SemaChecking.cpp revision 2d88708cbe4e4ec5e04e4acb6bd7f5be68557379
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "clang/Basic/TargetBuiltins.h"
34#include "clang/Basic/TargetInfo.h"
35#include <limits>
36using namespace clang;
37using namespace sema;
38
39/// getLocationOfStringLiteralByte - Return a source location that points to the
40/// specified byte of the specified string literal.
41///
42/// Strings are amazingly complex.  They can be formed from multiple tokens and
43/// can have escape sequences in them in addition to the usual trigraph and
44/// escaped newline business.  This routine handles this complexity.
45///
46SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
47                                                    unsigned ByteNo) const {
48  assert(!SL->isWide() && "This doesn't work for wide strings yet");
49
50  // Loop over all of the tokens in this string until we find the one that
51  // contains the byte we're looking for.
52  unsigned TokNo = 0;
53  while (1) {
54    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
55    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
56
57    // Get the spelling of the string so that we can get the data that makes up
58    // the string literal, not the identifier for the macro it is potentially
59    // expanded through.
60    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
61
62    // Re-lex the token to get its length and original spelling.
63    std::pair<FileID, unsigned> LocInfo =
64      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
65    bool Invalid = false;
66    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
67    if (Invalid)
68      return StrTokSpellingLoc;
69
70    const char *StrData = Buffer.data()+LocInfo.second;
71
72    // Create a langops struct and enable trigraphs.  This is sufficient for
73    // relexing tokens.
74    LangOptions LangOpts;
75    LangOpts.Trigraphs = true;
76
77    // Create a lexer starting at the beginning of this token.
78    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
79                   Buffer.end());
80    Token TheTok;
81    TheLexer.LexFromRawLexer(TheTok);
82
83    // Use the StringLiteralParser to compute the length of the string in bytes.
84    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
85    unsigned TokNumBytes = SLP.GetStringLength();
86
87    // If the byte is in this token, return the location of the byte.
88    if (ByteNo < TokNumBytes ||
89        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
90      unsigned Offset =
91        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
92                                                   /*Complain=*/false);
93
94      // Now that we know the offset of the token in the spelling, use the
95      // preprocessor to get the offset in the original source.
96      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
97    }
98
99    // Move to the next string token.
100    ++TokNo;
101    ByteNo -= TokNumBytes;
102  }
103}
104
105/// CheckablePrintfAttr - does a function call have a "printf" attribute
106/// and arguments that merit checking?
107bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
108  if (Format->getType() == "printf") return true;
109  if (Format->getType() == "printf0") {
110    // printf0 allows null "format" string; if so don't check format/args
111    unsigned format_idx = Format->getFormatIdx() - 1;
112    // Does the index refer to the implicit object argument?
113    if (isa<CXXMemberCallExpr>(TheCall)) {
114      if (format_idx == 0)
115        return false;
116      --format_idx;
117    }
118    if (format_idx < TheCall->getNumArgs()) {
119      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
120      if (!Format->isNullPointerConstant(Context,
121                                         Expr::NPC_ValueDependentIsNull))
122        return true;
123    }
124  }
125  return false;
126}
127
128ExprResult
129Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
130  ExprResult TheCallResult(Owned(TheCall));
131
132  switch (BuiltinID) {
133  case Builtin::BI__builtin___CFStringMakeConstantString:
134    assert(TheCall->getNumArgs() == 1 &&
135           "Wrong # arguments to builtin CFStringMakeConstantString");
136    if (CheckObjCString(TheCall->getArg(0)))
137      return ExprError();
138    break;
139  case Builtin::BI__builtin_stdarg_start:
140  case Builtin::BI__builtin_va_start:
141    if (SemaBuiltinVAStart(TheCall))
142      return ExprError();
143    break;
144  case Builtin::BI__builtin_isgreater:
145  case Builtin::BI__builtin_isgreaterequal:
146  case Builtin::BI__builtin_isless:
147  case Builtin::BI__builtin_islessequal:
148  case Builtin::BI__builtin_islessgreater:
149  case Builtin::BI__builtin_isunordered:
150    if (SemaBuiltinUnorderedCompare(TheCall))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_fpclassify:
154    if (SemaBuiltinFPClassification(TheCall, 6))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_isfinite:
158  case Builtin::BI__builtin_isinf:
159  case Builtin::BI__builtin_isinf_sign:
160  case Builtin::BI__builtin_isnan:
161  case Builtin::BI__builtin_isnormal:
162    if (SemaBuiltinFPClassification(TheCall, 1))
163      return ExprError();
164    break;
165  case Builtin::BI__builtin_return_address:
166  case Builtin::BI__builtin_frame_address: {
167    llvm::APSInt Result;
168    if (SemaBuiltinConstantArg(TheCall, 0, Result))
169      return ExprError();
170    break;
171  }
172  case Builtin::BI__builtin_eh_return_data_regno: {
173    llvm::APSInt Result;
174    if (SemaBuiltinConstantArg(TheCall, 0, Result))
175      return ExprError();
176    break;
177  }
178  case Builtin::BI__builtin_shufflevector:
179    return SemaBuiltinShuffleVector(TheCall);
180    // TheCall will be freed by the smart pointer here, but that's fine, since
181    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
182  case Builtin::BI__builtin_prefetch:
183    if (SemaBuiltinPrefetch(TheCall))
184      return ExprError();
185    break;
186  case Builtin::BI__builtin_object_size:
187    if (SemaBuiltinObjectSize(TheCall))
188      return ExprError();
189    break;
190  case Builtin::BI__builtin_longjmp:
191    if (SemaBuiltinLongjmp(TheCall))
192      return ExprError();
193    break;
194  case Builtin::BI__sync_fetch_and_add:
195  case Builtin::BI__sync_fetch_and_sub:
196  case Builtin::BI__sync_fetch_and_or:
197  case Builtin::BI__sync_fetch_and_and:
198  case Builtin::BI__sync_fetch_and_xor:
199  case Builtin::BI__sync_add_and_fetch:
200  case Builtin::BI__sync_sub_and_fetch:
201  case Builtin::BI__sync_and_and_fetch:
202  case Builtin::BI__sync_or_and_fetch:
203  case Builtin::BI__sync_xor_and_fetch:
204  case Builtin::BI__sync_val_compare_and_swap:
205  case Builtin::BI__sync_bool_compare_and_swap:
206  case Builtin::BI__sync_lock_test_and_set:
207  case Builtin::BI__sync_lock_release:
208    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
209  }
210
211  // Since the target specific builtins for each arch overlap, only check those
212  // of the arch we are compiling for.
213  if (BuiltinID >= Builtin::FirstTSBuiltin) {
214    switch (Context.Target.getTriple().getArch()) {
215      case llvm::Triple::arm:
216      case llvm::Triple::thumb:
217        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
218          return ExprError();
219        break;
220      case llvm::Triple::x86:
221      case llvm::Triple::x86_64:
222        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
223          return ExprError();
224        break;
225      default:
226        break;
227    }
228  }
229
230  return move(TheCallResult);
231}
232
233bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
234  switch (BuiltinID) {
235  case X86::BI__builtin_ia32_palignr128:
236  case X86::BI__builtin_ia32_palignr: {
237    llvm::APSInt Result;
238    if (SemaBuiltinConstantArg(TheCall, 2, Result))
239      return true;
240    break;
241  }
242  }
243  return false;
244}
245
246// Get the valid immediate range for the specified NEON type code.
247static unsigned RFT(unsigned t, bool shift = false) {
248  bool quad = t & 0x10;
249
250  switch (t & 0x7) {
251    case 0: // i8
252      return shift ? 7 : (8 << (int)quad) - 1;
253    case 1: // i16
254      return shift ? 15 : (4 << (int)quad) - 1;
255    case 2: // i32
256      return shift ? 31 : (2 << (int)quad) - 1;
257    case 3: // i64
258      return shift ? 63 : (1 << (int)quad) - 1;
259    case 4: // f32
260      assert(!shift && "cannot shift float types!");
261      return (2 << (int)quad) - 1;
262    case 5: // poly8
263      assert(!shift && "cannot shift polynomial types!");
264      return (8 << (int)quad) - 1;
265    case 6: // poly16
266      assert(!shift && "cannot shift polynomial types!");
267      return (4 << (int)quad) - 1;
268    case 7: // float16
269      assert(!shift && "cannot shift float types!");
270      return (4 << (int)quad) - 1;
271  }
272  return 0;
273}
274
275bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
276  llvm::APSInt Result;
277
278  unsigned mask = 0;
279  unsigned TV = 0;
280  switch (BuiltinID) {
281#define GET_NEON_OVERLOAD_CHECK
282#include "clang/Basic/arm_neon.inc"
283#undef GET_NEON_OVERLOAD_CHECK
284  }
285
286  // For NEON intrinsics which are overloaded on vector element type, validate
287  // the immediate which specifies which variant to emit.
288  if (mask) {
289    unsigned ArgNo = TheCall->getNumArgs()-1;
290    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
291      return true;
292
293    TV = Result.getLimitedValue(32);
294    if ((TV > 31) || (mask & (1 << TV)) == 0)
295      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
296        << TheCall->getArg(ArgNo)->getSourceRange();
297  }
298
299  // For NEON intrinsics which take an immediate value as part of the
300  // instruction, range check them here.
301  unsigned i = 0, l = 0, u = 0;
302  switch (BuiltinID) {
303  default: return false;
304  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
305  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
306  case ARM::BI__builtin_arm_vcvtr_f:
307  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
308#define GET_NEON_IMMEDIATE_CHECK
309#include "clang/Basic/arm_neon.inc"
310#undef GET_NEON_IMMEDIATE_CHECK
311  };
312
313  // Check that the immediate argument is actually a constant.
314  if (SemaBuiltinConstantArg(TheCall, i, Result))
315    return true;
316
317  // Range check against the upper/lower values for this isntruction.
318  unsigned Val = Result.getZExtValue();
319  if (Val < l || Val > (u + l))
320    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
321      << l << u+l << TheCall->getArg(i)->getSourceRange();
322
323  // FIXME: VFP Intrinsics should error if VFP not present.
324  return false;
325}
326
327/// CheckFunctionCall - Check a direct function call for various correctness
328/// and safety properties not strictly enforced by the C type system.
329bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
330  // Get the IdentifierInfo* for the called function.
331  IdentifierInfo *FnInfo = FDecl->getIdentifier();
332
333  // None of the checks below are needed for functions that don't have
334  // simple names (e.g., C++ conversion functions).
335  if (!FnInfo)
336    return false;
337
338  // FIXME: This mechanism should be abstracted to be less fragile and
339  // more efficient. For example, just map function ids to custom
340  // handlers.
341
342  // Printf checking.
343  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
344    const bool b = Format->getType() == "scanf";
345    if (b || CheckablePrintfAttr(Format, TheCall)) {
346      bool HasVAListArg = Format->getFirstArg() == 0;
347      CheckPrintfScanfArguments(TheCall, HasVAListArg,
348                                Format->getFormatIdx() - 1,
349                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
350                                !b);
351    }
352  }
353
354  specific_attr_iterator<NonNullAttr>
355    i = FDecl->specific_attr_begin<NonNullAttr>(),
356    e = FDecl->specific_attr_end<NonNullAttr>();
357
358  for (; i != e; ++i)
359    CheckNonNullArguments(*i, TheCall);
360
361  return false;
362}
363
364bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
365  // Printf checking.
366  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
367  if (!Format)
368    return false;
369
370  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
371  if (!V)
372    return false;
373
374  QualType Ty = V->getType();
375  if (!Ty->isBlockPointerType())
376    return false;
377
378  const bool b = Format->getType() == "scanf";
379  if (!b && !CheckablePrintfAttr(Format, TheCall))
380    return false;
381
382  bool HasVAListArg = Format->getFirstArg() == 0;
383  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
384                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
385
386  return false;
387}
388
389/// SemaBuiltinAtomicOverloaded - We have a call to a function like
390/// __sync_fetch_and_add, which is an overloaded function based on the pointer
391/// type of its first argument.  The main ActOnCallExpr routines have already
392/// promoted the types of arguments because all of these calls are prototyped as
393/// void(...).
394///
395/// This function goes through and does final semantic checking for these
396/// builtins,
397ExprResult
398Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
399  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
400  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
401  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
402
403  // Ensure that we have at least one argument to do type inference from.
404  if (TheCall->getNumArgs() < 1) {
405    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
406      << 0 << 1 << TheCall->getNumArgs()
407      << TheCall->getCallee()->getSourceRange();
408    return ExprError();
409  }
410
411  // Inspect the first argument of the atomic builtin.  This should always be
412  // a pointer type, whose element is an integral scalar or pointer type.
413  // Because it is a pointer type, we don't have to worry about any implicit
414  // casts here.
415  // FIXME: We don't allow floating point scalars as input.
416  Expr *FirstArg = TheCall->getArg(0);
417  if (!FirstArg->getType()->isPointerType()) {
418    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
419      << FirstArg->getType() << FirstArg->getSourceRange();
420    return ExprError();
421  }
422
423  QualType ValType =
424    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
425  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
426      !ValType->isBlockPointerType()) {
427    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
428      << FirstArg->getType() << FirstArg->getSourceRange();
429    return ExprError();
430  }
431
432  // The majority of builtins return a value, but a few have special return
433  // types, so allow them to override appropriately below.
434  QualType ResultType = ValType;
435
436  // We need to figure out which concrete builtin this maps onto.  For example,
437  // __sync_fetch_and_add with a 2 byte object turns into
438  // __sync_fetch_and_add_2.
439#define BUILTIN_ROW(x) \
440  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
441    Builtin::BI##x##_8, Builtin::BI##x##_16 }
442
443  static const unsigned BuiltinIndices[][5] = {
444    BUILTIN_ROW(__sync_fetch_and_add),
445    BUILTIN_ROW(__sync_fetch_and_sub),
446    BUILTIN_ROW(__sync_fetch_and_or),
447    BUILTIN_ROW(__sync_fetch_and_and),
448    BUILTIN_ROW(__sync_fetch_and_xor),
449
450    BUILTIN_ROW(__sync_add_and_fetch),
451    BUILTIN_ROW(__sync_sub_and_fetch),
452    BUILTIN_ROW(__sync_and_and_fetch),
453    BUILTIN_ROW(__sync_or_and_fetch),
454    BUILTIN_ROW(__sync_xor_and_fetch),
455
456    BUILTIN_ROW(__sync_val_compare_and_swap),
457    BUILTIN_ROW(__sync_bool_compare_and_swap),
458    BUILTIN_ROW(__sync_lock_test_and_set),
459    BUILTIN_ROW(__sync_lock_release)
460  };
461#undef BUILTIN_ROW
462
463  // Determine the index of the size.
464  unsigned SizeIndex;
465  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
466  case 1: SizeIndex = 0; break;
467  case 2: SizeIndex = 1; break;
468  case 4: SizeIndex = 2; break;
469  case 8: SizeIndex = 3; break;
470  case 16: SizeIndex = 4; break;
471  default:
472    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
473      << FirstArg->getType() << FirstArg->getSourceRange();
474    return ExprError();
475  }
476
477  // Each of these builtins has one pointer argument, followed by some number of
478  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
479  // that we ignore.  Find out which row of BuiltinIndices to read from as well
480  // as the number of fixed args.
481  unsigned BuiltinID = FDecl->getBuiltinID();
482  unsigned BuiltinIndex, NumFixed = 1;
483  switch (BuiltinID) {
484  default: assert(0 && "Unknown overloaded atomic builtin!");
485  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
486  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
487  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
488  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
489  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
490
491  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
492  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
493  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
494  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
495  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
496
497  case Builtin::BI__sync_val_compare_and_swap:
498    BuiltinIndex = 10;
499    NumFixed = 2;
500    break;
501  case Builtin::BI__sync_bool_compare_and_swap:
502    BuiltinIndex = 11;
503    NumFixed = 2;
504    ResultType = Context.BoolTy;
505    break;
506  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
507  case Builtin::BI__sync_lock_release:
508    BuiltinIndex = 13;
509    NumFixed = 0;
510    ResultType = Context.VoidTy;
511    break;
512  }
513
514  // Now that we know how many fixed arguments we expect, first check that we
515  // have at least that many.
516  if (TheCall->getNumArgs() < 1+NumFixed) {
517    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
518      << 0 << 1+NumFixed << TheCall->getNumArgs()
519      << TheCall->getCallee()->getSourceRange();
520    return ExprError();
521  }
522
523  // Get the decl for the concrete builtin from this, we can tell what the
524  // concrete integer type we should convert to is.
525  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
526  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
527  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
528  FunctionDecl *NewBuiltinDecl =
529    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
530                                           TUScope, false, DRE->getLocStart()));
531
532  // The first argument --- the pointer --- has a fixed type; we
533  // deduce the types of the rest of the arguments accordingly.  Walk
534  // the remaining arguments, converting them to the deduced value type.
535  for (unsigned i = 0; i != NumFixed; ++i) {
536    Expr *Arg = TheCall->getArg(i+1);
537
538    // If the argument is an implicit cast, then there was a promotion due to
539    // "...", just remove it now.
540    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
541      Arg = ICE->getSubExpr();
542      ICE->setSubExpr(0);
543      TheCall->setArg(i+1, Arg);
544    }
545
546    // GCC does an implicit conversion to the pointer or integer ValType.  This
547    // can fail in some cases (1i -> int**), check for this error case now.
548    CastKind Kind = CK_Unknown;
549    CXXCastPath BasePath;
550    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
551      return ExprError();
552
553    // Okay, we have something that *can* be converted to the right type.  Check
554    // to see if there is a potentially weird extension going on here.  This can
555    // happen when you do an atomic operation on something like an char* and
556    // pass in 42.  The 42 gets converted to char.  This is even more strange
557    // for things like 45.123 -> char, etc.
558    // FIXME: Do this check.
559    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
560    TheCall->setArg(i+1, Arg);
561  }
562
563  // Switch the DeclRefExpr to refer to the new decl.
564  DRE->setDecl(NewBuiltinDecl);
565  DRE->setType(NewBuiltinDecl->getType());
566
567  // Set the callee in the CallExpr.
568  // FIXME: This leaks the original parens and implicit casts.
569  Expr *PromotedCall = DRE;
570  UsualUnaryConversions(PromotedCall);
571  TheCall->setCallee(PromotedCall);
572
573  // Change the result type of the call to match the original value type. This
574  // is arbitrary, but the codegen for these builtins ins design to handle it
575  // gracefully.
576  TheCall->setType(ResultType);
577
578  return move(TheCallResult);
579}
580
581
582/// CheckObjCString - Checks that the argument to the builtin
583/// CFString constructor is correct
584/// FIXME: GCC currently emits the following warning:
585/// "warning: input conversion stopped due to an input byte that does not
586///           belong to the input codeset UTF-8"
587/// Note: It might also make sense to do the UTF-16 conversion here (would
588/// simplify the backend).
589bool Sema::CheckObjCString(Expr *Arg) {
590  Arg = Arg->IgnoreParenCasts();
591  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
592
593  if (!Literal || Literal->isWide()) {
594    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
595      << Arg->getSourceRange();
596    return true;
597  }
598
599  size_t NulPos = Literal->getString().find('\0');
600  if (NulPos != llvm::StringRef::npos) {
601    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
602         diag::warn_cfstring_literal_contains_nul_character)
603      << Arg->getSourceRange();
604  }
605
606  return false;
607}
608
609/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
610/// Emit an error and return true on failure, return false on success.
611bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
612  Expr *Fn = TheCall->getCallee();
613  if (TheCall->getNumArgs() > 2) {
614    Diag(TheCall->getArg(2)->getLocStart(),
615         diag::err_typecheck_call_too_many_args)
616      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
617      << Fn->getSourceRange()
618      << SourceRange(TheCall->getArg(2)->getLocStart(),
619                     (*(TheCall->arg_end()-1))->getLocEnd());
620    return true;
621  }
622
623  if (TheCall->getNumArgs() < 2) {
624    return Diag(TheCall->getLocEnd(),
625      diag::err_typecheck_call_too_few_args_at_least)
626      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
627  }
628
629  // Determine whether the current function is variadic or not.
630  BlockScopeInfo *CurBlock = getCurBlock();
631  bool isVariadic;
632  if (CurBlock)
633    isVariadic = CurBlock->TheDecl->isVariadic();
634  else if (FunctionDecl *FD = getCurFunctionDecl())
635    isVariadic = FD->isVariadic();
636  else
637    isVariadic = getCurMethodDecl()->isVariadic();
638
639  if (!isVariadic) {
640    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
641    return true;
642  }
643
644  // Verify that the second argument to the builtin is the last argument of the
645  // current function or method.
646  bool SecondArgIsLastNamedArgument = false;
647  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
648
649  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
650    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
651      // FIXME: This isn't correct for methods (results in bogus warning).
652      // Get the last formal in the current function.
653      const ParmVarDecl *LastArg;
654      if (CurBlock)
655        LastArg = *(CurBlock->TheDecl->param_end()-1);
656      else if (FunctionDecl *FD = getCurFunctionDecl())
657        LastArg = *(FD->param_end()-1);
658      else
659        LastArg = *(getCurMethodDecl()->param_end()-1);
660      SecondArgIsLastNamedArgument = PV == LastArg;
661    }
662  }
663
664  if (!SecondArgIsLastNamedArgument)
665    Diag(TheCall->getArg(1)->getLocStart(),
666         diag::warn_second_parameter_of_va_start_not_last_named_argument);
667  return false;
668}
669
670/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
671/// friends.  This is declared to take (...), so we have to check everything.
672bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
673  if (TheCall->getNumArgs() < 2)
674    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
675      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
676  if (TheCall->getNumArgs() > 2)
677    return Diag(TheCall->getArg(2)->getLocStart(),
678                diag::err_typecheck_call_too_many_args)
679      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
680      << SourceRange(TheCall->getArg(2)->getLocStart(),
681                     (*(TheCall->arg_end()-1))->getLocEnd());
682
683  Expr *OrigArg0 = TheCall->getArg(0);
684  Expr *OrigArg1 = TheCall->getArg(1);
685
686  // Do standard promotions between the two arguments, returning their common
687  // type.
688  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
689
690  // Make sure any conversions are pushed back into the call; this is
691  // type safe since unordered compare builtins are declared as "_Bool
692  // foo(...)".
693  TheCall->setArg(0, OrigArg0);
694  TheCall->setArg(1, OrigArg1);
695
696  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
697    return false;
698
699  // If the common type isn't a real floating type, then the arguments were
700  // invalid for this operation.
701  if (!Res->isRealFloatingType())
702    return Diag(OrigArg0->getLocStart(),
703                diag::err_typecheck_call_invalid_ordered_compare)
704      << OrigArg0->getType() << OrigArg1->getType()
705      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
706
707  return false;
708}
709
710/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
711/// __builtin_isnan and friends.  This is declared to take (...), so we have
712/// to check everything. We expect the last argument to be a floating point
713/// value.
714bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
715  if (TheCall->getNumArgs() < NumArgs)
716    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
717      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
718  if (TheCall->getNumArgs() > NumArgs)
719    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
720                diag::err_typecheck_call_too_many_args)
721      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
722      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
723                     (*(TheCall->arg_end()-1))->getLocEnd());
724
725  Expr *OrigArg = TheCall->getArg(NumArgs-1);
726
727  if (OrigArg->isTypeDependent())
728    return false;
729
730  // This operation requires a non-_Complex floating-point number.
731  if (!OrigArg->getType()->isRealFloatingType())
732    return Diag(OrigArg->getLocStart(),
733                diag::err_typecheck_call_invalid_unary_fp)
734      << OrigArg->getType() << OrigArg->getSourceRange();
735
736  // If this is an implicit conversion from float -> double, remove it.
737  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
738    Expr *CastArg = Cast->getSubExpr();
739    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
740      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
741             "promotion from float to double is the only expected cast here");
742      Cast->setSubExpr(0);
743      TheCall->setArg(NumArgs-1, CastArg);
744      OrigArg = CastArg;
745    }
746  }
747
748  return false;
749}
750
751/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
752// This is declared to take (...), so we have to check everything.
753ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
754  if (TheCall->getNumArgs() < 2)
755    return ExprError(Diag(TheCall->getLocEnd(),
756                          diag::err_typecheck_call_too_few_args_at_least)
757      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
758      << TheCall->getSourceRange());
759
760  // Determine which of the following types of shufflevector we're checking:
761  // 1) unary, vector mask: (lhs, mask)
762  // 2) binary, vector mask: (lhs, rhs, mask)
763  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
764  QualType resType = TheCall->getArg(0)->getType();
765  unsigned numElements = 0;
766
767  if (!TheCall->getArg(0)->isTypeDependent() &&
768      !TheCall->getArg(1)->isTypeDependent()) {
769    QualType LHSType = TheCall->getArg(0)->getType();
770    QualType RHSType = TheCall->getArg(1)->getType();
771
772    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
773      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
774        << SourceRange(TheCall->getArg(0)->getLocStart(),
775                       TheCall->getArg(1)->getLocEnd());
776      return ExprError();
777    }
778
779    numElements = LHSType->getAs<VectorType>()->getNumElements();
780    unsigned numResElements = TheCall->getNumArgs() - 2;
781
782    // Check to see if we have a call with 2 vector arguments, the unary shuffle
783    // with mask.  If so, verify that RHS is an integer vector type with the
784    // same number of elts as lhs.
785    if (TheCall->getNumArgs() == 2) {
786      if (!RHSType->hasIntegerRepresentation() ||
787          RHSType->getAs<VectorType>()->getNumElements() != numElements)
788        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
789          << SourceRange(TheCall->getArg(1)->getLocStart(),
790                         TheCall->getArg(1)->getLocEnd());
791      numResElements = numElements;
792    }
793    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
794      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
795        << SourceRange(TheCall->getArg(0)->getLocStart(),
796                       TheCall->getArg(1)->getLocEnd());
797      return ExprError();
798    } else if (numElements != numResElements) {
799      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
800      resType = Context.getVectorType(eltType, numResElements,
801                                      VectorType::NotAltiVec);
802    }
803  }
804
805  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
806    if (TheCall->getArg(i)->isTypeDependent() ||
807        TheCall->getArg(i)->isValueDependent())
808      continue;
809
810    llvm::APSInt Result(32);
811    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
812      return ExprError(Diag(TheCall->getLocStart(),
813                  diag::err_shufflevector_nonconstant_argument)
814                << TheCall->getArg(i)->getSourceRange());
815
816    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
817      return ExprError(Diag(TheCall->getLocStart(),
818                  diag::err_shufflevector_argument_too_large)
819               << TheCall->getArg(i)->getSourceRange());
820  }
821
822  llvm::SmallVector<Expr*, 32> exprs;
823
824  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
825    exprs.push_back(TheCall->getArg(i));
826    TheCall->setArg(i, 0);
827  }
828
829  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
830                                            exprs.size(), resType,
831                                            TheCall->getCallee()->getLocStart(),
832                                            TheCall->getRParenLoc()));
833}
834
835/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
836// This is declared to take (const void*, ...) and can take two
837// optional constant int args.
838bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
839  unsigned NumArgs = TheCall->getNumArgs();
840
841  if (NumArgs > 3)
842    return Diag(TheCall->getLocEnd(),
843             diag::err_typecheck_call_too_many_args_at_most)
844             << 0 /*function call*/ << 3 << NumArgs
845             << TheCall->getSourceRange();
846
847  // Argument 0 is checked for us and the remaining arguments must be
848  // constant integers.
849  for (unsigned i = 1; i != NumArgs; ++i) {
850    Expr *Arg = TheCall->getArg(i);
851
852    llvm::APSInt Result;
853    if (SemaBuiltinConstantArg(TheCall, i, Result))
854      return true;
855
856    // FIXME: gcc issues a warning and rewrites these to 0. These
857    // seems especially odd for the third argument since the default
858    // is 3.
859    if (i == 1) {
860      if (Result.getLimitedValue() > 1)
861        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
862             << "0" << "1" << Arg->getSourceRange();
863    } else {
864      if (Result.getLimitedValue() > 3)
865        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
866            << "0" << "3" << Arg->getSourceRange();
867    }
868  }
869
870  return false;
871}
872
873/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
874/// TheCall is a constant expression.
875bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
876                                  llvm::APSInt &Result) {
877  Expr *Arg = TheCall->getArg(ArgNum);
878  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
879  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
880
881  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
882
883  if (!Arg->isIntegerConstantExpr(Result, Context))
884    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
885                << FDecl->getDeclName() <<  Arg->getSourceRange();
886
887  return false;
888}
889
890/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
891/// int type). This simply type checks that type is one of the defined
892/// constants (0-3).
893// For compatability check 0-3, llvm only handles 0 and 2.
894bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
895  llvm::APSInt Result;
896
897  // Check constant-ness first.
898  if (SemaBuiltinConstantArg(TheCall, 1, Result))
899    return true;
900
901  Expr *Arg = TheCall->getArg(1);
902  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
903    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
904             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
905  }
906
907  return false;
908}
909
910/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
911/// This checks that val is a constant 1.
912bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
913  Expr *Arg = TheCall->getArg(1);
914  llvm::APSInt Result;
915
916  // TODO: This is less than ideal. Overload this to take a value.
917  if (SemaBuiltinConstantArg(TheCall, 1, Result))
918    return true;
919
920  if (Result != 1)
921    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
922             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
923
924  return false;
925}
926
927// Handle i > 1 ? "x" : "y", recursivelly
928bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
929                                  bool HasVAListArg,
930                                  unsigned format_idx, unsigned firstDataArg,
931                                  bool isPrintf) {
932
933  if (E->isTypeDependent() || E->isValueDependent())
934    return false;
935
936  switch (E->getStmtClass()) {
937  case Stmt::ConditionalOperatorClass: {
938    const ConditionalOperator *C = cast<ConditionalOperator>(E);
939    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
940                                  format_idx, firstDataArg, isPrintf)
941        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
942                                  format_idx, firstDataArg, isPrintf);
943  }
944
945  case Stmt::ImplicitCastExprClass: {
946    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
947    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
948                                  format_idx, firstDataArg, isPrintf);
949  }
950
951  case Stmt::ParenExprClass: {
952    const ParenExpr *Expr = cast<ParenExpr>(E);
953    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
954                                  format_idx, firstDataArg, isPrintf);
955  }
956
957  case Stmt::DeclRefExprClass: {
958    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
959
960    // As an exception, do not flag errors for variables binding to
961    // const string literals.
962    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
963      bool isConstant = false;
964      QualType T = DR->getType();
965
966      if (const ArrayType *AT = Context.getAsArrayType(T)) {
967        isConstant = AT->getElementType().isConstant(Context);
968      } else if (const PointerType *PT = T->getAs<PointerType>()) {
969        isConstant = T.isConstant(Context) &&
970                     PT->getPointeeType().isConstant(Context);
971      }
972
973      if (isConstant) {
974        if (const Expr *Init = VD->getAnyInitializer())
975          return SemaCheckStringLiteral(Init, TheCall,
976                                        HasVAListArg, format_idx, firstDataArg,
977                                        isPrintf);
978      }
979
980      // For vprintf* functions (i.e., HasVAListArg==true), we add a
981      // special check to see if the format string is a function parameter
982      // of the function calling the printf function.  If the function
983      // has an attribute indicating it is a printf-like function, then we
984      // should suppress warnings concerning non-literals being used in a call
985      // to a vprintf function.  For example:
986      //
987      // void
988      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
989      //      va_list ap;
990      //      va_start(ap, fmt);
991      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
992      //      ...
993      //
994      //
995      //  FIXME: We don't have full attribute support yet, so just check to see
996      //    if the argument is a DeclRefExpr that references a parameter.  We'll
997      //    add proper support for checking the attribute later.
998      if (HasVAListArg)
999        if (isa<ParmVarDecl>(VD))
1000          return true;
1001    }
1002
1003    return false;
1004  }
1005
1006  case Stmt::CallExprClass: {
1007    const CallExpr *CE = cast<CallExpr>(E);
1008    if (const ImplicitCastExpr *ICE
1009          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1010      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1011        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1012          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1013            unsigned ArgIndex = FA->getFormatIdx();
1014            const Expr *Arg = CE->getArg(ArgIndex - 1);
1015
1016            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1017                                          format_idx, firstDataArg, isPrintf);
1018          }
1019        }
1020      }
1021    }
1022
1023    return false;
1024  }
1025  case Stmt::ObjCStringLiteralClass:
1026  case Stmt::StringLiteralClass: {
1027    const StringLiteral *StrE = NULL;
1028
1029    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1030      StrE = ObjCFExpr->getString();
1031    else
1032      StrE = cast<StringLiteral>(E);
1033
1034    if (StrE) {
1035      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1036                        firstDataArg, isPrintf);
1037      return true;
1038    }
1039
1040    return false;
1041  }
1042
1043  default:
1044    return false;
1045  }
1046}
1047
1048void
1049Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1050                            const CallExpr *TheCall) {
1051  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1052                                  e = NonNull->args_end();
1053       i != e; ++i) {
1054    const Expr *ArgExpr = TheCall->getArg(*i);
1055    if (ArgExpr->isNullPointerConstant(Context,
1056                                       Expr::NPC_ValueDependentIsNotNull))
1057      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1058        << ArgExpr->getSourceRange();
1059  }
1060}
1061
1062/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1063/// functions) for correct use of format strings.
1064void
1065Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1066                                unsigned format_idx, unsigned firstDataArg,
1067                                bool isPrintf) {
1068
1069  const Expr *Fn = TheCall->getCallee();
1070
1071  // The way the format attribute works in GCC, the implicit this argument
1072  // of member functions is counted. However, it doesn't appear in our own
1073  // lists, so decrement format_idx in that case.
1074  if (isa<CXXMemberCallExpr>(TheCall)) {
1075    // Catch a format attribute mistakenly referring to the object argument.
1076    if (format_idx == 0)
1077      return;
1078    --format_idx;
1079    if(firstDataArg != 0)
1080      --firstDataArg;
1081  }
1082
1083  // CHECK: printf/scanf-like function is called with no format string.
1084  if (format_idx >= TheCall->getNumArgs()) {
1085    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1086      << Fn->getSourceRange();
1087    return;
1088  }
1089
1090  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1091
1092  // CHECK: format string is not a string literal.
1093  //
1094  // Dynamically generated format strings are difficult to
1095  // automatically vet at compile time.  Requiring that format strings
1096  // are string literals: (1) permits the checking of format strings by
1097  // the compiler and thereby (2) can practically remove the source of
1098  // many format string exploits.
1099
1100  // Format string can be either ObjC string (e.g. @"%d") or
1101  // C string (e.g. "%d")
1102  // ObjC string uses the same format specifiers as C string, so we can use
1103  // the same format string checking logic for both ObjC and C strings.
1104  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1105                             firstDataArg, isPrintf))
1106    return;  // Literal format string found, check done!
1107
1108  // If there are no arguments specified, warn with -Wformat-security, otherwise
1109  // warn only with -Wformat-nonliteral.
1110  if (TheCall->getNumArgs() == format_idx+1)
1111    Diag(TheCall->getArg(format_idx)->getLocStart(),
1112         diag::warn_format_nonliteral_noargs)
1113      << OrigFormatExpr->getSourceRange();
1114  else
1115    Diag(TheCall->getArg(format_idx)->getLocStart(),
1116         diag::warn_format_nonliteral)
1117           << OrigFormatExpr->getSourceRange();
1118}
1119
1120namespace {
1121class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1122protected:
1123  Sema &S;
1124  const StringLiteral *FExpr;
1125  const Expr *OrigFormatExpr;
1126  const unsigned FirstDataArg;
1127  const unsigned NumDataArgs;
1128  const bool IsObjCLiteral;
1129  const char *Beg; // Start of format string.
1130  const bool HasVAListArg;
1131  const CallExpr *TheCall;
1132  unsigned FormatIdx;
1133  llvm::BitVector CoveredArgs;
1134  bool usesPositionalArgs;
1135  bool atFirstArg;
1136public:
1137  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1138                     const Expr *origFormatExpr, unsigned firstDataArg,
1139                     unsigned numDataArgs, bool isObjCLiteral,
1140                     const char *beg, bool hasVAListArg,
1141                     const CallExpr *theCall, unsigned formatIdx)
1142    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1143      FirstDataArg(firstDataArg),
1144      NumDataArgs(numDataArgs),
1145      IsObjCLiteral(isObjCLiteral), Beg(beg),
1146      HasVAListArg(hasVAListArg),
1147      TheCall(theCall), FormatIdx(formatIdx),
1148      usesPositionalArgs(false), atFirstArg(true) {
1149        CoveredArgs.resize(numDataArgs);
1150        CoveredArgs.reset();
1151      }
1152
1153  void DoneProcessing();
1154
1155  void HandleIncompleteSpecifier(const char *startSpecifier,
1156                                 unsigned specifierLen);
1157
1158  virtual void HandleInvalidPosition(const char *startSpecifier,
1159                                     unsigned specifierLen,
1160                                     analyze_format_string::PositionContext p);
1161
1162  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1163
1164  void HandleNullChar(const char *nullCharacter);
1165
1166protected:
1167  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1168                                        const char *startSpec,
1169                                        unsigned specifierLen,
1170                                        const char *csStart, unsigned csLen);
1171
1172  SourceRange getFormatStringRange();
1173  CharSourceRange getSpecifierRange(const char *startSpecifier,
1174                                    unsigned specifierLen);
1175  SourceLocation getLocationOfByte(const char *x);
1176
1177  const Expr *getDataArg(unsigned i) const;
1178
1179  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1180                    const analyze_format_string::ConversionSpecifier &CS,
1181                    const char *startSpecifier, unsigned specifierLen,
1182                    unsigned argIndex);
1183};
1184}
1185
1186SourceRange CheckFormatHandler::getFormatStringRange() {
1187  return OrigFormatExpr->getSourceRange();
1188}
1189
1190CharSourceRange CheckFormatHandler::
1191getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1192  SourceLocation Start = getLocationOfByte(startSpecifier);
1193  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1194
1195  // Advance the end SourceLocation by one due to half-open ranges.
1196  End = End.getFileLocWithOffset(1);
1197
1198  return CharSourceRange::getCharRange(Start, End);
1199}
1200
1201SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1202  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1203}
1204
1205void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1206                                                   unsigned specifierLen){
1207  SourceLocation Loc = getLocationOfByte(startSpecifier);
1208  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1209    << getSpecifierRange(startSpecifier, specifierLen);
1210}
1211
1212void
1213CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1214                                     analyze_format_string::PositionContext p) {
1215  SourceLocation Loc = getLocationOfByte(startPos);
1216  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1217    << (unsigned) p << getSpecifierRange(startPos, posLen);
1218}
1219
1220void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1221                                            unsigned posLen) {
1222  SourceLocation Loc = getLocationOfByte(startPos);
1223  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1224    << getSpecifierRange(startPos, posLen);
1225}
1226
1227void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1228  // The presence of a null character is likely an error.
1229  S.Diag(getLocationOfByte(nullCharacter),
1230         diag::warn_printf_format_string_contains_null_char)
1231    << getFormatStringRange();
1232}
1233
1234const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1235  return TheCall->getArg(FirstDataArg + i);
1236}
1237
1238void CheckFormatHandler::DoneProcessing() {
1239    // Does the number of data arguments exceed the number of
1240    // format conversions in the format string?
1241  if (!HasVAListArg) {
1242      // Find any arguments that weren't covered.
1243    CoveredArgs.flip();
1244    signed notCoveredArg = CoveredArgs.find_first();
1245    if (notCoveredArg >= 0) {
1246      assert((unsigned)notCoveredArg < NumDataArgs);
1247      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1248             diag::warn_printf_data_arg_not_used)
1249      << getFormatStringRange();
1250    }
1251  }
1252}
1253
1254bool
1255CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1256                                                     SourceLocation Loc,
1257                                                     const char *startSpec,
1258                                                     unsigned specifierLen,
1259                                                     const char *csStart,
1260                                                     unsigned csLen) {
1261
1262  bool keepGoing = true;
1263  if (argIndex < NumDataArgs) {
1264    // Consider the argument coverered, even though the specifier doesn't
1265    // make sense.
1266    CoveredArgs.set(argIndex);
1267  }
1268  else {
1269    // If argIndex exceeds the number of data arguments we
1270    // don't issue a warning because that is just a cascade of warnings (and
1271    // they may have intended '%%' anyway). We don't want to continue processing
1272    // the format string after this point, however, as we will like just get
1273    // gibberish when trying to match arguments.
1274    keepGoing = false;
1275  }
1276
1277  S.Diag(Loc, diag::warn_format_invalid_conversion)
1278    << llvm::StringRef(csStart, csLen)
1279    << getSpecifierRange(startSpec, specifierLen);
1280
1281  return keepGoing;
1282}
1283
1284bool
1285CheckFormatHandler::CheckNumArgs(
1286  const analyze_format_string::FormatSpecifier &FS,
1287  const analyze_format_string::ConversionSpecifier &CS,
1288  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1289
1290  if (argIndex >= NumDataArgs) {
1291    if (FS.usesPositionalArg())  {
1292      S.Diag(getLocationOfByte(CS.getStart()),
1293             diag::warn_printf_positional_arg_exceeds_data_args)
1294      << (argIndex+1) << NumDataArgs
1295      << getSpecifierRange(startSpecifier, specifierLen);
1296    }
1297    else {
1298      S.Diag(getLocationOfByte(CS.getStart()),
1299             diag::warn_printf_insufficient_data_args)
1300      << getSpecifierRange(startSpecifier, specifierLen);
1301    }
1302
1303    return false;
1304  }
1305  return true;
1306}
1307
1308//===--- CHECK: Printf format string checking ------------------------------===//
1309
1310namespace {
1311class CheckPrintfHandler : public CheckFormatHandler {
1312public:
1313  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1314                     const Expr *origFormatExpr, unsigned firstDataArg,
1315                     unsigned numDataArgs, bool isObjCLiteral,
1316                     const char *beg, bool hasVAListArg,
1317                     const CallExpr *theCall, unsigned formatIdx)
1318  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1319                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1320                       theCall, formatIdx) {}
1321
1322
1323  bool HandleInvalidPrintfConversionSpecifier(
1324                                      const analyze_printf::PrintfSpecifier &FS,
1325                                      const char *startSpecifier,
1326                                      unsigned specifierLen);
1327
1328  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1329                             const char *startSpecifier,
1330                             unsigned specifierLen);
1331
1332  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1333                    const char *startSpecifier, unsigned specifierLen);
1334  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1335                           const analyze_printf::OptionalAmount &Amt,
1336                           unsigned type,
1337                           const char *startSpecifier, unsigned specifierLen);
1338  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1339                  const analyze_printf::OptionalFlag &flag,
1340                  const char *startSpecifier, unsigned specifierLen);
1341  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1342                         const analyze_printf::OptionalFlag &ignoredFlag,
1343                         const analyze_printf::OptionalFlag &flag,
1344                         const char *startSpecifier, unsigned specifierLen);
1345};
1346}
1347
1348bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1349                                      const analyze_printf::PrintfSpecifier &FS,
1350                                      const char *startSpecifier,
1351                                      unsigned specifierLen) {
1352  const analyze_printf::PrintfConversionSpecifier &CS =
1353    FS.getConversionSpecifier();
1354
1355  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1356                                          getLocationOfByte(CS.getStart()),
1357                                          startSpecifier, specifierLen,
1358                                          CS.getStart(), CS.getLength());
1359}
1360
1361bool CheckPrintfHandler::HandleAmount(
1362                               const analyze_format_string::OptionalAmount &Amt,
1363                               unsigned k, const char *startSpecifier,
1364                               unsigned specifierLen) {
1365
1366  if (Amt.hasDataArgument()) {
1367    if (!HasVAListArg) {
1368      unsigned argIndex = Amt.getArgIndex();
1369      if (argIndex >= NumDataArgs) {
1370        S.Diag(getLocationOfByte(Amt.getStart()),
1371               diag::warn_printf_asterisk_missing_arg)
1372          << k << getSpecifierRange(startSpecifier, specifierLen);
1373        // Don't do any more checking.  We will just emit
1374        // spurious errors.
1375        return false;
1376      }
1377
1378      // Type check the data argument.  It should be an 'int'.
1379      // Although not in conformance with C99, we also allow the argument to be
1380      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1381      // doesn't emit a warning for that case.
1382      CoveredArgs.set(argIndex);
1383      const Expr *Arg = getDataArg(argIndex);
1384      QualType T = Arg->getType();
1385
1386      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1387      assert(ATR.isValid());
1388
1389      if (!ATR.matchesType(S.Context, T)) {
1390        S.Diag(getLocationOfByte(Amt.getStart()),
1391               diag::warn_printf_asterisk_wrong_type)
1392          << k
1393          << ATR.getRepresentativeType(S.Context) << T
1394          << getSpecifierRange(startSpecifier, specifierLen)
1395          << Arg->getSourceRange();
1396        // Don't do any more checking.  We will just emit
1397        // spurious errors.
1398        return false;
1399      }
1400    }
1401  }
1402  return true;
1403}
1404
1405void CheckPrintfHandler::HandleInvalidAmount(
1406                                      const analyze_printf::PrintfSpecifier &FS,
1407                                      const analyze_printf::OptionalAmount &Amt,
1408                                      unsigned type,
1409                                      const char *startSpecifier,
1410                                      unsigned specifierLen) {
1411  const analyze_printf::PrintfConversionSpecifier &CS =
1412    FS.getConversionSpecifier();
1413  switch (Amt.getHowSpecified()) {
1414  case analyze_printf::OptionalAmount::Constant:
1415    S.Diag(getLocationOfByte(Amt.getStart()),
1416        diag::warn_printf_nonsensical_optional_amount)
1417      << type
1418      << CS.toString()
1419      << getSpecifierRange(startSpecifier, specifierLen)
1420      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1421          Amt.getConstantLength()));
1422    break;
1423
1424  default:
1425    S.Diag(getLocationOfByte(Amt.getStart()),
1426        diag::warn_printf_nonsensical_optional_amount)
1427      << type
1428      << CS.toString()
1429      << getSpecifierRange(startSpecifier, specifierLen);
1430    break;
1431  }
1432}
1433
1434void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1435                                    const analyze_printf::OptionalFlag &flag,
1436                                    const char *startSpecifier,
1437                                    unsigned specifierLen) {
1438  // Warn about pointless flag with a fixit removal.
1439  const analyze_printf::PrintfConversionSpecifier &CS =
1440    FS.getConversionSpecifier();
1441  S.Diag(getLocationOfByte(flag.getPosition()),
1442      diag::warn_printf_nonsensical_flag)
1443    << flag.toString() << CS.toString()
1444    << getSpecifierRange(startSpecifier, specifierLen)
1445    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1446}
1447
1448void CheckPrintfHandler::HandleIgnoredFlag(
1449                                const analyze_printf::PrintfSpecifier &FS,
1450                                const analyze_printf::OptionalFlag &ignoredFlag,
1451                                const analyze_printf::OptionalFlag &flag,
1452                                const char *startSpecifier,
1453                                unsigned specifierLen) {
1454  // Warn about ignored flag with a fixit removal.
1455  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1456      diag::warn_printf_ignored_flag)
1457    << ignoredFlag.toString() << flag.toString()
1458    << getSpecifierRange(startSpecifier, specifierLen)
1459    << FixItHint::CreateRemoval(getSpecifierRange(
1460        ignoredFlag.getPosition(), 1));
1461}
1462
1463bool
1464CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1465                                            &FS,
1466                                          const char *startSpecifier,
1467                                          unsigned specifierLen) {
1468
1469  using namespace analyze_format_string;
1470  using namespace analyze_printf;
1471  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1472
1473  if (FS.consumesDataArgument()) {
1474    if (atFirstArg) {
1475        atFirstArg = false;
1476        usesPositionalArgs = FS.usesPositionalArg();
1477    }
1478    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1479      // Cannot mix-and-match positional and non-positional arguments.
1480      S.Diag(getLocationOfByte(CS.getStart()),
1481             diag::warn_format_mix_positional_nonpositional_args)
1482        << getSpecifierRange(startSpecifier, specifierLen);
1483      return false;
1484    }
1485  }
1486
1487  // First check if the field width, precision, and conversion specifier
1488  // have matching data arguments.
1489  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1490                    startSpecifier, specifierLen)) {
1491    return false;
1492  }
1493
1494  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1495                    startSpecifier, specifierLen)) {
1496    return false;
1497  }
1498
1499  if (!CS.consumesDataArgument()) {
1500    // FIXME: Technically specifying a precision or field width here
1501    // makes no sense.  Worth issuing a warning at some point.
1502    return true;
1503  }
1504
1505  // Consume the argument.
1506  unsigned argIndex = FS.getArgIndex();
1507  if (argIndex < NumDataArgs) {
1508    // The check to see if the argIndex is valid will come later.
1509    // We set the bit here because we may exit early from this
1510    // function if we encounter some other error.
1511    CoveredArgs.set(argIndex);
1512  }
1513
1514  // Check for using an Objective-C specific conversion specifier
1515  // in a non-ObjC literal.
1516  if (!IsObjCLiteral && CS.isObjCArg()) {
1517    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1518                                                  specifierLen);
1519  }
1520
1521  // Check for invalid use of field width
1522  if (!FS.hasValidFieldWidth()) {
1523    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1524        startSpecifier, specifierLen);
1525  }
1526
1527  // Check for invalid use of precision
1528  if (!FS.hasValidPrecision()) {
1529    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1530        startSpecifier, specifierLen);
1531  }
1532
1533  // Check each flag does not conflict with any other component.
1534  if (!FS.hasValidLeadingZeros())
1535    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1536  if (!FS.hasValidPlusPrefix())
1537    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1538  if (!FS.hasValidSpacePrefix())
1539    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1540  if (!FS.hasValidAlternativeForm())
1541    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1542  if (!FS.hasValidLeftJustified())
1543    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1544
1545  // Check that flags are not ignored by another flag
1546  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1547    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1548        startSpecifier, specifierLen);
1549  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1550    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1551            startSpecifier, specifierLen);
1552
1553  // Check the length modifier is valid with the given conversion specifier.
1554  const LengthModifier &LM = FS.getLengthModifier();
1555  if (!FS.hasValidLengthModifier())
1556    S.Diag(getLocationOfByte(LM.getStart()),
1557        diag::warn_format_nonsensical_length)
1558      << LM.toString() << CS.toString()
1559      << getSpecifierRange(startSpecifier, specifierLen)
1560      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1561          LM.getLength()));
1562
1563  // Are we using '%n'?
1564  if (CS.getKind() == ConversionSpecifier::nArg) {
1565    // Issue a warning about this being a possible security issue.
1566    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1567      << getSpecifierRange(startSpecifier, specifierLen);
1568    // Continue checking the other format specifiers.
1569    return true;
1570  }
1571
1572  // The remaining checks depend on the data arguments.
1573  if (HasVAListArg)
1574    return true;
1575
1576  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1577    return false;
1578
1579  // Now type check the data expression that matches the
1580  // format specifier.
1581  const Expr *Ex = getDataArg(argIndex);
1582  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1583  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1584    // Check if we didn't match because of an implicit cast from a 'char'
1585    // or 'short' to an 'int'.  This is done because printf is a varargs
1586    // function.
1587    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1588      if (ICE->getType() == S.Context.IntTy)
1589        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1590          return true;
1591
1592    // We may be able to offer a FixItHint if it is a supported type.
1593    PrintfSpecifier fixedFS = FS;
1594    bool success = fixedFS.fixType(Ex->getType());
1595
1596    if (success) {
1597      // Get the fix string from the fixed format specifier
1598      llvm::SmallString<128> buf;
1599      llvm::raw_svector_ostream os(buf);
1600      fixedFS.toString(os);
1601
1602      // FIXME: getRepresentativeType() perhaps should return a string
1603      // instead of a QualType to better handle when the representative
1604      // type is 'wint_t' (which is defined in the system headers).
1605      S.Diag(getLocationOfByte(CS.getStart()),
1606          diag::warn_printf_conversion_argument_type_mismatch)
1607        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1608        << getSpecifierRange(startSpecifier, specifierLen)
1609        << Ex->getSourceRange()
1610        << FixItHint::CreateReplacement(
1611            getSpecifierRange(startSpecifier, specifierLen),
1612            os.str());
1613    }
1614    else {
1615      S.Diag(getLocationOfByte(CS.getStart()),
1616             diag::warn_printf_conversion_argument_type_mismatch)
1617        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1618        << getSpecifierRange(startSpecifier, specifierLen)
1619        << Ex->getSourceRange();
1620    }
1621  }
1622
1623  return true;
1624}
1625
1626//===--- CHECK: Scanf format string checking ------------------------------===//
1627
1628namespace {
1629class CheckScanfHandler : public CheckFormatHandler {
1630public:
1631  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1632                    const Expr *origFormatExpr, unsigned firstDataArg,
1633                    unsigned numDataArgs, bool isObjCLiteral,
1634                    const char *beg, bool hasVAListArg,
1635                    const CallExpr *theCall, unsigned formatIdx)
1636  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1637                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1638                       theCall, formatIdx) {}
1639
1640  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1641                            const char *startSpecifier,
1642                            unsigned specifierLen);
1643
1644  bool HandleInvalidScanfConversionSpecifier(
1645          const analyze_scanf::ScanfSpecifier &FS,
1646          const char *startSpecifier,
1647          unsigned specifierLen);
1648
1649  void HandleIncompleteScanList(const char *start, const char *end);
1650};
1651}
1652
1653void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1654                                                 const char *end) {
1655  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1656    << getSpecifierRange(start, end - start);
1657}
1658
1659bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1660                                        const analyze_scanf::ScanfSpecifier &FS,
1661                                        const char *startSpecifier,
1662                                        unsigned specifierLen) {
1663
1664  const analyze_scanf::ScanfConversionSpecifier &CS =
1665    FS.getConversionSpecifier();
1666
1667  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1668                                          getLocationOfByte(CS.getStart()),
1669                                          startSpecifier, specifierLen,
1670                                          CS.getStart(), CS.getLength());
1671}
1672
1673bool CheckScanfHandler::HandleScanfSpecifier(
1674                                       const analyze_scanf::ScanfSpecifier &FS,
1675                                       const char *startSpecifier,
1676                                       unsigned specifierLen) {
1677
1678  using namespace analyze_scanf;
1679  using namespace analyze_format_string;
1680
1681  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1682
1683  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1684  // be used to decide if we are using positional arguments consistently.
1685  if (FS.consumesDataArgument()) {
1686    if (atFirstArg) {
1687      atFirstArg = false;
1688      usesPositionalArgs = FS.usesPositionalArg();
1689    }
1690    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1691      // Cannot mix-and-match positional and non-positional arguments.
1692      S.Diag(getLocationOfByte(CS.getStart()),
1693             diag::warn_format_mix_positional_nonpositional_args)
1694        << getSpecifierRange(startSpecifier, specifierLen);
1695      return false;
1696    }
1697  }
1698
1699  // Check if the field with is non-zero.
1700  const OptionalAmount &Amt = FS.getFieldWidth();
1701  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1702    if (Amt.getConstantAmount() == 0) {
1703      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1704                                                   Amt.getConstantLength());
1705      S.Diag(getLocationOfByte(Amt.getStart()),
1706             diag::warn_scanf_nonzero_width)
1707        << R << FixItHint::CreateRemoval(R);
1708    }
1709  }
1710
1711  if (!FS.consumesDataArgument()) {
1712    // FIXME: Technically specifying a precision or field width here
1713    // makes no sense.  Worth issuing a warning at some point.
1714    return true;
1715  }
1716
1717  // Consume the argument.
1718  unsigned argIndex = FS.getArgIndex();
1719  if (argIndex < NumDataArgs) {
1720      // The check to see if the argIndex is valid will come later.
1721      // We set the bit here because we may exit early from this
1722      // function if we encounter some other error.
1723    CoveredArgs.set(argIndex);
1724  }
1725
1726  // Check the length modifier is valid with the given conversion specifier.
1727  const LengthModifier &LM = FS.getLengthModifier();
1728  if (!FS.hasValidLengthModifier()) {
1729    S.Diag(getLocationOfByte(LM.getStart()),
1730           diag::warn_format_nonsensical_length)
1731      << LM.toString() << CS.toString()
1732      << getSpecifierRange(startSpecifier, specifierLen)
1733      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1734                                                    LM.getLength()));
1735  }
1736
1737  // The remaining checks depend on the data arguments.
1738  if (HasVAListArg)
1739    return true;
1740
1741  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1742    return false;
1743
1744  // FIXME: Check that the argument type matches the format specifier.
1745
1746  return true;
1747}
1748
1749void Sema::CheckFormatString(const StringLiteral *FExpr,
1750                             const Expr *OrigFormatExpr,
1751                             const CallExpr *TheCall, bool HasVAListArg,
1752                             unsigned format_idx, unsigned firstDataArg,
1753                             bool isPrintf) {
1754
1755  // CHECK: is the format string a wide literal?
1756  if (FExpr->isWide()) {
1757    Diag(FExpr->getLocStart(),
1758         diag::warn_format_string_is_wide_literal)
1759    << OrigFormatExpr->getSourceRange();
1760    return;
1761  }
1762
1763  // Str - The format string.  NOTE: this is NOT null-terminated!
1764  llvm::StringRef StrRef = FExpr->getString();
1765  const char *Str = StrRef.data();
1766  unsigned StrLen = StrRef.size();
1767
1768  // CHECK: empty format string?
1769  if (StrLen == 0) {
1770    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1771    << OrigFormatExpr->getSourceRange();
1772    return;
1773  }
1774
1775  if (isPrintf) {
1776    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1777                         TheCall->getNumArgs() - firstDataArg,
1778                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1779                         HasVAListArg, TheCall, format_idx);
1780
1781    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1782      H.DoneProcessing();
1783  }
1784  else {
1785    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1786                        TheCall->getNumArgs() - firstDataArg,
1787                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1788                        HasVAListArg, TheCall, format_idx);
1789
1790    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1791      H.DoneProcessing();
1792  }
1793}
1794
1795//===--- CHECK: Return Address of Stack Variable --------------------------===//
1796
1797static DeclRefExpr* EvalVal(Expr *E);
1798static DeclRefExpr* EvalAddr(Expr* E);
1799
1800/// CheckReturnStackAddr - Check if a return statement returns the address
1801///   of a stack variable.
1802void
1803Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1804                           SourceLocation ReturnLoc) {
1805
1806  // Perform checking for returned stack addresses.
1807  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1808    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1809      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1810       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1811
1812    // Skip over implicit cast expressions when checking for block expressions.
1813    RetValExp = RetValExp->IgnoreParenCasts();
1814
1815    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1816      if (C->hasBlockDeclRefExprs())
1817        Diag(C->getLocStart(), diag::err_ret_local_block)
1818          << C->getSourceRange();
1819
1820    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1821      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1822        << ALE->getSourceRange();
1823
1824  } else if (lhsType->isReferenceType()) {
1825    // Perform checking for stack values returned by reference.
1826    // Check for a reference to the stack
1827    if (DeclRefExpr *DR = EvalVal(RetValExp))
1828      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1829        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1830  }
1831}
1832
1833/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1834///  check if the expression in a return statement evaluates to an address
1835///  to a location on the stack.  The recursion is used to traverse the
1836///  AST of the return expression, with recursion backtracking when we
1837///  encounter a subexpression that (1) clearly does not lead to the address
1838///  of a stack variable or (2) is something we cannot determine leads to
1839///  the address of a stack variable based on such local checking.
1840///
1841///  EvalAddr processes expressions that are pointers that are used as
1842///  references (and not L-values).  EvalVal handles all other values.
1843///  At the base case of the recursion is a check for a DeclRefExpr* in
1844///  the refers to a stack variable.
1845///
1846///  This implementation handles:
1847///
1848///   * pointer-to-pointer casts
1849///   * implicit conversions from array references to pointers
1850///   * taking the address of fields
1851///   * arbitrary interplay between "&" and "*" operators
1852///   * pointer arithmetic from an address of a stack variable
1853///   * taking the address of an array element where the array is on the stack
1854static DeclRefExpr* EvalAddr(Expr *E) {
1855  // We should only be called for evaluating pointer expressions.
1856  assert((E->getType()->isAnyPointerType() ||
1857          E->getType()->isBlockPointerType() ||
1858          E->getType()->isObjCQualifiedIdType()) &&
1859         "EvalAddr only works on pointers");
1860
1861  // Our "symbolic interpreter" is just a dispatch off the currently
1862  // viewed AST node.  We then recursively traverse the AST by calling
1863  // EvalAddr and EvalVal appropriately.
1864  switch (E->getStmtClass()) {
1865  case Stmt::ParenExprClass:
1866    // Ignore parentheses.
1867    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1868
1869  case Stmt::UnaryOperatorClass: {
1870    // The only unary operator that make sense to handle here
1871    // is AddrOf.  All others don't make sense as pointers.
1872    UnaryOperator *U = cast<UnaryOperator>(E);
1873
1874    if (U->getOpcode() == UO_AddrOf)
1875      return EvalVal(U->getSubExpr());
1876    else
1877      return NULL;
1878  }
1879
1880  case Stmt::BinaryOperatorClass: {
1881    // Handle pointer arithmetic.  All other binary operators are not valid
1882    // in this context.
1883    BinaryOperator *B = cast<BinaryOperator>(E);
1884    BinaryOperatorKind op = B->getOpcode();
1885
1886    if (op != BO_Add && op != BO_Sub)
1887      return NULL;
1888
1889    Expr *Base = B->getLHS();
1890
1891    // Determine which argument is the real pointer base.  It could be
1892    // the RHS argument instead of the LHS.
1893    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1894
1895    assert (Base->getType()->isPointerType());
1896    return EvalAddr(Base);
1897  }
1898
1899  // For conditional operators we need to see if either the LHS or RHS are
1900  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1901  case Stmt::ConditionalOperatorClass: {
1902    ConditionalOperator *C = cast<ConditionalOperator>(E);
1903
1904    // Handle the GNU extension for missing LHS.
1905    if (Expr *lhsExpr = C->getLHS())
1906      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1907        return LHS;
1908
1909     return EvalAddr(C->getRHS());
1910  }
1911
1912  // For casts, we need to handle conversions from arrays to
1913  // pointer values, and pointer-to-pointer conversions.
1914  case Stmt::ImplicitCastExprClass:
1915  case Stmt::CStyleCastExprClass:
1916  case Stmt::CXXFunctionalCastExprClass: {
1917    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1918    QualType T = SubExpr->getType();
1919
1920    if (SubExpr->getType()->isPointerType() ||
1921        SubExpr->getType()->isBlockPointerType() ||
1922        SubExpr->getType()->isObjCQualifiedIdType())
1923      return EvalAddr(SubExpr);
1924    else if (T->isArrayType())
1925      return EvalVal(SubExpr);
1926    else
1927      return 0;
1928  }
1929
1930  // C++ casts.  For dynamic casts, static casts, and const casts, we
1931  // are always converting from a pointer-to-pointer, so we just blow
1932  // through the cast.  In the case the dynamic cast doesn't fail (and
1933  // return NULL), we take the conservative route and report cases
1934  // where we return the address of a stack variable.  For Reinterpre
1935  // FIXME: The comment about is wrong; we're not always converting
1936  // from pointer to pointer. I'm guessing that this code should also
1937  // handle references to objects.
1938  case Stmt::CXXStaticCastExprClass:
1939  case Stmt::CXXDynamicCastExprClass:
1940  case Stmt::CXXConstCastExprClass:
1941  case Stmt::CXXReinterpretCastExprClass: {
1942      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1943      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1944        return EvalAddr(S);
1945      else
1946        return NULL;
1947  }
1948
1949  // Everything else: we simply don't reason about them.
1950  default:
1951    return NULL;
1952  }
1953}
1954
1955
1956///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1957///   See the comments for EvalAddr for more details.
1958static DeclRefExpr* EvalVal(Expr *E) {
1959do {
1960  // We should only be called for evaluating non-pointer expressions, or
1961  // expressions with a pointer type that are not used as references but instead
1962  // are l-values (e.g., DeclRefExpr with a pointer type).
1963
1964  // Our "symbolic interpreter" is just a dispatch off the currently
1965  // viewed AST node.  We then recursively traverse the AST by calling
1966  // EvalAddr and EvalVal appropriately.
1967  switch (E->getStmtClass()) {
1968  case Stmt::ImplicitCastExprClass: {
1969    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
1970    if (IE->getValueKind() == VK_LValue) {
1971      E = IE->getSubExpr();
1972      continue;
1973    }
1974    return NULL;
1975  }
1976
1977  case Stmt::DeclRefExprClass: {
1978    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1979    //  at code that refers to a variable's name.  We check if it has local
1980    //  storage within the function, and if so, return the expression.
1981    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1982
1983    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1984      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1985
1986    return NULL;
1987  }
1988
1989  case Stmt::ParenExprClass: {
1990    // Ignore parentheses.
1991    E = cast<ParenExpr>(E)->getSubExpr();
1992    continue;
1993  }
1994
1995  case Stmt::UnaryOperatorClass: {
1996    // The only unary operator that make sense to handle here
1997    // is Deref.  All others don't resolve to a "name."  This includes
1998    // handling all sorts of rvalues passed to a unary operator.
1999    UnaryOperator *U = cast<UnaryOperator>(E);
2000
2001    if (U->getOpcode() == UO_Deref)
2002      return EvalAddr(U->getSubExpr());
2003
2004    return NULL;
2005  }
2006
2007  case Stmt::ArraySubscriptExprClass: {
2008    // Array subscripts are potential references to data on the stack.  We
2009    // retrieve the DeclRefExpr* for the array variable if it indeed
2010    // has local storage.
2011    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2012  }
2013
2014  case Stmt::ConditionalOperatorClass: {
2015    // For conditional operators we need to see if either the LHS or RHS are
2016    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2017    ConditionalOperator *C = cast<ConditionalOperator>(E);
2018
2019    // Handle the GNU extension for missing LHS.
2020    if (Expr *lhsExpr = C->getLHS())
2021      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2022        return LHS;
2023
2024    return EvalVal(C->getRHS());
2025  }
2026
2027  // Accesses to members are potential references to data on the stack.
2028  case Stmt::MemberExprClass: {
2029    MemberExpr *M = cast<MemberExpr>(E);
2030
2031    // Check for indirect access.  We only want direct field accesses.
2032    if (!M->isArrow())
2033      return EvalVal(M->getBase());
2034    else
2035      return NULL;
2036  }
2037
2038  // Everything else: we simply don't reason about them.
2039  default:
2040    return NULL;
2041  }
2042} while (true);
2043}
2044
2045//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2046
2047/// Check for comparisons of floating point operands using != and ==.
2048/// Issue a warning if these are no self-comparisons, as they are not likely
2049/// to do what the programmer intended.
2050void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2051  bool EmitWarning = true;
2052
2053  Expr* LeftExprSansParen = lex->IgnoreParens();
2054  Expr* RightExprSansParen = rex->IgnoreParens();
2055
2056  // Special case: check for x == x (which is OK).
2057  // Do not emit warnings for such cases.
2058  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2059    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2060      if (DRL->getDecl() == DRR->getDecl())
2061        EmitWarning = false;
2062
2063
2064  // Special case: check for comparisons against literals that can be exactly
2065  //  represented by APFloat.  In such cases, do not emit a warning.  This
2066  //  is a heuristic: often comparison against such literals are used to
2067  //  detect if a value in a variable has not changed.  This clearly can
2068  //  lead to false negatives.
2069  if (EmitWarning) {
2070    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2071      if (FLL->isExact())
2072        EmitWarning = false;
2073    } else
2074      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2075        if (FLR->isExact())
2076          EmitWarning = false;
2077    }
2078  }
2079
2080  // Check for comparisons with builtin types.
2081  if (EmitWarning)
2082    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2083      if (CL->isBuiltinCall(Context))
2084        EmitWarning = false;
2085
2086  if (EmitWarning)
2087    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2088      if (CR->isBuiltinCall(Context))
2089        EmitWarning = false;
2090
2091  // Emit the diagnostic.
2092  if (EmitWarning)
2093    Diag(loc, diag::warn_floatingpoint_eq)
2094      << lex->getSourceRange() << rex->getSourceRange();
2095}
2096
2097//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2098//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2099
2100namespace {
2101
2102/// Structure recording the 'active' range of an integer-valued
2103/// expression.
2104struct IntRange {
2105  /// The number of bits active in the int.
2106  unsigned Width;
2107
2108  /// True if the int is known not to have negative values.
2109  bool NonNegative;
2110
2111  IntRange(unsigned Width, bool NonNegative)
2112    : Width(Width), NonNegative(NonNegative)
2113  {}
2114
2115  // Returns the range of the bool type.
2116  static IntRange forBoolType() {
2117    return IntRange(1, true);
2118  }
2119
2120  // Returns the range of an integral type.
2121  static IntRange forType(ASTContext &C, QualType T) {
2122    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2123  }
2124
2125  // Returns the range of an integeral type based on its canonical
2126  // representation.
2127  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2128    assert(T->isCanonicalUnqualified());
2129
2130    if (const VectorType *VT = dyn_cast<VectorType>(T))
2131      T = VT->getElementType().getTypePtr();
2132    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2133      T = CT->getElementType().getTypePtr();
2134
2135    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2136      EnumDecl *Enum = ET->getDecl();
2137      unsigned NumPositive = Enum->getNumPositiveBits();
2138      unsigned NumNegative = Enum->getNumNegativeBits();
2139
2140      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2141    }
2142
2143    const BuiltinType *BT = cast<BuiltinType>(T);
2144    assert(BT->isInteger());
2145
2146    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2147  }
2148
2149  // Returns the supremum of two ranges: i.e. their conservative merge.
2150  static IntRange join(IntRange L, IntRange R) {
2151    return IntRange(std::max(L.Width, R.Width),
2152                    L.NonNegative && R.NonNegative);
2153  }
2154
2155  // Returns the infinum of two ranges: i.e. their aggressive merge.
2156  static IntRange meet(IntRange L, IntRange R) {
2157    return IntRange(std::min(L.Width, R.Width),
2158                    L.NonNegative || R.NonNegative);
2159  }
2160};
2161
2162IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2163  if (value.isSigned() && value.isNegative())
2164    return IntRange(value.getMinSignedBits(), false);
2165
2166  if (value.getBitWidth() > MaxWidth)
2167    value.trunc(MaxWidth);
2168
2169  // isNonNegative() just checks the sign bit without considering
2170  // signedness.
2171  return IntRange(value.getActiveBits(), true);
2172}
2173
2174IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2175                       unsigned MaxWidth) {
2176  if (result.isInt())
2177    return GetValueRange(C, result.getInt(), MaxWidth);
2178
2179  if (result.isVector()) {
2180    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2181    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2182      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2183      R = IntRange::join(R, El);
2184    }
2185    return R;
2186  }
2187
2188  if (result.isComplexInt()) {
2189    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2190    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2191    return IntRange::join(R, I);
2192  }
2193
2194  // This can happen with lossless casts to intptr_t of "based" lvalues.
2195  // Assume it might use arbitrary bits.
2196  // FIXME: The only reason we need to pass the type in here is to get
2197  // the sign right on this one case.  It would be nice if APValue
2198  // preserved this.
2199  assert(result.isLValue());
2200  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2201}
2202
2203/// Pseudo-evaluate the given integer expression, estimating the
2204/// range of values it might take.
2205///
2206/// \param MaxWidth - the width to which the value will be truncated
2207IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2208  E = E->IgnoreParens();
2209
2210  // Try a full evaluation first.
2211  Expr::EvalResult result;
2212  if (E->Evaluate(result, C))
2213    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2214
2215  // I think we only want to look through implicit casts here; if the
2216  // user has an explicit widening cast, we should treat the value as
2217  // being of the new, wider type.
2218  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2219    if (CE->getCastKind() == CK_NoOp)
2220      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2221
2222    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2223
2224    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2225    if (!isIntegerCast && CE->getCastKind() == CK_Unknown)
2226      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2227
2228    // Assume that non-integer casts can span the full range of the type.
2229    if (!isIntegerCast)
2230      return OutputTypeRange;
2231
2232    IntRange SubRange
2233      = GetExprRange(C, CE->getSubExpr(),
2234                     std::min(MaxWidth, OutputTypeRange.Width));
2235
2236    // Bail out if the subexpr's range is as wide as the cast type.
2237    if (SubRange.Width >= OutputTypeRange.Width)
2238      return OutputTypeRange;
2239
2240    // Otherwise, we take the smaller width, and we're non-negative if
2241    // either the output type or the subexpr is.
2242    return IntRange(SubRange.Width,
2243                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2244  }
2245
2246  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2247    // If we can fold the condition, just take that operand.
2248    bool CondResult;
2249    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2250      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2251                                        : CO->getFalseExpr(),
2252                          MaxWidth);
2253
2254    // Otherwise, conservatively merge.
2255    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2256    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2257    return IntRange::join(L, R);
2258  }
2259
2260  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2261    switch (BO->getOpcode()) {
2262
2263    // Boolean-valued operations are single-bit and positive.
2264    case BO_LAnd:
2265    case BO_LOr:
2266    case BO_LT:
2267    case BO_GT:
2268    case BO_LE:
2269    case BO_GE:
2270    case BO_EQ:
2271    case BO_NE:
2272      return IntRange::forBoolType();
2273
2274    // The type of these compound assignments is the type of the LHS,
2275    // so the RHS is not necessarily an integer.
2276    case BO_MulAssign:
2277    case BO_DivAssign:
2278    case BO_RemAssign:
2279    case BO_AddAssign:
2280    case BO_SubAssign:
2281      return IntRange::forType(C, E->getType());
2282
2283    // Operations with opaque sources are black-listed.
2284    case BO_PtrMemD:
2285    case BO_PtrMemI:
2286      return IntRange::forType(C, E->getType());
2287
2288    // Bitwise-and uses the *infinum* of the two source ranges.
2289    case BO_And:
2290    case BO_AndAssign:
2291      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2292                            GetExprRange(C, BO->getRHS(), MaxWidth));
2293
2294    // Left shift gets black-listed based on a judgement call.
2295    case BO_Shl:
2296      // ...except that we want to treat '1 << (blah)' as logically
2297      // positive.  It's an important idiom.
2298      if (IntegerLiteral *I
2299            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2300        if (I->getValue() == 1) {
2301          IntRange R = IntRange::forType(C, E->getType());
2302          return IntRange(R.Width, /*NonNegative*/ true);
2303        }
2304      }
2305      // fallthrough
2306
2307    case BO_ShlAssign:
2308      return IntRange::forType(C, E->getType());
2309
2310    // Right shift by a constant can narrow its left argument.
2311    case BO_Shr:
2312    case BO_ShrAssign: {
2313      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2314
2315      // If the shift amount is a positive constant, drop the width by
2316      // that much.
2317      llvm::APSInt shift;
2318      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2319          shift.isNonNegative()) {
2320        unsigned zext = shift.getZExtValue();
2321        if (zext >= L.Width)
2322          L.Width = (L.NonNegative ? 0 : 1);
2323        else
2324          L.Width -= zext;
2325      }
2326
2327      return L;
2328    }
2329
2330    // Comma acts as its right operand.
2331    case BO_Comma:
2332      return GetExprRange(C, BO->getRHS(), MaxWidth);
2333
2334    // Black-list pointer subtractions.
2335    case BO_Sub:
2336      if (BO->getLHS()->getType()->isPointerType())
2337        return IntRange::forType(C, E->getType());
2338      // fallthrough
2339
2340    default:
2341      break;
2342    }
2343
2344    // Treat every other operator as if it were closed on the
2345    // narrowest type that encompasses both operands.
2346    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2347    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2348    return IntRange::join(L, R);
2349  }
2350
2351  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2352    switch (UO->getOpcode()) {
2353    // Boolean-valued operations are white-listed.
2354    case UO_LNot:
2355      return IntRange::forBoolType();
2356
2357    // Operations with opaque sources are black-listed.
2358    case UO_Deref:
2359    case UO_AddrOf: // should be impossible
2360      return IntRange::forType(C, E->getType());
2361
2362    default:
2363      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2364    }
2365  }
2366
2367  if (dyn_cast<OffsetOfExpr>(E)) {
2368    IntRange::forType(C, E->getType());
2369  }
2370
2371  FieldDecl *BitField = E->getBitField();
2372  if (BitField) {
2373    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2374    unsigned BitWidth = BitWidthAP.getZExtValue();
2375
2376    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2377  }
2378
2379  return IntRange::forType(C, E->getType());
2380}
2381
2382IntRange GetExprRange(ASTContext &C, Expr *E) {
2383  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2384}
2385
2386/// Checks whether the given value, which currently has the given
2387/// source semantics, has the same value when coerced through the
2388/// target semantics.
2389bool IsSameFloatAfterCast(const llvm::APFloat &value,
2390                          const llvm::fltSemantics &Src,
2391                          const llvm::fltSemantics &Tgt) {
2392  llvm::APFloat truncated = value;
2393
2394  bool ignored;
2395  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2396  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2397
2398  return truncated.bitwiseIsEqual(value);
2399}
2400
2401/// Checks whether the given value, which currently has the given
2402/// source semantics, has the same value when coerced through the
2403/// target semantics.
2404///
2405/// The value might be a vector of floats (or a complex number).
2406bool IsSameFloatAfterCast(const APValue &value,
2407                          const llvm::fltSemantics &Src,
2408                          const llvm::fltSemantics &Tgt) {
2409  if (value.isFloat())
2410    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2411
2412  if (value.isVector()) {
2413    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2414      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2415        return false;
2416    return true;
2417  }
2418
2419  assert(value.isComplexFloat());
2420  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2421          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2422}
2423
2424void AnalyzeImplicitConversions(Sema &S, Expr *E);
2425
2426bool IsZero(Sema &S, Expr *E) {
2427  llvm::APSInt Value;
2428  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2429}
2430
2431void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2432  BinaryOperatorKind op = E->getOpcode();
2433  if (op == BO_LT && IsZero(S, E->getRHS())) {
2434    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2435      << "< 0" << "false"
2436      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2437  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2438    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2439      << ">= 0" << "true"
2440      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2441  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2442    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2443      << "0 >" << "false"
2444      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2445  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2446    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2447      << "0 <=" << "true"
2448      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2449  }
2450}
2451
2452/// Analyze the operands of the given comparison.  Implements the
2453/// fallback case from AnalyzeComparison.
2454void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2455  AnalyzeImplicitConversions(S, E->getLHS());
2456  AnalyzeImplicitConversions(S, E->getRHS());
2457}
2458
2459/// \brief Implements -Wsign-compare.
2460///
2461/// \param lex the left-hand expression
2462/// \param rex the right-hand expression
2463/// \param OpLoc the location of the joining operator
2464/// \param BinOpc binary opcode or 0
2465void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2466  // The type the comparison is being performed in.
2467  QualType T = E->getLHS()->getType();
2468  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2469         && "comparison with mismatched types");
2470
2471  // We don't do anything special if this isn't an unsigned integral
2472  // comparison:  we're only interested in integral comparisons, and
2473  // signed comparisons only happen in cases we don't care to warn about.
2474  if (!T->hasUnsignedIntegerRepresentation())
2475    return AnalyzeImpConvsInComparison(S, E);
2476
2477  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2478  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2479
2480  // Check to see if one of the (unmodified) operands is of different
2481  // signedness.
2482  Expr *signedOperand, *unsignedOperand;
2483  if (lex->getType()->hasSignedIntegerRepresentation()) {
2484    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2485           "unsigned comparison between two signed integer expressions?");
2486    signedOperand = lex;
2487    unsignedOperand = rex;
2488  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2489    signedOperand = rex;
2490    unsignedOperand = lex;
2491  } else {
2492    CheckTrivialUnsignedComparison(S, E);
2493    return AnalyzeImpConvsInComparison(S, E);
2494  }
2495
2496  // Otherwise, calculate the effective range of the signed operand.
2497  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2498
2499  // Go ahead and analyze implicit conversions in the operands.  Note
2500  // that we skip the implicit conversions on both sides.
2501  AnalyzeImplicitConversions(S, lex);
2502  AnalyzeImplicitConversions(S, rex);
2503
2504  // If the signed range is non-negative, -Wsign-compare won't fire,
2505  // but we should still check for comparisons which are always true
2506  // or false.
2507  if (signedRange.NonNegative)
2508    return CheckTrivialUnsignedComparison(S, E);
2509
2510  // For (in)equality comparisons, if the unsigned operand is a
2511  // constant which cannot collide with a overflowed signed operand,
2512  // then reinterpreting the signed operand as unsigned will not
2513  // change the result of the comparison.
2514  if (E->isEqualityOp()) {
2515    unsigned comparisonWidth = S.Context.getIntWidth(T);
2516    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2517
2518    // We should never be unable to prove that the unsigned operand is
2519    // non-negative.
2520    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2521
2522    if (unsignedRange.Width < comparisonWidth)
2523      return;
2524  }
2525
2526  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2527    << lex->getType() << rex->getType()
2528    << lex->getSourceRange() << rex->getSourceRange();
2529}
2530
2531/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2532void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2533  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2534}
2535
2536void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2537                             bool *ICContext = 0) {
2538  if (E->isTypeDependent() || E->isValueDependent()) return;
2539
2540  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2541  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2542  if (Source == Target) return;
2543  if (Target->isDependentType()) return;
2544
2545  // Never diagnose implicit casts to bool.
2546  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2547    return;
2548
2549  // Strip vector types.
2550  if (isa<VectorType>(Source)) {
2551    if (!isa<VectorType>(Target))
2552      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2553
2554    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2555    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2556  }
2557
2558  // Strip complex types.
2559  if (isa<ComplexType>(Source)) {
2560    if (!isa<ComplexType>(Target))
2561      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2562
2563    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2564    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2565  }
2566
2567  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2568  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2569
2570  // If the source is floating point...
2571  if (SourceBT && SourceBT->isFloatingPoint()) {
2572    // ...and the target is floating point...
2573    if (TargetBT && TargetBT->isFloatingPoint()) {
2574      // ...then warn if we're dropping FP rank.
2575
2576      // Builtin FP kinds are ordered by increasing FP rank.
2577      if (SourceBT->getKind() > TargetBT->getKind()) {
2578        // Don't warn about float constants that are precisely
2579        // representable in the target type.
2580        Expr::EvalResult result;
2581        if (E->Evaluate(result, S.Context)) {
2582          // Value might be a float, a float vector, or a float complex.
2583          if (IsSameFloatAfterCast(result.Val,
2584                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2585                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2586            return;
2587        }
2588
2589        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2590      }
2591      return;
2592    }
2593
2594    // If the target is integral, always warn.
2595    if ((TargetBT && TargetBT->isInteger()))
2596      // TODO: don't warn for integer values?
2597      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2598
2599    return;
2600  }
2601
2602  if (!Source->isIntegerType() || !Target->isIntegerType())
2603    return;
2604
2605  IntRange SourceRange = GetExprRange(S.Context, E);
2606  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2607
2608  if (SourceRange.Width > TargetRange.Width) {
2609    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2610    // and by god we'll let them.
2611    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2612      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2613    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2614  }
2615
2616  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2617      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2618       SourceRange.Width == TargetRange.Width)) {
2619    unsigned DiagID = diag::warn_impcast_integer_sign;
2620
2621    // Traditionally, gcc has warned about this under -Wsign-compare.
2622    // We also want to warn about it in -Wconversion.
2623    // So if -Wconversion is off, use a completely identical diagnostic
2624    // in the sign-compare group.
2625    // The conditional-checking code will
2626    if (ICContext) {
2627      DiagID = diag::warn_impcast_integer_sign_conditional;
2628      *ICContext = true;
2629    }
2630
2631    return DiagnoseImpCast(S, E, T, DiagID);
2632  }
2633
2634  return;
2635}
2636
2637void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2638
2639void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2640                             bool &ICContext) {
2641  E = E->IgnoreParenImpCasts();
2642
2643  if (isa<ConditionalOperator>(E))
2644    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2645
2646  AnalyzeImplicitConversions(S, E);
2647  if (E->getType() != T)
2648    return CheckImplicitConversion(S, E, T, &ICContext);
2649  return;
2650}
2651
2652void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2653  AnalyzeImplicitConversions(S, E->getCond());
2654
2655  bool Suspicious = false;
2656  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2657  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2658
2659  // If -Wconversion would have warned about either of the candidates
2660  // for a signedness conversion to the context type...
2661  if (!Suspicious) return;
2662
2663  // ...but it's currently ignored...
2664  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2665    return;
2666
2667  // ...and -Wsign-compare isn't...
2668  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2669    return;
2670
2671  // ...then check whether it would have warned about either of the
2672  // candidates for a signedness conversion to the condition type.
2673  if (E->getType() != T) {
2674    Suspicious = false;
2675    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2676                            E->getType(), &Suspicious);
2677    if (!Suspicious)
2678      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2679                              E->getType(), &Suspicious);
2680    if (!Suspicious)
2681      return;
2682  }
2683
2684  // If so, emit a diagnostic under -Wsign-compare.
2685  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2686  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2687  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2688    << lex->getType() << rex->getType()
2689    << lex->getSourceRange() << rex->getSourceRange();
2690}
2691
2692/// AnalyzeImplicitConversions - Find and report any interesting
2693/// implicit conversions in the given expression.  There are a couple
2694/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2695void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2696  QualType T = OrigE->getType();
2697  Expr *E = OrigE->IgnoreParenImpCasts();
2698
2699  // For conditional operators, we analyze the arguments as if they
2700  // were being fed directly into the output.
2701  if (isa<ConditionalOperator>(E)) {
2702    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2703    CheckConditionalOperator(S, CO, T);
2704    return;
2705  }
2706
2707  // Go ahead and check any implicit conversions we might have skipped.
2708  // The non-canonical typecheck is just an optimization;
2709  // CheckImplicitConversion will filter out dead implicit conversions.
2710  if (E->getType() != T)
2711    CheckImplicitConversion(S, E, T);
2712
2713  // Now continue drilling into this expression.
2714
2715  // Skip past explicit casts.
2716  if (isa<ExplicitCastExpr>(E)) {
2717    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2718    return AnalyzeImplicitConversions(S, E);
2719  }
2720
2721  // Do a somewhat different check with comparison operators.
2722  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2723    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2724
2725  // These break the otherwise-useful invariant below.  Fortunately,
2726  // we don't really need to recurse into them, because any internal
2727  // expressions should have been analyzed already when they were
2728  // built into statements.
2729  if (isa<StmtExpr>(E)) return;
2730
2731  // Don't descend into unevaluated contexts.
2732  if (isa<SizeOfAlignOfExpr>(E)) return;
2733
2734  // Now just recurse over the expression's children.
2735  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2736         I != IE; ++I)
2737    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2738}
2739
2740} // end anonymous namespace
2741
2742/// Diagnoses "dangerous" implicit conversions within the given
2743/// expression (which is a full expression).  Implements -Wconversion
2744/// and -Wsign-compare.
2745void Sema::CheckImplicitConversions(Expr *E) {
2746  // Don't diagnose in unevaluated contexts.
2747  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2748    return;
2749
2750  // Don't diagnose for value- or type-dependent expressions.
2751  if (E->isTypeDependent() || E->isValueDependent())
2752    return;
2753
2754  AnalyzeImplicitConversions(*this, E);
2755}
2756
2757/// CheckParmsForFunctionDef - Check that the parameters of the given
2758/// function are appropriate for the definition of a function. This
2759/// takes care of any checks that cannot be performed on the
2760/// declaration itself, e.g., that the types of each of the function
2761/// parameters are complete.
2762bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2763  bool HasInvalidParm = false;
2764  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2765    ParmVarDecl *Param = FD->getParamDecl(p);
2766
2767    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2768    // function declarator that is part of a function definition of
2769    // that function shall not have incomplete type.
2770    //
2771    // This is also C++ [dcl.fct]p6.
2772    if (!Param->isInvalidDecl() &&
2773        RequireCompleteType(Param->getLocation(), Param->getType(),
2774                               diag::err_typecheck_decl_incomplete_type)) {
2775      Param->setInvalidDecl();
2776      HasInvalidParm = true;
2777    }
2778
2779    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2780    // declaration of each parameter shall include an identifier.
2781    if (Param->getIdentifier() == 0 &&
2782        !Param->isImplicit() &&
2783        !getLangOptions().CPlusPlus)
2784      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2785
2786    // C99 6.7.5.3p12:
2787    //   If the function declarator is not part of a definition of that
2788    //   function, parameters may have incomplete type and may use the [*]
2789    //   notation in their sequences of declarator specifiers to specify
2790    //   variable length array types.
2791    QualType PType = Param->getOriginalType();
2792    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2793      if (AT->getSizeModifier() == ArrayType::Star) {
2794        // FIXME: This diagnosic should point the the '[*]' if source-location
2795        // information is added for it.
2796        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2797      }
2798    }
2799  }
2800
2801  return HasInvalidParm;
2802}
2803
2804/// CheckCastAlign - Implements -Wcast-align, which warns when a
2805/// pointer cast increases the alignment requirements.
2806void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
2807  // This is actually a lot of work to potentially be doing on every
2808  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
2809  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
2810        == Diagnostic::Ignored)
2811    return;
2812
2813  // Ignore dependent types.
2814  if (T->isDependentType() || Op->getType()->isDependentType())
2815    return;
2816
2817  // Require that the destination be a pointer type.
2818  const PointerType *DestPtr = T->getAs<PointerType>();
2819  if (!DestPtr) return;
2820
2821  // If the destination has alignment 1, we're done.
2822  QualType DestPointee = DestPtr->getPointeeType();
2823  if (DestPointee->isIncompleteType()) return;
2824  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
2825  if (DestAlign.isOne()) return;
2826
2827  // Require that the source be a pointer type.
2828  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
2829  if (!SrcPtr) return;
2830  QualType SrcPointee = SrcPtr->getPointeeType();
2831
2832  // Whitelist casts from cv void*.  We already implicitly
2833  // whitelisted casts to cv void*, since they have alignment 1.
2834  // Also whitelist casts involving incomplete types, which implicitly
2835  // includes 'void'.
2836  if (SrcPointee->isIncompleteType()) return;
2837
2838  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
2839  if (SrcAlign >= DestAlign) return;
2840
2841  Diag(TRange.getBegin(), diag::warn_cast_align)
2842    << Op->getType() << T
2843    << static_cast<unsigned>(SrcAlign.getQuantity())
2844    << static_cast<unsigned>(DestAlign.getQuantity())
2845    << TRange << Op->getSourceRange();
2846}
2847
2848