics, such
823  // arguments are actually passed as pointers.
824  QualType ByValType = ValType; // 'CP'
825  if (!IsC11 && !IsN)
826    ByValType = Ptr->getType();
827
828  // The first argument --- the pointer --- has a fixed type; we
829  // deduce the types of the rest of the arguments accordingly.  Walk
830  // the remaining arguments, converting them to the deduced value type.
831  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
832    QualType Ty;
833    if (i < NumVals[Form] + 1) {
834      switch (i) {
835      case 1:
836        // The second argument is the non-atomic operand. For arithmetic, this
837        // is always passed by value, and for a compare_exchange it is always
838        // passed by address. For the rest, GNU uses by-address and C11 uses
839        // by-value.
840        assert(Form != Load);
841        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
842          Ty = ValType;
843        else if (Form == Copy || Form == Xchg)
844          Ty = ByValType;
845        else if (Form == Arithmetic)
846          Ty = Context.getPointerDiffType();
847        else
848          Ty = Context.getPointerType(ValType.getUnqualifiedType());
849        break;
850      case 2:
851        // The third argument to compare_exchange / GNU exchange is a
852        // (pointer to a) desired value.
853        Ty = ByValType;
854        break;
855      case 3:
856        // The fourth argument to GNU compare_exchange is a 'weak' flag.
857        Ty = Context.BoolTy;
858        break;
859      }
860    } else {
861      // The order(s) are always converted to int.
862      Ty = Context.IntTy;
863    }
864
865    InitializedEntity Entity =
866        InitializedEntity::InitializeParameter(Context, Ty, false);
867    ExprResult Arg = TheCall->getArg(i);
868    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
869    if (Arg.isInvalid())
870      return true;
871    TheCall->setArg(i, Arg.get());
872  }
873
874  // Permute the arguments into a 'consistent' order.
875  SmallVector<Expr*, 5> SubExprs;
876  SubExprs.push_back(Ptr);
877  switch (Form) {
878  case Init:
879    // Note, AtomicExpr::getVal1() has a special case for this atomic.
880    SubExprs.push_back(TheCall->getArg(1)); // Val1
881    break;
882  case Load:
883    SubExprs.push_back(TheCall->getArg(1)); // Order
884    break;
885  case Copy:
886  case Arithmetic:
887  case Xchg:
888    SubExprs.push_back(TheCall->getArg(2)); // Order
889    SubExprs.push_back(TheCall->getArg(1)); // Val1
890    break;
891  case GNUXchg:
892    // Note, AtomicExpr::getVal2() has a special case for this atomic.
893    SubExprs.push_back(TheCall->getArg(3)); // Order
894    SubExprs.push_back(TheCall->getArg(1)); // Val1
895    SubExprs.push_back(TheCall->getArg(2)); // Val2
896    break;
897  case C11CmpXchg:
898    SubExprs.push_back(TheCall->getArg(3)); // Order
899    SubExprs.push_back(TheCall->getArg(1)); // Val1
900    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
901    SubExprs.push_back(TheCall->getArg(2)); // Val2
902    break;
903  case GNUCmpXchg:
904    SubExprs.push_back(TheCall->getArg(4)); // Order
905    SubExprs.push_back(TheCall->getArg(1)); // Val1
906    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
907    SubExprs.push_back(TheCall->getArg(2)); // Val2
908    SubExprs.push_back(TheCall->getArg(3)); // Weak
909    break;
910  }
911
912  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
913                                        SubExprs, ResultType, Op,
914                                        TheCall->getRParenLoc()));
915}
916
917
918/// checkBuiltinArgument - Given a call to a builtin function, perform
919/// normal type-checking on the given argument, updating the call in
920/// place.  This is useful when a builtin function requires custom
921/// type-checking for some of its arguments but not necessarily all of
922/// them.
923///
924/// Returns true on error.
925static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
926  FunctionDecl *Fn = E->getDirectCallee();
927  assert(Fn && "builtin call without direct callee!");
928
929  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
930  InitializedEntity Entity =
931    InitializedEntity::InitializeParameter(S.Context, Param);
932
933  ExprResult Arg = E->getArg(0);
934  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
935  if (Arg.isInvalid())
936    return true;
937
938  E->setArg(ArgIndex, Arg.take());
939  return false;
940}
941
942/// SemaBuiltinAtomicOverloaded - We have a call to a function like
943/// __sync_fetch_and_add, which is an overloaded function based on the pointer
944/// type of its first argument.  The main ActOnCallExpr routines have already
945/// promoted the types of arguments because all of these calls are prototyped as
946/// void(...).
947///
948/// This function goes through and does final semantic checking for these
949/// builtins,
950ExprResult
951Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
952  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
953  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
954  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
955
956  // Ensure that we have at least one argument to do type inference from.
957  if (TheCall->getNumArgs() < 1) {
958    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
959      << 0 << 1 << TheCall->getNumArgs()
960      << TheCall->getCallee()->getSourceRange();
961    return ExprError();
962  }
963
964  // Inspect the first argument of the atomic builtin.  This should always be
965  // a pointer type, whose element is an integral scalar or pointer type.
966  // Because it is a pointer type, we don't have to worry about any implicit
967  // casts here.
968  // FIXME: We don't allow floating point scalars as input.
969  Expr *FirstArg = TheCall->getArg(0);
970  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
971  if (FirstArgResult.isInvalid())
972    return ExprError();
973  FirstArg = FirstArgResult.take();
974  TheCall->setArg(0, FirstArg);
975
976  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
977  if (!pointerType) {
978    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
979      << FirstArg->getType() << FirstArg->getSourceRange();
980    return ExprError();
981  }
982
983  QualType ValType = pointerType->getPointeeType();
984  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
985      !ValType->isBlockPointerType()) {
986    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
987      << FirstArg->getType() << FirstArg->getSourceRange();
988    return ExprError();
989  }
990
991  switch (ValType.getObjCLifetime()) {
992  case Qualifiers::OCL_None:
993  case Qualifiers::OCL_ExplicitNone:
994    // okay
995    break;
996
997  case Qualifiers::OCL_Weak:
998  case Qualifiers::OCL_Strong:
999  case Qualifiers::OCL_Autoreleasing:
1000    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1001      << ValType << FirstArg->getSourceRange();
1002    return ExprError();
1003  }
1004
1005  // Strip any qualifiers off ValType.
1006  ValType = ValType.getUnqualifiedType();
1007
1008  // The majority of builtins return a value, but a few have special return
1009  // types, so allow them to override appropriately below.
1010  QualType ResultType = ValType;
1011
1012  // We need to figure out which concrete builtin this maps onto.  For example,
1013  // __sync_fetch_and_add with a 2 byte object turns into
1014  // __sync_fetch_and_add_2.
1015#define BUILTIN_ROW(x) \
1016  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1017    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1018
1019  static const unsigned BuiltinIndices[][5] = {
1020    BUILTIN_ROW(__sync_fetch_and_add),
1021    BUILTIN_ROW(__sync_fetch_and_sub),
1022    BUILTIN_ROW(__sync_fetch_and_or),
1023    BUILTIN_ROW(__sync_fetch_and_and),
1024    BUILTIN_ROW(__sync_fetch_and_xor),
1025
1026    BUILTIN_ROW(__sync_add_and_fetch),
1027    BUILTIN_ROW(__sync_sub_and_fetch),
1028    BUILTIN_ROW(__sync_and_and_fetch),
1029    BUILTIN_ROW(__sync_or_and_fetch),
1030    BUILTIN_ROW(__sync_xor_and_fetch),
1031
1032    BUILTIN_ROW(__sync_val_compare_and_swap),
1033    BUILTIN_ROW(__sync_bool_compare_and_swap),
1034    BUILTIN_ROW(__sync_lock_test_and_set),
1035    BUILTIN_ROW(__sync_lock_release),
1036    BUILTIN_ROW(__sync_swap)
1037  };
1038#undef BUILTIN_ROW
1039
1040  // Determine the index of the size.
1041  unsigned SizeIndex;
1042  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1043  case 1: SizeIndex = 0; break;
1044  case 2: SizeIndex = 1; break;
1045  case 4: SizeIndex = 2; break;
1046  case 8: SizeIndex = 3; break;
1047  case 16: SizeIndex = 4; break;
1048  default:
1049    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1050      << FirstArg->getType() << FirstArg->getSourceRange();
1051    return ExprError();
1052  }
1053
1054  // Each of these builtins has one pointer argument, followed by some number of
1055  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1056  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1057  // as the number of fixed args.
1058  unsigned BuiltinID = FDecl->getBuiltinID();
1059  unsigned BuiltinIndex, NumFixed = 1;
1060  switch (BuiltinID) {
1061  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1062  case Builtin::BI__sync_fetch_and_add:
1063  case Builtin::BI__sync_fetch_and_add_1:
1064  case Builtin::BI__sync_fetch_and_add_2:
1065  case Builtin::BI__sync_fetch_and_add_4:
1066  case Builtin::BI__sync_fetch_and_add_8:
1067  case Builtin::BI__sync_fetch_and_add_16:
1068    BuiltinIndex = 0;
1069    break;
1070
1071  case Builtin::BI__sync_fetch_and_sub:
1072  case Builtin::BI__sync_fetch_and_sub_1:
1073  case Builtin::BI__sync_fetch_and_sub_2:
1074  case Builtin::BI__sync_fetch_and_sub_4:
1075  case Builtin::BI__sync_fetch_and_sub_8:
1076  case Builtin::BI__sync_fetch_and_sub_16:
1077    BuiltinIndex = 1;
1078    break;
1079
1080  case Builtin::BI__sync_fetch_and_or:
1081  case Builtin::BI__sync_fetch_and_or_1:
1082  case Builtin::BI__sync_fetch_and_or_2:
1083  case Builtin::BI__sync_fetch_and_or_4:
1084  case Builtin::BI__sync_fetch_and_or_8:
1085  case Builtin::BI__sync_fetch_and_or_16:
1086    BuiltinIndex = 2;
1087    break;
1088
1089  case Builtin::BI__sync_fetch_and_and:
1090  case Builtin::BI__sync_fetch_and_and_1:
1091  case Builtin::BI__sync_fetch_and_and_2:
1092  case Builtin::BI__sync_fetch_and_and_4:
1093  case Builtin::BI__sync_fetch_and_and_8:
1094  case Builtin::BI__sync_fetch_and_and_16:
1095    BuiltinIndex = 3;
1096    break;
1097
1098  case Builtin::BI__sync_fetch_and_xor:
1099  case Builtin::BI__sync_fetch_and_xor_1:
1100  case Builtin::BI__sync_fetch_and_xor_2:
1101  case Builtin::BI__sync_fetch_and_xor_4:
1102  case Builtin::BI__sync_fetch_and_xor_8:
1103  case Builtin::BI__sync_fetch_and_xor_16:
1104    BuiltinIndex = 4;
1105    break;
1106
1107  case Builtin::BI__sync_add_and_fetch:
1108  case Builtin::BI__sync_add_and_fetch_1:
1109  case Builtin::BI__sync_add_and_fetch_2:
1110  case Builtin::BI__sync_add_and_fetch_4:
1111  case Builtin::BI__sync_add_and_fetch_8:
1112  case Builtin::BI__sync_add_and_fetch_16:
1113    BuiltinIndex = 5;
1114    break;
1115
1116  case Builtin::BI__sync_sub_and_fetch:
1117  case Builtin::BI__sync_sub_and_fetch_1:
1118  case Builtin::BI__sync_sub_and_fetch_2:
1119  case Builtin::BI__sync_sub_and_fetch_4:
1120  case Builtin::BI__sync_sub_and_fetch_8:
1121  case Builtin::BI__sync_sub_and_fetch_16:
1122    BuiltinIndex = 6;
1123    break;
1124
1125  case Builtin::BI__sync_and_and_fetch:
1126  case Builtin::BI__sync_and_and_fetch_1:
1127  case Builtin::BI__sync_and_and_fetch_2:
1128  case Builtin::BI__sync_and_and_fetch_4:
1129  case Builtin::BI__sync_and_and_fetch_8:
1130  case Builtin::BI__sync_and_and_fetch_16:
1131    BuiltinIndex = 7;
1132    break;
1133
1134  case Builtin::BI__sync_or_and_fetch:
1135  case Builtin::BI__sync_or_and_fetch_1:
1136  case Builtin::BI__sync_or_and_fetch_2:
1137  case Builtin::BI__sync_or_and_fetch_4:
1138  case Builtin::BI__sync_or_and_fetch_8:
1139  case Builtin::BI__sync_or_and_fetch_16:
1140    BuiltinIndex = 8;
1141    break;
1142
1143  case Builtin::BI__sync_xor_and_fetch:
1144  case Builtin::BI__sync_xor_and_fetch_1:
1145  case Builtin::BI__sync_xor_and_fetch_2:
1146  case Builtin::BI__sync_xor_and_fetch_4:
1147  case Builtin::BI__sync_xor_and_fetch_8:
1148  case Builtin::BI__sync_xor_and_fetch_16:
1149    BuiltinIndex = 9;
1150    break;
1151
1152  case Builtin::BI__sync_val_compare_and_swap:
1153  case Builtin::BI__sync_val_compare_and_swap_1:
1154  case Builtin::BI__sync_val_compare_and_swap_2:
1155  case Builtin::BI__sync_val_compare_and_swap_4:
1156  case Builtin::BI__sync_val_compare_and_swap_8:
1157  case Builtin::BI__sync_val_compare_and_swap_16:
1158    BuiltinIndex = 10;
1159    NumFixed = 2;
1160    break;
1161
1162  case Builtin::BI__sync_bool_compare_and_swap:
1163  case Builtin::BI__sync_bool_compare_and_swap_1:
1164  case Builtin::BI__sync_bool_compare_and_swap_2:
1165  case Builtin::BI__sync_bool_compare_and_swap_4:
1166  case Builtin::BI__sync_bool_compare_and_swap_8:
1167  case Builtin::BI__sync_bool_compare_and_swap_16:
1168    BuiltinIndex = 11;
1169    NumFixed = 2;
1170    ResultType = Context.BoolTy;
1171    break;
1172
1173  case Builtin::BI__sync_lock_test_and_set:
1174  case Builtin::BI__sync_lock_test_and_set_1:
1175  case Builtin::BI__sync_lock_test_and_set_2:
1176  case Builtin::BI__sync_lock_test_and_set_4:
1177  case Builtin::BI__sync_lock_test_and_set_8:
1178  case Builtin::BI__sync_lock_test_and_set_16:
1179    BuiltinIndex = 12;
1180    break;
1181
1182  case Builtin::BI__sync_lock_release:
1183  case Builtin::BI__sync_lock_release_1:
1184  case Builtin::BI__sync_lock_release_2:
1185  case Builtin::BI__sync_lock_release_4:
1186  case Builtin::BI__sync_lock_release_8:
1187  case Builtin::BI__sync_lock_release_16:
1188    BuiltinIndex = 13;
1189    NumFixed = 0;
1190    ResultType = Context.VoidTy;
1191    break;
1192
1193  case Builtin::BI__sync_swap:
1194  case Builtin::BI__sync_swap_1:
1195  case Builtin::BI__sync_swap_2:
1196  case Builtin::BI__sync_swap_4:
1197  case Builtin::BI__sync_swap_8:
1198  case Builtin::BI__sync_swap_16:
1199    BuiltinIndex = 14;
1200    break;
1201  }
1202
1203  // Now that we know how many fixed arguments we expect, first check that we
1204  // have at least that many.
1205  if (TheCall->getNumArgs() < 1+NumFixed) {
1206    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1207      << 0 << 1+NumFixed << TheCall->getNumArgs()
1208      << TheCall->getCallee()->getSourceRange();
1209    return ExprError();
1210  }
1211
1212  // Get the decl for the concrete builtin from this, we can tell what the
1213  // concrete integer type we should convert to is.
1214  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1215  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1216  FunctionDecl *NewBuiltinDecl;
1217  if (NewBuiltinID == BuiltinID)
1218    NewBuiltinDecl = FDecl;
1219  else {
1220    // Perform builtin lookup to avoid redeclaring it.
1221    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1222    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1223    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1224    assert(Res.getFoundDecl());
1225    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1226    if (NewBuiltinDecl == 0)
1227      return ExprError();
1228  }
1229
1230  // The first argument --- the pointer --- has a fixed type; we
1231  // deduce the types of the rest of the arguments accordingly.  Walk
1232  // the remaining arguments, converting them to the deduced value type.
1233  for (unsigned i = 0; i != NumFixed; ++i) {
1234    ExprResult Arg = TheCall->getArg(i+1);
1235
1236    // GCC does an implicit conversion to the pointer or integer ValType.  This
1237    // can fail in some cases (1i -> int**), check for this error case now.
1238    // Initialize the argument.
1239    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1240                                                   ValType, /*consume*/ false);
1241    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1242    if (Arg.isInvalid())
1243      return ExprError();
1244
1245    // Okay, we have something that *can* be converted to the right type.  Check
1246    // to see if there is a potentially weird extension going on here.  This can
1247    // happen when you do an atomic operation on something like an char* and
1248    // pass in 42.  The 42 gets converted to char.  This is even more strange
1249    // for things like 45.123 -> char, etc.
1250    // FIXME: Do this check.
1251    TheCall->setArg(i+1, Arg.take());
1252  }
1253
1254  ASTContext& Context = this->getASTContext();
1255
1256  // Create a new DeclRefExpr to refer to the new decl.
1257  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1258      Context,
1259      DRE->getQualifierLoc(),
1260      SourceLocation(),
1261      NewBuiltinDecl,
1262      /*enclosing*/ false,
1263      DRE->getLocation(),
1264      Context.BuiltinFnTy,
1265      DRE->getValueKind());
1266
1267  // Set the callee in the CallExpr.
1268  // FIXME: This loses syntactic information.
1269  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1270  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1271                                              CK_BuiltinFnToFnPtr);
1272  TheCall->setCallee(PromotedCall.take());
1273
1274  // Change the result type of the call to match the original value type. This
1275  // is arbitrary, but the codegen for these builtins ins design to handle it
1276  // gracefully.
1277  TheCall->setType(ResultType);
1278
1279  return TheCallResult;
1280}
1281
1282/// CheckObjCString - Checks that the argument to the builtin
1283/// CFString constructor is correct
1284/// Note: It might also make sense to do the UTF-16 conversion here (would
1285/// simplify the backend).
1286bool Sema::CheckObjCString(Expr *Arg) {
1287  Arg = Arg->IgnoreParenCasts();
1288  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1289
1290  if (!Literal || !Literal->isAscii()) {
1291    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1292      << Arg->getSourceRange();
1293    return true;
1294  }
1295
1296  if (Literal->containsNonAsciiOrNull()) {
1297    StringRef String = Literal->getString();
1298    unsigned NumBytes = String.size();
1299    SmallVector<UTF16, 128> ToBuf(NumBytes);
1300    const UTF8 *FromPtr = (const UTF8 *)String.data();
1301    UTF16 *ToPtr = &ToBuf[0];
1302
1303    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1304                                                 &ToPtr, ToPtr + NumBytes,
1305                                                 strictConversion);
1306    // Check for conversion failure.
1307    if (Result != conversionOK)
1308      Diag(Arg->getLocStart(),
1309           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1310  }
1311  return false;
1312}
1313
1314/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1315/// Emit an error and return true on failure, return false on success.
1316bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1317  Expr *Fn = TheCall->getCallee();
1318  if (TheCall->getNumArgs() > 2) {
1319    Diag(TheCall->getArg(2)->getLocStart(),
1320         diag::err_typecheck_call_too_many_args)
1321      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1322      << Fn->getSourceRange()
1323      << SourceRange(TheCall->getArg(2)->getLocStart(),
1324                     (*(TheCall->arg_end()-1))->getLocEnd());
1325    return true;
1326  }
1327
1328  if (TheCall->getNumArgs() < 2) {
1329    return Diag(TheCall->getLocEnd(),
1330      diag::err_typecheck_call_too_few_args_at_least)
1331      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1332  }
1333
1334  // Type-check the first argument normally.
1335  if (checkBuiltinArgument(*this, TheCall, 0))
1336    return true;
1337
1338  // Determine whether the current function is variadic or not.
1339  BlockScopeInfo *CurBlock = getCurBlock();
1340  bool isVariadic;
1341  if (CurBlock)
1342    isVariadic = CurBlock->TheDecl->isVariadic();
1343  else if (FunctionDecl *FD = getCurFunctionDecl())
1344    isVariadic = FD->isVariadic();
1345  else
1346    isVariadic = getCurMethodDecl()->isVariadic();
1347
1348  if (!isVariadic) {
1349    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1350    return true;
1351  }
1352
1353  // Verify that the second argument to the builtin is the last argument of the
1354  // current function or method.
1355  bool SecondArgIsLastNamedArgument = false;
1356  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1357
1358  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1359    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1360      // FIXME: This isn't correct for methods (results in bogus warning).
1361      // Get the last formal in the current function.
1362      const ParmVarDecl *LastArg;
1363      if (CurBlock)
1364        LastArg = *(CurBlock->TheDecl->param_end()-1);
1365      else if (FunctionDecl *FD = getCurFunctionDecl())
1366        LastArg = *(FD->param_end()-1);
1367      else
1368        LastArg = *(getCurMethodDecl()->param_end()-1);
1369      SecondArgIsLastNamedArgument = PV == LastArg;
1370    }
1371  }
1372
1373  if (!SecondArgIsLastNamedArgument)
1374    Diag(TheCall->getArg(1)->getLocStart(),
1375         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1376  return false;
1377}
1378
1379/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1380/// friends.  This is declared to take (...), so we have to check everything.
1381bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1382  if (TheCall->getNumArgs() < 2)
1383    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1384      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1385  if (TheCall->getNumArgs() > 2)
1386    return Diag(TheCall->getArg(2)->getLocStart(),
1387                diag::err_typecheck_call_too_many_args)
1388      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1389      << SourceRange(TheCall->getArg(2)->getLocStart(),
1390                     (*(TheCall->arg_end()-1))->getLocEnd());
1391
1392  ExprResult OrigArg0 = TheCall->getArg(0);
1393  ExprResult OrigArg1 = TheCall->getArg(1);
1394
1395  // Do standard promotions between the two arguments, returning their common
1396  // type.
1397  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1398  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1399    return true;
1400
1401  // Make sure any conversions are pushed back into the call; this is
1402  // type safe since unordered compare builtins are declared as "_Bool
1403  // foo(...)".
1404  TheCall->setArg(0, OrigArg0.get());
1405  TheCall->setArg(1, OrigArg1.get());
1406
1407  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1408    return false;
1409
1410  // If the common type isn't a real floating type, then the arguments were
1411  // invalid for this operation.
1412  if (Res.isNull() || !Res->isRealFloatingType())
1413    return Diag(OrigArg0.get()->getLocStart(),
1414                diag::err_typecheck_call_invalid_ordered_compare)
1415      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1416      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1417
1418  return false;
1419}
1420
1421/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1422/// __builtin_isnan and friends.  This is declared to take (...), so we have
1423/// to check everything. We expect the last argument to be a floating point
1424/// value.
1425bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1426  if (TheCall->getNumArgs() < NumArgs)
1427    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1428      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1429  if (TheCall->getNumArgs() > NumArgs)
1430    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1431                diag::err_typecheck_call_too_many_args)
1432      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1433      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1434                     (*(TheCall->arg_end()-1))->getLocEnd());
1435
1436  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1437
1438  if (OrigArg->isTypeDependent())
1439    return false;
1440
1441  // This operation requires a non-_Complex floating-point number.
1442  if (!OrigArg->getType()->isRealFloatingType())
1443    return Diag(OrigArg->getLocStart(),
1444                diag::err_typecheck_call_invalid_unary_fp)
1445      << OrigArg->getType() << OrigArg->getSourceRange();
1446
1447  // If this is an implicit conversion from float -> double, remove it.
1448  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1449    Expr *CastArg = Cast->getSubExpr();
1450    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1451      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1452             "promotion from float to double is the only expected cast here");
1453      Cast->setSubExpr(0);
1454      TheCall->setArg(NumArgs-1, CastArg);
1455    }
1456  }
1457
1458  return false;
1459}
1460
1461/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1462// This is declared to take (...), so we have to check everything.
1463ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1464  if (TheCall->getNumArgs() < 2)
1465    return ExprError(Diag(TheCall->getLocEnd(),
1466                          diag::err_typecheck_call_too_few_args_at_least)
1467      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1468      << TheCall->getSourceRange());
1469
1470  // Determine which of the following types of shufflevector we're checking:
1471  // 1) unary, vector mask: (lhs, mask)
1472  // 2) binary, vector mask: (lhs, rhs, mask)
1473  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1474  QualType resType = TheCall->getArg(0)->getType();
1475  unsigned numElements = 0;
1476
1477  if (!TheCall->getArg(0)->isTypeDependent() &&
1478      !TheCall->getArg(1)->isTypeDependent()) {
1479    QualType LHSType = TheCall->getArg(0)->getType();
1480    QualType RHSType = TheCall->getArg(1)->getType();
1481
1482    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1483      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1484        << SourceRange(TheCall->getArg(0)->getLocStart(),
1485                       TheCall->getArg(1)->getLocEnd());
1486      return ExprError();
1487    }
1488
1489    numElements = LHSType->getAs<VectorType>()->getNumElements();
1490    unsigned numResElements = TheCall->getNumArgs() - 2;
1491
1492    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1493    // with mask.  If so, verify that RHS is an integer vector type with the
1494    // same number of elts as lhs.
1495    if (TheCall->getNumArgs() == 2) {
1496      if (!RHSType->hasIntegerRepresentation() ||
1497          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1498        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1499          << SourceRange(TheCall->getArg(1)->getLocStart(),
1500                         TheCall->getArg(1)->getLocEnd());
1501      numResElements = numElements;
1502    }
1503    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1504      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1505        << SourceRange(TheCall->getArg(0)->getLocStart(),
1506                       TheCall->getArg(1)->getLocEnd());
1507      return ExprError();
1508    } else if (numElements != numResElements) {
1509      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1510      resType = Context.getVectorType(eltType, numResElements,
1511                                      VectorType::GenericVector);
1512    }
1513  }
1514
1515  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1516    if (TheCall->getArg(i)->isTypeDependent() ||
1517        TheCall->getArg(i)->isValueDependent())
1518      continue;
1519
1520    llvm::APSInt Result(32);
1521    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1522      return ExprError(Diag(TheCall->getLocStart(),
1523                  diag::err_shufflevector_nonconstant_argument)
1524                << TheCall->getArg(i)->getSourceRange());
1525
1526    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1527      return ExprError(Diag(TheCall->getLocStart(),
1528                  diag::err_shufflevector_argument_too_large)
1529               << TheCall->getArg(i)->getSourceRange());
1530  }
1531
1532  SmallVector<Expr*, 32> exprs;
1533
1534  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1535    exprs.push_back(TheCall->getArg(i));
1536    TheCall->setArg(i, 0);
1537  }
1538
1539  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1540                                            TheCall->getCallee()->getLocStart(),
1541                                            TheCall->getRParenLoc()));
1542}
1543
1544/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1545// This is declared to take (const void*, ...) and can take two
1546// optional constant int args.
1547bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1548  unsigned NumArgs = TheCall->getNumArgs();
1549
1550  if (NumArgs > 3)
1551    return Diag(TheCall->getLocEnd(),
1552             diag::err_typecheck_call_too_many_args_at_most)
1553             << 0 /*function call*/ << 3 << NumArgs
1554             << TheCall->getSourceRange();
1555
1556  // Argument 0 is checked for us and the remaining arguments must be
1557  // constant integers.
1558  for (unsigned i = 1; i != NumArgs; ++i) {
1559    Expr *Arg = TheCall->getArg(i);
1560
1561    // We can't check the value of a dependent argument.
1562    if (Arg->isTypeDependent() || Arg->isValueDependent())
1563      continue;
1564
1565    llvm::APSInt Result;
1566    if (SemaBuiltinConstantArg(TheCall, i, Result))
1567      return true;
1568
1569    // FIXME: gcc issues a warning and rewrites these to 0. These
1570    // seems especially odd for the third argument since the default
1571    // is 3.
1572    if (i == 1) {
1573      if (Result.getLimitedValue() > 1)
1574        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1575             << "0" << "1" << Arg->getSourceRange();
1576    } else {
1577      if (Result.getLimitedValue() > 3)
1578        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1579            << "0" << "3" << Arg->getSourceRange();
1580    }
1581  }
1582
1583  return false;
1584}
1585
1586/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1587/// TheCall is a constant expression.
1588bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1589                                  llvm::APSInt &Result) {
1590  Expr *Arg = TheCall->getArg(ArgNum);
1591  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1592  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1593
1594  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1595
1596  if (!Arg->isIntegerConstantExpr(Result, Context))
1597    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1598                << FDecl->getDeclName() <<  Arg->getSourceRange();
1599
1600  return false;
1601}
1602
1603/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1604/// int type). This simply type checks that type is one of the defined
1605/// constants (0-3).
1606// For compatibility check 0-3, llvm only handles 0 and 2.
1607bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1608  llvm::APSInt Result;
1609
1610  // We can't check the value of a dependent argument.
1611  if (TheCall->getArg(1)->isTypeDependent() ||
1612      TheCall->getArg(1)->isValueDependent())
1613    return false;
1614
1615  // Check constant-ness first.
1616  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1617    return true;
1618
1619  Expr *Arg = TheCall->getArg(1);
1620  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1621    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1622             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1623  }
1624
1625  return false;
1626}
1627
1628/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1629/// This checks that val is a constant 1.
1630bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1631  Expr *Arg = TheCall->getArg(1);
1632  llvm::APSInt Result;
1633
1634  // TODO: This is less than ideal. Overload this to take a value.
1635  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1636    return true;
1637
1638  if (Result != 1)
1639    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1640             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1641
1642  return false;
1643}
1644
1645// Determine if an expression is a string literal or constant string.
1646// If this function returns false on the arguments to a function expecting a
1647// format string, we will usually need to emit a warning.
1648// True string literals are then checked by CheckFormatString.
1649Sema::StringLiteralCheckType
1650Sema::checkFormatStringExpr(const Expr *E, ArrayRef<const Expr *> Args,
1651                            bool HasVAListArg,
1652                            unsigned format_idx, unsigned firstDataArg,
1653                            FormatStringType Type, VariadicCallType CallType,
1654                            bool inFunctionCall) {
1655 tryAgain:
1656  if (E->isTypeDependent() || E->isValueDependent())
1657    return SLCT_NotALiteral;
1658
1659  E = E->IgnoreParenCasts();
1660
1661  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1662    // Technically -Wformat-nonliteral does not warn about this case.
1663    // The behavior of printf and friends in this case is implementation
1664    // dependent.  Ideally if the format string cannot be null then
1665    // it should have a 'nonnull' attribute in the function prototype.
1666    return SLCT_CheckedLiteral;
1667
1668  switch (E->getStmtClass()) {
1669  case Stmt::BinaryConditionalOperatorClass:
1670  case Stmt::ConditionalOperatorClass: {
1671    // The expression is a literal if both sub-expressions were, and it was
1672    // completely checked only if both sub-expressions were checked.
1673    const AbstractConditionalOperator *C =
1674        cast<AbstractConditionalOperator>(E);
1675    StringLiteralCheckType Left =
1676        checkFormatStringExpr(C->getTrueExpr(), Args,
1677                              HasVAListArg, format_idx, firstDataArg,
1678                              Type, CallType, inFunctionCall);
1679    if (Left == SLCT_NotALiteral)
1680      return SLCT_NotALiteral;
1681    StringLiteralCheckType Right =
1682        checkFormatStringExpr(C->getFalseExpr(), Args,
1683                              HasVAListArg, format_idx, firstDataArg,
1684                              Type, CallType, inFunctionCall);
1685    return Left < Right ? Left : Right;
1686  }
1687
1688  case Stmt::ImplicitCastExprClass: {
1689    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1690    goto tryAgain;
1691  }
1692
1693  case Stmt::OpaqueValueExprClass:
1694    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1695      E = src;
1696      goto tryAgain;
1697    }
1698    return SLCT_NotALiteral;
1699
1700  case Stmt::PredefinedExprClass:
1701    // While __func__, etc., are technically not string literals, they
1702    // cannot contain format specifiers and thus are not a security
1703    // liability.
1704    return SLCT_UncheckedLiteral;
1705
1706  case Stmt::DeclRefExprClass: {
1707    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1708
1709    // As an exception, do not flag errors for variables binding to
1710    // const string literals.
1711    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1712      bool isConstant = false;
1713      QualType T = DR->getType();
1714
1715      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1716        isConstant = AT->getElementType().isConstant(Context);
1717      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1718        isConstant = T.isConstant(Context) &&
1719                     PT->getPointeeType().isConstant(Context);
1720      } else if (T->isObjCObjectPointerType()) {
1721        // In ObjC, there is usually no "const ObjectPointer" type,
1722        // so don't check if the pointee type is constant.
1723        isConstant = T.isConstant(Context);
1724      }
1725
1726      if (isConstant) {
1727        if (const Expr *Init = VD->getAnyInitializer()) {
1728          // Look through initializers like const char c[] = { "foo" }
1729          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1730            if (InitList->isStringLiteralInit())
1731              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1732          }
1733          return checkFormatStringExpr(Init, Args,
1734                                       HasVAListArg, format_idx,
1735                                       firstDataArg, Type, CallType,
1736                                       /*inFunctionCall*/false);
1737        }
1738      }
1739
1740      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1741      // special check to see if the format string is a function parameter
1742      // of the function calling the printf function.  If the function
1743      // has an attribute indicating it is a printf-like function, then we
1744      // should suppress warnings concerning non-literals being used in a call
1745      // to a vprintf function.  For example:
1746      //
1747      // void
1748      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1749      //      va_list ap;
1750      //      va_start(ap, fmt);
1751      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1752      //      ...
1753      //
1754      if (HasVAListArg) {
1755        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1756          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1757            int PVIndex = PV->getFunctionScopeIndex() + 1;
1758            for (specific_attr_iterator<FormatAttr>
1759                 i = ND->specific_attr_begin<FormatAttr>(),
1760                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1761              FormatAttr *PVFormat = *i;
1762              // adjust for implicit parameter
1763              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1764                if (MD->isInstance())
1765                  ++PVIndex;
1766              // We also check if the formats are compatible.
1767              // We can't pass a 'scanf' string to a 'printf' function.
1768              if (PVIndex == PVFormat->getFormatIdx() &&
1769                  Type == GetFormatStringType(PVFormat))
1770                return SLCT_UncheckedLiteral;
1771            }
1772          }
1773        }
1774      }
1775    }
1776
1777    return SLCT_NotALiteral;
1778  }
1779
1780  case Stmt::CallExprClass:
1781  case Stmt::CXXMemberCallExprClass: {
1782    const CallExpr *CE = cast<CallExpr>(E);
1783    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1784      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1785        unsigned ArgIndex = FA->getFormatIdx();
1786        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1787          if (MD->isInstance())
1788            --ArgIndex;
1789        const Expr *Arg = CE->getArg(ArgIndex - 1);
1790
1791        return checkFormatStringExpr(Arg, Args,
1792                                     HasVAListArg, format_idx, firstDataArg,
1793                                     Type, CallType, inFunctionCall);
1794      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1795        unsigned BuiltinID = FD->getBuiltinID();
1796        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1797            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1798          const Expr *Arg = CE->getArg(0);
1799          return checkFormatStringExpr(Arg, Args,
1800                                       HasVAListArg, format_idx,
1801                                       firstDataArg, Type, CallType,
1802                                       inFunctionCall);
1803        }
1804      }
1805    }
1806
1807    return SLCT_NotALiteral;
1808  }
1809  case Stmt::ObjCStringLiteralClass:
1810  case Stmt::StringLiteralClass: {
1811    const StringLiteral *StrE = NULL;
1812
1813    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1814      StrE = ObjCFExpr->getString();
1815    else
1816      StrE = cast<StringLiteral>(E);
1817
1818    if (StrE) {
1819      CheckFormatString(StrE, E, Args, HasVAListArg, format_idx,
1820                        firstDataArg, Type, inFunctionCall, CallType);
1821      return SLCT_CheckedLiteral;
1822    }
1823
1824    return SLCT_NotALiteral;
1825  }
1826
1827  default:
1828    return SLCT_NotALiteral;
1829  }
1830}
1831
1832void
1833Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1834                            const Expr * const *ExprArgs,
1835                            SourceLocation CallSiteLoc) {
1836  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1837                                  e = NonNull->args_end();
1838       i != e; ++i) {
1839    const Expr *ArgExpr = ExprArgs[*i];
1840
1841    // As a special case, transparent unions initialized with zero are
1842    // considered null for the purposes of the nonnull attribute.
1843    if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
1844      if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
1845        if (const CompoundLiteralExpr *CLE =
1846            dyn_cast<CompoundLiteralExpr>(ArgExpr))
1847          if (const InitListExpr *ILE =
1848              dyn_cast<InitListExpr>(CLE->getInitializer()))
1849            ArgExpr = ILE->getInit(0);
1850    }
1851
1852    bool Result;
1853    if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
1854      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1855  }
1856}
1857
1858Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1859  return llvm::StringSwitch<FormatStringType>(Format->getType())
1860  .Case("scanf", FST_Scanf)
1861  .Cases("printf", "printf0", FST_Printf)
1862  .Cases("NSString", "CFString", FST_NSString)
1863  .Case("strftime", FST_Strftime)
1864  .Case("strfmon", FST_Strfmon)
1865  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1866  .Default(FST_Unknown);
1867}
1868
1869/// CheckFormatArguments - Check calls to printf and scanf (and similar
1870/// functions) for correct use of format strings.
1871/// Returns true if a format string has been fully checked.
1872bool Sema::CheckFormatArguments(const FormatAttr *Format,
1873                                ArrayRef<const Expr *> Args,
1874                                bool IsCXXMember,
1875                                VariadicCallType CallType,
1876                                SourceLocation Loc, SourceRange Range) {
1877  FormatStringInfo FSI;
1878  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1879    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
1880                                FSI.FirstDataArg, GetFormatStringType(Format),
1881                                CallType, Loc, Range);
1882  return false;
1883}
1884
1885bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
1886                                bool HasVAListArg, unsigned format_idx,
1887                                unsigned firstDataArg, FormatStringType Type,
1888                                VariadicCallType CallType,
1889                                SourceLocation Loc, SourceRange Range) {
1890  // CHECK: printf/scanf-like function is called with no format string.
1891  if (format_idx >= Args.size()) {
1892    Diag(Loc, diag::warn_missing_format_string) << Range;
1893    return false;
1894  }
1895
1896  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1897
1898  // CHECK: format string is not a string literal.
1899  //
1900  // Dynamically generated format strings are difficult to
1901  // automatically vet at compile time.  Requiring that format strings
1902  // are string literals: (1) permits the checking of format strings by
1903  // the compiler and thereby (2) can practically remove the source of
1904  // many format string exploits.
1905
1906  // Format string can be either ObjC string (e.g. @"%d") or
1907  // C string (e.g. "%d")
1908  // ObjC string uses the same format specifiers as C string, so we can use
1909  // the same format string checking logic for both ObjC and C strings.
1910  StringLiteralCheckType CT =
1911      checkFormatStringExpr(OrigFormatExpr, Args, HasVAListArg,
1912                            format_idx, firstDataArg, Type, CallType);
1913  if (CT != SLCT_NotALiteral)
1914    // Literal format string found, check done!
1915    return CT == SLCT_CheckedLiteral;
1916
1917  // Strftime is particular as it always uses a single 'time' argument,
1918  // so it is safe to pass a non-literal string.
1919  if (Type == FST_Strftime)
1920    return false;
1921
1922  // Do not emit diag when the string param is a macro expansion and the
1923  // format is either NSString or CFString. This is a hack to prevent
1924  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1925  // which are usually used in place of NS and CF string literals.
1926  if (Type == FST_NSString &&
1927      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1928    return false;
1929
1930  // If there are no arguments specified, warn with -Wformat-security, otherwise
1931  // warn only with -Wformat-nonliteral.
1932  if (Args.size() == format_idx+1)
1933    Diag(Args[format_idx]->getLocStart(),
1934         diag::warn_format_nonliteral_noargs)
1935      << OrigFormatExpr->getSourceRange();
1936  else
1937    Diag(Args[format_idx]->getLocStart(),
1938         diag::warn_format_nonliteral)
1939           << OrigFormatExpr->getSourceRange();
1940  return false;
1941}
1942
1943namespace {
1944class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1945protected:
1946  Sema &S;
1947  const StringLiteral *FExpr;
1948  const Expr *OrigFormatExpr;
1949  const unsigned FirstDataArg;
1950  const unsigned NumDataArgs;
1951  const char *Beg; // Start of format string.
1952  const bool HasVAListArg;
1953  ArrayRef<const Expr *> Args;
1954  unsigned FormatIdx;
1955  llvm::BitVector CoveredArgs;
1956  bool usesPositionalArgs;
1957  bool atFirstArg;
1958  bool inFunctionCall;
1959  Sema::VariadicCallType CallType;
1960public:
1961  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1962                     const Expr *origFormatExpr, unsigned firstDataArg,
1963                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
1964                     ArrayRef<const Expr *> Args,
1965                     unsigned formatIdx, bool inFunctionCall,
1966                     Sema::VariadicCallType callType)
1967    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1968      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1969      Beg(beg), HasVAListArg(hasVAListArg),
1970      Args(Args), FormatIdx(formatIdx),
1971      usesPositionalArgs(false), atFirstArg(true),
1972      inFunctionCall(inFunctionCall), CallType(callType) {
1973        CoveredArgs.resize(numDataArgs);
1974        CoveredArgs.reset();
1975      }
1976
1977  void DoneProcessing();
1978
1979  void HandleIncompleteSpecifier(const char *startSpecifier,
1980                                 unsigned specifierLen);
1981
1982  void HandleInvalidLengthModifier(
1983      const analyze_format_string::FormatSpecifier &FS,
1984      const analyze_format_string::ConversionSpecifier &CS,
1985      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
1986
1987  void HandleNonStandardLengthModifier(
1988      const analyze_format_string::FormatSpecifier &FS,
1989      const char *startSpecifier, unsigned specifierLen);
1990
1991  void HandleNonStandardConversionSpecifier(
1992      const analyze_format_string::ConversionSpecifier &CS,
1993      const char *startSpecifier, unsigned specifierLen);
1994
1995  virtual void HandlePosition(const char *startPos, unsigned posLen);
1996
1997  virtual void HandleInvalidPosition(const char *startSpecifier,
1998                                     unsigned specifierLen,
1999                                     analyze_format_string::PositionContext p);
2000
2001  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2002
2003  void HandleNullChar(const char *nullCharacter);
2004
2005  template <typename Range>
2006  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2007                                   const Expr *ArgumentExpr,
2008                                   PartialDiagnostic PDiag,
2009                                   SourceLocation StringLoc,
2010                                   bool IsStringLocation, Range StringRange,
2011                                   ArrayRef<FixItHint> Fixit = None);
2012
2013protected:
2014  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2015                                        const char *startSpec,
2016                                        unsigned specifierLen,
2017                                        const char *csStart, unsigned csLen);
2018
2019  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2020                                         const char *startSpec,
2021                                         unsigned specifierLen);
2022
2023  SourceRange getFormatStringRange();
2024  CharSourceRange getSpecifierRange(const char *startSpecifier,
2025                                    unsigned specifierLen);
2026  SourceLocation getLocationOfByte(const char *x);
2027
2028  const Expr *getDataArg(unsigned i) const;
2029
2030  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2031                    const analyze_format_string::ConversionSpecifier &CS,
2032                    const char *startSpecifier, unsigned specifierLen,
2033                    unsigned argIndex);
2034
2035  template <typename Range>
2036  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2037                            bool IsStringLocation, Range StringRange,
2038                            ArrayRef<FixItHint> Fixit = None);
2039
2040  void CheckPositionalAndNonpositionalArgs(
2041      const analyze_format_string::FormatSpecifier *FS);
2042};
2043}
2044
2045SourceRange CheckFormatHandler::getFormatStringRange() {
2046  return OrigFormatExpr->getSourceRange();
2047}
2048
2049CharSourceRange CheckFormatHandler::
2050getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2051  SourceLocation Start = getLocationOfByte(startSpecifier);
2052  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2053
2054  // Advance the end SourceLocation by one due to half-open ranges.
2055  End = End.getLocWithOffset(1);
2056
2057  return CharSourceRange::getCharRange(Start, End);
2058}
2059
2060SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2061  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2062}
2063
2064void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2065                                                   unsigned specifierLen){
2066  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2067                       getLocationOfByte(startSpecifier),
2068                       /*IsStringLocation*/true,
2069                       getSpecifierRange(startSpecifier, specifierLen));
2070}
2071
2072void CheckFormatHandler::HandleInvalidLengthModifier(
2073    const analyze_format_string::FormatSpecifier &FS,
2074    const analyze_format_string::ConversionSpecifier &CS,
2075    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2076  using namespace analyze_format_string;
2077
2078  const LengthModifier &LM = FS.getLengthModifier();
2079  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2080
2081  // See if we know how to fix this length modifier.
2082  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2083  if (FixedLM) {
2084    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2085                         getLocationOfByte(LM.getStart()),
2086                         /*IsStringLocation*/true,
2087                         getSpecifierRange(startSpecifier, specifierLen));
2088
2089    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2090      << FixedLM->toString()
2091      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2092
2093  } else {
2094    FixItHint Hint;
2095    if (DiagID == diag::warn_format_nonsensical_length)
2096      Hint = FixItHint::CreateRemoval(LMRange);
2097
2098    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2099                         getLocationOfByte(LM.getStart()),
2100                         /*IsStringLocation*/true,
2101                         getSpecifierRange(startSpecifier, specifierLen),
2102                         Hint);
2103  }
2104}
2105
2106void CheckFormatHandler::HandleNonStandardLengthModifier(
2107    const analyze_format_string::FormatSpecifier &FS,
2108    const char *startSpecifier, unsigned specifierLen) {
2109  using namespace analyze_format_string;
2110
2111  const LengthModifier &LM = FS.getLengthModifier();
2112  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2113
2114  // See if we know how to fix this length modifier.
2115  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2116  if (FixedLM) {
2117    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2118                           << LM.toString() << 0,
2119                         getLocationOfByte(LM.getStart()),
2120                         /*IsStringLocation*/true,
2121                         getSpecifierRange(startSpecifier, specifierLen));
2122
2123    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2124      << FixedLM->toString()
2125      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2126
2127  } else {
2128    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2129                           << LM.toString() << 0,
2130                         getLocationOfByte(LM.getStart()),
2131                         /*IsStringLocation*/true,
2132                         getSpecifierRange(startSpecifier, specifierLen));
2133  }
2134}
2135
2136void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2137    const analyze_format_string::ConversionSpecifier &CS,
2138    const char *startSpecifier, unsigned specifierLen) {
2139  using namespace analyze_format_string;
2140
2141  // See if we know how to fix this conversion specifier.
2142  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2143  if (FixedCS) {
2144    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2145                          << CS.toString() << /*conversion specifier*/1,
2146                         getLocationOfByte(CS.getStart()),
2147                         /*IsStringLocation*/true,
2148                         getSpecifierRange(startSpecifier, specifierLen));
2149
2150    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2151    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2152      << FixedCS->toString()
2153      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2154  } else {
2155    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2156                          << CS.toString() << /*conversion specifier*/1,
2157                         getLocationOfByte(CS.getStart()),
2158                         /*IsStringLocation*/true,
2159                         getSpecifierRange(startSpecifier, specifierLen));
2160  }
2161}
2162
2163void CheckFormatHandler::HandlePosition(const char *startPos,
2164                                        unsigned posLen) {
2165  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2166                               getLocationOfByte(startPos),
2167                               /*IsStringLocation*/true,
2168                               getSpecifierRange(startPos, posLen));
2169}
2170
2171void
2172CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2173                                     analyze_format_string::PositionContext p) {
2174  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2175                         << (unsigned) p,
2176                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2177                       getSpecifierRange(startPos, posLen));
2178}
2179
2180void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2181                                            unsigned posLen) {
2182  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2183                               getLocationOfByte(startPos),
2184                               /*IsStringLocation*/true,
2185                               getSpecifierRange(startPos, posLen));
2186}
2187
2188void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2189  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2190    // The presence of a null character is likely an error.
2191    EmitFormatDiagnostic(
2192      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2193      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2194      getFormatStringRange());
2195  }
2196}
2197
2198// Note that this may return NULL if there was an error parsing or building
2199// one of the argument expressions.
2200const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2201  return Args[FirstDataArg + i];
2202}
2203
2204void CheckFormatHandler::DoneProcessing() {
2205    // Does the number of data arguments exceed the number of
2206    // format conversions in the format string?
2207  if (!HasVAListArg) {
2208      // Find any arguments that weren't covered.
2209    CoveredArgs.flip();
2210    signed notCoveredArg = CoveredArgs.find_first();
2211    if (notCoveredArg >= 0) {
2212      assert((unsigned)notCoveredArg < NumDataArgs);
2213      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2214        SourceLocation Loc = E->getLocStart();
2215        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2216          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2217                               Loc, /*IsStringLocation*/false,
2218                               getFormatStringRange());
2219        }
2220      }
2221    }
2222  }
2223}
2224
2225bool
2226CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2227                                                     SourceLocation Loc,
2228                                                     const char *startSpec,
2229                                                     unsigned specifierLen,
2230                                                     const char *csStart,
2231                                                     unsigned csLen) {
2232
2233  bool keepGoing = true;
2234  if (argIndex < NumDataArgs) {
2235    // Consider the argument coverered, even though the specifier doesn't
2236    // make sense.
2237    CoveredArgs.set(argIndex);
2238  }
2239  else {
2240    // If argIndex exceeds the number of data arguments we
2241    // don't issue a warning because that is just a cascade of warnings (and
2242    // they may have intended '%%' anyway). We don't want to continue processing
2243    // the format string after this point, however, as we will like just get
2244    // gibberish when trying to match arguments.
2245    keepGoing = false;
2246  }
2247
2248  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2249                         << StringRef(csStart, csLen),
2250                       Loc, /*IsStringLocation*/true,
2251                       getSpecifierRange(startSpec, specifierLen));
2252
2253  return keepGoing;
2254}
2255
2256void
2257CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2258                                                      const char *startSpec,
2259                                                      unsigned specifierLen) {
2260  EmitFormatDiagnostic(
2261    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2262    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2263}
2264
2265bool
2266CheckFormatHandler::CheckNumArgs(
2267  const analyze_format_string::FormatSpecifier &FS,
2268  const analyze_format_string::ConversionSpecifier &CS,
2269  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2270
2271  if (argIndex >= NumDataArgs) {
2272    PartialDiagnostic PDiag = FS.usesPositionalArg()
2273      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2274           << (argIndex+1) << NumDataArgs)
2275      : S.PDiag(diag::warn_printf_insufficient_data_args);
2276    EmitFormatDiagnostic(
2277      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2278      getSpecifierRange(startSpecifier, specifierLen));
2279    return false;
2280  }
2281  return true;
2282}
2283
2284template<typename Range>
2285void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2286                                              SourceLocation Loc,
2287                                              bool IsStringLocation,
2288                                              Range StringRange,
2289                                              ArrayRef<FixItHint> FixIt) {
2290  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2291                       Loc, IsStringLocation, StringRange, FixIt);
2292}
2293
2294/// \brief If the format string is not within the funcion call, emit a note
2295/// so that the function call and string are in diagnostic messages.
2296///
2297/// \param InFunctionCall if true, the format string is within the function
2298/// call and only one diagnostic message will be produced.  Otherwise, an
2299/// extra note will be emitted pointing to location of the format string.
2300///
2301/// \param ArgumentExpr the expression that is passed as the format string
2302/// argument in the function call.  Used for getting locations when two
2303/// diagnostics are emitted.
2304///
2305/// \param PDiag the callee should already have provided any strings for the
2306/// diagnostic message.  This function only adds locations and fixits
2307/// to diagnostics.
2308///
2309/// \param Loc primary location for diagnostic.  If two diagnostics are
2310/// required, one will be at Loc and a new SourceLocation will be created for
2311/// the other one.
2312///
2313/// \param IsStringLocation if true, Loc points to the format string should be
2314/// used for the note.  Otherwise, Loc points to the argument list and will
2315/// be used with PDiag.
2316///
2317/// \param StringRange some or all of the string to highlight.  This is
2318/// templated so it can accept either a CharSourceRange or a SourceRange.
2319///
2320/// \param FixIt optional fix it hint for the format string.
2321template<typename Range>
2322void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2323                                              const Expr *ArgumentExpr,
2324                                              PartialDiagnostic PDiag,
2325                                              SourceLocation Loc,
2326                                              bool IsStringLocation,
2327                                              Range StringRange,
2328                                              ArrayRef<FixItHint> FixIt) {
2329  if (InFunctionCall) {
2330    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2331    D << StringRange;
2332    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2333         I != E; ++I) {
2334      D << *I;
2335    }
2336  } else {
2337    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2338      << ArgumentExpr->getSourceRange();
2339
2340    const Sema::SemaDiagnosticBuilder &Note =
2341      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2342             diag::note_format_string_defined);
2343
2344    Note << StringRange;
2345    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2346         I != E; ++I) {
2347      Note << *I;
2348    }
2349  }
2350}
2351
2352//===--- CHECK: Printf format string checking ------------------------------===//
2353
2354namespace {
2355class CheckPrintfHandler : public CheckFormatHandler {
2356  bool ObjCContext;
2357public:
2358  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2359                     const Expr *origFormatExpr, unsigned firstDataArg,
2360                     unsigned numDataArgs, bool isObjC,
2361                     const char *beg, bool hasVAListArg,
2362                     ArrayRef<const Expr *> Args,
2363                     unsigned formatIdx, bool inFunctionCall,
2364                     Sema::VariadicCallType CallType)
2365  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2366                       numDataArgs, beg, hasVAListArg, Args,
2367                       formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2368  {}
2369
2370
2371  bool HandleInvalidPrintfConversionSpecifier(
2372                                      const analyze_printf::PrintfSpecifier &FS,
2373                                      const char *startSpecifier,
2374                                      unsigned specifierLen);
2375
2376  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2377                             const char *startSpecifier,
2378                             unsigned specifierLen);
2379  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2380                       const char *StartSpecifier,
2381                       unsigned SpecifierLen,
2382                       const Expr *E);
2383
2384  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2385                    const char *startSpecifier, unsigned specifierLen);
2386  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2387                           const analyze_printf::OptionalAmount &Amt,
2388                           unsigned type,
2389                           const char *startSpecifier, unsigned specifierLen);
2390  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2391                  const analyze_printf::OptionalFlag &flag,
2392                  const char *startSpecifier, unsigned specifierLen);
2393  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2394                         const analyze_printf::OptionalFlag &ignoredFlag,
2395                         const analyze_printf::OptionalFlag &flag,
2396                         const char *startSpecifier, unsigned specifierLen);
2397  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2398                           const Expr *E, const CharSourceRange &CSR);
2399
2400};
2401}
2402
2403bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2404                                      const analyze_printf::PrintfSpecifier &FS,
2405                                      const char *startSpecifier,
2406                                      unsigned specifierLen) {
2407  const analyze_printf::PrintfConversionSpecifier &CS =
2408    FS.getConversionSpecifier();
2409
2410  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2411                                          getLocationOfByte(CS.getStart()),
2412                                          startSpecifier, specifierLen,
2413                                          CS.getStart(), CS.getLength());
2414}
2415
2416bool CheckPrintfHandler::HandleAmount(
2417                               const analyze_format_string::OptionalAmount &Amt,
2418                               unsigned k, const char *startSpecifier,
2419                               unsigned specifierLen) {
2420
2421  if (Amt.hasDataArgument()) {
2422    if (!HasVAListArg) {
2423      unsigned argIndex = Amt.getArgIndex();
2424      if (argIndex >= NumDataArgs) {
2425        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2426                               << k,
2427                             getLocationOfByte(Amt.getStart()),
2428                             /*IsStringLocation*/true,
2429                             getSpecifierRange(startSpecifier, specifierLen));
2430        // Don't do any more checking.  We will just emit
2431        // spurious errors.
2432        return false;
2433      }
2434
2435      // Type check the data argument.  It should be an 'int'.
2436      // Although not in conformance with C99, we also allow the argument to be
2437      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2438      // doesn't emit a warning for that case.
2439      CoveredArgs.set(argIndex);
2440      const Expr *Arg = getDataArg(argIndex);
2441      if (!Arg)
2442        return false;
2443
2444      QualType T = Arg->getType();
2445
2446      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2447      assert(AT.isValid());
2448
2449      if (!AT.matchesType(S.Context, T)) {
2450        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2451                               << k << AT.getRepresentativeTypeName(S.Context)
2452                               << T << Arg->getSourceRange(),
2453                             getLocationOfByte(Amt.getStart()),
2454                             /*IsStringLocation*/true,
2455                             getSpecifierRange(startSpecifier, specifierLen));
2456        // Don't do any more checking.  We will just emit
2457        // spurious errors.
2458        return false;
2459      }
2460    }
2461  }
2462  return true;
2463}
2464
2465void CheckPrintfHandler::HandleInvalidAmount(
2466                                      const analyze_printf::PrintfSpecifier &FS,
2467                                      const analyze_printf::OptionalAmount &Amt,
2468                                      unsigned type,
2469                                      const char *startSpecifier,
2470                                      unsigned specifierLen) {
2471  const analyze_printf::PrintfConversionSpecifier &CS =
2472    FS.getConversionSpecifier();
2473
2474  FixItHint fixit =
2475    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2476      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2477                                 Amt.getConstantLength()))
2478      : FixItHint();
2479
2480  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2481                         << type << CS.toString(),
2482                       getLocationOfByte(Amt.getStart()),
2483                       /*IsStringLocation*/true,
2484                       getSpecifierRange(startSpecifier, specifierLen),
2485                       fixit);
2486}
2487
2488void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2489                                    const analyze_printf::OptionalFlag &flag,
2490                                    const char *startSpecifier,
2491                                    unsigned specifierLen) {
2492  // Warn about pointless flag with a fixit removal.
2493  const analyze_printf::PrintfConversionSpecifier &CS =
2494    FS.getConversionSpecifier();
2495  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2496                         << flag.toString() << CS.toString(),
2497                       getLocationOfByte(flag.getPosition()),
2498                       /*IsStringLocation*/true,
2499                       getSpecifierRange(startSpecifier, specifierLen),
2500                       FixItHint::CreateRemoval(
2501                         getSpecifierRange(flag.getPosition(), 1)));
2502}
2503
2504void CheckPrintfHandler::HandleIgnoredFlag(
2505                                const analyze_printf::PrintfSpecifier &FS,
2506                                const analyze_printf::OptionalFlag &ignoredFlag,
2507                                const analyze_printf::OptionalFlag &flag,
2508                                const char *startSpecifier,
2509                                unsigned specifierLen) {
2510  // Warn about ignored flag with a fixit removal.
2511  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2512                         << ignoredFlag.toString() << flag.toString(),
2513                       getLocationOfByte(ignoredFlag.getPosition()),
2514                       /*IsStringLocation*/true,
2515                       getSpecifierRange(startSpecifier, specifierLen),
2516                       FixItHint::CreateRemoval(
2517                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2518}
2519
2520// Determines if the specified is a C++ class or struct containing
2521// a member with the specified name and kind (e.g. a CXXMethodDecl named
2522// "c_str()").
2523template<typename MemberKind>
2524static llvm::SmallPtrSet<MemberKind*, 1>
2525CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2526  const RecordType *RT = Ty->getAs<RecordType>();
2527  llvm::SmallPtrSet<MemberKind*, 1> Results;
2528
2529  if (!RT)
2530    return Results;
2531  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2532  if (!RD)
2533    return Results;
2534
2535  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2536                 Sema::LookupMemberName);
2537
2538  // We just need to include all members of the right kind turned up by the
2539  // filter, at this point.
2540  if (S.LookupQualifiedName(R, RT->getDecl()))
2541    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2542      NamedDecl *decl = (*I)->getUnderlyingDecl();
2543      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2544        Results.insert(FK);
2545    }
2546  return Results;
2547}
2548
2549// Check if a (w)string was passed when a (w)char* was needed, and offer a
2550// better diagnostic if so. AT is assumed to be valid.
2551// Returns true when a c_str() conversion method is found.
2552bool CheckPrintfHandler::checkForCStrMembers(
2553    const analyze_printf::ArgType &AT, const Expr *E,
2554    const CharSourceRange &CSR) {
2555  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2556
2557  MethodSet Results =
2558      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2559
2560  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2561       MI != ME; ++MI) {
2562    const CXXMethodDecl *Method = *MI;
2563    if (Method->getNumParams() == 0 &&
2564          AT.matchesType(S.Context, Method->getResultType())) {
2565      // FIXME: Suggest parens if the expression needs them.
2566      SourceLocation EndLoc =
2567          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2568      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2569          << "c_str()"
2570          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2571      return true;
2572    }
2573  }
2574
2575  return false;
2576}
2577
2578bool
2579CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2580                                            &FS,
2581                                          const char *startSpecifier,
2582                                          unsigned specifierLen) {
2583
2584  using namespace analyze_format_string;
2585  using namespace analyze_printf;
2586  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2587
2588  if (FS.consumesDataArgument()) {
2589    if (atFirstArg) {
2590        atFirstArg = false;
2591        usesPositionalArgs = FS.usesPositionalArg();
2592    }
2593    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2594      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2595                                        startSpecifier, specifierLen);
2596      return false;
2597    }
2598  }
2599
2600  // First check if the field width, precision, and conversion specifier
2601  // have matching data arguments.
2602  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2603                    startSpecifier, specifierLen)) {
2604    return false;
2605  }
2606
2607  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2608                    startSpecifier, specifierLen)) {
2609    return false;
2610  }
2611
2612  if (!CS.consumesDataArgument()) {
2613    // FIXME: Technically specifying a precision or field width here
2614    // makes no sense.  Worth issuing a warning at some point.
2615    return true;
2616  }
2617
2618  // Consume the argument.
2619  unsigned argIndex = FS.getArgIndex();
2620  if (argIndex < NumDataArgs) {
2621    // The check to see if the argIndex is valid will come later.
2622    // We set the bit here because we may exit early from this
2623    // function if we encounter some other error.
2624    CoveredArgs.set(argIndex);
2625  }
2626
2627  // Check for using an Objective-C specific conversion specifier
2628  // in a non-ObjC literal.
2629  if (!ObjCContext && CS.isObjCArg()) {
2630    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2631                                                  specifierLen);
2632  }
2633
2634  // Check for invalid use of field width
2635  if (!FS.hasValidFieldWidth()) {
2636    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2637        startSpecifier, specifierLen);
2638  }
2639
2640  // Check for invalid use of precision
2641  if (!FS.hasValidPrecision()) {
2642    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2643        startSpecifier, specifierLen);
2644  }
2645
2646  // Check each flag does not conflict with any other component.
2647  if (!FS.hasValidThousandsGroupingPrefix())
2648    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2649  if (!FS.hasValidLeadingZeros())
2650    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2651  if (!FS.hasValidPlusPrefix())
2652    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2653  if (!FS.hasValidSpacePrefix())
2654    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2655  if (!FS.hasValidAlternativeForm())
2656    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2657  if (!FS.hasValidLeftJustified())
2658    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2659
2660  // Check that flags are not ignored by another flag
2661  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2662    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2663        startSpecifier, specifierLen);
2664  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2665    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2666            startSpecifier, specifierLen);
2667
2668  // Check the length modifier is valid with the given conversion specifier.
2669  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2670    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2671                                diag::warn_format_nonsensical_length);
2672  else if (!FS.hasStandardLengthModifier())
2673    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2674  else if (!FS.hasStandardLengthConversionCombination())
2675    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2676                                diag::warn_format_non_standard_conversion_spec);
2677
2678  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2679    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2680
2681  // The remaining checks depend on the data arguments.
2682  if (HasVAListArg)
2683    return true;
2684
2685  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2686    return false;
2687
2688  const Expr *Arg = getDataArg(argIndex);
2689  if (!Arg)
2690    return true;
2691
2692  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2693}
2694
2695static bool requiresParensToAddCast(const Expr *E) {
2696  // FIXME: We should have a general way to reason about operator
2697  // precedence and whether parens are actually needed here.
2698  // Take care of a few common cases where they aren't.
2699  const Expr *Inside = E->IgnoreImpCasts();
2700  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2701    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2702
2703  switch (Inside->getStmtClass()) {
2704  case Stmt::ArraySubscriptExprClass:
2705  case Stmt::CallExprClass:
2706  case Stmt::CharacterLiteralClass:
2707  case Stmt::CXXBoolLiteralExprClass:
2708  case Stmt::DeclRefExprClass:
2709  case Stmt::FloatingLiteralClass:
2710  case Stmt::IntegerLiteralClass:
2711  case Stmt::MemberExprClass:
2712  case Stmt::ObjCArrayLiteralClass:
2713  case Stmt::ObjCBoolLiteralExprClass:
2714  case Stmt::ObjCBoxedExprClass:
2715  case Stmt::ObjCDictionaryLiteralClass:
2716  case Stmt::ObjCEncodeExprClass:
2717  case Stmt::ObjCIvarRefExprClass:
2718  case Stmt::ObjCMessageExprClass:
2719  case Stmt::ObjCPropertyRefExprClass:
2720  case Stmt::ObjCStringLiteralClass:
2721  case Stmt::ObjCSubscriptRefExprClass:
2722  case Stmt::ParenExprClass:
2723  case Stmt::StringLiteralClass:
2724  case Stmt::UnaryOperatorClass:
2725    return false;
2726  default:
2727    return true;
2728  }
2729}
2730
2731bool
2732CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2733                                    const char *StartSpecifier,
2734                                    unsigned SpecifierLen,
2735                                    const Expr *E) {
2736  using namespace analyze_format_string;
2737  using namespace analyze_printf;
2738  // Now type check the data expression that matches the
2739  // format specifier.
2740  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2741                                                    ObjCContext);
2742  if (!AT.isValid())
2743    return true;
2744
2745  QualType ExprTy = E->getType();
2746  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
2747    ExprTy = TET->getUnderlyingExpr()->getType();
2748  }
2749
2750  if (AT.matchesType(S.Context, ExprTy))
2751    return true;
2752
2753  // Look through argument promotions for our error message's reported type.
2754  // This includes the integral and floating promotions, but excludes array
2755  // and function pointer decay; seeing that an argument intended to be a
2756  // string has type 'char [6]' is probably more confusing than 'char *'.
2757  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2758    if (ICE->getCastKind() == CK_IntegralCast ||
2759        ICE->getCastKind() == CK_FloatingCast) {
2760      E = ICE->getSubExpr();
2761      ExprTy = E->getType();
2762
2763      // Check if we didn't match because of an implicit cast from a 'char'
2764      // or 'short' to an 'int'.  This is done because printf is a varargs
2765      // function.
2766      if (ICE->getType() == S.Context.IntTy ||
2767          ICE->getType() == S.Context.UnsignedIntTy) {
2768        // All further checking is done on the subexpression.
2769        if (AT.matchesType(S.Context, ExprTy))
2770          return true;
2771      }
2772    }
2773  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
2774    // Special case for 'a', which has type 'int' in C.
2775    // Note, however, that we do /not/ want to treat multibyte constants like
2776    // 'MooV' as characters! This form is deprecated but still exists.
2777    if (ExprTy == S.Context.IntTy)
2778      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
2779        ExprTy = S.Context.CharTy;
2780  }
2781
2782  // %C in an Objective-C context prints a unichar, not a wchar_t.
2783  // If the argument is an integer of some kind, believe the %C and suggest
2784  // a cast instead of changing the conversion specifier.
2785  QualType IntendedTy = ExprTy;
2786  if (ObjCContext &&
2787      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
2788    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
2789        !ExprTy->isCharType()) {
2790      // 'unichar' is defined as a typedef of unsigned short, but we should
2791      // prefer using the typedef if it is visible.
2792      IntendedTy = S.Context.UnsignedShortTy;
2793
2794      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
2795                          Sema::LookupOrdinaryName);
2796      if (S.LookupName(Result, S.getCurScope())) {
2797        NamedDecl *ND = Result.getFoundDecl();
2798        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
2799          if (TD->getUnderlyingType() == IntendedTy)
2800            IntendedTy = S.Context.getTypedefType(TD);
2801      }
2802    }
2803  }
2804
2805  // Special-case some of Darwin's platform-independence types by suggesting
2806  // casts to primitive types that are known to be large enough.
2807  bool ShouldNotPrintDirectly = false;
2808  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2809    // Use a 'while' to peel off layers of typedefs.
2810    QualType TyTy = IntendedTy;
2811    while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
2812      StringRef Name = UserTy->getDecl()->getName();
2813      QualType CastTy = llvm::StringSwitch<QualType>(Name)
2814        .Case("NSInteger", S.Context.LongTy)
2815        .Case("NSUInteger", S.Context.UnsignedLongTy)
2816        .Case("SInt32", S.Context.IntTy)
2817        .Case("UInt32", S.Context.UnsignedIntTy)
2818        .Default(QualType());
2819
2820      if (!CastTy.isNull()) {
2821        ShouldNotPrintDirectly = true;
2822        IntendedTy = CastTy;
2823        break;
2824      }
2825      TyTy = UserTy->desugar();
2826    }
2827  }
2828
2829  // We may be able to offer a FixItHint if it is a supported type.
2830  PrintfSpecifier fixedFS = FS;
2831  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
2832                                 S.Context, ObjCContext);
2833
2834  if (success) {
2835    // Get the fix string from the fixed format specifier
2836    SmallString<16> buf;
2837    llvm::raw_svector_ostream os(buf);
2838    fixedFS.toString(os);
2839
2840    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
2841
2842    if (IntendedTy == ExprTy) {
2843      // In this case, the specifier is wrong and should be changed to match
2844      // the argument.
2845      EmitFormatDiagnostic(
2846        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2847          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
2848          << E->getSourceRange(),
2849        E->getLocStart(),
2850        /*IsStringLocation*/false,
2851        SpecRange,
2852        FixItHint::CreateReplacement(SpecRange, os.str()));
2853
2854    } else {
2855      // The canonical type for formatting this value is different from the
2856      // actual type of the expression. (This occurs, for example, with Darwin's
2857      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
2858      // should be printed as 'long' for 64-bit compatibility.)
2859      // Rather than emitting a normal format/argument mismatch, we want to
2860      // add a cast to the recommended type (and correct the format string
2861      // if necessary).
2862      SmallString<16> CastBuf;
2863      llvm::raw_svector_ostream CastFix(CastBuf);
2864      CastFix << "(";
2865      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
2866      CastFix << ")";
2867
2868      SmallVector<FixItHint,4> Hints;
2869      if (!AT.matchesType(S.Context, IntendedTy))
2870        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
2871
2872      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
2873        // If there's already a cast present, just replace it.
2874        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
2875        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
2876
2877      } else if (!requiresParensToAddCast(E)) {
2878        // If the expression has high enough precedence,
2879        // just write the C-style cast.
2880        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2881                                                   CastFix.str()));
2882      } else {
2883        // Otherwise, add parens around the expression as well as the cast.
2884        CastFix << "(";
2885        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2886                                                   CastFix.str()));
2887
2888        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
2889        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
2890      }
2891
2892      if (ShouldNotPrintDirectly) {
2893        // The expression has a type that should not be printed directly.
2894        // We extract the name from the typedef because we don't want to show
2895        // the underlying type in the diagnostic.
2896        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
2897
2898        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
2899                               << Name << IntendedTy
2900                               << E->getSourceRange(),
2901                             E->getLocStart(), /*IsStringLocation=*/false,
2902                             SpecRange, Hints);
2903      } else {
2904        // In this case, the expression could be printed using a different
2905        // specifier, but we've decided that the specifier is probably correct
2906        // and we should cast instead. Just use the normal warning message.
2907        EmitFormatDiagnostic(
2908          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2909            << AT.getRepresentativeTypeName(S.Context) << ExprTy
2910            << E->getSourceRange(),
2911          E->getLocStart(), /*IsStringLocation*/false,
2912          SpecRange, Hints);
2913      }
2914    }
2915  } else {
2916    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2917                                                   SpecifierLen);
2918    // Since the warning for passing non-POD types to variadic functions
2919    // was deferred until now, we emit a warning for non-POD
2920    // arguments here.
2921    if (S.isValidVarArgType(ExprTy) == Sema::VAK_Invalid) {
2922      unsigned DiagKind;
2923      if (ExprTy->isObjCObjectType())
2924        DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2925      else
2926        DiagKind = diag::warn_non_pod_vararg_with_format_string;
2927
2928      EmitFormatDiagnostic(
2929        S.PDiag(DiagKind)
2930          << S.getLangOpts().CPlusPlus11
2931          << ExprTy
2932          << CallType
2933          << AT.getRepresentativeTypeName(S.Context)
2934          << CSR
2935          << E->getSourceRange(),
2936        E->getLocStart(), /*IsStringLocation*/false, CSR);
2937
2938      checkForCStrMembers(AT, E, CSR);
2939    } else
2940      EmitFormatDiagnostic(
2941        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2942          << AT.getRepresentativeTypeName(S.Context) << ExprTy
2943          << CSR
2944          << E->getSourceRange(),
2945        E->getLocStart(), /*IsStringLocation*/false, CSR);
2946  }
2947
2948  return true;
2949}
2950
2951//===--- CHECK: Scanf format string checking ------------------------------===//
2952
2953namespace {
2954class CheckScanfHandler : public CheckFormatHandler {
2955public:
2956  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2957                    const Expr *origFormatExpr, unsigned firstDataArg,
2958                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
2959                    ArrayRef<const Expr *> Args,
2960                    unsigned formatIdx, bool inFunctionCall,
2961                    Sema::VariadicCallType CallType)
2962  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2963                       numDataArgs, beg, hasVAListArg,
2964                       Args, formatIdx, inFunctionCall, CallType)
2965  {}
2966
2967  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2968                            const char *startSpecifier,
2969                            unsigned specifierLen);
2970
2971  bool HandleInvalidScanfConversionSpecifier(
2972          const analyze_scanf::ScanfSpecifier &FS,
2973          const char *startSpecifier,
2974          unsigned specifierLen);
2975
2976  void HandleIncompleteScanList(const char *start, const char *end);
2977};
2978}
2979
2980void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2981                                                 const char *end) {
2982  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2983                       getLocationOfByte(end), /*IsStringLocation*/true,
2984                       getSpecifierRange(start, end - start));
2985}
2986
2987bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2988                                        const analyze_scanf::ScanfSpecifier &FS,
2989                                        const char *startSpecifier,
2990                                        unsigned specifierLen) {
2991
2992  const analyze_scanf::ScanfConversionSpecifier &CS =
2993    FS.getConversionSpecifier();
2994
2995  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2996                                          getLocationOfByte(CS.getStart()),
2997                                          startSpecifier, specifierLen,
2998                                          CS.getStart(), CS.getLength());
2999}
3000
3001bool CheckScanfHandler::HandleScanfSpecifier(
3002                                       const analyze_scanf::ScanfSpecifier &FS,
3003                                       const char *startSpecifier,
3004                                       unsigned specifierLen) {
3005
3006  using namespace analyze_scanf;
3007  using namespace analyze_format_string;
3008
3009  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3010
3011  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3012  // be used to decide if we are using positional arguments consistently.
3013  if (FS.consumesDataArgument()) {
3014    if (atFirstArg) {
3015      atFirstArg = false;
3016      usesPositionalArgs = FS.usesPositionalArg();
3017    }
3018    else if (usesPositionalArgs != FS.usesPositionalArg()) {
3019      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3020                                        startSpecifier, specifierLen);
3021      return false;
3022    }
3023  }
3024
3025  // Check if the field with is non-zero.
3026  const OptionalAmount &Amt = FS.getFieldWidth();
3027  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3028    if (Amt.getConstantAmount() == 0) {
3029      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3030                                                   Amt.getConstantLength());
3031      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3032                           getLocationOfByte(Amt.getStart()),
3033                           /*IsStringLocation*/true, R,
3034                           FixItHint::CreateRemoval(R));
3035    }
3036  }
3037
3038  if (!FS.consumesDataArgument()) {
3039    // FIXME: Technically specifying a precision or field width here
3040    // makes no sense.  Worth issuing a warning at some point.
3041    return true;
3042  }
3043
3044  // Consume the argument.
3045  unsigned argIndex = FS.getArgIndex();
3046  if (argIndex < NumDataArgs) {
3047      // The check to see if the argIndex is valid will come later.
3048      // We set the bit here because we may exit early from this
3049      // function if we encounter some other error.
3050    CoveredArgs.set(argIndex);
3051  }
3052
3053  // Check the length modifier is valid with the given conversion specifier.
3054  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3055    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3056                                diag::warn_format_nonsensical_length);
3057  else if (!FS.hasStandardLengthModifier())
3058    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3059  else if (!FS.hasStandardLengthConversionCombination())
3060    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3061                                diag::warn_format_non_standard_conversion_spec);
3062
3063  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3064    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3065
3066  // The remaining checks depend on the data arguments.
3067  if (HasVAListArg)
3068    return true;
3069
3070  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3071    return false;
3072
3073  // Check that the argument type matches the format specifier.
3074  const Expr *Ex = getDataArg(argIndex);
3075  if (!Ex)
3076    return true;
3077
3078  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3079  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3080    ScanfSpecifier fixedFS = FS;
3081    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3082                                   S.Context);
3083
3084    if (success) {
3085      // Get the fix string from the fixed format specifier.
3086      SmallString<128> buf;
3087      llvm::raw_svector_ostream os(buf);
3088      fixedFS.toString(os);
3089
3090      EmitFormatDiagnostic(
3091        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3092          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3093          << Ex->getSourceRange(),
3094        Ex->getLocStart(),
3095        /*IsStringLocation*/false,
3096        getSpecifierRange(startSpecifier, specifierLen),
3097        FixItHint::CreateReplacement(
3098          getSpecifierRange(startSpecifier, specifierLen),
3099          os.str()));
3100    } else {
3101      EmitFormatDiagnostic(
3102        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3103          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3104          << Ex->getSourceRange(),
3105        Ex->getLocStart(),
3106        /*IsStringLocation*/false,
3107        getSpecifierRange(startSpecifier, specifierLen));
3108    }
3109  }
3110
3111  return true;
3112}
3113
3114void Sema::CheckFormatString(const StringLiteral *FExpr,
3115                             const Expr *OrigFormatExpr,
3116                             ArrayRef<const Expr *> Args,
3117                             bool HasVAListArg, unsigned format_idx,
3118                             unsigned firstDataArg, FormatStringType Type,
3119                             bool inFunctionCall, VariadicCallType CallType) {
3120
3121  // CHECK: is the format string a wide literal?
3122  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3123    CheckFormatHandler::EmitFormatDiagnostic(
3124      *this, inFunctionCall, Args[format_idx],
3125      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3126      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3127    return;
3128  }
3129
3130  // Str - The format string.  NOTE: this is NOT null-terminated!
3131  StringRef StrRef = FExpr->getString();
3132  const char *Str = StrRef.data();
3133  unsigned StrLen = StrRef.size();
3134  const unsigned numDataArgs = Args.size() - firstDataArg;
3135
3136  // CHECK: empty format string?
3137  if (StrLen == 0 && numDataArgs > 0) {
3138    CheckFormatHandler::EmitFormatDiagnostic(
3139      *this, inFunctionCall, Args[format_idx],
3140      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3141      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3142    return;
3143  }
3144
3145  if (Type == FST_Printf || Type == FST_NSString) {
3146    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3147                         numDataArgs, (Type == FST_NSString),
3148                         Str, HasVAListArg, Args, format_idx,
3149                         inFunctionCall, CallType);
3150
3151    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3152                                                  getLangOpts(),
3153                                                  Context.getTargetInfo()))
3154      H.DoneProcessing();
3155  } else if (Type == FST_Scanf) {
3156    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3157                        Str, HasVAListArg, Args, format_idx,
3158                        inFunctionCall, CallType);
3159
3160    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3161                                                 getLangOpts(),
3162                                                 Context.getTargetInfo()))
3163      H.DoneProcessing();
3164  } // TODO: handle other formats
3165}
3166
3167//===--- CHECK: Standard memory functions ---------------------------------===//
3168
3169/// \brief Determine whether the given type is a dynamic class type (e.g.,
3170/// whether it has a vtable).
3171static bool isDynamicClassType(QualType T) {
3172  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3173    if (CXXRecordDecl *Definition = Record->getDefinition())
3174      if (Definition->isDynamicClass())
3175        return true;
3176
3177  return false;
3178}
3179
3180/// \brief If E is a sizeof expression, returns its argument expression,
3181/// otherwise returns NULL.
3182static const Expr *getSizeOfExprArg(const Expr* E) {
3183  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3184      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3185    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3186      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3187
3188  return 0;
3189}
3190
3191/// \brief If E is a sizeof expression, returns its argument type.
3192static QualType getSizeOfArgType(const Expr* E) {
3193  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3194      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3195    if (SizeOf->getKind() == clang::UETT_SizeOf)
3196      return SizeOf->getTypeOfArgument();
3197
3198  return QualType();
3199}
3200
3201/// \brief Check for dangerous or invalid arguments to memset().
3202///
3203/// This issues warnings on known problematic, dangerous or unspecified
3204/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3205/// function calls.
3206///
3207/// \param Call The call expression to diagnose.
3208void Sema::CheckMemaccessArguments(const CallExpr *Call,
3209                                   unsigned BId,
3210                                   IdentifierInfo *FnName) {
3211  assert(BId != 0);
3212
3213  // It is possible to have a non-standard definition of memset.  Validate
3214  // we have enough arguments, and if not, abort further checking.
3215  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3216  if (Call->getNumArgs() < ExpectedNumArgs)
3217    return;
3218
3219  unsigned LastArg = (BId == Builtin::BImemset ||
3220                      BId == Builtin::BIstrndup ? 1 : 2);
3221  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3222  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3223
3224  // We have special checking when the length is a sizeof expression.
3225  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3226  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3227  llvm::FoldingSetNodeID SizeOfArgID;
3228
3229  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3230    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3231    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3232
3233    QualType DestTy = Dest->getType();
3234    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3235      QualType PointeeTy = DestPtrTy->getPointeeType();
3236
3237      // Never warn about void type pointers. This can be used to suppress
3238      // false positives.
3239      if (PointeeTy->isVoidType())
3240        continue;
3241
3242      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3243      // actually comparing the expressions for equality. Because computing the
3244      // expression IDs can be expensive, we only do this if the diagnostic is
3245      // enabled.
3246      if (SizeOfArg &&
3247          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3248                                   SizeOfArg->getExprLoc())) {
3249        // We only compute IDs for expressions if the warning is enabled, and
3250        // cache the sizeof arg's ID.
3251        if (SizeOfArgID == llvm::FoldingSetNodeID())
3252          SizeOfArg->Profile(SizeOfArgID, Context, true);
3253        llvm::FoldingSetNodeID DestID;
3254        Dest->Profile(DestID, Context, true);
3255        if (DestID == SizeOfArgID) {
3256          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3257          //       over sizeof(src) as well.
3258          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3259          StringRef ReadableName = FnName->getName();
3260
3261          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3262            if (UnaryOp->getOpcode() == UO_AddrOf)
3263              ActionIdx = 1; // If its an address-of operator, just remove it.
3264          if (!PointeeTy->isIncompleteType() &&
3265              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3266            ActionIdx = 2; // If the pointee's size is sizeof(char),
3267                           // suggest an explicit length.
3268
3269          // If the function is defined as a builtin macro, do not show macro
3270          // expansion.
3271          SourceLocation SL = SizeOfArg->getExprLoc();
3272          SourceRange DSR = Dest->getSourceRange();
3273          SourceRange SSR = SizeOfArg->getSourceRange();
3274          SourceManager &SM  = PP.getSourceManager();
3275
3276          if (SM.isMacroArgExpansion(SL)) {
3277            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3278            SL = SM.getSpellingLoc(SL);
3279            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3280                             SM.getSpellingLoc(DSR.getEnd()));
3281            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3282                             SM.getSpellingLoc(SSR.getEnd()));
3283          }
3284
3285          DiagRuntimeBehavior(SL, SizeOfArg,
3286                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3287                                << ReadableName
3288                                << PointeeTy
3289                                << DestTy
3290                                << DSR
3291                                << SSR);
3292          DiagRuntimeBehavior(SL, SizeOfArg,
3293                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3294                                << ActionIdx
3295                                << SSR);
3296
3297          break;
3298        }
3299      }
3300
3301      // Also check for cases where the sizeof argument is the exact same
3302      // type as the memory argument, and where it points to a user-defined
3303      // record type.
3304      if (SizeOfArgTy != QualType()) {
3305        if (PointeeTy->isRecordType() &&
3306            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3307          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3308                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3309                                << FnName << SizeOfArgTy << ArgIdx
3310                                << PointeeTy << Dest->getSourceRange()
3311                                << LenExpr->getSourceRange());
3312          break;
3313        }
3314      }
3315
3316      // Always complain about dynamic classes.
3317      if (isDynamicClassType(PointeeTy)) {
3318
3319        unsigned OperationType = 0;
3320        // "overwritten" if we're warning about the destination for any call
3321        // but memcmp; otherwise a verb appropriate to the call.
3322        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3323          if (BId == Builtin::BImemcpy)
3324            OperationType = 1;
3325          else if(BId == Builtin::BImemmove)
3326            OperationType = 2;
3327          else if (BId == Builtin::BImemcmp)
3328            OperationType = 3;
3329        }
3330
3331        DiagRuntimeBehavior(
3332          Dest->getExprLoc(), Dest,
3333          PDiag(diag::warn_dyn_class_memaccess)
3334            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3335            << FnName << PointeeTy
3336            << OperationType
3337            << Call->getCallee()->getSourceRange());
3338      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3339               BId != Builtin::BImemset)
3340        DiagRuntimeBehavior(
3341          Dest->getExprLoc(), Dest,
3342          PDiag(diag::warn_arc_object_memaccess)
3343            << ArgIdx << FnName << PointeeTy
3344            << Call->getCallee()->getSourceRange());
3345      else
3346        continue;
3347
3348      DiagRuntimeBehavior(
3349        Dest->getExprLoc(), Dest,
3350        PDiag(diag::note_bad_memaccess_silence)
3351          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3352      break;
3353    }
3354  }
3355}
3356
3357// A little helper routine: ignore addition and subtraction of integer literals.
3358// This intentionally does not ignore all integer constant expressions because
3359// we don't want to remove sizeof().
3360static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3361  Ex = Ex->IgnoreParenCasts();
3362
3363  for (;;) {
3364    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3365    if (!BO || !BO->isAdditiveOp())
3366      break;
3367
3368    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3369    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3370
3371    if (isa<IntegerLiteral>(RHS))
3372      Ex = LHS;
3373    else if (isa<IntegerLiteral>(LHS))
3374      Ex = RHS;
3375    else
3376      break;
3377  }
3378
3379  return Ex;
3380}
3381
3382static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3383                                                      ASTContext &Context) {
3384  // Only handle constant-sized or VLAs, but not flexible members.
3385  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3386    // Only issue the FIXIT for arrays of size > 1.
3387    if (CAT->getSize().getSExtValue() <= 1)
3388      return false;
3389  } else if (!Ty->isVariableArrayType()) {
3390    return false;
3391  }
3392  return true;
3393}
3394
3395// Warn if the user has made the 'size' argument to strlcpy or strlcat
3396// be the size of the source, instead of the destination.
3397void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3398                                    IdentifierInfo *FnName) {
3399
3400  // Don't crash if the user has the wrong number of arguments
3401  if (Call->getNumArgs() != 3)
3402    return;
3403
3404  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3405  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3406  const Expr *CompareWithSrc = NULL;
3407
3408  // Look for 'strlcpy(dst, x, sizeof(x))'
3409  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3410    CompareWithSrc = Ex;
3411  else {
3412    // Look for 'strlcpy(dst, x, strlen(x))'
3413    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3414      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3415          && SizeCall->getNumArgs() == 1)
3416        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3417    }
3418  }
3419
3420  if (!CompareWithSrc)
3421    return;
3422
3423  // Determine if the argument to sizeof/strlen is equal to the source
3424  // argument.  In principle there's all kinds of things you could do
3425  // here, for instance creating an == expression and evaluating it with
3426  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3427  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3428  if (!SrcArgDRE)
3429    return;
3430
3431  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3432  if (!CompareWithSrcDRE ||
3433      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3434    return;
3435
3436  const Expr *OriginalSizeArg = Call->getArg(2);
3437  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3438    << OriginalSizeArg->getSourceRange() << FnName;
3439
3440  // Output a FIXIT hint if the destination is an array (rather than a
3441  // pointer to an array).  This could be enhanced to handle some
3442  // pointers if we know the actual size, like if DstArg is 'array+2'
3443  // we could say 'sizeof(array)-2'.
3444  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3445  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3446    return;
3447
3448  SmallString<128> sizeString;
3449  llvm::raw_svector_ostream OS(sizeString);
3450  OS << "sizeof(";
3451  DstArg->printPretty(OS, 0, getPrintingPolicy());
3452  OS << ")";
3453
3454  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3455    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3456                                    OS.str());
3457}
3458
3459/// Check if two expressions refer to the same declaration.
3460static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3461  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3462    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3463      return D1->getDecl() == D2->getDecl();
3464  return false;
3465}
3466
3467static const Expr *getStrlenExprArg(const Expr *E) {
3468  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3469    const FunctionDecl *FD = CE->getDirectCallee();
3470    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3471      return 0;
3472    return CE->getArg(0)->IgnoreParenCasts();
3473  }
3474  return 0;
3475}
3476
3477// Warn on anti-patterns as the 'size' argument to strncat.
3478// The correct size argument should look like following:
3479//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3480void Sema::CheckStrncatArguments(const CallExpr *CE,
3481                                 IdentifierInfo *FnName) {
3482  // Don't crash if the user has the wrong number of arguments.
3483  if (CE->getNumArgs() < 3)
3484    return;
3485  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3486  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3487  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3488
3489  // Identify common expressions, which are wrongly used as the size argument
3490  // to strncat and may lead to buffer overflows.
3491  unsigned PatternType = 0;
3492  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3493    // - sizeof(dst)
3494    if (referToTheSameDecl(SizeOfArg, DstArg))
3495      PatternType = 1;
3496    // - sizeof(src)
3497    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3498      PatternType = 2;
3499  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3500    if (BE->getOpcode() == BO_Sub) {
3501      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3502      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3503      // - sizeof(dst) - strlen(dst)
3504      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3505          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3506        PatternType = 1;
3507      // - sizeof(src) - (anything)
3508      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3509        PatternType = 2;
3510    }
3511  }
3512
3513  if (PatternType == 0)
3514    return;
3515
3516  // Generate the diagnostic.
3517  SourceLocation SL = LenArg->getLocStart();
3518  SourceRange SR = LenArg->getSourceRange();
3519  SourceManager &SM  = PP.getSourceManager();
3520
3521  // If the function is defined as a builtin macro, do not show macro expansion.
3522  if (SM.isMacroArgExpansion(SL)) {
3523    SL = SM.getSpellingLoc(SL);
3524    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3525                     SM.getSpellingLoc(SR.getEnd()));
3526  }
3527
3528  // Check if the destination is an array (rather than a pointer to an array).
3529  QualType DstTy = DstArg->getType();
3530  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3531                                                                    Context);
3532  if (!isKnownSizeArray) {
3533    if (PatternType == 1)
3534      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3535    else
3536      Diag(SL, diag::warn_strncat_src_size) << SR;
3537    return;
3538  }
3539
3540  if (PatternType == 1)
3541    Diag(SL, diag::warn_strncat_large_size) << SR;
3542  else
3543    Diag(SL, diag::warn_strncat_src_size) << SR;
3544
3545  SmallString<128> sizeString;
3546  llvm::raw_svector_ostream OS(sizeString);
3547  OS << "sizeof(";
3548  DstArg->printPretty(OS, 0, getPrintingPolicy());
3549  OS << ") - ";
3550  OS << "strlen(";
3551  DstArg->printPretty(OS, 0, getPrintingPolicy());
3552  OS << ") - 1";
3553
3554  Diag(SL, diag::note_strncat_wrong_size)
3555    << FixItHint::CreateReplacement(SR, OS.str());
3556}
3557
3558//===--- CHECK: Return Address of Stack Variable --------------------------===//
3559
3560static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3561                     Decl *ParentDecl);
3562static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3563                      Decl *ParentDecl);
3564
3565/// CheckReturnStackAddr - Check if a return statement returns the address
3566///   of a stack variable.
3567void
3568Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3569                           SourceLocation ReturnLoc) {
3570
3571  Expr *stackE = 0;
3572  SmallVector<DeclRefExpr *, 8> refVars;
3573
3574  // Perform checking for returned stack addresses, local blocks,
3575  // label addresses or references to temporaries.
3576  if (lhsType->isPointerType() ||
3577      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3578    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3579  } else if (lhsType->isReferenceType()) {
3580    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3581  }
3582
3583  if (stackE == 0)
3584    return; // Nothing suspicious was found.
3585
3586  SourceLocation diagLoc;
3587  SourceRange diagRange;
3588  if (refVars.empty()) {
3589    diagLoc = stackE->getLocStart();
3590    diagRange = stackE->getSourceRange();
3591  } else {
3592    // We followed through a reference variable. 'stackE' contains the
3593    // problematic expression but we will warn at the return statement pointing
3594    // at the reference variable. We will later display the "trail" of
3595    // reference variables using notes.
3596    diagLoc = refVars[0]->getLocStart();
3597    diagRange = refVars[0]->getSourceRange();
3598  }
3599
3600  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3601    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3602                                             : diag::warn_ret_stack_addr)
3603     << DR->getDecl()->getDeclName() << diagRange;
3604  } else if (isa<BlockExpr>(stackE)) { // local block.
3605    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3606  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3607    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3608  } else { // local temporary.
3609    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3610                                             : diag::warn_ret_local_temp_addr)
3611     << diagRange;
3612  }
3613
3614  // Display the "trail" of reference variables that we followed until we
3615  // found the problematic expression using notes.
3616  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3617    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3618    // If this var binds to another reference var, show the range of the next
3619    // var, otherwise the var binds to the problematic expression, in which case
3620    // show the range of the expression.
3621    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3622                                  : stackE->getSourceRange();
3623    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3624      << VD->getDeclName() << range;
3625  }
3626}
3627
3628/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3629///  check if the expression in a return statement evaluates to an address
3630///  to a location on the stack, a local block, an address of a label, or a
3631///  reference to local temporary. The recursion is used to traverse the
3632///  AST of the return expression, with recursion backtracking when we
3633///  encounter a subexpression that (1) clearly does not lead to one of the
3634///  above problematic expressions (2) is something we cannot determine leads to
3635///  a problematic expression based on such local checking.
3636///
3637///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3638///  the expression that they point to. Such variables are added to the
3639///  'refVars' vector so that we know what the reference variable "trail" was.
3640///
3641///  EvalAddr processes expressions that are pointers that are used as
3642///  references (and not L-values).  EvalVal handles all other values.
3643///  At the base case of the recursion is a check for the above problematic
3644///  expressions.
3645///
3646///  This implementation handles:
3647///
3648///   * pointer-to-pointer casts
3649///   * implicit conversions from array references to pointers
3650///   * taking the address of fields
3651///   * arbitrary interplay between "&" and "*" operators
3652///   * pointer arithmetic from an address of a stack variable
3653///   * taking the address of an array element where the array is on the stack
3654static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3655                      Decl *ParentDecl) {
3656  if (E->isTypeDependent())
3657      return NULL;
3658
3659  // We should only be called for evaluating pointer expressions.
3660  assert((E->getType()->isAnyPointerType() ||
3661          E->getType()->isBlockPointerType() ||
3662          E->getType()->isObjCQualifiedIdType()) &&
3663         "EvalAddr only works on pointers");
3664
3665  E = E->IgnoreParens();
3666
3667  // Our "symbolic interpreter" is just a dispatch off the currently
3668  // viewed AST node.  We then recursively traverse the AST by calling
3669  // EvalAddr and EvalVal appropriately.
3670  switch (E->getStmtClass()) {
3671  case Stmt::DeclRefExprClass: {
3672    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3673
3674    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3675      // If this is a reference variable, follow through to the expression that
3676      // it points to.
3677      if (V->hasLocalStorage() &&
3678          V->getType()->isReferenceType() && V->hasInit()) {
3679        // Add the reference variable to the "trail".
3680        refVars.push_back(DR);
3681        return EvalAddr(V->getInit(), refVars, ParentDecl);
3682      }
3683
3684    return NULL;
3685  }
3686
3687  case Stmt::UnaryOperatorClass: {
3688    // The only unary operator that make sense to handle here
3689    // is AddrOf.  All others don't make sense as pointers.
3690    UnaryOperator *U = cast<UnaryOperator>(E);
3691
3692    if (U->getOpcode() == UO_AddrOf)
3693      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3694    else
3695      return NULL;
3696  }
3697
3698  case Stmt::BinaryOperatorClass: {
3699    // Handle pointer arithmetic.  All other binary operators are not valid
3700    // in this context.
3701    BinaryOperator *B = cast<BinaryOperator>(E);
3702    BinaryOperatorKind op = B->getOpcode();
3703
3704    if (op != BO_Add && op != BO_Sub)
3705      return NULL;
3706
3707    Expr *Base = B->getLHS();
3708
3709    // Determine which argument is the real pointer base.  It could be
3710    // the RHS argument instead of the LHS.
3711    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3712
3713    assert (Base->getType()->isPointerType());
3714    return EvalAddr(Base, refVars, ParentDecl);
3715  }
3716
3717  // For conditional operators we need to see if either the LHS or RHS are
3718  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3719  case Stmt::ConditionalOperatorClass: {
3720    ConditionalOperator *C = cast<ConditionalOperator>(E);
3721
3722    // Handle the GNU extension for missing LHS.
3723    if (Expr *lhsExpr = C->getLHS()) {
3724    // In C++, we can have a throw-expression, which has 'void' type.
3725      if (!lhsExpr->getType()->isVoidType())
3726        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3727          return LHS;
3728    }
3729
3730    // In C++, we can have a throw-expression, which has 'void' type.
3731    if (C->getRHS()->getType()->isVoidType())
3732      return NULL;
3733
3734    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3735  }
3736
3737  case Stmt::BlockExprClass:
3738    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3739      return E; // local block.
3740    return NULL;
3741
3742  case Stmt::AddrLabelExprClass:
3743    return E; // address of label.
3744
3745  case Stmt::ExprWithCleanupsClass:
3746    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3747                    ParentDecl);
3748
3749  // For casts, we need to handle conversions from arrays to
3750  // pointer values, and pointer-to-pointer conversions.
3751  case Stmt::ImplicitCastExprClass:
3752  case Stmt::CStyleCastExprClass:
3753  case Stmt::CXXFunctionalCastExprClass:
3754  case Stmt::ObjCBridgedCastExprClass:
3755  case Stmt::CXXStaticCastExprClass:
3756  case Stmt::CXXDynamicCastExprClass:
3757  case Stmt::CXXConstCastExprClass:
3758  case Stmt::CXXReinterpretCastExprClass: {
3759    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3760    switch (cast<CastExpr>(E)->getCastKind()) {
3761    case CK_BitCast:
3762    case CK_LValueToRValue:
3763    case CK_NoOp:
3764    case CK_BaseToDerived:
3765    case CK_DerivedToBase:
3766    case CK_UncheckedDerivedToBase:
3767    case CK_Dynamic:
3768    case CK_CPointerToObjCPointerCast:
3769    case CK_BlockPointerToObjCPointerCast:
3770    case CK_AnyPointerToBlockPointerCast:
3771      return EvalAddr(SubExpr, refVars, ParentDecl);
3772
3773    case CK_ArrayToPointerDecay:
3774      return EvalVal(SubExpr, refVars, ParentDecl);
3775
3776    default:
3777      return 0;
3778    }
3779  }
3780
3781  case Stmt::MaterializeTemporaryExprClass:
3782    if (Expr *Result = EvalAddr(
3783                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3784                                refVars, ParentDecl))
3785      return Result;
3786
3787    return E;
3788
3789  // Everything else: we simply don't reason about them.
3790  default:
3791    return NULL;
3792  }
3793}
3794
3795
3796///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3797///   See the comments for EvalAddr for more details.
3798static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3799                     Decl *ParentDecl) {
3800do {
3801  // We should only be called for evaluating non-pointer expressions, or
3802  // expressions with a pointer type that are not used as references but instead
3803  // are l-values (e.g., DeclRefExpr with a pointer type).
3804
3805  // Our "symbolic interpreter" is just a dispatch off the currently
3806  // viewed AST node.  We then recursively traverse the AST by calling
3807  // EvalAddr and EvalVal appropriately.
3808
3809  E = E->IgnoreParens();
3810  switch (E->getStmtClass()) {
3811  case Stmt::ImplicitCastExprClass: {
3812    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3813    if (IE->getValueKind() == VK_LValue) {
3814      E = IE->getSubExpr();
3815      continue;
3816    }
3817    return NULL;
3818  }
3819
3820  case Stmt::ExprWithCleanupsClass:
3821    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3822
3823  case Stmt::DeclRefExprClass: {
3824    // When we hit a DeclRefExpr we are looking at code that refers to a
3825    // variable's name. If it's not a reference variable we check if it has
3826    // local storage within the function, and if so, return the expression.
3827    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3828
3829    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3830      // Check if it refers to itself, e.g. "int& i = i;".
3831      if (V == ParentDecl)
3832        return DR;
3833
3834      if (V->hasLocalStorage()) {
3835        if (!V->getType()->isReferenceType())
3836          return DR;
3837
3838        // Reference variable, follow through to the expression that
3839        // it points to.
3840        if (V->hasInit()) {
3841          // Add the reference variable to the "trail".
3842          refVars.push_back(DR);
3843          return EvalVal(V->getInit(), refVars, V);
3844        }
3845      }
3846    }
3847
3848    return NULL;
3849  }
3850
3851  case Stmt::UnaryOperatorClass: {
3852    // The only unary operator that make sense to handle here
3853    // is Deref.  All others don't resolve to a "name."  This includes
3854    // handling all sorts of rvalues passed to a unary operator.
3855    UnaryOperator *U = cast<UnaryOperator>(E);
3856
3857    if (U->getOpcode() == UO_Deref)
3858      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3859
3860    return NULL;
3861  }
3862
3863  case Stmt::ArraySubscriptExprClass: {
3864    // Array subscripts are potential references to data on the stack.  We
3865    // retrieve the DeclRefExpr* for the array variable if it indeed
3866    // has local storage.
3867    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3868  }
3869
3870  case Stmt::ConditionalOperatorClass: {
3871    // For conditional operators we need to see if either the LHS or RHS are
3872    // non-NULL Expr's.  If one is non-NULL, we return it.
3873    ConditionalOperator *C = cast<ConditionalOperator>(E);
3874
3875    // Handle the GNU extension for missing LHS.
3876    if (Expr *lhsExpr = C->getLHS())
3877      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3878        return LHS;
3879
3880    return EvalVal(C->getRHS(), refVars, ParentDecl);
3881  }
3882
3883  // Accesses to members are potential references to data on the stack.
3884  case Stmt::MemberExprClass: {
3885    MemberExpr *M = cast<MemberExpr>(E);
3886
3887    // Check for indirect access.  We only want direct field accesses.
3888    if (M->isArrow())
3889      return NULL;
3890
3891    // Check whether the member type is itself a reference, in which case
3892    // we're not going to refer to the member, but to what the member refers to.
3893    if (M->getMemberDecl()->getType()->isReferenceType())
3894      return NULL;
3895
3896    return EvalVal(M->getBase(), refVars, ParentDecl);
3897  }
3898
3899  case Stmt::MaterializeTemporaryExprClass:
3900    if (Expr *Result = EvalVal(
3901                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3902                               refVars, ParentDecl))
3903      return Result;
3904
3905    return E;
3906
3907  default:
3908    // Check that we don't return or take the address of a reference to a
3909    // temporary. This is only useful in C++.
3910    if (!E->isTypeDependent() && E->isRValue())
3911      return E;
3912
3913    // Everything else: we simply don't reason about them.
3914    return NULL;
3915  }
3916} while (true);
3917}
3918
3919//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3920
3921/// Check for comparisons of floating point operands using != and ==.
3922/// Issue a warning if these are no self-comparisons, as they are not likely
3923/// to do what the programmer intended.
3924void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3925  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3926  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3927
3928  // Special case: check for x == x (which is OK).
3929  // Do not emit warnings for such cases.
3930  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3931    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3932      if (DRL->getDecl() == DRR->getDecl())
3933        return;
3934
3935
3936  // Special case: check for comparisons against literals that can be exactly
3937  //  represented by APFloat.  In such cases, do not emit a warning.  This
3938  //  is a heuristic: often comparison against such literals are used to
3939  //  detect if a value in a variable has not changed.  This clearly can
3940  //  lead to false negatives.
3941  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3942    if (FLL->isExact())
3943      return;
3944  } else
3945    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3946      if (FLR->isExact())
3947        return;
3948
3949  // Check for comparisons with builtin types.
3950  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3951    if (CL->isBuiltinCall())
3952      return;
3953
3954  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3955    if (CR->isBuiltinCall())
3956      return;
3957
3958  // Emit the diagnostic.
3959  Diag(Loc, diag::warn_floatingpoint_eq)
3960    << LHS->getSourceRange() << RHS->getSourceRange();
3961}
3962
3963//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3964//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3965
3966namespace {
3967
3968/// Structure recording the 'active' range of an integer-valued
3969/// expression.
3970struct IntRange {
3971  /// The number of bits active in the int.
3972  unsigned Width;
3973
3974  /// True if the int is known not to have negative values.
3975  bool NonNegative;
3976
3977  IntRange(unsigned Width, bool NonNegative)
3978    : Width(Width), NonNegative(NonNegative)
3979  {}
3980
3981  /// Returns the range of the bool type.
3982  static IntRange forBoolType() {
3983    return IntRange(1, true);
3984  }
3985
3986  /// Returns the range of an opaque value of the given integral type.
3987  static IntRange forValueOfType(ASTContext &C, QualType T) {
3988    return forValueOfCanonicalType(C,
3989                          T->getCanonicalTypeInternal().getTypePtr());
3990  }
3991
3992  /// Returns the range of an opaque value of a canonical integral type.
3993  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3994    assert(T->isCanonicalUnqualified());
3995
3996    if (const VectorType *VT = dyn_cast<VectorType>(T))
3997      T = VT->getElementType().getTypePtr();
3998    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3999      T = CT->getElementType().getTypePtr();
4000
4001    // For enum types, use the known bit width of the enumerators.
4002    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4003      EnumDecl *Enum = ET->getDecl();
4004      if (!Enum->isCompleteDefinition())
4005        return IntRange(C.getIntWidth(QualType(T, 0)), false);
4006
4007      unsigned NumPositive = Enum->getNumPositiveBits();
4008      unsigned NumNegative = Enum->getNumNegativeBits();
4009
4010      if (NumNegative == 0)
4011        return IntRange(NumPositive, true/*NonNegative*/);
4012      else
4013        return IntRange(std::max(NumPositive + 1, NumNegative),
4014                        false/*NonNegative*/);
4015    }
4016
4017    const BuiltinType *BT = cast<BuiltinType>(T);
4018    assert(BT->isInteger());
4019
4020    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4021  }
4022
4023  /// Returns the "target" range of a canonical integral type, i.e.
4024  /// the range of values expressible in the type.
4025  ///
4026  /// This matches forValueOfCanonicalType except that enums have the
4027  /// full range of their type, not the range of their enumerators.
4028  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4029    assert(T->isCanonicalUnqualified());
4030
4031    if (const VectorType *VT = dyn_cast<VectorType>(T))
4032      T = VT->getElementType().getTypePtr();
4033    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4034      T = CT->getElementType().getTypePtr();
4035    if (const EnumType *ET = dyn_cast<EnumType>(T))
4036      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4037
4038    const BuiltinType *BT = cast<BuiltinType>(T);
4039    assert(BT->isInteger());
4040
4041    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4042  }
4043
4044  /// Returns the supremum of two ranges: i.e. their conservative merge.
4045  static IntRange join(IntRange L, IntRange R) {
4046    return IntRange(std::max(L.Width, R.Width),
4047                    L.NonNegative && R.NonNegative);
4048  }
4049
4050  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4051  static IntRange meet(IntRange L, IntRange R) {
4052    return IntRange(std::min(L.Width, R.Width),
4053                    L.NonNegative || R.NonNegative);
4054  }
4055};
4056
4057static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4058                              unsigned MaxWidth) {
4059  if (value.isSigned() && value.isNegative())
4060    return IntRange(value.getMinSignedBits(), false);
4061
4062  if (value.getBitWidth() > MaxWidth)
4063    value = value.trunc(MaxWidth);
4064
4065  // isNonNegative() just checks the sign bit without considering
4066  // signedness.
4067  return IntRange(value.getActiveBits(), true);
4068}
4069
4070static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4071                              unsigned MaxWidth) {
4072  if (result.isInt())
4073    return GetValueRange(C, result.getInt(), MaxWidth);
4074
4075  if (result.isVector()) {
4076    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4077    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4078      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4079      R = IntRange::join(R, El);
4080    }
4081    return R;
4082  }
4083
4084  if (result.isComplexInt()) {
4085    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4086    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4087    return IntRange::join(R, I);
4088  }
4089
4090  // This can happen with lossless casts to intptr_t of "based" lvalues.
4091  // Assume it might use arbitrary bits.
4092  // FIXME: The only reason we need to pass the type in here is to get
4093  // the sign right on this one case.  It would be nice if APValue
4094  // preserved this.
4095  assert(result.isLValue() || result.isAddrLabelDiff());
4096  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4097}
4098
4099/// Pseudo-evaluate the given integer expression, estimating the
4100/// range of values it might take.
4101///
4102/// \param MaxWidth - the width to which the value will be truncated
4103static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4104  E = E->IgnoreParens();
4105
4106  // Try a full evaluation first.
4107  Expr::EvalResult result;
4108  if (E->EvaluateAsRValue(result, C))
4109    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
4110
4111  // I think we only want to look through implicit casts here; if the
4112  // user has an explicit widening cast, we should treat the value as
4113  // being of the new, wider type.
4114  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4115    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4116      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4117
4118    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
4119
4120    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4121
4122    // Assume that non-integer casts can span the full range of the type.
4123    if (!isIntegerCast)
4124      return OutputTypeRange;
4125
4126    IntRange SubRange
4127      = GetExprRange(C, CE->getSubExpr(),
4128                     std::min(MaxWidth, OutputTypeRange.Width));
4129
4130    // Bail out if the subexpr's range is as wide as the cast type.
4131    if (SubRange.Width >= OutputTypeRange.Width)
4132      return OutputTypeRange;
4133
4134    // Otherwise, we take the smaller width, and we're non-negative if
4135    // either the output type or the subexpr is.
4136    return IntRange(SubRange.Width,
4137                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4138  }
4139
4140  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4141    // If we can fold the condition, just take that operand.
4142    bool CondResult;
4143    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4144      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4145                                        : CO->getFalseExpr(),
4146                          MaxWidth);
4147
4148    // Otherwise, conservatively merge.
4149    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4150    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4151    return IntRange::join(L, R);
4152  }
4153
4154  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4155    switch (BO->getOpcode()) {
4156
4157    // Boolean-valued operations are single-bit and positive.
4158    case BO_LAnd:
4159    case BO_LOr:
4160    case BO_LT:
4161    case BO_GT:
4162    case BO_LE:
4163    case BO_GE:
4164    case BO_EQ:
4165    case BO_NE:
4166      return IntRange::forBoolType();
4167
4168    // The type of the assignments is the type of the LHS, so the RHS
4169    // is not necessarily the same type.
4170    case BO_MulAssign:
4171    case BO_DivAssign:
4172    case BO_RemAssign:
4173    case BO_AddAssign:
4174    case BO_SubAssign:
4175    case BO_XorAssign:
4176    case BO_OrAssign:
4177      // TODO: bitfields?
4178      return IntRange::forValueOfType(C, E->getType());
4179
4180    // Simple assignments just pass through the RHS, which will have
4181    // been coerced to the LHS type.
4182    case BO_Assign:
4183      // TODO: bitfields?
4184      return GetExprRange(C, BO->getRHS(), MaxWidth);
4185
4186    // Operations with opaque sources are black-listed.
4187    case BO_PtrMemD:
4188    case BO_PtrMemI:
4189      return IntRange::forValueOfType(C, E->getType());
4190
4191    // Bitwise-and uses the *infinum* of the two source ranges.
4192    case BO_And:
4193    case BO_AndAssign:
4194      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4195                            GetExprRange(C, BO->getRHS(), MaxWidth));
4196
4197    // Left shift gets black-listed based on a judgement call.
4198    case BO_Shl:
4199      // ...except that we want to treat '1 << (blah)' as logically
4200      // positive.  It's an important idiom.
4201      if (IntegerLiteral *I
4202            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4203        if (I->getValue() == 1) {
4204          IntRange R = IntRange::forValueOfType(C, E->getType());
4205          return IntRange(R.Width, /*NonNegative*/ true);
4206        }
4207      }
4208      // fallthrough
4209
4210    case BO_ShlAssign:
4211      return IntRange::forValueOfType(C, E->getType());
4212
4213    // Right shift by a constant can narrow its left argument.
4214    case BO_Shr:
4215    case BO_ShrAssign: {
4216      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4217
4218      // If the shift amount is a positive constant, drop the width by
4219      // that much.
4220      llvm::APSInt shift;
4221      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4222          shift.isNonNegative()) {
4223        unsigned zext = shift.getZExtValue();
4224        if (zext >= L.Width)
4225          L.Width = (L.NonNegative ? 0 : 1);
4226        else
4227          L.Width -= zext;
4228      }
4229
4230      return L;
4231    }
4232
4233    // Comma acts as its right operand.
4234    case BO_Comma:
4235      return GetExprRange(C, BO->getRHS(), MaxWidth);
4236
4237    // Black-list pointer subtractions.
4238    case BO_Sub:
4239      if (BO->getLHS()->getType()->isPointerType())
4240        return IntRange::forValueOfType(C, E->getType());
4241      break;
4242
4243    // The width of a division result is mostly determined by the size
4244    // of the LHS.
4245    case BO_Div: {
4246      // Don't 'pre-truncate' the operands.
4247      unsigned opWidth = C.getIntWidth(E->getType());
4248      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4249
4250      // If the divisor is constant, use that.
4251      llvm::APSInt divisor;
4252      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4253        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4254        if (log2 >= L.Width)
4255          L.Width = (L.NonNegative ? 0 : 1);
4256        else
4257          L.Width = std::min(L.Width - log2, MaxWidth);
4258        return L;
4259      }
4260
4261      // Otherwise, just use the LHS's width.
4262      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4263      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4264    }
4265
4266    // The result of a remainder can't be larger than the result of
4267    // either side.
4268    case BO_Rem: {
4269      // Don't 'pre-truncate' the operands.
4270      unsigned opWidth = C.getIntWidth(E->getType());
4271      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4272      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4273
4274      IntRange meet = IntRange::meet(L, R);
4275      meet.Width = std::min(meet.Width, MaxWidth);
4276      return meet;
4277    }
4278
4279    // The default behavior is okay for these.
4280    case BO_Mul:
4281    case BO_Add:
4282    case BO_Xor:
4283    case BO_Or:
4284      break;
4285    }
4286
4287    // The default case is to treat the operation as if it were closed
4288    // on the narrowest type that encompasses both operands.
4289    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4290    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4291    return IntRange::join(L, R);
4292  }
4293
4294  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4295    switch (UO->getOpcode()) {
4296    // Boolean-valued operations are white-listed.
4297    case UO_LNot:
4298      return IntRange::forBoolType();
4299
4300    // Operations with opaque sources are black-listed.
4301    case UO_Deref:
4302    case UO_AddrOf: // should be impossible
4303      return IntRange::forValueOfType(C, E->getType());
4304
4305    default:
4306      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4307    }
4308  }
4309
4310  if (dyn_cast<OffsetOfExpr>(E)) {
4311    IntRange::forValueOfType(C, E->getType());
4312  }
4313
4314  if (FieldDecl *BitField = E->getBitField())
4315    return IntRange(BitField->getBitWidthValue(C),
4316                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4317
4318  return IntRange::forValueOfType(C, E->getType());
4319}
4320
4321static IntRange GetExprRange(ASTContext &C, Expr *E) {
4322  return GetExprRange(C, E, C.getIntWidth(E->getType()));
4323}
4324
4325/// Checks whether the given value, which currently has the given
4326/// source semantics, has the same value when coerced through the
4327/// target semantics.
4328static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4329                                 const llvm::fltSemantics &Src,
4330                                 const llvm::fltSemantics &Tgt) {
4331  llvm::APFloat truncated = value;
4332
4333  bool ignored;
4334  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4335  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4336
4337  return truncated.bitwiseIsEqual(value);
4338}
4339
4340/// Checks whether the given value, which currently has the given
4341/// source semantics, has the same value when coerced through the
4342/// target semantics.
4343///
4344/// The value might be a vector of floats (or a complex number).
4345static bool IsSameFloatAfterCast(const APValue &value,
4346                                 const llvm::fltSemantics &Src,
4347                                 const llvm::fltSemantics &Tgt) {
4348  if (value.isFloat())
4349    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4350
4351  if (value.isVector()) {
4352    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4353      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4354        return false;
4355    return true;
4356  }
4357
4358  assert(value.isComplexFloat());
4359  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4360          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4361}
4362
4363static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4364
4365static bool IsZero(Sema &S, Expr *E) {
4366  // Suppress cases where we are comparing against an enum constant.
4367  if (const DeclRefExpr *DR =
4368      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4369    if (isa<EnumConstantDecl>(DR->getDecl()))
4370      return false;
4371
4372  // Suppress cases where the '0' value is expanded from a macro.
4373  if (E->getLocStart().isMacroID())
4374    return false;
4375
4376  llvm::APSInt Value;
4377  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4378}
4379
4380static bool HasEnumType(Expr *E) {
4381  // Strip off implicit integral promotions.
4382  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4383    if (ICE->getCastKind() != CK_IntegralCast &&
4384        ICE->getCastKind() != CK_NoOp)
4385      break;
4386    E = ICE->getSubExpr();
4387  }
4388
4389  return E->getType()->isEnumeralType();
4390}
4391
4392static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4393  BinaryOperatorKind op = E->getOpcode();
4394  if (E->isValueDependent())
4395    return;
4396
4397  if (op == BO_LT && IsZero(S, E->getRHS())) {
4398    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4399      << "< 0" << "false" << HasEnumType(E->getLHS())
4400      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4401  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4402    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4403      << ">= 0" << "true" << HasEnumType(E->getLHS())
4404      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4405  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4406    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4407      << "0 >" << "false" << HasEnumType(E->getRHS())
4408      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4409  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4410    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4411      << "0 <=" << "true" << HasEnumType(E->getRHS())
4412      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4413  }
4414}
4415
4416static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4417                                         Expr *Constant, Expr *Other,
4418                                         llvm::APSInt Value,
4419                                         bool RhsConstant) {
4420  // 0 values are handled later by CheckTrivialUnsignedComparison().
4421  if (Value == 0)
4422    return;
4423
4424  BinaryOperatorKind op = E->getOpcode();
4425  QualType OtherT = Other->getType();
4426  QualType ConstantT = Constant->getType();
4427  QualType CommonT = E->getLHS()->getType();
4428  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4429    return;
4430  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4431         && "comparison with non-integer type");
4432
4433  bool ConstantSigned = ConstantT->isSignedIntegerType();
4434  bool CommonSigned = CommonT->isSignedIntegerType();
4435
4436  bool EqualityOnly = false;
4437
4438  // TODO: Investigate using GetExprRange() to get tighter bounds on
4439  // on the bit ranges.
4440  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4441  unsigned OtherWidth = OtherRange.Width;
4442
4443  if (CommonSigned) {
4444    // The common type is signed, therefore no signed to unsigned conversion.
4445    if (!OtherRange.NonNegative) {
4446      // Check that the constant is representable in type OtherT.
4447      if (ConstantSigned) {
4448        if (OtherWidth >= Value.getMinSignedBits())
4449          return;
4450      } else { // !ConstantSigned
4451        if (OtherWidth >= Value.getActiveBits() + 1)
4452          return;
4453      }
4454    } else { // !OtherSigned
4455      // Check that the constant is representable in type OtherT.
4456      // Negative values are out of range.
4457      if (ConstantSigned) {
4458        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4459          return;
4460      } else { // !ConstantSigned
4461        if (OtherWidth >= Value.getActiveBits())
4462          return;
4463      }
4464    }
4465  } else {  // !CommonSigned
4466    if (OtherRange.NonNegative) {
4467      if (OtherWidth >= Value.getActiveBits())
4468        return;
4469    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4470      // Check to see if the constant is representable in OtherT.
4471      if (OtherWidth > Value.getActiveBits())
4472        return;
4473      // Check to see if the constant is equivalent to a negative value
4474      // cast to CommonT.
4475      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4476          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4477        return;
4478      // The constant value rests between values that OtherT can represent after
4479      // conversion.  Relational comparison still works, but equality
4480      // comparisons will be tautological.
4481      EqualityOnly = true;
4482    } else { // OtherSigned && ConstantSigned
4483      assert(0 && "Two signed types converted to unsigned types.");
4484    }
4485  }
4486
4487  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4488
4489  bool IsTrue = true;
4490  if (op == BO_EQ || op == BO_NE) {
4491    IsTrue = op == BO_NE;
4492  } else if (EqualityOnly) {
4493    return;
4494  } else if (RhsConstant) {
4495    if (op == BO_GT || op == BO_GE)
4496      IsTrue = !PositiveConstant;
4497    else // op == BO_LT || op == BO_LE
4498      IsTrue = PositiveConstant;
4499  } else {
4500    if (op == BO_LT || op == BO_LE)
4501      IsTrue = !PositiveConstant;
4502    else // op == BO_GT || op == BO_GE
4503      IsTrue = PositiveConstant;
4504  }
4505
4506  // If this is a comparison to an enum constant, include that
4507  // constant in the diagnostic.
4508  const EnumConstantDecl *ED = 0;
4509  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4510    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4511
4512  SmallString<64> PrettySourceValue;
4513  llvm::raw_svector_ostream OS(PrettySourceValue);
4514  if (ED)
4515    OS << '\'' << *ED << "' (" << Value << ")";
4516  else
4517    OS << Value;
4518
4519  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4520      << OS.str() << OtherT << IsTrue
4521      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4522}
4523
4524/// Analyze the operands of the given comparison.  Implements the
4525/// fallback case from AnalyzeComparison.
4526static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4527  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4528  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4529}
4530
4531/// \brief Implements -Wsign-compare.
4532///
4533/// \param E the binary operator to check for warnings
4534static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4535  // The type the comparison is being performed in.
4536  QualType T = E->getLHS()->getType();
4537  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4538         && "comparison with mismatched types");
4539  if (E->isValueDependent())
4540    return AnalyzeImpConvsInComparison(S, E);
4541
4542  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4543  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4544
4545  bool IsComparisonConstant = false;
4546
4547  // Check whether an integer constant comparison results in a value
4548  // of 'true' or 'false'.
4549  if (T->isIntegralType(S.Context)) {
4550    llvm::APSInt RHSValue;
4551    bool IsRHSIntegralLiteral =
4552      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4553    llvm::APSInt LHSValue;
4554    bool IsLHSIntegralLiteral =
4555      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4556    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4557        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4558    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4559      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4560    else
4561      IsComparisonConstant =
4562        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4563  } else if (!T->hasUnsignedIntegerRepresentation())
4564      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4565
4566  // We don't do anything special if this isn't an unsigned integral
4567  // comparison:  we're only interested in integral comparisons, and
4568  // signed comparisons only happen in cases we don't care to warn about.
4569  //
4570  // We also don't care about value-dependent expressions or expressions
4571  // whose result is a constant.
4572  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4573    return AnalyzeImpConvsInComparison(S, E);
4574
4575  // Check to see if one of the (unmodified) operands is of different
4576  // signedness.
4577  Expr *signedOperand, *unsignedOperand;
4578  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4579    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4580           "unsigned comparison between two signed integer expressions?");
4581    signedOperand = LHS;
4582    unsignedOperand = RHS;
4583  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4584    signedOperand = RHS;
4585    unsignedOperand = LHS;
4586  } else {
4587    CheckTrivialUnsignedComparison(S, E);
4588    return AnalyzeImpConvsInComparison(S, E);
4589  }
4590
4591  // Otherwise, calculate the effective range of the signed operand.
4592  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4593
4594  // Go ahead and analyze implicit conversions in the operands.  Note
4595  // that we skip the implicit conversions on both sides.
4596  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4597  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4598
4599  // If the signed range is non-negative, -Wsign-compare won't fire,
4600  // but we should still check for comparisons which are always true
4601  // or false.
4602  if (signedRange.NonNegative)
4603    return CheckTrivialUnsignedComparison(S, E);
4604
4605  // For (in)equality comparisons, if the unsigned operand is a
4606  // constant which cannot collide with a overflowed signed operand,
4607  // then reinterpreting the signed operand as unsigned will not
4608  // change the result of the comparison.
4609  if (E->isEqualityOp()) {
4610    unsigned comparisonWidth = S.Context.getIntWidth(T);
4611    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4612
4613    // We should never be unable to prove that the unsigned operand is
4614    // non-negative.
4615    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4616
4617    if (unsignedRange.Width < comparisonWidth)
4618      return;
4619  }
4620
4621  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4622    S.PDiag(diag::warn_mixed_sign_comparison)
4623      << LHS->getType() << RHS->getType()
4624      << LHS->getSourceRange() << RHS->getSourceRange());
4625}
4626
4627/// Analyzes an attempt to assign the given value to a bitfield.
4628///
4629/// Returns true if there was something fishy about the attempt.
4630static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4631                                      SourceLocation InitLoc) {
4632  assert(Bitfield->isBitField());
4633  if (Bitfield->isInvalidDecl())
4634    return false;
4635
4636  // White-list bool bitfields.
4637  if (Bitfield->getType()->isBooleanType())
4638    return false;
4639
4640  // Ignore value- or type-dependent expressions.
4641  if (Bitfield->getBitWidth()->isValueDependent() ||
4642      Bitfield->getBitWidth()->isTypeDependent() ||
4643      Init->isValueDependent() ||
4644      Init->isTypeDependent())
4645    return false;
4646
4647  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4648
4649  llvm::APSInt Value;
4650  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4651    return false;
4652
4653  unsigned OriginalWidth = Value.getBitWidth();
4654  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4655
4656  if (OriginalWidth <= FieldWidth)
4657    return false;
4658
4659  // Compute the value which the bitfield will contain.
4660  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4661  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4662
4663  // Check whether the stored value is equal to the original value.
4664  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4665  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4666    return false;
4667
4668  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4669  // therefore don't strictly fit into a signed bitfield of width 1.
4670  if (FieldWidth == 1 && Value == 1)
4671    return false;
4672
4673  std::string PrettyValue = Value.toString(10);
4674  std::string PrettyTrunc = TruncatedValue.toString(10);
4675
4676  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4677    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4678    << Init->getSourceRange();
4679
4680  return true;
4681}
4682
4683/// Analyze the given simple or compound assignment for warning-worthy
4684/// operations.
4685static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4686  // Just recurse on the LHS.
4687  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4688
4689  // We want to recurse on the RHS as normal unless we're assigning to
4690  // a bitfield.
4691  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4692    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4693                                  E->getOperatorLoc())) {
4694      // Recurse, ignoring any implicit conversions on the RHS.
4695      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4696                                        E->getOperatorLoc());
4697    }
4698  }
4699
4700  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4701}
4702
4703/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4704static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4705                            SourceLocation CContext, unsigned diag,
4706                            bool pruneControlFlow = false) {
4707  if (pruneControlFlow) {
4708    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4709                          S.PDiag(diag)
4710                            << SourceType << T << E->getSourceRange()
4711                            << SourceRange(CContext));
4712    return;
4713  }
4714  S.Diag(E->getExprLoc(), diag)
4715    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4716}
4717
4718/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4719static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4720                            SourceLocation CContext, unsigned diag,
4721                            bool pruneControlFlow = false) {
4722  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4723}
4724
4725/// Diagnose an implicit cast from a literal expression. Does not warn when the
4726/// cast wouldn't lose information.
4727void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4728                                    SourceLocation CContext) {
4729  // Try to convert the literal exactly to an integer. If we can, don't warn.
4730  bool isExact = false;
4731  const llvm::APFloat &Value = FL->getValue();
4732  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4733                            T->hasUnsignedIntegerRepresentation());
4734  if (Value.convertToInteger(IntegerValue,
4735                             llvm::APFloat::rmTowardZero, &isExact)
4736      == llvm::APFloat::opOK && isExact)
4737    return;
4738
4739  SmallString<16> PrettySourceValue;
4740  Value.toString(PrettySourceValue);
4741  SmallString<16> PrettyTargetValue;
4742  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4743    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4744  else
4745    IntegerValue.toString(PrettyTargetValue);
4746
4747  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4748    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4749    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4750}
4751
4752std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4753  if (!Range.Width) return "0";
4754
4755  llvm::APSInt ValueInRange = Value;
4756  ValueInRange.setIsSigned(!Range.NonNegative);
4757  ValueInRange = ValueInRange.trunc(Range.Width);
4758  return ValueInRange.toString(10);
4759}
4760
4761static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
4762  if (!isa<ImplicitCastExpr>(Ex))
4763    return false;
4764
4765  Expr *InnerE = Ex->IgnoreParenImpCasts();
4766  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
4767  const Type *Source =
4768    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4769  if (Target->isDependentType())
4770    return false;
4771
4772  const BuiltinType *FloatCandidateBT =
4773    dyn_cast<BuiltinType>(ToBool ? Source : Target);
4774  const Type *BoolCandidateType = ToBool ? Target : Source;
4775
4776  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
4777          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
4778}
4779
4780void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
4781                                      SourceLocation CC) {
4782  unsigned NumArgs = TheCall->getNumArgs();
4783  for (unsigned i = 0; i < NumArgs; ++i) {
4784    Expr *CurrA = TheCall->getArg(i);
4785    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
4786      continue;
4787
4788    bool IsSwapped = ((i > 0) &&
4789        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
4790    IsSwapped |= ((i < (NumArgs - 1)) &&
4791        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
4792    if (IsSwapped) {
4793      // Warn on this floating-point to bool conversion.
4794      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
4795                      CurrA->getType(), CC,
4796                      diag::warn_impcast_floating_point_to_bool);
4797    }
4798  }
4799}
4800
4801void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4802                             SourceLocation CC, bool *ICContext = 0) {
4803  if (E->isTypeDependent() || E->isValueDependent()) return;
4804
4805  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4806  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4807  if (Source == Target) return;
4808  if (Target->isDependentType()) return;
4809
4810  // If the conversion context location is invalid don't complain. We also
4811  // don't want to emit a warning if the issue occurs from the expansion of
4812  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4813  // delay this check as long as possible. Once we detect we are in that
4814  // scenario, we just return.
4815  if (CC.isInvalid())
4816    return;
4817
4818  // Diagnose implicit casts to bool.
4819  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4820    if (isa<StringLiteral>(E))
4821      // Warn on string literal to bool.  Checks for string literals in logical
4822      // expressions, for instances, assert(0 && "error here"), is prevented
4823      // by a check in AnalyzeImplicitConversions().
4824      return DiagnoseImpCast(S, E, T, CC,
4825                             diag::warn_impcast_string_literal_to_bool);
4826    if (Source->isFunctionType()) {
4827      // Warn on function to bool. Checks free functions and static member
4828      // functions. Weakly imported functions are excluded from the check,
4829      // since it's common to test their value to check whether the linker
4830      // found a definition for them.
4831      ValueDecl *D = 0;
4832      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4833        D = R->getDecl();
4834      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4835        D = M->getMemberDecl();
4836      }
4837
4838      if (D && !D->isWeak()) {
4839        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4840          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4841            << F << E->getSourceRange() << SourceRange(CC);
4842          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4843            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4844          QualType ReturnType;
4845          UnresolvedSet<4> NonTemplateOverloads;
4846          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4847          if (!ReturnType.isNull()
4848              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4849            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4850              << FixItHint::CreateInsertion(
4851                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4852          return;
4853        }
4854      }
4855    }
4856  }
4857
4858  // Strip vector types.
4859  if (isa<VectorType>(Source)) {
4860    if (!isa<VectorType>(Target)) {
4861      if (S.SourceMgr.isInSystemMacro(CC))
4862        return;
4863      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4864    }
4865
4866    // If the vector cast is cast between two vectors of the same size, it is
4867    // a bitcast, not a conversion.
4868    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4869      return;
4870
4871    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4872    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4873  }
4874
4875  // Strip complex types.
4876  if (isa<ComplexType>(Source)) {
4877    if (!isa<ComplexType>(Target)) {
4878      if (S.SourceMgr.isInSystemMacro(CC))
4879        return;
4880
4881      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4882    }
4883
4884    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4885    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4886  }
4887
4888  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4889  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4890
4891  // If the source is floating point...
4892  if (SourceBT && SourceBT->isFloatingPoint()) {
4893    // ...and the target is floating point...
4894    if (TargetBT && TargetBT->isFloatingPoint()) {
4895      // ...then warn if we're dropping FP rank.
4896
4897      // Builtin FP kinds are ordered by increasing FP rank.
4898      if (SourceBT->getKind() > TargetBT->getKind()) {
4899        // Don't warn about float constants that are precisely
4900        // representable in the target type.
4901        Expr::EvalResult result;
4902        if (E->EvaluateAsRValue(result, S.Context)) {
4903          // Value might be a float, a float vector, or a float complex.
4904          if (IsSameFloatAfterCast(result.Val,
4905                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4906                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4907            return;
4908        }
4909
4910        if (S.SourceMgr.isInSystemMacro(CC))
4911          return;
4912
4913        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4914      }
4915      return;
4916    }
4917
4918    // If the target is integral, always warn.
4919    if (TargetBT && TargetBT->isInteger()) {
4920      if (S.SourceMgr.isInSystemMacro(CC))
4921        return;
4922
4923      Expr *InnerE = E->IgnoreParenImpCasts();
4924      // We also want to warn on, e.g., "int i = -1.234"
4925      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4926        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4927          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4928
4929      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4930        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4931      } else {
4932        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4933      }
4934    }
4935
4936    // If the target is bool, warn if expr is a function or method call.
4937    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
4938        isa<CallExpr>(E)) {
4939      // Check last argument of function call to see if it is an
4940      // implicit cast from a type matching the type the result
4941      // is being cast to.
4942      CallExpr *CEx = cast<CallExpr>(E);
4943      unsigned NumArgs = CEx->getNumArgs();
4944      if (NumArgs > 0) {
4945        Expr *LastA = CEx->getArg(NumArgs - 1);
4946        Expr *InnerE = LastA->IgnoreParenImpCasts();
4947        const Type *InnerType =
4948          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4949        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
4950          // Warn on this floating-point to bool conversion
4951          DiagnoseImpCast(S, E, T, CC,
4952                          diag::warn_impcast_floating_point_to_bool);
4953        }
4954      }
4955    }
4956    return;
4957  }
4958
4959  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4960           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4961      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
4962      && Target->isScalarType() && !Target->isNullPtrType()) {
4963    SourceLocation Loc = E->getSourceRange().getBegin();
4964    if (Loc.isMacroID())
4965      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4966    if (!Loc.isMacroID() || CC.isMacroID())
4967      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4968          << T << clang::SourceRange(CC)
4969          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4970  }
4971
4972  if (!Source->isIntegerType() || !Target->isIntegerType())
4973    return;
4974
4975  // TODO: remove this early return once the false positives for constant->bool
4976  // in templates, macros, etc, are reduced or removed.
4977  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4978    return;
4979
4980  IntRange SourceRange = GetExprRange(S.Context, E);
4981  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4982
4983  if (SourceRange.Width > TargetRange.Width) {
4984    // If the source is a constant, use a default-on diagnostic.
4985    // TODO: this should happen for bitfield stores, too.
4986    llvm::APSInt Value(32);
4987    if (E->isIntegerConstantExpr(Value, S.Context)) {
4988      if (S.SourceMgr.isInSystemMacro(CC))
4989        return;
4990
4991      std::string PrettySourceValue = Value.toString(10);
4992      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4993
4994      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4995        S.PDiag(diag::warn_impcast_integer_precision_constant)
4996            << PrettySourceValue << PrettyTargetValue
4997            << E->getType() << T << E->getSourceRange()
4998            << clang::SourceRange(CC));
4999      return;
5000    }
5001
5002    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5003    if (S.SourceMgr.isInSystemMacro(CC))
5004      return;
5005
5006    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5007      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5008                             /* pruneControlFlow */ true);
5009    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5010  }
5011
5012  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5013      (!TargetRange.NonNegative && SourceRange.NonNegative &&
5014       SourceRange.Width == TargetRange.Width)) {
5015
5016    if (S.SourceMgr.isInSystemMacro(CC))
5017      return;
5018
5019    unsigned DiagID = diag::warn_impcast_integer_sign;
5020
5021    // Traditionally, gcc has warned about this under -Wsign-compare.
5022    // We also want to warn about it in -Wconversion.
5023    // So if -Wconversion is off, use a completely identical diagnostic
5024    // in the sign-compare group.
5025    // The conditional-checking code will
5026    if (ICContext) {
5027      DiagID = diag::warn_impcast_integer_sign_conditional;
5028      *ICContext = true;
5029    }
5030
5031    return DiagnoseImpCast(S, E, T, CC, DiagID);
5032  }
5033
5034  // Diagnose conversions between different enumeration types.
5035  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5036  // type, to give us better diagnostics.
5037  QualType SourceType = E->getType();
5038  if (!S.getLangOpts().CPlusPlus) {
5039    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5040      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5041        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5042        SourceType = S.Context.getTypeDeclType(Enum);
5043        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5044      }
5045  }
5046
5047  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5048    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5049      if (SourceEnum->getDecl()->hasNameForLinkage() &&
5050          TargetEnum->getDecl()->hasNameForLinkage() &&
5051          SourceEnum != TargetEnum) {
5052        if (S.SourceMgr.isInSystemMacro(CC))
5053          return;
5054
5055        return DiagnoseImpCast(S, E, SourceType, T, CC,
5056                               diag::warn_impcast_different_enum_types);
5057      }
5058
5059  return;
5060}
5061
5062void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5063                              SourceLocation CC, QualType T);
5064
5065void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5066                             SourceLocation CC, bool &ICContext) {
5067  E = E->IgnoreParenImpCasts();
5068
5069  if (isa<ConditionalOperator>(E))
5070    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5071
5072  AnalyzeImplicitConversions(S, E, CC);
5073  if (E->getType() != T)
5074    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5075  return;
5076}
5077
5078void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5079                              SourceLocation CC, QualType T) {
5080  AnalyzeImplicitConversions(S, E->getCond(), CC);
5081
5082  bool Suspicious = false;
5083  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5084  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5085
5086  // If -Wconversion would have warned about either of the candidates
5087  // for a signedness conversion to the context type...
5088  if (!Suspicious) return;
5089
5090  // ...but it's currently ignored...
5091  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5092                                 CC))
5093    return;
5094
5095  // ...then check whether it would have warned about either of the
5096  // candidates for a signedness conversion to the condition type.
5097  if (E->getType() == T) return;
5098
5099  Suspicious = false;
5100  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5101                          E->getType(), CC, &Suspicious);
5102  if (!Suspicious)
5103    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5104                            E->getType(), CC, &Suspicious);
5105}
5106
5107/// AnalyzeImplicitConversions - Find and report any interesting
5108/// implicit conversions in the given expression.  There are a couple
5109/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5110void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5111  QualType T = OrigE->getType();
5112  Expr *E = OrigE->IgnoreParenImpCasts();
5113
5114  if (E->isTypeDependent() || E->isValueDependent())
5115    return;
5116
5117  // For conditional operators, we analyze the arguments as if they
5118  // were being fed directly into the output.
5119  if (isa<ConditionalOperator>(E)) {
5120    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5121    CheckConditionalOperator(S, CO, CC, T);
5122    return;
5123  }
5124
5125  // Check implicit argument conversions for function calls.
5126  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5127    CheckImplicitArgumentConversions(S, Call, CC);
5128
5129  // Go ahead and check any implicit conversions we might have skipped.
5130  // The non-canonical typecheck is just an optimization;
5131  // CheckImplicitConversion will filter out dead implicit conversions.
5132  if (E->getType() != T)
5133    CheckImplicitConversion(S, E, T, CC);
5134
5135  // Now continue drilling into this expression.
5136
5137  // Skip past explicit casts.
5138  if (isa<ExplicitCastExpr>(E)) {
5139    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5140    return AnalyzeImplicitConversions(S, E, CC);
5141  }
5142
5143  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5144    // Do a somewhat different check with comparison operators.
5145    if (BO->isComparisonOp())
5146      return AnalyzeComparison(S, BO);
5147
5148    // And with simple assignments.
5149    if (BO->getOpcode() == BO_Assign)
5150      return AnalyzeAssignment(S, BO);
5151  }
5152
5153  // These break the otherwise-useful invariant below.  Fortunately,
5154  // we don't really need to recurse into them, because any internal
5155  // expressions should have been analyzed already when they were
5156  // built into statements.
5157  if (isa<StmtExpr>(E)) return;
5158
5159  // Don't descend into unevaluated contexts.
5160  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5161
5162  // Now just recurse over the expression's children.
5163  CC = E->getExprLoc();
5164  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5165  bool IsLogicalOperator = BO && BO->isLogicalOp();
5166  for (Stmt::child_range I = E->children(); I; ++I) {
5167    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5168    if (!ChildExpr)
5169      continue;
5170
5171    if (IsLogicalOperator &&
5172        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5173      // Ignore checking string literals that are in logical operators.
5174      continue;
5175    AnalyzeImplicitConversions(S, ChildExpr, CC);
5176  }
5177}
5178
5179} // end anonymous namespace
5180
5181/// Diagnoses "dangerous" implicit conversions within the given
5182/// expression (which is a full expression).  Implements -Wconversion
5183/// and -Wsign-compare.
5184///
5185/// \param CC the "context" location of the implicit conversion, i.e.
5186///   the most location of the syntactic entity requiring the implicit
5187///   conversion
5188void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5189  // Don't diagnose in unevaluated contexts.
5190  if (isUnevaluatedContext())
5191    return;
5192
5193  // Don't diagnose for value- or type-dependent expressions.
5194  if (E->isTypeDependent() || E->isValueDependent())
5195    return;
5196
5197  // Check for array bounds violations in cases where the check isn't triggered
5198  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5199  // ArraySubscriptExpr is on the RHS of a variable initialization.
5200  CheckArrayAccess(E);
5201
5202  // This is not the right CC for (e.g.) a variable initialization.
5203  AnalyzeImplicitConversions(*this, E, CC);
5204}
5205
5206/// Diagnose when expression is an integer constant expression and its evaluation
5207/// results in integer overflow
5208void Sema::CheckForIntOverflow (Expr *E) {
5209  if (isa<BinaryOperator>(E->IgnoreParens())) {
5210    llvm::SmallVector<PartialDiagnosticAt, 4> Diags;
5211    E->EvaluateForOverflow(Context, &Diags);
5212  }
5213}
5214
5215namespace {
5216/// \brief Visitor for expressions which looks for unsequenced operations on the
5217/// same object.
5218class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5219  /// \brief A tree of sequenced regions within an expression. Two regions are
5220  /// unsequenced if one is an ancestor or a descendent of the other. When we
5221  /// finish processing an expression with sequencing, such as a comma
5222  /// expression, we fold its tree nodes into its parent, since they are
5223  /// unsequenced with respect to nodes we will visit later.
5224  class SequenceTree {
5225    struct Value {
5226      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5227      unsigned Parent : 31;
5228      bool Merged : 1;
5229    };
5230    llvm::SmallVector<Value, 8> Values;
5231
5232  public:
5233    /// \brief A region within an expression which may be sequenced with respect
5234    /// to some other region.
5235    class Seq {
5236      explicit Seq(unsigned N) : Index(N) {}
5237      unsigned Index;
5238      friend class SequenceTree;
5239    public:
5240      Seq() : Index(0) {}
5241    };
5242
5243    SequenceTree() { Values.push_back(Value(0)); }
5244    Seq root() const { return Seq(0); }
5245
5246    /// \brief Create a new sequence of operations, which is an unsequenced
5247    /// subset of \p Parent. This sequence of operations is sequenced with
5248    /// respect to other children of \p Parent.
5249    Seq allocate(Seq Parent) {
5250      Values.push_back(Value(Parent.Index));
5251      return Seq(Values.size() - 1);
5252    }
5253
5254    /// \brief Merge a sequence of operations into its parent.
5255    void merge(Seq S) {
5256      Values[S.Index].Merged = true;
5257    }
5258
5259    /// \brief Determine whether two operations are unsequenced. This operation
5260    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5261    /// should have been merged into its parent as appropriate.
5262    bool isUnsequenced(Seq Cur, Seq Old) {
5263      unsigned C = representative(Cur.Index);
5264      unsigned Target = representative(Old.Index);
5265      while (C >= Target) {
5266        if (C == Target)
5267          return true;
5268        C = Values[C].Parent;
5269      }
5270      return false;
5271    }
5272
5273  private:
5274    /// \brief Pick a representative for a sequence.
5275    unsigned representative(unsigned K) {
5276      if (Values[K].Merged)
5277        // Perform path compression as we go.
5278        return Values[K].Parent = representative(Values[K].Parent);
5279      return K;
5280    }
5281  };
5282
5283  /// An object for which we can track unsequenced uses.
5284  typedef NamedDecl *Object;
5285
5286  /// Different flavors of object usage which we track. We only track the
5287  /// least-sequenced usage of each kind.
5288  enum UsageKind {
5289    /// A read of an object. Multiple unsequenced reads are OK.
5290    UK_Use,
5291    /// A modification of an object which is sequenced before the value
5292    /// computation of the expression, such as ++n.
5293    UK_ModAsValue,
5294    /// A modification of an object which is not sequenced before the value
5295    /// computation of the expression, such as n++.
5296    UK_ModAsSideEffect,
5297
5298    UK_Count = UK_ModAsSideEffect + 1
5299  };
5300
5301  struct Usage {
5302    Usage() : Use(0), Seq() {}
5303    Expr *Use;
5304    SequenceTree::Seq Seq;
5305  };
5306
5307  struct UsageInfo {
5308    UsageInfo() : Diagnosed(false) {}
5309    Usage Uses[UK_Count];
5310    /// Have we issued a diagnostic for this variable already?
5311    bool Diagnosed;
5312  };
5313  typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5314
5315  Sema &SemaRef;
5316  /// Sequenced regions within the expression.
5317  SequenceTree Tree;
5318  /// Declaration modifications and references which we have seen.
5319  UsageInfoMap UsageMap;
5320  /// The region we are currently within.
5321  SequenceTree::Seq Region;
5322  /// Filled in with declarations which were modified as a side-effect
5323  /// (that is, post-increment operations).
5324  llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5325  /// Expressions to check later. We defer checking these to reduce
5326  /// stack usage.
5327  llvm::SmallVectorImpl<Expr*> &WorkList;
5328
5329  /// RAII object wrapping the visitation of a sequenced subexpression of an
5330  /// expression. At the end of this process, the side-effects of the evaluation
5331  /// become sequenced with respect to the value computation of the result, so
5332  /// we downgrade any UK_ModAsSideEffect within the evaluation to
5333  /// UK_ModAsValue.
5334  struct SequencedSubexpression {
5335    SequencedSubexpression(SequenceChecker &Self)
5336      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5337      Self.ModAsSideEffect = &ModAsSideEffect;
5338    }
5339    ~SequencedSubexpression() {
5340      for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5341        UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5342        U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5343        Self.addUsage(U, ModAsSideEffect[I].first,
5344                      ModAsSideEffect[I].second.Use, UK_ModAsValue);
5345      }
5346      Self.ModAsSideEffect = OldModAsSideEffect;
5347    }
5348
5349    SequenceChecker &Self;
5350    llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5351    llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5352  };
5353
5354  /// \brief Find the object which is produced by the specified expression,
5355  /// if any.
5356  Object getObject(Expr *E, bool Mod) const {
5357    E = E->IgnoreParenCasts();
5358    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5359      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5360        return getObject(UO->getSubExpr(), Mod);
5361    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5362      if (BO->getOpcode() == BO_Comma)
5363        return getObject(BO->getRHS(), Mod);
5364      if (Mod && BO->isAssignmentOp())
5365        return getObject(BO->getLHS(), Mod);
5366    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5367      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5368      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5369        return ME->getMemberDecl();
5370    } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5371      // FIXME: If this is a reference, map through to its value.
5372      return DRE->getDecl();
5373    return 0;
5374  }
5375
5376  /// \brief Note that an object was modified or used by an expression.
5377  void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5378    Usage &U = UI.Uses[UK];
5379    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5380      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5381        ModAsSideEffect->push_back(std::make_pair(O, U));
5382      U.Use = Ref;
5383      U.Seq = Region;
5384    }
5385  }
5386  /// \brief Check whether a modification or use conflicts with a prior usage.
5387  void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5388                  bool IsModMod) {
5389    if (UI.Diagnosed)
5390      return;
5391
5392    const Usage &U = UI.Uses[OtherKind];
5393    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5394      return;
5395
5396    Expr *Mod = U.Use;
5397    Expr *ModOrUse = Ref;
5398    if (OtherKind == UK_Use)
5399      std::swap(Mod, ModOrUse);
5400
5401    SemaRef.Diag(Mod->getExprLoc(),
5402                 IsModMod ? diag::warn_unsequenced_mod_mod
5403                          : diag::warn_unsequenced_mod_use)
5404      << O << SourceRange(ModOrUse->getExprLoc());
5405    UI.Diagnosed = true;
5406  }
5407
5408  void notePreUse(Object O, Expr *Use) {
5409    UsageInfo &U = UsageMap[O];
5410    // Uses conflict with other modifications.
5411    checkUsage(O, U, Use, UK_ModAsValue, false);
5412  }
5413  void notePostUse(Object O, Expr *Use) {
5414    UsageInfo &U = UsageMap[O];
5415    checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5416    addUsage(U, O, Use, UK_Use);
5417  }
5418
5419  void notePreMod(Object O, Expr *Mod) {
5420    UsageInfo &U = UsageMap[O];
5421    // Modifications conflict with other modifications and with uses.
5422    checkUsage(O, U, Mod, UK_ModAsValue, true);
5423    checkUsage(O, U, Mod, UK_Use, false);
5424  }
5425  void notePostMod(Object O, Expr *Use, UsageKind UK) {
5426    UsageInfo &U = UsageMap[O];
5427    checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5428    addUsage(U, O, Use, UK);
5429  }
5430
5431public:
5432  SequenceChecker(Sema &S, Expr *E,
5433                  llvm::SmallVectorImpl<Expr*> &WorkList)
5434    : EvaluatedExprVisitor<SequenceChecker>(S.Context), SemaRef(S),
5435      Region(Tree.root()), ModAsSideEffect(0), WorkList(WorkList) {
5436    Visit(E);
5437  }
5438
5439  void VisitStmt(Stmt *S) {
5440    // Skip all statements which aren't expressions for now.
5441  }
5442
5443  void VisitExpr(Expr *E) {
5444    // By default, just recurse to evaluated subexpressions.
5445    EvaluatedExprVisitor<SequenceChecker>::VisitStmt(E);
5446  }
5447
5448  void VisitCastExpr(CastExpr *E) {
5449    Object O = Object();
5450    if (E->getCastKind() == CK_LValueToRValue)
5451      O = getObject(E->getSubExpr(), false);
5452
5453    if (O)
5454      notePreUse(O, E);
5455    VisitExpr(E);
5456    if (O)
5457      notePostUse(O, E);
5458  }
5459
5460  void VisitBinComma(BinaryOperator *BO) {
5461    // C++11 [expr.comma]p1:
5462    //   Every value computation and side effect associated with the left
5463    //   expression is sequenced before every value computation and side
5464    //   effect associated with the right expression.
5465    SequenceTree::Seq LHS = Tree.allocate(Region);
5466    SequenceTree::Seq RHS = Tree.allocate(Region);
5467    SequenceTree::Seq OldRegion = Region;
5468
5469    {
5470      SequencedSubexpression SeqLHS(*this);
5471      Region = LHS;
5472      Visit(BO->getLHS());
5473    }
5474
5475    Region = RHS;
5476    Visit(BO->getRHS());
5477
5478    Region = OldRegion;
5479
5480    // Forget that LHS and RHS are sequenced. They are both unsequenced
5481    // with respect to other stuff.
5482    Tree.merge(LHS);
5483    Tree.merge(RHS);
5484  }
5485
5486  void VisitBinAssign(BinaryOperator *BO) {
5487    // The modification is sequenced after the value computation of the LHS
5488    // and RHS, so check it before inspecting the operands and update the
5489    // map afterwards.
5490    Object O = getObject(BO->getLHS(), true);
5491    if (!O)
5492      return VisitExpr(BO);
5493
5494    notePreMod(O, BO);
5495
5496    // C++11 [expr.ass]p7:
5497    //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5498    //   only once.
5499    //
5500    // Therefore, for a compound assignment operator, O is considered used
5501    // everywhere except within the evaluation of E1 itself.
5502    if (isa<CompoundAssignOperator>(BO))
5503      notePreUse(O, BO);
5504
5505    Visit(BO->getLHS());
5506
5507    if (isa<CompoundAssignOperator>(BO))
5508      notePostUse(O, BO);
5509
5510    Visit(BO->getRHS());
5511
5512    notePostMod(O, BO, UK_ModAsValue);
5513  }
5514  void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5515    VisitBinAssign(CAO);
5516  }
5517
5518  void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5519  void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5520  void VisitUnaryPreIncDec(UnaryOperator *UO) {
5521    Object O = getObject(UO->getSubExpr(), true);
5522    if (!O)
5523      return VisitExpr(UO);
5524
5525    notePreMod(O, UO);
5526    Visit(UO->getSubExpr());
5527    notePostMod(O, UO, UK_ModAsValue);
5528  }
5529
5530  void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5531  void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5532  void VisitUnaryPostIncDec(UnaryOperator *UO) {
5533    Object O = getObject(UO->getSubExpr(), true);
5534    if (!O)
5535      return VisitExpr(UO);
5536
5537    notePreMod(O, UO);
5538    Visit(UO->getSubExpr());
5539    notePostMod(O, UO, UK_ModAsSideEffect);
5540  }
5541
5542  /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
5543  void VisitBinLOr(BinaryOperator *BO) {
5544    // The side-effects of the LHS of an '&&' are sequenced before the
5545    // value computation of the RHS, and hence before the value computation
5546    // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5547    // as if they were unconditionally sequenced.
5548    {
5549      SequencedSubexpression Sequenced(*this);
5550      Visit(BO->getLHS());
5551    }
5552
5553    bool Result;
5554    if (!BO->getLHS()->isValueDependent() &&
5555        BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
5556      if (!Result)
5557        Visit(BO->getRHS());
5558    } else {
5559      // Check for unsequenced operations in the RHS, treating it as an
5560      // entirely separate evaluation.
5561      //
5562      // FIXME: If there are operations in the RHS which are unsequenced
5563      // with respect to operations outside the RHS, and those operations
5564      // are unconditionally evaluated, diagnose them.
5565      WorkList.push_back(BO->getRHS());
5566    }
5567  }
5568  void VisitBinLAnd(BinaryOperator *BO) {
5569    {
5570      SequencedSubexpression Sequenced(*this);
5571      Visit(BO->getLHS());
5572    }
5573
5574    bool Result;
5575    if (!BO->getLHS()->isValueDependent() &&
5576        BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
5577      if (Result)
5578        Visit(BO->getRHS());
5579    } else {
5580      WorkList.push_back(BO->getRHS());
5581    }
5582  }
5583
5584  // Only visit the condition, unless we can be sure which subexpression will
5585  // be chosen.
5586  void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5587    SequencedSubexpression Sequenced(*this);
5588    Visit(CO->getCond());
5589
5590    bool Result;
5591    if (!CO->getCond()->isValueDependent() &&
5592        CO->getCond()->EvaluateAsBooleanCondition(Result, SemaRef.Context))
5593      Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5594    else {
5595      WorkList.push_back(CO->getTrueExpr());
5596      WorkList.push_back(CO->getFalseExpr());
5597    }
5598  }
5599
5600  void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5601    if (!CCE->isListInitialization())
5602      return VisitExpr(CCE);
5603
5604    // In C++11, list initializations are sequenced.
5605    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5606    SequenceTree::Seq Parent = Region;
5607    for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
5608                                        E = CCE->arg_end();
5609         I != E; ++I) {
5610      Region = Tree.allocate(Parent);
5611      Elts.push_back(Region);
5612      Visit(*I);
5613    }
5614
5615    // Forget that the initializers are sequenced.
5616    Region = Parent;
5617    for (unsigned I = 0; I < Elts.size(); ++I)
5618      Tree.merge(Elts[I]);
5619  }
5620
5621  void VisitInitListExpr(InitListExpr *ILE) {
5622    if (!SemaRef.getLangOpts().CPlusPlus11)
5623      return VisitExpr(ILE);
5624
5625    // In C++11, list initializations are sequenced.
5626    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5627    SequenceTree::Seq Parent = Region;
5628    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
5629      Expr *E = ILE->getInit(I);
5630      if (!E) continue;
5631      Region = Tree.allocate(Parent);
5632      Elts.push_back(Region);
5633      Visit(E);
5634    }
5635
5636    // Forget that the initializers are sequenced.
5637    Region = Parent;
5638    for (unsigned I = 0; I < Elts.size(); ++I)
5639      Tree.merge(Elts[I]);
5640  }
5641};
5642}
5643
5644void Sema::CheckUnsequencedOperations(Expr *E) {
5645  llvm::SmallVector<Expr*, 8> WorkList;
5646  WorkList.push_back(E);
5647  while (!WorkList.empty()) {
5648    Expr *Item = WorkList.back();
5649    WorkList.pop_back();
5650    SequenceChecker(*this, Item, WorkList);
5651  }
5652}
5653
5654void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
5655                              bool IsConstexpr) {
5656  CheckImplicitConversions(E, CheckLoc);
5657  CheckUnsequencedOperations(E);
5658  if (!IsConstexpr && !E->isValueDependent())
5659    CheckForIntOverflow(E);
5660}
5661
5662void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
5663                                       FieldDecl *BitField,
5664                                       Expr *Init) {
5665  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
5666}
5667
5668/// CheckParmsForFunctionDef - Check that the parameters of the given
5669/// function are appropriate for the definition of a function. This
5670/// takes care of any checks that cannot be performed on the
5671/// declaration itself, e.g., that the types of each of the function
5672/// parameters are complete.
5673bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
5674                                    bool CheckParameterNames) {
5675  bool HasInvalidParm = false;
5676  for (; P != PEnd; ++P) {
5677    ParmVarDecl *Param = *P;
5678
5679    // C99 6.7.5.3p4: the parameters in a parameter type list in a
5680    // function declarator that is part of a function definition of
5681    // that function shall not have incomplete type.
5682    //
5683    // This is also C++ [dcl.fct]p6.
5684    if (!Param->isInvalidDecl() &&
5685        RequireCompleteType(Param->getLocation(), Param->getType(),
5686                            diag::err_typecheck_decl_incomplete_type)) {
5687      Param->setInvalidDecl();
5688      HasInvalidParm = true;
5689    }
5690
5691    // C99 6.9.1p5: If the declarator includes a parameter type list, the
5692    // declaration of each parameter shall include an identifier.
5693    if (CheckParameterNames &&
5694        Param->getIdentifier() == 0 &&
5695        !Param->isImplicit() &&
5696        !getLangOpts().CPlusPlus)
5697      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
5698
5699    // C99 6.7.5.3p12:
5700    //   If the function declarator is not part of a definition of that
5701    //   function, parameters may have incomplete type and may use the [*]
5702    //   notation in their sequences of declarator specifiers to specify
5703    //   variable length array types.
5704    QualType PType = Param->getOriginalType();
5705    while (const ArrayType *AT = Context.getAsArrayType(PType)) {
5706      if (AT->getSizeModifier() == ArrayType::Star) {
5707        // FIXME: This diagnostic should point the '[*]' if source-location
5708        // information is added for it.
5709        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
5710        break;
5711      }
5712      PType= AT->getElementType();
5713    }
5714  }
5715
5716  return HasInvalidParm;
5717}
5718
5719/// CheckCastAlign - Implements -Wcast-align, which warns when a
5720/// pointer cast increases the alignment requirements.
5721void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
5722  // This is actually a lot of work to potentially be doing on every
5723  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
5724  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
5725                                          TRange.getBegin())
5726        == DiagnosticsEngine::Ignored)
5727    return;
5728
5729  // Ignore dependent types.
5730  if (T->isDependentType() || Op->getType()->isDependentType())
5731    return;
5732
5733  // Require that the destination be a pointer type.
5734  const PointerType *DestPtr = T->getAs<PointerType>();
5735  if (!DestPtr) return;
5736
5737  // If the destination has alignment 1, we're done.
5738  QualType DestPointee = DestPtr->getPointeeType();
5739  if (DestPointee->isIncompleteType()) return;
5740  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
5741  if (DestAlign.isOne()) return;
5742
5743  // Require that the source be a pointer type.
5744  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
5745  if (!SrcPtr) return;
5746  QualType SrcPointee = SrcPtr->getPointeeType();
5747
5748  // Whitelist casts from cv void*.  We already implicitly
5749  // whitelisted casts to cv void*, since they have alignment 1.
5750  // Also whitelist casts involving incomplete types, which implicitly
5751  // includes 'void'.
5752  if (SrcPointee->isIncompleteType()) return;
5753
5754  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
5755  if (SrcAlign >= DestAlign) return;
5756
5757  Diag(TRange.getBegin(), diag::warn_cast_align)
5758    << Op->getType() << T
5759    << static_cast<unsigned>(SrcAlign.getQuantity())
5760    << static_cast<unsigned>(DestAlign.getQuantity())
5761    << TRange << Op->getSourceRange();
5762}
5763
5764static const Type* getElementType(const Expr *BaseExpr) {
5765  const Type* EltType = BaseExpr->getType().getTypePtr();
5766  if (EltType->isAnyPointerType())
5767    return EltType->getPointeeType().getTypePtr();
5768  else if (EltType->isArrayType())
5769    return EltType->getBaseElementTypeUnsafe();
5770  return EltType;
5771}
5772
5773/// \brief Check whether this array fits the idiom of a size-one tail padded
5774/// array member of a struct.
5775///
5776/// We avoid emitting out-of-bounds access warnings for such arrays as they are
5777/// commonly used to emulate flexible arrays in C89 code.
5778static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
5779                                    const NamedDecl *ND) {
5780  if (Size != 1 || !ND) return false;
5781
5782  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
5783  if (!FD) return false;
5784
5785  // Don't consider sizes resulting from macro expansions or template argument
5786  // substitution to form C89 tail-padded arrays.
5787
5788  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
5789  while (TInfo) {
5790    TypeLoc TL = TInfo->getTypeLoc();
5791    // Look through typedefs.
5792    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
5793      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
5794      TInfo = TDL->getTypeSourceInfo();
5795      continue;
5796    }
5797    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
5798      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
5799      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
5800        return false;
5801    }
5802    break;
5803  }
5804
5805  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
5806  if (!RD) return false;
5807  if (RD->isUnion()) return false;
5808  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5809    if (!CRD->isStandardLayout()) return false;
5810  }
5811
5812  // See if this is the last field decl in the record.
5813  const Decl *D = FD;
5814  while ((D = D->getNextDeclInContext()))
5815    if (isa<FieldDecl>(D))
5816      return false;
5817  return true;
5818}
5819
5820void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
5821                            const ArraySubscriptExpr *ASE,
5822                            bool AllowOnePastEnd, bool IndexNegated) {
5823  IndexExpr = IndexExpr->IgnoreParenImpCasts();
5824  if (IndexExpr->isValueDependent())
5825    return;
5826
5827  const Type *EffectiveType = getElementType(BaseExpr);
5828  BaseExpr = BaseExpr->IgnoreParenCasts();
5829  const ConstantArrayType *ArrayTy =
5830    Context.getAsConstantArrayType(BaseExpr->getType());
5831  if (!ArrayTy)
5832    return;
5833
5834  llvm::APSInt index;
5835  if (!IndexExpr->EvaluateAsInt(index, Context))
5836    return;
5837  if (IndexNegated)
5838    index = -index;
5839
5840  const NamedDecl *ND = NULL;
5841  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5842    ND = dyn_cast<NamedDecl>(DRE->getDecl());
5843  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5844    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5845
5846  if (index.isUnsigned() || !index.isNegative()) {
5847    llvm::APInt size = ArrayTy->getSize();
5848    if (!size.isStrictlyPositive())
5849      return;
5850
5851    const Type* BaseType = getElementType(BaseExpr);
5852    if (BaseType != EffectiveType) {
5853      // Make sure we're comparing apples to apples when comparing index to size
5854      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
5855      uint64_t array_typesize = Context.getTypeSize(BaseType);
5856      // Handle ptrarith_typesize being zero, such as when casting to void*
5857      if (!ptrarith_typesize) ptrarith_typesize = 1;
5858      if (ptrarith_typesize != array_typesize) {
5859        // There's a cast to a different size type involved
5860        uint64_t ratio = array_typesize / ptrarith_typesize;
5861        // TODO: Be smarter about handling cases where array_typesize is not a
5862        // multiple of ptrarith_typesize
5863        if (ptrarith_typesize * ratio == array_typesize)
5864          size *= llvm::APInt(size.getBitWidth(), ratio);
5865      }
5866    }
5867
5868    if (size.getBitWidth() > index.getBitWidth())
5869      index = index.zext(size.getBitWidth());
5870    else if (size.getBitWidth() < index.getBitWidth())
5871      size = size.zext(index.getBitWidth());
5872
5873    // For array subscripting the index must be less than size, but for pointer
5874    // arithmetic also allow the index (offset) to be equal to size since
5875    // computing the next address after the end of the array is legal and
5876    // commonly done e.g. in C++ iterators and range-based for loops.
5877    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
5878      return;
5879
5880    // Also don't warn for arrays of size 1 which are members of some
5881    // structure. These are often used to approximate flexible arrays in C89
5882    // code.
5883    if (IsTailPaddedMemberArray(*this, size, ND))
5884      return;
5885
5886    // Suppress the warning if the subscript expression (as identified by the
5887    // ']' location) and the index expression are both from macro expansions
5888    // within a system header.
5889    if (ASE) {
5890      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
5891          ASE->getRBracketLoc());
5892      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
5893        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
5894            IndexExpr->getLocStart());
5895        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
5896          return;
5897      }
5898    }
5899
5900    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
5901    if (ASE)
5902      DiagID = diag::warn_array_index_exceeds_bounds;
5903
5904    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5905                        PDiag(DiagID) << index.toString(10, true)
5906                          << size.toString(10, true)
5907                          << (unsigned)size.getLimitedValue(~0U)
5908                          << IndexExpr->getSourceRange());
5909  } else {
5910    unsigned DiagID = diag::warn_array_index_precedes_bounds;
5911    if (!ASE) {
5912      DiagID = diag::warn_ptr_arith_precedes_bounds;
5913      if (index.isNegative()) index = -index;
5914    }
5915
5916    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5917                        PDiag(DiagID) << index.toString(10, true)
5918                          << IndexExpr->getSourceRange());
5919  }
5920
5921  if (!ND) {
5922    // Try harder to find a NamedDecl to point at in the note.
5923    while (const ArraySubscriptExpr *ASE =
5924           dyn_cast<ArraySubscriptExpr>(BaseExpr))
5925      BaseExpr = ASE->getBase()->IgnoreParenCasts();
5926    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5927      ND = dyn_cast<NamedDecl>(DRE->getDecl());
5928    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5929      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5930  }
5931
5932  if (ND)
5933    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5934                        PDiag(diag::note_array_index_out_of_bounds)
5935                          << ND->getDeclName());
5936}
5937
5938void Sema::CheckArrayAccess(const Expr *expr) {
5939  int AllowOnePastEnd = 0;
5940  while (expr) {
5941    expr = expr->IgnoreParenImpCasts();
5942    switch (expr->getStmtClass()) {
5943      case Stmt::ArraySubscriptExprClass: {
5944        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5945        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5946                         AllowOnePastEnd > 0);
5947        return;
5948      }
5949      case Stmt::UnaryOperatorClass: {
5950        // Only unwrap the * and & unary operators
5951        const UnaryOperator *UO = cast<UnaryOperator>(expr);
5952        expr = UO->getSubExpr();
5953        switch (UO->getOpcode()) {
5954          case UO_AddrOf:
5955            AllowOnePastEnd++;
5956            break;
5957          case UO_Deref:
5958            AllowOnePastEnd--;
5959            break;
5960          default:
5961            return;
5962        }
5963        break;
5964      }
5965      case Stmt::ConditionalOperatorClass: {
5966        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5967        if (const Expr *lhs = cond->getLHS())
5968          CheckArrayAccess(lhs);
5969        if (const Expr *rhs = cond->getRHS())
5970          CheckArrayAccess(rhs);
5971        return;
5972      }
5973      default:
5974        return;
5975    }
5976  }
5977}
5978
5979//===--- CHECK: Objective-C retain cycles ----------------------------------//
5980
5981namespace {
5982  struct RetainCycleOwner {
5983    RetainCycleOwner() : Variable(0), Indirect(false) {}
5984    VarDecl *Variable;
5985    SourceRange Range;
5986    SourceLocation Loc;
5987    bool Indirect;
5988
5989    void setLocsFrom(Expr *e) {
5990      Loc = e->getExprLoc();
5991      Range = e->getSourceRange();
5992    }
5993  };
5994}
5995
5996/// Consider whether capturing the given variable can possibly lead to
5997/// a retain cycle.
5998static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
5999  // In ARC, it's captured strongly iff the variable has __strong
6000  // lifetime.  In MRR, it's captured strongly if the variable is
6001  // __block and has an appropriate type.
6002  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6003    return false;
6004
6005  owner.Variable = var;
6006  if (ref)
6007    owner.setLocsFrom(ref);
6008  return true;
6009}
6010
6011static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6012  while (true) {
6013    e = e->IgnoreParens();
6014    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6015      switch (cast->getCastKind()) {
6016      case CK_BitCast:
6017      case CK_LValueBitCast:
6018      case CK_LValueToRValue:
6019      case CK_ARCReclaimReturnedObject:
6020        e = cast->getSubExpr();
6021        continue;
6022
6023      default:
6024        return false;
6025      }
6026    }
6027
6028    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6029      ObjCIvarDecl *ivar = ref->getDecl();
6030      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6031        return false;
6032
6033      // Try to find a retain cycle in the base.
6034      if (!findRetainCycleOwner(S, ref->getBase(), owner))
6035        return false;
6036
6037      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6038      owner.Indirect = true;
6039      return true;
6040    }
6041
6042    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6043      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6044      if (!var) return false;
6045      return considerVariable(var, ref, owner);
6046    }
6047
6048    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6049      if (member->isArrow()) return false;
6050
6051      // Don't count this as an indirect ownership.
6052      e = member->getBase();
6053      continue;
6054    }
6055
6056    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6057      // Only pay attention to pseudo-objects on property references.
6058      ObjCPropertyRefExpr *pre
6059        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6060                                              ->IgnoreParens());
6061      if (!pre) return false;
6062      if (pre->isImplicitProperty()) return false;
6063      ObjCPropertyDecl *property = pre->getExplicitProperty();
6064      if (!property->isRetaining() &&
6065          !(property->getPropertyIvarDecl() &&
6066            property->getPropertyIvarDecl()->getType()
6067              .getObjCLifetime() == Qualifiers::OCL_Strong))
6068          return false;
6069
6070      owner.Indirect = true;
6071      if (pre->isSuperReceiver()) {
6072        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6073        if (!owner.Variable)
6074          return false;
6075        owner.Loc = pre->getLocation();
6076        owner.Range = pre->getSourceRange();
6077        return true;
6078      }
6079      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6080                              ->getSourceExpr());
6081      continue;
6082    }
6083
6084    // Array ivars?
6085
6086    return false;
6087  }
6088}
6089
6090namespace {
6091  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6092    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6093      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6094        Variable(variable), Capturer(0) {}
6095
6096    VarDecl *Variable;
6097    Expr *Capturer;
6098
6099    void VisitDeclRefExpr(DeclRefExpr *ref) {
6100      if (ref->getDecl() == Variable && !Capturer)
6101        Capturer = ref;
6102    }
6103
6104    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6105      if (Capturer) return;
6106      Visit(ref->getBase());
6107      if (Capturer && ref->isFreeIvar())
6108        Capturer = ref;
6109    }
6110
6111    void VisitBlockExpr(BlockExpr *block) {
6112      // Look inside nested blocks
6113      if (block->getBlockDecl()->capturesVariable(Variable))
6114        Visit(block->getBlockDecl()->getBody());
6115    }
6116
6117    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6118      if (Capturer) return;
6119      if (OVE->getSourceExpr())
6120        Visit(OVE->getSourceExpr());
6121    }
6122  };
6123}
6124
6125/// Check whether the given argument is a block which captures a
6126/// variable.
6127static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6128  assert(owner.Variable && owner.Loc.isValid());
6129
6130  e = e->IgnoreParenCasts();
6131
6132  // Look through [^{...} copy] and Block_copy(^{...}).
6133  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6134    Selector Cmd = ME->getSelector();
6135    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6136      e = ME->getInstanceReceiver();
6137      if (!e)
6138        return 0;
6139      e = e->IgnoreParenCasts();
6140    }
6141  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6142    if (CE->getNumArgs() == 1) {
6143      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6144      if (Fn) {
6145        const IdentifierInfo *FnI = Fn->getIdentifier();
6146        if (FnI && FnI->isStr("_Block_copy")) {
6147          e = CE->getArg(0)->IgnoreParenCasts();
6148        }
6149      }
6150    }
6151  }
6152
6153  BlockExpr *block = dyn_cast<BlockExpr>(e);
6154  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6155    return 0;
6156
6157  FindCaptureVisitor visitor(S.Context, owner.Variable);
6158  visitor.Visit(block->getBlockDecl()->getBody());
6159  return visitor.Capturer;
6160}
6161
6162static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6163                                RetainCycleOwner &owner) {
6164  assert(capturer);
6165  assert(owner.Variable && owner.Loc.isValid());
6166
6167  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6168    << owner.Variable << capturer->getSourceRange();
6169  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6170    << owner.Indirect << owner.Range;
6171}
6172
6173/// Check for a keyword selector that starts with the word 'add' or
6174/// 'set'.
6175static bool isSetterLikeSelector(Selector sel) {
6176  if (sel.isUnarySelector()) return false;
6177
6178  StringRef str = sel.getNameForSlot(0);
6179  while (!str.empty() && str.front() == '_') str = str.substr(1);
6180  if (str.startswith("set"))
6181    str = str.substr(3);
6182  else if (str.startswith("add")) {
6183    // Specially whitelist 'addOperationWithBlock:'.
6184    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6185      return false;
6186    str = str.substr(3);
6187  }
6188  else
6189    return false;
6190
6191  if (str.empty()) return true;
6192  return !isLowercase(str.front());
6193}
6194
6195/// Check a message send to see if it's likely to cause a retain cycle.
6196void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6197  // Only check instance methods whose selector looks like a setter.
6198  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6199    return;
6200
6201  // Try to find a variable that the receiver is strongly owned by.
6202  RetainCycleOwner owner;
6203  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6204    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6205      return;
6206  } else {
6207    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6208    owner.Variable = getCurMethodDecl()->getSelfDecl();
6209    owner.Loc = msg->getSuperLoc();
6210    owner.Range = msg->getSuperLoc();
6211  }
6212
6213  // Check whether the receiver is captured by any of the arguments.
6214  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6215    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6216      return diagnoseRetainCycle(*this, capturer, owner);
6217}
6218
6219/// Check a property assign to see if it's likely to cause a retain cycle.
6220void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6221  RetainCycleOwner owner;
6222  if (!findRetainCycleOwner(*this, receiver, owner))
6223    return;
6224
6225  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6226    diagnoseRetainCycle(*this, capturer, owner);
6227}
6228
6229void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6230  RetainCycleOwner Owner;
6231  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6232    return;
6233
6234  // Because we don't have an expression for the variable, we have to set the
6235  // location explicitly here.
6236  Owner.Loc = Var->getLocation();
6237  Owner.Range = Var->getSourceRange();
6238
6239  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6240    diagnoseRetainCycle(*this, Capturer, Owner);
6241}
6242
6243static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6244                                     Expr *RHS, bool isProperty) {
6245  // Check if RHS is an Objective-C object literal, which also can get
6246  // immediately zapped in a weak reference.  Note that we explicitly
6247  // allow ObjCStringLiterals, since those are designed to never really die.
6248  RHS = RHS->IgnoreParenImpCasts();
6249
6250  // This enum needs to match with the 'select' in
6251  // warn_objc_arc_literal_assign (off-by-1).
6252  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6253  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6254    return false;
6255
6256  S.Diag(Loc, diag::warn_arc_literal_assign)
6257    << (unsigned) Kind
6258    << (isProperty ? 0 : 1)
6259    << RHS->getSourceRange();
6260
6261  return true;
6262}
6263
6264static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6265                                    Qualifiers::ObjCLifetime LT,
6266                                    Expr *RHS, bool isProperty) {
6267  // Strip off any implicit cast added to get to the one ARC-specific.
6268  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6269    if (cast->getCastKind() == CK_ARCConsumeObject) {
6270      S.Diag(Loc, diag::warn_arc_retained_assign)
6271        << (LT == Qualifiers::OCL_ExplicitNone)
6272        << (isProperty ? 0 : 1)
6273        << RHS->getSourceRange();
6274      return true;
6275    }
6276    RHS = cast->getSubExpr();
6277  }
6278
6279  if (LT == Qualifiers::OCL_Weak &&
6280      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6281    return true;
6282
6283  return false;
6284}
6285
6286bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6287                              QualType LHS, Expr *RHS) {
6288  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6289
6290  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6291    return false;
6292
6293  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6294    return true;
6295
6296  return false;
6297}
6298
6299void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6300                              Expr *LHS, Expr *RHS) {
6301  QualType LHSType;
6302  // PropertyRef on LHS type need be directly obtained from
6303  // its declaration as it has a PsuedoType.
6304  ObjCPropertyRefExpr *PRE
6305    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6306  if (PRE && !PRE->isImplicitProperty()) {
6307    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6308    if (PD)
6309      LHSType = PD->getType();
6310  }
6311
6312  if (LHSType.isNull())
6313    LHSType = LHS->getType();
6314
6315  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6316
6317  if (LT == Qualifiers::OCL_Weak) {
6318    DiagnosticsEngine::Level Level =
6319      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6320    if (Level != DiagnosticsEngine::Ignored)
6321      getCurFunction()->markSafeWeakUse(LHS);
6322  }
6323
6324  if (checkUnsafeAssigns(Loc, LHSType, RHS))
6325    return;
6326
6327  // FIXME. Check for other life times.
6328  if (LT != Qualifiers::OCL_None)
6329    return;
6330
6331  if (PRE) {
6332    if (PRE->isImplicitProperty())
6333      return;
6334    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6335    if (!PD)
6336      return;
6337
6338    unsigned Attributes = PD->getPropertyAttributes();
6339    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6340      // when 'assign' attribute was not explicitly specified
6341      // by user, ignore it and rely on property type itself
6342      // for lifetime info.
6343      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6344      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6345          LHSType->isObjCRetainableType())
6346        return;
6347
6348      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6349        if (cast->getCastKind() == CK_ARCConsumeObject) {
6350          Diag(Loc, diag::warn_arc_retained_property_assign)
6351          << RHS->getSourceRange();
6352          return;
6353        }
6354        RHS = cast->getSubExpr();
6355      }
6356    }
6357    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6358      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6359        return;
6360    }
6361  }
6362}
6363
6364//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6365
6366namespace {
6367bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6368                                 SourceLocation StmtLoc,
6369                                 const NullStmt *Body) {
6370  // Do not warn if the body is a macro that expands to nothing, e.g:
6371  //
6372  // #define CALL(x)
6373  // if (condition)
6374  //   CALL(0);
6375  //
6376  if (Body->hasLeadingEmptyMacro())
6377    return false;
6378
6379  // Get line numbers of statement and body.
6380  bool StmtLineInvalid;
6381  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6382                                                      &StmtLineInvalid);
6383  if (StmtLineInvalid)
6384    return false;
6385
6386  bool BodyLineInvalid;
6387  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6388                                                      &BodyLineInvalid);
6389  if (BodyLineInvalid)
6390    return false;
6391
6392  // Warn if null statement and body are on the same line.
6393  if (StmtLine != BodyLine)
6394    return false;
6395
6396  return true;
6397}
6398} // Unnamed namespace
6399
6400void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6401                                 const Stmt *Body,
6402                                 unsigned DiagID) {
6403  // Since this is a syntactic check, don't emit diagnostic for template
6404  // instantiations, this just adds noise.
6405  if (CurrentInstantiationScope)
6406    return;
6407
6408  // The body should be a null statement.
6409  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6410  if (!NBody)
6411    return;
6412
6413  // Do the usual checks.
6414  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6415    return;
6416
6417  Diag(NBody->getSemiLoc(), DiagID);
6418  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6419}
6420
6421void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6422                                 const Stmt *PossibleBody) {
6423  assert(!CurrentInstantiationScope); // Ensured by caller
6424
6425  SourceLocation StmtLoc;
6426  const Stmt *Body;
6427  unsigned DiagID;
6428  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6429    StmtLoc = FS->getRParenLoc();
6430    Body = FS->getBody();
6431    DiagID = diag::warn_empty_for_body;
6432  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6433    StmtLoc = WS->getCond()->getSourceRange().getEnd();
6434    Body = WS->getBody();
6435    DiagID = diag::warn_empty_while_body;
6436  } else
6437    return; // Neither `for' nor `while'.
6438
6439  // The body should be a null statement.
6440  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6441  if (!NBody)
6442    return;
6443
6444  // Skip expensive checks if diagnostic is disabled.
6445  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6446          DiagnosticsEngine::Ignored)
6447    return;
6448
6449  // Do the usual checks.
6450  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6451    return;
6452
6453  // `for(...);' and `while(...);' are popular idioms, so in order to keep
6454  // noise level low, emit diagnostics only if for/while is followed by a
6455  // CompoundStmt, e.g.:
6456  //    for (int i = 0; i < n; i++);
6457  //    {
6458  //      a(i);
6459  //    }
6460  // or if for/while is followed by a statement with more indentation
6461  // than for/while itself:
6462  //    for (int i = 0; i < n; i++);
6463  //      a(i);
6464  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6465  if (!ProbableTypo) {
6466    bool BodyColInvalid;
6467    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6468                             PossibleBody->getLocStart(),
6469                             &BodyColInvalid);
6470    if (BodyColInvalid)
6471      return;
6472
6473    bool StmtColInvalid;
6474    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6475                             S->getLocStart(),
6476                             &StmtColInvalid);
6477    if (StmtColInvalid)
6478      return;
6479
6480    if (BodyCol > StmtCol)
6481      ProbableTypo = true;
6482  }
6483
6484  if (ProbableTypo) {
6485    Diag(NBody->getSemiLoc(), DiagID);
6486    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6487  }
6488}
6489
6490//===--- Layout compatibility ----------------------------------------------//
6491
6492namespace {
6493
6494bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6495
6496/// \brief Check if two enumeration types are layout-compatible.
6497bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6498  // C++11 [dcl.enum] p8:
6499  // Two enumeration types are layout-compatible if they have the same
6500  // underlying type.
6501  return ED1->isComplete() && ED2->isComplete() &&
6502         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6503}
6504
6505/// \brief Check if two fields are layout-compatible.
6506bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6507  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6508    return false;
6509
6510  if (Field1->isBitField() != Field2->isBitField())
6511    return false;
6512
6513  if (Field1->isBitField()) {
6514    // Make sure that the bit-fields are the same length.
6515    unsigned Bits1 = Field1->getBitWidthValue(C);
6516    unsigned Bits2 = Field2->getBitWidthValue(C);
6517
6518    if (Bits1 != Bits2)
6519      return false;
6520  }
6521
6522  return true;
6523}
6524
6525/// \brief Check if two standard-layout structs are layout-compatible.
6526/// (C++11 [class.mem] p17)
6527bool isLayoutCompatibleStruct(ASTContext &C,
6528                              RecordDecl *RD1,
6529                              RecordDecl *RD2) {
6530  // If both records are C++ classes, check that base classes match.
6531  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6532    // If one of records is a CXXRecordDecl we are in C++ mode,
6533    // thus the other one is a CXXRecordDecl, too.
6534    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6535    // Check number of base classes.
6536    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6537      return false;
6538
6539    // Check the base classes.
6540    for (CXXRecordDecl::base_class_const_iterator
6541               Base1 = D1CXX->bases_begin(),
6542           BaseEnd1 = D1CXX->bases_end(),
6543              Base2 = D2CXX->bases_begin();
6544         Base1 != BaseEnd1;
6545         ++Base1, ++Base2) {
6546      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6547        return false;
6548    }
6549  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6550    // If only RD2 is a C++ class, it should have zero base classes.
6551    if (D2CXX->getNumBases() > 0)
6552      return false;
6553  }
6554
6555  // Check the fields.
6556  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6557                             Field2End = RD2->field_end(),
6558                             Field1 = RD1->field_begin(),
6559                             Field1End = RD1->field_end();
6560  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6561    if (!isLayoutCompatible(C, *Field1, *Field2))
6562      return false;
6563  }
6564  if (Field1 != Field1End || Field2 != Field2End)
6565    return false;
6566
6567  return true;
6568}
6569
6570/// \brief Check if two standard-layout unions are layout-compatible.
6571/// (C++11 [class.mem] p18)
6572bool isLayoutCompatibleUnion(ASTContext &C,
6573                             RecordDecl *RD1,
6574                             RecordDecl *RD2) {
6575  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6576  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6577                                  Field2End = RD2->field_end();
6578       Field2 != Field2End; ++Field2) {
6579    UnmatchedFields.insert(*Field2);
6580  }
6581
6582  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6583                                  Field1End = RD1->field_end();
6584       Field1 != Field1End; ++Field1) {
6585    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6586        I = UnmatchedFields.begin(),
6587        E = UnmatchedFields.end();
6588
6589    for ( ; I != E; ++I) {
6590      if (isLayoutCompatible(C, *Field1, *I)) {
6591        bool Result = UnmatchedFields.erase(*I);
6592        (void) Result;
6593        assert(Result);
6594        break;
6595      }
6596    }
6597    if (I == E)
6598      return false;
6599  }
6600
6601  return UnmatchedFields.empty();
6602}
6603
6604bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
6605  if (RD1->isUnion() != RD2->isUnion())
6606    return false;
6607
6608  if (RD1->isUnion())
6609    return isLayoutCompatibleUnion(C, RD1, RD2);
6610  else
6611    return isLayoutCompatibleStruct(C, RD1, RD2);
6612}
6613
6614/// \brief Check if two types are layout-compatible in C++11 sense.
6615bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
6616  if (T1.isNull() || T2.isNull())
6617    return false;
6618
6619  // C++11 [basic.types] p11:
6620  // If two types T1 and T2 are the same type, then T1 and T2 are
6621  // layout-compatible types.
6622  if (C.hasSameType(T1, T2))
6623    return true;
6624
6625  T1 = T1.getCanonicalType().getUnqualifiedType();
6626  T2 = T2.getCanonicalType().getUnqualifiedType();
6627
6628  const Type::TypeClass TC1 = T1->getTypeClass();
6629  const Type::TypeClass TC2 = T2->getTypeClass();
6630
6631  if (TC1 != TC2)
6632    return false;
6633
6634  if (TC1 == Type::Enum) {
6635    return isLayoutCompatible(C,
6636                              cast<EnumType>(T1)->getDecl(),
6637                              cast<EnumType>(T2)->getDecl());
6638  } else if (TC1 == Type::Record) {
6639    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
6640      return false;
6641
6642    return isLayoutCompatible(C,
6643                              cast<RecordType>(T1)->getDecl(),
6644                              cast<RecordType>(T2)->getDecl());
6645  }
6646
6647  return false;
6648}
6649}
6650
6651//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
6652
6653namespace {
6654/// \brief Given a type tag expression find the type tag itself.
6655///
6656/// \param TypeExpr Type tag expression, as it appears in user's code.
6657///
6658/// \param VD Declaration of an identifier that appears in a type tag.
6659///
6660/// \param MagicValue Type tag magic value.
6661bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
6662                     const ValueDecl **VD, uint64_t *MagicValue) {
6663  while(true) {
6664    if (!TypeExpr)
6665      return false;
6666
6667    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
6668
6669    switch (TypeExpr->getStmtClass()) {
6670    case Stmt::UnaryOperatorClass: {
6671      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
6672      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
6673        TypeExpr = UO->getSubExpr();
6674        continue;
6675      }
6676      return false;
6677    }
6678
6679    case Stmt::DeclRefExprClass: {
6680      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
6681      *VD = DRE->getDecl();
6682      return true;
6683    }
6684
6685    case Stmt::IntegerLiteralClass: {
6686      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
6687      llvm::APInt MagicValueAPInt = IL->getValue();
6688      if (MagicValueAPInt.getActiveBits() <= 64) {
6689        *MagicValue = MagicValueAPInt.getZExtValue();
6690        return true;
6691      } else
6692        return false;
6693    }
6694
6695    case Stmt::BinaryConditionalOperatorClass:
6696    case Stmt::ConditionalOperatorClass: {
6697      const AbstractConditionalOperator *ACO =
6698          cast<AbstractConditionalOperator>(TypeExpr);
6699      bool Result;
6700      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
6701        if (Result)
6702          TypeExpr = ACO->getTrueExpr();
6703        else
6704          TypeExpr = ACO->getFalseExpr();
6705        continue;
6706      }
6707      return false;
6708    }
6709
6710    case Stmt::BinaryOperatorClass: {
6711      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
6712      if (BO->getOpcode() == BO_Comma) {
6713        TypeExpr = BO->getRHS();
6714        continue;
6715      }
6716      return false;
6717    }
6718
6719    default:
6720      return false;
6721    }
6722  }
6723}
6724
6725/// \brief Retrieve the C type corresponding to type tag TypeExpr.
6726///
6727/// \param TypeExpr Expression that specifies a type tag.
6728///
6729/// \param MagicValues Registered magic values.
6730///
6731/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
6732///        kind.
6733///
6734/// \param TypeInfo Information about the corresponding C type.
6735///
6736/// \returns true if the corresponding C type was found.
6737bool GetMatchingCType(
6738        const IdentifierInfo *ArgumentKind,
6739        const Expr *TypeExpr, const ASTContext &Ctx,
6740        const llvm::DenseMap<Sema::TypeTagMagicValue,
6741                             Sema::TypeTagData> *MagicValues,
6742        bool &FoundWrongKind,
6743        Sema::TypeTagData &TypeInfo) {
6744  FoundWrongKind = false;
6745
6746  // Variable declaration that has type_tag_for_datatype attribute.
6747  const ValueDecl *VD = NULL;
6748
6749  uint64_t MagicValue;
6750
6751  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
6752    return false;
6753
6754  if (VD) {
6755    for (specific_attr_iterator<TypeTagForDatatypeAttr>
6756             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
6757             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
6758         I != E; ++I) {
6759      if (I->getArgumentKind() != ArgumentKind) {
6760        FoundWrongKind = true;
6761        return false;
6762      }
6763      TypeInfo.Type = I->getMatchingCType();
6764      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
6765      TypeInfo.MustBeNull = I->getMustBeNull();
6766      return true;
6767    }
6768    return false;
6769  }
6770
6771  if (!MagicValues)
6772    return false;
6773
6774  llvm::DenseMap<Sema::TypeTagMagicValue,
6775                 Sema::TypeTagData>::const_iterator I =
6776      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
6777  if (I == MagicValues->end())
6778    return false;
6779
6780  TypeInfo = I->second;
6781  return true;
6782}
6783} // unnamed namespace
6784
6785void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
6786                                      uint64_t MagicValue, QualType Type,
6787                                      bool LayoutCompatible,
6788                                      bool MustBeNull) {
6789  if (!TypeTagForDatatypeMagicValues)
6790    TypeTagForDatatypeMagicValues.reset(
6791        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
6792
6793  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
6794  (*TypeTagForDatatypeMagicValues)[Magic] =
6795      TypeTagData(Type, LayoutCompatible, MustBeNull);
6796}
6797
6798namespace {
6799bool IsSameCharType(QualType T1, QualType T2) {
6800  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
6801  if (!BT1)
6802    return false;
6803
6804  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
6805  if (!BT2)
6806    return false;
6807
6808  BuiltinType::Kind T1Kind = BT1->getKind();
6809  BuiltinType::Kind T2Kind = BT2->getKind();
6810
6811  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
6812         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
6813         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
6814         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
6815}
6816} // unnamed namespace
6817
6818void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
6819                                    const Expr * const *ExprArgs) {
6820  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
6821  bool IsPointerAttr = Attr->getIsPointer();
6822
6823  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
6824  bool FoundWrongKind;
6825  TypeTagData TypeInfo;
6826  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
6827                        TypeTagForDatatypeMagicValues.get(),
6828                        FoundWrongKind, TypeInfo)) {
6829    if (FoundWrongKind)
6830      Diag(TypeTagExpr->getExprLoc(),
6831           diag::warn_type_tag_for_datatype_wrong_kind)
6832        << TypeTagExpr->getSourceRange();
6833    return;
6834  }
6835
6836  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
6837  if (IsPointerAttr) {
6838    // Skip implicit cast of pointer to `void *' (as a function argument).
6839    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
6840      if (ICE->getType()->isVoidPointerType() &&
6841          ICE->getCastKind() == CK_BitCast)
6842        ArgumentExpr = ICE->getSubExpr();
6843  }
6844  QualType ArgumentType = ArgumentExpr->getType();
6845
6846  // Passing a `void*' pointer shouldn't trigger a warning.
6847  if (IsPointerAttr && ArgumentType->isVoidPointerType())
6848    return;
6849
6850  if (TypeInfo.MustBeNull) {
6851    // Type tag with matching void type requires a null pointer.
6852    if (!ArgumentExpr->isNullPointerConstant(Context,
6853                                             Expr::NPC_ValueDependentIsNotNull)) {
6854      Diag(ArgumentExpr->getExprLoc(),
6855           diag::warn_type_safety_null_pointer_required)
6856          << ArgumentKind->getName()
6857          << ArgumentExpr->getSourceRange()
6858          << TypeTagExpr->getSourceRange();
6859    }
6860    return;
6861  }
6862
6863  QualType RequiredType = TypeInfo.Type;
6864  if (IsPointerAttr)
6865    RequiredType = Context.getPointerType(RequiredType);
6866
6867  bool mismatch = false;
6868  if (!TypeInfo.LayoutCompatible) {
6869    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
6870
6871    // C++11 [basic.fundamental] p1:
6872    // Plain char, signed char, and unsigned char are three distinct types.
6873    //
6874    // But we treat plain `char' as equivalent to `signed char' or `unsigned
6875    // char' depending on the current char signedness mode.
6876    if (mismatch)
6877      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
6878                                           RequiredType->getPointeeType())) ||
6879          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
6880        mismatch = false;
6881  } else
6882    if (IsPointerAttr)
6883      mismatch = !isLayoutCompatible(Context,
6884                                     ArgumentType->getPointeeType(),
6885                                     RequiredType->getPointeeType());
6886    else
6887      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
6888
6889  if (mismatch)
6890    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
6891        << ArgumentType << ArgumentKind->getName()
6892        << TypeInfo.LayoutCompatible << RequiredType
6893        << ArgumentExpr->getSourceRange()
6894        << TypeTagExpr->getSourceRange();
6895}
6896