SemaChecking.cpp revision 289e31f386fe8b5e489588533e34c4e21df764bd
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/StmtObjC.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "clang/Basic/TargetBuiltins.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include <limits>
39using namespace clang;
40using namespace sema;
41
42SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43                                                    unsigned ByteNo) const {
44  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
45                               PP.getLangOptions(), PP.getTargetInfo());
46}
47
48/// Checks that a call expression's argument count is the desired number.
49/// This is useful when doing custom type-checking.  Returns true on error.
50static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
51  unsigned argCount = call->getNumArgs();
52  if (argCount == desiredArgCount) return false;
53
54  if (argCount < desiredArgCount)
55    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
56        << 0 /*function call*/ << desiredArgCount << argCount
57        << call->getSourceRange();
58
59  // Highlight all the excess arguments.
60  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
61                    call->getArg(argCount - 1)->getLocEnd());
62
63  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
64    << 0 /*function call*/ << desiredArgCount << argCount
65    << call->getArg(1)->getSourceRange();
66}
67
68/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
69/// annotation is a non wide string literal.
70static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
71  Arg = Arg->IgnoreParenCasts();
72  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
73  if (!Literal || !Literal->isAscii()) {
74    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
75      << Arg->getSourceRange();
76    return true;
77  }
78  return false;
79}
80
81ExprResult
82Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
83  ExprResult TheCallResult(Owned(TheCall));
84
85  // Find out if any arguments are required to be integer constant expressions.
86  unsigned ICEArguments = 0;
87  ASTContext::GetBuiltinTypeError Error;
88  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
89  if (Error != ASTContext::GE_None)
90    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
91
92  // If any arguments are required to be ICE's, check and diagnose.
93  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
94    // Skip arguments not required to be ICE's.
95    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
96
97    llvm::APSInt Result;
98    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
99      return true;
100    ICEArguments &= ~(1 << ArgNo);
101  }
102
103  switch (BuiltinID) {
104  case Builtin::BI__builtin___CFStringMakeConstantString:
105    assert(TheCall->getNumArgs() == 1 &&
106           "Wrong # arguments to builtin CFStringMakeConstantString");
107    if (CheckObjCString(TheCall->getArg(0)))
108      return ExprError();
109    break;
110  case Builtin::BI__builtin_stdarg_start:
111  case Builtin::BI__builtin_va_start:
112    if (SemaBuiltinVAStart(TheCall))
113      return ExprError();
114    break;
115  case Builtin::BI__builtin_isgreater:
116  case Builtin::BI__builtin_isgreaterequal:
117  case Builtin::BI__builtin_isless:
118  case Builtin::BI__builtin_islessequal:
119  case Builtin::BI__builtin_islessgreater:
120  case Builtin::BI__builtin_isunordered:
121    if (SemaBuiltinUnorderedCompare(TheCall))
122      return ExprError();
123    break;
124  case Builtin::BI__builtin_fpclassify:
125    if (SemaBuiltinFPClassification(TheCall, 6))
126      return ExprError();
127    break;
128  case Builtin::BI__builtin_isfinite:
129  case Builtin::BI__builtin_isinf:
130  case Builtin::BI__builtin_isinf_sign:
131  case Builtin::BI__builtin_isnan:
132  case Builtin::BI__builtin_isnormal:
133    if (SemaBuiltinFPClassification(TheCall, 1))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_shufflevector:
137    return SemaBuiltinShuffleVector(TheCall);
138    // TheCall will be freed by the smart pointer here, but that's fine, since
139    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
140  case Builtin::BI__builtin_prefetch:
141    if (SemaBuiltinPrefetch(TheCall))
142      return ExprError();
143    break;
144  case Builtin::BI__builtin_object_size:
145    if (SemaBuiltinObjectSize(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_longjmp:
149    if (SemaBuiltinLongjmp(TheCall))
150      return ExprError();
151    break;
152
153  case Builtin::BI__builtin_classify_type:
154    if (checkArgCount(*this, TheCall, 1)) return true;
155    TheCall->setType(Context.IntTy);
156    break;
157  case Builtin::BI__builtin_constant_p:
158    if (checkArgCount(*this, TheCall, 1)) return true;
159    TheCall->setType(Context.IntTy);
160    break;
161  case Builtin::BI__sync_fetch_and_add:
162  case Builtin::BI__sync_fetch_and_add_1:
163  case Builtin::BI__sync_fetch_and_add_2:
164  case Builtin::BI__sync_fetch_and_add_4:
165  case Builtin::BI__sync_fetch_and_add_8:
166  case Builtin::BI__sync_fetch_and_add_16:
167  case Builtin::BI__sync_fetch_and_sub:
168  case Builtin::BI__sync_fetch_and_sub_1:
169  case Builtin::BI__sync_fetch_and_sub_2:
170  case Builtin::BI__sync_fetch_and_sub_4:
171  case Builtin::BI__sync_fetch_and_sub_8:
172  case Builtin::BI__sync_fetch_and_sub_16:
173  case Builtin::BI__sync_fetch_and_or:
174  case Builtin::BI__sync_fetch_and_or_1:
175  case Builtin::BI__sync_fetch_and_or_2:
176  case Builtin::BI__sync_fetch_and_or_4:
177  case Builtin::BI__sync_fetch_and_or_8:
178  case Builtin::BI__sync_fetch_and_or_16:
179  case Builtin::BI__sync_fetch_and_and:
180  case Builtin::BI__sync_fetch_and_and_1:
181  case Builtin::BI__sync_fetch_and_and_2:
182  case Builtin::BI__sync_fetch_and_and_4:
183  case Builtin::BI__sync_fetch_and_and_8:
184  case Builtin::BI__sync_fetch_and_and_16:
185  case Builtin::BI__sync_fetch_and_xor:
186  case Builtin::BI__sync_fetch_and_xor_1:
187  case Builtin::BI__sync_fetch_and_xor_2:
188  case Builtin::BI__sync_fetch_and_xor_4:
189  case Builtin::BI__sync_fetch_and_xor_8:
190  case Builtin::BI__sync_fetch_and_xor_16:
191  case Builtin::BI__sync_add_and_fetch:
192  case Builtin::BI__sync_add_and_fetch_1:
193  case Builtin::BI__sync_add_and_fetch_2:
194  case Builtin::BI__sync_add_and_fetch_4:
195  case Builtin::BI__sync_add_and_fetch_8:
196  case Builtin::BI__sync_add_and_fetch_16:
197  case Builtin::BI__sync_sub_and_fetch:
198  case Builtin::BI__sync_sub_and_fetch_1:
199  case Builtin::BI__sync_sub_and_fetch_2:
200  case Builtin::BI__sync_sub_and_fetch_4:
201  case Builtin::BI__sync_sub_and_fetch_8:
202  case Builtin::BI__sync_sub_and_fetch_16:
203  case Builtin::BI__sync_and_and_fetch:
204  case Builtin::BI__sync_and_and_fetch_1:
205  case Builtin::BI__sync_and_and_fetch_2:
206  case Builtin::BI__sync_and_and_fetch_4:
207  case Builtin::BI__sync_and_and_fetch_8:
208  case Builtin::BI__sync_and_and_fetch_16:
209  case Builtin::BI__sync_or_and_fetch:
210  case Builtin::BI__sync_or_and_fetch_1:
211  case Builtin::BI__sync_or_and_fetch_2:
212  case Builtin::BI__sync_or_and_fetch_4:
213  case Builtin::BI__sync_or_and_fetch_8:
214  case Builtin::BI__sync_or_and_fetch_16:
215  case Builtin::BI__sync_xor_and_fetch:
216  case Builtin::BI__sync_xor_and_fetch_1:
217  case Builtin::BI__sync_xor_and_fetch_2:
218  case Builtin::BI__sync_xor_and_fetch_4:
219  case Builtin::BI__sync_xor_and_fetch_8:
220  case Builtin::BI__sync_xor_and_fetch_16:
221  case Builtin::BI__sync_val_compare_and_swap:
222  case Builtin::BI__sync_val_compare_and_swap_1:
223  case Builtin::BI__sync_val_compare_and_swap_2:
224  case Builtin::BI__sync_val_compare_and_swap_4:
225  case Builtin::BI__sync_val_compare_and_swap_8:
226  case Builtin::BI__sync_val_compare_and_swap_16:
227  case Builtin::BI__sync_bool_compare_and_swap:
228  case Builtin::BI__sync_bool_compare_and_swap_1:
229  case Builtin::BI__sync_bool_compare_and_swap_2:
230  case Builtin::BI__sync_bool_compare_and_swap_4:
231  case Builtin::BI__sync_bool_compare_and_swap_8:
232  case Builtin::BI__sync_bool_compare_and_swap_16:
233  case Builtin::BI__sync_lock_test_and_set:
234  case Builtin::BI__sync_lock_test_and_set_1:
235  case Builtin::BI__sync_lock_test_and_set_2:
236  case Builtin::BI__sync_lock_test_and_set_4:
237  case Builtin::BI__sync_lock_test_and_set_8:
238  case Builtin::BI__sync_lock_test_and_set_16:
239  case Builtin::BI__sync_lock_release:
240  case Builtin::BI__sync_lock_release_1:
241  case Builtin::BI__sync_lock_release_2:
242  case Builtin::BI__sync_lock_release_4:
243  case Builtin::BI__sync_lock_release_8:
244  case Builtin::BI__sync_lock_release_16:
245  case Builtin::BI__sync_swap:
246  case Builtin::BI__sync_swap_1:
247  case Builtin::BI__sync_swap_2:
248  case Builtin::BI__sync_swap_4:
249  case Builtin::BI__sync_swap_8:
250  case Builtin::BI__sync_swap_16:
251    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
252  case Builtin::BI__atomic_load:
253    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Load);
254  case Builtin::BI__atomic_store:
255    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Store);
256  case Builtin::BI__atomic_init:
257    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Init);
258  case Builtin::BI__atomic_exchange:
259    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xchg);
260  case Builtin::BI__atomic_compare_exchange_strong:
261    return SemaAtomicOpsOverloaded(move(TheCallResult),
262                                   AtomicExpr::CmpXchgStrong);
263  case Builtin::BI__atomic_compare_exchange_weak:
264    return SemaAtomicOpsOverloaded(move(TheCallResult),
265                                   AtomicExpr::CmpXchgWeak);
266  case Builtin::BI__atomic_fetch_add:
267    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Add);
268  case Builtin::BI__atomic_fetch_sub:
269    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Sub);
270  case Builtin::BI__atomic_fetch_and:
271    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::And);
272  case Builtin::BI__atomic_fetch_or:
273    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Or);
274  case Builtin::BI__atomic_fetch_xor:
275    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xor);
276  case Builtin::BI__builtin_annotation:
277    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
278      return ExprError();
279    break;
280  }
281
282  // Since the target specific builtins for each arch overlap, only check those
283  // of the arch we are compiling for.
284  if (BuiltinID >= Builtin::FirstTSBuiltin) {
285    switch (Context.getTargetInfo().getTriple().getArch()) {
286      case llvm::Triple::arm:
287      case llvm::Triple::thumb:
288        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
289          return ExprError();
290        break;
291      default:
292        break;
293    }
294  }
295
296  return move(TheCallResult);
297}
298
299// Get the valid immediate range for the specified NEON type code.
300static unsigned RFT(unsigned t, bool shift = false) {
301  NeonTypeFlags Type(t);
302  int IsQuad = Type.isQuad();
303  switch (Type.getEltType()) {
304  case NeonTypeFlags::Int8:
305  case NeonTypeFlags::Poly8:
306    return shift ? 7 : (8 << IsQuad) - 1;
307  case NeonTypeFlags::Int16:
308  case NeonTypeFlags::Poly16:
309    return shift ? 15 : (4 << IsQuad) - 1;
310  case NeonTypeFlags::Int32:
311    return shift ? 31 : (2 << IsQuad) - 1;
312  case NeonTypeFlags::Int64:
313    return shift ? 63 : (1 << IsQuad) - 1;
314  case NeonTypeFlags::Float16:
315    assert(!shift && "cannot shift float types!");
316    return (4 << IsQuad) - 1;
317  case NeonTypeFlags::Float32:
318    assert(!shift && "cannot shift float types!");
319    return (2 << IsQuad) - 1;
320  }
321  llvm_unreachable("Invalid NeonTypeFlag!");
322}
323
324/// getNeonEltType - Return the QualType corresponding to the elements of
325/// the vector type specified by the NeonTypeFlags.  This is used to check
326/// the pointer arguments for Neon load/store intrinsics.
327static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
328  switch (Flags.getEltType()) {
329  case NeonTypeFlags::Int8:
330    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
331  case NeonTypeFlags::Int16:
332    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
333  case NeonTypeFlags::Int32:
334    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
335  case NeonTypeFlags::Int64:
336    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
337  case NeonTypeFlags::Poly8:
338    return Context.SignedCharTy;
339  case NeonTypeFlags::Poly16:
340    return Context.ShortTy;
341  case NeonTypeFlags::Float16:
342    return Context.UnsignedShortTy;
343  case NeonTypeFlags::Float32:
344    return Context.FloatTy;
345  }
346  llvm_unreachable("Invalid NeonTypeFlag!");
347}
348
349bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
350  llvm::APSInt Result;
351
352  unsigned mask = 0;
353  unsigned TV = 0;
354  int PtrArgNum = -1;
355  bool HasConstPtr = false;
356  switch (BuiltinID) {
357#define GET_NEON_OVERLOAD_CHECK
358#include "clang/Basic/arm_neon.inc"
359#undef GET_NEON_OVERLOAD_CHECK
360  }
361
362  // For NEON intrinsics which are overloaded on vector element type, validate
363  // the immediate which specifies which variant to emit.
364  unsigned ImmArg = TheCall->getNumArgs()-1;
365  if (mask) {
366    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
367      return true;
368
369    TV = Result.getLimitedValue(64);
370    if ((TV > 63) || (mask & (1 << TV)) == 0)
371      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
372        << TheCall->getArg(ImmArg)->getSourceRange();
373  }
374
375  if (PtrArgNum >= 0) {
376    // Check that pointer arguments have the specified type.
377    Expr *Arg = TheCall->getArg(PtrArgNum);
378    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
379      Arg = ICE->getSubExpr();
380    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
381    QualType RHSTy = RHS.get()->getType();
382    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
383    if (HasConstPtr)
384      EltTy = EltTy.withConst();
385    QualType LHSTy = Context.getPointerType(EltTy);
386    AssignConvertType ConvTy;
387    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
388    if (RHS.isInvalid())
389      return true;
390    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
391                                 RHS.get(), AA_Assigning))
392      return true;
393  }
394
395  // For NEON intrinsics which take an immediate value as part of the
396  // instruction, range check them here.
397  unsigned i = 0, l = 0, u = 0;
398  switch (BuiltinID) {
399  default: return false;
400  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
401  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
402  case ARM::BI__builtin_arm_vcvtr_f:
403  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
404#define GET_NEON_IMMEDIATE_CHECK
405#include "clang/Basic/arm_neon.inc"
406#undef GET_NEON_IMMEDIATE_CHECK
407  };
408
409  // Check that the immediate argument is actually a constant.
410  if (SemaBuiltinConstantArg(TheCall, i, Result))
411    return true;
412
413  // Range check against the upper/lower values for this isntruction.
414  unsigned Val = Result.getZExtValue();
415  if (Val < l || Val > (u + l))
416    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
417      << l << u+l << TheCall->getArg(i)->getSourceRange();
418
419  // FIXME: VFP Intrinsics should error if VFP not present.
420  return false;
421}
422
423/// CheckFunctionCall - Check a direct function call for various correctness
424/// and safety properties not strictly enforced by the C type system.
425bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
426  // Get the IdentifierInfo* for the called function.
427  IdentifierInfo *FnInfo = FDecl->getIdentifier();
428
429  // None of the checks below are needed for functions that don't have
430  // simple names (e.g., C++ conversion functions).
431  if (!FnInfo)
432    return false;
433
434  // FIXME: This mechanism should be abstracted to be less fragile and
435  // more efficient. For example, just map function ids to custom
436  // handlers.
437
438  // Printf and scanf checking.
439  for (specific_attr_iterator<FormatAttr>
440         i = FDecl->specific_attr_begin<FormatAttr>(),
441         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
442    CheckFormatArguments(*i, TheCall);
443  }
444
445  for (specific_attr_iterator<NonNullAttr>
446         i = FDecl->specific_attr_begin<NonNullAttr>(),
447         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
448    CheckNonNullArguments(*i, TheCall->getArgs(),
449                          TheCall->getCallee()->getLocStart());
450  }
451
452  unsigned CMId = FDecl->getMemoryFunctionKind();
453  if (CMId == 0)
454    return false;
455
456  // Handle memory setting and copying functions.
457  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
458    CheckStrlcpycatArguments(TheCall, FnInfo);
459  else
460    CheckMemaccessArguments(TheCall, CMId, FnInfo);
461
462  return false;
463}
464
465bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
466                               Expr **Args, unsigned NumArgs) {
467  for (specific_attr_iterator<FormatAttr>
468       i = Method->specific_attr_begin<FormatAttr>(),
469       e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
470
471    CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
472                         Method->getSourceRange());
473  }
474
475  // diagnose nonnull arguments.
476  for (specific_attr_iterator<NonNullAttr>
477       i = Method->specific_attr_begin<NonNullAttr>(),
478       e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
479    CheckNonNullArguments(*i, Args, lbrac);
480  }
481
482  return false;
483}
484
485bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
486  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
487  if (!V)
488    return false;
489
490  QualType Ty = V->getType();
491  if (!Ty->isBlockPointerType())
492    return false;
493
494  // format string checking.
495  for (specific_attr_iterator<FormatAttr>
496       i = NDecl->specific_attr_begin<FormatAttr>(),
497       e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
498    CheckFormatArguments(*i, TheCall);
499  }
500
501  return false;
502}
503
504ExprResult
505Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op) {
506  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
507  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
508
509  // All these operations take one of the following four forms:
510  // T   __atomic_load(_Atomic(T)*, int)                              (loads)
511  // T*  __atomic_add(_Atomic(T*)*, ptrdiff_t, int)         (pointer add/sub)
512  // int __atomic_compare_exchange_strong(_Atomic(T)*, T*, T, int, int)
513  //                                                                (cmpxchg)
514  // T   __atomic_exchange(_Atomic(T)*, T, int)             (everything else)
515  // where T is an appropriate type, and the int paremeterss are for orderings.
516  unsigned NumVals = 1;
517  unsigned NumOrders = 1;
518  if (Op == AtomicExpr::Load) {
519    NumVals = 0;
520  } else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong) {
521    NumVals = 2;
522    NumOrders = 2;
523  }
524  if (Op == AtomicExpr::Init)
525    NumOrders = 0;
526
527  if (TheCall->getNumArgs() < NumVals+NumOrders+1) {
528    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
529      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
530      << TheCall->getCallee()->getSourceRange();
531    return ExprError();
532  } else if (TheCall->getNumArgs() > NumVals+NumOrders+1) {
533    Diag(TheCall->getArg(NumVals+NumOrders+1)->getLocStart(),
534         diag::err_typecheck_call_too_many_args)
535      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
536      << TheCall->getCallee()->getSourceRange();
537    return ExprError();
538  }
539
540  // Inspect the first argument of the atomic operation.  This should always be
541  // a pointer to an _Atomic type.
542  Expr *Ptr = TheCall->getArg(0);
543  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
544  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
545  if (!pointerType) {
546    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
547      << Ptr->getType() << Ptr->getSourceRange();
548    return ExprError();
549  }
550
551  QualType AtomTy = pointerType->getPointeeType();
552  if (!AtomTy->isAtomicType()) {
553    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
554      << Ptr->getType() << Ptr->getSourceRange();
555    return ExprError();
556  }
557  QualType ValType = AtomTy->getAs<AtomicType>()->getValueType();
558
559  if ((Op == AtomicExpr::Add || Op == AtomicExpr::Sub) &&
560      !ValType->isIntegerType() && !ValType->isPointerType()) {
561    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
562      << Ptr->getType() << Ptr->getSourceRange();
563    return ExprError();
564  }
565
566  if (!ValType->isIntegerType() &&
567      (Op == AtomicExpr::And || Op == AtomicExpr::Or || Op == AtomicExpr::Xor)){
568    Diag(DRE->getLocStart(), diag::err_atomic_op_logical_needs_atomic_int)
569      << Ptr->getType() << Ptr->getSourceRange();
570    return ExprError();
571  }
572
573  switch (ValType.getObjCLifetime()) {
574  case Qualifiers::OCL_None:
575  case Qualifiers::OCL_ExplicitNone:
576    // okay
577    break;
578
579  case Qualifiers::OCL_Weak:
580  case Qualifiers::OCL_Strong:
581  case Qualifiers::OCL_Autoreleasing:
582    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
583      << ValType << Ptr->getSourceRange();
584    return ExprError();
585  }
586
587  QualType ResultType = ValType;
588  if (Op == AtomicExpr::Store || Op == AtomicExpr::Init)
589    ResultType = Context.VoidTy;
590  else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong)
591    ResultType = Context.BoolTy;
592
593  // The first argument --- the pointer --- has a fixed type; we
594  // deduce the types of the rest of the arguments accordingly.  Walk
595  // the remaining arguments, converting them to the deduced value type.
596  for (unsigned i = 1; i != NumVals+NumOrders+1; ++i) {
597    ExprResult Arg = TheCall->getArg(i);
598    QualType Ty;
599    if (i < NumVals+1) {
600      // The second argument to a cmpxchg is a pointer to the data which will
601      // be exchanged. The second argument to a pointer add/subtract is the
602      // amount to add/subtract, which must be a ptrdiff_t.  The third
603      // argument to a cmpxchg and the second argument in all other cases
604      // is the type of the value.
605      if (i == 1 && (Op == AtomicExpr::CmpXchgWeak ||
606                     Op == AtomicExpr::CmpXchgStrong))
607         Ty = Context.getPointerType(ValType.getUnqualifiedType());
608      else if (!ValType->isIntegerType() &&
609               (Op == AtomicExpr::Add || Op == AtomicExpr::Sub))
610        Ty = Context.getPointerDiffType();
611      else
612        Ty = ValType;
613    } else {
614      // The order(s) are always converted to int.
615      Ty = Context.IntTy;
616    }
617    InitializedEntity Entity =
618        InitializedEntity::InitializeParameter(Context, Ty, false);
619    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
620    if (Arg.isInvalid())
621      return true;
622    TheCall->setArg(i, Arg.get());
623  }
624
625  SmallVector<Expr*, 5> SubExprs;
626  SubExprs.push_back(Ptr);
627  if (Op == AtomicExpr::Load) {
628    SubExprs.push_back(TheCall->getArg(1)); // Order
629  } else if (Op == AtomicExpr::Init) {
630    SubExprs.push_back(TheCall->getArg(1)); // Val1
631  } else if (Op != AtomicExpr::CmpXchgWeak && Op != AtomicExpr::CmpXchgStrong) {
632    SubExprs.push_back(TheCall->getArg(2)); // Order
633    SubExprs.push_back(TheCall->getArg(1)); // Val1
634  } else {
635    SubExprs.push_back(TheCall->getArg(3)); // Order
636    SubExprs.push_back(TheCall->getArg(1)); // Val1
637    SubExprs.push_back(TheCall->getArg(2)); // Val2
638    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
639  }
640
641  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
642                                        SubExprs.data(), SubExprs.size(),
643                                        ResultType, Op,
644                                        TheCall->getRParenLoc()));
645}
646
647
648/// checkBuiltinArgument - Given a call to a builtin function, perform
649/// normal type-checking on the given argument, updating the call in
650/// place.  This is useful when a builtin function requires custom
651/// type-checking for some of its arguments but not necessarily all of
652/// them.
653///
654/// Returns true on error.
655static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
656  FunctionDecl *Fn = E->getDirectCallee();
657  assert(Fn && "builtin call without direct callee!");
658
659  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
660  InitializedEntity Entity =
661    InitializedEntity::InitializeParameter(S.Context, Param);
662
663  ExprResult Arg = E->getArg(0);
664  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
665  if (Arg.isInvalid())
666    return true;
667
668  E->setArg(ArgIndex, Arg.take());
669  return false;
670}
671
672/// SemaBuiltinAtomicOverloaded - We have a call to a function like
673/// __sync_fetch_and_add, which is an overloaded function based on the pointer
674/// type of its first argument.  The main ActOnCallExpr routines have already
675/// promoted the types of arguments because all of these calls are prototyped as
676/// void(...).
677///
678/// This function goes through and does final semantic checking for these
679/// builtins,
680ExprResult
681Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
682  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
683  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
684  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
685
686  // Ensure that we have at least one argument to do type inference from.
687  if (TheCall->getNumArgs() < 1) {
688    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
689      << 0 << 1 << TheCall->getNumArgs()
690      << TheCall->getCallee()->getSourceRange();
691    return ExprError();
692  }
693
694  // Inspect the first argument of the atomic builtin.  This should always be
695  // a pointer type, whose element is an integral scalar or pointer type.
696  // Because it is a pointer type, we don't have to worry about any implicit
697  // casts here.
698  // FIXME: We don't allow floating point scalars as input.
699  Expr *FirstArg = TheCall->getArg(0);
700  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
701  if (FirstArgResult.isInvalid())
702    return ExprError();
703  FirstArg = FirstArgResult.take();
704  TheCall->setArg(0, FirstArg);
705
706  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
707  if (!pointerType) {
708    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
709      << FirstArg->getType() << FirstArg->getSourceRange();
710    return ExprError();
711  }
712
713  QualType ValType = pointerType->getPointeeType();
714  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
715      !ValType->isBlockPointerType()) {
716    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
717      << FirstArg->getType() << FirstArg->getSourceRange();
718    return ExprError();
719  }
720
721  switch (ValType.getObjCLifetime()) {
722  case Qualifiers::OCL_None:
723  case Qualifiers::OCL_ExplicitNone:
724    // okay
725    break;
726
727  case Qualifiers::OCL_Weak:
728  case Qualifiers::OCL_Strong:
729  case Qualifiers::OCL_Autoreleasing:
730    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
731      << ValType << FirstArg->getSourceRange();
732    return ExprError();
733  }
734
735  // Strip any qualifiers off ValType.
736  ValType = ValType.getUnqualifiedType();
737
738  // The majority of builtins return a value, but a few have special return
739  // types, so allow them to override appropriately below.
740  QualType ResultType = ValType;
741
742  // We need to figure out which concrete builtin this maps onto.  For example,
743  // __sync_fetch_and_add with a 2 byte object turns into
744  // __sync_fetch_and_add_2.
745#define BUILTIN_ROW(x) \
746  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
747    Builtin::BI##x##_8, Builtin::BI##x##_16 }
748
749  static const unsigned BuiltinIndices[][5] = {
750    BUILTIN_ROW(__sync_fetch_and_add),
751    BUILTIN_ROW(__sync_fetch_and_sub),
752    BUILTIN_ROW(__sync_fetch_and_or),
753    BUILTIN_ROW(__sync_fetch_and_and),
754    BUILTIN_ROW(__sync_fetch_and_xor),
755
756    BUILTIN_ROW(__sync_add_and_fetch),
757    BUILTIN_ROW(__sync_sub_and_fetch),
758    BUILTIN_ROW(__sync_and_and_fetch),
759    BUILTIN_ROW(__sync_or_and_fetch),
760    BUILTIN_ROW(__sync_xor_and_fetch),
761
762    BUILTIN_ROW(__sync_val_compare_and_swap),
763    BUILTIN_ROW(__sync_bool_compare_and_swap),
764    BUILTIN_ROW(__sync_lock_test_and_set),
765    BUILTIN_ROW(__sync_lock_release),
766    BUILTIN_ROW(__sync_swap)
767  };
768#undef BUILTIN_ROW
769
770  // Determine the index of the size.
771  unsigned SizeIndex;
772  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
773  case 1: SizeIndex = 0; break;
774  case 2: SizeIndex = 1; break;
775  case 4: SizeIndex = 2; break;
776  case 8: SizeIndex = 3; break;
777  case 16: SizeIndex = 4; break;
778  default:
779    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
780      << FirstArg->getType() << FirstArg->getSourceRange();
781    return ExprError();
782  }
783
784  // Each of these builtins has one pointer argument, followed by some number of
785  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
786  // that we ignore.  Find out which row of BuiltinIndices to read from as well
787  // as the number of fixed args.
788  unsigned BuiltinID = FDecl->getBuiltinID();
789  unsigned BuiltinIndex, NumFixed = 1;
790  switch (BuiltinID) {
791  default: llvm_unreachable("Unknown overloaded atomic builtin!");
792  case Builtin::BI__sync_fetch_and_add:
793  case Builtin::BI__sync_fetch_and_add_1:
794  case Builtin::BI__sync_fetch_and_add_2:
795  case Builtin::BI__sync_fetch_and_add_4:
796  case Builtin::BI__sync_fetch_and_add_8:
797  case Builtin::BI__sync_fetch_and_add_16:
798    BuiltinIndex = 0;
799    break;
800
801  case Builtin::BI__sync_fetch_and_sub:
802  case Builtin::BI__sync_fetch_and_sub_1:
803  case Builtin::BI__sync_fetch_and_sub_2:
804  case Builtin::BI__sync_fetch_and_sub_4:
805  case Builtin::BI__sync_fetch_and_sub_8:
806  case Builtin::BI__sync_fetch_and_sub_16:
807    BuiltinIndex = 1;
808    break;
809
810  case Builtin::BI__sync_fetch_and_or:
811  case Builtin::BI__sync_fetch_and_or_1:
812  case Builtin::BI__sync_fetch_and_or_2:
813  case Builtin::BI__sync_fetch_and_or_4:
814  case Builtin::BI__sync_fetch_and_or_8:
815  case Builtin::BI__sync_fetch_and_or_16:
816    BuiltinIndex = 2;
817    break;
818
819  case Builtin::BI__sync_fetch_and_and:
820  case Builtin::BI__sync_fetch_and_and_1:
821  case Builtin::BI__sync_fetch_and_and_2:
822  case Builtin::BI__sync_fetch_and_and_4:
823  case Builtin::BI__sync_fetch_and_and_8:
824  case Builtin::BI__sync_fetch_and_and_16:
825    BuiltinIndex = 3;
826    break;
827
828  case Builtin::BI__sync_fetch_and_xor:
829  case Builtin::BI__sync_fetch_and_xor_1:
830  case Builtin::BI__sync_fetch_and_xor_2:
831  case Builtin::BI__sync_fetch_and_xor_4:
832  case Builtin::BI__sync_fetch_and_xor_8:
833  case Builtin::BI__sync_fetch_and_xor_16:
834    BuiltinIndex = 4;
835    break;
836
837  case Builtin::BI__sync_add_and_fetch:
838  case Builtin::BI__sync_add_and_fetch_1:
839  case Builtin::BI__sync_add_and_fetch_2:
840  case Builtin::BI__sync_add_and_fetch_4:
841  case Builtin::BI__sync_add_and_fetch_8:
842  case Builtin::BI__sync_add_and_fetch_16:
843    BuiltinIndex = 5;
844    break;
845
846  case Builtin::BI__sync_sub_and_fetch:
847  case Builtin::BI__sync_sub_and_fetch_1:
848  case Builtin::BI__sync_sub_and_fetch_2:
849  case Builtin::BI__sync_sub_and_fetch_4:
850  case Builtin::BI__sync_sub_and_fetch_8:
851  case Builtin::BI__sync_sub_and_fetch_16:
852    BuiltinIndex = 6;
853    break;
854
855  case Builtin::BI__sync_and_and_fetch:
856  case Builtin::BI__sync_and_and_fetch_1:
857  case Builtin::BI__sync_and_and_fetch_2:
858  case Builtin::BI__sync_and_and_fetch_4:
859  case Builtin::BI__sync_and_and_fetch_8:
860  case Builtin::BI__sync_and_and_fetch_16:
861    BuiltinIndex = 7;
862    break;
863
864  case Builtin::BI__sync_or_and_fetch:
865  case Builtin::BI__sync_or_and_fetch_1:
866  case Builtin::BI__sync_or_and_fetch_2:
867  case Builtin::BI__sync_or_and_fetch_4:
868  case Builtin::BI__sync_or_and_fetch_8:
869  case Builtin::BI__sync_or_and_fetch_16:
870    BuiltinIndex = 8;
871    break;
872
873  case Builtin::BI__sync_xor_and_fetch:
874  case Builtin::BI__sync_xor_and_fetch_1:
875  case Builtin::BI__sync_xor_and_fetch_2:
876  case Builtin::BI__sync_xor_and_fetch_4:
877  case Builtin::BI__sync_xor_and_fetch_8:
878  case Builtin::BI__sync_xor_and_fetch_16:
879    BuiltinIndex = 9;
880    break;
881
882  case Builtin::BI__sync_val_compare_and_swap:
883  case Builtin::BI__sync_val_compare_and_swap_1:
884  case Builtin::BI__sync_val_compare_and_swap_2:
885  case Builtin::BI__sync_val_compare_and_swap_4:
886  case Builtin::BI__sync_val_compare_and_swap_8:
887  case Builtin::BI__sync_val_compare_and_swap_16:
888    BuiltinIndex = 10;
889    NumFixed = 2;
890    break;
891
892  case Builtin::BI__sync_bool_compare_and_swap:
893  case Builtin::BI__sync_bool_compare_and_swap_1:
894  case Builtin::BI__sync_bool_compare_and_swap_2:
895  case Builtin::BI__sync_bool_compare_and_swap_4:
896  case Builtin::BI__sync_bool_compare_and_swap_8:
897  case Builtin::BI__sync_bool_compare_and_swap_16:
898    BuiltinIndex = 11;
899    NumFixed = 2;
900    ResultType = Context.BoolTy;
901    break;
902
903  case Builtin::BI__sync_lock_test_and_set:
904  case Builtin::BI__sync_lock_test_and_set_1:
905  case Builtin::BI__sync_lock_test_and_set_2:
906  case Builtin::BI__sync_lock_test_and_set_4:
907  case Builtin::BI__sync_lock_test_and_set_8:
908  case Builtin::BI__sync_lock_test_and_set_16:
909    BuiltinIndex = 12;
910    break;
911
912  case Builtin::BI__sync_lock_release:
913  case Builtin::BI__sync_lock_release_1:
914  case Builtin::BI__sync_lock_release_2:
915  case Builtin::BI__sync_lock_release_4:
916  case Builtin::BI__sync_lock_release_8:
917  case Builtin::BI__sync_lock_release_16:
918    BuiltinIndex = 13;
919    NumFixed = 0;
920    ResultType = Context.VoidTy;
921    break;
922
923  case Builtin::BI__sync_swap:
924  case Builtin::BI__sync_swap_1:
925  case Builtin::BI__sync_swap_2:
926  case Builtin::BI__sync_swap_4:
927  case Builtin::BI__sync_swap_8:
928  case Builtin::BI__sync_swap_16:
929    BuiltinIndex = 14;
930    break;
931  }
932
933  // Now that we know how many fixed arguments we expect, first check that we
934  // have at least that many.
935  if (TheCall->getNumArgs() < 1+NumFixed) {
936    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
937      << 0 << 1+NumFixed << TheCall->getNumArgs()
938      << TheCall->getCallee()->getSourceRange();
939    return ExprError();
940  }
941
942  // Get the decl for the concrete builtin from this, we can tell what the
943  // concrete integer type we should convert to is.
944  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
945  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
946  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
947  FunctionDecl *NewBuiltinDecl =
948    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
949                                           TUScope, false, DRE->getLocStart()));
950
951  // The first argument --- the pointer --- has a fixed type; we
952  // deduce the types of the rest of the arguments accordingly.  Walk
953  // the remaining arguments, converting them to the deduced value type.
954  for (unsigned i = 0; i != NumFixed; ++i) {
955    ExprResult Arg = TheCall->getArg(i+1);
956
957    // GCC does an implicit conversion to the pointer or integer ValType.  This
958    // can fail in some cases (1i -> int**), check for this error case now.
959    // Initialize the argument.
960    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
961                                                   ValType, /*consume*/ false);
962    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
963    if (Arg.isInvalid())
964      return ExprError();
965
966    // Okay, we have something that *can* be converted to the right type.  Check
967    // to see if there is a potentially weird extension going on here.  This can
968    // happen when you do an atomic operation on something like an char* and
969    // pass in 42.  The 42 gets converted to char.  This is even more strange
970    // for things like 45.123 -> char, etc.
971    // FIXME: Do this check.
972    TheCall->setArg(i+1, Arg.take());
973  }
974
975  ASTContext& Context = this->getASTContext();
976
977  // Create a new DeclRefExpr to refer to the new decl.
978  DeclRefExpr* NewDRE = DeclRefExpr::Create(
979      Context,
980      DRE->getQualifierLoc(),
981      SourceLocation(),
982      NewBuiltinDecl,
983      DRE->getLocation(),
984      NewBuiltinDecl->getType(),
985      DRE->getValueKind());
986
987  // Set the callee in the CallExpr.
988  // FIXME: This leaks the original parens and implicit casts.
989  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
990  if (PromotedCall.isInvalid())
991    return ExprError();
992  TheCall->setCallee(PromotedCall.take());
993
994  // Change the result type of the call to match the original value type. This
995  // is arbitrary, but the codegen for these builtins ins design to handle it
996  // gracefully.
997  TheCall->setType(ResultType);
998
999  return move(TheCallResult);
1000}
1001
1002/// CheckObjCString - Checks that the argument to the builtin
1003/// CFString constructor is correct
1004/// Note: It might also make sense to do the UTF-16 conversion here (would
1005/// simplify the backend).
1006bool Sema::CheckObjCString(Expr *Arg) {
1007  Arg = Arg->IgnoreParenCasts();
1008  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1009
1010  if (!Literal || !Literal->isAscii()) {
1011    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1012      << Arg->getSourceRange();
1013    return true;
1014  }
1015
1016  if (Literal->containsNonAsciiOrNull()) {
1017    StringRef String = Literal->getString();
1018    unsigned NumBytes = String.size();
1019    SmallVector<UTF16, 128> ToBuf(NumBytes);
1020    const UTF8 *FromPtr = (UTF8 *)String.data();
1021    UTF16 *ToPtr = &ToBuf[0];
1022
1023    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1024                                                 &ToPtr, ToPtr + NumBytes,
1025                                                 strictConversion);
1026    // Check for conversion failure.
1027    if (Result != conversionOK)
1028      Diag(Arg->getLocStart(),
1029           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1030  }
1031  return false;
1032}
1033
1034/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1035/// Emit an error and return true on failure, return false on success.
1036bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1037  Expr *Fn = TheCall->getCallee();
1038  if (TheCall->getNumArgs() > 2) {
1039    Diag(TheCall->getArg(2)->getLocStart(),
1040         diag::err_typecheck_call_too_many_args)
1041      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1042      << Fn->getSourceRange()
1043      << SourceRange(TheCall->getArg(2)->getLocStart(),
1044                     (*(TheCall->arg_end()-1))->getLocEnd());
1045    return true;
1046  }
1047
1048  if (TheCall->getNumArgs() < 2) {
1049    return Diag(TheCall->getLocEnd(),
1050      diag::err_typecheck_call_too_few_args_at_least)
1051      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1052  }
1053
1054  // Type-check the first argument normally.
1055  if (checkBuiltinArgument(*this, TheCall, 0))
1056    return true;
1057
1058  // Determine whether the current function is variadic or not.
1059  BlockScopeInfo *CurBlock = getCurBlock();
1060  bool isVariadic;
1061  if (CurBlock)
1062    isVariadic = CurBlock->TheDecl->isVariadic();
1063  else if (FunctionDecl *FD = getCurFunctionDecl())
1064    isVariadic = FD->isVariadic();
1065  else
1066    isVariadic = getCurMethodDecl()->isVariadic();
1067
1068  if (!isVariadic) {
1069    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1070    return true;
1071  }
1072
1073  // Verify that the second argument to the builtin is the last argument of the
1074  // current function or method.
1075  bool SecondArgIsLastNamedArgument = false;
1076  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1077
1078  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1079    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1080      // FIXME: This isn't correct for methods (results in bogus warning).
1081      // Get the last formal in the current function.
1082      const ParmVarDecl *LastArg;
1083      if (CurBlock)
1084        LastArg = *(CurBlock->TheDecl->param_end()-1);
1085      else if (FunctionDecl *FD = getCurFunctionDecl())
1086        LastArg = *(FD->param_end()-1);
1087      else
1088        LastArg = *(getCurMethodDecl()->param_end()-1);
1089      SecondArgIsLastNamedArgument = PV == LastArg;
1090    }
1091  }
1092
1093  if (!SecondArgIsLastNamedArgument)
1094    Diag(TheCall->getArg(1)->getLocStart(),
1095         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1096  return false;
1097}
1098
1099/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1100/// friends.  This is declared to take (...), so we have to check everything.
1101bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1102  if (TheCall->getNumArgs() < 2)
1103    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1104      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1105  if (TheCall->getNumArgs() > 2)
1106    return Diag(TheCall->getArg(2)->getLocStart(),
1107                diag::err_typecheck_call_too_many_args)
1108      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1109      << SourceRange(TheCall->getArg(2)->getLocStart(),
1110                     (*(TheCall->arg_end()-1))->getLocEnd());
1111
1112  ExprResult OrigArg0 = TheCall->getArg(0);
1113  ExprResult OrigArg1 = TheCall->getArg(1);
1114
1115  // Do standard promotions between the two arguments, returning their common
1116  // type.
1117  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1118  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1119    return true;
1120
1121  // Make sure any conversions are pushed back into the call; this is
1122  // type safe since unordered compare builtins are declared as "_Bool
1123  // foo(...)".
1124  TheCall->setArg(0, OrigArg0.get());
1125  TheCall->setArg(1, OrigArg1.get());
1126
1127  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1128    return false;
1129
1130  // If the common type isn't a real floating type, then the arguments were
1131  // invalid for this operation.
1132  if (!Res->isRealFloatingType())
1133    return Diag(OrigArg0.get()->getLocStart(),
1134                diag::err_typecheck_call_invalid_ordered_compare)
1135      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1136      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1137
1138  return false;
1139}
1140
1141/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1142/// __builtin_isnan and friends.  This is declared to take (...), so we have
1143/// to check everything. We expect the last argument to be a floating point
1144/// value.
1145bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1146  if (TheCall->getNumArgs() < NumArgs)
1147    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1148      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1149  if (TheCall->getNumArgs() > NumArgs)
1150    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1151                diag::err_typecheck_call_too_many_args)
1152      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1153      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1154                     (*(TheCall->arg_end()-1))->getLocEnd());
1155
1156  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1157
1158  if (OrigArg->isTypeDependent())
1159    return false;
1160
1161  // This operation requires a non-_Complex floating-point number.
1162  if (!OrigArg->getType()->isRealFloatingType())
1163    return Diag(OrigArg->getLocStart(),
1164                diag::err_typecheck_call_invalid_unary_fp)
1165      << OrigArg->getType() << OrigArg->getSourceRange();
1166
1167  // If this is an implicit conversion from float -> double, remove it.
1168  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1169    Expr *CastArg = Cast->getSubExpr();
1170    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1171      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1172             "promotion from float to double is the only expected cast here");
1173      Cast->setSubExpr(0);
1174      TheCall->setArg(NumArgs-1, CastArg);
1175      OrigArg = CastArg;
1176    }
1177  }
1178
1179  return false;
1180}
1181
1182/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1183// This is declared to take (...), so we have to check everything.
1184ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1185  if (TheCall->getNumArgs() < 2)
1186    return ExprError(Diag(TheCall->getLocEnd(),
1187                          diag::err_typecheck_call_too_few_args_at_least)
1188      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1189      << TheCall->getSourceRange());
1190
1191  // Determine which of the following types of shufflevector we're checking:
1192  // 1) unary, vector mask: (lhs, mask)
1193  // 2) binary, vector mask: (lhs, rhs, mask)
1194  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1195  QualType resType = TheCall->getArg(0)->getType();
1196  unsigned numElements = 0;
1197
1198  if (!TheCall->getArg(0)->isTypeDependent() &&
1199      !TheCall->getArg(1)->isTypeDependent()) {
1200    QualType LHSType = TheCall->getArg(0)->getType();
1201    QualType RHSType = TheCall->getArg(1)->getType();
1202
1203    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1204      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1205        << SourceRange(TheCall->getArg(0)->getLocStart(),
1206                       TheCall->getArg(1)->getLocEnd());
1207      return ExprError();
1208    }
1209
1210    numElements = LHSType->getAs<VectorType>()->getNumElements();
1211    unsigned numResElements = TheCall->getNumArgs() - 2;
1212
1213    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1214    // with mask.  If so, verify that RHS is an integer vector type with the
1215    // same number of elts as lhs.
1216    if (TheCall->getNumArgs() == 2) {
1217      if (!RHSType->hasIntegerRepresentation() ||
1218          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1219        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1220          << SourceRange(TheCall->getArg(1)->getLocStart(),
1221                         TheCall->getArg(1)->getLocEnd());
1222      numResElements = numElements;
1223    }
1224    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1225      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1226        << SourceRange(TheCall->getArg(0)->getLocStart(),
1227                       TheCall->getArg(1)->getLocEnd());
1228      return ExprError();
1229    } else if (numElements != numResElements) {
1230      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1231      resType = Context.getVectorType(eltType, numResElements,
1232                                      VectorType::GenericVector);
1233    }
1234  }
1235
1236  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1237    if (TheCall->getArg(i)->isTypeDependent() ||
1238        TheCall->getArg(i)->isValueDependent())
1239      continue;
1240
1241    llvm::APSInt Result(32);
1242    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1243      return ExprError(Diag(TheCall->getLocStart(),
1244                  diag::err_shufflevector_nonconstant_argument)
1245                << TheCall->getArg(i)->getSourceRange());
1246
1247    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1248      return ExprError(Diag(TheCall->getLocStart(),
1249                  diag::err_shufflevector_argument_too_large)
1250               << TheCall->getArg(i)->getSourceRange());
1251  }
1252
1253  SmallVector<Expr*, 32> exprs;
1254
1255  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1256    exprs.push_back(TheCall->getArg(i));
1257    TheCall->setArg(i, 0);
1258  }
1259
1260  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1261                                            exprs.size(), resType,
1262                                            TheCall->getCallee()->getLocStart(),
1263                                            TheCall->getRParenLoc()));
1264}
1265
1266/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1267// This is declared to take (const void*, ...) and can take two
1268// optional constant int args.
1269bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1270  unsigned NumArgs = TheCall->getNumArgs();
1271
1272  if (NumArgs > 3)
1273    return Diag(TheCall->getLocEnd(),
1274             diag::err_typecheck_call_too_many_args_at_most)
1275             << 0 /*function call*/ << 3 << NumArgs
1276             << TheCall->getSourceRange();
1277
1278  // Argument 0 is checked for us and the remaining arguments must be
1279  // constant integers.
1280  for (unsigned i = 1; i != NumArgs; ++i) {
1281    Expr *Arg = TheCall->getArg(i);
1282
1283    llvm::APSInt Result;
1284    if (SemaBuiltinConstantArg(TheCall, i, Result))
1285      return true;
1286
1287    // FIXME: gcc issues a warning and rewrites these to 0. These
1288    // seems especially odd for the third argument since the default
1289    // is 3.
1290    if (i == 1) {
1291      if (Result.getLimitedValue() > 1)
1292        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1293             << "0" << "1" << Arg->getSourceRange();
1294    } else {
1295      if (Result.getLimitedValue() > 3)
1296        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1297            << "0" << "3" << Arg->getSourceRange();
1298    }
1299  }
1300
1301  return false;
1302}
1303
1304/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1305/// TheCall is a constant expression.
1306bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1307                                  llvm::APSInt &Result) {
1308  Expr *Arg = TheCall->getArg(ArgNum);
1309  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1310  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1311
1312  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1313
1314  if (!Arg->isIntegerConstantExpr(Result, Context))
1315    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1316                << FDecl->getDeclName() <<  Arg->getSourceRange();
1317
1318  return false;
1319}
1320
1321/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1322/// int type). This simply type checks that type is one of the defined
1323/// constants (0-3).
1324// For compatibility check 0-3, llvm only handles 0 and 2.
1325bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1326  llvm::APSInt Result;
1327
1328  // Check constant-ness first.
1329  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1330    return true;
1331
1332  Expr *Arg = TheCall->getArg(1);
1333  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1334    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1335             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1336  }
1337
1338  return false;
1339}
1340
1341/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1342/// This checks that val is a constant 1.
1343bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1344  Expr *Arg = TheCall->getArg(1);
1345  llvm::APSInt Result;
1346
1347  // TODO: This is less than ideal. Overload this to take a value.
1348  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1349    return true;
1350
1351  if (Result != 1)
1352    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1353             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1354
1355  return false;
1356}
1357
1358// Handle i > 1 ? "x" : "y", recursively.
1359bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
1360                                  unsigned NumArgs, bool HasVAListArg,
1361                                  unsigned format_idx, unsigned firstDataArg,
1362                                  FormatStringType Type, bool inFunctionCall) {
1363 tryAgain:
1364  if (E->isTypeDependent() || E->isValueDependent())
1365    return false;
1366
1367  E = E->IgnoreParenCasts();
1368
1369  switch (E->getStmtClass()) {
1370  case Stmt::BinaryConditionalOperatorClass:
1371  case Stmt::ConditionalOperatorClass: {
1372    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1373    return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
1374                                  format_idx, firstDataArg, Type,
1375                                  inFunctionCall)
1376       && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
1377                                 format_idx, firstDataArg, Type,
1378                                 inFunctionCall);
1379  }
1380
1381  case Stmt::IntegerLiteralClass:
1382    // Technically -Wformat-nonliteral does not warn about this case.
1383    // The behavior of printf and friends in this case is implementation
1384    // dependent.  Ideally if the format string cannot be null then
1385    // it should have a 'nonnull' attribute in the function prototype.
1386    return true;
1387
1388  case Stmt::ImplicitCastExprClass: {
1389    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1390    goto tryAgain;
1391  }
1392
1393  case Stmt::OpaqueValueExprClass:
1394    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1395      E = src;
1396      goto tryAgain;
1397    }
1398    return false;
1399
1400  case Stmt::PredefinedExprClass:
1401    // While __func__, etc., are technically not string literals, they
1402    // cannot contain format specifiers and thus are not a security
1403    // liability.
1404    return true;
1405
1406  case Stmt::DeclRefExprClass: {
1407    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1408
1409    // As an exception, do not flag errors for variables binding to
1410    // const string literals.
1411    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1412      bool isConstant = false;
1413      QualType T = DR->getType();
1414
1415      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1416        isConstant = AT->getElementType().isConstant(Context);
1417      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1418        isConstant = T.isConstant(Context) &&
1419                     PT->getPointeeType().isConstant(Context);
1420      } else if (T->isObjCObjectPointerType()) {
1421        // In ObjC, there is usually no "const ObjectPointer" type,
1422        // so don't check if the pointee type is constant.
1423        isConstant = T.isConstant(Context);
1424      }
1425
1426      if (isConstant) {
1427        if (const Expr *Init = VD->getAnyInitializer())
1428          return SemaCheckStringLiteral(Init, Args, NumArgs,
1429                                        HasVAListArg, format_idx, firstDataArg,
1430                                        Type, /*inFunctionCall*/false);
1431      }
1432
1433      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1434      // special check to see if the format string is a function parameter
1435      // of the function calling the printf function.  If the function
1436      // has an attribute indicating it is a printf-like function, then we
1437      // should suppress warnings concerning non-literals being used in a call
1438      // to a vprintf function.  For example:
1439      //
1440      // void
1441      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1442      //      va_list ap;
1443      //      va_start(ap, fmt);
1444      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1445      //      ...
1446      //
1447      //
1448      //  FIXME: We don't have full attribute support yet, so just check to see
1449      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1450      //    add proper support for checking the attribute later.
1451      if (HasVAListArg)
1452        if (isa<ParmVarDecl>(VD))
1453          return true;
1454    }
1455
1456    return false;
1457  }
1458
1459  case Stmt::CallExprClass: {
1460    const CallExpr *CE = cast<CallExpr>(E);
1461    if (const ImplicitCastExpr *ICE
1462          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1463      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1464        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1465          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1466            unsigned ArgIndex = FA->getFormatIdx();
1467            const Expr *Arg = CE->getArg(ArgIndex - 1);
1468
1469            return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1470                                          format_idx, firstDataArg, Type,
1471                                          inFunctionCall);
1472          }
1473        }
1474      }
1475    }
1476
1477    return false;
1478  }
1479  case Stmt::ObjCStringLiteralClass:
1480  case Stmt::StringLiteralClass: {
1481    const StringLiteral *StrE = NULL;
1482
1483    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1484      StrE = ObjCFExpr->getString();
1485    else
1486      StrE = cast<StringLiteral>(E);
1487
1488    if (StrE) {
1489      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1490                        firstDataArg, Type, inFunctionCall);
1491      return true;
1492    }
1493
1494    return false;
1495  }
1496
1497  default:
1498    return false;
1499  }
1500}
1501
1502void
1503Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1504                            const Expr * const *ExprArgs,
1505                            SourceLocation CallSiteLoc) {
1506  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1507                                  e = NonNull->args_end();
1508       i != e; ++i) {
1509    const Expr *ArgExpr = ExprArgs[*i];
1510    if (ArgExpr->isNullPointerConstant(Context,
1511                                       Expr::NPC_ValueDependentIsNotNull))
1512      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1513  }
1514}
1515
1516Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1517  return llvm::StringSwitch<FormatStringType>(Format->getType())
1518  .Case("scanf", FST_Scanf)
1519  .Cases("printf", "printf0", FST_Printf)
1520  .Cases("NSString", "CFString", FST_NSString)
1521  .Case("strftime", FST_Strftime)
1522  .Case("strfmon", FST_Strfmon)
1523  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1524  .Default(FST_Unknown);
1525}
1526
1527/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1528/// functions) for correct use of format strings.
1529void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
1530  bool IsCXXMember = false;
1531  // The way the format attribute works in GCC, the implicit this argument
1532  // of member functions is counted. However, it doesn't appear in our own
1533  // lists, so decrement format_idx in that case.
1534  if (isa<CXXMemberCallExpr>(TheCall)) {
1535    const CXXMethodDecl *method_decl =
1536    dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1537    IsCXXMember = method_decl && method_decl->isInstance();
1538  }
1539  CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
1540                       IsCXXMember, TheCall->getRParenLoc(),
1541                       TheCall->getCallee()->getSourceRange());
1542}
1543
1544void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1545                                unsigned NumArgs, bool IsCXXMember,
1546                                SourceLocation Loc, SourceRange Range) {
1547  bool HasVAListArg = Format->getFirstArg() == 0;
1548  unsigned format_idx = Format->getFormatIdx() - 1;
1549  unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
1550  if (IsCXXMember) {
1551    if (format_idx == 0)
1552      return;
1553    --format_idx;
1554    if(firstDataArg != 0)
1555      --firstDataArg;
1556  }
1557  CheckFormatArguments(Args, NumArgs, HasVAListArg, format_idx,
1558                       firstDataArg, GetFormatStringType(Format), Loc, Range);
1559}
1560
1561void Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1562                                bool HasVAListArg, unsigned format_idx,
1563                                unsigned firstDataArg, FormatStringType Type,
1564                                SourceLocation Loc, SourceRange Range) {
1565  // CHECK: printf/scanf-like function is called with no format string.
1566  if (format_idx >= NumArgs) {
1567    Diag(Loc, diag::warn_missing_format_string) << Range;
1568    return;
1569  }
1570
1571  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1572
1573  // CHECK: format string is not a string literal.
1574  //
1575  // Dynamically generated format strings are difficult to
1576  // automatically vet at compile time.  Requiring that format strings
1577  // are string literals: (1) permits the checking of format strings by
1578  // the compiler and thereby (2) can practically remove the source of
1579  // many format string exploits.
1580
1581  // Format string can be either ObjC string (e.g. @"%d") or
1582  // C string (e.g. "%d")
1583  // ObjC string uses the same format specifiers as C string, so we can use
1584  // the same format string checking logic for both ObjC and C strings.
1585  if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1586                             format_idx, firstDataArg, Type))
1587    return;  // Literal format string found, check done!
1588
1589  // Do not emit diag when the string param is a macro expansion and the
1590  // format is either NSString or CFString. This is a hack to prevent
1591  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1592  // which are usually used in place of NS and CF string literals.
1593  if (Type == FST_NSString && Args[format_idx]->getLocStart().isMacroID())
1594    return;
1595
1596  // If there are no arguments specified, warn with -Wformat-security, otherwise
1597  // warn only with -Wformat-nonliteral.
1598  if (NumArgs == format_idx+1)
1599    Diag(Args[format_idx]->getLocStart(),
1600         diag::warn_format_nonliteral_noargs)
1601      << OrigFormatExpr->getSourceRange();
1602  else
1603    Diag(Args[format_idx]->getLocStart(),
1604         diag::warn_format_nonliteral)
1605           << OrigFormatExpr->getSourceRange();
1606}
1607
1608namespace {
1609class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1610protected:
1611  Sema &S;
1612  const StringLiteral *FExpr;
1613  const Expr *OrigFormatExpr;
1614  const unsigned FirstDataArg;
1615  const unsigned NumDataArgs;
1616  const bool IsObjCLiteral;
1617  const char *Beg; // Start of format string.
1618  const bool HasVAListArg;
1619  const Expr * const *Args;
1620  const unsigned NumArgs;
1621  unsigned FormatIdx;
1622  llvm::BitVector CoveredArgs;
1623  bool usesPositionalArgs;
1624  bool atFirstArg;
1625  bool inFunctionCall;
1626public:
1627  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1628                     const Expr *origFormatExpr, unsigned firstDataArg,
1629                     unsigned numDataArgs, bool isObjCLiteral,
1630                     const char *beg, bool hasVAListArg,
1631                     Expr **args, unsigned numArgs,
1632                     unsigned formatIdx, bool inFunctionCall)
1633    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1634      FirstDataArg(firstDataArg),
1635      NumDataArgs(numDataArgs),
1636      IsObjCLiteral(isObjCLiteral), Beg(beg),
1637      HasVAListArg(hasVAListArg),
1638      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1639      usesPositionalArgs(false), atFirstArg(true),
1640      inFunctionCall(inFunctionCall) {
1641        CoveredArgs.resize(numDataArgs);
1642        CoveredArgs.reset();
1643      }
1644
1645  void DoneProcessing();
1646
1647  void HandleIncompleteSpecifier(const char *startSpecifier,
1648                                 unsigned specifierLen);
1649
1650  virtual void HandleInvalidPosition(const char *startSpecifier,
1651                                     unsigned specifierLen,
1652                                     analyze_format_string::PositionContext p);
1653
1654  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1655
1656  void HandleNullChar(const char *nullCharacter);
1657
1658  template <typename Range>
1659  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1660                                   const Expr *ArgumentExpr,
1661                                   PartialDiagnostic PDiag,
1662                                   SourceLocation StringLoc,
1663                                   bool IsStringLocation, Range StringRange,
1664                                   FixItHint Fixit = FixItHint());
1665
1666protected:
1667  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1668                                        const char *startSpec,
1669                                        unsigned specifierLen,
1670                                        const char *csStart, unsigned csLen);
1671
1672  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1673                                         const char *startSpec,
1674                                         unsigned specifierLen);
1675
1676  SourceRange getFormatStringRange();
1677  CharSourceRange getSpecifierRange(const char *startSpecifier,
1678                                    unsigned specifierLen);
1679  SourceLocation getLocationOfByte(const char *x);
1680
1681  const Expr *getDataArg(unsigned i) const;
1682
1683  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1684                    const analyze_format_string::ConversionSpecifier &CS,
1685                    const char *startSpecifier, unsigned specifierLen,
1686                    unsigned argIndex);
1687
1688  template <typename Range>
1689  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1690                            bool IsStringLocation, Range StringRange,
1691                            FixItHint Fixit = FixItHint());
1692
1693  void CheckPositionalAndNonpositionalArgs(
1694      const analyze_format_string::FormatSpecifier *FS);
1695};
1696}
1697
1698SourceRange CheckFormatHandler::getFormatStringRange() {
1699  return OrigFormatExpr->getSourceRange();
1700}
1701
1702CharSourceRange CheckFormatHandler::
1703getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1704  SourceLocation Start = getLocationOfByte(startSpecifier);
1705  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1706
1707  // Advance the end SourceLocation by one due to half-open ranges.
1708  End = End.getLocWithOffset(1);
1709
1710  return CharSourceRange::getCharRange(Start, End);
1711}
1712
1713SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1714  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1715}
1716
1717void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1718                                                   unsigned specifierLen){
1719  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1720                       getLocationOfByte(startSpecifier),
1721                       /*IsStringLocation*/true,
1722                       getSpecifierRange(startSpecifier, specifierLen));
1723}
1724
1725void
1726CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1727                                     analyze_format_string::PositionContext p) {
1728  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1729                         << (unsigned) p,
1730                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1731                       getSpecifierRange(startPos, posLen));
1732}
1733
1734void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1735                                            unsigned posLen) {
1736  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1737                               getLocationOfByte(startPos),
1738                               /*IsStringLocation*/true,
1739                               getSpecifierRange(startPos, posLen));
1740}
1741
1742void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1743  if (!IsObjCLiteral) {
1744    // The presence of a null character is likely an error.
1745    EmitFormatDiagnostic(
1746      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1747      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1748      getFormatStringRange());
1749  }
1750}
1751
1752const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1753  return Args[FirstDataArg + i];
1754}
1755
1756void CheckFormatHandler::DoneProcessing() {
1757    // Does the number of data arguments exceed the number of
1758    // format conversions in the format string?
1759  if (!HasVAListArg) {
1760      // Find any arguments that weren't covered.
1761    CoveredArgs.flip();
1762    signed notCoveredArg = CoveredArgs.find_first();
1763    if (notCoveredArg >= 0) {
1764      assert((unsigned)notCoveredArg < NumDataArgs);
1765      EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1766                           getDataArg((unsigned) notCoveredArg)->getLocStart(),
1767                           /*IsStringLocation*/false, getFormatStringRange());
1768    }
1769  }
1770}
1771
1772bool
1773CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1774                                                     SourceLocation Loc,
1775                                                     const char *startSpec,
1776                                                     unsigned specifierLen,
1777                                                     const char *csStart,
1778                                                     unsigned csLen) {
1779
1780  bool keepGoing = true;
1781  if (argIndex < NumDataArgs) {
1782    // Consider the argument coverered, even though the specifier doesn't
1783    // make sense.
1784    CoveredArgs.set(argIndex);
1785  }
1786  else {
1787    // If argIndex exceeds the number of data arguments we
1788    // don't issue a warning because that is just a cascade of warnings (and
1789    // they may have intended '%%' anyway). We don't want to continue processing
1790    // the format string after this point, however, as we will like just get
1791    // gibberish when trying to match arguments.
1792    keepGoing = false;
1793  }
1794
1795  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
1796                         << StringRef(csStart, csLen),
1797                       Loc, /*IsStringLocation*/true,
1798                       getSpecifierRange(startSpec, specifierLen));
1799
1800  return keepGoing;
1801}
1802
1803void
1804CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
1805                                                      const char *startSpec,
1806                                                      unsigned specifierLen) {
1807  EmitFormatDiagnostic(
1808    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
1809    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
1810}
1811
1812bool
1813CheckFormatHandler::CheckNumArgs(
1814  const analyze_format_string::FormatSpecifier &FS,
1815  const analyze_format_string::ConversionSpecifier &CS,
1816  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1817
1818  if (argIndex >= NumDataArgs) {
1819    PartialDiagnostic PDiag = FS.usesPositionalArg()
1820      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
1821           << (argIndex+1) << NumDataArgs)
1822      : S.PDiag(diag::warn_printf_insufficient_data_args);
1823    EmitFormatDiagnostic(
1824      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
1825      getSpecifierRange(startSpecifier, specifierLen));
1826    return false;
1827  }
1828  return true;
1829}
1830
1831template<typename Range>
1832void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
1833                                              SourceLocation Loc,
1834                                              bool IsStringLocation,
1835                                              Range StringRange,
1836                                              FixItHint FixIt) {
1837  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
1838                       Loc, IsStringLocation, StringRange, FixIt);
1839}
1840
1841/// \brief If the format string is not within the funcion call, emit a note
1842/// so that the function call and string are in diagnostic messages.
1843///
1844/// \param inFunctionCall if true, the format string is within the function
1845/// call and only one diagnostic message will be produced.  Otherwise, an
1846/// extra note will be emitted pointing to location of the format string.
1847///
1848/// \param ArgumentExpr the expression that is passed as the format string
1849/// argument in the function call.  Used for getting locations when two
1850/// diagnostics are emitted.
1851///
1852/// \param PDiag the callee should already have provided any strings for the
1853/// diagnostic message.  This function only adds locations and fixits
1854/// to diagnostics.
1855///
1856/// \param Loc primary location for diagnostic.  If two diagnostics are
1857/// required, one will be at Loc and a new SourceLocation will be created for
1858/// the other one.
1859///
1860/// \param IsStringLocation if true, Loc points to the format string should be
1861/// used for the note.  Otherwise, Loc points to the argument list and will
1862/// be used with PDiag.
1863///
1864/// \param StringRange some or all of the string to highlight.  This is
1865/// templated so it can accept either a CharSourceRange or a SourceRange.
1866///
1867/// \param Fixit optional fix it hint for the format string.
1868template<typename Range>
1869void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
1870                                              const Expr *ArgumentExpr,
1871                                              PartialDiagnostic PDiag,
1872                                              SourceLocation Loc,
1873                                              bool IsStringLocation,
1874                                              Range StringRange,
1875                                              FixItHint FixIt) {
1876  if (InFunctionCall)
1877    S.Diag(Loc, PDiag) << StringRange << FixIt;
1878  else {
1879    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
1880      << ArgumentExpr->getSourceRange();
1881    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
1882           diag::note_format_string_defined)
1883      << StringRange << FixIt;
1884  }
1885}
1886
1887//===--- CHECK: Printf format string checking ------------------------------===//
1888
1889namespace {
1890class CheckPrintfHandler : public CheckFormatHandler {
1891public:
1892  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1893                     const Expr *origFormatExpr, unsigned firstDataArg,
1894                     unsigned numDataArgs, bool isObjCLiteral,
1895                     const char *beg, bool hasVAListArg,
1896                     Expr **Args, unsigned NumArgs,
1897                     unsigned formatIdx, bool inFunctionCall)
1898  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1899                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1900                       Args, NumArgs, formatIdx, inFunctionCall) {}
1901
1902
1903  bool HandleInvalidPrintfConversionSpecifier(
1904                                      const analyze_printf::PrintfSpecifier &FS,
1905                                      const char *startSpecifier,
1906                                      unsigned specifierLen);
1907
1908  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1909                             const char *startSpecifier,
1910                             unsigned specifierLen);
1911
1912  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1913                    const char *startSpecifier, unsigned specifierLen);
1914  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1915                           const analyze_printf::OptionalAmount &Amt,
1916                           unsigned type,
1917                           const char *startSpecifier, unsigned specifierLen);
1918  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1919                  const analyze_printf::OptionalFlag &flag,
1920                  const char *startSpecifier, unsigned specifierLen);
1921  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1922                         const analyze_printf::OptionalFlag &ignoredFlag,
1923                         const analyze_printf::OptionalFlag &flag,
1924                         const char *startSpecifier, unsigned specifierLen);
1925};
1926}
1927
1928bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1929                                      const analyze_printf::PrintfSpecifier &FS,
1930                                      const char *startSpecifier,
1931                                      unsigned specifierLen) {
1932  const analyze_printf::PrintfConversionSpecifier &CS =
1933    FS.getConversionSpecifier();
1934
1935  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1936                                          getLocationOfByte(CS.getStart()),
1937                                          startSpecifier, specifierLen,
1938                                          CS.getStart(), CS.getLength());
1939}
1940
1941bool CheckPrintfHandler::HandleAmount(
1942                               const analyze_format_string::OptionalAmount &Amt,
1943                               unsigned k, const char *startSpecifier,
1944                               unsigned specifierLen) {
1945
1946  if (Amt.hasDataArgument()) {
1947    if (!HasVAListArg) {
1948      unsigned argIndex = Amt.getArgIndex();
1949      if (argIndex >= NumDataArgs) {
1950        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
1951                               << k,
1952                             getLocationOfByte(Amt.getStart()),
1953                             /*IsStringLocation*/true,
1954                             getSpecifierRange(startSpecifier, specifierLen));
1955        // Don't do any more checking.  We will just emit
1956        // spurious errors.
1957        return false;
1958      }
1959
1960      // Type check the data argument.  It should be an 'int'.
1961      // Although not in conformance with C99, we also allow the argument to be
1962      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1963      // doesn't emit a warning for that case.
1964      CoveredArgs.set(argIndex);
1965      const Expr *Arg = getDataArg(argIndex);
1966      QualType T = Arg->getType();
1967
1968      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1969      assert(ATR.isValid());
1970
1971      if (!ATR.matchesType(S.Context, T)) {
1972        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
1973                               << k << ATR.getRepresentativeTypeName(S.Context)
1974                               << T << Arg->getSourceRange(),
1975                             getLocationOfByte(Amt.getStart()),
1976                             /*IsStringLocation*/true,
1977                             getSpecifierRange(startSpecifier, specifierLen));
1978        // Don't do any more checking.  We will just emit
1979        // spurious errors.
1980        return false;
1981      }
1982    }
1983  }
1984  return true;
1985}
1986
1987void CheckPrintfHandler::HandleInvalidAmount(
1988                                      const analyze_printf::PrintfSpecifier &FS,
1989                                      const analyze_printf::OptionalAmount &Amt,
1990                                      unsigned type,
1991                                      const char *startSpecifier,
1992                                      unsigned specifierLen) {
1993  const analyze_printf::PrintfConversionSpecifier &CS =
1994    FS.getConversionSpecifier();
1995
1996  FixItHint fixit =
1997    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
1998      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1999                                 Amt.getConstantLength()))
2000      : FixItHint();
2001
2002  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2003                         << type << CS.toString(),
2004                       getLocationOfByte(Amt.getStart()),
2005                       /*IsStringLocation*/true,
2006                       getSpecifierRange(startSpecifier, specifierLen),
2007                       fixit);
2008}
2009
2010void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2011                                    const analyze_printf::OptionalFlag &flag,
2012                                    const char *startSpecifier,
2013                                    unsigned specifierLen) {
2014  // Warn about pointless flag with a fixit removal.
2015  const analyze_printf::PrintfConversionSpecifier &CS =
2016    FS.getConversionSpecifier();
2017  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2018                         << flag.toString() << CS.toString(),
2019                       getLocationOfByte(flag.getPosition()),
2020                       /*IsStringLocation*/true,
2021                       getSpecifierRange(startSpecifier, specifierLen),
2022                       FixItHint::CreateRemoval(
2023                         getSpecifierRange(flag.getPosition(), 1)));
2024}
2025
2026void CheckPrintfHandler::HandleIgnoredFlag(
2027                                const analyze_printf::PrintfSpecifier &FS,
2028                                const analyze_printf::OptionalFlag &ignoredFlag,
2029                                const analyze_printf::OptionalFlag &flag,
2030                                const char *startSpecifier,
2031                                unsigned specifierLen) {
2032  // Warn about ignored flag with a fixit removal.
2033  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2034                         << ignoredFlag.toString() << flag.toString(),
2035                       getLocationOfByte(ignoredFlag.getPosition()),
2036                       /*IsStringLocation*/true,
2037                       getSpecifierRange(startSpecifier, specifierLen),
2038                       FixItHint::CreateRemoval(
2039                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2040}
2041
2042bool
2043CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2044                                            &FS,
2045                                          const char *startSpecifier,
2046                                          unsigned specifierLen) {
2047
2048  using namespace analyze_format_string;
2049  using namespace analyze_printf;
2050  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2051
2052  if (FS.consumesDataArgument()) {
2053    if (atFirstArg) {
2054        atFirstArg = false;
2055        usesPositionalArgs = FS.usesPositionalArg();
2056    }
2057    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2058      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2059                                        startSpecifier, specifierLen);
2060      return false;
2061    }
2062  }
2063
2064  // First check if the field width, precision, and conversion specifier
2065  // have matching data arguments.
2066  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2067                    startSpecifier, specifierLen)) {
2068    return false;
2069  }
2070
2071  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2072                    startSpecifier, specifierLen)) {
2073    return false;
2074  }
2075
2076  if (!CS.consumesDataArgument()) {
2077    // FIXME: Technically specifying a precision or field width here
2078    // makes no sense.  Worth issuing a warning at some point.
2079    return true;
2080  }
2081
2082  // Consume the argument.
2083  unsigned argIndex = FS.getArgIndex();
2084  if (argIndex < NumDataArgs) {
2085    // The check to see if the argIndex is valid will come later.
2086    // We set the bit here because we may exit early from this
2087    // function if we encounter some other error.
2088    CoveredArgs.set(argIndex);
2089  }
2090
2091  // Check for using an Objective-C specific conversion specifier
2092  // in a non-ObjC literal.
2093  if (!IsObjCLiteral && CS.isObjCArg()) {
2094    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2095                                                  specifierLen);
2096  }
2097
2098  // Check for invalid use of field width
2099  if (!FS.hasValidFieldWidth()) {
2100    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2101        startSpecifier, specifierLen);
2102  }
2103
2104  // Check for invalid use of precision
2105  if (!FS.hasValidPrecision()) {
2106    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2107        startSpecifier, specifierLen);
2108  }
2109
2110  // Check each flag does not conflict with any other component.
2111  if (!FS.hasValidThousandsGroupingPrefix())
2112    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2113  if (!FS.hasValidLeadingZeros())
2114    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2115  if (!FS.hasValidPlusPrefix())
2116    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2117  if (!FS.hasValidSpacePrefix())
2118    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2119  if (!FS.hasValidAlternativeForm())
2120    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2121  if (!FS.hasValidLeftJustified())
2122    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2123
2124  // Check that flags are not ignored by another flag
2125  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2126    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2127        startSpecifier, specifierLen);
2128  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2129    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2130            startSpecifier, specifierLen);
2131
2132  // Check the length modifier is valid with the given conversion specifier.
2133  const LengthModifier &LM = FS.getLengthModifier();
2134  if (!FS.hasValidLengthModifier())
2135    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2136                           << LM.toString() << CS.toString(),
2137                         getLocationOfByte(LM.getStart()),
2138                         /*IsStringLocation*/true,
2139                         getSpecifierRange(startSpecifier, specifierLen),
2140                         FixItHint::CreateRemoval(
2141                           getSpecifierRange(LM.getStart(),
2142                                             LM.getLength())));
2143
2144  // Are we using '%n'?
2145  if (CS.getKind() == ConversionSpecifier::nArg) {
2146    // Issue a warning about this being a possible security issue.
2147    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2148                         getLocationOfByte(CS.getStart()),
2149                         /*IsStringLocation*/true,
2150                         getSpecifierRange(startSpecifier, specifierLen));
2151    // Continue checking the other format specifiers.
2152    return true;
2153  }
2154
2155  // The remaining checks depend on the data arguments.
2156  if (HasVAListArg)
2157    return true;
2158
2159  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2160    return false;
2161
2162  // Now type check the data expression that matches the
2163  // format specifier.
2164  const Expr *Ex = getDataArg(argIndex);
2165  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context,
2166                                                           IsObjCLiteral);
2167  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2168    // Check if we didn't match because of an implicit cast from a 'char'
2169    // or 'short' to an 'int'.  This is done because printf is a varargs
2170    // function.
2171    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
2172      if (ICE->getType() == S.Context.IntTy) {
2173        // All further checking is done on the subexpression.
2174        Ex = ICE->getSubExpr();
2175        if (ATR.matchesType(S.Context, Ex->getType()))
2176          return true;
2177      }
2178
2179    // We may be able to offer a FixItHint if it is a supported type.
2180    PrintfSpecifier fixedFS = FS;
2181    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2182
2183    if (success) {
2184      // Get the fix string from the fixed format specifier
2185      llvm::SmallString<128> buf;
2186      llvm::raw_svector_ostream os(buf);
2187      fixedFS.toString(os);
2188
2189      EmitFormatDiagnostic(
2190        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2191          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2192          << Ex->getSourceRange(),
2193        getLocationOfByte(CS.getStart()),
2194        /*IsStringLocation*/true,
2195        getSpecifierRange(startSpecifier, specifierLen),
2196        FixItHint::CreateReplacement(
2197          getSpecifierRange(startSpecifier, specifierLen),
2198          os.str()));
2199    }
2200    else {
2201      EmitFormatDiagnostic(
2202        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2203          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2204          << getSpecifierRange(startSpecifier, specifierLen)
2205          << Ex->getSourceRange(),
2206        getLocationOfByte(CS.getStart()),
2207        true,
2208        getSpecifierRange(startSpecifier, specifierLen));
2209    }
2210  }
2211
2212  return true;
2213}
2214
2215//===--- CHECK: Scanf format string checking ------------------------------===//
2216
2217namespace {
2218class CheckScanfHandler : public CheckFormatHandler {
2219public:
2220  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2221                    const Expr *origFormatExpr, unsigned firstDataArg,
2222                    unsigned numDataArgs, bool isObjCLiteral,
2223                    const char *beg, bool hasVAListArg,
2224                    Expr **Args, unsigned NumArgs,
2225                    unsigned formatIdx, bool inFunctionCall)
2226  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2227                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2228                       Args, NumArgs, formatIdx, inFunctionCall) {}
2229
2230  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2231                            const char *startSpecifier,
2232                            unsigned specifierLen);
2233
2234  bool HandleInvalidScanfConversionSpecifier(
2235          const analyze_scanf::ScanfSpecifier &FS,
2236          const char *startSpecifier,
2237          unsigned specifierLen);
2238
2239  void HandleIncompleteScanList(const char *start, const char *end);
2240};
2241}
2242
2243void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2244                                                 const char *end) {
2245  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2246                       getLocationOfByte(end), /*IsStringLocation*/true,
2247                       getSpecifierRange(start, end - start));
2248}
2249
2250bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2251                                        const analyze_scanf::ScanfSpecifier &FS,
2252                                        const char *startSpecifier,
2253                                        unsigned specifierLen) {
2254
2255  const analyze_scanf::ScanfConversionSpecifier &CS =
2256    FS.getConversionSpecifier();
2257
2258  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2259                                          getLocationOfByte(CS.getStart()),
2260                                          startSpecifier, specifierLen,
2261                                          CS.getStart(), CS.getLength());
2262}
2263
2264bool CheckScanfHandler::HandleScanfSpecifier(
2265                                       const analyze_scanf::ScanfSpecifier &FS,
2266                                       const char *startSpecifier,
2267                                       unsigned specifierLen) {
2268
2269  using namespace analyze_scanf;
2270  using namespace analyze_format_string;
2271
2272  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2273
2274  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2275  // be used to decide if we are using positional arguments consistently.
2276  if (FS.consumesDataArgument()) {
2277    if (atFirstArg) {
2278      atFirstArg = false;
2279      usesPositionalArgs = FS.usesPositionalArg();
2280    }
2281    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2282      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2283                                        startSpecifier, specifierLen);
2284      return false;
2285    }
2286  }
2287
2288  // Check if the field with is non-zero.
2289  const OptionalAmount &Amt = FS.getFieldWidth();
2290  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2291    if (Amt.getConstantAmount() == 0) {
2292      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2293                                                   Amt.getConstantLength());
2294      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2295                           getLocationOfByte(Amt.getStart()),
2296                           /*IsStringLocation*/true, R,
2297                           FixItHint::CreateRemoval(R));
2298    }
2299  }
2300
2301  if (!FS.consumesDataArgument()) {
2302    // FIXME: Technically specifying a precision or field width here
2303    // makes no sense.  Worth issuing a warning at some point.
2304    return true;
2305  }
2306
2307  // Consume the argument.
2308  unsigned argIndex = FS.getArgIndex();
2309  if (argIndex < NumDataArgs) {
2310      // The check to see if the argIndex is valid will come later.
2311      // We set the bit here because we may exit early from this
2312      // function if we encounter some other error.
2313    CoveredArgs.set(argIndex);
2314  }
2315
2316  // Check the length modifier is valid with the given conversion specifier.
2317  const LengthModifier &LM = FS.getLengthModifier();
2318  if (!FS.hasValidLengthModifier()) {
2319    const CharSourceRange &R = getSpecifierRange(LM.getStart(), LM.getLength());
2320    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2321                         << LM.toString() << CS.toString()
2322                         << getSpecifierRange(startSpecifier, specifierLen),
2323                         getLocationOfByte(LM.getStart()),
2324                         /*IsStringLocation*/true, R,
2325                         FixItHint::CreateRemoval(R));
2326  }
2327
2328  // The remaining checks depend on the data arguments.
2329  if (HasVAListArg)
2330    return true;
2331
2332  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2333    return false;
2334
2335  // Check that the argument type matches the format specifier.
2336  const Expr *Ex = getDataArg(argIndex);
2337  const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context);
2338  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2339    ScanfSpecifier fixedFS = FS;
2340    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2341
2342    if (success) {
2343      // Get the fix string from the fixed format specifier.
2344      llvm::SmallString<128> buf;
2345      llvm::raw_svector_ostream os(buf);
2346      fixedFS.toString(os);
2347
2348      EmitFormatDiagnostic(
2349        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2350          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2351          << Ex->getSourceRange(),
2352        getLocationOfByte(CS.getStart()),
2353        /*IsStringLocation*/true,
2354        getSpecifierRange(startSpecifier, specifierLen),
2355        FixItHint::CreateReplacement(
2356          getSpecifierRange(startSpecifier, specifierLen),
2357          os.str()));
2358    } else {
2359      EmitFormatDiagnostic(
2360        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2361          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2362          << Ex->getSourceRange(),
2363        getLocationOfByte(CS.getStart()),
2364        /*IsStringLocation*/true,
2365        getSpecifierRange(startSpecifier, specifierLen));
2366    }
2367  }
2368
2369  return true;
2370}
2371
2372void Sema::CheckFormatString(const StringLiteral *FExpr,
2373                             const Expr *OrigFormatExpr,
2374                             Expr **Args, unsigned NumArgs,
2375                             bool HasVAListArg, unsigned format_idx,
2376                             unsigned firstDataArg, FormatStringType Type,
2377                             bool inFunctionCall) {
2378
2379  // CHECK: is the format string a wide literal?
2380  if (!FExpr->isAscii()) {
2381    CheckFormatHandler::EmitFormatDiagnostic(
2382      *this, inFunctionCall, Args[format_idx],
2383      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2384      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2385    return;
2386  }
2387
2388  // Str - The format string.  NOTE: this is NOT null-terminated!
2389  StringRef StrRef = FExpr->getString();
2390  const char *Str = StrRef.data();
2391  unsigned StrLen = StrRef.size();
2392  const unsigned numDataArgs = NumArgs - firstDataArg;
2393
2394  // CHECK: empty format string?
2395  if (StrLen == 0 && numDataArgs > 0) {
2396    CheckFormatHandler::EmitFormatDiagnostic(
2397      *this, inFunctionCall, Args[format_idx],
2398      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2399      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2400    return;
2401  }
2402
2403  if (Type == FST_Printf || Type == FST_NSString) {
2404    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2405                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2406                         Str, HasVAListArg, Args, NumArgs, format_idx,
2407                         inFunctionCall);
2408
2409    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2410                                                  getLangOptions()))
2411      H.DoneProcessing();
2412  } else if (Type == FST_Scanf) {
2413    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2414                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2415                        Str, HasVAListArg, Args, NumArgs, format_idx,
2416                        inFunctionCall);
2417
2418    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2419                                                 getLangOptions()))
2420      H.DoneProcessing();
2421  } // TODO: handle other formats
2422}
2423
2424//===--- CHECK: Standard memory functions ---------------------------------===//
2425
2426/// \brief Determine whether the given type is a dynamic class type (e.g.,
2427/// whether it has a vtable).
2428static bool isDynamicClassType(QualType T) {
2429  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2430    if (CXXRecordDecl *Definition = Record->getDefinition())
2431      if (Definition->isDynamicClass())
2432        return true;
2433
2434  return false;
2435}
2436
2437/// \brief If E is a sizeof expression, returns its argument expression,
2438/// otherwise returns NULL.
2439static const Expr *getSizeOfExprArg(const Expr* E) {
2440  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2441      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2442    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2443      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2444
2445  return 0;
2446}
2447
2448/// \brief If E is a sizeof expression, returns its argument type.
2449static QualType getSizeOfArgType(const Expr* E) {
2450  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2451      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2452    if (SizeOf->getKind() == clang::UETT_SizeOf)
2453      return SizeOf->getTypeOfArgument();
2454
2455  return QualType();
2456}
2457
2458/// \brief Check for dangerous or invalid arguments to memset().
2459///
2460/// This issues warnings on known problematic, dangerous or unspecified
2461/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2462/// function calls.
2463///
2464/// \param Call The call expression to diagnose.
2465void Sema::CheckMemaccessArguments(const CallExpr *Call,
2466                                   unsigned BId,
2467                                   IdentifierInfo *FnName) {
2468  assert(BId != 0);
2469
2470  // It is possible to have a non-standard definition of memset.  Validate
2471  // we have enough arguments, and if not, abort further checking.
2472  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2473  if (Call->getNumArgs() < ExpectedNumArgs)
2474    return;
2475
2476  unsigned LastArg = (BId == Builtin::BImemset ||
2477                      BId == Builtin::BIstrndup ? 1 : 2);
2478  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2479  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2480
2481  // We have special checking when the length is a sizeof expression.
2482  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2483  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2484  llvm::FoldingSetNodeID SizeOfArgID;
2485
2486  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2487    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2488    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2489
2490    QualType DestTy = Dest->getType();
2491    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2492      QualType PointeeTy = DestPtrTy->getPointeeType();
2493
2494      // Never warn about void type pointers. This can be used to suppress
2495      // false positives.
2496      if (PointeeTy->isVoidType())
2497        continue;
2498
2499      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2500      // actually comparing the expressions for equality. Because computing the
2501      // expression IDs can be expensive, we only do this if the diagnostic is
2502      // enabled.
2503      if (SizeOfArg &&
2504          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2505                                   SizeOfArg->getExprLoc())) {
2506        // We only compute IDs for expressions if the warning is enabled, and
2507        // cache the sizeof arg's ID.
2508        if (SizeOfArgID == llvm::FoldingSetNodeID())
2509          SizeOfArg->Profile(SizeOfArgID, Context, true);
2510        llvm::FoldingSetNodeID DestID;
2511        Dest->Profile(DestID, Context, true);
2512        if (DestID == SizeOfArgID) {
2513          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2514          //       over sizeof(src) as well.
2515          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2516          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2517            if (UnaryOp->getOpcode() == UO_AddrOf)
2518              ActionIdx = 1; // If its an address-of operator, just remove it.
2519          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2520            ActionIdx = 2; // If the pointee's size is sizeof(char),
2521                           // suggest an explicit length.
2522          unsigned DestSrcSelect =
2523            (BId == Builtin::BIstrndup ? 1 : ArgIdx);
2524          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2525                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2526                                << FnName << DestSrcSelect << ActionIdx
2527                                << Dest->getSourceRange()
2528                                << SizeOfArg->getSourceRange());
2529          break;
2530        }
2531      }
2532
2533      // Also check for cases where the sizeof argument is the exact same
2534      // type as the memory argument, and where it points to a user-defined
2535      // record type.
2536      if (SizeOfArgTy != QualType()) {
2537        if (PointeeTy->isRecordType() &&
2538            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2539          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2540                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2541                                << FnName << SizeOfArgTy << ArgIdx
2542                                << PointeeTy << Dest->getSourceRange()
2543                                << LenExpr->getSourceRange());
2544          break;
2545        }
2546      }
2547
2548      // Always complain about dynamic classes.
2549      if (isDynamicClassType(PointeeTy)) {
2550
2551        unsigned OperationType = 0;
2552        // "overwritten" if we're warning about the destination for any call
2553        // but memcmp; otherwise a verb appropriate to the call.
2554        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
2555          if (BId == Builtin::BImemcpy)
2556            OperationType = 1;
2557          else if(BId == Builtin::BImemmove)
2558            OperationType = 2;
2559          else if (BId == Builtin::BImemcmp)
2560            OperationType = 3;
2561        }
2562
2563        DiagRuntimeBehavior(
2564          Dest->getExprLoc(), Dest,
2565          PDiag(diag::warn_dyn_class_memaccess)
2566            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
2567            << FnName << PointeeTy
2568            << OperationType
2569            << Call->getCallee()->getSourceRange());
2570      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
2571               BId != Builtin::BImemset)
2572        DiagRuntimeBehavior(
2573          Dest->getExprLoc(), Dest,
2574          PDiag(diag::warn_arc_object_memaccess)
2575            << ArgIdx << FnName << PointeeTy
2576            << Call->getCallee()->getSourceRange());
2577      else
2578        continue;
2579
2580      DiagRuntimeBehavior(
2581        Dest->getExprLoc(), Dest,
2582        PDiag(diag::note_bad_memaccess_silence)
2583          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2584      break;
2585    }
2586  }
2587}
2588
2589// A little helper routine: ignore addition and subtraction of integer literals.
2590// This intentionally does not ignore all integer constant expressions because
2591// we don't want to remove sizeof().
2592static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2593  Ex = Ex->IgnoreParenCasts();
2594
2595  for (;;) {
2596    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2597    if (!BO || !BO->isAdditiveOp())
2598      break;
2599
2600    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2601    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2602
2603    if (isa<IntegerLiteral>(RHS))
2604      Ex = LHS;
2605    else if (isa<IntegerLiteral>(LHS))
2606      Ex = RHS;
2607    else
2608      break;
2609  }
2610
2611  return Ex;
2612}
2613
2614// Warn if the user has made the 'size' argument to strlcpy or strlcat
2615// be the size of the source, instead of the destination.
2616void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2617                                    IdentifierInfo *FnName) {
2618
2619  // Don't crash if the user has the wrong number of arguments
2620  if (Call->getNumArgs() != 3)
2621    return;
2622
2623  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2624  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2625  const Expr *CompareWithSrc = NULL;
2626
2627  // Look for 'strlcpy(dst, x, sizeof(x))'
2628  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2629    CompareWithSrc = Ex;
2630  else {
2631    // Look for 'strlcpy(dst, x, strlen(x))'
2632    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2633      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
2634          && SizeCall->getNumArgs() == 1)
2635        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2636    }
2637  }
2638
2639  if (!CompareWithSrc)
2640    return;
2641
2642  // Determine if the argument to sizeof/strlen is equal to the source
2643  // argument.  In principle there's all kinds of things you could do
2644  // here, for instance creating an == expression and evaluating it with
2645  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2646  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2647  if (!SrcArgDRE)
2648    return;
2649
2650  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2651  if (!CompareWithSrcDRE ||
2652      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2653    return;
2654
2655  const Expr *OriginalSizeArg = Call->getArg(2);
2656  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2657    << OriginalSizeArg->getSourceRange() << FnName;
2658
2659  // Output a FIXIT hint if the destination is an array (rather than a
2660  // pointer to an array).  This could be enhanced to handle some
2661  // pointers if we know the actual size, like if DstArg is 'array+2'
2662  // we could say 'sizeof(array)-2'.
2663  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2664  QualType DstArgTy = DstArg->getType();
2665
2666  // Only handle constant-sized or VLAs, but not flexible members.
2667  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2668    // Only issue the FIXIT for arrays of size > 1.
2669    if (CAT->getSize().getSExtValue() <= 1)
2670      return;
2671  } else if (!DstArgTy->isVariableArrayType()) {
2672    return;
2673  }
2674
2675  llvm::SmallString<128> sizeString;
2676  llvm::raw_svector_ostream OS(sizeString);
2677  OS << "sizeof(";
2678  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2679  OS << ")";
2680
2681  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2682    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2683                                    OS.str());
2684}
2685
2686//===--- CHECK: Return Address of Stack Variable --------------------------===//
2687
2688static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2689static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2690
2691/// CheckReturnStackAddr - Check if a return statement returns the address
2692///   of a stack variable.
2693void
2694Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2695                           SourceLocation ReturnLoc) {
2696
2697  Expr *stackE = 0;
2698  SmallVector<DeclRefExpr *, 8> refVars;
2699
2700  // Perform checking for returned stack addresses, local blocks,
2701  // label addresses or references to temporaries.
2702  if (lhsType->isPointerType() ||
2703      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2704    stackE = EvalAddr(RetValExp, refVars);
2705  } else if (lhsType->isReferenceType()) {
2706    stackE = EvalVal(RetValExp, refVars);
2707  }
2708
2709  if (stackE == 0)
2710    return; // Nothing suspicious was found.
2711
2712  SourceLocation diagLoc;
2713  SourceRange diagRange;
2714  if (refVars.empty()) {
2715    diagLoc = stackE->getLocStart();
2716    diagRange = stackE->getSourceRange();
2717  } else {
2718    // We followed through a reference variable. 'stackE' contains the
2719    // problematic expression but we will warn at the return statement pointing
2720    // at the reference variable. We will later display the "trail" of
2721    // reference variables using notes.
2722    diagLoc = refVars[0]->getLocStart();
2723    diagRange = refVars[0]->getSourceRange();
2724  }
2725
2726  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2727    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2728                                             : diag::warn_ret_stack_addr)
2729     << DR->getDecl()->getDeclName() << diagRange;
2730  } else if (isa<BlockExpr>(stackE)) { // local block.
2731    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2732  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2733    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2734  } else { // local temporary.
2735    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2736                                             : diag::warn_ret_local_temp_addr)
2737     << diagRange;
2738  }
2739
2740  // Display the "trail" of reference variables that we followed until we
2741  // found the problematic expression using notes.
2742  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2743    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2744    // If this var binds to another reference var, show the range of the next
2745    // var, otherwise the var binds to the problematic expression, in which case
2746    // show the range of the expression.
2747    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2748                                  : stackE->getSourceRange();
2749    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2750      << VD->getDeclName() << range;
2751  }
2752}
2753
2754/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2755///  check if the expression in a return statement evaluates to an address
2756///  to a location on the stack, a local block, an address of a label, or a
2757///  reference to local temporary. The recursion is used to traverse the
2758///  AST of the return expression, with recursion backtracking when we
2759///  encounter a subexpression that (1) clearly does not lead to one of the
2760///  above problematic expressions (2) is something we cannot determine leads to
2761///  a problematic expression based on such local checking.
2762///
2763///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2764///  the expression that they point to. Such variables are added to the
2765///  'refVars' vector so that we know what the reference variable "trail" was.
2766///
2767///  EvalAddr processes expressions that are pointers that are used as
2768///  references (and not L-values).  EvalVal handles all other values.
2769///  At the base case of the recursion is a check for the above problematic
2770///  expressions.
2771///
2772///  This implementation handles:
2773///
2774///   * pointer-to-pointer casts
2775///   * implicit conversions from array references to pointers
2776///   * taking the address of fields
2777///   * arbitrary interplay between "&" and "*" operators
2778///   * pointer arithmetic from an address of a stack variable
2779///   * taking the address of an array element where the array is on the stack
2780static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2781  if (E->isTypeDependent())
2782      return NULL;
2783
2784  // We should only be called for evaluating pointer expressions.
2785  assert((E->getType()->isAnyPointerType() ||
2786          E->getType()->isBlockPointerType() ||
2787          E->getType()->isObjCQualifiedIdType()) &&
2788         "EvalAddr only works on pointers");
2789
2790  E = E->IgnoreParens();
2791
2792  // Our "symbolic interpreter" is just a dispatch off the currently
2793  // viewed AST node.  We then recursively traverse the AST by calling
2794  // EvalAddr and EvalVal appropriately.
2795  switch (E->getStmtClass()) {
2796  case Stmt::DeclRefExprClass: {
2797    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2798
2799    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2800      // If this is a reference variable, follow through to the expression that
2801      // it points to.
2802      if (V->hasLocalStorage() &&
2803          V->getType()->isReferenceType() && V->hasInit()) {
2804        // Add the reference variable to the "trail".
2805        refVars.push_back(DR);
2806        return EvalAddr(V->getInit(), refVars);
2807      }
2808
2809    return NULL;
2810  }
2811
2812  case Stmt::UnaryOperatorClass: {
2813    // The only unary operator that make sense to handle here
2814    // is AddrOf.  All others don't make sense as pointers.
2815    UnaryOperator *U = cast<UnaryOperator>(E);
2816
2817    if (U->getOpcode() == UO_AddrOf)
2818      return EvalVal(U->getSubExpr(), refVars);
2819    else
2820      return NULL;
2821  }
2822
2823  case Stmt::BinaryOperatorClass: {
2824    // Handle pointer arithmetic.  All other binary operators are not valid
2825    // in this context.
2826    BinaryOperator *B = cast<BinaryOperator>(E);
2827    BinaryOperatorKind op = B->getOpcode();
2828
2829    if (op != BO_Add && op != BO_Sub)
2830      return NULL;
2831
2832    Expr *Base = B->getLHS();
2833
2834    // Determine which argument is the real pointer base.  It could be
2835    // the RHS argument instead of the LHS.
2836    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2837
2838    assert (Base->getType()->isPointerType());
2839    return EvalAddr(Base, refVars);
2840  }
2841
2842  // For conditional operators we need to see if either the LHS or RHS are
2843  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2844  case Stmt::ConditionalOperatorClass: {
2845    ConditionalOperator *C = cast<ConditionalOperator>(E);
2846
2847    // Handle the GNU extension for missing LHS.
2848    if (Expr *lhsExpr = C->getLHS()) {
2849    // In C++, we can have a throw-expression, which has 'void' type.
2850      if (!lhsExpr->getType()->isVoidType())
2851        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2852          return LHS;
2853    }
2854
2855    // In C++, we can have a throw-expression, which has 'void' type.
2856    if (C->getRHS()->getType()->isVoidType())
2857      return NULL;
2858
2859    return EvalAddr(C->getRHS(), refVars);
2860  }
2861
2862  case Stmt::BlockExprClass:
2863    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2864      return E; // local block.
2865    return NULL;
2866
2867  case Stmt::AddrLabelExprClass:
2868    return E; // address of label.
2869
2870  case Stmt::ExprWithCleanupsClass:
2871    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
2872
2873  // For casts, we need to handle conversions from arrays to
2874  // pointer values, and pointer-to-pointer conversions.
2875  case Stmt::ImplicitCastExprClass:
2876  case Stmt::CStyleCastExprClass:
2877  case Stmt::CXXFunctionalCastExprClass:
2878  case Stmt::ObjCBridgedCastExprClass: {
2879    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2880    QualType T = SubExpr->getType();
2881
2882    if (SubExpr->getType()->isPointerType() ||
2883        SubExpr->getType()->isBlockPointerType() ||
2884        SubExpr->getType()->isObjCQualifiedIdType())
2885      return EvalAddr(SubExpr, refVars);
2886    else if (T->isArrayType())
2887      return EvalVal(SubExpr, refVars);
2888    else
2889      return 0;
2890  }
2891
2892  // C++ casts.  For dynamic casts, static casts, and const casts, we
2893  // are always converting from a pointer-to-pointer, so we just blow
2894  // through the cast.  In the case the dynamic cast doesn't fail (and
2895  // return NULL), we take the conservative route and report cases
2896  // where we return the address of a stack variable.  For Reinterpre
2897  // FIXME: The comment about is wrong; we're not always converting
2898  // from pointer to pointer. I'm guessing that this code should also
2899  // handle references to objects.
2900  case Stmt::CXXStaticCastExprClass:
2901  case Stmt::CXXDynamicCastExprClass:
2902  case Stmt::CXXConstCastExprClass:
2903  case Stmt::CXXReinterpretCastExprClass: {
2904      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2905      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2906        return EvalAddr(S, refVars);
2907      else
2908        return NULL;
2909  }
2910
2911  case Stmt::MaterializeTemporaryExprClass:
2912    if (Expr *Result = EvalAddr(
2913                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2914                                refVars))
2915      return Result;
2916
2917    return E;
2918
2919  // Everything else: we simply don't reason about them.
2920  default:
2921    return NULL;
2922  }
2923}
2924
2925
2926///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2927///   See the comments for EvalAddr for more details.
2928static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2929do {
2930  // We should only be called for evaluating non-pointer expressions, or
2931  // expressions with a pointer type that are not used as references but instead
2932  // are l-values (e.g., DeclRefExpr with a pointer type).
2933
2934  // Our "symbolic interpreter" is just a dispatch off the currently
2935  // viewed AST node.  We then recursively traverse the AST by calling
2936  // EvalAddr and EvalVal appropriately.
2937
2938  E = E->IgnoreParens();
2939  switch (E->getStmtClass()) {
2940  case Stmt::ImplicitCastExprClass: {
2941    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2942    if (IE->getValueKind() == VK_LValue) {
2943      E = IE->getSubExpr();
2944      continue;
2945    }
2946    return NULL;
2947  }
2948
2949  case Stmt::ExprWithCleanupsClass:
2950    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
2951
2952  case Stmt::DeclRefExprClass: {
2953    // When we hit a DeclRefExpr we are looking at code that refers to a
2954    // variable's name. If it's not a reference variable we check if it has
2955    // local storage within the function, and if so, return the expression.
2956    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2957
2958    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2959      if (V->hasLocalStorage()) {
2960        if (!V->getType()->isReferenceType())
2961          return DR;
2962
2963        // Reference variable, follow through to the expression that
2964        // it points to.
2965        if (V->hasInit()) {
2966          // Add the reference variable to the "trail".
2967          refVars.push_back(DR);
2968          return EvalVal(V->getInit(), refVars);
2969        }
2970      }
2971
2972    return NULL;
2973  }
2974
2975  case Stmt::UnaryOperatorClass: {
2976    // The only unary operator that make sense to handle here
2977    // is Deref.  All others don't resolve to a "name."  This includes
2978    // handling all sorts of rvalues passed to a unary operator.
2979    UnaryOperator *U = cast<UnaryOperator>(E);
2980
2981    if (U->getOpcode() == UO_Deref)
2982      return EvalAddr(U->getSubExpr(), refVars);
2983
2984    return NULL;
2985  }
2986
2987  case Stmt::ArraySubscriptExprClass: {
2988    // Array subscripts are potential references to data on the stack.  We
2989    // retrieve the DeclRefExpr* for the array variable if it indeed
2990    // has local storage.
2991    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2992  }
2993
2994  case Stmt::ConditionalOperatorClass: {
2995    // For conditional operators we need to see if either the LHS or RHS are
2996    // non-NULL Expr's.  If one is non-NULL, we return it.
2997    ConditionalOperator *C = cast<ConditionalOperator>(E);
2998
2999    // Handle the GNU extension for missing LHS.
3000    if (Expr *lhsExpr = C->getLHS())
3001      if (Expr *LHS = EvalVal(lhsExpr, refVars))
3002        return LHS;
3003
3004    return EvalVal(C->getRHS(), refVars);
3005  }
3006
3007  // Accesses to members are potential references to data on the stack.
3008  case Stmt::MemberExprClass: {
3009    MemberExpr *M = cast<MemberExpr>(E);
3010
3011    // Check for indirect access.  We only want direct field accesses.
3012    if (M->isArrow())
3013      return NULL;
3014
3015    // Check whether the member type is itself a reference, in which case
3016    // we're not going to refer to the member, but to what the member refers to.
3017    if (M->getMemberDecl()->getType()->isReferenceType())
3018      return NULL;
3019
3020    return EvalVal(M->getBase(), refVars);
3021  }
3022
3023  case Stmt::MaterializeTemporaryExprClass:
3024    if (Expr *Result = EvalVal(
3025                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3026                               refVars))
3027      return Result;
3028
3029    return E;
3030
3031  default:
3032    // Check that we don't return or take the address of a reference to a
3033    // temporary. This is only useful in C++.
3034    if (!E->isTypeDependent() && E->isRValue())
3035      return E;
3036
3037    // Everything else: we simply don't reason about them.
3038    return NULL;
3039  }
3040} while (true);
3041}
3042
3043//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3044
3045/// Check for comparisons of floating point operands using != and ==.
3046/// Issue a warning if these are no self-comparisons, as they are not likely
3047/// to do what the programmer intended.
3048void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3049  bool EmitWarning = true;
3050
3051  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3052  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3053
3054  // Special case: check for x == x (which is OK).
3055  // Do not emit warnings for such cases.
3056  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3057    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3058      if (DRL->getDecl() == DRR->getDecl())
3059        EmitWarning = false;
3060
3061
3062  // Special case: check for comparisons against literals that can be exactly
3063  //  represented by APFloat.  In such cases, do not emit a warning.  This
3064  //  is a heuristic: often comparison against such literals are used to
3065  //  detect if a value in a variable has not changed.  This clearly can
3066  //  lead to false negatives.
3067  if (EmitWarning) {
3068    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3069      if (FLL->isExact())
3070        EmitWarning = false;
3071    } else
3072      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
3073        if (FLR->isExact())
3074          EmitWarning = false;
3075    }
3076  }
3077
3078  // Check for comparisons with builtin types.
3079  if (EmitWarning)
3080    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3081      if (CL->isBuiltinCall())
3082        EmitWarning = false;
3083
3084  if (EmitWarning)
3085    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3086      if (CR->isBuiltinCall())
3087        EmitWarning = false;
3088
3089  // Emit the diagnostic.
3090  if (EmitWarning)
3091    Diag(Loc, diag::warn_floatingpoint_eq)
3092      << LHS->getSourceRange() << RHS->getSourceRange();
3093}
3094
3095//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3096//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3097
3098namespace {
3099
3100/// Structure recording the 'active' range of an integer-valued
3101/// expression.
3102struct IntRange {
3103  /// The number of bits active in the int.
3104  unsigned Width;
3105
3106  /// True if the int is known not to have negative values.
3107  bool NonNegative;
3108
3109  IntRange(unsigned Width, bool NonNegative)
3110    : Width(Width), NonNegative(NonNegative)
3111  {}
3112
3113  /// Returns the range of the bool type.
3114  static IntRange forBoolType() {
3115    return IntRange(1, true);
3116  }
3117
3118  /// Returns the range of an opaque value of the given integral type.
3119  static IntRange forValueOfType(ASTContext &C, QualType T) {
3120    return forValueOfCanonicalType(C,
3121                          T->getCanonicalTypeInternal().getTypePtr());
3122  }
3123
3124  /// Returns the range of an opaque value of a canonical integral type.
3125  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3126    assert(T->isCanonicalUnqualified());
3127
3128    if (const VectorType *VT = dyn_cast<VectorType>(T))
3129      T = VT->getElementType().getTypePtr();
3130    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3131      T = CT->getElementType().getTypePtr();
3132
3133    // For enum types, use the known bit width of the enumerators.
3134    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3135      EnumDecl *Enum = ET->getDecl();
3136      if (!Enum->isCompleteDefinition())
3137        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3138
3139      unsigned NumPositive = Enum->getNumPositiveBits();
3140      unsigned NumNegative = Enum->getNumNegativeBits();
3141
3142      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3143    }
3144
3145    const BuiltinType *BT = cast<BuiltinType>(T);
3146    assert(BT->isInteger());
3147
3148    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3149  }
3150
3151  /// Returns the "target" range of a canonical integral type, i.e.
3152  /// the range of values expressible in the type.
3153  ///
3154  /// This matches forValueOfCanonicalType except that enums have the
3155  /// full range of their type, not the range of their enumerators.
3156  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3157    assert(T->isCanonicalUnqualified());
3158
3159    if (const VectorType *VT = dyn_cast<VectorType>(T))
3160      T = VT->getElementType().getTypePtr();
3161    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3162      T = CT->getElementType().getTypePtr();
3163    if (const EnumType *ET = dyn_cast<EnumType>(T))
3164      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3165
3166    const BuiltinType *BT = cast<BuiltinType>(T);
3167    assert(BT->isInteger());
3168
3169    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3170  }
3171
3172  /// Returns the supremum of two ranges: i.e. their conservative merge.
3173  static IntRange join(IntRange L, IntRange R) {
3174    return IntRange(std::max(L.Width, R.Width),
3175                    L.NonNegative && R.NonNegative);
3176  }
3177
3178  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3179  static IntRange meet(IntRange L, IntRange R) {
3180    return IntRange(std::min(L.Width, R.Width),
3181                    L.NonNegative || R.NonNegative);
3182  }
3183};
3184
3185static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
3186                              unsigned MaxWidth) {
3187  if (value.isSigned() && value.isNegative())
3188    return IntRange(value.getMinSignedBits(), false);
3189
3190  if (value.getBitWidth() > MaxWidth)
3191    value = value.trunc(MaxWidth);
3192
3193  // isNonNegative() just checks the sign bit without considering
3194  // signedness.
3195  return IntRange(value.getActiveBits(), true);
3196}
3197
3198static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3199                              unsigned MaxWidth) {
3200  if (result.isInt())
3201    return GetValueRange(C, result.getInt(), MaxWidth);
3202
3203  if (result.isVector()) {
3204    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3205    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3206      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3207      R = IntRange::join(R, El);
3208    }
3209    return R;
3210  }
3211
3212  if (result.isComplexInt()) {
3213    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3214    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3215    return IntRange::join(R, I);
3216  }
3217
3218  // This can happen with lossless casts to intptr_t of "based" lvalues.
3219  // Assume it might use arbitrary bits.
3220  // FIXME: The only reason we need to pass the type in here is to get
3221  // the sign right on this one case.  It would be nice if APValue
3222  // preserved this.
3223  assert(result.isLValue() || result.isAddrLabelDiff());
3224  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3225}
3226
3227/// Pseudo-evaluate the given integer expression, estimating the
3228/// range of values it might take.
3229///
3230/// \param MaxWidth - the width to which the value will be truncated
3231static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3232  E = E->IgnoreParens();
3233
3234  // Try a full evaluation first.
3235  Expr::EvalResult result;
3236  if (E->EvaluateAsRValue(result, C))
3237    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3238
3239  // I think we only want to look through implicit casts here; if the
3240  // user has an explicit widening cast, we should treat the value as
3241  // being of the new, wider type.
3242  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3243    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3244      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3245
3246    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3247
3248    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3249
3250    // Assume that non-integer casts can span the full range of the type.
3251    if (!isIntegerCast)
3252      return OutputTypeRange;
3253
3254    IntRange SubRange
3255      = GetExprRange(C, CE->getSubExpr(),
3256                     std::min(MaxWidth, OutputTypeRange.Width));
3257
3258    // Bail out if the subexpr's range is as wide as the cast type.
3259    if (SubRange.Width >= OutputTypeRange.Width)
3260      return OutputTypeRange;
3261
3262    // Otherwise, we take the smaller width, and we're non-negative if
3263    // either the output type or the subexpr is.
3264    return IntRange(SubRange.Width,
3265                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3266  }
3267
3268  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3269    // If we can fold the condition, just take that operand.
3270    bool CondResult;
3271    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3272      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3273                                        : CO->getFalseExpr(),
3274                          MaxWidth);
3275
3276    // Otherwise, conservatively merge.
3277    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3278    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3279    return IntRange::join(L, R);
3280  }
3281
3282  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3283    switch (BO->getOpcode()) {
3284
3285    // Boolean-valued operations are single-bit and positive.
3286    case BO_LAnd:
3287    case BO_LOr:
3288    case BO_LT:
3289    case BO_GT:
3290    case BO_LE:
3291    case BO_GE:
3292    case BO_EQ:
3293    case BO_NE:
3294      return IntRange::forBoolType();
3295
3296    // The type of the assignments is the type of the LHS, so the RHS
3297    // is not necessarily the same type.
3298    case BO_MulAssign:
3299    case BO_DivAssign:
3300    case BO_RemAssign:
3301    case BO_AddAssign:
3302    case BO_SubAssign:
3303    case BO_XorAssign:
3304    case BO_OrAssign:
3305      // TODO: bitfields?
3306      return IntRange::forValueOfType(C, E->getType());
3307
3308    // Simple assignments just pass through the RHS, which will have
3309    // been coerced to the LHS type.
3310    case BO_Assign:
3311      // TODO: bitfields?
3312      return GetExprRange(C, BO->getRHS(), MaxWidth);
3313
3314    // Operations with opaque sources are black-listed.
3315    case BO_PtrMemD:
3316    case BO_PtrMemI:
3317      return IntRange::forValueOfType(C, E->getType());
3318
3319    // Bitwise-and uses the *infinum* of the two source ranges.
3320    case BO_And:
3321    case BO_AndAssign:
3322      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3323                            GetExprRange(C, BO->getRHS(), MaxWidth));
3324
3325    // Left shift gets black-listed based on a judgement call.
3326    case BO_Shl:
3327      // ...except that we want to treat '1 << (blah)' as logically
3328      // positive.  It's an important idiom.
3329      if (IntegerLiteral *I
3330            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3331        if (I->getValue() == 1) {
3332          IntRange R = IntRange::forValueOfType(C, E->getType());
3333          return IntRange(R.Width, /*NonNegative*/ true);
3334        }
3335      }
3336      // fallthrough
3337
3338    case BO_ShlAssign:
3339      return IntRange::forValueOfType(C, E->getType());
3340
3341    // Right shift by a constant can narrow its left argument.
3342    case BO_Shr:
3343    case BO_ShrAssign: {
3344      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3345
3346      // If the shift amount is a positive constant, drop the width by
3347      // that much.
3348      llvm::APSInt shift;
3349      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3350          shift.isNonNegative()) {
3351        unsigned zext = shift.getZExtValue();
3352        if (zext >= L.Width)
3353          L.Width = (L.NonNegative ? 0 : 1);
3354        else
3355          L.Width -= zext;
3356      }
3357
3358      return L;
3359    }
3360
3361    // Comma acts as its right operand.
3362    case BO_Comma:
3363      return GetExprRange(C, BO->getRHS(), MaxWidth);
3364
3365    // Black-list pointer subtractions.
3366    case BO_Sub:
3367      if (BO->getLHS()->getType()->isPointerType())
3368        return IntRange::forValueOfType(C, E->getType());
3369      break;
3370
3371    // The width of a division result is mostly determined by the size
3372    // of the LHS.
3373    case BO_Div: {
3374      // Don't 'pre-truncate' the operands.
3375      unsigned opWidth = C.getIntWidth(E->getType());
3376      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3377
3378      // If the divisor is constant, use that.
3379      llvm::APSInt divisor;
3380      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3381        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3382        if (log2 >= L.Width)
3383          L.Width = (L.NonNegative ? 0 : 1);
3384        else
3385          L.Width = std::min(L.Width - log2, MaxWidth);
3386        return L;
3387      }
3388
3389      // Otherwise, just use the LHS's width.
3390      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3391      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3392    }
3393
3394    // The result of a remainder can't be larger than the result of
3395    // either side.
3396    case BO_Rem: {
3397      // Don't 'pre-truncate' the operands.
3398      unsigned opWidth = C.getIntWidth(E->getType());
3399      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3400      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3401
3402      IntRange meet = IntRange::meet(L, R);
3403      meet.Width = std::min(meet.Width, MaxWidth);
3404      return meet;
3405    }
3406
3407    // The default behavior is okay for these.
3408    case BO_Mul:
3409    case BO_Add:
3410    case BO_Xor:
3411    case BO_Or:
3412      break;
3413    }
3414
3415    // The default case is to treat the operation as if it were closed
3416    // on the narrowest type that encompasses both operands.
3417    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3418    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3419    return IntRange::join(L, R);
3420  }
3421
3422  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3423    switch (UO->getOpcode()) {
3424    // Boolean-valued operations are white-listed.
3425    case UO_LNot:
3426      return IntRange::forBoolType();
3427
3428    // Operations with opaque sources are black-listed.
3429    case UO_Deref:
3430    case UO_AddrOf: // should be impossible
3431      return IntRange::forValueOfType(C, E->getType());
3432
3433    default:
3434      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3435    }
3436  }
3437
3438  if (dyn_cast<OffsetOfExpr>(E)) {
3439    IntRange::forValueOfType(C, E->getType());
3440  }
3441
3442  if (FieldDecl *BitField = E->getBitField())
3443    return IntRange(BitField->getBitWidthValue(C),
3444                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3445
3446  return IntRange::forValueOfType(C, E->getType());
3447}
3448
3449static IntRange GetExprRange(ASTContext &C, Expr *E) {
3450  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3451}
3452
3453/// Checks whether the given value, which currently has the given
3454/// source semantics, has the same value when coerced through the
3455/// target semantics.
3456static bool IsSameFloatAfterCast(const llvm::APFloat &value,
3457                                 const llvm::fltSemantics &Src,
3458                                 const llvm::fltSemantics &Tgt) {
3459  llvm::APFloat truncated = value;
3460
3461  bool ignored;
3462  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3463  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3464
3465  return truncated.bitwiseIsEqual(value);
3466}
3467
3468/// Checks whether the given value, which currently has the given
3469/// source semantics, has the same value when coerced through the
3470/// target semantics.
3471///
3472/// The value might be a vector of floats (or a complex number).
3473static bool IsSameFloatAfterCast(const APValue &value,
3474                                 const llvm::fltSemantics &Src,
3475                                 const llvm::fltSemantics &Tgt) {
3476  if (value.isFloat())
3477    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3478
3479  if (value.isVector()) {
3480    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3481      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3482        return false;
3483    return true;
3484  }
3485
3486  assert(value.isComplexFloat());
3487  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3488          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3489}
3490
3491static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3492
3493static bool IsZero(Sema &S, Expr *E) {
3494  // Suppress cases where we are comparing against an enum constant.
3495  if (const DeclRefExpr *DR =
3496      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3497    if (isa<EnumConstantDecl>(DR->getDecl()))
3498      return false;
3499
3500  // Suppress cases where the '0' value is expanded from a macro.
3501  if (E->getLocStart().isMacroID())
3502    return false;
3503
3504  llvm::APSInt Value;
3505  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3506}
3507
3508static bool HasEnumType(Expr *E) {
3509  // Strip off implicit integral promotions.
3510  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3511    if (ICE->getCastKind() != CK_IntegralCast &&
3512        ICE->getCastKind() != CK_NoOp)
3513      break;
3514    E = ICE->getSubExpr();
3515  }
3516
3517  return E->getType()->isEnumeralType();
3518}
3519
3520static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3521  BinaryOperatorKind op = E->getOpcode();
3522  if (E->isValueDependent())
3523    return;
3524
3525  if (op == BO_LT && IsZero(S, E->getRHS())) {
3526    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3527      << "< 0" << "false" << HasEnumType(E->getLHS())
3528      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3529  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3530    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3531      << ">= 0" << "true" << HasEnumType(E->getLHS())
3532      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3533  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3534    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3535      << "0 >" << "false" << HasEnumType(E->getRHS())
3536      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3537  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3538    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3539      << "0 <=" << "true" << HasEnumType(E->getRHS())
3540      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3541  }
3542}
3543
3544/// Analyze the operands of the given comparison.  Implements the
3545/// fallback case from AnalyzeComparison.
3546static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3547  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3548  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3549}
3550
3551/// \brief Implements -Wsign-compare.
3552///
3553/// \param E the binary operator to check for warnings
3554static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3555  // The type the comparison is being performed in.
3556  QualType T = E->getLHS()->getType();
3557  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3558         && "comparison with mismatched types");
3559
3560  // We don't do anything special if this isn't an unsigned integral
3561  // comparison:  we're only interested in integral comparisons, and
3562  // signed comparisons only happen in cases we don't care to warn about.
3563  //
3564  // We also don't care about value-dependent expressions or expressions
3565  // whose result is a constant.
3566  if (!T->hasUnsignedIntegerRepresentation()
3567      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3568    return AnalyzeImpConvsInComparison(S, E);
3569
3570  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3571  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3572
3573  // Check to see if one of the (unmodified) operands is of different
3574  // signedness.
3575  Expr *signedOperand, *unsignedOperand;
3576  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3577    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3578           "unsigned comparison between two signed integer expressions?");
3579    signedOperand = LHS;
3580    unsignedOperand = RHS;
3581  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3582    signedOperand = RHS;
3583    unsignedOperand = LHS;
3584  } else {
3585    CheckTrivialUnsignedComparison(S, E);
3586    return AnalyzeImpConvsInComparison(S, E);
3587  }
3588
3589  // Otherwise, calculate the effective range of the signed operand.
3590  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3591
3592  // Go ahead and analyze implicit conversions in the operands.  Note
3593  // that we skip the implicit conversions on both sides.
3594  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3595  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3596
3597  // If the signed range is non-negative, -Wsign-compare won't fire,
3598  // but we should still check for comparisons which are always true
3599  // or false.
3600  if (signedRange.NonNegative)
3601    return CheckTrivialUnsignedComparison(S, E);
3602
3603  // For (in)equality comparisons, if the unsigned operand is a
3604  // constant which cannot collide with a overflowed signed operand,
3605  // then reinterpreting the signed operand as unsigned will not
3606  // change the result of the comparison.
3607  if (E->isEqualityOp()) {
3608    unsigned comparisonWidth = S.Context.getIntWidth(T);
3609    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3610
3611    // We should never be unable to prove that the unsigned operand is
3612    // non-negative.
3613    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3614
3615    if (unsignedRange.Width < comparisonWidth)
3616      return;
3617  }
3618
3619  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3620    << LHS->getType() << RHS->getType()
3621    << LHS->getSourceRange() << RHS->getSourceRange();
3622}
3623
3624/// Analyzes an attempt to assign the given value to a bitfield.
3625///
3626/// Returns true if there was something fishy about the attempt.
3627static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3628                                      SourceLocation InitLoc) {
3629  assert(Bitfield->isBitField());
3630  if (Bitfield->isInvalidDecl())
3631    return false;
3632
3633  // White-list bool bitfields.
3634  if (Bitfield->getType()->isBooleanType())
3635    return false;
3636
3637  // Ignore value- or type-dependent expressions.
3638  if (Bitfield->getBitWidth()->isValueDependent() ||
3639      Bitfield->getBitWidth()->isTypeDependent() ||
3640      Init->isValueDependent() ||
3641      Init->isTypeDependent())
3642    return false;
3643
3644  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3645
3646  llvm::APSInt Value;
3647  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
3648    return false;
3649
3650  unsigned OriginalWidth = Value.getBitWidth();
3651  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
3652
3653  if (OriginalWidth <= FieldWidth)
3654    return false;
3655
3656  // Compute the value which the bitfield will contain.
3657  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3658  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
3659
3660  // Check whether the stored value is equal to the original value.
3661  TruncatedValue = TruncatedValue.extend(OriginalWidth);
3662  if (Value == TruncatedValue)
3663    return false;
3664
3665  // Special-case bitfields of width 1: booleans are naturally 0/1, and
3666  // therefore don't strictly fit into a bitfield of width 1.
3667  if (FieldWidth == 1 && Value.getBoolValue() == TruncatedValue.getBoolValue())
3668    return false;
3669
3670  std::string PrettyValue = Value.toString(10);
3671  std::string PrettyTrunc = TruncatedValue.toString(10);
3672
3673  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3674    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3675    << Init->getSourceRange();
3676
3677  return true;
3678}
3679
3680/// Analyze the given simple or compound assignment for warning-worthy
3681/// operations.
3682static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3683  // Just recurse on the LHS.
3684  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3685
3686  // We want to recurse on the RHS as normal unless we're assigning to
3687  // a bitfield.
3688  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3689    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3690                                  E->getOperatorLoc())) {
3691      // Recurse, ignoring any implicit conversions on the RHS.
3692      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3693                                        E->getOperatorLoc());
3694    }
3695  }
3696
3697  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3698}
3699
3700/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3701static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3702                            SourceLocation CContext, unsigned diag) {
3703  S.Diag(E->getExprLoc(), diag)
3704    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3705}
3706
3707/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3708static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
3709                            SourceLocation CContext, unsigned diag) {
3710  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3711}
3712
3713/// Diagnose an implicit cast from a literal expression. Does not warn when the
3714/// cast wouldn't lose information.
3715void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3716                                    SourceLocation CContext) {
3717  // Try to convert the literal exactly to an integer. If we can, don't warn.
3718  bool isExact = false;
3719  const llvm::APFloat &Value = FL->getValue();
3720  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3721                            T->hasUnsignedIntegerRepresentation());
3722  if (Value.convertToInteger(IntegerValue,
3723                             llvm::APFloat::rmTowardZero, &isExact)
3724      == llvm::APFloat::opOK && isExact)
3725    return;
3726
3727  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3728    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3729}
3730
3731std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3732  if (!Range.Width) return "0";
3733
3734  llvm::APSInt ValueInRange = Value;
3735  ValueInRange.setIsSigned(!Range.NonNegative);
3736  ValueInRange = ValueInRange.trunc(Range.Width);
3737  return ValueInRange.toString(10);
3738}
3739
3740void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3741                             SourceLocation CC, bool *ICContext = 0) {
3742  if (E->isTypeDependent() || E->isValueDependent()) return;
3743
3744  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3745  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3746  if (Source == Target) return;
3747  if (Target->isDependentType()) return;
3748
3749  // If the conversion context location is invalid don't complain. We also
3750  // don't want to emit a warning if the issue occurs from the expansion of
3751  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3752  // delay this check as long as possible. Once we detect we are in that
3753  // scenario, we just return.
3754  if (CC.isInvalid())
3755    return;
3756
3757  // Diagnose implicit casts to bool.
3758  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
3759    if (isa<StringLiteral>(E))
3760      // Warn on string literal to bool.  Checks for string literals in logical
3761      // expressions, for instances, assert(0 && "error here"), is prevented
3762      // by a check in AnalyzeImplicitConversions().
3763      return DiagnoseImpCast(S, E, T, CC,
3764                             diag::warn_impcast_string_literal_to_bool);
3765    if (Source->isFunctionType()) {
3766      // Warn on function to bool. Checks free functions and static member
3767      // functions. Weakly imported functions are excluded from the check,
3768      // since it's common to test their value to check whether the linker
3769      // found a definition for them.
3770      ValueDecl *D = 0;
3771      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
3772        D = R->getDecl();
3773      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
3774        D = M->getMemberDecl();
3775      }
3776
3777      if (D && !D->isWeak()) {
3778        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
3779          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
3780            << F << E->getSourceRange() << SourceRange(CC);
3781          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
3782            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
3783          QualType ReturnType;
3784          UnresolvedSet<4> NonTemplateOverloads;
3785          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
3786          if (!ReturnType.isNull()
3787              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
3788            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
3789              << FixItHint::CreateInsertion(
3790                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
3791          return;
3792        }
3793      }
3794    }
3795    return; // Other casts to bool are not checked.
3796  }
3797
3798  // Strip vector types.
3799  if (isa<VectorType>(Source)) {
3800    if (!isa<VectorType>(Target)) {
3801      if (S.SourceMgr.isInSystemMacro(CC))
3802        return;
3803      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3804    }
3805
3806    // If the vector cast is cast between two vectors of the same size, it is
3807    // a bitcast, not a conversion.
3808    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3809      return;
3810
3811    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3812    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3813  }
3814
3815  // Strip complex types.
3816  if (isa<ComplexType>(Source)) {
3817    if (!isa<ComplexType>(Target)) {
3818      if (S.SourceMgr.isInSystemMacro(CC))
3819        return;
3820
3821      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3822    }
3823
3824    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3825    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3826  }
3827
3828  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3829  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3830
3831  // If the source is floating point...
3832  if (SourceBT && SourceBT->isFloatingPoint()) {
3833    // ...and the target is floating point...
3834    if (TargetBT && TargetBT->isFloatingPoint()) {
3835      // ...then warn if we're dropping FP rank.
3836
3837      // Builtin FP kinds are ordered by increasing FP rank.
3838      if (SourceBT->getKind() > TargetBT->getKind()) {
3839        // Don't warn about float constants that are precisely
3840        // representable in the target type.
3841        Expr::EvalResult result;
3842        if (E->EvaluateAsRValue(result, S.Context)) {
3843          // Value might be a float, a float vector, or a float complex.
3844          if (IsSameFloatAfterCast(result.Val,
3845                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3846                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3847            return;
3848        }
3849
3850        if (S.SourceMgr.isInSystemMacro(CC))
3851          return;
3852
3853        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3854      }
3855      return;
3856    }
3857
3858    // If the target is integral, always warn.
3859    if ((TargetBT && TargetBT->isInteger())) {
3860      if (S.SourceMgr.isInSystemMacro(CC))
3861        return;
3862
3863      Expr *InnerE = E->IgnoreParenImpCasts();
3864      // We also want to warn on, e.g., "int i = -1.234"
3865      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
3866        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
3867          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
3868
3869      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3870        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3871      } else {
3872        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3873      }
3874    }
3875
3876    return;
3877  }
3878
3879  if (!Source->isIntegerType() || !Target->isIntegerType())
3880    return;
3881
3882  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3883           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3884    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3885        << E->getSourceRange() << clang::SourceRange(CC);
3886    return;
3887  }
3888
3889  IntRange SourceRange = GetExprRange(S.Context, E);
3890  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3891
3892  if (SourceRange.Width > TargetRange.Width) {
3893    // If the source is a constant, use a default-on diagnostic.
3894    // TODO: this should happen for bitfield stores, too.
3895    llvm::APSInt Value(32);
3896    if (E->isIntegerConstantExpr(Value, S.Context)) {
3897      if (S.SourceMgr.isInSystemMacro(CC))
3898        return;
3899
3900      std::string PrettySourceValue = Value.toString(10);
3901      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3902
3903      S.DiagRuntimeBehavior(E->getExprLoc(), E,
3904        S.PDiag(diag::warn_impcast_integer_precision_constant)
3905            << PrettySourceValue << PrettyTargetValue
3906            << E->getType() << T << E->getSourceRange()
3907            << clang::SourceRange(CC));
3908      return;
3909    }
3910
3911    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3912    if (S.SourceMgr.isInSystemMacro(CC))
3913      return;
3914
3915    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3916      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3917    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3918  }
3919
3920  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3921      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3922       SourceRange.Width == TargetRange.Width)) {
3923
3924    if (S.SourceMgr.isInSystemMacro(CC))
3925      return;
3926
3927    unsigned DiagID = diag::warn_impcast_integer_sign;
3928
3929    // Traditionally, gcc has warned about this under -Wsign-compare.
3930    // We also want to warn about it in -Wconversion.
3931    // So if -Wconversion is off, use a completely identical diagnostic
3932    // in the sign-compare group.
3933    // The conditional-checking code will
3934    if (ICContext) {
3935      DiagID = diag::warn_impcast_integer_sign_conditional;
3936      *ICContext = true;
3937    }
3938
3939    return DiagnoseImpCast(S, E, T, CC, DiagID);
3940  }
3941
3942  // Diagnose conversions between different enumeration types.
3943  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3944  // type, to give us better diagnostics.
3945  QualType SourceType = E->getType();
3946  if (!S.getLangOptions().CPlusPlus) {
3947    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3948      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3949        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3950        SourceType = S.Context.getTypeDeclType(Enum);
3951        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3952      }
3953  }
3954
3955  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3956    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3957      if ((SourceEnum->getDecl()->getIdentifier() ||
3958           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3959          (TargetEnum->getDecl()->getIdentifier() ||
3960           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3961          SourceEnum != TargetEnum) {
3962        if (S.SourceMgr.isInSystemMacro(CC))
3963          return;
3964
3965        return DiagnoseImpCast(S, E, SourceType, T, CC,
3966                               diag::warn_impcast_different_enum_types);
3967      }
3968
3969  return;
3970}
3971
3972void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3973
3974void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3975                             SourceLocation CC, bool &ICContext) {
3976  E = E->IgnoreParenImpCasts();
3977
3978  if (isa<ConditionalOperator>(E))
3979    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3980
3981  AnalyzeImplicitConversions(S, E, CC);
3982  if (E->getType() != T)
3983    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3984  return;
3985}
3986
3987void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3988  SourceLocation CC = E->getQuestionLoc();
3989
3990  AnalyzeImplicitConversions(S, E->getCond(), CC);
3991
3992  bool Suspicious = false;
3993  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3994  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3995
3996  // If -Wconversion would have warned about either of the candidates
3997  // for a signedness conversion to the context type...
3998  if (!Suspicious) return;
3999
4000  // ...but it's currently ignored...
4001  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4002                                 CC))
4003    return;
4004
4005  // ...then check whether it would have warned about either of the
4006  // candidates for a signedness conversion to the condition type.
4007  if (E->getType() == T) return;
4008
4009  Suspicious = false;
4010  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4011                          E->getType(), CC, &Suspicious);
4012  if (!Suspicious)
4013    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4014                            E->getType(), CC, &Suspicious);
4015}
4016
4017/// AnalyzeImplicitConversions - Find and report any interesting
4018/// implicit conversions in the given expression.  There are a couple
4019/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4020void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4021  QualType T = OrigE->getType();
4022  Expr *E = OrigE->IgnoreParenImpCasts();
4023
4024  if (E->isTypeDependent() || E->isValueDependent())
4025    return;
4026
4027  // For conditional operators, we analyze the arguments as if they
4028  // were being fed directly into the output.
4029  if (isa<ConditionalOperator>(E)) {
4030    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4031    CheckConditionalOperator(S, CO, T);
4032    return;
4033  }
4034
4035  // Go ahead and check any implicit conversions we might have skipped.
4036  // The non-canonical typecheck is just an optimization;
4037  // CheckImplicitConversion will filter out dead implicit conversions.
4038  if (E->getType() != T)
4039    CheckImplicitConversion(S, E, T, CC);
4040
4041  // Now continue drilling into this expression.
4042
4043  // Skip past explicit casts.
4044  if (isa<ExplicitCastExpr>(E)) {
4045    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4046    return AnalyzeImplicitConversions(S, E, CC);
4047  }
4048
4049  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4050    // Do a somewhat different check with comparison operators.
4051    if (BO->isComparisonOp())
4052      return AnalyzeComparison(S, BO);
4053
4054    // And with simple assignments.
4055    if (BO->getOpcode() == BO_Assign)
4056      return AnalyzeAssignment(S, BO);
4057  }
4058
4059  // These break the otherwise-useful invariant below.  Fortunately,
4060  // we don't really need to recurse into them, because any internal
4061  // expressions should have been analyzed already when they were
4062  // built into statements.
4063  if (isa<StmtExpr>(E)) return;
4064
4065  // Don't descend into unevaluated contexts.
4066  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4067
4068  // Now just recurse over the expression's children.
4069  CC = E->getExprLoc();
4070  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4071  bool IsLogicalOperator = BO && BO->isLogicalOp();
4072  for (Stmt::child_range I = E->children(); I; ++I) {
4073    Expr *ChildExpr = cast<Expr>(*I);
4074    if (IsLogicalOperator &&
4075        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4076      // Ignore checking string literals that are in logical operators.
4077      continue;
4078    AnalyzeImplicitConversions(S, ChildExpr, CC);
4079  }
4080}
4081
4082} // end anonymous namespace
4083
4084/// Diagnoses "dangerous" implicit conversions within the given
4085/// expression (which is a full expression).  Implements -Wconversion
4086/// and -Wsign-compare.
4087///
4088/// \param CC the "context" location of the implicit conversion, i.e.
4089///   the most location of the syntactic entity requiring the implicit
4090///   conversion
4091void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4092  // Don't diagnose in unevaluated contexts.
4093  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
4094    return;
4095
4096  // Don't diagnose for value- or type-dependent expressions.
4097  if (E->isTypeDependent() || E->isValueDependent())
4098    return;
4099
4100  // Check for array bounds violations in cases where the check isn't triggered
4101  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4102  // ArraySubscriptExpr is on the RHS of a variable initialization.
4103  CheckArrayAccess(E);
4104
4105  // This is not the right CC for (e.g.) a variable initialization.
4106  AnalyzeImplicitConversions(*this, E, CC);
4107}
4108
4109void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4110                                       FieldDecl *BitField,
4111                                       Expr *Init) {
4112  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4113}
4114
4115/// CheckParmsForFunctionDef - Check that the parameters of the given
4116/// function are appropriate for the definition of a function. This
4117/// takes care of any checks that cannot be performed on the
4118/// declaration itself, e.g., that the types of each of the function
4119/// parameters are complete.
4120bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4121                                    bool CheckParameterNames) {
4122  bool HasInvalidParm = false;
4123  for (; P != PEnd; ++P) {
4124    ParmVarDecl *Param = *P;
4125
4126    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4127    // function declarator that is part of a function definition of
4128    // that function shall not have incomplete type.
4129    //
4130    // This is also C++ [dcl.fct]p6.
4131    if (!Param->isInvalidDecl() &&
4132        RequireCompleteType(Param->getLocation(), Param->getType(),
4133                               diag::err_typecheck_decl_incomplete_type)) {
4134      Param->setInvalidDecl();
4135      HasInvalidParm = true;
4136    }
4137
4138    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4139    // declaration of each parameter shall include an identifier.
4140    if (CheckParameterNames &&
4141        Param->getIdentifier() == 0 &&
4142        !Param->isImplicit() &&
4143        !getLangOptions().CPlusPlus)
4144      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4145
4146    // C99 6.7.5.3p12:
4147    //   If the function declarator is not part of a definition of that
4148    //   function, parameters may have incomplete type and may use the [*]
4149    //   notation in their sequences of declarator specifiers to specify
4150    //   variable length array types.
4151    QualType PType = Param->getOriginalType();
4152    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4153      if (AT->getSizeModifier() == ArrayType::Star) {
4154        // FIXME: This diagnosic should point the the '[*]' if source-location
4155        // information is added for it.
4156        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4157      }
4158    }
4159  }
4160
4161  return HasInvalidParm;
4162}
4163
4164/// CheckCastAlign - Implements -Wcast-align, which warns when a
4165/// pointer cast increases the alignment requirements.
4166void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4167  // This is actually a lot of work to potentially be doing on every
4168  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4169  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4170                                          TRange.getBegin())
4171        == DiagnosticsEngine::Ignored)
4172    return;
4173
4174  // Ignore dependent types.
4175  if (T->isDependentType() || Op->getType()->isDependentType())
4176    return;
4177
4178  // Require that the destination be a pointer type.
4179  const PointerType *DestPtr = T->getAs<PointerType>();
4180  if (!DestPtr) return;
4181
4182  // If the destination has alignment 1, we're done.
4183  QualType DestPointee = DestPtr->getPointeeType();
4184  if (DestPointee->isIncompleteType()) return;
4185  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4186  if (DestAlign.isOne()) return;
4187
4188  // Require that the source be a pointer type.
4189  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4190  if (!SrcPtr) return;
4191  QualType SrcPointee = SrcPtr->getPointeeType();
4192
4193  // Whitelist casts from cv void*.  We already implicitly
4194  // whitelisted casts to cv void*, since they have alignment 1.
4195  // Also whitelist casts involving incomplete types, which implicitly
4196  // includes 'void'.
4197  if (SrcPointee->isIncompleteType()) return;
4198
4199  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4200  if (SrcAlign >= DestAlign) return;
4201
4202  Diag(TRange.getBegin(), diag::warn_cast_align)
4203    << Op->getType() << T
4204    << static_cast<unsigned>(SrcAlign.getQuantity())
4205    << static_cast<unsigned>(DestAlign.getQuantity())
4206    << TRange << Op->getSourceRange();
4207}
4208
4209static const Type* getElementType(const Expr *BaseExpr) {
4210  const Type* EltType = BaseExpr->getType().getTypePtr();
4211  if (EltType->isAnyPointerType())
4212    return EltType->getPointeeType().getTypePtr();
4213  else if (EltType->isArrayType())
4214    return EltType->getBaseElementTypeUnsafe();
4215  return EltType;
4216}
4217
4218/// \brief Check whether this array fits the idiom of a size-one tail padded
4219/// array member of a struct.
4220///
4221/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4222/// commonly used to emulate flexible arrays in C89 code.
4223static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4224                                    const NamedDecl *ND) {
4225  if (Size != 1 || !ND) return false;
4226
4227  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4228  if (!FD) return false;
4229
4230  // Don't consider sizes resulting from macro expansions or template argument
4231  // substitution to form C89 tail-padded arrays.
4232  ConstantArrayTypeLoc TL =
4233    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
4234  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
4235  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4236    return false;
4237
4238  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4239  if (!RD) return false;
4240  if (RD->isUnion()) return false;
4241  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4242    if (!CRD->isStandardLayout()) return false;
4243  }
4244
4245  // See if this is the last field decl in the record.
4246  const Decl *D = FD;
4247  while ((D = D->getNextDeclInContext()))
4248    if (isa<FieldDecl>(D))
4249      return false;
4250  return true;
4251}
4252
4253void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4254                            const ArraySubscriptExpr *ASE,
4255                            bool AllowOnePastEnd, bool IndexNegated) {
4256  IndexExpr = IndexExpr->IgnoreParenCasts();
4257  if (IndexExpr->isValueDependent())
4258    return;
4259
4260  const Type *EffectiveType = getElementType(BaseExpr);
4261  BaseExpr = BaseExpr->IgnoreParenCasts();
4262  const ConstantArrayType *ArrayTy =
4263    Context.getAsConstantArrayType(BaseExpr->getType());
4264  if (!ArrayTy)
4265    return;
4266
4267  llvm::APSInt index;
4268  if (!IndexExpr->EvaluateAsInt(index, Context))
4269    return;
4270  if (IndexNegated)
4271    index = -index;
4272
4273  const NamedDecl *ND = NULL;
4274  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4275    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4276  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4277    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4278
4279  if (index.isUnsigned() || !index.isNegative()) {
4280    llvm::APInt size = ArrayTy->getSize();
4281    if (!size.isStrictlyPositive())
4282      return;
4283
4284    const Type* BaseType = getElementType(BaseExpr);
4285    if (BaseType != EffectiveType) {
4286      // Make sure we're comparing apples to apples when comparing index to size
4287      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4288      uint64_t array_typesize = Context.getTypeSize(BaseType);
4289      // Handle ptrarith_typesize being zero, such as when casting to void*
4290      if (!ptrarith_typesize) ptrarith_typesize = 1;
4291      if (ptrarith_typesize != array_typesize) {
4292        // There's a cast to a different size type involved
4293        uint64_t ratio = array_typesize / ptrarith_typesize;
4294        // TODO: Be smarter about handling cases where array_typesize is not a
4295        // multiple of ptrarith_typesize
4296        if (ptrarith_typesize * ratio == array_typesize)
4297          size *= llvm::APInt(size.getBitWidth(), ratio);
4298      }
4299    }
4300
4301    if (size.getBitWidth() > index.getBitWidth())
4302      index = index.sext(size.getBitWidth());
4303    else if (size.getBitWidth() < index.getBitWidth())
4304      size = size.sext(index.getBitWidth());
4305
4306    // For array subscripting the index must be less than size, but for pointer
4307    // arithmetic also allow the index (offset) to be equal to size since
4308    // computing the next address after the end of the array is legal and
4309    // commonly done e.g. in C++ iterators and range-based for loops.
4310    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
4311      return;
4312
4313    // Also don't warn for arrays of size 1 which are members of some
4314    // structure. These are often used to approximate flexible arrays in C89
4315    // code.
4316    if (IsTailPaddedMemberArray(*this, size, ND))
4317      return;
4318
4319    // Suppress the warning if the subscript expression (as identified by the
4320    // ']' location) and the index expression are both from macro expansions
4321    // within a system header.
4322    if (ASE) {
4323      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4324          ASE->getRBracketLoc());
4325      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4326        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4327            IndexExpr->getLocStart());
4328        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4329          return;
4330      }
4331    }
4332
4333    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4334    if (ASE)
4335      DiagID = diag::warn_array_index_exceeds_bounds;
4336
4337    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4338                        PDiag(DiagID) << index.toString(10, true)
4339                          << size.toString(10, true)
4340                          << (unsigned)size.getLimitedValue(~0U)
4341                          << IndexExpr->getSourceRange());
4342  } else {
4343    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4344    if (!ASE) {
4345      DiagID = diag::warn_ptr_arith_precedes_bounds;
4346      if (index.isNegative()) index = -index;
4347    }
4348
4349    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4350                        PDiag(DiagID) << index.toString(10, true)
4351                          << IndexExpr->getSourceRange());
4352  }
4353
4354  if (!ND) {
4355    // Try harder to find a NamedDecl to point at in the note.
4356    while (const ArraySubscriptExpr *ASE =
4357           dyn_cast<ArraySubscriptExpr>(BaseExpr))
4358      BaseExpr = ASE->getBase()->IgnoreParenCasts();
4359    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4360      ND = dyn_cast<NamedDecl>(DRE->getDecl());
4361    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4362      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4363  }
4364
4365  if (ND)
4366    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4367                        PDiag(diag::note_array_index_out_of_bounds)
4368                          << ND->getDeclName());
4369}
4370
4371void Sema::CheckArrayAccess(const Expr *expr) {
4372  int AllowOnePastEnd = 0;
4373  while (expr) {
4374    expr = expr->IgnoreParenImpCasts();
4375    switch (expr->getStmtClass()) {
4376      case Stmt::ArraySubscriptExprClass: {
4377        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4378        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
4379                         AllowOnePastEnd > 0);
4380        return;
4381      }
4382      case Stmt::UnaryOperatorClass: {
4383        // Only unwrap the * and & unary operators
4384        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4385        expr = UO->getSubExpr();
4386        switch (UO->getOpcode()) {
4387          case UO_AddrOf:
4388            AllowOnePastEnd++;
4389            break;
4390          case UO_Deref:
4391            AllowOnePastEnd--;
4392            break;
4393          default:
4394            return;
4395        }
4396        break;
4397      }
4398      case Stmt::ConditionalOperatorClass: {
4399        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4400        if (const Expr *lhs = cond->getLHS())
4401          CheckArrayAccess(lhs);
4402        if (const Expr *rhs = cond->getRHS())
4403          CheckArrayAccess(rhs);
4404        return;
4405      }
4406      default:
4407        return;
4408    }
4409  }
4410}
4411
4412//===--- CHECK: Objective-C retain cycles ----------------------------------//
4413
4414namespace {
4415  struct RetainCycleOwner {
4416    RetainCycleOwner() : Variable(0), Indirect(false) {}
4417    VarDecl *Variable;
4418    SourceRange Range;
4419    SourceLocation Loc;
4420    bool Indirect;
4421
4422    void setLocsFrom(Expr *e) {
4423      Loc = e->getExprLoc();
4424      Range = e->getSourceRange();
4425    }
4426  };
4427}
4428
4429/// Consider whether capturing the given variable can possibly lead to
4430/// a retain cycle.
4431static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4432  // In ARC, it's captured strongly iff the variable has __strong
4433  // lifetime.  In MRR, it's captured strongly if the variable is
4434  // __block and has an appropriate type.
4435  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4436    return false;
4437
4438  owner.Variable = var;
4439  owner.setLocsFrom(ref);
4440  return true;
4441}
4442
4443static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
4444  while (true) {
4445    e = e->IgnoreParens();
4446    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4447      switch (cast->getCastKind()) {
4448      case CK_BitCast:
4449      case CK_LValueBitCast:
4450      case CK_LValueToRValue:
4451      case CK_ARCReclaimReturnedObject:
4452        e = cast->getSubExpr();
4453        continue;
4454
4455      default:
4456        return false;
4457      }
4458    }
4459
4460    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4461      ObjCIvarDecl *ivar = ref->getDecl();
4462      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4463        return false;
4464
4465      // Try to find a retain cycle in the base.
4466      if (!findRetainCycleOwner(S, ref->getBase(), owner))
4467        return false;
4468
4469      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4470      owner.Indirect = true;
4471      return true;
4472    }
4473
4474    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4475      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4476      if (!var) return false;
4477      return considerVariable(var, ref, owner);
4478    }
4479
4480    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
4481      owner.Variable = ref->getDecl();
4482      owner.setLocsFrom(ref);
4483      return true;
4484    }
4485
4486    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4487      if (member->isArrow()) return false;
4488
4489      // Don't count this as an indirect ownership.
4490      e = member->getBase();
4491      continue;
4492    }
4493
4494    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4495      // Only pay attention to pseudo-objects on property references.
4496      ObjCPropertyRefExpr *pre
4497        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4498                                              ->IgnoreParens());
4499      if (!pre) return false;
4500      if (pre->isImplicitProperty()) return false;
4501      ObjCPropertyDecl *property = pre->getExplicitProperty();
4502      if (!property->isRetaining() &&
4503          !(property->getPropertyIvarDecl() &&
4504            property->getPropertyIvarDecl()->getType()
4505              .getObjCLifetime() == Qualifiers::OCL_Strong))
4506          return false;
4507
4508      owner.Indirect = true;
4509      if (pre->isSuperReceiver()) {
4510        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
4511        if (!owner.Variable)
4512          return false;
4513        owner.Loc = pre->getLocation();
4514        owner.Range = pre->getSourceRange();
4515        return true;
4516      }
4517      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4518                              ->getSourceExpr());
4519      continue;
4520    }
4521
4522    // Array ivars?
4523
4524    return false;
4525  }
4526}
4527
4528namespace {
4529  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4530    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4531      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4532        Variable(variable), Capturer(0) {}
4533
4534    VarDecl *Variable;
4535    Expr *Capturer;
4536
4537    void VisitDeclRefExpr(DeclRefExpr *ref) {
4538      if (ref->getDecl() == Variable && !Capturer)
4539        Capturer = ref;
4540    }
4541
4542    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
4543      if (ref->getDecl() == Variable && !Capturer)
4544        Capturer = ref;
4545    }
4546
4547    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4548      if (Capturer) return;
4549      Visit(ref->getBase());
4550      if (Capturer && ref->isFreeIvar())
4551        Capturer = ref;
4552    }
4553
4554    void VisitBlockExpr(BlockExpr *block) {
4555      // Look inside nested blocks
4556      if (block->getBlockDecl()->capturesVariable(Variable))
4557        Visit(block->getBlockDecl()->getBody());
4558    }
4559  };
4560}
4561
4562/// Check whether the given argument is a block which captures a
4563/// variable.
4564static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4565  assert(owner.Variable && owner.Loc.isValid());
4566
4567  e = e->IgnoreParenCasts();
4568  BlockExpr *block = dyn_cast<BlockExpr>(e);
4569  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4570    return 0;
4571
4572  FindCaptureVisitor visitor(S.Context, owner.Variable);
4573  visitor.Visit(block->getBlockDecl()->getBody());
4574  return visitor.Capturer;
4575}
4576
4577static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4578                                RetainCycleOwner &owner) {
4579  assert(capturer);
4580  assert(owner.Variable && owner.Loc.isValid());
4581
4582  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4583    << owner.Variable << capturer->getSourceRange();
4584  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4585    << owner.Indirect << owner.Range;
4586}
4587
4588/// Check for a keyword selector that starts with the word 'add' or
4589/// 'set'.
4590static bool isSetterLikeSelector(Selector sel) {
4591  if (sel.isUnarySelector()) return false;
4592
4593  StringRef str = sel.getNameForSlot(0);
4594  while (!str.empty() && str.front() == '_') str = str.substr(1);
4595  if (str.startswith("set"))
4596    str = str.substr(3);
4597  else if (str.startswith("add")) {
4598    // Specially whitelist 'addOperationWithBlock:'.
4599    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
4600      return false;
4601    str = str.substr(3);
4602  }
4603  else
4604    return false;
4605
4606  if (str.empty()) return true;
4607  return !islower(str.front());
4608}
4609
4610/// Check a message send to see if it's likely to cause a retain cycle.
4611void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4612  // Only check instance methods whose selector looks like a setter.
4613  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4614    return;
4615
4616  // Try to find a variable that the receiver is strongly owned by.
4617  RetainCycleOwner owner;
4618  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4619    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
4620      return;
4621  } else {
4622    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4623    owner.Variable = getCurMethodDecl()->getSelfDecl();
4624    owner.Loc = msg->getSuperLoc();
4625    owner.Range = msg->getSuperLoc();
4626  }
4627
4628  // Check whether the receiver is captured by any of the arguments.
4629  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4630    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4631      return diagnoseRetainCycle(*this, capturer, owner);
4632}
4633
4634/// Check a property assign to see if it's likely to cause a retain cycle.
4635void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4636  RetainCycleOwner owner;
4637  if (!findRetainCycleOwner(*this, receiver, owner))
4638    return;
4639
4640  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4641    diagnoseRetainCycle(*this, capturer, owner);
4642}
4643
4644bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4645                              QualType LHS, Expr *RHS) {
4646  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4647  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4648    return false;
4649  // strip off any implicit cast added to get to the one arc-specific
4650  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4651    if (cast->getCastKind() == CK_ARCConsumeObject) {
4652      Diag(Loc, diag::warn_arc_retained_assign)
4653        << (LT == Qualifiers::OCL_ExplicitNone)
4654        << RHS->getSourceRange();
4655      return true;
4656    }
4657    RHS = cast->getSubExpr();
4658  }
4659  return false;
4660}
4661
4662void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4663                              Expr *LHS, Expr *RHS) {
4664  QualType LHSType;
4665  // PropertyRef on LHS type need be directly obtained from
4666  // its declaration as it has a PsuedoType.
4667  ObjCPropertyRefExpr *PRE
4668    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
4669  if (PRE && !PRE->isImplicitProperty()) {
4670    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4671    if (PD)
4672      LHSType = PD->getType();
4673  }
4674
4675  if (LHSType.isNull())
4676    LHSType = LHS->getType();
4677  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4678    return;
4679  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4680  // FIXME. Check for other life times.
4681  if (LT != Qualifiers::OCL_None)
4682    return;
4683
4684  if (PRE) {
4685    if (PRE->isImplicitProperty())
4686      return;
4687    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4688    if (!PD)
4689      return;
4690
4691    unsigned Attributes = PD->getPropertyAttributes();
4692    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
4693      // when 'assign' attribute was not explicitly specified
4694      // by user, ignore it and rely on property type itself
4695      // for lifetime info.
4696      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
4697      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
4698          LHSType->isObjCRetainableType())
4699        return;
4700
4701      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4702        if (cast->getCastKind() == CK_ARCConsumeObject) {
4703          Diag(Loc, diag::warn_arc_retained_property_assign)
4704          << RHS->getSourceRange();
4705          return;
4706        }
4707        RHS = cast->getSubExpr();
4708      }
4709    }
4710  }
4711}
4712