SemaChecking.cpp revision 29c3f814b64808c6dac4597b61a50ceecdf141fc
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/StmtObjC.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "clang/Basic/TargetBuiltins.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include <limits>
39using namespace clang;
40using namespace sema;
41
42SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43                                                    unsigned ByteNo) const {
44  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
45                               PP.getLangOptions(), PP.getTargetInfo());
46}
47
48bool Sema::CheckablePrintfAttr(const FormatAttr *Format, Expr **Args,
49                               unsigned NumArgs, bool IsCXXMemberCall) {
50  StringRef Type = Format->getType();
51  // FIXME: add support for "CFString" Type. They are not string literal though,
52  // so they need special handling.
53  if (Type == "printf" || Type == "NSString") return true;
54  if (Type == "printf0") {
55    // printf0 allows null "format" string; if so don't check format/args
56    unsigned format_idx = Format->getFormatIdx() - 1;
57    // Does the index refer to the implicit object argument?
58    if (IsCXXMemberCall) {
59      if (format_idx == 0)
60        return false;
61      --format_idx;
62    }
63    if (format_idx < NumArgs) {
64      Expr *Format = Args[format_idx]->IgnoreParenCasts();
65      if (!Format->isNullPointerConstant(Context,
66                                         Expr::NPC_ValueDependentIsNull))
67        return true;
68    }
69  }
70  return false;
71}
72
73/// Checks that a call expression's argument count is the desired number.
74/// This is useful when doing custom type-checking.  Returns true on error.
75static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
76  unsigned argCount = call->getNumArgs();
77  if (argCount == desiredArgCount) return false;
78
79  if (argCount < desiredArgCount)
80    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
81        << 0 /*function call*/ << desiredArgCount << argCount
82        << call->getSourceRange();
83
84  // Highlight all the excess arguments.
85  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
86                    call->getArg(argCount - 1)->getLocEnd());
87
88  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
89    << 0 /*function call*/ << desiredArgCount << argCount
90    << call->getArg(1)->getSourceRange();
91}
92
93/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
94/// annotation is a non wide string literal.
95static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
96  Arg = Arg->IgnoreParenCasts();
97  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
98  if (!Literal || !Literal->isAscii()) {
99    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
100      << Arg->getSourceRange();
101    return true;
102  }
103  return false;
104}
105
106ExprResult
107Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
108  ExprResult TheCallResult(Owned(TheCall));
109
110  // Find out if any arguments are required to be integer constant expressions.
111  unsigned ICEArguments = 0;
112  ASTContext::GetBuiltinTypeError Error;
113  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
114  if (Error != ASTContext::GE_None)
115    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
116
117  // If any arguments are required to be ICE's, check and diagnose.
118  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
119    // Skip arguments not required to be ICE's.
120    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
121
122    llvm::APSInt Result;
123    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
124      return true;
125    ICEArguments &= ~(1 << ArgNo);
126  }
127
128  switch (BuiltinID) {
129  case Builtin::BI__builtin___CFStringMakeConstantString:
130    assert(TheCall->getNumArgs() == 1 &&
131           "Wrong # arguments to builtin CFStringMakeConstantString");
132    if (CheckObjCString(TheCall->getArg(0)))
133      return ExprError();
134    break;
135  case Builtin::BI__builtin_stdarg_start:
136  case Builtin::BI__builtin_va_start:
137    if (SemaBuiltinVAStart(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_isgreater:
141  case Builtin::BI__builtin_isgreaterequal:
142  case Builtin::BI__builtin_isless:
143  case Builtin::BI__builtin_islessequal:
144  case Builtin::BI__builtin_islessgreater:
145  case Builtin::BI__builtin_isunordered:
146    if (SemaBuiltinUnorderedCompare(TheCall))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_fpclassify:
150    if (SemaBuiltinFPClassification(TheCall, 6))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_isfinite:
154  case Builtin::BI__builtin_isinf:
155  case Builtin::BI__builtin_isinf_sign:
156  case Builtin::BI__builtin_isnan:
157  case Builtin::BI__builtin_isnormal:
158    if (SemaBuiltinFPClassification(TheCall, 1))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_shufflevector:
162    return SemaBuiltinShuffleVector(TheCall);
163    // TheCall will be freed by the smart pointer here, but that's fine, since
164    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
165  case Builtin::BI__builtin_prefetch:
166    if (SemaBuiltinPrefetch(TheCall))
167      return ExprError();
168    break;
169  case Builtin::BI__builtin_object_size:
170    if (SemaBuiltinObjectSize(TheCall))
171      return ExprError();
172    break;
173  case Builtin::BI__builtin_longjmp:
174    if (SemaBuiltinLongjmp(TheCall))
175      return ExprError();
176    break;
177
178  case Builtin::BI__builtin_classify_type:
179    if (checkArgCount(*this, TheCall, 1)) return true;
180    TheCall->setType(Context.IntTy);
181    break;
182  case Builtin::BI__builtin_constant_p:
183    if (checkArgCount(*this, TheCall, 1)) return true;
184    TheCall->setType(Context.IntTy);
185    break;
186  case Builtin::BI__sync_fetch_and_add:
187  case Builtin::BI__sync_fetch_and_add_1:
188  case Builtin::BI__sync_fetch_and_add_2:
189  case Builtin::BI__sync_fetch_and_add_4:
190  case Builtin::BI__sync_fetch_and_add_8:
191  case Builtin::BI__sync_fetch_and_add_16:
192  case Builtin::BI__sync_fetch_and_sub:
193  case Builtin::BI__sync_fetch_and_sub_1:
194  case Builtin::BI__sync_fetch_and_sub_2:
195  case Builtin::BI__sync_fetch_and_sub_4:
196  case Builtin::BI__sync_fetch_and_sub_8:
197  case Builtin::BI__sync_fetch_and_sub_16:
198  case Builtin::BI__sync_fetch_and_or:
199  case Builtin::BI__sync_fetch_and_or_1:
200  case Builtin::BI__sync_fetch_and_or_2:
201  case Builtin::BI__sync_fetch_and_or_4:
202  case Builtin::BI__sync_fetch_and_or_8:
203  case Builtin::BI__sync_fetch_and_or_16:
204  case Builtin::BI__sync_fetch_and_and:
205  case Builtin::BI__sync_fetch_and_and_1:
206  case Builtin::BI__sync_fetch_and_and_2:
207  case Builtin::BI__sync_fetch_and_and_4:
208  case Builtin::BI__sync_fetch_and_and_8:
209  case Builtin::BI__sync_fetch_and_and_16:
210  case Builtin::BI__sync_fetch_and_xor:
211  case Builtin::BI__sync_fetch_and_xor_1:
212  case Builtin::BI__sync_fetch_and_xor_2:
213  case Builtin::BI__sync_fetch_and_xor_4:
214  case Builtin::BI__sync_fetch_and_xor_8:
215  case Builtin::BI__sync_fetch_and_xor_16:
216  case Builtin::BI__sync_add_and_fetch:
217  case Builtin::BI__sync_add_and_fetch_1:
218  case Builtin::BI__sync_add_and_fetch_2:
219  case Builtin::BI__sync_add_and_fetch_4:
220  case Builtin::BI__sync_add_and_fetch_8:
221  case Builtin::BI__sync_add_and_fetch_16:
222  case Builtin::BI__sync_sub_and_fetch:
223  case Builtin::BI__sync_sub_and_fetch_1:
224  case Builtin::BI__sync_sub_and_fetch_2:
225  case Builtin::BI__sync_sub_and_fetch_4:
226  case Builtin::BI__sync_sub_and_fetch_8:
227  case Builtin::BI__sync_sub_and_fetch_16:
228  case Builtin::BI__sync_and_and_fetch:
229  case Builtin::BI__sync_and_and_fetch_1:
230  case Builtin::BI__sync_and_and_fetch_2:
231  case Builtin::BI__sync_and_and_fetch_4:
232  case Builtin::BI__sync_and_and_fetch_8:
233  case Builtin::BI__sync_and_and_fetch_16:
234  case Builtin::BI__sync_or_and_fetch:
235  case Builtin::BI__sync_or_and_fetch_1:
236  case Builtin::BI__sync_or_and_fetch_2:
237  case Builtin::BI__sync_or_and_fetch_4:
238  case Builtin::BI__sync_or_and_fetch_8:
239  case Builtin::BI__sync_or_and_fetch_16:
240  case Builtin::BI__sync_xor_and_fetch:
241  case Builtin::BI__sync_xor_and_fetch_1:
242  case Builtin::BI__sync_xor_and_fetch_2:
243  case Builtin::BI__sync_xor_and_fetch_4:
244  case Builtin::BI__sync_xor_and_fetch_8:
245  case Builtin::BI__sync_xor_and_fetch_16:
246  case Builtin::BI__sync_val_compare_and_swap:
247  case Builtin::BI__sync_val_compare_and_swap_1:
248  case Builtin::BI__sync_val_compare_and_swap_2:
249  case Builtin::BI__sync_val_compare_and_swap_4:
250  case Builtin::BI__sync_val_compare_and_swap_8:
251  case Builtin::BI__sync_val_compare_and_swap_16:
252  case Builtin::BI__sync_bool_compare_and_swap:
253  case Builtin::BI__sync_bool_compare_and_swap_1:
254  case Builtin::BI__sync_bool_compare_and_swap_2:
255  case Builtin::BI__sync_bool_compare_and_swap_4:
256  case Builtin::BI__sync_bool_compare_and_swap_8:
257  case Builtin::BI__sync_bool_compare_and_swap_16:
258  case Builtin::BI__sync_lock_test_and_set:
259  case Builtin::BI__sync_lock_test_and_set_1:
260  case Builtin::BI__sync_lock_test_and_set_2:
261  case Builtin::BI__sync_lock_test_and_set_4:
262  case Builtin::BI__sync_lock_test_and_set_8:
263  case Builtin::BI__sync_lock_test_and_set_16:
264  case Builtin::BI__sync_lock_release:
265  case Builtin::BI__sync_lock_release_1:
266  case Builtin::BI__sync_lock_release_2:
267  case Builtin::BI__sync_lock_release_4:
268  case Builtin::BI__sync_lock_release_8:
269  case Builtin::BI__sync_lock_release_16:
270  case Builtin::BI__sync_swap:
271  case Builtin::BI__sync_swap_1:
272  case Builtin::BI__sync_swap_2:
273  case Builtin::BI__sync_swap_4:
274  case Builtin::BI__sync_swap_8:
275  case Builtin::BI__sync_swap_16:
276    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
277  case Builtin::BI__atomic_load:
278    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Load);
279  case Builtin::BI__atomic_store:
280    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Store);
281  case Builtin::BI__atomic_init:
282    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Init);
283  case Builtin::BI__atomic_exchange:
284    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xchg);
285  case Builtin::BI__atomic_compare_exchange_strong:
286    return SemaAtomicOpsOverloaded(move(TheCallResult),
287                                   AtomicExpr::CmpXchgStrong);
288  case Builtin::BI__atomic_compare_exchange_weak:
289    return SemaAtomicOpsOverloaded(move(TheCallResult),
290                                   AtomicExpr::CmpXchgWeak);
291  case Builtin::BI__atomic_fetch_add:
292    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Add);
293  case Builtin::BI__atomic_fetch_sub:
294    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Sub);
295  case Builtin::BI__atomic_fetch_and:
296    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::And);
297  case Builtin::BI__atomic_fetch_or:
298    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Or);
299  case Builtin::BI__atomic_fetch_xor:
300    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xor);
301  case Builtin::BI__builtin_annotation:
302    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
303      return ExprError();
304    break;
305  }
306
307  // Since the target specific builtins for each arch overlap, only check those
308  // of the arch we are compiling for.
309  if (BuiltinID >= Builtin::FirstTSBuiltin) {
310    switch (Context.getTargetInfo().getTriple().getArch()) {
311      case llvm::Triple::arm:
312      case llvm::Triple::thumb:
313        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
314          return ExprError();
315        break;
316      default:
317        break;
318    }
319  }
320
321  return move(TheCallResult);
322}
323
324// Get the valid immediate range for the specified NEON type code.
325static unsigned RFT(unsigned t, bool shift = false) {
326  NeonTypeFlags Type(t);
327  int IsQuad = Type.isQuad();
328  switch (Type.getEltType()) {
329  case NeonTypeFlags::Int8:
330  case NeonTypeFlags::Poly8:
331    return shift ? 7 : (8 << IsQuad) - 1;
332  case NeonTypeFlags::Int16:
333  case NeonTypeFlags::Poly16:
334    return shift ? 15 : (4 << IsQuad) - 1;
335  case NeonTypeFlags::Int32:
336    return shift ? 31 : (2 << IsQuad) - 1;
337  case NeonTypeFlags::Int64:
338    return shift ? 63 : (1 << IsQuad) - 1;
339  case NeonTypeFlags::Float16:
340    assert(!shift && "cannot shift float types!");
341    return (4 << IsQuad) - 1;
342  case NeonTypeFlags::Float32:
343    assert(!shift && "cannot shift float types!");
344    return (2 << IsQuad) - 1;
345  }
346  llvm_unreachable("Invalid NeonTypeFlag!");
347}
348
349/// getNeonEltType - Return the QualType corresponding to the elements of
350/// the vector type specified by the NeonTypeFlags.  This is used to check
351/// the pointer arguments for Neon load/store intrinsics.
352static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
353  switch (Flags.getEltType()) {
354  case NeonTypeFlags::Int8:
355    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
356  case NeonTypeFlags::Int16:
357    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
358  case NeonTypeFlags::Int32:
359    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
360  case NeonTypeFlags::Int64:
361    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
362  case NeonTypeFlags::Poly8:
363    return Context.SignedCharTy;
364  case NeonTypeFlags::Poly16:
365    return Context.ShortTy;
366  case NeonTypeFlags::Float16:
367    return Context.UnsignedShortTy;
368  case NeonTypeFlags::Float32:
369    return Context.FloatTy;
370  }
371  llvm_unreachable("Invalid NeonTypeFlag!");
372}
373
374bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
375  llvm::APSInt Result;
376
377  unsigned mask = 0;
378  unsigned TV = 0;
379  int PtrArgNum = -1;
380  bool HasConstPtr = false;
381  switch (BuiltinID) {
382#define GET_NEON_OVERLOAD_CHECK
383#include "clang/Basic/arm_neon.inc"
384#undef GET_NEON_OVERLOAD_CHECK
385  }
386
387  // For NEON intrinsics which are overloaded on vector element type, validate
388  // the immediate which specifies which variant to emit.
389  unsigned ImmArg = TheCall->getNumArgs()-1;
390  if (mask) {
391    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
392      return true;
393
394    TV = Result.getLimitedValue(64);
395    if ((TV > 63) || (mask & (1 << TV)) == 0)
396      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
397        << TheCall->getArg(ImmArg)->getSourceRange();
398  }
399
400  if (PtrArgNum >= 0) {
401    // Check that pointer arguments have the specified type.
402    Expr *Arg = TheCall->getArg(PtrArgNum);
403    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
404      Arg = ICE->getSubExpr();
405    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
406    QualType RHSTy = RHS.get()->getType();
407    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
408    if (HasConstPtr)
409      EltTy = EltTy.withConst();
410    QualType LHSTy = Context.getPointerType(EltTy);
411    AssignConvertType ConvTy;
412    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
413    if (RHS.isInvalid())
414      return true;
415    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
416                                 RHS.get(), AA_Assigning))
417      return true;
418  }
419
420  // For NEON intrinsics which take an immediate value as part of the
421  // instruction, range check them here.
422  unsigned i = 0, l = 0, u = 0;
423  switch (BuiltinID) {
424  default: return false;
425  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
426  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
427  case ARM::BI__builtin_arm_vcvtr_f:
428  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
429#define GET_NEON_IMMEDIATE_CHECK
430#include "clang/Basic/arm_neon.inc"
431#undef GET_NEON_IMMEDIATE_CHECK
432  };
433
434  // Check that the immediate argument is actually a constant.
435  if (SemaBuiltinConstantArg(TheCall, i, Result))
436    return true;
437
438  // Range check against the upper/lower values for this isntruction.
439  unsigned Val = Result.getZExtValue();
440  if (Val < l || Val > (u + l))
441    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
442      << l << u+l << TheCall->getArg(i)->getSourceRange();
443
444  // FIXME: VFP Intrinsics should error if VFP not present.
445  return false;
446}
447
448/// CheckFunctionCall - Check a direct function call for various correctness
449/// and safety properties not strictly enforced by the C type system.
450bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
451  // Get the IdentifierInfo* for the called function.
452  IdentifierInfo *FnInfo = FDecl->getIdentifier();
453
454  // None of the checks below are needed for functions that don't have
455  // simple names (e.g., C++ conversion functions).
456  if (!FnInfo)
457    return false;
458
459  // FIXME: This mechanism should be abstracted to be less fragile and
460  // more efficient. For example, just map function ids to custom
461  // handlers.
462
463  // Printf and scanf checking.
464  for (specific_attr_iterator<FormatAttr>
465         i = FDecl->specific_attr_begin<FormatAttr>(),
466         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
467    CheckFormatArguments(*i, TheCall);
468  }
469
470  for (specific_attr_iterator<NonNullAttr>
471         i = FDecl->specific_attr_begin<NonNullAttr>(),
472         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
473    CheckNonNullArguments(*i, TheCall->getArgs(),
474                          TheCall->getCallee()->getLocStart());
475  }
476
477  unsigned CMId = FDecl->getMemoryFunctionKind();
478  if (CMId == 0)
479    return false;
480
481  // Handle memory setting and copying functions.
482  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
483    CheckStrlcpycatArguments(TheCall, FnInfo);
484  else
485    CheckMemaccessArguments(TheCall, CMId, FnInfo);
486
487  return false;
488}
489
490bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
491                               Expr **Args, unsigned NumArgs) {
492  for (specific_attr_iterator<FormatAttr>
493       i = Method->specific_attr_begin<FormatAttr>(),
494       e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
495
496    CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
497                         Method->getSourceRange());
498  }
499
500  // diagnose nonnull arguments.
501  for (specific_attr_iterator<NonNullAttr>
502       i = Method->specific_attr_begin<NonNullAttr>(),
503       e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
504    CheckNonNullArguments(*i, Args, lbrac);
505  }
506
507  return false;
508}
509
510bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
511  // Printf checking.
512  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
513  if (!Format)
514    return false;
515
516  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
517  if (!V)
518    return false;
519
520  QualType Ty = V->getType();
521  if (!Ty->isBlockPointerType())
522    return false;
523
524  CheckFormatArguments(Format, TheCall);
525
526  return false;
527}
528
529ExprResult
530Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op) {
531  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
532  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
533
534  // All these operations take one of the following four forms:
535  // T   __atomic_load(_Atomic(T)*, int)                              (loads)
536  // T*  __atomic_add(_Atomic(T*)*, ptrdiff_t, int)         (pointer add/sub)
537  // int __atomic_compare_exchange_strong(_Atomic(T)*, T*, T, int, int)
538  //                                                                (cmpxchg)
539  // T   __atomic_exchange(_Atomic(T)*, T, int)             (everything else)
540  // where T is an appropriate type, and the int paremeterss are for orderings.
541  unsigned NumVals = 1;
542  unsigned NumOrders = 1;
543  if (Op == AtomicExpr::Load) {
544    NumVals = 0;
545  } else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong) {
546    NumVals = 2;
547    NumOrders = 2;
548  }
549  if (Op == AtomicExpr::Init)
550    NumOrders = 0;
551
552  if (TheCall->getNumArgs() < NumVals+NumOrders+1) {
553    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
554      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
555      << TheCall->getCallee()->getSourceRange();
556    return ExprError();
557  } else if (TheCall->getNumArgs() > NumVals+NumOrders+1) {
558    Diag(TheCall->getArg(NumVals+NumOrders+1)->getLocStart(),
559         diag::err_typecheck_call_too_many_args)
560      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
561      << TheCall->getCallee()->getSourceRange();
562    return ExprError();
563  }
564
565  // Inspect the first argument of the atomic operation.  This should always be
566  // a pointer to an _Atomic type.
567  Expr *Ptr = TheCall->getArg(0);
568  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
569  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
570  if (!pointerType) {
571    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
572      << Ptr->getType() << Ptr->getSourceRange();
573    return ExprError();
574  }
575
576  QualType AtomTy = pointerType->getPointeeType();
577  if (!AtomTy->isAtomicType()) {
578    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
579      << Ptr->getType() << Ptr->getSourceRange();
580    return ExprError();
581  }
582  QualType ValType = AtomTy->getAs<AtomicType>()->getValueType();
583
584  if ((Op == AtomicExpr::Add || Op == AtomicExpr::Sub) &&
585      !ValType->isIntegerType() && !ValType->isPointerType()) {
586    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
587      << Ptr->getType() << Ptr->getSourceRange();
588    return ExprError();
589  }
590
591  if (!ValType->isIntegerType() &&
592      (Op == AtomicExpr::And || Op == AtomicExpr::Or || Op == AtomicExpr::Xor)){
593    Diag(DRE->getLocStart(), diag::err_atomic_op_logical_needs_atomic_int)
594      << Ptr->getType() << Ptr->getSourceRange();
595    return ExprError();
596  }
597
598  switch (ValType.getObjCLifetime()) {
599  case Qualifiers::OCL_None:
600  case Qualifiers::OCL_ExplicitNone:
601    // okay
602    break;
603
604  case Qualifiers::OCL_Weak:
605  case Qualifiers::OCL_Strong:
606  case Qualifiers::OCL_Autoreleasing:
607    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
608      << ValType << Ptr->getSourceRange();
609    return ExprError();
610  }
611
612  QualType ResultType = ValType;
613  if (Op == AtomicExpr::Store || Op == AtomicExpr::Init)
614    ResultType = Context.VoidTy;
615  else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong)
616    ResultType = Context.BoolTy;
617
618  // The first argument --- the pointer --- has a fixed type; we
619  // deduce the types of the rest of the arguments accordingly.  Walk
620  // the remaining arguments, converting them to the deduced value type.
621  for (unsigned i = 1; i != NumVals+NumOrders+1; ++i) {
622    ExprResult Arg = TheCall->getArg(i);
623    QualType Ty;
624    if (i < NumVals+1) {
625      // The second argument to a cmpxchg is a pointer to the data which will
626      // be exchanged. The second argument to a pointer add/subtract is the
627      // amount to add/subtract, which must be a ptrdiff_t.  The third
628      // argument to a cmpxchg and the second argument in all other cases
629      // is the type of the value.
630      if (i == 1 && (Op == AtomicExpr::CmpXchgWeak ||
631                     Op == AtomicExpr::CmpXchgStrong))
632         Ty = Context.getPointerType(ValType.getUnqualifiedType());
633      else if (!ValType->isIntegerType() &&
634               (Op == AtomicExpr::Add || Op == AtomicExpr::Sub))
635        Ty = Context.getPointerDiffType();
636      else
637        Ty = ValType;
638    } else {
639      // The order(s) are always converted to int.
640      Ty = Context.IntTy;
641    }
642    InitializedEntity Entity =
643        InitializedEntity::InitializeParameter(Context, Ty, false);
644    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
645    if (Arg.isInvalid())
646      return true;
647    TheCall->setArg(i, Arg.get());
648  }
649
650  SmallVector<Expr*, 5> SubExprs;
651  SubExprs.push_back(Ptr);
652  if (Op == AtomicExpr::Load) {
653    SubExprs.push_back(TheCall->getArg(1)); // Order
654  } else if (Op == AtomicExpr::Init) {
655    SubExprs.push_back(TheCall->getArg(1)); // Val1
656  } else if (Op != AtomicExpr::CmpXchgWeak && Op != AtomicExpr::CmpXchgStrong) {
657    SubExprs.push_back(TheCall->getArg(2)); // Order
658    SubExprs.push_back(TheCall->getArg(1)); // Val1
659  } else {
660    SubExprs.push_back(TheCall->getArg(3)); // Order
661    SubExprs.push_back(TheCall->getArg(1)); // Val1
662    SubExprs.push_back(TheCall->getArg(2)); // Val2
663    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
664  }
665
666  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
667                                        SubExprs.data(), SubExprs.size(),
668                                        ResultType, Op,
669                                        TheCall->getRParenLoc()));
670}
671
672
673/// checkBuiltinArgument - Given a call to a builtin function, perform
674/// normal type-checking on the given argument, updating the call in
675/// place.  This is useful when a builtin function requires custom
676/// type-checking for some of its arguments but not necessarily all of
677/// them.
678///
679/// Returns true on error.
680static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
681  FunctionDecl *Fn = E->getDirectCallee();
682  assert(Fn && "builtin call without direct callee!");
683
684  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
685  InitializedEntity Entity =
686    InitializedEntity::InitializeParameter(S.Context, Param);
687
688  ExprResult Arg = E->getArg(0);
689  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
690  if (Arg.isInvalid())
691    return true;
692
693  E->setArg(ArgIndex, Arg.take());
694  return false;
695}
696
697/// SemaBuiltinAtomicOverloaded - We have a call to a function like
698/// __sync_fetch_and_add, which is an overloaded function based on the pointer
699/// type of its first argument.  The main ActOnCallExpr routines have already
700/// promoted the types of arguments because all of these calls are prototyped as
701/// void(...).
702///
703/// This function goes through and does final semantic checking for these
704/// builtins,
705ExprResult
706Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
707  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
708  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
709  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
710
711  // Ensure that we have at least one argument to do type inference from.
712  if (TheCall->getNumArgs() < 1) {
713    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
714      << 0 << 1 << TheCall->getNumArgs()
715      << TheCall->getCallee()->getSourceRange();
716    return ExprError();
717  }
718
719  // Inspect the first argument of the atomic builtin.  This should always be
720  // a pointer type, whose element is an integral scalar or pointer type.
721  // Because it is a pointer type, we don't have to worry about any implicit
722  // casts here.
723  // FIXME: We don't allow floating point scalars as input.
724  Expr *FirstArg = TheCall->getArg(0);
725  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
726  if (!pointerType) {
727    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
728      << FirstArg->getType() << FirstArg->getSourceRange();
729    return ExprError();
730  }
731
732  QualType ValType = pointerType->getPointeeType();
733  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
734      !ValType->isBlockPointerType()) {
735    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
736      << FirstArg->getType() << FirstArg->getSourceRange();
737    return ExprError();
738  }
739
740  switch (ValType.getObjCLifetime()) {
741  case Qualifiers::OCL_None:
742  case Qualifiers::OCL_ExplicitNone:
743    // okay
744    break;
745
746  case Qualifiers::OCL_Weak:
747  case Qualifiers::OCL_Strong:
748  case Qualifiers::OCL_Autoreleasing:
749    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
750      << ValType << FirstArg->getSourceRange();
751    return ExprError();
752  }
753
754  // Strip any qualifiers off ValType.
755  ValType = ValType.getUnqualifiedType();
756
757  // The majority of builtins return a value, but a few have special return
758  // types, so allow them to override appropriately below.
759  QualType ResultType = ValType;
760
761  // We need to figure out which concrete builtin this maps onto.  For example,
762  // __sync_fetch_and_add with a 2 byte object turns into
763  // __sync_fetch_and_add_2.
764#define BUILTIN_ROW(x) \
765  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
766    Builtin::BI##x##_8, Builtin::BI##x##_16 }
767
768  static const unsigned BuiltinIndices[][5] = {
769    BUILTIN_ROW(__sync_fetch_and_add),
770    BUILTIN_ROW(__sync_fetch_and_sub),
771    BUILTIN_ROW(__sync_fetch_and_or),
772    BUILTIN_ROW(__sync_fetch_and_and),
773    BUILTIN_ROW(__sync_fetch_and_xor),
774
775    BUILTIN_ROW(__sync_add_and_fetch),
776    BUILTIN_ROW(__sync_sub_and_fetch),
777    BUILTIN_ROW(__sync_and_and_fetch),
778    BUILTIN_ROW(__sync_or_and_fetch),
779    BUILTIN_ROW(__sync_xor_and_fetch),
780
781    BUILTIN_ROW(__sync_val_compare_and_swap),
782    BUILTIN_ROW(__sync_bool_compare_and_swap),
783    BUILTIN_ROW(__sync_lock_test_and_set),
784    BUILTIN_ROW(__sync_lock_release),
785    BUILTIN_ROW(__sync_swap)
786  };
787#undef BUILTIN_ROW
788
789  // Determine the index of the size.
790  unsigned SizeIndex;
791  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
792  case 1: SizeIndex = 0; break;
793  case 2: SizeIndex = 1; break;
794  case 4: SizeIndex = 2; break;
795  case 8: SizeIndex = 3; break;
796  case 16: SizeIndex = 4; break;
797  default:
798    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
799      << FirstArg->getType() << FirstArg->getSourceRange();
800    return ExprError();
801  }
802
803  // Each of these builtins has one pointer argument, followed by some number of
804  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
805  // that we ignore.  Find out which row of BuiltinIndices to read from as well
806  // as the number of fixed args.
807  unsigned BuiltinID = FDecl->getBuiltinID();
808  unsigned BuiltinIndex, NumFixed = 1;
809  switch (BuiltinID) {
810  default: llvm_unreachable("Unknown overloaded atomic builtin!");
811  case Builtin::BI__sync_fetch_and_add:
812  case Builtin::BI__sync_fetch_and_add_1:
813  case Builtin::BI__sync_fetch_and_add_2:
814  case Builtin::BI__sync_fetch_and_add_4:
815  case Builtin::BI__sync_fetch_and_add_8:
816  case Builtin::BI__sync_fetch_and_add_16:
817    BuiltinIndex = 0;
818    break;
819
820  case Builtin::BI__sync_fetch_and_sub:
821  case Builtin::BI__sync_fetch_and_sub_1:
822  case Builtin::BI__sync_fetch_and_sub_2:
823  case Builtin::BI__sync_fetch_and_sub_4:
824  case Builtin::BI__sync_fetch_and_sub_8:
825  case Builtin::BI__sync_fetch_and_sub_16:
826    BuiltinIndex = 1;
827    break;
828
829  case Builtin::BI__sync_fetch_and_or:
830  case Builtin::BI__sync_fetch_and_or_1:
831  case Builtin::BI__sync_fetch_and_or_2:
832  case Builtin::BI__sync_fetch_and_or_4:
833  case Builtin::BI__sync_fetch_and_or_8:
834  case Builtin::BI__sync_fetch_and_or_16:
835    BuiltinIndex = 2;
836    break;
837
838  case Builtin::BI__sync_fetch_and_and:
839  case Builtin::BI__sync_fetch_and_and_1:
840  case Builtin::BI__sync_fetch_and_and_2:
841  case Builtin::BI__sync_fetch_and_and_4:
842  case Builtin::BI__sync_fetch_and_and_8:
843  case Builtin::BI__sync_fetch_and_and_16:
844    BuiltinIndex = 3;
845    break;
846
847  case Builtin::BI__sync_fetch_and_xor:
848  case Builtin::BI__sync_fetch_and_xor_1:
849  case Builtin::BI__sync_fetch_and_xor_2:
850  case Builtin::BI__sync_fetch_and_xor_4:
851  case Builtin::BI__sync_fetch_and_xor_8:
852  case Builtin::BI__sync_fetch_and_xor_16:
853    BuiltinIndex = 4;
854    break;
855
856  case Builtin::BI__sync_add_and_fetch:
857  case Builtin::BI__sync_add_and_fetch_1:
858  case Builtin::BI__sync_add_and_fetch_2:
859  case Builtin::BI__sync_add_and_fetch_4:
860  case Builtin::BI__sync_add_and_fetch_8:
861  case Builtin::BI__sync_add_and_fetch_16:
862    BuiltinIndex = 5;
863    break;
864
865  case Builtin::BI__sync_sub_and_fetch:
866  case Builtin::BI__sync_sub_and_fetch_1:
867  case Builtin::BI__sync_sub_and_fetch_2:
868  case Builtin::BI__sync_sub_and_fetch_4:
869  case Builtin::BI__sync_sub_and_fetch_8:
870  case Builtin::BI__sync_sub_and_fetch_16:
871    BuiltinIndex = 6;
872    break;
873
874  case Builtin::BI__sync_and_and_fetch:
875  case Builtin::BI__sync_and_and_fetch_1:
876  case Builtin::BI__sync_and_and_fetch_2:
877  case Builtin::BI__sync_and_and_fetch_4:
878  case Builtin::BI__sync_and_and_fetch_8:
879  case Builtin::BI__sync_and_and_fetch_16:
880    BuiltinIndex = 7;
881    break;
882
883  case Builtin::BI__sync_or_and_fetch:
884  case Builtin::BI__sync_or_and_fetch_1:
885  case Builtin::BI__sync_or_and_fetch_2:
886  case Builtin::BI__sync_or_and_fetch_4:
887  case Builtin::BI__sync_or_and_fetch_8:
888  case Builtin::BI__sync_or_and_fetch_16:
889    BuiltinIndex = 8;
890    break;
891
892  case Builtin::BI__sync_xor_and_fetch:
893  case Builtin::BI__sync_xor_and_fetch_1:
894  case Builtin::BI__sync_xor_and_fetch_2:
895  case Builtin::BI__sync_xor_and_fetch_4:
896  case Builtin::BI__sync_xor_and_fetch_8:
897  case Builtin::BI__sync_xor_and_fetch_16:
898    BuiltinIndex = 9;
899    break;
900
901  case Builtin::BI__sync_val_compare_and_swap:
902  case Builtin::BI__sync_val_compare_and_swap_1:
903  case Builtin::BI__sync_val_compare_and_swap_2:
904  case Builtin::BI__sync_val_compare_and_swap_4:
905  case Builtin::BI__sync_val_compare_and_swap_8:
906  case Builtin::BI__sync_val_compare_and_swap_16:
907    BuiltinIndex = 10;
908    NumFixed = 2;
909    break;
910
911  case Builtin::BI__sync_bool_compare_and_swap:
912  case Builtin::BI__sync_bool_compare_and_swap_1:
913  case Builtin::BI__sync_bool_compare_and_swap_2:
914  case Builtin::BI__sync_bool_compare_and_swap_4:
915  case Builtin::BI__sync_bool_compare_and_swap_8:
916  case Builtin::BI__sync_bool_compare_and_swap_16:
917    BuiltinIndex = 11;
918    NumFixed = 2;
919    ResultType = Context.BoolTy;
920    break;
921
922  case Builtin::BI__sync_lock_test_and_set:
923  case Builtin::BI__sync_lock_test_and_set_1:
924  case Builtin::BI__sync_lock_test_and_set_2:
925  case Builtin::BI__sync_lock_test_and_set_4:
926  case Builtin::BI__sync_lock_test_and_set_8:
927  case Builtin::BI__sync_lock_test_and_set_16:
928    BuiltinIndex = 12;
929    break;
930
931  case Builtin::BI__sync_lock_release:
932  case Builtin::BI__sync_lock_release_1:
933  case Builtin::BI__sync_lock_release_2:
934  case Builtin::BI__sync_lock_release_4:
935  case Builtin::BI__sync_lock_release_8:
936  case Builtin::BI__sync_lock_release_16:
937    BuiltinIndex = 13;
938    NumFixed = 0;
939    ResultType = Context.VoidTy;
940    break;
941
942  case Builtin::BI__sync_swap:
943  case Builtin::BI__sync_swap_1:
944  case Builtin::BI__sync_swap_2:
945  case Builtin::BI__sync_swap_4:
946  case Builtin::BI__sync_swap_8:
947  case Builtin::BI__sync_swap_16:
948    BuiltinIndex = 14;
949    break;
950  }
951
952  // Now that we know how many fixed arguments we expect, first check that we
953  // have at least that many.
954  if (TheCall->getNumArgs() < 1+NumFixed) {
955    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
956      << 0 << 1+NumFixed << TheCall->getNumArgs()
957      << TheCall->getCallee()->getSourceRange();
958    return ExprError();
959  }
960
961  // Get the decl for the concrete builtin from this, we can tell what the
962  // concrete integer type we should convert to is.
963  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
964  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
965  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
966  FunctionDecl *NewBuiltinDecl =
967    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
968                                           TUScope, false, DRE->getLocStart()));
969
970  // The first argument --- the pointer --- has a fixed type; we
971  // deduce the types of the rest of the arguments accordingly.  Walk
972  // the remaining arguments, converting them to the deduced value type.
973  for (unsigned i = 0; i != NumFixed; ++i) {
974    ExprResult Arg = TheCall->getArg(i+1);
975
976    // GCC does an implicit conversion to the pointer or integer ValType.  This
977    // can fail in some cases (1i -> int**), check for this error case now.
978    // Initialize the argument.
979    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
980                                                   ValType, /*consume*/ false);
981    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
982    if (Arg.isInvalid())
983      return ExprError();
984
985    // Okay, we have something that *can* be converted to the right type.  Check
986    // to see if there is a potentially weird extension going on here.  This can
987    // happen when you do an atomic operation on something like an char* and
988    // pass in 42.  The 42 gets converted to char.  This is even more strange
989    // for things like 45.123 -> char, etc.
990    // FIXME: Do this check.
991    TheCall->setArg(i+1, Arg.take());
992  }
993
994  ASTContext& Context = this->getASTContext();
995
996  // Create a new DeclRefExpr to refer to the new decl.
997  DeclRefExpr* NewDRE = DeclRefExpr::Create(
998      Context,
999      DRE->getQualifierLoc(),
1000      NewBuiltinDecl,
1001      DRE->getLocation(),
1002      NewBuiltinDecl->getType(),
1003      DRE->getValueKind());
1004
1005  // Set the callee in the CallExpr.
1006  // FIXME: This leaks the original parens and implicit casts.
1007  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
1008  if (PromotedCall.isInvalid())
1009    return ExprError();
1010  TheCall->setCallee(PromotedCall.take());
1011
1012  // Change the result type of the call to match the original value type. This
1013  // is arbitrary, but the codegen for these builtins ins design to handle it
1014  // gracefully.
1015  TheCall->setType(ResultType);
1016
1017  return move(TheCallResult);
1018}
1019
1020/// CheckObjCString - Checks that the argument to the builtin
1021/// CFString constructor is correct
1022/// Note: It might also make sense to do the UTF-16 conversion here (would
1023/// simplify the backend).
1024bool Sema::CheckObjCString(Expr *Arg) {
1025  Arg = Arg->IgnoreParenCasts();
1026  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1027
1028  if (!Literal || !Literal->isAscii()) {
1029    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1030      << Arg->getSourceRange();
1031    return true;
1032  }
1033
1034  if (Literal->containsNonAsciiOrNull()) {
1035    StringRef String = Literal->getString();
1036    unsigned NumBytes = String.size();
1037    SmallVector<UTF16, 128> ToBuf(NumBytes);
1038    const UTF8 *FromPtr = (UTF8 *)String.data();
1039    UTF16 *ToPtr = &ToBuf[0];
1040
1041    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1042                                                 &ToPtr, ToPtr + NumBytes,
1043                                                 strictConversion);
1044    // Check for conversion failure.
1045    if (Result != conversionOK)
1046      Diag(Arg->getLocStart(),
1047           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1048  }
1049  return false;
1050}
1051
1052/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1053/// Emit an error and return true on failure, return false on success.
1054bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1055  Expr *Fn = TheCall->getCallee();
1056  if (TheCall->getNumArgs() > 2) {
1057    Diag(TheCall->getArg(2)->getLocStart(),
1058         diag::err_typecheck_call_too_many_args)
1059      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1060      << Fn->getSourceRange()
1061      << SourceRange(TheCall->getArg(2)->getLocStart(),
1062                     (*(TheCall->arg_end()-1))->getLocEnd());
1063    return true;
1064  }
1065
1066  if (TheCall->getNumArgs() < 2) {
1067    return Diag(TheCall->getLocEnd(),
1068      diag::err_typecheck_call_too_few_args_at_least)
1069      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1070  }
1071
1072  // Type-check the first argument normally.
1073  if (checkBuiltinArgument(*this, TheCall, 0))
1074    return true;
1075
1076  // Determine whether the current function is variadic or not.
1077  BlockScopeInfo *CurBlock = getCurBlock();
1078  bool isVariadic;
1079  if (CurBlock)
1080    isVariadic = CurBlock->TheDecl->isVariadic();
1081  else if (FunctionDecl *FD = getCurFunctionDecl())
1082    isVariadic = FD->isVariadic();
1083  else
1084    isVariadic = getCurMethodDecl()->isVariadic();
1085
1086  if (!isVariadic) {
1087    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1088    return true;
1089  }
1090
1091  // Verify that the second argument to the builtin is the last argument of the
1092  // current function or method.
1093  bool SecondArgIsLastNamedArgument = false;
1094  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1095
1096  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1097    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1098      // FIXME: This isn't correct for methods (results in bogus warning).
1099      // Get the last formal in the current function.
1100      const ParmVarDecl *LastArg;
1101      if (CurBlock)
1102        LastArg = *(CurBlock->TheDecl->param_end()-1);
1103      else if (FunctionDecl *FD = getCurFunctionDecl())
1104        LastArg = *(FD->param_end()-1);
1105      else
1106        LastArg = *(getCurMethodDecl()->param_end()-1);
1107      SecondArgIsLastNamedArgument = PV == LastArg;
1108    }
1109  }
1110
1111  if (!SecondArgIsLastNamedArgument)
1112    Diag(TheCall->getArg(1)->getLocStart(),
1113         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1114  return false;
1115}
1116
1117/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1118/// friends.  This is declared to take (...), so we have to check everything.
1119bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1120  if (TheCall->getNumArgs() < 2)
1121    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1122      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1123  if (TheCall->getNumArgs() > 2)
1124    return Diag(TheCall->getArg(2)->getLocStart(),
1125                diag::err_typecheck_call_too_many_args)
1126      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1127      << SourceRange(TheCall->getArg(2)->getLocStart(),
1128                     (*(TheCall->arg_end()-1))->getLocEnd());
1129
1130  ExprResult OrigArg0 = TheCall->getArg(0);
1131  ExprResult OrigArg1 = TheCall->getArg(1);
1132
1133  // Do standard promotions between the two arguments, returning their common
1134  // type.
1135  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1136  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1137    return true;
1138
1139  // Make sure any conversions are pushed back into the call; this is
1140  // type safe since unordered compare builtins are declared as "_Bool
1141  // foo(...)".
1142  TheCall->setArg(0, OrigArg0.get());
1143  TheCall->setArg(1, OrigArg1.get());
1144
1145  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1146    return false;
1147
1148  // If the common type isn't a real floating type, then the arguments were
1149  // invalid for this operation.
1150  if (!Res->isRealFloatingType())
1151    return Diag(OrigArg0.get()->getLocStart(),
1152                diag::err_typecheck_call_invalid_ordered_compare)
1153      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1154      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1155
1156  return false;
1157}
1158
1159/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1160/// __builtin_isnan and friends.  This is declared to take (...), so we have
1161/// to check everything. We expect the last argument to be a floating point
1162/// value.
1163bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1164  if (TheCall->getNumArgs() < NumArgs)
1165    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1166      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1167  if (TheCall->getNumArgs() > NumArgs)
1168    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1169                diag::err_typecheck_call_too_many_args)
1170      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1171      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1172                     (*(TheCall->arg_end()-1))->getLocEnd());
1173
1174  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1175
1176  if (OrigArg->isTypeDependent())
1177    return false;
1178
1179  // This operation requires a non-_Complex floating-point number.
1180  if (!OrigArg->getType()->isRealFloatingType())
1181    return Diag(OrigArg->getLocStart(),
1182                diag::err_typecheck_call_invalid_unary_fp)
1183      << OrigArg->getType() << OrigArg->getSourceRange();
1184
1185  // If this is an implicit conversion from float -> double, remove it.
1186  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1187    Expr *CastArg = Cast->getSubExpr();
1188    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1189      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1190             "promotion from float to double is the only expected cast here");
1191      Cast->setSubExpr(0);
1192      TheCall->setArg(NumArgs-1, CastArg);
1193      OrigArg = CastArg;
1194    }
1195  }
1196
1197  return false;
1198}
1199
1200/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1201// This is declared to take (...), so we have to check everything.
1202ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1203  if (TheCall->getNumArgs() < 2)
1204    return ExprError(Diag(TheCall->getLocEnd(),
1205                          diag::err_typecheck_call_too_few_args_at_least)
1206      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1207      << TheCall->getSourceRange());
1208
1209  // Determine which of the following types of shufflevector we're checking:
1210  // 1) unary, vector mask: (lhs, mask)
1211  // 2) binary, vector mask: (lhs, rhs, mask)
1212  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1213  QualType resType = TheCall->getArg(0)->getType();
1214  unsigned numElements = 0;
1215
1216  if (!TheCall->getArg(0)->isTypeDependent() &&
1217      !TheCall->getArg(1)->isTypeDependent()) {
1218    QualType LHSType = TheCall->getArg(0)->getType();
1219    QualType RHSType = TheCall->getArg(1)->getType();
1220
1221    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1222      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1223        << SourceRange(TheCall->getArg(0)->getLocStart(),
1224                       TheCall->getArg(1)->getLocEnd());
1225      return ExprError();
1226    }
1227
1228    numElements = LHSType->getAs<VectorType>()->getNumElements();
1229    unsigned numResElements = TheCall->getNumArgs() - 2;
1230
1231    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1232    // with mask.  If so, verify that RHS is an integer vector type with the
1233    // same number of elts as lhs.
1234    if (TheCall->getNumArgs() == 2) {
1235      if (!RHSType->hasIntegerRepresentation() ||
1236          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1237        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1238          << SourceRange(TheCall->getArg(1)->getLocStart(),
1239                         TheCall->getArg(1)->getLocEnd());
1240      numResElements = numElements;
1241    }
1242    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1243      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1244        << SourceRange(TheCall->getArg(0)->getLocStart(),
1245                       TheCall->getArg(1)->getLocEnd());
1246      return ExprError();
1247    } else if (numElements != numResElements) {
1248      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1249      resType = Context.getVectorType(eltType, numResElements,
1250                                      VectorType::GenericVector);
1251    }
1252  }
1253
1254  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1255    if (TheCall->getArg(i)->isTypeDependent() ||
1256        TheCall->getArg(i)->isValueDependent())
1257      continue;
1258
1259    llvm::APSInt Result(32);
1260    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1261      return ExprError(Diag(TheCall->getLocStart(),
1262                  diag::err_shufflevector_nonconstant_argument)
1263                << TheCall->getArg(i)->getSourceRange());
1264
1265    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1266      return ExprError(Diag(TheCall->getLocStart(),
1267                  diag::err_shufflevector_argument_too_large)
1268               << TheCall->getArg(i)->getSourceRange());
1269  }
1270
1271  SmallVector<Expr*, 32> exprs;
1272
1273  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1274    exprs.push_back(TheCall->getArg(i));
1275    TheCall->setArg(i, 0);
1276  }
1277
1278  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1279                                            exprs.size(), resType,
1280                                            TheCall->getCallee()->getLocStart(),
1281                                            TheCall->getRParenLoc()));
1282}
1283
1284/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1285// This is declared to take (const void*, ...) and can take two
1286// optional constant int args.
1287bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1288  unsigned NumArgs = TheCall->getNumArgs();
1289
1290  if (NumArgs > 3)
1291    return Diag(TheCall->getLocEnd(),
1292             diag::err_typecheck_call_too_many_args_at_most)
1293             << 0 /*function call*/ << 3 << NumArgs
1294             << TheCall->getSourceRange();
1295
1296  // Argument 0 is checked for us and the remaining arguments must be
1297  // constant integers.
1298  for (unsigned i = 1; i != NumArgs; ++i) {
1299    Expr *Arg = TheCall->getArg(i);
1300
1301    llvm::APSInt Result;
1302    if (SemaBuiltinConstantArg(TheCall, i, Result))
1303      return true;
1304
1305    // FIXME: gcc issues a warning and rewrites these to 0. These
1306    // seems especially odd for the third argument since the default
1307    // is 3.
1308    if (i == 1) {
1309      if (Result.getLimitedValue() > 1)
1310        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1311             << "0" << "1" << Arg->getSourceRange();
1312    } else {
1313      if (Result.getLimitedValue() > 3)
1314        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1315            << "0" << "3" << Arg->getSourceRange();
1316    }
1317  }
1318
1319  return false;
1320}
1321
1322/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1323/// TheCall is a constant expression.
1324bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1325                                  llvm::APSInt &Result) {
1326  Expr *Arg = TheCall->getArg(ArgNum);
1327  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1328  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1329
1330  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1331
1332  if (!Arg->isIntegerConstantExpr(Result, Context))
1333    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1334                << FDecl->getDeclName() <<  Arg->getSourceRange();
1335
1336  return false;
1337}
1338
1339/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1340/// int type). This simply type checks that type is one of the defined
1341/// constants (0-3).
1342// For compatibility check 0-3, llvm only handles 0 and 2.
1343bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1344  llvm::APSInt Result;
1345
1346  // Check constant-ness first.
1347  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1348    return true;
1349
1350  Expr *Arg = TheCall->getArg(1);
1351  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1352    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1353             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1354  }
1355
1356  return false;
1357}
1358
1359/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1360/// This checks that val is a constant 1.
1361bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1362  Expr *Arg = TheCall->getArg(1);
1363  llvm::APSInt Result;
1364
1365  // TODO: This is less than ideal. Overload this to take a value.
1366  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1367    return true;
1368
1369  if (Result != 1)
1370    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1371             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1372
1373  return false;
1374}
1375
1376// Handle i > 1 ? "x" : "y", recursively.
1377bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
1378                                  unsigned NumArgs, bool HasVAListArg,
1379                                  unsigned format_idx, unsigned firstDataArg,
1380                                  bool isPrintf, bool inFunctionCall) {
1381 tryAgain:
1382  if (E->isTypeDependent() || E->isValueDependent())
1383    return false;
1384
1385  E = E->IgnoreParens();
1386
1387  switch (E->getStmtClass()) {
1388  case Stmt::BinaryConditionalOperatorClass:
1389  case Stmt::ConditionalOperatorClass: {
1390    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1391    return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
1392                                  format_idx, firstDataArg, isPrintf,
1393                                  inFunctionCall)
1394        && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
1395                                  format_idx, firstDataArg, isPrintf,
1396                                  inFunctionCall);
1397  }
1398
1399  case Stmt::IntegerLiteralClass:
1400    // Technically -Wformat-nonliteral does not warn about this case.
1401    // The behavior of printf and friends in this case is implementation
1402    // dependent.  Ideally if the format string cannot be null then
1403    // it should have a 'nonnull' attribute in the function prototype.
1404    return true;
1405
1406  case Stmt::ImplicitCastExprClass: {
1407    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1408    goto tryAgain;
1409  }
1410
1411  case Stmt::OpaqueValueExprClass:
1412    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1413      E = src;
1414      goto tryAgain;
1415    }
1416    return false;
1417
1418  case Stmt::PredefinedExprClass:
1419    // While __func__, etc., are technically not string literals, they
1420    // cannot contain format specifiers and thus are not a security
1421    // liability.
1422    return true;
1423
1424  case Stmt::DeclRefExprClass: {
1425    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1426
1427    // As an exception, do not flag errors for variables binding to
1428    // const string literals.
1429    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1430      bool isConstant = false;
1431      QualType T = DR->getType();
1432
1433      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1434        isConstant = AT->getElementType().isConstant(Context);
1435      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1436        isConstant = T.isConstant(Context) &&
1437                     PT->getPointeeType().isConstant(Context);
1438      }
1439
1440      if (isConstant) {
1441        if (const Expr *Init = VD->getAnyInitializer())
1442          return SemaCheckStringLiteral(Init, Args, NumArgs,
1443                                        HasVAListArg, format_idx, firstDataArg,
1444                                        isPrintf, /*inFunctionCall*/false);
1445      }
1446
1447      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1448      // special check to see if the format string is a function parameter
1449      // of the function calling the printf function.  If the function
1450      // has an attribute indicating it is a printf-like function, then we
1451      // should suppress warnings concerning non-literals being used in a call
1452      // to a vprintf function.  For example:
1453      //
1454      // void
1455      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1456      //      va_list ap;
1457      //      va_start(ap, fmt);
1458      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1459      //      ...
1460      //
1461      //
1462      //  FIXME: We don't have full attribute support yet, so just check to see
1463      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1464      //    add proper support for checking the attribute later.
1465      if (HasVAListArg)
1466        if (isa<ParmVarDecl>(VD))
1467          return true;
1468    }
1469
1470    return false;
1471  }
1472
1473  case Stmt::CallExprClass: {
1474    const CallExpr *CE = cast<CallExpr>(E);
1475    if (const ImplicitCastExpr *ICE
1476          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1477      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1478        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1479          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1480            unsigned ArgIndex = FA->getFormatIdx();
1481            const Expr *Arg = CE->getArg(ArgIndex - 1);
1482
1483            return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1484                                          format_idx, firstDataArg, isPrintf,
1485                                          inFunctionCall);
1486          }
1487        }
1488      }
1489    }
1490
1491    return false;
1492  }
1493  case Stmt::ObjCStringLiteralClass:
1494  case Stmt::StringLiteralClass: {
1495    const StringLiteral *StrE = NULL;
1496
1497    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1498      StrE = ObjCFExpr->getString();
1499    else
1500      StrE = cast<StringLiteral>(E);
1501
1502    if (StrE) {
1503      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1504                        firstDataArg, isPrintf, inFunctionCall);
1505      return true;
1506    }
1507
1508    return false;
1509  }
1510
1511  default:
1512    return false;
1513  }
1514}
1515
1516void
1517Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1518                            const Expr * const *ExprArgs,
1519                            SourceLocation CallSiteLoc) {
1520  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1521                                  e = NonNull->args_end();
1522       i != e; ++i) {
1523    const Expr *ArgExpr = ExprArgs[*i];
1524    if (ArgExpr->isNullPointerConstant(Context,
1525                                       Expr::NPC_ValueDependentIsNotNull))
1526      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1527  }
1528}
1529
1530/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1531/// functions) for correct use of format strings.
1532void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
1533  bool IsCXXMember = false;
1534  // The way the format attribute works in GCC, the implicit this argument
1535  // of member functions is counted. However, it doesn't appear in our own
1536  // lists, so decrement format_idx in that case.
1537  if (isa<CXXMemberCallExpr>(TheCall)) {
1538    const CXXMethodDecl *method_decl =
1539    dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1540    IsCXXMember = method_decl && method_decl->isInstance();
1541  }
1542  CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
1543                       IsCXXMember, TheCall->getRParenLoc(),
1544                       TheCall->getCallee()->getSourceRange());
1545}
1546
1547void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1548                                unsigned NumArgs, bool IsCXXMember,
1549                                SourceLocation Loc, SourceRange Range) {
1550  const bool b = Format->getType() == "scanf";
1551  if (b || CheckablePrintfAttr(Format, Args, NumArgs, IsCXXMember)) {
1552    bool HasVAListArg = Format->getFirstArg() == 0;
1553    unsigned format_idx = Format->getFormatIdx() - 1;
1554    unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
1555    if (IsCXXMember) {
1556      if (format_idx == 0)
1557        return;
1558      --format_idx;
1559      if(firstDataArg != 0)
1560        --firstDataArg;
1561    }
1562    CheckPrintfScanfArguments(Args, NumArgs, HasVAListArg, format_idx,
1563                              firstDataArg, !b, Loc, Range);
1564  }
1565}
1566
1567void Sema::CheckPrintfScanfArguments(Expr **Args, unsigned NumArgs,
1568                                     bool HasVAListArg, unsigned format_idx,
1569                                     unsigned firstDataArg, bool isPrintf,
1570                                     SourceLocation Loc, SourceRange Range) {
1571  // CHECK: printf/scanf-like function is called with no format string.
1572  if (format_idx >= NumArgs) {
1573    Diag(Loc, diag::warn_missing_format_string) << Range;
1574    return;
1575  }
1576
1577  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1578
1579  // CHECK: format string is not a string literal.
1580  //
1581  // Dynamically generated format strings are difficult to
1582  // automatically vet at compile time.  Requiring that format strings
1583  // are string literals: (1) permits the checking of format strings by
1584  // the compiler and thereby (2) can practically remove the source of
1585  // many format string exploits.
1586
1587  // Format string can be either ObjC string (e.g. @"%d") or
1588  // C string (e.g. "%d")
1589  // ObjC string uses the same format specifiers as C string, so we can use
1590  // the same format string checking logic for both ObjC and C strings.
1591  if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1592                             format_idx, firstDataArg, isPrintf))
1593    return;  // Literal format string found, check done!
1594
1595  // If there are no arguments specified, warn with -Wformat-security, otherwise
1596  // warn only with -Wformat-nonliteral.
1597  if (NumArgs == format_idx+1)
1598    Diag(Args[format_idx]->getLocStart(),
1599         diag::warn_format_nonliteral_noargs)
1600      << OrigFormatExpr->getSourceRange();
1601  else
1602    Diag(Args[format_idx]->getLocStart(),
1603         diag::warn_format_nonliteral)
1604           << OrigFormatExpr->getSourceRange();
1605}
1606
1607namespace {
1608class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1609protected:
1610  Sema &S;
1611  const StringLiteral *FExpr;
1612  const Expr *OrigFormatExpr;
1613  const unsigned FirstDataArg;
1614  const unsigned NumDataArgs;
1615  const bool IsObjCLiteral;
1616  const char *Beg; // Start of format string.
1617  const bool HasVAListArg;
1618  const Expr * const *Args;
1619  const unsigned NumArgs;
1620  unsigned FormatIdx;
1621  llvm::BitVector CoveredArgs;
1622  bool usesPositionalArgs;
1623  bool atFirstArg;
1624  bool inFunctionCall;
1625public:
1626  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1627                     const Expr *origFormatExpr, unsigned firstDataArg,
1628                     unsigned numDataArgs, bool isObjCLiteral,
1629                     const char *beg, bool hasVAListArg,
1630                     Expr **args, unsigned numArgs,
1631                     unsigned formatIdx, bool inFunctionCall)
1632    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1633      FirstDataArg(firstDataArg),
1634      NumDataArgs(numDataArgs),
1635      IsObjCLiteral(isObjCLiteral), Beg(beg),
1636      HasVAListArg(hasVAListArg),
1637      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1638      usesPositionalArgs(false), atFirstArg(true),
1639      inFunctionCall(inFunctionCall) {
1640        CoveredArgs.resize(numDataArgs);
1641        CoveredArgs.reset();
1642      }
1643
1644  void DoneProcessing();
1645
1646  void HandleIncompleteSpecifier(const char *startSpecifier,
1647                                 unsigned specifierLen);
1648
1649  virtual void HandleInvalidPosition(const char *startSpecifier,
1650                                     unsigned specifierLen,
1651                                     analyze_format_string::PositionContext p);
1652
1653  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1654
1655  void HandleNullChar(const char *nullCharacter);
1656
1657  template <typename Range>
1658  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1659                                   const Expr *ArgumentExpr,
1660                                   PartialDiagnostic PDiag,
1661                                   SourceLocation StringLoc,
1662                                   bool IsStringLocation, Range StringRange,
1663                                   FixItHint Fixit = FixItHint());
1664
1665protected:
1666  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1667                                        const char *startSpec,
1668                                        unsigned specifierLen,
1669                                        const char *csStart, unsigned csLen);
1670
1671  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1672                                         const char *startSpec,
1673                                         unsigned specifierLen);
1674
1675  SourceRange getFormatStringRange();
1676  CharSourceRange getSpecifierRange(const char *startSpecifier,
1677                                    unsigned specifierLen);
1678  SourceLocation getLocationOfByte(const char *x);
1679
1680  const Expr *getDataArg(unsigned i) const;
1681
1682  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1683                    const analyze_format_string::ConversionSpecifier &CS,
1684                    const char *startSpecifier, unsigned specifierLen,
1685                    unsigned argIndex);
1686
1687  template <typename Range>
1688  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1689                            bool IsStringLocation, Range StringRange,
1690                            FixItHint Fixit = FixItHint());
1691
1692  void CheckPositionalAndNonpositionalArgs(
1693      const analyze_format_string::FormatSpecifier *FS);
1694};
1695}
1696
1697SourceRange CheckFormatHandler::getFormatStringRange() {
1698  return OrigFormatExpr->getSourceRange();
1699}
1700
1701CharSourceRange CheckFormatHandler::
1702getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1703  SourceLocation Start = getLocationOfByte(startSpecifier);
1704  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1705
1706  // Advance the end SourceLocation by one due to half-open ranges.
1707  End = End.getLocWithOffset(1);
1708
1709  return CharSourceRange::getCharRange(Start, End);
1710}
1711
1712SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1713  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1714}
1715
1716void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1717                                                   unsigned specifierLen){
1718  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1719                       getLocationOfByte(startSpecifier),
1720                       /*IsStringLocation*/true,
1721                       getSpecifierRange(startSpecifier, specifierLen));
1722}
1723
1724void
1725CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1726                                     analyze_format_string::PositionContext p) {
1727  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1728                         << (unsigned) p,
1729                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1730                       getSpecifierRange(startPos, posLen));
1731}
1732
1733void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1734                                            unsigned posLen) {
1735  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1736                               getLocationOfByte(startPos),
1737                               /*IsStringLocation*/true,
1738                               getSpecifierRange(startPos, posLen));
1739}
1740
1741void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1742  if (!IsObjCLiteral) {
1743    // The presence of a null character is likely an error.
1744    EmitFormatDiagnostic(
1745      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1746      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1747      getFormatStringRange());
1748  }
1749}
1750
1751const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1752  return Args[FirstDataArg + i];
1753}
1754
1755void CheckFormatHandler::DoneProcessing() {
1756    // Does the number of data arguments exceed the number of
1757    // format conversions in the format string?
1758  if (!HasVAListArg) {
1759      // Find any arguments that weren't covered.
1760    CoveredArgs.flip();
1761    signed notCoveredArg = CoveredArgs.find_first();
1762    if (notCoveredArg >= 0) {
1763      assert((unsigned)notCoveredArg < NumDataArgs);
1764      EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1765                           getDataArg((unsigned) notCoveredArg)->getLocStart(),
1766                           /*IsStringLocation*/false, getFormatStringRange());
1767    }
1768  }
1769}
1770
1771bool
1772CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1773                                                     SourceLocation Loc,
1774                                                     const char *startSpec,
1775                                                     unsigned specifierLen,
1776                                                     const char *csStart,
1777                                                     unsigned csLen) {
1778
1779  bool keepGoing = true;
1780  if (argIndex < NumDataArgs) {
1781    // Consider the argument coverered, even though the specifier doesn't
1782    // make sense.
1783    CoveredArgs.set(argIndex);
1784  }
1785  else {
1786    // If argIndex exceeds the number of data arguments we
1787    // don't issue a warning because that is just a cascade of warnings (and
1788    // they may have intended '%%' anyway). We don't want to continue processing
1789    // the format string after this point, however, as we will like just get
1790    // gibberish when trying to match arguments.
1791    keepGoing = false;
1792  }
1793
1794  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
1795                         << StringRef(csStart, csLen),
1796                       Loc, /*IsStringLocation*/true,
1797                       getSpecifierRange(startSpec, specifierLen));
1798
1799  return keepGoing;
1800}
1801
1802void
1803CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
1804                                                      const char *startSpec,
1805                                                      unsigned specifierLen) {
1806  EmitFormatDiagnostic(
1807    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
1808    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
1809}
1810
1811bool
1812CheckFormatHandler::CheckNumArgs(
1813  const analyze_format_string::FormatSpecifier &FS,
1814  const analyze_format_string::ConversionSpecifier &CS,
1815  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1816
1817  if (argIndex >= NumDataArgs) {
1818    PartialDiagnostic PDiag = FS.usesPositionalArg()
1819      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
1820           << (argIndex+1) << NumDataArgs)
1821      : S.PDiag(diag::warn_printf_insufficient_data_args);
1822    EmitFormatDiagnostic(
1823      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
1824      getSpecifierRange(startSpecifier, specifierLen));
1825    return false;
1826  }
1827  return true;
1828}
1829
1830template<typename Range>
1831void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
1832                                              SourceLocation Loc,
1833                                              bool IsStringLocation,
1834                                              Range StringRange,
1835                                              FixItHint FixIt) {
1836  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
1837                       Loc, IsStringLocation, StringRange, FixIt);
1838}
1839
1840/// \brief If the format string is not within the funcion call, emit a note
1841/// so that the function call and string are in diagnostic messages.
1842///
1843/// \param inFunctionCall if true, the format string is within the function
1844/// call and only one diagnostic message will be produced.  Otherwise, an
1845/// extra note will be emitted pointing to location of the format string.
1846///
1847/// \param ArgumentExpr the expression that is passed as the format string
1848/// argument in the function call.  Used for getting locations when two
1849/// diagnostics are emitted.
1850///
1851/// \param PDiag the callee should already have provided any strings for the
1852/// diagnostic message.  This function only adds locations and fixits
1853/// to diagnostics.
1854///
1855/// \param Loc primary location for diagnostic.  If two diagnostics are
1856/// required, one will be at Loc and a new SourceLocation will be created for
1857/// the other one.
1858///
1859/// \param IsStringLocation if true, Loc points to the format string should be
1860/// used for the note.  Otherwise, Loc points to the argument list and will
1861/// be used with PDiag.
1862///
1863/// \param StringRange some or all of the string to highlight.  This is
1864/// templated so it can accept either a CharSourceRange or a SourceRange.
1865///
1866/// \param Fixit optional fix it hint for the format string.
1867template<typename Range>
1868void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
1869                                              const Expr *ArgumentExpr,
1870                                              PartialDiagnostic PDiag,
1871                                              SourceLocation Loc,
1872                                              bool IsStringLocation,
1873                                              Range StringRange,
1874                                              FixItHint FixIt) {
1875  if (InFunctionCall)
1876    S.Diag(Loc, PDiag) << StringRange << FixIt;
1877  else {
1878    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
1879      << ArgumentExpr->getSourceRange();
1880    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
1881           diag::note_format_string_defined)
1882      << StringRange << FixIt;
1883  }
1884}
1885
1886//===--- CHECK: Printf format string checking ------------------------------===//
1887
1888namespace {
1889class CheckPrintfHandler : public CheckFormatHandler {
1890public:
1891  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1892                     const Expr *origFormatExpr, unsigned firstDataArg,
1893                     unsigned numDataArgs, bool isObjCLiteral,
1894                     const char *beg, bool hasVAListArg,
1895                     Expr **Args, unsigned NumArgs,
1896                     unsigned formatIdx, bool inFunctionCall)
1897  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1898                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1899                       Args, NumArgs, formatIdx, inFunctionCall) {}
1900
1901
1902  bool HandleInvalidPrintfConversionSpecifier(
1903                                      const analyze_printf::PrintfSpecifier &FS,
1904                                      const char *startSpecifier,
1905                                      unsigned specifierLen);
1906
1907  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1908                             const char *startSpecifier,
1909                             unsigned specifierLen);
1910
1911  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1912                    const char *startSpecifier, unsigned specifierLen);
1913  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1914                           const analyze_printf::OptionalAmount &Amt,
1915                           unsigned type,
1916                           const char *startSpecifier, unsigned specifierLen);
1917  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1918                  const analyze_printf::OptionalFlag &flag,
1919                  const char *startSpecifier, unsigned specifierLen);
1920  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1921                         const analyze_printf::OptionalFlag &ignoredFlag,
1922                         const analyze_printf::OptionalFlag &flag,
1923                         const char *startSpecifier, unsigned specifierLen);
1924};
1925}
1926
1927bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1928                                      const analyze_printf::PrintfSpecifier &FS,
1929                                      const char *startSpecifier,
1930                                      unsigned specifierLen) {
1931  const analyze_printf::PrintfConversionSpecifier &CS =
1932    FS.getConversionSpecifier();
1933
1934  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1935                                          getLocationOfByte(CS.getStart()),
1936                                          startSpecifier, specifierLen,
1937                                          CS.getStart(), CS.getLength());
1938}
1939
1940bool CheckPrintfHandler::HandleAmount(
1941                               const analyze_format_string::OptionalAmount &Amt,
1942                               unsigned k, const char *startSpecifier,
1943                               unsigned specifierLen) {
1944
1945  if (Amt.hasDataArgument()) {
1946    if (!HasVAListArg) {
1947      unsigned argIndex = Amt.getArgIndex();
1948      if (argIndex >= NumDataArgs) {
1949        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
1950                               << k,
1951                             getLocationOfByte(Amt.getStart()),
1952                             /*IsStringLocation*/true,
1953                             getSpecifierRange(startSpecifier, specifierLen));
1954        // Don't do any more checking.  We will just emit
1955        // spurious errors.
1956        return false;
1957      }
1958
1959      // Type check the data argument.  It should be an 'int'.
1960      // Although not in conformance with C99, we also allow the argument to be
1961      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1962      // doesn't emit a warning for that case.
1963      CoveredArgs.set(argIndex);
1964      const Expr *Arg = getDataArg(argIndex);
1965      QualType T = Arg->getType();
1966
1967      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1968      assert(ATR.isValid());
1969
1970      if (!ATR.matchesType(S.Context, T)) {
1971        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
1972                               << k << ATR.getRepresentativeTypeName(S.Context)
1973                               << T << Arg->getSourceRange(),
1974                             getLocationOfByte(Amt.getStart()),
1975                             /*IsStringLocation*/true,
1976                             getSpecifierRange(startSpecifier, specifierLen));
1977        // Don't do any more checking.  We will just emit
1978        // spurious errors.
1979        return false;
1980      }
1981    }
1982  }
1983  return true;
1984}
1985
1986void CheckPrintfHandler::HandleInvalidAmount(
1987                                      const analyze_printf::PrintfSpecifier &FS,
1988                                      const analyze_printf::OptionalAmount &Amt,
1989                                      unsigned type,
1990                                      const char *startSpecifier,
1991                                      unsigned specifierLen) {
1992  const analyze_printf::PrintfConversionSpecifier &CS =
1993    FS.getConversionSpecifier();
1994
1995  FixItHint fixit =
1996    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
1997      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1998                                 Amt.getConstantLength()))
1999      : FixItHint();
2000
2001  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2002                         << type << CS.toString(),
2003                       getLocationOfByte(Amt.getStart()),
2004                       /*IsStringLocation*/true,
2005                       getSpecifierRange(startSpecifier, specifierLen),
2006                       fixit);
2007}
2008
2009void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2010                                    const analyze_printf::OptionalFlag &flag,
2011                                    const char *startSpecifier,
2012                                    unsigned specifierLen) {
2013  // Warn about pointless flag with a fixit removal.
2014  const analyze_printf::PrintfConversionSpecifier &CS =
2015    FS.getConversionSpecifier();
2016  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2017                         << flag.toString() << CS.toString(),
2018                       getLocationOfByte(flag.getPosition()),
2019                       /*IsStringLocation*/true,
2020                       getSpecifierRange(startSpecifier, specifierLen),
2021                       FixItHint::CreateRemoval(
2022                         getSpecifierRange(flag.getPosition(), 1)));
2023}
2024
2025void CheckPrintfHandler::HandleIgnoredFlag(
2026                                const analyze_printf::PrintfSpecifier &FS,
2027                                const analyze_printf::OptionalFlag &ignoredFlag,
2028                                const analyze_printf::OptionalFlag &flag,
2029                                const char *startSpecifier,
2030                                unsigned specifierLen) {
2031  // Warn about ignored flag with a fixit removal.
2032  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2033                         << ignoredFlag.toString() << flag.toString(),
2034                       getLocationOfByte(ignoredFlag.getPosition()),
2035                       /*IsStringLocation*/true,
2036                       getSpecifierRange(startSpecifier, specifierLen),
2037                       FixItHint::CreateRemoval(
2038                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2039}
2040
2041bool
2042CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2043                                            &FS,
2044                                          const char *startSpecifier,
2045                                          unsigned specifierLen) {
2046
2047  using namespace analyze_format_string;
2048  using namespace analyze_printf;
2049  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2050
2051  if (FS.consumesDataArgument()) {
2052    if (atFirstArg) {
2053        atFirstArg = false;
2054        usesPositionalArgs = FS.usesPositionalArg();
2055    }
2056    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2057      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2058                                        startSpecifier, specifierLen);
2059      return false;
2060    }
2061  }
2062
2063  // First check if the field width, precision, and conversion specifier
2064  // have matching data arguments.
2065  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2066                    startSpecifier, specifierLen)) {
2067    return false;
2068  }
2069
2070  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2071                    startSpecifier, specifierLen)) {
2072    return false;
2073  }
2074
2075  if (!CS.consumesDataArgument()) {
2076    // FIXME: Technically specifying a precision or field width here
2077    // makes no sense.  Worth issuing a warning at some point.
2078    return true;
2079  }
2080
2081  // Consume the argument.
2082  unsigned argIndex = FS.getArgIndex();
2083  if (argIndex < NumDataArgs) {
2084    // The check to see if the argIndex is valid will come later.
2085    // We set the bit here because we may exit early from this
2086    // function if we encounter some other error.
2087    CoveredArgs.set(argIndex);
2088  }
2089
2090  // Check for using an Objective-C specific conversion specifier
2091  // in a non-ObjC literal.
2092  if (!IsObjCLiteral && CS.isObjCArg()) {
2093    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2094                                                  specifierLen);
2095  }
2096
2097  // Check for invalid use of field width
2098  if (!FS.hasValidFieldWidth()) {
2099    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2100        startSpecifier, specifierLen);
2101  }
2102
2103  // Check for invalid use of precision
2104  if (!FS.hasValidPrecision()) {
2105    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2106        startSpecifier, specifierLen);
2107  }
2108
2109  // Check each flag does not conflict with any other component.
2110  if (!FS.hasValidThousandsGroupingPrefix())
2111    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2112  if (!FS.hasValidLeadingZeros())
2113    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2114  if (!FS.hasValidPlusPrefix())
2115    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2116  if (!FS.hasValidSpacePrefix())
2117    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2118  if (!FS.hasValidAlternativeForm())
2119    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2120  if (!FS.hasValidLeftJustified())
2121    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2122
2123  // Check that flags are not ignored by another flag
2124  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2125    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2126        startSpecifier, specifierLen);
2127  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2128    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2129            startSpecifier, specifierLen);
2130
2131  // Check the length modifier is valid with the given conversion specifier.
2132  const LengthModifier &LM = FS.getLengthModifier();
2133  if (!FS.hasValidLengthModifier())
2134    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2135                           << LM.toString() << CS.toString(),
2136                         getLocationOfByte(LM.getStart()),
2137                         /*IsStringLocation*/true,
2138                         getSpecifierRange(startSpecifier, specifierLen),
2139                         FixItHint::CreateRemoval(
2140                           getSpecifierRange(LM.getStart(),
2141                                             LM.getLength())));
2142
2143  // Are we using '%n'?
2144  if (CS.getKind() == ConversionSpecifier::nArg) {
2145    // Issue a warning about this being a possible security issue.
2146    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2147                         getLocationOfByte(CS.getStart()),
2148                         /*IsStringLocation*/true,
2149                         getSpecifierRange(startSpecifier, specifierLen));
2150    // Continue checking the other format specifiers.
2151    return true;
2152  }
2153
2154  // The remaining checks depend on the data arguments.
2155  if (HasVAListArg)
2156    return true;
2157
2158  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2159    return false;
2160
2161  // Now type check the data expression that matches the
2162  // format specifier.
2163  const Expr *Ex = getDataArg(argIndex);
2164  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
2165  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2166    // Check if we didn't match because of an implicit cast from a 'char'
2167    // or 'short' to an 'int'.  This is done because printf is a varargs
2168    // function.
2169    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
2170      if (ICE->getType() == S.Context.IntTy) {
2171        // All further checking is done on the subexpression.
2172        Ex = ICE->getSubExpr();
2173        if (ATR.matchesType(S.Context, Ex->getType()))
2174          return true;
2175      }
2176
2177    // We may be able to offer a FixItHint if it is a supported type.
2178    PrintfSpecifier fixedFS = FS;
2179    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2180
2181    if (success) {
2182      // Get the fix string from the fixed format specifier
2183      llvm::SmallString<128> buf;
2184      llvm::raw_svector_ostream os(buf);
2185      fixedFS.toString(os);
2186
2187      EmitFormatDiagnostic(
2188        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2189          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2190          << Ex->getSourceRange(),
2191        getLocationOfByte(CS.getStart()),
2192        /*IsStringLocation*/true,
2193        getSpecifierRange(startSpecifier, specifierLen),
2194        FixItHint::CreateReplacement(
2195          getSpecifierRange(startSpecifier, specifierLen),
2196          os.str()));
2197    }
2198    else {
2199      S.Diag(getLocationOfByte(CS.getStart()),
2200             diag::warn_printf_conversion_argument_type_mismatch)
2201        << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2202        << getSpecifierRange(startSpecifier, specifierLen)
2203        << Ex->getSourceRange();
2204    }
2205  }
2206
2207  return true;
2208}
2209
2210//===--- CHECK: Scanf format string checking ------------------------------===//
2211
2212namespace {
2213class CheckScanfHandler : public CheckFormatHandler {
2214public:
2215  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2216                    const Expr *origFormatExpr, unsigned firstDataArg,
2217                    unsigned numDataArgs, bool isObjCLiteral,
2218                    const char *beg, bool hasVAListArg,
2219                    Expr **Args, unsigned NumArgs,
2220                    unsigned formatIdx, bool inFunctionCall)
2221  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2222                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2223                       Args, NumArgs, formatIdx, inFunctionCall) {}
2224
2225  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2226                            const char *startSpecifier,
2227                            unsigned specifierLen);
2228
2229  bool HandleInvalidScanfConversionSpecifier(
2230          const analyze_scanf::ScanfSpecifier &FS,
2231          const char *startSpecifier,
2232          unsigned specifierLen);
2233
2234  void HandleIncompleteScanList(const char *start, const char *end);
2235};
2236}
2237
2238void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2239                                                 const char *end) {
2240  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2241                       getLocationOfByte(end), /*IsStringLocation*/true,
2242                       getSpecifierRange(start, end - start));
2243}
2244
2245bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2246                                        const analyze_scanf::ScanfSpecifier &FS,
2247                                        const char *startSpecifier,
2248                                        unsigned specifierLen) {
2249
2250  const analyze_scanf::ScanfConversionSpecifier &CS =
2251    FS.getConversionSpecifier();
2252
2253  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2254                                          getLocationOfByte(CS.getStart()),
2255                                          startSpecifier, specifierLen,
2256                                          CS.getStart(), CS.getLength());
2257}
2258
2259bool CheckScanfHandler::HandleScanfSpecifier(
2260                                       const analyze_scanf::ScanfSpecifier &FS,
2261                                       const char *startSpecifier,
2262                                       unsigned specifierLen) {
2263
2264  using namespace analyze_scanf;
2265  using namespace analyze_format_string;
2266
2267  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2268
2269  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2270  // be used to decide if we are using positional arguments consistently.
2271  if (FS.consumesDataArgument()) {
2272    if (atFirstArg) {
2273      atFirstArg = false;
2274      usesPositionalArgs = FS.usesPositionalArg();
2275    }
2276    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2277      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2278                                        startSpecifier, specifierLen);
2279      return false;
2280    }
2281  }
2282
2283  // Check if the field with is non-zero.
2284  const OptionalAmount &Amt = FS.getFieldWidth();
2285  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2286    if (Amt.getConstantAmount() == 0) {
2287      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2288                                                   Amt.getConstantLength());
2289      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2290                           getLocationOfByte(Amt.getStart()),
2291                           /*IsStringLocation*/true, R,
2292                           FixItHint::CreateRemoval(R));
2293    }
2294  }
2295
2296  if (!FS.consumesDataArgument()) {
2297    // FIXME: Technically specifying a precision or field width here
2298    // makes no sense.  Worth issuing a warning at some point.
2299    return true;
2300  }
2301
2302  // Consume the argument.
2303  unsigned argIndex = FS.getArgIndex();
2304  if (argIndex < NumDataArgs) {
2305      // The check to see if the argIndex is valid will come later.
2306      // We set the bit here because we may exit early from this
2307      // function if we encounter some other error.
2308    CoveredArgs.set(argIndex);
2309  }
2310
2311  // Check the length modifier is valid with the given conversion specifier.
2312  const LengthModifier &LM = FS.getLengthModifier();
2313  if (!FS.hasValidLengthModifier()) {
2314    S.Diag(getLocationOfByte(LM.getStart()),
2315           diag::warn_format_nonsensical_length)
2316      << LM.toString() << CS.toString()
2317      << getSpecifierRange(startSpecifier, specifierLen)
2318      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
2319                                                    LM.getLength()));
2320  }
2321
2322  // The remaining checks depend on the data arguments.
2323  if (HasVAListArg)
2324    return true;
2325
2326  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2327    return false;
2328
2329  // Check that the argument type matches the format specifier.
2330  const Expr *Ex = getDataArg(argIndex);
2331  const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context);
2332  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2333    ScanfSpecifier fixedFS = FS;
2334    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2335
2336    if (success) {
2337      // Get the fix string from the fixed format specifier.
2338      llvm::SmallString<128> buf;
2339      llvm::raw_svector_ostream os(buf);
2340      fixedFS.toString(os);
2341
2342      EmitFormatDiagnostic(
2343        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2344          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2345          << Ex->getSourceRange(),
2346        getLocationOfByte(CS.getStart()),
2347        /*IsStringLocation*/true,
2348        getSpecifierRange(startSpecifier, specifierLen),
2349        FixItHint::CreateReplacement(
2350          getSpecifierRange(startSpecifier, specifierLen),
2351          os.str()));
2352    } else {
2353      S.Diag(getLocationOfByte(CS.getStart()),
2354             diag::warn_printf_conversion_argument_type_mismatch)
2355          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2356          << getSpecifierRange(startSpecifier, specifierLen)
2357          << Ex->getSourceRange();
2358    }
2359  }
2360
2361  return true;
2362}
2363
2364void Sema::CheckFormatString(const StringLiteral *FExpr,
2365                             const Expr *OrigFormatExpr,
2366                             Expr **Args, unsigned NumArgs,
2367                             bool HasVAListArg, unsigned format_idx,
2368                             unsigned firstDataArg, bool isPrintf,
2369                             bool inFunctionCall) {
2370
2371  // CHECK: is the format string a wide literal?
2372  if (!FExpr->isAscii()) {
2373    CheckFormatHandler::EmitFormatDiagnostic(
2374      *this, inFunctionCall, Args[format_idx],
2375      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2376      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2377    return;
2378  }
2379
2380  // Str - The format string.  NOTE: this is NOT null-terminated!
2381  StringRef StrRef = FExpr->getString();
2382  const char *Str = StrRef.data();
2383  unsigned StrLen = StrRef.size();
2384  const unsigned numDataArgs = NumArgs - firstDataArg;
2385
2386  // CHECK: empty format string?
2387  if (StrLen == 0 && numDataArgs > 0) {
2388    CheckFormatHandler::EmitFormatDiagnostic(
2389      *this, inFunctionCall, Args[format_idx],
2390      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2391      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2392    return;
2393  }
2394
2395  if (isPrintf) {
2396    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2397                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2398                         Str, HasVAListArg, Args, NumArgs, format_idx,
2399                         inFunctionCall);
2400
2401    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2402                                                  getLangOptions()))
2403      H.DoneProcessing();
2404  }
2405  else {
2406    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2407                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2408                        Str, HasVAListArg, Args, NumArgs, format_idx,
2409                        inFunctionCall);
2410
2411    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2412                                                 getLangOptions()))
2413      H.DoneProcessing();
2414  }
2415}
2416
2417//===--- CHECK: Standard memory functions ---------------------------------===//
2418
2419/// \brief Determine whether the given type is a dynamic class type (e.g.,
2420/// whether it has a vtable).
2421static bool isDynamicClassType(QualType T) {
2422  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2423    if (CXXRecordDecl *Definition = Record->getDefinition())
2424      if (Definition->isDynamicClass())
2425        return true;
2426
2427  return false;
2428}
2429
2430/// \brief If E is a sizeof expression, returns its argument expression,
2431/// otherwise returns NULL.
2432static const Expr *getSizeOfExprArg(const Expr* E) {
2433  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2434      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2435    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2436      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2437
2438  return 0;
2439}
2440
2441/// \brief If E is a sizeof expression, returns its argument type.
2442static QualType getSizeOfArgType(const Expr* E) {
2443  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2444      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2445    if (SizeOf->getKind() == clang::UETT_SizeOf)
2446      return SizeOf->getTypeOfArgument();
2447
2448  return QualType();
2449}
2450
2451/// \brief Check for dangerous or invalid arguments to memset().
2452///
2453/// This issues warnings on known problematic, dangerous or unspecified
2454/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2455/// function calls.
2456///
2457/// \param Call The call expression to diagnose.
2458void Sema::CheckMemaccessArguments(const CallExpr *Call,
2459                                   unsigned BId,
2460                                   IdentifierInfo *FnName) {
2461  assert(BId != 0);
2462
2463  // It is possible to have a non-standard definition of memset.  Validate
2464  // we have enough arguments, and if not, abort further checking.
2465  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2466  if (Call->getNumArgs() < ExpectedNumArgs)
2467    return;
2468
2469  unsigned LastArg = (BId == Builtin::BImemset ||
2470                      BId == Builtin::BIstrndup ? 1 : 2);
2471  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2472  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2473
2474  // We have special checking when the length is a sizeof expression.
2475  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2476  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2477  llvm::FoldingSetNodeID SizeOfArgID;
2478
2479  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2480    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2481    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2482
2483    QualType DestTy = Dest->getType();
2484    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2485      QualType PointeeTy = DestPtrTy->getPointeeType();
2486
2487      // Never warn about void type pointers. This can be used to suppress
2488      // false positives.
2489      if (PointeeTy->isVoidType())
2490        continue;
2491
2492      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2493      // actually comparing the expressions for equality. Because computing the
2494      // expression IDs can be expensive, we only do this if the diagnostic is
2495      // enabled.
2496      if (SizeOfArg &&
2497          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2498                                   SizeOfArg->getExprLoc())) {
2499        // We only compute IDs for expressions if the warning is enabled, and
2500        // cache the sizeof arg's ID.
2501        if (SizeOfArgID == llvm::FoldingSetNodeID())
2502          SizeOfArg->Profile(SizeOfArgID, Context, true);
2503        llvm::FoldingSetNodeID DestID;
2504        Dest->Profile(DestID, Context, true);
2505        if (DestID == SizeOfArgID) {
2506          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2507          //       over sizeof(src) as well.
2508          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2509          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2510            if (UnaryOp->getOpcode() == UO_AddrOf)
2511              ActionIdx = 1; // If its an address-of operator, just remove it.
2512          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2513            ActionIdx = 2; // If the pointee's size is sizeof(char),
2514                           // suggest an explicit length.
2515          unsigned DestSrcSelect =
2516            (BId == Builtin::BIstrndup ? 1 : ArgIdx);
2517          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2518                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2519                                << FnName << DestSrcSelect << ActionIdx
2520                                << Dest->getSourceRange()
2521                                << SizeOfArg->getSourceRange());
2522          break;
2523        }
2524      }
2525
2526      // Also check for cases where the sizeof argument is the exact same
2527      // type as the memory argument, and where it points to a user-defined
2528      // record type.
2529      if (SizeOfArgTy != QualType()) {
2530        if (PointeeTy->isRecordType() &&
2531            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2532          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2533                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2534                                << FnName << SizeOfArgTy << ArgIdx
2535                                << PointeeTy << Dest->getSourceRange()
2536                                << LenExpr->getSourceRange());
2537          break;
2538        }
2539      }
2540
2541      // Always complain about dynamic classes.
2542      if (isDynamicClassType(PointeeTy)) {
2543
2544        unsigned OperationType = 0;
2545        // "overwritten" if we're warning about the destination for any call
2546        // but memcmp; otherwise a verb appropriate to the call.
2547        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
2548          if (BId == Builtin::BImemcpy)
2549            OperationType = 1;
2550          else if(BId == Builtin::BImemmove)
2551            OperationType = 2;
2552          else if (BId == Builtin::BImemcmp)
2553            OperationType = 3;
2554        }
2555
2556        DiagRuntimeBehavior(
2557          Dest->getExprLoc(), Dest,
2558          PDiag(diag::warn_dyn_class_memaccess)
2559            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
2560            << FnName << PointeeTy
2561            << OperationType
2562            << Call->getCallee()->getSourceRange());
2563      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
2564               BId != Builtin::BImemset)
2565        DiagRuntimeBehavior(
2566          Dest->getExprLoc(), Dest,
2567          PDiag(diag::warn_arc_object_memaccess)
2568            << ArgIdx << FnName << PointeeTy
2569            << Call->getCallee()->getSourceRange());
2570      else
2571        continue;
2572
2573      DiagRuntimeBehavior(
2574        Dest->getExprLoc(), Dest,
2575        PDiag(diag::note_bad_memaccess_silence)
2576          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2577      break;
2578    }
2579  }
2580}
2581
2582// A little helper routine: ignore addition and subtraction of integer literals.
2583// This intentionally does not ignore all integer constant expressions because
2584// we don't want to remove sizeof().
2585static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2586  Ex = Ex->IgnoreParenCasts();
2587
2588  for (;;) {
2589    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2590    if (!BO || !BO->isAdditiveOp())
2591      break;
2592
2593    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2594    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2595
2596    if (isa<IntegerLiteral>(RHS))
2597      Ex = LHS;
2598    else if (isa<IntegerLiteral>(LHS))
2599      Ex = RHS;
2600    else
2601      break;
2602  }
2603
2604  return Ex;
2605}
2606
2607// Warn if the user has made the 'size' argument to strlcpy or strlcat
2608// be the size of the source, instead of the destination.
2609void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2610                                    IdentifierInfo *FnName) {
2611
2612  // Don't crash if the user has the wrong number of arguments
2613  if (Call->getNumArgs() != 3)
2614    return;
2615
2616  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2617  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2618  const Expr *CompareWithSrc = NULL;
2619
2620  // Look for 'strlcpy(dst, x, sizeof(x))'
2621  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2622    CompareWithSrc = Ex;
2623  else {
2624    // Look for 'strlcpy(dst, x, strlen(x))'
2625    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2626      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
2627          && SizeCall->getNumArgs() == 1)
2628        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2629    }
2630  }
2631
2632  if (!CompareWithSrc)
2633    return;
2634
2635  // Determine if the argument to sizeof/strlen is equal to the source
2636  // argument.  In principle there's all kinds of things you could do
2637  // here, for instance creating an == expression and evaluating it with
2638  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2639  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2640  if (!SrcArgDRE)
2641    return;
2642
2643  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2644  if (!CompareWithSrcDRE ||
2645      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2646    return;
2647
2648  const Expr *OriginalSizeArg = Call->getArg(2);
2649  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2650    << OriginalSizeArg->getSourceRange() << FnName;
2651
2652  // Output a FIXIT hint if the destination is an array (rather than a
2653  // pointer to an array).  This could be enhanced to handle some
2654  // pointers if we know the actual size, like if DstArg is 'array+2'
2655  // we could say 'sizeof(array)-2'.
2656  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2657  QualType DstArgTy = DstArg->getType();
2658
2659  // Only handle constant-sized or VLAs, but not flexible members.
2660  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2661    // Only issue the FIXIT for arrays of size > 1.
2662    if (CAT->getSize().getSExtValue() <= 1)
2663      return;
2664  } else if (!DstArgTy->isVariableArrayType()) {
2665    return;
2666  }
2667
2668  llvm::SmallString<128> sizeString;
2669  llvm::raw_svector_ostream OS(sizeString);
2670  OS << "sizeof(";
2671  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2672  OS << ")";
2673
2674  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2675    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2676                                    OS.str());
2677}
2678
2679//===--- CHECK: Return Address of Stack Variable --------------------------===//
2680
2681static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2682static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2683
2684/// CheckReturnStackAddr - Check if a return statement returns the address
2685///   of a stack variable.
2686void
2687Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2688                           SourceLocation ReturnLoc) {
2689
2690  Expr *stackE = 0;
2691  SmallVector<DeclRefExpr *, 8> refVars;
2692
2693  // Perform checking for returned stack addresses, local blocks,
2694  // label addresses or references to temporaries.
2695  if (lhsType->isPointerType() ||
2696      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2697    stackE = EvalAddr(RetValExp, refVars);
2698  } else if (lhsType->isReferenceType()) {
2699    stackE = EvalVal(RetValExp, refVars);
2700  }
2701
2702  if (stackE == 0)
2703    return; // Nothing suspicious was found.
2704
2705  SourceLocation diagLoc;
2706  SourceRange diagRange;
2707  if (refVars.empty()) {
2708    diagLoc = stackE->getLocStart();
2709    diagRange = stackE->getSourceRange();
2710  } else {
2711    // We followed through a reference variable. 'stackE' contains the
2712    // problematic expression but we will warn at the return statement pointing
2713    // at the reference variable. We will later display the "trail" of
2714    // reference variables using notes.
2715    diagLoc = refVars[0]->getLocStart();
2716    diagRange = refVars[0]->getSourceRange();
2717  }
2718
2719  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2720    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2721                                             : diag::warn_ret_stack_addr)
2722     << DR->getDecl()->getDeclName() << diagRange;
2723  } else if (isa<BlockExpr>(stackE)) { // local block.
2724    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2725  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2726    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2727  } else { // local temporary.
2728    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2729                                             : diag::warn_ret_local_temp_addr)
2730     << diagRange;
2731  }
2732
2733  // Display the "trail" of reference variables that we followed until we
2734  // found the problematic expression using notes.
2735  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2736    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2737    // If this var binds to another reference var, show the range of the next
2738    // var, otherwise the var binds to the problematic expression, in which case
2739    // show the range of the expression.
2740    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2741                                  : stackE->getSourceRange();
2742    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2743      << VD->getDeclName() << range;
2744  }
2745}
2746
2747/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2748///  check if the expression in a return statement evaluates to an address
2749///  to a location on the stack, a local block, an address of a label, or a
2750///  reference to local temporary. The recursion is used to traverse the
2751///  AST of the return expression, with recursion backtracking when we
2752///  encounter a subexpression that (1) clearly does not lead to one of the
2753///  above problematic expressions (2) is something we cannot determine leads to
2754///  a problematic expression based on such local checking.
2755///
2756///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2757///  the expression that they point to. Such variables are added to the
2758///  'refVars' vector so that we know what the reference variable "trail" was.
2759///
2760///  EvalAddr processes expressions that are pointers that are used as
2761///  references (and not L-values).  EvalVal handles all other values.
2762///  At the base case of the recursion is a check for the above problematic
2763///  expressions.
2764///
2765///  This implementation handles:
2766///
2767///   * pointer-to-pointer casts
2768///   * implicit conversions from array references to pointers
2769///   * taking the address of fields
2770///   * arbitrary interplay between "&" and "*" operators
2771///   * pointer arithmetic from an address of a stack variable
2772///   * taking the address of an array element where the array is on the stack
2773static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2774  if (E->isTypeDependent())
2775      return NULL;
2776
2777  // We should only be called for evaluating pointer expressions.
2778  assert((E->getType()->isAnyPointerType() ||
2779          E->getType()->isBlockPointerType() ||
2780          E->getType()->isObjCQualifiedIdType()) &&
2781         "EvalAddr only works on pointers");
2782
2783  E = E->IgnoreParens();
2784
2785  // Our "symbolic interpreter" is just a dispatch off the currently
2786  // viewed AST node.  We then recursively traverse the AST by calling
2787  // EvalAddr and EvalVal appropriately.
2788  switch (E->getStmtClass()) {
2789  case Stmt::DeclRefExprClass: {
2790    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2791
2792    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2793      // If this is a reference variable, follow through to the expression that
2794      // it points to.
2795      if (V->hasLocalStorage() &&
2796          V->getType()->isReferenceType() && V->hasInit()) {
2797        // Add the reference variable to the "trail".
2798        refVars.push_back(DR);
2799        return EvalAddr(V->getInit(), refVars);
2800      }
2801
2802    return NULL;
2803  }
2804
2805  case Stmt::UnaryOperatorClass: {
2806    // The only unary operator that make sense to handle here
2807    // is AddrOf.  All others don't make sense as pointers.
2808    UnaryOperator *U = cast<UnaryOperator>(E);
2809
2810    if (U->getOpcode() == UO_AddrOf)
2811      return EvalVal(U->getSubExpr(), refVars);
2812    else
2813      return NULL;
2814  }
2815
2816  case Stmt::BinaryOperatorClass: {
2817    // Handle pointer arithmetic.  All other binary operators are not valid
2818    // in this context.
2819    BinaryOperator *B = cast<BinaryOperator>(E);
2820    BinaryOperatorKind op = B->getOpcode();
2821
2822    if (op != BO_Add && op != BO_Sub)
2823      return NULL;
2824
2825    Expr *Base = B->getLHS();
2826
2827    // Determine which argument is the real pointer base.  It could be
2828    // the RHS argument instead of the LHS.
2829    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2830
2831    assert (Base->getType()->isPointerType());
2832    return EvalAddr(Base, refVars);
2833  }
2834
2835  // For conditional operators we need to see if either the LHS or RHS are
2836  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2837  case Stmt::ConditionalOperatorClass: {
2838    ConditionalOperator *C = cast<ConditionalOperator>(E);
2839
2840    // Handle the GNU extension for missing LHS.
2841    if (Expr *lhsExpr = C->getLHS()) {
2842    // In C++, we can have a throw-expression, which has 'void' type.
2843      if (!lhsExpr->getType()->isVoidType())
2844        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2845          return LHS;
2846    }
2847
2848    // In C++, we can have a throw-expression, which has 'void' type.
2849    if (C->getRHS()->getType()->isVoidType())
2850      return NULL;
2851
2852    return EvalAddr(C->getRHS(), refVars);
2853  }
2854
2855  case Stmt::BlockExprClass:
2856    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2857      return E; // local block.
2858    return NULL;
2859
2860  case Stmt::AddrLabelExprClass:
2861    return E; // address of label.
2862
2863  case Stmt::ExprWithCleanupsClass:
2864    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
2865
2866  // For casts, we need to handle conversions from arrays to
2867  // pointer values, and pointer-to-pointer conversions.
2868  case Stmt::ImplicitCastExprClass:
2869  case Stmt::CStyleCastExprClass:
2870  case Stmt::CXXFunctionalCastExprClass:
2871  case Stmt::ObjCBridgedCastExprClass: {
2872    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2873    QualType T = SubExpr->getType();
2874
2875    if (SubExpr->getType()->isPointerType() ||
2876        SubExpr->getType()->isBlockPointerType() ||
2877        SubExpr->getType()->isObjCQualifiedIdType())
2878      return EvalAddr(SubExpr, refVars);
2879    else if (T->isArrayType())
2880      return EvalVal(SubExpr, refVars);
2881    else
2882      return 0;
2883  }
2884
2885  // C++ casts.  For dynamic casts, static casts, and const casts, we
2886  // are always converting from a pointer-to-pointer, so we just blow
2887  // through the cast.  In the case the dynamic cast doesn't fail (and
2888  // return NULL), we take the conservative route and report cases
2889  // where we return the address of a stack variable.  For Reinterpre
2890  // FIXME: The comment about is wrong; we're not always converting
2891  // from pointer to pointer. I'm guessing that this code should also
2892  // handle references to objects.
2893  case Stmt::CXXStaticCastExprClass:
2894  case Stmt::CXXDynamicCastExprClass:
2895  case Stmt::CXXConstCastExprClass:
2896  case Stmt::CXXReinterpretCastExprClass: {
2897      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2898      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2899        return EvalAddr(S, refVars);
2900      else
2901        return NULL;
2902  }
2903
2904  case Stmt::MaterializeTemporaryExprClass:
2905    if (Expr *Result = EvalAddr(
2906                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2907                                refVars))
2908      return Result;
2909
2910    return E;
2911
2912  // Everything else: we simply don't reason about them.
2913  default:
2914    return NULL;
2915  }
2916}
2917
2918
2919///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2920///   See the comments for EvalAddr for more details.
2921static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2922do {
2923  // We should only be called for evaluating non-pointer expressions, or
2924  // expressions with a pointer type that are not used as references but instead
2925  // are l-values (e.g., DeclRefExpr with a pointer type).
2926
2927  // Our "symbolic interpreter" is just a dispatch off the currently
2928  // viewed AST node.  We then recursively traverse the AST by calling
2929  // EvalAddr and EvalVal appropriately.
2930
2931  E = E->IgnoreParens();
2932  switch (E->getStmtClass()) {
2933  case Stmt::ImplicitCastExprClass: {
2934    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2935    if (IE->getValueKind() == VK_LValue) {
2936      E = IE->getSubExpr();
2937      continue;
2938    }
2939    return NULL;
2940  }
2941
2942  case Stmt::ExprWithCleanupsClass:
2943    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
2944
2945  case Stmt::DeclRefExprClass: {
2946    // When we hit a DeclRefExpr we are looking at code that refers to a
2947    // variable's name. If it's not a reference variable we check if it has
2948    // local storage within the function, and if so, return the expression.
2949    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2950
2951    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2952      if (V->hasLocalStorage()) {
2953        if (!V->getType()->isReferenceType())
2954          return DR;
2955
2956        // Reference variable, follow through to the expression that
2957        // it points to.
2958        if (V->hasInit()) {
2959          // Add the reference variable to the "trail".
2960          refVars.push_back(DR);
2961          return EvalVal(V->getInit(), refVars);
2962        }
2963      }
2964
2965    return NULL;
2966  }
2967
2968  case Stmt::UnaryOperatorClass: {
2969    // The only unary operator that make sense to handle here
2970    // is Deref.  All others don't resolve to a "name."  This includes
2971    // handling all sorts of rvalues passed to a unary operator.
2972    UnaryOperator *U = cast<UnaryOperator>(E);
2973
2974    if (U->getOpcode() == UO_Deref)
2975      return EvalAddr(U->getSubExpr(), refVars);
2976
2977    return NULL;
2978  }
2979
2980  case Stmt::ArraySubscriptExprClass: {
2981    // Array subscripts are potential references to data on the stack.  We
2982    // retrieve the DeclRefExpr* for the array variable if it indeed
2983    // has local storage.
2984    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2985  }
2986
2987  case Stmt::ConditionalOperatorClass: {
2988    // For conditional operators we need to see if either the LHS or RHS are
2989    // non-NULL Expr's.  If one is non-NULL, we return it.
2990    ConditionalOperator *C = cast<ConditionalOperator>(E);
2991
2992    // Handle the GNU extension for missing LHS.
2993    if (Expr *lhsExpr = C->getLHS())
2994      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2995        return LHS;
2996
2997    return EvalVal(C->getRHS(), refVars);
2998  }
2999
3000  // Accesses to members are potential references to data on the stack.
3001  case Stmt::MemberExprClass: {
3002    MemberExpr *M = cast<MemberExpr>(E);
3003
3004    // Check for indirect access.  We only want direct field accesses.
3005    if (M->isArrow())
3006      return NULL;
3007
3008    // Check whether the member type is itself a reference, in which case
3009    // we're not going to refer to the member, but to what the member refers to.
3010    if (M->getMemberDecl()->getType()->isReferenceType())
3011      return NULL;
3012
3013    return EvalVal(M->getBase(), refVars);
3014  }
3015
3016  case Stmt::MaterializeTemporaryExprClass:
3017    if (Expr *Result = EvalVal(
3018                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3019                               refVars))
3020      return Result;
3021
3022    return E;
3023
3024  default:
3025    // Check that we don't return or take the address of a reference to a
3026    // temporary. This is only useful in C++.
3027    if (!E->isTypeDependent() && E->isRValue())
3028      return E;
3029
3030    // Everything else: we simply don't reason about them.
3031    return NULL;
3032  }
3033} while (true);
3034}
3035
3036//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3037
3038/// Check for comparisons of floating point operands using != and ==.
3039/// Issue a warning if these are no self-comparisons, as they are not likely
3040/// to do what the programmer intended.
3041void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3042  bool EmitWarning = true;
3043
3044  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3045  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3046
3047  // Special case: check for x == x (which is OK).
3048  // Do not emit warnings for such cases.
3049  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3050    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3051      if (DRL->getDecl() == DRR->getDecl())
3052        EmitWarning = false;
3053
3054
3055  // Special case: check for comparisons against literals that can be exactly
3056  //  represented by APFloat.  In such cases, do not emit a warning.  This
3057  //  is a heuristic: often comparison against such literals are used to
3058  //  detect if a value in a variable has not changed.  This clearly can
3059  //  lead to false negatives.
3060  if (EmitWarning) {
3061    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3062      if (FLL->isExact())
3063        EmitWarning = false;
3064    } else
3065      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
3066        if (FLR->isExact())
3067          EmitWarning = false;
3068    }
3069  }
3070
3071  // Check for comparisons with builtin types.
3072  if (EmitWarning)
3073    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3074      if (CL->isBuiltinCall())
3075        EmitWarning = false;
3076
3077  if (EmitWarning)
3078    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3079      if (CR->isBuiltinCall())
3080        EmitWarning = false;
3081
3082  // Emit the diagnostic.
3083  if (EmitWarning)
3084    Diag(Loc, diag::warn_floatingpoint_eq)
3085      << LHS->getSourceRange() << RHS->getSourceRange();
3086}
3087
3088//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3089//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3090
3091namespace {
3092
3093/// Structure recording the 'active' range of an integer-valued
3094/// expression.
3095struct IntRange {
3096  /// The number of bits active in the int.
3097  unsigned Width;
3098
3099  /// True if the int is known not to have negative values.
3100  bool NonNegative;
3101
3102  IntRange(unsigned Width, bool NonNegative)
3103    : Width(Width), NonNegative(NonNegative)
3104  {}
3105
3106  /// Returns the range of the bool type.
3107  static IntRange forBoolType() {
3108    return IntRange(1, true);
3109  }
3110
3111  /// Returns the range of an opaque value of the given integral type.
3112  static IntRange forValueOfType(ASTContext &C, QualType T) {
3113    return forValueOfCanonicalType(C,
3114                          T->getCanonicalTypeInternal().getTypePtr());
3115  }
3116
3117  /// Returns the range of an opaque value of a canonical integral type.
3118  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3119    assert(T->isCanonicalUnqualified());
3120
3121    if (const VectorType *VT = dyn_cast<VectorType>(T))
3122      T = VT->getElementType().getTypePtr();
3123    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3124      T = CT->getElementType().getTypePtr();
3125
3126    // For enum types, use the known bit width of the enumerators.
3127    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3128      EnumDecl *Enum = ET->getDecl();
3129      if (!Enum->isCompleteDefinition())
3130        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3131
3132      unsigned NumPositive = Enum->getNumPositiveBits();
3133      unsigned NumNegative = Enum->getNumNegativeBits();
3134
3135      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3136    }
3137
3138    const BuiltinType *BT = cast<BuiltinType>(T);
3139    assert(BT->isInteger());
3140
3141    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3142  }
3143
3144  /// Returns the "target" range of a canonical integral type, i.e.
3145  /// the range of values expressible in the type.
3146  ///
3147  /// This matches forValueOfCanonicalType except that enums have the
3148  /// full range of their type, not the range of their enumerators.
3149  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3150    assert(T->isCanonicalUnqualified());
3151
3152    if (const VectorType *VT = dyn_cast<VectorType>(T))
3153      T = VT->getElementType().getTypePtr();
3154    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3155      T = CT->getElementType().getTypePtr();
3156    if (const EnumType *ET = dyn_cast<EnumType>(T))
3157      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3158
3159    const BuiltinType *BT = cast<BuiltinType>(T);
3160    assert(BT->isInteger());
3161
3162    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3163  }
3164
3165  /// Returns the supremum of two ranges: i.e. their conservative merge.
3166  static IntRange join(IntRange L, IntRange R) {
3167    return IntRange(std::max(L.Width, R.Width),
3168                    L.NonNegative && R.NonNegative);
3169  }
3170
3171  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3172  static IntRange meet(IntRange L, IntRange R) {
3173    return IntRange(std::min(L.Width, R.Width),
3174                    L.NonNegative || R.NonNegative);
3175  }
3176};
3177
3178IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
3179  if (value.isSigned() && value.isNegative())
3180    return IntRange(value.getMinSignedBits(), false);
3181
3182  if (value.getBitWidth() > MaxWidth)
3183    value = value.trunc(MaxWidth);
3184
3185  // isNonNegative() just checks the sign bit without considering
3186  // signedness.
3187  return IntRange(value.getActiveBits(), true);
3188}
3189
3190IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3191                       unsigned MaxWidth) {
3192  if (result.isInt())
3193    return GetValueRange(C, result.getInt(), MaxWidth);
3194
3195  if (result.isVector()) {
3196    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3197    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3198      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3199      R = IntRange::join(R, El);
3200    }
3201    return R;
3202  }
3203
3204  if (result.isComplexInt()) {
3205    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3206    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3207    return IntRange::join(R, I);
3208  }
3209
3210  // This can happen with lossless casts to intptr_t of "based" lvalues.
3211  // Assume it might use arbitrary bits.
3212  // FIXME: The only reason we need to pass the type in here is to get
3213  // the sign right on this one case.  It would be nice if APValue
3214  // preserved this.
3215  assert(result.isLValue() || result.isAddrLabelDiff());
3216  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3217}
3218
3219/// Pseudo-evaluate the given integer expression, estimating the
3220/// range of values it might take.
3221///
3222/// \param MaxWidth - the width to which the value will be truncated
3223IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3224  E = E->IgnoreParens();
3225
3226  // Try a full evaluation first.
3227  Expr::EvalResult result;
3228  if (E->EvaluateAsRValue(result, C))
3229    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3230
3231  // I think we only want to look through implicit casts here; if the
3232  // user has an explicit widening cast, we should treat the value as
3233  // being of the new, wider type.
3234  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3235    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3236      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3237
3238    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3239
3240    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3241
3242    // Assume that non-integer casts can span the full range of the type.
3243    if (!isIntegerCast)
3244      return OutputTypeRange;
3245
3246    IntRange SubRange
3247      = GetExprRange(C, CE->getSubExpr(),
3248                     std::min(MaxWidth, OutputTypeRange.Width));
3249
3250    // Bail out if the subexpr's range is as wide as the cast type.
3251    if (SubRange.Width >= OutputTypeRange.Width)
3252      return OutputTypeRange;
3253
3254    // Otherwise, we take the smaller width, and we're non-negative if
3255    // either the output type or the subexpr is.
3256    return IntRange(SubRange.Width,
3257                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3258  }
3259
3260  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3261    // If we can fold the condition, just take that operand.
3262    bool CondResult;
3263    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3264      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3265                                        : CO->getFalseExpr(),
3266                          MaxWidth);
3267
3268    // Otherwise, conservatively merge.
3269    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3270    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3271    return IntRange::join(L, R);
3272  }
3273
3274  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3275    switch (BO->getOpcode()) {
3276
3277    // Boolean-valued operations are single-bit and positive.
3278    case BO_LAnd:
3279    case BO_LOr:
3280    case BO_LT:
3281    case BO_GT:
3282    case BO_LE:
3283    case BO_GE:
3284    case BO_EQ:
3285    case BO_NE:
3286      return IntRange::forBoolType();
3287
3288    // The type of the assignments is the type of the LHS, so the RHS
3289    // is not necessarily the same type.
3290    case BO_MulAssign:
3291    case BO_DivAssign:
3292    case BO_RemAssign:
3293    case BO_AddAssign:
3294    case BO_SubAssign:
3295    case BO_XorAssign:
3296    case BO_OrAssign:
3297      // TODO: bitfields?
3298      return IntRange::forValueOfType(C, E->getType());
3299
3300    // Simple assignments just pass through the RHS, which will have
3301    // been coerced to the LHS type.
3302    case BO_Assign:
3303      // TODO: bitfields?
3304      return GetExprRange(C, BO->getRHS(), MaxWidth);
3305
3306    // Operations with opaque sources are black-listed.
3307    case BO_PtrMemD:
3308    case BO_PtrMemI:
3309      return IntRange::forValueOfType(C, E->getType());
3310
3311    // Bitwise-and uses the *infinum* of the two source ranges.
3312    case BO_And:
3313    case BO_AndAssign:
3314      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3315                            GetExprRange(C, BO->getRHS(), MaxWidth));
3316
3317    // Left shift gets black-listed based on a judgement call.
3318    case BO_Shl:
3319      // ...except that we want to treat '1 << (blah)' as logically
3320      // positive.  It's an important idiom.
3321      if (IntegerLiteral *I
3322            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3323        if (I->getValue() == 1) {
3324          IntRange R = IntRange::forValueOfType(C, E->getType());
3325          return IntRange(R.Width, /*NonNegative*/ true);
3326        }
3327      }
3328      // fallthrough
3329
3330    case BO_ShlAssign:
3331      return IntRange::forValueOfType(C, E->getType());
3332
3333    // Right shift by a constant can narrow its left argument.
3334    case BO_Shr:
3335    case BO_ShrAssign: {
3336      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3337
3338      // If the shift amount is a positive constant, drop the width by
3339      // that much.
3340      llvm::APSInt shift;
3341      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3342          shift.isNonNegative()) {
3343        unsigned zext = shift.getZExtValue();
3344        if (zext >= L.Width)
3345          L.Width = (L.NonNegative ? 0 : 1);
3346        else
3347          L.Width -= zext;
3348      }
3349
3350      return L;
3351    }
3352
3353    // Comma acts as its right operand.
3354    case BO_Comma:
3355      return GetExprRange(C, BO->getRHS(), MaxWidth);
3356
3357    // Black-list pointer subtractions.
3358    case BO_Sub:
3359      if (BO->getLHS()->getType()->isPointerType())
3360        return IntRange::forValueOfType(C, E->getType());
3361      break;
3362
3363    // The width of a division result is mostly determined by the size
3364    // of the LHS.
3365    case BO_Div: {
3366      // Don't 'pre-truncate' the operands.
3367      unsigned opWidth = C.getIntWidth(E->getType());
3368      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3369
3370      // If the divisor is constant, use that.
3371      llvm::APSInt divisor;
3372      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3373        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3374        if (log2 >= L.Width)
3375          L.Width = (L.NonNegative ? 0 : 1);
3376        else
3377          L.Width = std::min(L.Width - log2, MaxWidth);
3378        return L;
3379      }
3380
3381      // Otherwise, just use the LHS's width.
3382      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3383      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3384    }
3385
3386    // The result of a remainder can't be larger than the result of
3387    // either side.
3388    case BO_Rem: {
3389      // Don't 'pre-truncate' the operands.
3390      unsigned opWidth = C.getIntWidth(E->getType());
3391      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3392      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3393
3394      IntRange meet = IntRange::meet(L, R);
3395      meet.Width = std::min(meet.Width, MaxWidth);
3396      return meet;
3397    }
3398
3399    // The default behavior is okay for these.
3400    case BO_Mul:
3401    case BO_Add:
3402    case BO_Xor:
3403    case BO_Or:
3404      break;
3405    }
3406
3407    // The default case is to treat the operation as if it were closed
3408    // on the narrowest type that encompasses both operands.
3409    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3410    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3411    return IntRange::join(L, R);
3412  }
3413
3414  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3415    switch (UO->getOpcode()) {
3416    // Boolean-valued operations are white-listed.
3417    case UO_LNot:
3418      return IntRange::forBoolType();
3419
3420    // Operations with opaque sources are black-listed.
3421    case UO_Deref:
3422    case UO_AddrOf: // should be impossible
3423      return IntRange::forValueOfType(C, E->getType());
3424
3425    default:
3426      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3427    }
3428  }
3429
3430  if (dyn_cast<OffsetOfExpr>(E)) {
3431    IntRange::forValueOfType(C, E->getType());
3432  }
3433
3434  if (FieldDecl *BitField = E->getBitField())
3435    return IntRange(BitField->getBitWidthValue(C),
3436                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3437
3438  return IntRange::forValueOfType(C, E->getType());
3439}
3440
3441IntRange GetExprRange(ASTContext &C, Expr *E) {
3442  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3443}
3444
3445/// Checks whether the given value, which currently has the given
3446/// source semantics, has the same value when coerced through the
3447/// target semantics.
3448bool IsSameFloatAfterCast(const llvm::APFloat &value,
3449                          const llvm::fltSemantics &Src,
3450                          const llvm::fltSemantics &Tgt) {
3451  llvm::APFloat truncated = value;
3452
3453  bool ignored;
3454  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3455  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3456
3457  return truncated.bitwiseIsEqual(value);
3458}
3459
3460/// Checks whether the given value, which currently has the given
3461/// source semantics, has the same value when coerced through the
3462/// target semantics.
3463///
3464/// The value might be a vector of floats (or a complex number).
3465bool IsSameFloatAfterCast(const APValue &value,
3466                          const llvm::fltSemantics &Src,
3467                          const llvm::fltSemantics &Tgt) {
3468  if (value.isFloat())
3469    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3470
3471  if (value.isVector()) {
3472    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3473      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3474        return false;
3475    return true;
3476  }
3477
3478  assert(value.isComplexFloat());
3479  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3480          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3481}
3482
3483void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3484
3485static bool IsZero(Sema &S, Expr *E) {
3486  // Suppress cases where we are comparing against an enum constant.
3487  if (const DeclRefExpr *DR =
3488      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3489    if (isa<EnumConstantDecl>(DR->getDecl()))
3490      return false;
3491
3492  // Suppress cases where the '0' value is expanded from a macro.
3493  if (E->getLocStart().isMacroID())
3494    return false;
3495
3496  llvm::APSInt Value;
3497  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3498}
3499
3500static bool HasEnumType(Expr *E) {
3501  // Strip off implicit integral promotions.
3502  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3503    if (ICE->getCastKind() != CK_IntegralCast &&
3504        ICE->getCastKind() != CK_NoOp)
3505      break;
3506    E = ICE->getSubExpr();
3507  }
3508
3509  return E->getType()->isEnumeralType();
3510}
3511
3512void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3513  BinaryOperatorKind op = E->getOpcode();
3514  if (E->isValueDependent())
3515    return;
3516
3517  if (op == BO_LT && IsZero(S, E->getRHS())) {
3518    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3519      << "< 0" << "false" << HasEnumType(E->getLHS())
3520      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3521  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3522    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3523      << ">= 0" << "true" << HasEnumType(E->getLHS())
3524      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3525  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3526    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3527      << "0 >" << "false" << HasEnumType(E->getRHS())
3528      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3529  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3530    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3531      << "0 <=" << "true" << HasEnumType(E->getRHS())
3532      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3533  }
3534}
3535
3536/// Analyze the operands of the given comparison.  Implements the
3537/// fallback case from AnalyzeComparison.
3538void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3539  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3540  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3541}
3542
3543/// \brief Implements -Wsign-compare.
3544///
3545/// \param E the binary operator to check for warnings
3546void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3547  // The type the comparison is being performed in.
3548  QualType T = E->getLHS()->getType();
3549  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3550         && "comparison with mismatched types");
3551
3552  // We don't do anything special if this isn't an unsigned integral
3553  // comparison:  we're only interested in integral comparisons, and
3554  // signed comparisons only happen in cases we don't care to warn about.
3555  //
3556  // We also don't care about value-dependent expressions or expressions
3557  // whose result is a constant.
3558  if (!T->hasUnsignedIntegerRepresentation()
3559      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3560    return AnalyzeImpConvsInComparison(S, E);
3561
3562  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3563  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3564
3565  // Check to see if one of the (unmodified) operands is of different
3566  // signedness.
3567  Expr *signedOperand, *unsignedOperand;
3568  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3569    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3570           "unsigned comparison between two signed integer expressions?");
3571    signedOperand = LHS;
3572    unsignedOperand = RHS;
3573  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3574    signedOperand = RHS;
3575    unsignedOperand = LHS;
3576  } else {
3577    CheckTrivialUnsignedComparison(S, E);
3578    return AnalyzeImpConvsInComparison(S, E);
3579  }
3580
3581  // Otherwise, calculate the effective range of the signed operand.
3582  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3583
3584  // Go ahead and analyze implicit conversions in the operands.  Note
3585  // that we skip the implicit conversions on both sides.
3586  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3587  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3588
3589  // If the signed range is non-negative, -Wsign-compare won't fire,
3590  // but we should still check for comparisons which are always true
3591  // or false.
3592  if (signedRange.NonNegative)
3593    return CheckTrivialUnsignedComparison(S, E);
3594
3595  // For (in)equality comparisons, if the unsigned operand is a
3596  // constant which cannot collide with a overflowed signed operand,
3597  // then reinterpreting the signed operand as unsigned will not
3598  // change the result of the comparison.
3599  if (E->isEqualityOp()) {
3600    unsigned comparisonWidth = S.Context.getIntWidth(T);
3601    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3602
3603    // We should never be unable to prove that the unsigned operand is
3604    // non-negative.
3605    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3606
3607    if (unsignedRange.Width < comparisonWidth)
3608      return;
3609  }
3610
3611  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3612    << LHS->getType() << RHS->getType()
3613    << LHS->getSourceRange() << RHS->getSourceRange();
3614}
3615
3616/// Analyzes an attempt to assign the given value to a bitfield.
3617///
3618/// Returns true if there was something fishy about the attempt.
3619bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3620                               SourceLocation InitLoc) {
3621  assert(Bitfield->isBitField());
3622  if (Bitfield->isInvalidDecl())
3623    return false;
3624
3625  // White-list bool bitfields.
3626  if (Bitfield->getType()->isBooleanType())
3627    return false;
3628
3629  // Ignore value- or type-dependent expressions.
3630  if (Bitfield->getBitWidth()->isValueDependent() ||
3631      Bitfield->getBitWidth()->isTypeDependent() ||
3632      Init->isValueDependent() ||
3633      Init->isTypeDependent())
3634    return false;
3635
3636  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3637
3638  llvm::APSInt Value;
3639  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
3640    return false;
3641
3642  unsigned OriginalWidth = Value.getBitWidth();
3643  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
3644
3645  if (OriginalWidth <= FieldWidth)
3646    return false;
3647
3648  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3649
3650  // It's fairly common to write values into signed bitfields
3651  // that, if sign-extended, would end up becoming a different
3652  // value.  We don't want to warn about that.
3653  if (Value.isSigned() && Value.isNegative())
3654    TruncatedValue = TruncatedValue.sext(OriginalWidth);
3655  else
3656    TruncatedValue = TruncatedValue.zext(OriginalWidth);
3657
3658  if (Value == TruncatedValue)
3659    return false;
3660
3661  std::string PrettyValue = Value.toString(10);
3662  std::string PrettyTrunc = TruncatedValue.toString(10);
3663
3664  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3665    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3666    << Init->getSourceRange();
3667
3668  return true;
3669}
3670
3671/// Analyze the given simple or compound assignment for warning-worthy
3672/// operations.
3673void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3674  // Just recurse on the LHS.
3675  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3676
3677  // We want to recurse on the RHS as normal unless we're assigning to
3678  // a bitfield.
3679  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3680    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3681                                  E->getOperatorLoc())) {
3682      // Recurse, ignoring any implicit conversions on the RHS.
3683      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3684                                        E->getOperatorLoc());
3685    }
3686  }
3687
3688  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3689}
3690
3691/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3692void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3693                     SourceLocation CContext, unsigned diag) {
3694  S.Diag(E->getExprLoc(), diag)
3695    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3696}
3697
3698/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3699void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3700                     unsigned diag) {
3701  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3702}
3703
3704/// Diagnose an implicit cast from a literal expression. Does not warn when the
3705/// cast wouldn't lose information.
3706void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3707                                    SourceLocation CContext) {
3708  // Try to convert the literal exactly to an integer. If we can, don't warn.
3709  bool isExact = false;
3710  const llvm::APFloat &Value = FL->getValue();
3711  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3712                            T->hasUnsignedIntegerRepresentation());
3713  if (Value.convertToInteger(IntegerValue,
3714                             llvm::APFloat::rmTowardZero, &isExact)
3715      == llvm::APFloat::opOK && isExact)
3716    return;
3717
3718  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3719    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3720}
3721
3722std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3723  if (!Range.Width) return "0";
3724
3725  llvm::APSInt ValueInRange = Value;
3726  ValueInRange.setIsSigned(!Range.NonNegative);
3727  ValueInRange = ValueInRange.trunc(Range.Width);
3728  return ValueInRange.toString(10);
3729}
3730
3731void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3732                             SourceLocation CC, bool *ICContext = 0) {
3733  if (E->isTypeDependent() || E->isValueDependent()) return;
3734
3735  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3736  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3737  if (Source == Target) return;
3738  if (Target->isDependentType()) return;
3739
3740  // If the conversion context location is invalid don't complain. We also
3741  // don't want to emit a warning if the issue occurs from the expansion of
3742  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3743  // delay this check as long as possible. Once we detect we are in that
3744  // scenario, we just return.
3745  if (CC.isInvalid())
3746    return;
3747
3748  // Diagnose implicit casts to bool.
3749  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
3750    if (isa<StringLiteral>(E))
3751      // Warn on string literal to bool.  Checks for string literals in logical
3752      // expressions, for instances, assert(0 && "error here"), is prevented
3753      // by a check in AnalyzeImplicitConversions().
3754      return DiagnoseImpCast(S, E, T, CC,
3755                             diag::warn_impcast_string_literal_to_bool);
3756    if (Source->isFunctionType()) {
3757      // Warn on function to bool. Checks free functions and static member
3758      // functions. Weakly imported functions are excluded from the check,
3759      // since it's common to test their value to check whether the linker
3760      // found a definition for them.
3761      ValueDecl *D = 0;
3762      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
3763        D = R->getDecl();
3764      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
3765        D = M->getMemberDecl();
3766      }
3767
3768      if (D && !D->isWeak()) {
3769        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
3770          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
3771            << F << E->getSourceRange() << SourceRange(CC);
3772          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
3773            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
3774          QualType ReturnType;
3775          UnresolvedSet<4> NonTemplateOverloads;
3776          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
3777          if (!ReturnType.isNull()
3778              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
3779            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
3780              << FixItHint::CreateInsertion(
3781                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
3782          return;
3783        }
3784      }
3785    }
3786    return; // Other casts to bool are not checked.
3787  }
3788
3789  // Strip vector types.
3790  if (isa<VectorType>(Source)) {
3791    if (!isa<VectorType>(Target)) {
3792      if (S.SourceMgr.isInSystemMacro(CC))
3793        return;
3794      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3795    }
3796
3797    // If the vector cast is cast between two vectors of the same size, it is
3798    // a bitcast, not a conversion.
3799    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3800      return;
3801
3802    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3803    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3804  }
3805
3806  // Strip complex types.
3807  if (isa<ComplexType>(Source)) {
3808    if (!isa<ComplexType>(Target)) {
3809      if (S.SourceMgr.isInSystemMacro(CC))
3810        return;
3811
3812      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3813    }
3814
3815    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3816    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3817  }
3818
3819  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3820  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3821
3822  // If the source is floating point...
3823  if (SourceBT && SourceBT->isFloatingPoint()) {
3824    // ...and the target is floating point...
3825    if (TargetBT && TargetBT->isFloatingPoint()) {
3826      // ...then warn if we're dropping FP rank.
3827
3828      // Builtin FP kinds are ordered by increasing FP rank.
3829      if (SourceBT->getKind() > TargetBT->getKind()) {
3830        // Don't warn about float constants that are precisely
3831        // representable in the target type.
3832        Expr::EvalResult result;
3833        if (E->EvaluateAsRValue(result, S.Context)) {
3834          // Value might be a float, a float vector, or a float complex.
3835          if (IsSameFloatAfterCast(result.Val,
3836                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3837                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3838            return;
3839        }
3840
3841        if (S.SourceMgr.isInSystemMacro(CC))
3842          return;
3843
3844        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3845      }
3846      return;
3847    }
3848
3849    // If the target is integral, always warn.
3850    if ((TargetBT && TargetBT->isInteger())) {
3851      if (S.SourceMgr.isInSystemMacro(CC))
3852        return;
3853
3854      Expr *InnerE = E->IgnoreParenImpCasts();
3855      // We also want to warn on, e.g., "int i = -1.234"
3856      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
3857        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
3858          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
3859
3860      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3861        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3862      } else {
3863        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3864      }
3865    }
3866
3867    return;
3868  }
3869
3870  if (!Source->isIntegerType() || !Target->isIntegerType())
3871    return;
3872
3873  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3874           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3875    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3876        << E->getSourceRange() << clang::SourceRange(CC);
3877    return;
3878  }
3879
3880  IntRange SourceRange = GetExprRange(S.Context, E);
3881  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3882
3883  if (SourceRange.Width > TargetRange.Width) {
3884    // If the source is a constant, use a default-on diagnostic.
3885    // TODO: this should happen for bitfield stores, too.
3886    llvm::APSInt Value(32);
3887    if (E->isIntegerConstantExpr(Value, S.Context)) {
3888      if (S.SourceMgr.isInSystemMacro(CC))
3889        return;
3890
3891      std::string PrettySourceValue = Value.toString(10);
3892      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3893
3894      S.DiagRuntimeBehavior(E->getExprLoc(), E,
3895        S.PDiag(diag::warn_impcast_integer_precision_constant)
3896            << PrettySourceValue << PrettyTargetValue
3897            << E->getType() << T << E->getSourceRange()
3898            << clang::SourceRange(CC));
3899      return;
3900    }
3901
3902    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3903    if (S.SourceMgr.isInSystemMacro(CC))
3904      return;
3905
3906    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3907      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3908    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3909  }
3910
3911  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3912      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3913       SourceRange.Width == TargetRange.Width)) {
3914
3915    if (S.SourceMgr.isInSystemMacro(CC))
3916      return;
3917
3918    unsigned DiagID = diag::warn_impcast_integer_sign;
3919
3920    // Traditionally, gcc has warned about this under -Wsign-compare.
3921    // We also want to warn about it in -Wconversion.
3922    // So if -Wconversion is off, use a completely identical diagnostic
3923    // in the sign-compare group.
3924    // The conditional-checking code will
3925    if (ICContext) {
3926      DiagID = diag::warn_impcast_integer_sign_conditional;
3927      *ICContext = true;
3928    }
3929
3930    return DiagnoseImpCast(S, E, T, CC, DiagID);
3931  }
3932
3933  // Diagnose conversions between different enumeration types.
3934  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3935  // type, to give us better diagnostics.
3936  QualType SourceType = E->getType();
3937  if (!S.getLangOptions().CPlusPlus) {
3938    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3939      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3940        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3941        SourceType = S.Context.getTypeDeclType(Enum);
3942        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3943      }
3944  }
3945
3946  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3947    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3948      if ((SourceEnum->getDecl()->getIdentifier() ||
3949           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3950          (TargetEnum->getDecl()->getIdentifier() ||
3951           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3952          SourceEnum != TargetEnum) {
3953        if (S.SourceMgr.isInSystemMacro(CC))
3954          return;
3955
3956        return DiagnoseImpCast(S, E, SourceType, T, CC,
3957                               diag::warn_impcast_different_enum_types);
3958      }
3959
3960  return;
3961}
3962
3963void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3964
3965void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3966                             SourceLocation CC, bool &ICContext) {
3967  E = E->IgnoreParenImpCasts();
3968
3969  if (isa<ConditionalOperator>(E))
3970    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3971
3972  AnalyzeImplicitConversions(S, E, CC);
3973  if (E->getType() != T)
3974    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3975  return;
3976}
3977
3978void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3979  SourceLocation CC = E->getQuestionLoc();
3980
3981  AnalyzeImplicitConversions(S, E->getCond(), CC);
3982
3983  bool Suspicious = false;
3984  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3985  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3986
3987  // If -Wconversion would have warned about either of the candidates
3988  // for a signedness conversion to the context type...
3989  if (!Suspicious) return;
3990
3991  // ...but it's currently ignored...
3992  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3993                                 CC))
3994    return;
3995
3996  // ...then check whether it would have warned about either of the
3997  // candidates for a signedness conversion to the condition type.
3998  if (E->getType() == T) return;
3999
4000  Suspicious = false;
4001  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4002                          E->getType(), CC, &Suspicious);
4003  if (!Suspicious)
4004    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4005                            E->getType(), CC, &Suspicious);
4006}
4007
4008/// AnalyzeImplicitConversions - Find and report any interesting
4009/// implicit conversions in the given expression.  There are a couple
4010/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4011void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4012  QualType T = OrigE->getType();
4013  Expr *E = OrigE->IgnoreParenImpCasts();
4014
4015  if (E->isTypeDependent() || E->isValueDependent())
4016    return;
4017
4018  // For conditional operators, we analyze the arguments as if they
4019  // were being fed directly into the output.
4020  if (isa<ConditionalOperator>(E)) {
4021    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4022    CheckConditionalOperator(S, CO, T);
4023    return;
4024  }
4025
4026  // Go ahead and check any implicit conversions we might have skipped.
4027  // The non-canonical typecheck is just an optimization;
4028  // CheckImplicitConversion will filter out dead implicit conversions.
4029  if (E->getType() != T)
4030    CheckImplicitConversion(S, E, T, CC);
4031
4032  // Now continue drilling into this expression.
4033
4034  // Skip past explicit casts.
4035  if (isa<ExplicitCastExpr>(E)) {
4036    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4037    return AnalyzeImplicitConversions(S, E, CC);
4038  }
4039
4040  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4041    // Do a somewhat different check with comparison operators.
4042    if (BO->isComparisonOp())
4043      return AnalyzeComparison(S, BO);
4044
4045    // And with assignments and compound assignments.
4046    if (BO->isAssignmentOp())
4047      return AnalyzeAssignment(S, BO);
4048  }
4049
4050  // These break the otherwise-useful invariant below.  Fortunately,
4051  // we don't really need to recurse into them, because any internal
4052  // expressions should have been analyzed already when they were
4053  // built into statements.
4054  if (isa<StmtExpr>(E)) return;
4055
4056  // Don't descend into unevaluated contexts.
4057  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4058
4059  // Now just recurse over the expression's children.
4060  CC = E->getExprLoc();
4061  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4062  bool IsLogicalOperator = BO && BO->isLogicalOp();
4063  for (Stmt::child_range I = E->children(); I; ++I) {
4064    Expr *ChildExpr = cast<Expr>(*I);
4065    if (IsLogicalOperator &&
4066        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4067      // Ignore checking string literals that are in logical operators.
4068      continue;
4069    AnalyzeImplicitConversions(S, ChildExpr, CC);
4070  }
4071}
4072
4073} // end anonymous namespace
4074
4075/// Diagnoses "dangerous" implicit conversions within the given
4076/// expression (which is a full expression).  Implements -Wconversion
4077/// and -Wsign-compare.
4078///
4079/// \param CC the "context" location of the implicit conversion, i.e.
4080///   the most location of the syntactic entity requiring the implicit
4081///   conversion
4082void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4083  // Don't diagnose in unevaluated contexts.
4084  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
4085    return;
4086
4087  // Don't diagnose for value- or type-dependent expressions.
4088  if (E->isTypeDependent() || E->isValueDependent())
4089    return;
4090
4091  // Check for array bounds violations in cases where the check isn't triggered
4092  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4093  // ArraySubscriptExpr is on the RHS of a variable initialization.
4094  CheckArrayAccess(E);
4095
4096  // This is not the right CC for (e.g.) a variable initialization.
4097  AnalyzeImplicitConversions(*this, E, CC);
4098}
4099
4100void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4101                                       FieldDecl *BitField,
4102                                       Expr *Init) {
4103  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4104}
4105
4106/// CheckParmsForFunctionDef - Check that the parameters of the given
4107/// function are appropriate for the definition of a function. This
4108/// takes care of any checks that cannot be performed on the
4109/// declaration itself, e.g., that the types of each of the function
4110/// parameters are complete.
4111bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4112                                    bool CheckParameterNames) {
4113  bool HasInvalidParm = false;
4114  for (; P != PEnd; ++P) {
4115    ParmVarDecl *Param = *P;
4116
4117    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4118    // function declarator that is part of a function definition of
4119    // that function shall not have incomplete type.
4120    //
4121    // This is also C++ [dcl.fct]p6.
4122    if (!Param->isInvalidDecl() &&
4123        RequireCompleteType(Param->getLocation(), Param->getType(),
4124                               diag::err_typecheck_decl_incomplete_type)) {
4125      Param->setInvalidDecl();
4126      HasInvalidParm = true;
4127    }
4128
4129    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4130    // declaration of each parameter shall include an identifier.
4131    if (CheckParameterNames &&
4132        Param->getIdentifier() == 0 &&
4133        !Param->isImplicit() &&
4134        !getLangOptions().CPlusPlus)
4135      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4136
4137    // C99 6.7.5.3p12:
4138    //   If the function declarator is not part of a definition of that
4139    //   function, parameters may have incomplete type and may use the [*]
4140    //   notation in their sequences of declarator specifiers to specify
4141    //   variable length array types.
4142    QualType PType = Param->getOriginalType();
4143    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4144      if (AT->getSizeModifier() == ArrayType::Star) {
4145        // FIXME: This diagnosic should point the the '[*]' if source-location
4146        // information is added for it.
4147        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4148      }
4149    }
4150  }
4151
4152  return HasInvalidParm;
4153}
4154
4155/// CheckCastAlign - Implements -Wcast-align, which warns when a
4156/// pointer cast increases the alignment requirements.
4157void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4158  // This is actually a lot of work to potentially be doing on every
4159  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4160  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4161                                          TRange.getBegin())
4162        == DiagnosticsEngine::Ignored)
4163    return;
4164
4165  // Ignore dependent types.
4166  if (T->isDependentType() || Op->getType()->isDependentType())
4167    return;
4168
4169  // Require that the destination be a pointer type.
4170  const PointerType *DestPtr = T->getAs<PointerType>();
4171  if (!DestPtr) return;
4172
4173  // If the destination has alignment 1, we're done.
4174  QualType DestPointee = DestPtr->getPointeeType();
4175  if (DestPointee->isIncompleteType()) return;
4176  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4177  if (DestAlign.isOne()) return;
4178
4179  // Require that the source be a pointer type.
4180  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4181  if (!SrcPtr) return;
4182  QualType SrcPointee = SrcPtr->getPointeeType();
4183
4184  // Whitelist casts from cv void*.  We already implicitly
4185  // whitelisted casts to cv void*, since they have alignment 1.
4186  // Also whitelist casts involving incomplete types, which implicitly
4187  // includes 'void'.
4188  if (SrcPointee->isIncompleteType()) return;
4189
4190  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4191  if (SrcAlign >= DestAlign) return;
4192
4193  Diag(TRange.getBegin(), diag::warn_cast_align)
4194    << Op->getType() << T
4195    << static_cast<unsigned>(SrcAlign.getQuantity())
4196    << static_cast<unsigned>(DestAlign.getQuantity())
4197    << TRange << Op->getSourceRange();
4198}
4199
4200static const Type* getElementType(const Expr *BaseExpr) {
4201  const Type* EltType = BaseExpr->getType().getTypePtr();
4202  if (EltType->isAnyPointerType())
4203    return EltType->getPointeeType().getTypePtr();
4204  else if (EltType->isArrayType())
4205    return EltType->getBaseElementTypeUnsafe();
4206  return EltType;
4207}
4208
4209/// \brief Check whether this array fits the idiom of a size-one tail padded
4210/// array member of a struct.
4211///
4212/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4213/// commonly used to emulate flexible arrays in C89 code.
4214static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4215                                    const NamedDecl *ND) {
4216  if (Size != 1 || !ND) return false;
4217
4218  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4219  if (!FD) return false;
4220
4221  // Don't consider sizes resulting from macro expansions or template argument
4222  // substitution to form C89 tail-padded arrays.
4223  ConstantArrayTypeLoc TL =
4224    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
4225  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
4226  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4227    return false;
4228
4229  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4230  if (!RD) return false;
4231  if (RD->isUnion()) return false;
4232  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4233    if (!CRD->isStandardLayout()) return false;
4234  }
4235
4236  // See if this is the last field decl in the record.
4237  const Decl *D = FD;
4238  while ((D = D->getNextDeclInContext()))
4239    if (isa<FieldDecl>(D))
4240      return false;
4241  return true;
4242}
4243
4244void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4245                            const ArraySubscriptExpr *ASE,
4246                            bool AllowOnePastEnd, bool IndexNegated) {
4247  IndexExpr = IndexExpr->IgnoreParenCasts();
4248  if (IndexExpr->isValueDependent())
4249    return;
4250
4251  const Type *EffectiveType = getElementType(BaseExpr);
4252  BaseExpr = BaseExpr->IgnoreParenCasts();
4253  const ConstantArrayType *ArrayTy =
4254    Context.getAsConstantArrayType(BaseExpr->getType());
4255  if (!ArrayTy)
4256    return;
4257
4258  llvm::APSInt index;
4259  if (!IndexExpr->EvaluateAsInt(index, Context))
4260    return;
4261  if (IndexNegated)
4262    index = -index;
4263
4264  const NamedDecl *ND = NULL;
4265  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4266    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4267  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4268    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4269
4270  if (index.isUnsigned() || !index.isNegative()) {
4271    llvm::APInt size = ArrayTy->getSize();
4272    if (!size.isStrictlyPositive())
4273      return;
4274
4275    const Type* BaseType = getElementType(BaseExpr);
4276    if (BaseType != EffectiveType) {
4277      // Make sure we're comparing apples to apples when comparing index to size
4278      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4279      uint64_t array_typesize = Context.getTypeSize(BaseType);
4280      // Handle ptrarith_typesize being zero, such as when casting to void*
4281      if (!ptrarith_typesize) ptrarith_typesize = 1;
4282      if (ptrarith_typesize != array_typesize) {
4283        // There's a cast to a different size type involved
4284        uint64_t ratio = array_typesize / ptrarith_typesize;
4285        // TODO: Be smarter about handling cases where array_typesize is not a
4286        // multiple of ptrarith_typesize
4287        if (ptrarith_typesize * ratio == array_typesize)
4288          size *= llvm::APInt(size.getBitWidth(), ratio);
4289      }
4290    }
4291
4292    if (size.getBitWidth() > index.getBitWidth())
4293      index = index.sext(size.getBitWidth());
4294    else if (size.getBitWidth() < index.getBitWidth())
4295      size = size.sext(index.getBitWidth());
4296
4297    // For array subscripting the index must be less than size, but for pointer
4298    // arithmetic also allow the index (offset) to be equal to size since
4299    // computing the next address after the end of the array is legal and
4300    // commonly done e.g. in C++ iterators and range-based for loops.
4301    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
4302      return;
4303
4304    // Also don't warn for arrays of size 1 which are members of some
4305    // structure. These are often used to approximate flexible arrays in C89
4306    // code.
4307    if (IsTailPaddedMemberArray(*this, size, ND))
4308      return;
4309
4310    // Suppress the warning if the subscript expression (as identified by the
4311    // ']' location) and the index expression are both from macro expansions
4312    // within a system header.
4313    if (ASE) {
4314      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4315          ASE->getRBracketLoc());
4316      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4317        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4318            IndexExpr->getLocStart());
4319        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4320          return;
4321      }
4322    }
4323
4324    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4325    if (ASE)
4326      DiagID = diag::warn_array_index_exceeds_bounds;
4327
4328    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4329                        PDiag(DiagID) << index.toString(10, true)
4330                          << size.toString(10, true)
4331                          << (unsigned)size.getLimitedValue(~0U)
4332                          << IndexExpr->getSourceRange());
4333  } else {
4334    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4335    if (!ASE) {
4336      DiagID = diag::warn_ptr_arith_precedes_bounds;
4337      if (index.isNegative()) index = -index;
4338    }
4339
4340    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4341                        PDiag(DiagID) << index.toString(10, true)
4342                          << IndexExpr->getSourceRange());
4343  }
4344
4345  if (!ND) {
4346    // Try harder to find a NamedDecl to point at in the note.
4347    while (const ArraySubscriptExpr *ASE =
4348           dyn_cast<ArraySubscriptExpr>(BaseExpr))
4349      BaseExpr = ASE->getBase()->IgnoreParenCasts();
4350    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4351      ND = dyn_cast<NamedDecl>(DRE->getDecl());
4352    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4353      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4354  }
4355
4356  if (ND)
4357    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4358                        PDiag(diag::note_array_index_out_of_bounds)
4359                          << ND->getDeclName());
4360}
4361
4362void Sema::CheckArrayAccess(const Expr *expr) {
4363  int AllowOnePastEnd = 0;
4364  while (expr) {
4365    expr = expr->IgnoreParenImpCasts();
4366    switch (expr->getStmtClass()) {
4367      case Stmt::ArraySubscriptExprClass: {
4368        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4369        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
4370                         AllowOnePastEnd > 0);
4371        return;
4372      }
4373      case Stmt::UnaryOperatorClass: {
4374        // Only unwrap the * and & unary operators
4375        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4376        expr = UO->getSubExpr();
4377        switch (UO->getOpcode()) {
4378          case UO_AddrOf:
4379            AllowOnePastEnd++;
4380            break;
4381          case UO_Deref:
4382            AllowOnePastEnd--;
4383            break;
4384          default:
4385            return;
4386        }
4387        break;
4388      }
4389      case Stmt::ConditionalOperatorClass: {
4390        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4391        if (const Expr *lhs = cond->getLHS())
4392          CheckArrayAccess(lhs);
4393        if (const Expr *rhs = cond->getRHS())
4394          CheckArrayAccess(rhs);
4395        return;
4396      }
4397      default:
4398        return;
4399    }
4400  }
4401}
4402
4403//===--- CHECK: Objective-C retain cycles ----------------------------------//
4404
4405namespace {
4406  struct RetainCycleOwner {
4407    RetainCycleOwner() : Variable(0), Indirect(false) {}
4408    VarDecl *Variable;
4409    SourceRange Range;
4410    SourceLocation Loc;
4411    bool Indirect;
4412
4413    void setLocsFrom(Expr *e) {
4414      Loc = e->getExprLoc();
4415      Range = e->getSourceRange();
4416    }
4417  };
4418}
4419
4420/// Consider whether capturing the given variable can possibly lead to
4421/// a retain cycle.
4422static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4423  // In ARC, it's captured strongly iff the variable has __strong
4424  // lifetime.  In MRR, it's captured strongly if the variable is
4425  // __block and has an appropriate type.
4426  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4427    return false;
4428
4429  owner.Variable = var;
4430  owner.setLocsFrom(ref);
4431  return true;
4432}
4433
4434static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
4435  while (true) {
4436    e = e->IgnoreParens();
4437    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4438      switch (cast->getCastKind()) {
4439      case CK_BitCast:
4440      case CK_LValueBitCast:
4441      case CK_LValueToRValue:
4442      case CK_ARCReclaimReturnedObject:
4443        e = cast->getSubExpr();
4444        continue;
4445
4446      default:
4447        return false;
4448      }
4449    }
4450
4451    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4452      ObjCIvarDecl *ivar = ref->getDecl();
4453      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4454        return false;
4455
4456      // Try to find a retain cycle in the base.
4457      if (!findRetainCycleOwner(S, ref->getBase(), owner))
4458        return false;
4459
4460      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4461      owner.Indirect = true;
4462      return true;
4463    }
4464
4465    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4466      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4467      if (!var) return false;
4468      return considerVariable(var, ref, owner);
4469    }
4470
4471    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
4472      owner.Variable = ref->getDecl();
4473      owner.setLocsFrom(ref);
4474      return true;
4475    }
4476
4477    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4478      if (member->isArrow()) return false;
4479
4480      // Don't count this as an indirect ownership.
4481      e = member->getBase();
4482      continue;
4483    }
4484
4485    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4486      // Only pay attention to pseudo-objects on property references.
4487      ObjCPropertyRefExpr *pre
4488        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4489                                              ->IgnoreParens());
4490      if (!pre) return false;
4491      if (pre->isImplicitProperty()) return false;
4492      ObjCPropertyDecl *property = pre->getExplicitProperty();
4493      if (!property->isRetaining() &&
4494          !(property->getPropertyIvarDecl() &&
4495            property->getPropertyIvarDecl()->getType()
4496              .getObjCLifetime() == Qualifiers::OCL_Strong))
4497          return false;
4498
4499      owner.Indirect = true;
4500      if (pre->isSuperReceiver()) {
4501        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
4502        if (!owner.Variable)
4503          return false;
4504        owner.Loc = pre->getLocation();
4505        owner.Range = pre->getSourceRange();
4506        return true;
4507      }
4508      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4509                              ->getSourceExpr());
4510      continue;
4511    }
4512
4513    // Array ivars?
4514
4515    return false;
4516  }
4517}
4518
4519namespace {
4520  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4521    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4522      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4523        Variable(variable), Capturer(0) {}
4524
4525    VarDecl *Variable;
4526    Expr *Capturer;
4527
4528    void VisitDeclRefExpr(DeclRefExpr *ref) {
4529      if (ref->getDecl() == Variable && !Capturer)
4530        Capturer = ref;
4531    }
4532
4533    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
4534      if (ref->getDecl() == Variable && !Capturer)
4535        Capturer = ref;
4536    }
4537
4538    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4539      if (Capturer) return;
4540      Visit(ref->getBase());
4541      if (Capturer && ref->isFreeIvar())
4542        Capturer = ref;
4543    }
4544
4545    void VisitBlockExpr(BlockExpr *block) {
4546      // Look inside nested blocks
4547      if (block->getBlockDecl()->capturesVariable(Variable))
4548        Visit(block->getBlockDecl()->getBody());
4549    }
4550  };
4551}
4552
4553/// Check whether the given argument is a block which captures a
4554/// variable.
4555static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4556  assert(owner.Variable && owner.Loc.isValid());
4557
4558  e = e->IgnoreParenCasts();
4559  BlockExpr *block = dyn_cast<BlockExpr>(e);
4560  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4561    return 0;
4562
4563  FindCaptureVisitor visitor(S.Context, owner.Variable);
4564  visitor.Visit(block->getBlockDecl()->getBody());
4565  return visitor.Capturer;
4566}
4567
4568static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4569                                RetainCycleOwner &owner) {
4570  assert(capturer);
4571  assert(owner.Variable && owner.Loc.isValid());
4572
4573  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4574    << owner.Variable << capturer->getSourceRange();
4575  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4576    << owner.Indirect << owner.Range;
4577}
4578
4579/// Check for a keyword selector that starts with the word 'add' or
4580/// 'set'.
4581static bool isSetterLikeSelector(Selector sel) {
4582  if (sel.isUnarySelector()) return false;
4583
4584  StringRef str = sel.getNameForSlot(0);
4585  while (!str.empty() && str.front() == '_') str = str.substr(1);
4586  if (str.startswith("set"))
4587    str = str.substr(3);
4588  else if (str.startswith("add")) {
4589    // Specially whitelist 'addOperationWithBlock:'.
4590    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
4591      return false;
4592    str = str.substr(3);
4593  }
4594  else
4595    return false;
4596
4597  if (str.empty()) return true;
4598  return !islower(str.front());
4599}
4600
4601/// Check a message send to see if it's likely to cause a retain cycle.
4602void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4603  // Only check instance methods whose selector looks like a setter.
4604  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4605    return;
4606
4607  // Try to find a variable that the receiver is strongly owned by.
4608  RetainCycleOwner owner;
4609  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4610    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
4611      return;
4612  } else {
4613    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4614    owner.Variable = getCurMethodDecl()->getSelfDecl();
4615    owner.Loc = msg->getSuperLoc();
4616    owner.Range = msg->getSuperLoc();
4617  }
4618
4619  // Check whether the receiver is captured by any of the arguments.
4620  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4621    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4622      return diagnoseRetainCycle(*this, capturer, owner);
4623}
4624
4625/// Check a property assign to see if it's likely to cause a retain cycle.
4626void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4627  RetainCycleOwner owner;
4628  if (!findRetainCycleOwner(*this, receiver, owner))
4629    return;
4630
4631  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4632    diagnoseRetainCycle(*this, capturer, owner);
4633}
4634
4635bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4636                              QualType LHS, Expr *RHS) {
4637  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4638  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4639    return false;
4640  // strip off any implicit cast added to get to the one arc-specific
4641  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4642    if (cast->getCastKind() == CK_ARCConsumeObject) {
4643      Diag(Loc, diag::warn_arc_retained_assign)
4644        << (LT == Qualifiers::OCL_ExplicitNone)
4645        << RHS->getSourceRange();
4646      return true;
4647    }
4648    RHS = cast->getSubExpr();
4649  }
4650  return false;
4651}
4652
4653void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4654                              Expr *LHS, Expr *RHS) {
4655  QualType LHSType = LHS->getType();
4656  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4657    return;
4658  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4659  // FIXME. Check for other life times.
4660  if (LT != Qualifiers::OCL_None)
4661    return;
4662
4663  if (ObjCPropertyRefExpr *PRE
4664        = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens())) {
4665    if (PRE->isImplicitProperty())
4666      return;
4667    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4668    if (!PD)
4669      return;
4670
4671    unsigned Attributes = PD->getPropertyAttributes();
4672    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign)
4673      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4674        if (cast->getCastKind() == CK_ARCConsumeObject) {
4675          Diag(Loc, diag::warn_arc_retained_property_assign)
4676          << RHS->getSourceRange();
4677          return;
4678        }
4679        RHS = cast->getSubExpr();
4680      }
4681  }
4682}
4683