SemaChecking.cpp revision 34269df5db40b7c4b4f52aed579d9b3108ff79e4
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/StmtObjC.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "clang/Basic/TargetBuiltins.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include <limits>
39using namespace clang;
40using namespace sema;
41
42SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43                                                    unsigned ByteNo) const {
44  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
45                               PP.getLangOptions(), PP.getTargetInfo());
46}
47
48/// Checks that a call expression's argument count is the desired number.
49/// This is useful when doing custom type-checking.  Returns true on error.
50static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
51  unsigned argCount = call->getNumArgs();
52  if (argCount == desiredArgCount) return false;
53
54  if (argCount < desiredArgCount)
55    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
56        << 0 /*function call*/ << desiredArgCount << argCount
57        << call->getSourceRange();
58
59  // Highlight all the excess arguments.
60  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
61                    call->getArg(argCount - 1)->getLocEnd());
62
63  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
64    << 0 /*function call*/ << desiredArgCount << argCount
65    << call->getArg(1)->getSourceRange();
66}
67
68/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
69/// annotation is a non wide string literal.
70static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
71  Arg = Arg->IgnoreParenCasts();
72  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
73  if (!Literal || !Literal->isAscii()) {
74    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
75      << Arg->getSourceRange();
76    return true;
77  }
78  return false;
79}
80
81ExprResult
82Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
83  ExprResult TheCallResult(Owned(TheCall));
84
85  // Find out if any arguments are required to be integer constant expressions.
86  unsigned ICEArguments = 0;
87  ASTContext::GetBuiltinTypeError Error;
88  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
89  if (Error != ASTContext::GE_None)
90    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
91
92  // If any arguments are required to be ICE's, check and diagnose.
93  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
94    // Skip arguments not required to be ICE's.
95    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
96
97    llvm::APSInt Result;
98    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
99      return true;
100    ICEArguments &= ~(1 << ArgNo);
101  }
102
103  switch (BuiltinID) {
104  case Builtin::BI__builtin___CFStringMakeConstantString:
105    assert(TheCall->getNumArgs() == 1 &&
106           "Wrong # arguments to builtin CFStringMakeConstantString");
107    if (CheckObjCString(TheCall->getArg(0)))
108      return ExprError();
109    break;
110  case Builtin::BI__builtin_stdarg_start:
111  case Builtin::BI__builtin_va_start:
112    if (SemaBuiltinVAStart(TheCall))
113      return ExprError();
114    break;
115  case Builtin::BI__builtin_isgreater:
116  case Builtin::BI__builtin_isgreaterequal:
117  case Builtin::BI__builtin_isless:
118  case Builtin::BI__builtin_islessequal:
119  case Builtin::BI__builtin_islessgreater:
120  case Builtin::BI__builtin_isunordered:
121    if (SemaBuiltinUnorderedCompare(TheCall))
122      return ExprError();
123    break;
124  case Builtin::BI__builtin_fpclassify:
125    if (SemaBuiltinFPClassification(TheCall, 6))
126      return ExprError();
127    break;
128  case Builtin::BI__builtin_isfinite:
129  case Builtin::BI__builtin_isinf:
130  case Builtin::BI__builtin_isinf_sign:
131  case Builtin::BI__builtin_isnan:
132  case Builtin::BI__builtin_isnormal:
133    if (SemaBuiltinFPClassification(TheCall, 1))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_shufflevector:
137    return SemaBuiltinShuffleVector(TheCall);
138    // TheCall will be freed by the smart pointer here, but that's fine, since
139    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
140  case Builtin::BI__builtin_prefetch:
141    if (SemaBuiltinPrefetch(TheCall))
142      return ExprError();
143    break;
144  case Builtin::BI__builtin_object_size:
145    if (SemaBuiltinObjectSize(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_longjmp:
149    if (SemaBuiltinLongjmp(TheCall))
150      return ExprError();
151    break;
152
153  case Builtin::BI__builtin_classify_type:
154    if (checkArgCount(*this, TheCall, 1)) return true;
155    TheCall->setType(Context.IntTy);
156    break;
157  case Builtin::BI__builtin_constant_p:
158    if (checkArgCount(*this, TheCall, 1)) return true;
159    TheCall->setType(Context.IntTy);
160    break;
161  case Builtin::BI__sync_fetch_and_add:
162  case Builtin::BI__sync_fetch_and_add_1:
163  case Builtin::BI__sync_fetch_and_add_2:
164  case Builtin::BI__sync_fetch_and_add_4:
165  case Builtin::BI__sync_fetch_and_add_8:
166  case Builtin::BI__sync_fetch_and_add_16:
167  case Builtin::BI__sync_fetch_and_sub:
168  case Builtin::BI__sync_fetch_and_sub_1:
169  case Builtin::BI__sync_fetch_and_sub_2:
170  case Builtin::BI__sync_fetch_and_sub_4:
171  case Builtin::BI__sync_fetch_and_sub_8:
172  case Builtin::BI__sync_fetch_and_sub_16:
173  case Builtin::BI__sync_fetch_and_or:
174  case Builtin::BI__sync_fetch_and_or_1:
175  case Builtin::BI__sync_fetch_and_or_2:
176  case Builtin::BI__sync_fetch_and_or_4:
177  case Builtin::BI__sync_fetch_and_or_8:
178  case Builtin::BI__sync_fetch_and_or_16:
179  case Builtin::BI__sync_fetch_and_and:
180  case Builtin::BI__sync_fetch_and_and_1:
181  case Builtin::BI__sync_fetch_and_and_2:
182  case Builtin::BI__sync_fetch_and_and_4:
183  case Builtin::BI__sync_fetch_and_and_8:
184  case Builtin::BI__sync_fetch_and_and_16:
185  case Builtin::BI__sync_fetch_and_xor:
186  case Builtin::BI__sync_fetch_and_xor_1:
187  case Builtin::BI__sync_fetch_and_xor_2:
188  case Builtin::BI__sync_fetch_and_xor_4:
189  case Builtin::BI__sync_fetch_and_xor_8:
190  case Builtin::BI__sync_fetch_and_xor_16:
191  case Builtin::BI__sync_add_and_fetch:
192  case Builtin::BI__sync_add_and_fetch_1:
193  case Builtin::BI__sync_add_and_fetch_2:
194  case Builtin::BI__sync_add_and_fetch_4:
195  case Builtin::BI__sync_add_and_fetch_8:
196  case Builtin::BI__sync_add_and_fetch_16:
197  case Builtin::BI__sync_sub_and_fetch:
198  case Builtin::BI__sync_sub_and_fetch_1:
199  case Builtin::BI__sync_sub_and_fetch_2:
200  case Builtin::BI__sync_sub_and_fetch_4:
201  case Builtin::BI__sync_sub_and_fetch_8:
202  case Builtin::BI__sync_sub_and_fetch_16:
203  case Builtin::BI__sync_and_and_fetch:
204  case Builtin::BI__sync_and_and_fetch_1:
205  case Builtin::BI__sync_and_and_fetch_2:
206  case Builtin::BI__sync_and_and_fetch_4:
207  case Builtin::BI__sync_and_and_fetch_8:
208  case Builtin::BI__sync_and_and_fetch_16:
209  case Builtin::BI__sync_or_and_fetch:
210  case Builtin::BI__sync_or_and_fetch_1:
211  case Builtin::BI__sync_or_and_fetch_2:
212  case Builtin::BI__sync_or_and_fetch_4:
213  case Builtin::BI__sync_or_and_fetch_8:
214  case Builtin::BI__sync_or_and_fetch_16:
215  case Builtin::BI__sync_xor_and_fetch:
216  case Builtin::BI__sync_xor_and_fetch_1:
217  case Builtin::BI__sync_xor_and_fetch_2:
218  case Builtin::BI__sync_xor_and_fetch_4:
219  case Builtin::BI__sync_xor_and_fetch_8:
220  case Builtin::BI__sync_xor_and_fetch_16:
221  case Builtin::BI__sync_val_compare_and_swap:
222  case Builtin::BI__sync_val_compare_and_swap_1:
223  case Builtin::BI__sync_val_compare_and_swap_2:
224  case Builtin::BI__sync_val_compare_and_swap_4:
225  case Builtin::BI__sync_val_compare_and_swap_8:
226  case Builtin::BI__sync_val_compare_and_swap_16:
227  case Builtin::BI__sync_bool_compare_and_swap:
228  case Builtin::BI__sync_bool_compare_and_swap_1:
229  case Builtin::BI__sync_bool_compare_and_swap_2:
230  case Builtin::BI__sync_bool_compare_and_swap_4:
231  case Builtin::BI__sync_bool_compare_and_swap_8:
232  case Builtin::BI__sync_bool_compare_and_swap_16:
233  case Builtin::BI__sync_lock_test_and_set:
234  case Builtin::BI__sync_lock_test_and_set_1:
235  case Builtin::BI__sync_lock_test_and_set_2:
236  case Builtin::BI__sync_lock_test_and_set_4:
237  case Builtin::BI__sync_lock_test_and_set_8:
238  case Builtin::BI__sync_lock_test_and_set_16:
239  case Builtin::BI__sync_lock_release:
240  case Builtin::BI__sync_lock_release_1:
241  case Builtin::BI__sync_lock_release_2:
242  case Builtin::BI__sync_lock_release_4:
243  case Builtin::BI__sync_lock_release_8:
244  case Builtin::BI__sync_lock_release_16:
245  case Builtin::BI__sync_swap:
246  case Builtin::BI__sync_swap_1:
247  case Builtin::BI__sync_swap_2:
248  case Builtin::BI__sync_swap_4:
249  case Builtin::BI__sync_swap_8:
250  case Builtin::BI__sync_swap_16:
251    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
252  case Builtin::BI__atomic_load:
253    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Load);
254  case Builtin::BI__atomic_store:
255    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Store);
256  case Builtin::BI__atomic_init:
257    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Init);
258  case Builtin::BI__atomic_exchange:
259    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xchg);
260  case Builtin::BI__atomic_compare_exchange_strong:
261    return SemaAtomicOpsOverloaded(move(TheCallResult),
262                                   AtomicExpr::CmpXchgStrong);
263  case Builtin::BI__atomic_compare_exchange_weak:
264    return SemaAtomicOpsOverloaded(move(TheCallResult),
265                                   AtomicExpr::CmpXchgWeak);
266  case Builtin::BI__atomic_fetch_add:
267    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Add);
268  case Builtin::BI__atomic_fetch_sub:
269    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Sub);
270  case Builtin::BI__atomic_fetch_and:
271    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::And);
272  case Builtin::BI__atomic_fetch_or:
273    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Or);
274  case Builtin::BI__atomic_fetch_xor:
275    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xor);
276  case Builtin::BI__builtin_annotation:
277    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
278      return ExprError();
279    break;
280  }
281
282  // Since the target specific builtins for each arch overlap, only check those
283  // of the arch we are compiling for.
284  if (BuiltinID >= Builtin::FirstTSBuiltin) {
285    switch (Context.getTargetInfo().getTriple().getArch()) {
286      case llvm::Triple::arm:
287      case llvm::Triple::thumb:
288        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
289          return ExprError();
290        break;
291      default:
292        break;
293    }
294  }
295
296  return move(TheCallResult);
297}
298
299// Get the valid immediate range for the specified NEON type code.
300static unsigned RFT(unsigned t, bool shift = false) {
301  NeonTypeFlags Type(t);
302  int IsQuad = Type.isQuad();
303  switch (Type.getEltType()) {
304  case NeonTypeFlags::Int8:
305  case NeonTypeFlags::Poly8:
306    return shift ? 7 : (8 << IsQuad) - 1;
307  case NeonTypeFlags::Int16:
308  case NeonTypeFlags::Poly16:
309    return shift ? 15 : (4 << IsQuad) - 1;
310  case NeonTypeFlags::Int32:
311    return shift ? 31 : (2 << IsQuad) - 1;
312  case NeonTypeFlags::Int64:
313    return shift ? 63 : (1 << IsQuad) - 1;
314  case NeonTypeFlags::Float16:
315    assert(!shift && "cannot shift float types!");
316    return (4 << IsQuad) - 1;
317  case NeonTypeFlags::Float32:
318    assert(!shift && "cannot shift float types!");
319    return (2 << IsQuad) - 1;
320  }
321  llvm_unreachable("Invalid NeonTypeFlag!");
322}
323
324/// getNeonEltType - Return the QualType corresponding to the elements of
325/// the vector type specified by the NeonTypeFlags.  This is used to check
326/// the pointer arguments for Neon load/store intrinsics.
327static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
328  switch (Flags.getEltType()) {
329  case NeonTypeFlags::Int8:
330    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
331  case NeonTypeFlags::Int16:
332    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
333  case NeonTypeFlags::Int32:
334    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
335  case NeonTypeFlags::Int64:
336    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
337  case NeonTypeFlags::Poly8:
338    return Context.SignedCharTy;
339  case NeonTypeFlags::Poly16:
340    return Context.ShortTy;
341  case NeonTypeFlags::Float16:
342    return Context.UnsignedShortTy;
343  case NeonTypeFlags::Float32:
344    return Context.FloatTy;
345  }
346  llvm_unreachable("Invalid NeonTypeFlag!");
347}
348
349bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
350  llvm::APSInt Result;
351
352  unsigned mask = 0;
353  unsigned TV = 0;
354  int PtrArgNum = -1;
355  bool HasConstPtr = false;
356  switch (BuiltinID) {
357#define GET_NEON_OVERLOAD_CHECK
358#include "clang/Basic/arm_neon.inc"
359#undef GET_NEON_OVERLOAD_CHECK
360  }
361
362  // For NEON intrinsics which are overloaded on vector element type, validate
363  // the immediate which specifies which variant to emit.
364  unsigned ImmArg = TheCall->getNumArgs()-1;
365  if (mask) {
366    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
367      return true;
368
369    TV = Result.getLimitedValue(64);
370    if ((TV > 63) || (mask & (1 << TV)) == 0)
371      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
372        << TheCall->getArg(ImmArg)->getSourceRange();
373  }
374
375  if (PtrArgNum >= 0) {
376    // Check that pointer arguments have the specified type.
377    Expr *Arg = TheCall->getArg(PtrArgNum);
378    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
379      Arg = ICE->getSubExpr();
380    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
381    QualType RHSTy = RHS.get()->getType();
382    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
383    if (HasConstPtr)
384      EltTy = EltTy.withConst();
385    QualType LHSTy = Context.getPointerType(EltTy);
386    AssignConvertType ConvTy;
387    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
388    if (RHS.isInvalid())
389      return true;
390    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
391                                 RHS.get(), AA_Assigning))
392      return true;
393  }
394
395  // For NEON intrinsics which take an immediate value as part of the
396  // instruction, range check them here.
397  unsigned i = 0, l = 0, u = 0;
398  switch (BuiltinID) {
399  default: return false;
400  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
401  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
402  case ARM::BI__builtin_arm_vcvtr_f:
403  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
404#define GET_NEON_IMMEDIATE_CHECK
405#include "clang/Basic/arm_neon.inc"
406#undef GET_NEON_IMMEDIATE_CHECK
407  };
408
409  // Check that the immediate argument is actually a constant.
410  if (SemaBuiltinConstantArg(TheCall, i, Result))
411    return true;
412
413  // Range check against the upper/lower values for this isntruction.
414  unsigned Val = Result.getZExtValue();
415  if (Val < l || Val > (u + l))
416    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
417      << l << u+l << TheCall->getArg(i)->getSourceRange();
418
419  // FIXME: VFP Intrinsics should error if VFP not present.
420  return false;
421}
422
423/// CheckFunctionCall - Check a direct function call for various correctness
424/// and safety properties not strictly enforced by the C type system.
425bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
426  // Get the IdentifierInfo* for the called function.
427  IdentifierInfo *FnInfo = FDecl->getIdentifier();
428
429  // None of the checks below are needed for functions that don't have
430  // simple names (e.g., C++ conversion functions).
431  if (!FnInfo)
432    return false;
433
434  // FIXME: This mechanism should be abstracted to be less fragile and
435  // more efficient. For example, just map function ids to custom
436  // handlers.
437
438  // Printf and scanf checking.
439  for (specific_attr_iterator<FormatAttr>
440         i = FDecl->specific_attr_begin<FormatAttr>(),
441         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
442    CheckFormatArguments(*i, TheCall);
443  }
444
445  for (specific_attr_iterator<NonNullAttr>
446         i = FDecl->specific_attr_begin<NonNullAttr>(),
447         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
448    CheckNonNullArguments(*i, TheCall->getArgs(),
449                          TheCall->getCallee()->getLocStart());
450  }
451
452  unsigned CMId = FDecl->getMemoryFunctionKind();
453  if (CMId == 0)
454    return false;
455
456  // Handle memory setting and copying functions.
457  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
458    CheckStrlcpycatArguments(TheCall, FnInfo);
459  else
460    CheckMemaccessArguments(TheCall, CMId, FnInfo);
461
462  return false;
463}
464
465bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
466                               Expr **Args, unsigned NumArgs) {
467  for (specific_attr_iterator<FormatAttr>
468       i = Method->specific_attr_begin<FormatAttr>(),
469       e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
470
471    CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
472                         Method->getSourceRange());
473  }
474
475  // diagnose nonnull arguments.
476  for (specific_attr_iterator<NonNullAttr>
477       i = Method->specific_attr_begin<NonNullAttr>(),
478       e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
479    CheckNonNullArguments(*i, Args, lbrac);
480  }
481
482  return false;
483}
484
485bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
486  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
487  if (!V)
488    return false;
489
490  QualType Ty = V->getType();
491  if (!Ty->isBlockPointerType())
492    return false;
493
494  // format string checking.
495  for (specific_attr_iterator<FormatAttr>
496       i = NDecl->specific_attr_begin<FormatAttr>(),
497       e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
498    CheckFormatArguments(*i, TheCall);
499  }
500
501  return false;
502}
503
504ExprResult
505Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op) {
506  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
507  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
508
509  // All these operations take one of the following four forms:
510  // T   __atomic_load(_Atomic(T)*, int)                              (loads)
511  // T*  __atomic_add(_Atomic(T*)*, ptrdiff_t, int)         (pointer add/sub)
512  // int __atomic_compare_exchange_strong(_Atomic(T)*, T*, T, int, int)
513  //                                                                (cmpxchg)
514  // T   __atomic_exchange(_Atomic(T)*, T, int)             (everything else)
515  // where T is an appropriate type, and the int paremeterss are for orderings.
516  unsigned NumVals = 1;
517  unsigned NumOrders = 1;
518  if (Op == AtomicExpr::Load) {
519    NumVals = 0;
520  } else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong) {
521    NumVals = 2;
522    NumOrders = 2;
523  }
524  if (Op == AtomicExpr::Init)
525    NumOrders = 0;
526
527  if (TheCall->getNumArgs() < NumVals+NumOrders+1) {
528    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
529      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
530      << TheCall->getCallee()->getSourceRange();
531    return ExprError();
532  } else if (TheCall->getNumArgs() > NumVals+NumOrders+1) {
533    Diag(TheCall->getArg(NumVals+NumOrders+1)->getLocStart(),
534         diag::err_typecheck_call_too_many_args)
535      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
536      << TheCall->getCallee()->getSourceRange();
537    return ExprError();
538  }
539
540  // Inspect the first argument of the atomic operation.  This should always be
541  // a pointer to an _Atomic type.
542  Expr *Ptr = TheCall->getArg(0);
543  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
544  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
545  if (!pointerType) {
546    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
547      << Ptr->getType() << Ptr->getSourceRange();
548    return ExprError();
549  }
550
551  QualType AtomTy = pointerType->getPointeeType();
552  if (!AtomTy->isAtomicType()) {
553    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
554      << Ptr->getType() << Ptr->getSourceRange();
555    return ExprError();
556  }
557  QualType ValType = AtomTy->getAs<AtomicType>()->getValueType();
558
559  if ((Op == AtomicExpr::Add || Op == AtomicExpr::Sub) &&
560      !ValType->isIntegerType() && !ValType->isPointerType()) {
561    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
562      << Ptr->getType() << Ptr->getSourceRange();
563    return ExprError();
564  }
565
566  if (!ValType->isIntegerType() &&
567      (Op == AtomicExpr::And || Op == AtomicExpr::Or || Op == AtomicExpr::Xor)){
568    Diag(DRE->getLocStart(), diag::err_atomic_op_logical_needs_atomic_int)
569      << Ptr->getType() << Ptr->getSourceRange();
570    return ExprError();
571  }
572
573  switch (ValType.getObjCLifetime()) {
574  case Qualifiers::OCL_None:
575  case Qualifiers::OCL_ExplicitNone:
576    // okay
577    break;
578
579  case Qualifiers::OCL_Weak:
580  case Qualifiers::OCL_Strong:
581  case Qualifiers::OCL_Autoreleasing:
582    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
583      << ValType << Ptr->getSourceRange();
584    return ExprError();
585  }
586
587  QualType ResultType = ValType;
588  if (Op == AtomicExpr::Store || Op == AtomicExpr::Init)
589    ResultType = Context.VoidTy;
590  else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong)
591    ResultType = Context.BoolTy;
592
593  // The first argument --- the pointer --- has a fixed type; we
594  // deduce the types of the rest of the arguments accordingly.  Walk
595  // the remaining arguments, converting them to the deduced value type.
596  for (unsigned i = 1; i != NumVals+NumOrders+1; ++i) {
597    ExprResult Arg = TheCall->getArg(i);
598    QualType Ty;
599    if (i < NumVals+1) {
600      // The second argument to a cmpxchg is a pointer to the data which will
601      // be exchanged. The second argument to a pointer add/subtract is the
602      // amount to add/subtract, which must be a ptrdiff_t.  The third
603      // argument to a cmpxchg and the second argument in all other cases
604      // is the type of the value.
605      if (i == 1 && (Op == AtomicExpr::CmpXchgWeak ||
606                     Op == AtomicExpr::CmpXchgStrong))
607         Ty = Context.getPointerType(ValType.getUnqualifiedType());
608      else if (!ValType->isIntegerType() &&
609               (Op == AtomicExpr::Add || Op == AtomicExpr::Sub))
610        Ty = Context.getPointerDiffType();
611      else
612        Ty = ValType;
613    } else {
614      // The order(s) are always converted to int.
615      Ty = Context.IntTy;
616    }
617    InitializedEntity Entity =
618        InitializedEntity::InitializeParameter(Context, Ty, false);
619    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
620    if (Arg.isInvalid())
621      return true;
622    TheCall->setArg(i, Arg.get());
623  }
624
625  SmallVector<Expr*, 5> SubExprs;
626  SubExprs.push_back(Ptr);
627  if (Op == AtomicExpr::Load) {
628    SubExprs.push_back(TheCall->getArg(1)); // Order
629  } else if (Op == AtomicExpr::Init) {
630    SubExprs.push_back(TheCall->getArg(1)); // Val1
631  } else if (Op != AtomicExpr::CmpXchgWeak && Op != AtomicExpr::CmpXchgStrong) {
632    SubExprs.push_back(TheCall->getArg(2)); // Order
633    SubExprs.push_back(TheCall->getArg(1)); // Val1
634  } else {
635    SubExprs.push_back(TheCall->getArg(3)); // Order
636    SubExprs.push_back(TheCall->getArg(1)); // Val1
637    SubExprs.push_back(TheCall->getArg(2)); // Val2
638    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
639  }
640
641  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
642                                        SubExprs.data(), SubExprs.size(),
643                                        ResultType, Op,
644                                        TheCall->getRParenLoc()));
645}
646
647
648/// checkBuiltinArgument - Given a call to a builtin function, perform
649/// normal type-checking on the given argument, updating the call in
650/// place.  This is useful when a builtin function requires custom
651/// type-checking for some of its arguments but not necessarily all of
652/// them.
653///
654/// Returns true on error.
655static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
656  FunctionDecl *Fn = E->getDirectCallee();
657  assert(Fn && "builtin call without direct callee!");
658
659  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
660  InitializedEntity Entity =
661    InitializedEntity::InitializeParameter(S.Context, Param);
662
663  ExprResult Arg = E->getArg(0);
664  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
665  if (Arg.isInvalid())
666    return true;
667
668  E->setArg(ArgIndex, Arg.take());
669  return false;
670}
671
672/// SemaBuiltinAtomicOverloaded - We have a call to a function like
673/// __sync_fetch_and_add, which is an overloaded function based on the pointer
674/// type of its first argument.  The main ActOnCallExpr routines have already
675/// promoted the types of arguments because all of these calls are prototyped as
676/// void(...).
677///
678/// This function goes through and does final semantic checking for these
679/// builtins,
680ExprResult
681Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
682  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
683  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
684  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
685
686  // Ensure that we have at least one argument to do type inference from.
687  if (TheCall->getNumArgs() < 1) {
688    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
689      << 0 << 1 << TheCall->getNumArgs()
690      << TheCall->getCallee()->getSourceRange();
691    return ExprError();
692  }
693
694  // Inspect the first argument of the atomic builtin.  This should always be
695  // a pointer type, whose element is an integral scalar or pointer type.
696  // Because it is a pointer type, we don't have to worry about any implicit
697  // casts here.
698  // FIXME: We don't allow floating point scalars as input.
699  Expr *FirstArg = TheCall->getArg(0);
700  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
701  if (FirstArgResult.isInvalid())
702    return ExprError();
703  FirstArg = FirstArgResult.take();
704  TheCall->setArg(0, FirstArg);
705
706  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
707  if (!pointerType) {
708    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
709      << FirstArg->getType() << FirstArg->getSourceRange();
710    return ExprError();
711  }
712
713  QualType ValType = pointerType->getPointeeType();
714  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
715      !ValType->isBlockPointerType()) {
716    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
717      << FirstArg->getType() << FirstArg->getSourceRange();
718    return ExprError();
719  }
720
721  switch (ValType.getObjCLifetime()) {
722  case Qualifiers::OCL_None:
723  case Qualifiers::OCL_ExplicitNone:
724    // okay
725    break;
726
727  case Qualifiers::OCL_Weak:
728  case Qualifiers::OCL_Strong:
729  case Qualifiers::OCL_Autoreleasing:
730    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
731      << ValType << FirstArg->getSourceRange();
732    return ExprError();
733  }
734
735  // Strip any qualifiers off ValType.
736  ValType = ValType.getUnqualifiedType();
737
738  // The majority of builtins return a value, but a few have special return
739  // types, so allow them to override appropriately below.
740  QualType ResultType = ValType;
741
742  // We need to figure out which concrete builtin this maps onto.  For example,
743  // __sync_fetch_and_add with a 2 byte object turns into
744  // __sync_fetch_and_add_2.
745#define BUILTIN_ROW(x) \
746  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
747    Builtin::BI##x##_8, Builtin::BI##x##_16 }
748
749  static const unsigned BuiltinIndices[][5] = {
750    BUILTIN_ROW(__sync_fetch_and_add),
751    BUILTIN_ROW(__sync_fetch_and_sub),
752    BUILTIN_ROW(__sync_fetch_and_or),
753    BUILTIN_ROW(__sync_fetch_and_and),
754    BUILTIN_ROW(__sync_fetch_and_xor),
755
756    BUILTIN_ROW(__sync_add_and_fetch),
757    BUILTIN_ROW(__sync_sub_and_fetch),
758    BUILTIN_ROW(__sync_and_and_fetch),
759    BUILTIN_ROW(__sync_or_and_fetch),
760    BUILTIN_ROW(__sync_xor_and_fetch),
761
762    BUILTIN_ROW(__sync_val_compare_and_swap),
763    BUILTIN_ROW(__sync_bool_compare_and_swap),
764    BUILTIN_ROW(__sync_lock_test_and_set),
765    BUILTIN_ROW(__sync_lock_release),
766    BUILTIN_ROW(__sync_swap)
767  };
768#undef BUILTIN_ROW
769
770  // Determine the index of the size.
771  unsigned SizeIndex;
772  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
773  case 1: SizeIndex = 0; break;
774  case 2: SizeIndex = 1; break;
775  case 4: SizeIndex = 2; break;
776  case 8: SizeIndex = 3; break;
777  case 16: SizeIndex = 4; break;
778  default:
779    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
780      << FirstArg->getType() << FirstArg->getSourceRange();
781    return ExprError();
782  }
783
784  // Each of these builtins has one pointer argument, followed by some number of
785  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
786  // that we ignore.  Find out which row of BuiltinIndices to read from as well
787  // as the number of fixed args.
788  unsigned BuiltinID = FDecl->getBuiltinID();
789  unsigned BuiltinIndex, NumFixed = 1;
790  switch (BuiltinID) {
791  default: llvm_unreachable("Unknown overloaded atomic builtin!");
792  case Builtin::BI__sync_fetch_and_add:
793  case Builtin::BI__sync_fetch_and_add_1:
794  case Builtin::BI__sync_fetch_and_add_2:
795  case Builtin::BI__sync_fetch_and_add_4:
796  case Builtin::BI__sync_fetch_and_add_8:
797  case Builtin::BI__sync_fetch_and_add_16:
798    BuiltinIndex = 0;
799    break;
800
801  case Builtin::BI__sync_fetch_and_sub:
802  case Builtin::BI__sync_fetch_and_sub_1:
803  case Builtin::BI__sync_fetch_and_sub_2:
804  case Builtin::BI__sync_fetch_and_sub_4:
805  case Builtin::BI__sync_fetch_and_sub_8:
806  case Builtin::BI__sync_fetch_and_sub_16:
807    BuiltinIndex = 1;
808    break;
809
810  case Builtin::BI__sync_fetch_and_or:
811  case Builtin::BI__sync_fetch_and_or_1:
812  case Builtin::BI__sync_fetch_and_or_2:
813  case Builtin::BI__sync_fetch_and_or_4:
814  case Builtin::BI__sync_fetch_and_or_8:
815  case Builtin::BI__sync_fetch_and_or_16:
816    BuiltinIndex = 2;
817    break;
818
819  case Builtin::BI__sync_fetch_and_and:
820  case Builtin::BI__sync_fetch_and_and_1:
821  case Builtin::BI__sync_fetch_and_and_2:
822  case Builtin::BI__sync_fetch_and_and_4:
823  case Builtin::BI__sync_fetch_and_and_8:
824  case Builtin::BI__sync_fetch_and_and_16:
825    BuiltinIndex = 3;
826    break;
827
828  case Builtin::BI__sync_fetch_and_xor:
829  case Builtin::BI__sync_fetch_and_xor_1:
830  case Builtin::BI__sync_fetch_and_xor_2:
831  case Builtin::BI__sync_fetch_and_xor_4:
832  case Builtin::BI__sync_fetch_and_xor_8:
833  case Builtin::BI__sync_fetch_and_xor_16:
834    BuiltinIndex = 4;
835    break;
836
837  case Builtin::BI__sync_add_and_fetch:
838  case Builtin::BI__sync_add_and_fetch_1:
839  case Builtin::BI__sync_add_and_fetch_2:
840  case Builtin::BI__sync_add_and_fetch_4:
841  case Builtin::BI__sync_add_and_fetch_8:
842  case Builtin::BI__sync_add_and_fetch_16:
843    BuiltinIndex = 5;
844    break;
845
846  case Builtin::BI__sync_sub_and_fetch:
847  case Builtin::BI__sync_sub_and_fetch_1:
848  case Builtin::BI__sync_sub_and_fetch_2:
849  case Builtin::BI__sync_sub_and_fetch_4:
850  case Builtin::BI__sync_sub_and_fetch_8:
851  case Builtin::BI__sync_sub_and_fetch_16:
852    BuiltinIndex = 6;
853    break;
854
855  case Builtin::BI__sync_and_and_fetch:
856  case Builtin::BI__sync_and_and_fetch_1:
857  case Builtin::BI__sync_and_and_fetch_2:
858  case Builtin::BI__sync_and_and_fetch_4:
859  case Builtin::BI__sync_and_and_fetch_8:
860  case Builtin::BI__sync_and_and_fetch_16:
861    BuiltinIndex = 7;
862    break;
863
864  case Builtin::BI__sync_or_and_fetch:
865  case Builtin::BI__sync_or_and_fetch_1:
866  case Builtin::BI__sync_or_and_fetch_2:
867  case Builtin::BI__sync_or_and_fetch_4:
868  case Builtin::BI__sync_or_and_fetch_8:
869  case Builtin::BI__sync_or_and_fetch_16:
870    BuiltinIndex = 8;
871    break;
872
873  case Builtin::BI__sync_xor_and_fetch:
874  case Builtin::BI__sync_xor_and_fetch_1:
875  case Builtin::BI__sync_xor_and_fetch_2:
876  case Builtin::BI__sync_xor_and_fetch_4:
877  case Builtin::BI__sync_xor_and_fetch_8:
878  case Builtin::BI__sync_xor_and_fetch_16:
879    BuiltinIndex = 9;
880    break;
881
882  case Builtin::BI__sync_val_compare_and_swap:
883  case Builtin::BI__sync_val_compare_and_swap_1:
884  case Builtin::BI__sync_val_compare_and_swap_2:
885  case Builtin::BI__sync_val_compare_and_swap_4:
886  case Builtin::BI__sync_val_compare_and_swap_8:
887  case Builtin::BI__sync_val_compare_and_swap_16:
888    BuiltinIndex = 10;
889    NumFixed = 2;
890    break;
891
892  case Builtin::BI__sync_bool_compare_and_swap:
893  case Builtin::BI__sync_bool_compare_and_swap_1:
894  case Builtin::BI__sync_bool_compare_and_swap_2:
895  case Builtin::BI__sync_bool_compare_and_swap_4:
896  case Builtin::BI__sync_bool_compare_and_swap_8:
897  case Builtin::BI__sync_bool_compare_and_swap_16:
898    BuiltinIndex = 11;
899    NumFixed = 2;
900    ResultType = Context.BoolTy;
901    break;
902
903  case Builtin::BI__sync_lock_test_and_set:
904  case Builtin::BI__sync_lock_test_and_set_1:
905  case Builtin::BI__sync_lock_test_and_set_2:
906  case Builtin::BI__sync_lock_test_and_set_4:
907  case Builtin::BI__sync_lock_test_and_set_8:
908  case Builtin::BI__sync_lock_test_and_set_16:
909    BuiltinIndex = 12;
910    break;
911
912  case Builtin::BI__sync_lock_release:
913  case Builtin::BI__sync_lock_release_1:
914  case Builtin::BI__sync_lock_release_2:
915  case Builtin::BI__sync_lock_release_4:
916  case Builtin::BI__sync_lock_release_8:
917  case Builtin::BI__sync_lock_release_16:
918    BuiltinIndex = 13;
919    NumFixed = 0;
920    ResultType = Context.VoidTy;
921    break;
922
923  case Builtin::BI__sync_swap:
924  case Builtin::BI__sync_swap_1:
925  case Builtin::BI__sync_swap_2:
926  case Builtin::BI__sync_swap_4:
927  case Builtin::BI__sync_swap_8:
928  case Builtin::BI__sync_swap_16:
929    BuiltinIndex = 14;
930    break;
931  }
932
933  // Now that we know how many fixed arguments we expect, first check that we
934  // have at least that many.
935  if (TheCall->getNumArgs() < 1+NumFixed) {
936    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
937      << 0 << 1+NumFixed << TheCall->getNumArgs()
938      << TheCall->getCallee()->getSourceRange();
939    return ExprError();
940  }
941
942  // Get the decl for the concrete builtin from this, we can tell what the
943  // concrete integer type we should convert to is.
944  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
945  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
946  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
947  FunctionDecl *NewBuiltinDecl =
948    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
949                                           TUScope, false, DRE->getLocStart()));
950
951  // The first argument --- the pointer --- has a fixed type; we
952  // deduce the types of the rest of the arguments accordingly.  Walk
953  // the remaining arguments, converting them to the deduced value type.
954  for (unsigned i = 0; i != NumFixed; ++i) {
955    ExprResult Arg = TheCall->getArg(i+1);
956
957    // GCC does an implicit conversion to the pointer or integer ValType.  This
958    // can fail in some cases (1i -> int**), check for this error case now.
959    // Initialize the argument.
960    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
961                                                   ValType, /*consume*/ false);
962    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
963    if (Arg.isInvalid())
964      return ExprError();
965
966    // Okay, we have something that *can* be converted to the right type.  Check
967    // to see if there is a potentially weird extension going on here.  This can
968    // happen when you do an atomic operation on something like an char* and
969    // pass in 42.  The 42 gets converted to char.  This is even more strange
970    // for things like 45.123 -> char, etc.
971    // FIXME: Do this check.
972    TheCall->setArg(i+1, Arg.take());
973  }
974
975  ASTContext& Context = this->getASTContext();
976
977  // Create a new DeclRefExpr to refer to the new decl.
978  DeclRefExpr* NewDRE = DeclRefExpr::Create(
979      Context,
980      DRE->getQualifierLoc(),
981      SourceLocation(),
982      NewBuiltinDecl,
983      DRE->getLocation(),
984      NewBuiltinDecl->getType(),
985      DRE->getValueKind());
986
987  // Set the callee in the CallExpr.
988  // FIXME: This leaks the original parens and implicit casts.
989  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
990  if (PromotedCall.isInvalid())
991    return ExprError();
992  TheCall->setCallee(PromotedCall.take());
993
994  // Change the result type of the call to match the original value type. This
995  // is arbitrary, but the codegen for these builtins ins design to handle it
996  // gracefully.
997  TheCall->setType(ResultType);
998
999  return move(TheCallResult);
1000}
1001
1002/// CheckObjCString - Checks that the argument to the builtin
1003/// CFString constructor is correct
1004/// Note: It might also make sense to do the UTF-16 conversion here (would
1005/// simplify the backend).
1006bool Sema::CheckObjCString(Expr *Arg) {
1007  Arg = Arg->IgnoreParenCasts();
1008  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1009
1010  if (!Literal || !Literal->isAscii()) {
1011    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1012      << Arg->getSourceRange();
1013    return true;
1014  }
1015
1016  if (Literal->containsNonAsciiOrNull()) {
1017    StringRef String = Literal->getString();
1018    unsigned NumBytes = String.size();
1019    SmallVector<UTF16, 128> ToBuf(NumBytes);
1020    const UTF8 *FromPtr = (UTF8 *)String.data();
1021    UTF16 *ToPtr = &ToBuf[0];
1022
1023    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1024                                                 &ToPtr, ToPtr + NumBytes,
1025                                                 strictConversion);
1026    // Check for conversion failure.
1027    if (Result != conversionOK)
1028      Diag(Arg->getLocStart(),
1029           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1030  }
1031  return false;
1032}
1033
1034/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1035/// Emit an error and return true on failure, return false on success.
1036bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1037  Expr *Fn = TheCall->getCallee();
1038  if (TheCall->getNumArgs() > 2) {
1039    Diag(TheCall->getArg(2)->getLocStart(),
1040         diag::err_typecheck_call_too_many_args)
1041      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1042      << Fn->getSourceRange()
1043      << SourceRange(TheCall->getArg(2)->getLocStart(),
1044                     (*(TheCall->arg_end()-1))->getLocEnd());
1045    return true;
1046  }
1047
1048  if (TheCall->getNumArgs() < 2) {
1049    return Diag(TheCall->getLocEnd(),
1050      diag::err_typecheck_call_too_few_args_at_least)
1051      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1052  }
1053
1054  // Type-check the first argument normally.
1055  if (checkBuiltinArgument(*this, TheCall, 0))
1056    return true;
1057
1058  // Determine whether the current function is variadic or not.
1059  BlockScopeInfo *CurBlock = getCurBlock();
1060  bool isVariadic;
1061  if (CurBlock)
1062    isVariadic = CurBlock->TheDecl->isVariadic();
1063  else if (FunctionDecl *FD = getCurFunctionDecl())
1064    isVariadic = FD->isVariadic();
1065  else
1066    isVariadic = getCurMethodDecl()->isVariadic();
1067
1068  if (!isVariadic) {
1069    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1070    return true;
1071  }
1072
1073  // Verify that the second argument to the builtin is the last argument of the
1074  // current function or method.
1075  bool SecondArgIsLastNamedArgument = false;
1076  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1077
1078  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1079    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1080      // FIXME: This isn't correct for methods (results in bogus warning).
1081      // Get the last formal in the current function.
1082      const ParmVarDecl *LastArg;
1083      if (CurBlock)
1084        LastArg = *(CurBlock->TheDecl->param_end()-1);
1085      else if (FunctionDecl *FD = getCurFunctionDecl())
1086        LastArg = *(FD->param_end()-1);
1087      else
1088        LastArg = *(getCurMethodDecl()->param_end()-1);
1089      SecondArgIsLastNamedArgument = PV == LastArg;
1090    }
1091  }
1092
1093  if (!SecondArgIsLastNamedArgument)
1094    Diag(TheCall->getArg(1)->getLocStart(),
1095         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1096  return false;
1097}
1098
1099/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1100/// friends.  This is declared to take (...), so we have to check everything.
1101bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1102  if (TheCall->getNumArgs() < 2)
1103    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1104      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1105  if (TheCall->getNumArgs() > 2)
1106    return Diag(TheCall->getArg(2)->getLocStart(),
1107                diag::err_typecheck_call_too_many_args)
1108      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1109      << SourceRange(TheCall->getArg(2)->getLocStart(),
1110                     (*(TheCall->arg_end()-1))->getLocEnd());
1111
1112  ExprResult OrigArg0 = TheCall->getArg(0);
1113  ExprResult OrigArg1 = TheCall->getArg(1);
1114
1115  // Do standard promotions between the two arguments, returning their common
1116  // type.
1117  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1118  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1119    return true;
1120
1121  // Make sure any conversions are pushed back into the call; this is
1122  // type safe since unordered compare builtins are declared as "_Bool
1123  // foo(...)".
1124  TheCall->setArg(0, OrigArg0.get());
1125  TheCall->setArg(1, OrigArg1.get());
1126
1127  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1128    return false;
1129
1130  // If the common type isn't a real floating type, then the arguments were
1131  // invalid for this operation.
1132  if (!Res->isRealFloatingType())
1133    return Diag(OrigArg0.get()->getLocStart(),
1134                diag::err_typecheck_call_invalid_ordered_compare)
1135      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1136      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1137
1138  return false;
1139}
1140
1141/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1142/// __builtin_isnan and friends.  This is declared to take (...), so we have
1143/// to check everything. We expect the last argument to be a floating point
1144/// value.
1145bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1146  if (TheCall->getNumArgs() < NumArgs)
1147    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1148      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1149  if (TheCall->getNumArgs() > NumArgs)
1150    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1151                diag::err_typecheck_call_too_many_args)
1152      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1153      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1154                     (*(TheCall->arg_end()-1))->getLocEnd());
1155
1156  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1157
1158  if (OrigArg->isTypeDependent())
1159    return false;
1160
1161  // This operation requires a non-_Complex floating-point number.
1162  if (!OrigArg->getType()->isRealFloatingType())
1163    return Diag(OrigArg->getLocStart(),
1164                diag::err_typecheck_call_invalid_unary_fp)
1165      << OrigArg->getType() << OrigArg->getSourceRange();
1166
1167  // If this is an implicit conversion from float -> double, remove it.
1168  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1169    Expr *CastArg = Cast->getSubExpr();
1170    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1171      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1172             "promotion from float to double is the only expected cast here");
1173      Cast->setSubExpr(0);
1174      TheCall->setArg(NumArgs-1, CastArg);
1175      OrigArg = CastArg;
1176    }
1177  }
1178
1179  return false;
1180}
1181
1182/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1183// This is declared to take (...), so we have to check everything.
1184ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1185  if (TheCall->getNumArgs() < 2)
1186    return ExprError(Diag(TheCall->getLocEnd(),
1187                          diag::err_typecheck_call_too_few_args_at_least)
1188      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1189      << TheCall->getSourceRange());
1190
1191  // Determine which of the following types of shufflevector we're checking:
1192  // 1) unary, vector mask: (lhs, mask)
1193  // 2) binary, vector mask: (lhs, rhs, mask)
1194  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1195  QualType resType = TheCall->getArg(0)->getType();
1196  unsigned numElements = 0;
1197
1198  if (!TheCall->getArg(0)->isTypeDependent() &&
1199      !TheCall->getArg(1)->isTypeDependent()) {
1200    QualType LHSType = TheCall->getArg(0)->getType();
1201    QualType RHSType = TheCall->getArg(1)->getType();
1202
1203    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1204      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1205        << SourceRange(TheCall->getArg(0)->getLocStart(),
1206                       TheCall->getArg(1)->getLocEnd());
1207      return ExprError();
1208    }
1209
1210    numElements = LHSType->getAs<VectorType>()->getNumElements();
1211    unsigned numResElements = TheCall->getNumArgs() - 2;
1212
1213    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1214    // with mask.  If so, verify that RHS is an integer vector type with the
1215    // same number of elts as lhs.
1216    if (TheCall->getNumArgs() == 2) {
1217      if (!RHSType->hasIntegerRepresentation() ||
1218          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1219        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1220          << SourceRange(TheCall->getArg(1)->getLocStart(),
1221                         TheCall->getArg(1)->getLocEnd());
1222      numResElements = numElements;
1223    }
1224    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1225      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1226        << SourceRange(TheCall->getArg(0)->getLocStart(),
1227                       TheCall->getArg(1)->getLocEnd());
1228      return ExprError();
1229    } else if (numElements != numResElements) {
1230      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1231      resType = Context.getVectorType(eltType, numResElements,
1232                                      VectorType::GenericVector);
1233    }
1234  }
1235
1236  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1237    if (TheCall->getArg(i)->isTypeDependent() ||
1238        TheCall->getArg(i)->isValueDependent())
1239      continue;
1240
1241    llvm::APSInt Result(32);
1242    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1243      return ExprError(Diag(TheCall->getLocStart(),
1244                  diag::err_shufflevector_nonconstant_argument)
1245                << TheCall->getArg(i)->getSourceRange());
1246
1247    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1248      return ExprError(Diag(TheCall->getLocStart(),
1249                  diag::err_shufflevector_argument_too_large)
1250               << TheCall->getArg(i)->getSourceRange());
1251  }
1252
1253  SmallVector<Expr*, 32> exprs;
1254
1255  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1256    exprs.push_back(TheCall->getArg(i));
1257    TheCall->setArg(i, 0);
1258  }
1259
1260  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1261                                            exprs.size(), resType,
1262                                            TheCall->getCallee()->getLocStart(),
1263                                            TheCall->getRParenLoc()));
1264}
1265
1266/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1267// This is declared to take (const void*, ...) and can take two
1268// optional constant int args.
1269bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1270  unsigned NumArgs = TheCall->getNumArgs();
1271
1272  if (NumArgs > 3)
1273    return Diag(TheCall->getLocEnd(),
1274             diag::err_typecheck_call_too_many_args_at_most)
1275             << 0 /*function call*/ << 3 << NumArgs
1276             << TheCall->getSourceRange();
1277
1278  // Argument 0 is checked for us and the remaining arguments must be
1279  // constant integers.
1280  for (unsigned i = 1; i != NumArgs; ++i) {
1281    Expr *Arg = TheCall->getArg(i);
1282
1283    llvm::APSInt Result;
1284    if (SemaBuiltinConstantArg(TheCall, i, Result))
1285      return true;
1286
1287    // FIXME: gcc issues a warning and rewrites these to 0. These
1288    // seems especially odd for the third argument since the default
1289    // is 3.
1290    if (i == 1) {
1291      if (Result.getLimitedValue() > 1)
1292        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1293             << "0" << "1" << Arg->getSourceRange();
1294    } else {
1295      if (Result.getLimitedValue() > 3)
1296        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1297            << "0" << "3" << Arg->getSourceRange();
1298    }
1299  }
1300
1301  return false;
1302}
1303
1304/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1305/// TheCall is a constant expression.
1306bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1307                                  llvm::APSInt &Result) {
1308  Expr *Arg = TheCall->getArg(ArgNum);
1309  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1310  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1311
1312  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1313
1314  if (!Arg->isIntegerConstantExpr(Result, Context))
1315    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1316                << FDecl->getDeclName() <<  Arg->getSourceRange();
1317
1318  return false;
1319}
1320
1321/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1322/// int type). This simply type checks that type is one of the defined
1323/// constants (0-3).
1324// For compatibility check 0-3, llvm only handles 0 and 2.
1325bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1326  llvm::APSInt Result;
1327
1328  // Check constant-ness first.
1329  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1330    return true;
1331
1332  Expr *Arg = TheCall->getArg(1);
1333  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1334    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1335             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1336  }
1337
1338  return false;
1339}
1340
1341/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1342/// This checks that val is a constant 1.
1343bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1344  Expr *Arg = TheCall->getArg(1);
1345  llvm::APSInt Result;
1346
1347  // TODO: This is less than ideal. Overload this to take a value.
1348  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1349    return true;
1350
1351  if (Result != 1)
1352    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1353             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1354
1355  return false;
1356}
1357
1358// Handle i > 1 ? "x" : "y", recursively.
1359bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
1360                                  unsigned NumArgs, bool HasVAListArg,
1361                                  unsigned format_idx, unsigned firstDataArg,
1362                                  FormatStringType Type, bool inFunctionCall) {
1363 tryAgain:
1364  if (E->isTypeDependent() || E->isValueDependent())
1365    return false;
1366
1367  E = E->IgnoreParenCasts();
1368
1369  switch (E->getStmtClass()) {
1370  case Stmt::BinaryConditionalOperatorClass:
1371  case Stmt::ConditionalOperatorClass: {
1372    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1373    return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
1374                                  format_idx, firstDataArg, Type,
1375                                  inFunctionCall)
1376       && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
1377                                 format_idx, firstDataArg, Type,
1378                                 inFunctionCall);
1379  }
1380
1381  case Stmt::IntegerLiteralClass:
1382    // Technically -Wformat-nonliteral does not warn about this case.
1383    // The behavior of printf and friends in this case is implementation
1384    // dependent.  Ideally if the format string cannot be null then
1385    // it should have a 'nonnull' attribute in the function prototype.
1386    return true;
1387
1388  case Stmt::ImplicitCastExprClass: {
1389    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1390    goto tryAgain;
1391  }
1392
1393  case Stmt::OpaqueValueExprClass:
1394    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1395      E = src;
1396      goto tryAgain;
1397    }
1398    return false;
1399
1400  case Stmt::PredefinedExprClass:
1401    // While __func__, etc., are technically not string literals, they
1402    // cannot contain format specifiers and thus are not a security
1403    // liability.
1404    return true;
1405
1406  case Stmt::DeclRefExprClass: {
1407    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1408
1409    // As an exception, do not flag errors for variables binding to
1410    // const string literals.
1411    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1412      bool isConstant = false;
1413      QualType T = DR->getType();
1414
1415      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1416        isConstant = AT->getElementType().isConstant(Context);
1417      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1418        isConstant = T.isConstant(Context) &&
1419                     PT->getPointeeType().isConstant(Context);
1420      } else if (T->isObjCObjectPointerType()) {
1421        // In ObjC, there is usually no "const ObjectPointer" type,
1422        // so don't check if the pointee type is constant.
1423        isConstant = T.isConstant(Context);
1424      }
1425
1426      if (isConstant) {
1427        if (const Expr *Init = VD->getAnyInitializer())
1428          return SemaCheckStringLiteral(Init, Args, NumArgs,
1429                                        HasVAListArg, format_idx, firstDataArg,
1430                                        Type, /*inFunctionCall*/false);
1431      }
1432
1433      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1434      // special check to see if the format string is a function parameter
1435      // of the function calling the printf function.  If the function
1436      // has an attribute indicating it is a printf-like function, then we
1437      // should suppress warnings concerning non-literals being used in a call
1438      // to a vprintf function.  For example:
1439      //
1440      // void
1441      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1442      //      va_list ap;
1443      //      va_start(ap, fmt);
1444      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1445      //      ...
1446      //
1447      //
1448      //  FIXME: We don't have full attribute support yet, so just check to see
1449      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1450      //    add proper support for checking the attribute later.
1451      if (HasVAListArg)
1452        if (isa<ParmVarDecl>(VD))
1453          return true;
1454    }
1455
1456    return false;
1457  }
1458
1459  case Stmt::CallExprClass: {
1460    const CallExpr *CE = cast<CallExpr>(E);
1461    if (const ImplicitCastExpr *ICE
1462          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1463      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1464        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1465          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1466            unsigned ArgIndex = FA->getFormatIdx();
1467            const Expr *Arg = CE->getArg(ArgIndex - 1);
1468
1469            return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1470                                          format_idx, firstDataArg, Type,
1471                                          inFunctionCall);
1472          }
1473        }
1474      }
1475    }
1476
1477    return false;
1478  }
1479  case Stmt::ObjCStringLiteralClass:
1480  case Stmt::StringLiteralClass: {
1481    const StringLiteral *StrE = NULL;
1482
1483    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1484      StrE = ObjCFExpr->getString();
1485    else
1486      StrE = cast<StringLiteral>(E);
1487
1488    if (StrE) {
1489      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1490                        firstDataArg, Type, inFunctionCall);
1491      return true;
1492    }
1493
1494    return false;
1495  }
1496
1497  default:
1498    return false;
1499  }
1500}
1501
1502void
1503Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1504                            const Expr * const *ExprArgs,
1505                            SourceLocation CallSiteLoc) {
1506  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1507                                  e = NonNull->args_end();
1508       i != e; ++i) {
1509    const Expr *ArgExpr = ExprArgs[*i];
1510    if (ArgExpr->isNullPointerConstant(Context,
1511                                       Expr::NPC_ValueDependentIsNotNull))
1512      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1513  }
1514}
1515
1516Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1517  return llvm::StringSwitch<FormatStringType>(Format->getType())
1518  .Case("scanf", FST_Scanf)
1519  .Cases("printf", "printf0", FST_Printf)
1520  .Cases("NSString", "CFString", FST_NSString)
1521  .Case("strftime", FST_Strftime)
1522  .Case("strfmon", FST_Strfmon)
1523  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1524  .Default(FST_Unknown);
1525}
1526
1527/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1528/// functions) for correct use of format strings.
1529void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
1530  bool IsCXXMember = false;
1531  // The way the format attribute works in GCC, the implicit this argument
1532  // of member functions is counted. However, it doesn't appear in our own
1533  // lists, so decrement format_idx in that case.
1534  if (isa<CXXMemberCallExpr>(TheCall)) {
1535    const CXXMethodDecl *method_decl =
1536    dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1537    IsCXXMember = method_decl && method_decl->isInstance();
1538  }
1539  CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
1540                       IsCXXMember, TheCall->getRParenLoc(),
1541                       TheCall->getCallee()->getSourceRange());
1542}
1543
1544void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1545                                unsigned NumArgs, bool IsCXXMember,
1546                                SourceLocation Loc, SourceRange Range) {
1547  bool HasVAListArg = Format->getFirstArg() == 0;
1548  unsigned format_idx = Format->getFormatIdx() - 1;
1549  unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
1550  if (IsCXXMember) {
1551    if (format_idx == 0)
1552      return;
1553    --format_idx;
1554    if(firstDataArg != 0)
1555      --firstDataArg;
1556  }
1557  CheckFormatArguments(Args, NumArgs, HasVAListArg, format_idx,
1558                       firstDataArg, GetFormatStringType(Format), Loc, Range);
1559}
1560
1561void Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1562                                bool HasVAListArg, unsigned format_idx,
1563                                unsigned firstDataArg, FormatStringType Type,
1564                                SourceLocation Loc, SourceRange Range) {
1565  // CHECK: printf/scanf-like function is called with no format string.
1566  if (format_idx >= NumArgs) {
1567    Diag(Loc, diag::warn_missing_format_string) << Range;
1568    return;
1569  }
1570
1571  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1572
1573  // CHECK: format string is not a string literal.
1574  //
1575  // Dynamically generated format strings are difficult to
1576  // automatically vet at compile time.  Requiring that format strings
1577  // are string literals: (1) permits the checking of format strings by
1578  // the compiler and thereby (2) can practically remove the source of
1579  // many format string exploits.
1580
1581  // Format string can be either ObjC string (e.g. @"%d") or
1582  // C string (e.g. "%d")
1583  // ObjC string uses the same format specifiers as C string, so we can use
1584  // the same format string checking logic for both ObjC and C strings.
1585  if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1586                             format_idx, firstDataArg, Type))
1587    return;  // Literal format string found, check done!
1588
1589  // If there are no arguments specified, warn with -Wformat-security, otherwise
1590  // warn only with -Wformat-nonliteral.
1591  if (NumArgs == format_idx+1)
1592    Diag(Args[format_idx]->getLocStart(),
1593         diag::warn_format_nonliteral_noargs)
1594      << OrigFormatExpr->getSourceRange();
1595  else
1596    Diag(Args[format_idx]->getLocStart(),
1597         diag::warn_format_nonliteral)
1598           << OrigFormatExpr->getSourceRange();
1599}
1600
1601namespace {
1602class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1603protected:
1604  Sema &S;
1605  const StringLiteral *FExpr;
1606  const Expr *OrigFormatExpr;
1607  const unsigned FirstDataArg;
1608  const unsigned NumDataArgs;
1609  const bool IsObjCLiteral;
1610  const char *Beg; // Start of format string.
1611  const bool HasVAListArg;
1612  const Expr * const *Args;
1613  const unsigned NumArgs;
1614  unsigned FormatIdx;
1615  llvm::BitVector CoveredArgs;
1616  bool usesPositionalArgs;
1617  bool atFirstArg;
1618  bool inFunctionCall;
1619public:
1620  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1621                     const Expr *origFormatExpr, unsigned firstDataArg,
1622                     unsigned numDataArgs, bool isObjCLiteral,
1623                     const char *beg, bool hasVAListArg,
1624                     Expr **args, unsigned numArgs,
1625                     unsigned formatIdx, bool inFunctionCall)
1626    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1627      FirstDataArg(firstDataArg),
1628      NumDataArgs(numDataArgs),
1629      IsObjCLiteral(isObjCLiteral), Beg(beg),
1630      HasVAListArg(hasVAListArg),
1631      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1632      usesPositionalArgs(false), atFirstArg(true),
1633      inFunctionCall(inFunctionCall) {
1634        CoveredArgs.resize(numDataArgs);
1635        CoveredArgs.reset();
1636      }
1637
1638  void DoneProcessing();
1639
1640  void HandleIncompleteSpecifier(const char *startSpecifier,
1641                                 unsigned specifierLen);
1642
1643  virtual void HandleInvalidPosition(const char *startSpecifier,
1644                                     unsigned specifierLen,
1645                                     analyze_format_string::PositionContext p);
1646
1647  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1648
1649  void HandleNullChar(const char *nullCharacter);
1650
1651  template <typename Range>
1652  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1653                                   const Expr *ArgumentExpr,
1654                                   PartialDiagnostic PDiag,
1655                                   SourceLocation StringLoc,
1656                                   bool IsStringLocation, Range StringRange,
1657                                   FixItHint Fixit = FixItHint());
1658
1659protected:
1660  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1661                                        const char *startSpec,
1662                                        unsigned specifierLen,
1663                                        const char *csStart, unsigned csLen);
1664
1665  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1666                                         const char *startSpec,
1667                                         unsigned specifierLen);
1668
1669  SourceRange getFormatStringRange();
1670  CharSourceRange getSpecifierRange(const char *startSpecifier,
1671                                    unsigned specifierLen);
1672  SourceLocation getLocationOfByte(const char *x);
1673
1674  const Expr *getDataArg(unsigned i) const;
1675
1676  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1677                    const analyze_format_string::ConversionSpecifier &CS,
1678                    const char *startSpecifier, unsigned specifierLen,
1679                    unsigned argIndex);
1680
1681  template <typename Range>
1682  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1683                            bool IsStringLocation, Range StringRange,
1684                            FixItHint Fixit = FixItHint());
1685
1686  void CheckPositionalAndNonpositionalArgs(
1687      const analyze_format_string::FormatSpecifier *FS);
1688};
1689}
1690
1691SourceRange CheckFormatHandler::getFormatStringRange() {
1692  return OrigFormatExpr->getSourceRange();
1693}
1694
1695CharSourceRange CheckFormatHandler::
1696getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1697  SourceLocation Start = getLocationOfByte(startSpecifier);
1698  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1699
1700  // Advance the end SourceLocation by one due to half-open ranges.
1701  End = End.getLocWithOffset(1);
1702
1703  return CharSourceRange::getCharRange(Start, End);
1704}
1705
1706SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1707  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1708}
1709
1710void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1711                                                   unsigned specifierLen){
1712  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1713                       getLocationOfByte(startSpecifier),
1714                       /*IsStringLocation*/true,
1715                       getSpecifierRange(startSpecifier, specifierLen));
1716}
1717
1718void
1719CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1720                                     analyze_format_string::PositionContext p) {
1721  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1722                         << (unsigned) p,
1723                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1724                       getSpecifierRange(startPos, posLen));
1725}
1726
1727void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1728                                            unsigned posLen) {
1729  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1730                               getLocationOfByte(startPos),
1731                               /*IsStringLocation*/true,
1732                               getSpecifierRange(startPos, posLen));
1733}
1734
1735void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1736  if (!IsObjCLiteral) {
1737    // The presence of a null character is likely an error.
1738    EmitFormatDiagnostic(
1739      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1740      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1741      getFormatStringRange());
1742  }
1743}
1744
1745const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1746  return Args[FirstDataArg + i];
1747}
1748
1749void CheckFormatHandler::DoneProcessing() {
1750    // Does the number of data arguments exceed the number of
1751    // format conversions in the format string?
1752  if (!HasVAListArg) {
1753      // Find any arguments that weren't covered.
1754    CoveredArgs.flip();
1755    signed notCoveredArg = CoveredArgs.find_first();
1756    if (notCoveredArg >= 0) {
1757      assert((unsigned)notCoveredArg < NumDataArgs);
1758      EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1759                           getDataArg((unsigned) notCoveredArg)->getLocStart(),
1760                           /*IsStringLocation*/false, getFormatStringRange());
1761    }
1762  }
1763}
1764
1765bool
1766CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1767                                                     SourceLocation Loc,
1768                                                     const char *startSpec,
1769                                                     unsigned specifierLen,
1770                                                     const char *csStart,
1771                                                     unsigned csLen) {
1772
1773  bool keepGoing = true;
1774  if (argIndex < NumDataArgs) {
1775    // Consider the argument coverered, even though the specifier doesn't
1776    // make sense.
1777    CoveredArgs.set(argIndex);
1778  }
1779  else {
1780    // If argIndex exceeds the number of data arguments we
1781    // don't issue a warning because that is just a cascade of warnings (and
1782    // they may have intended '%%' anyway). We don't want to continue processing
1783    // the format string after this point, however, as we will like just get
1784    // gibberish when trying to match arguments.
1785    keepGoing = false;
1786  }
1787
1788  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
1789                         << StringRef(csStart, csLen),
1790                       Loc, /*IsStringLocation*/true,
1791                       getSpecifierRange(startSpec, specifierLen));
1792
1793  return keepGoing;
1794}
1795
1796void
1797CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
1798                                                      const char *startSpec,
1799                                                      unsigned specifierLen) {
1800  EmitFormatDiagnostic(
1801    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
1802    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
1803}
1804
1805bool
1806CheckFormatHandler::CheckNumArgs(
1807  const analyze_format_string::FormatSpecifier &FS,
1808  const analyze_format_string::ConversionSpecifier &CS,
1809  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1810
1811  if (argIndex >= NumDataArgs) {
1812    PartialDiagnostic PDiag = FS.usesPositionalArg()
1813      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
1814           << (argIndex+1) << NumDataArgs)
1815      : S.PDiag(diag::warn_printf_insufficient_data_args);
1816    EmitFormatDiagnostic(
1817      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
1818      getSpecifierRange(startSpecifier, specifierLen));
1819    return false;
1820  }
1821  return true;
1822}
1823
1824template<typename Range>
1825void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
1826                                              SourceLocation Loc,
1827                                              bool IsStringLocation,
1828                                              Range StringRange,
1829                                              FixItHint FixIt) {
1830  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
1831                       Loc, IsStringLocation, StringRange, FixIt);
1832}
1833
1834/// \brief If the format string is not within the funcion call, emit a note
1835/// so that the function call and string are in diagnostic messages.
1836///
1837/// \param inFunctionCall if true, the format string is within the function
1838/// call and only one diagnostic message will be produced.  Otherwise, an
1839/// extra note will be emitted pointing to location of the format string.
1840///
1841/// \param ArgumentExpr the expression that is passed as the format string
1842/// argument in the function call.  Used for getting locations when two
1843/// diagnostics are emitted.
1844///
1845/// \param PDiag the callee should already have provided any strings for the
1846/// diagnostic message.  This function only adds locations and fixits
1847/// to diagnostics.
1848///
1849/// \param Loc primary location for diagnostic.  If two diagnostics are
1850/// required, one will be at Loc and a new SourceLocation will be created for
1851/// the other one.
1852///
1853/// \param IsStringLocation if true, Loc points to the format string should be
1854/// used for the note.  Otherwise, Loc points to the argument list and will
1855/// be used with PDiag.
1856///
1857/// \param StringRange some or all of the string to highlight.  This is
1858/// templated so it can accept either a CharSourceRange or a SourceRange.
1859///
1860/// \param Fixit optional fix it hint for the format string.
1861template<typename Range>
1862void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
1863                                              const Expr *ArgumentExpr,
1864                                              PartialDiagnostic PDiag,
1865                                              SourceLocation Loc,
1866                                              bool IsStringLocation,
1867                                              Range StringRange,
1868                                              FixItHint FixIt) {
1869  if (InFunctionCall)
1870    S.Diag(Loc, PDiag) << StringRange << FixIt;
1871  else {
1872    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
1873      << ArgumentExpr->getSourceRange();
1874    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
1875           diag::note_format_string_defined)
1876      << StringRange << FixIt;
1877  }
1878}
1879
1880//===--- CHECK: Printf format string checking ------------------------------===//
1881
1882namespace {
1883class CheckPrintfHandler : public CheckFormatHandler {
1884public:
1885  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1886                     const Expr *origFormatExpr, unsigned firstDataArg,
1887                     unsigned numDataArgs, bool isObjCLiteral,
1888                     const char *beg, bool hasVAListArg,
1889                     Expr **Args, unsigned NumArgs,
1890                     unsigned formatIdx, bool inFunctionCall)
1891  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1892                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1893                       Args, NumArgs, formatIdx, inFunctionCall) {}
1894
1895
1896  bool HandleInvalidPrintfConversionSpecifier(
1897                                      const analyze_printf::PrintfSpecifier &FS,
1898                                      const char *startSpecifier,
1899                                      unsigned specifierLen);
1900
1901  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1902                             const char *startSpecifier,
1903                             unsigned specifierLen);
1904
1905  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1906                    const char *startSpecifier, unsigned specifierLen);
1907  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1908                           const analyze_printf::OptionalAmount &Amt,
1909                           unsigned type,
1910                           const char *startSpecifier, unsigned specifierLen);
1911  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1912                  const analyze_printf::OptionalFlag &flag,
1913                  const char *startSpecifier, unsigned specifierLen);
1914  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1915                         const analyze_printf::OptionalFlag &ignoredFlag,
1916                         const analyze_printf::OptionalFlag &flag,
1917                         const char *startSpecifier, unsigned specifierLen);
1918};
1919}
1920
1921bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1922                                      const analyze_printf::PrintfSpecifier &FS,
1923                                      const char *startSpecifier,
1924                                      unsigned specifierLen) {
1925  const analyze_printf::PrintfConversionSpecifier &CS =
1926    FS.getConversionSpecifier();
1927
1928  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1929                                          getLocationOfByte(CS.getStart()),
1930                                          startSpecifier, specifierLen,
1931                                          CS.getStart(), CS.getLength());
1932}
1933
1934bool CheckPrintfHandler::HandleAmount(
1935                               const analyze_format_string::OptionalAmount &Amt,
1936                               unsigned k, const char *startSpecifier,
1937                               unsigned specifierLen) {
1938
1939  if (Amt.hasDataArgument()) {
1940    if (!HasVAListArg) {
1941      unsigned argIndex = Amt.getArgIndex();
1942      if (argIndex >= NumDataArgs) {
1943        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
1944                               << k,
1945                             getLocationOfByte(Amt.getStart()),
1946                             /*IsStringLocation*/true,
1947                             getSpecifierRange(startSpecifier, specifierLen));
1948        // Don't do any more checking.  We will just emit
1949        // spurious errors.
1950        return false;
1951      }
1952
1953      // Type check the data argument.  It should be an 'int'.
1954      // Although not in conformance with C99, we also allow the argument to be
1955      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1956      // doesn't emit a warning for that case.
1957      CoveredArgs.set(argIndex);
1958      const Expr *Arg = getDataArg(argIndex);
1959      QualType T = Arg->getType();
1960
1961      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1962      assert(ATR.isValid());
1963
1964      if (!ATR.matchesType(S.Context, T)) {
1965        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
1966                               << k << ATR.getRepresentativeTypeName(S.Context)
1967                               << T << Arg->getSourceRange(),
1968                             getLocationOfByte(Amt.getStart()),
1969                             /*IsStringLocation*/true,
1970                             getSpecifierRange(startSpecifier, specifierLen));
1971        // Don't do any more checking.  We will just emit
1972        // spurious errors.
1973        return false;
1974      }
1975    }
1976  }
1977  return true;
1978}
1979
1980void CheckPrintfHandler::HandleInvalidAmount(
1981                                      const analyze_printf::PrintfSpecifier &FS,
1982                                      const analyze_printf::OptionalAmount &Amt,
1983                                      unsigned type,
1984                                      const char *startSpecifier,
1985                                      unsigned specifierLen) {
1986  const analyze_printf::PrintfConversionSpecifier &CS =
1987    FS.getConversionSpecifier();
1988
1989  FixItHint fixit =
1990    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
1991      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1992                                 Amt.getConstantLength()))
1993      : FixItHint();
1994
1995  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
1996                         << type << CS.toString(),
1997                       getLocationOfByte(Amt.getStart()),
1998                       /*IsStringLocation*/true,
1999                       getSpecifierRange(startSpecifier, specifierLen),
2000                       fixit);
2001}
2002
2003void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2004                                    const analyze_printf::OptionalFlag &flag,
2005                                    const char *startSpecifier,
2006                                    unsigned specifierLen) {
2007  // Warn about pointless flag with a fixit removal.
2008  const analyze_printf::PrintfConversionSpecifier &CS =
2009    FS.getConversionSpecifier();
2010  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2011                         << flag.toString() << CS.toString(),
2012                       getLocationOfByte(flag.getPosition()),
2013                       /*IsStringLocation*/true,
2014                       getSpecifierRange(startSpecifier, specifierLen),
2015                       FixItHint::CreateRemoval(
2016                         getSpecifierRange(flag.getPosition(), 1)));
2017}
2018
2019void CheckPrintfHandler::HandleIgnoredFlag(
2020                                const analyze_printf::PrintfSpecifier &FS,
2021                                const analyze_printf::OptionalFlag &ignoredFlag,
2022                                const analyze_printf::OptionalFlag &flag,
2023                                const char *startSpecifier,
2024                                unsigned specifierLen) {
2025  // Warn about ignored flag with a fixit removal.
2026  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2027                         << ignoredFlag.toString() << flag.toString(),
2028                       getLocationOfByte(ignoredFlag.getPosition()),
2029                       /*IsStringLocation*/true,
2030                       getSpecifierRange(startSpecifier, specifierLen),
2031                       FixItHint::CreateRemoval(
2032                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2033}
2034
2035bool
2036CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2037                                            &FS,
2038                                          const char *startSpecifier,
2039                                          unsigned specifierLen) {
2040
2041  using namespace analyze_format_string;
2042  using namespace analyze_printf;
2043  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2044
2045  if (FS.consumesDataArgument()) {
2046    if (atFirstArg) {
2047        atFirstArg = false;
2048        usesPositionalArgs = FS.usesPositionalArg();
2049    }
2050    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2051      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2052                                        startSpecifier, specifierLen);
2053      return false;
2054    }
2055  }
2056
2057  // First check if the field width, precision, and conversion specifier
2058  // have matching data arguments.
2059  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2060                    startSpecifier, specifierLen)) {
2061    return false;
2062  }
2063
2064  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2065                    startSpecifier, specifierLen)) {
2066    return false;
2067  }
2068
2069  if (!CS.consumesDataArgument()) {
2070    // FIXME: Technically specifying a precision or field width here
2071    // makes no sense.  Worth issuing a warning at some point.
2072    return true;
2073  }
2074
2075  // Consume the argument.
2076  unsigned argIndex = FS.getArgIndex();
2077  if (argIndex < NumDataArgs) {
2078    // The check to see if the argIndex is valid will come later.
2079    // We set the bit here because we may exit early from this
2080    // function if we encounter some other error.
2081    CoveredArgs.set(argIndex);
2082  }
2083
2084  // Check for using an Objective-C specific conversion specifier
2085  // in a non-ObjC literal.
2086  if (!IsObjCLiteral && CS.isObjCArg()) {
2087    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2088                                                  specifierLen);
2089  }
2090
2091  // Check for invalid use of field width
2092  if (!FS.hasValidFieldWidth()) {
2093    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2094        startSpecifier, specifierLen);
2095  }
2096
2097  // Check for invalid use of precision
2098  if (!FS.hasValidPrecision()) {
2099    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2100        startSpecifier, specifierLen);
2101  }
2102
2103  // Check each flag does not conflict with any other component.
2104  if (!FS.hasValidThousandsGroupingPrefix())
2105    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2106  if (!FS.hasValidLeadingZeros())
2107    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2108  if (!FS.hasValidPlusPrefix())
2109    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2110  if (!FS.hasValidSpacePrefix())
2111    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2112  if (!FS.hasValidAlternativeForm())
2113    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2114  if (!FS.hasValidLeftJustified())
2115    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2116
2117  // Check that flags are not ignored by another flag
2118  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2119    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2120        startSpecifier, specifierLen);
2121  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2122    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2123            startSpecifier, specifierLen);
2124
2125  // Check the length modifier is valid with the given conversion specifier.
2126  const LengthModifier &LM = FS.getLengthModifier();
2127  if (!FS.hasValidLengthModifier())
2128    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2129                           << LM.toString() << CS.toString(),
2130                         getLocationOfByte(LM.getStart()),
2131                         /*IsStringLocation*/true,
2132                         getSpecifierRange(startSpecifier, specifierLen),
2133                         FixItHint::CreateRemoval(
2134                           getSpecifierRange(LM.getStart(),
2135                                             LM.getLength())));
2136
2137  // Are we using '%n'?
2138  if (CS.getKind() == ConversionSpecifier::nArg) {
2139    // Issue a warning about this being a possible security issue.
2140    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2141                         getLocationOfByte(CS.getStart()),
2142                         /*IsStringLocation*/true,
2143                         getSpecifierRange(startSpecifier, specifierLen));
2144    // Continue checking the other format specifiers.
2145    return true;
2146  }
2147
2148  // The remaining checks depend on the data arguments.
2149  if (HasVAListArg)
2150    return true;
2151
2152  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2153    return false;
2154
2155  // Now type check the data expression that matches the
2156  // format specifier.
2157  const Expr *Ex = getDataArg(argIndex);
2158  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
2159  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2160    // Check if we didn't match because of an implicit cast from a 'char'
2161    // or 'short' to an 'int'.  This is done because printf is a varargs
2162    // function.
2163    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
2164      if (ICE->getType() == S.Context.IntTy) {
2165        // All further checking is done on the subexpression.
2166        Ex = ICE->getSubExpr();
2167        if (ATR.matchesType(S.Context, Ex->getType()))
2168          return true;
2169      }
2170
2171    // We may be able to offer a FixItHint if it is a supported type.
2172    PrintfSpecifier fixedFS = FS;
2173    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2174
2175    if (success) {
2176      // Get the fix string from the fixed format specifier
2177      llvm::SmallString<128> buf;
2178      llvm::raw_svector_ostream os(buf);
2179      fixedFS.toString(os);
2180
2181      EmitFormatDiagnostic(
2182        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2183          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2184          << Ex->getSourceRange(),
2185        getLocationOfByte(CS.getStart()),
2186        /*IsStringLocation*/true,
2187        getSpecifierRange(startSpecifier, specifierLen),
2188        FixItHint::CreateReplacement(
2189          getSpecifierRange(startSpecifier, specifierLen),
2190          os.str()));
2191    }
2192    else {
2193      S.Diag(getLocationOfByte(CS.getStart()),
2194             diag::warn_printf_conversion_argument_type_mismatch)
2195        << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2196        << getSpecifierRange(startSpecifier, specifierLen)
2197        << Ex->getSourceRange();
2198    }
2199  }
2200
2201  return true;
2202}
2203
2204//===--- CHECK: Scanf format string checking ------------------------------===//
2205
2206namespace {
2207class CheckScanfHandler : public CheckFormatHandler {
2208public:
2209  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2210                    const Expr *origFormatExpr, unsigned firstDataArg,
2211                    unsigned numDataArgs, bool isObjCLiteral,
2212                    const char *beg, bool hasVAListArg,
2213                    Expr **Args, unsigned NumArgs,
2214                    unsigned formatIdx, bool inFunctionCall)
2215  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2216                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2217                       Args, NumArgs, formatIdx, inFunctionCall) {}
2218
2219  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2220                            const char *startSpecifier,
2221                            unsigned specifierLen);
2222
2223  bool HandleInvalidScanfConversionSpecifier(
2224          const analyze_scanf::ScanfSpecifier &FS,
2225          const char *startSpecifier,
2226          unsigned specifierLen);
2227
2228  void HandleIncompleteScanList(const char *start, const char *end);
2229};
2230}
2231
2232void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2233                                                 const char *end) {
2234  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2235                       getLocationOfByte(end), /*IsStringLocation*/true,
2236                       getSpecifierRange(start, end - start));
2237}
2238
2239bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2240                                        const analyze_scanf::ScanfSpecifier &FS,
2241                                        const char *startSpecifier,
2242                                        unsigned specifierLen) {
2243
2244  const analyze_scanf::ScanfConversionSpecifier &CS =
2245    FS.getConversionSpecifier();
2246
2247  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2248                                          getLocationOfByte(CS.getStart()),
2249                                          startSpecifier, specifierLen,
2250                                          CS.getStart(), CS.getLength());
2251}
2252
2253bool CheckScanfHandler::HandleScanfSpecifier(
2254                                       const analyze_scanf::ScanfSpecifier &FS,
2255                                       const char *startSpecifier,
2256                                       unsigned specifierLen) {
2257
2258  using namespace analyze_scanf;
2259  using namespace analyze_format_string;
2260
2261  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2262
2263  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2264  // be used to decide if we are using positional arguments consistently.
2265  if (FS.consumesDataArgument()) {
2266    if (atFirstArg) {
2267      atFirstArg = false;
2268      usesPositionalArgs = FS.usesPositionalArg();
2269    }
2270    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2271      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2272                                        startSpecifier, specifierLen);
2273      return false;
2274    }
2275  }
2276
2277  // Check if the field with is non-zero.
2278  const OptionalAmount &Amt = FS.getFieldWidth();
2279  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2280    if (Amt.getConstantAmount() == 0) {
2281      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2282                                                   Amt.getConstantLength());
2283      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2284                           getLocationOfByte(Amt.getStart()),
2285                           /*IsStringLocation*/true, R,
2286                           FixItHint::CreateRemoval(R));
2287    }
2288  }
2289
2290  if (!FS.consumesDataArgument()) {
2291    // FIXME: Technically specifying a precision or field width here
2292    // makes no sense.  Worth issuing a warning at some point.
2293    return true;
2294  }
2295
2296  // Consume the argument.
2297  unsigned argIndex = FS.getArgIndex();
2298  if (argIndex < NumDataArgs) {
2299      // The check to see if the argIndex is valid will come later.
2300      // We set the bit here because we may exit early from this
2301      // function if we encounter some other error.
2302    CoveredArgs.set(argIndex);
2303  }
2304
2305  // Check the length modifier is valid with the given conversion specifier.
2306  const LengthModifier &LM = FS.getLengthModifier();
2307  if (!FS.hasValidLengthModifier()) {
2308    S.Diag(getLocationOfByte(LM.getStart()),
2309           diag::warn_format_nonsensical_length)
2310      << LM.toString() << CS.toString()
2311      << getSpecifierRange(startSpecifier, specifierLen)
2312      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
2313                                                    LM.getLength()));
2314  }
2315
2316  // The remaining checks depend on the data arguments.
2317  if (HasVAListArg)
2318    return true;
2319
2320  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2321    return false;
2322
2323  // Check that the argument type matches the format specifier.
2324  const Expr *Ex = getDataArg(argIndex);
2325  const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context);
2326  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2327    ScanfSpecifier fixedFS = FS;
2328    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2329
2330    if (success) {
2331      // Get the fix string from the fixed format specifier.
2332      llvm::SmallString<128> buf;
2333      llvm::raw_svector_ostream os(buf);
2334      fixedFS.toString(os);
2335
2336      EmitFormatDiagnostic(
2337        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2338          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2339          << Ex->getSourceRange(),
2340        getLocationOfByte(CS.getStart()),
2341        /*IsStringLocation*/true,
2342        getSpecifierRange(startSpecifier, specifierLen),
2343        FixItHint::CreateReplacement(
2344          getSpecifierRange(startSpecifier, specifierLen),
2345          os.str()));
2346    } else {
2347      S.Diag(getLocationOfByte(CS.getStart()),
2348             diag::warn_printf_conversion_argument_type_mismatch)
2349          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2350          << getSpecifierRange(startSpecifier, specifierLen)
2351          << Ex->getSourceRange();
2352    }
2353  }
2354
2355  return true;
2356}
2357
2358void Sema::CheckFormatString(const StringLiteral *FExpr,
2359                             const Expr *OrigFormatExpr,
2360                             Expr **Args, unsigned NumArgs,
2361                             bool HasVAListArg, unsigned format_idx,
2362                             unsigned firstDataArg, FormatStringType Type,
2363                             bool inFunctionCall) {
2364
2365  // CHECK: is the format string a wide literal?
2366  if (!FExpr->isAscii()) {
2367    CheckFormatHandler::EmitFormatDiagnostic(
2368      *this, inFunctionCall, Args[format_idx],
2369      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2370      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2371    return;
2372  }
2373
2374  // Str - The format string.  NOTE: this is NOT null-terminated!
2375  StringRef StrRef = FExpr->getString();
2376  const char *Str = StrRef.data();
2377  unsigned StrLen = StrRef.size();
2378  const unsigned numDataArgs = NumArgs - firstDataArg;
2379
2380  // CHECK: empty format string?
2381  if (StrLen == 0 && numDataArgs > 0) {
2382    CheckFormatHandler::EmitFormatDiagnostic(
2383      *this, inFunctionCall, Args[format_idx],
2384      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2385      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2386    return;
2387  }
2388
2389  if (Type == FST_Printf || Type == FST_NSString) {
2390    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2391                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2392                         Str, HasVAListArg, Args, NumArgs, format_idx,
2393                         inFunctionCall);
2394
2395    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2396                                                  getLangOptions()))
2397      H.DoneProcessing();
2398  } else if (Type == FST_Scanf) {
2399    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2400                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2401                        Str, HasVAListArg, Args, NumArgs, format_idx,
2402                        inFunctionCall);
2403
2404    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2405                                                 getLangOptions()))
2406      H.DoneProcessing();
2407  } // TODO: handle other formats
2408}
2409
2410//===--- CHECK: Standard memory functions ---------------------------------===//
2411
2412/// \brief Determine whether the given type is a dynamic class type (e.g.,
2413/// whether it has a vtable).
2414static bool isDynamicClassType(QualType T) {
2415  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2416    if (CXXRecordDecl *Definition = Record->getDefinition())
2417      if (Definition->isDynamicClass())
2418        return true;
2419
2420  return false;
2421}
2422
2423/// \brief If E is a sizeof expression, returns its argument expression,
2424/// otherwise returns NULL.
2425static const Expr *getSizeOfExprArg(const Expr* E) {
2426  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2427      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2428    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2429      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2430
2431  return 0;
2432}
2433
2434/// \brief If E is a sizeof expression, returns its argument type.
2435static QualType getSizeOfArgType(const Expr* E) {
2436  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2437      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2438    if (SizeOf->getKind() == clang::UETT_SizeOf)
2439      return SizeOf->getTypeOfArgument();
2440
2441  return QualType();
2442}
2443
2444/// \brief Check for dangerous or invalid arguments to memset().
2445///
2446/// This issues warnings on known problematic, dangerous or unspecified
2447/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2448/// function calls.
2449///
2450/// \param Call The call expression to diagnose.
2451void Sema::CheckMemaccessArguments(const CallExpr *Call,
2452                                   unsigned BId,
2453                                   IdentifierInfo *FnName) {
2454  assert(BId != 0);
2455
2456  // It is possible to have a non-standard definition of memset.  Validate
2457  // we have enough arguments, and if not, abort further checking.
2458  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2459  if (Call->getNumArgs() < ExpectedNumArgs)
2460    return;
2461
2462  unsigned LastArg = (BId == Builtin::BImemset ||
2463                      BId == Builtin::BIstrndup ? 1 : 2);
2464  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2465  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2466
2467  // We have special checking when the length is a sizeof expression.
2468  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2469  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2470  llvm::FoldingSetNodeID SizeOfArgID;
2471
2472  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2473    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2474    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2475
2476    QualType DestTy = Dest->getType();
2477    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2478      QualType PointeeTy = DestPtrTy->getPointeeType();
2479
2480      // Never warn about void type pointers. This can be used to suppress
2481      // false positives.
2482      if (PointeeTy->isVoidType())
2483        continue;
2484
2485      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2486      // actually comparing the expressions for equality. Because computing the
2487      // expression IDs can be expensive, we only do this if the diagnostic is
2488      // enabled.
2489      if (SizeOfArg &&
2490          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2491                                   SizeOfArg->getExprLoc())) {
2492        // We only compute IDs for expressions if the warning is enabled, and
2493        // cache the sizeof arg's ID.
2494        if (SizeOfArgID == llvm::FoldingSetNodeID())
2495          SizeOfArg->Profile(SizeOfArgID, Context, true);
2496        llvm::FoldingSetNodeID DestID;
2497        Dest->Profile(DestID, Context, true);
2498        if (DestID == SizeOfArgID) {
2499          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2500          //       over sizeof(src) as well.
2501          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2502          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2503            if (UnaryOp->getOpcode() == UO_AddrOf)
2504              ActionIdx = 1; // If its an address-of operator, just remove it.
2505          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2506            ActionIdx = 2; // If the pointee's size is sizeof(char),
2507                           // suggest an explicit length.
2508          unsigned DestSrcSelect =
2509            (BId == Builtin::BIstrndup ? 1 : ArgIdx);
2510          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2511                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2512                                << FnName << DestSrcSelect << ActionIdx
2513                                << Dest->getSourceRange()
2514                                << SizeOfArg->getSourceRange());
2515          break;
2516        }
2517      }
2518
2519      // Also check for cases where the sizeof argument is the exact same
2520      // type as the memory argument, and where it points to a user-defined
2521      // record type.
2522      if (SizeOfArgTy != QualType()) {
2523        if (PointeeTy->isRecordType() &&
2524            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2525          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2526                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2527                                << FnName << SizeOfArgTy << ArgIdx
2528                                << PointeeTy << Dest->getSourceRange()
2529                                << LenExpr->getSourceRange());
2530          break;
2531        }
2532      }
2533
2534      // Always complain about dynamic classes.
2535      if (isDynamicClassType(PointeeTy)) {
2536
2537        unsigned OperationType = 0;
2538        // "overwritten" if we're warning about the destination for any call
2539        // but memcmp; otherwise a verb appropriate to the call.
2540        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
2541          if (BId == Builtin::BImemcpy)
2542            OperationType = 1;
2543          else if(BId == Builtin::BImemmove)
2544            OperationType = 2;
2545          else if (BId == Builtin::BImemcmp)
2546            OperationType = 3;
2547        }
2548
2549        DiagRuntimeBehavior(
2550          Dest->getExprLoc(), Dest,
2551          PDiag(diag::warn_dyn_class_memaccess)
2552            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
2553            << FnName << PointeeTy
2554            << OperationType
2555            << Call->getCallee()->getSourceRange());
2556      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
2557               BId != Builtin::BImemset)
2558        DiagRuntimeBehavior(
2559          Dest->getExprLoc(), Dest,
2560          PDiag(diag::warn_arc_object_memaccess)
2561            << ArgIdx << FnName << PointeeTy
2562            << Call->getCallee()->getSourceRange());
2563      else
2564        continue;
2565
2566      DiagRuntimeBehavior(
2567        Dest->getExprLoc(), Dest,
2568        PDiag(diag::note_bad_memaccess_silence)
2569          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2570      break;
2571    }
2572  }
2573}
2574
2575// A little helper routine: ignore addition and subtraction of integer literals.
2576// This intentionally does not ignore all integer constant expressions because
2577// we don't want to remove sizeof().
2578static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2579  Ex = Ex->IgnoreParenCasts();
2580
2581  for (;;) {
2582    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2583    if (!BO || !BO->isAdditiveOp())
2584      break;
2585
2586    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2587    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2588
2589    if (isa<IntegerLiteral>(RHS))
2590      Ex = LHS;
2591    else if (isa<IntegerLiteral>(LHS))
2592      Ex = RHS;
2593    else
2594      break;
2595  }
2596
2597  return Ex;
2598}
2599
2600// Warn if the user has made the 'size' argument to strlcpy or strlcat
2601// be the size of the source, instead of the destination.
2602void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2603                                    IdentifierInfo *FnName) {
2604
2605  // Don't crash if the user has the wrong number of arguments
2606  if (Call->getNumArgs() != 3)
2607    return;
2608
2609  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2610  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2611  const Expr *CompareWithSrc = NULL;
2612
2613  // Look for 'strlcpy(dst, x, sizeof(x))'
2614  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2615    CompareWithSrc = Ex;
2616  else {
2617    // Look for 'strlcpy(dst, x, strlen(x))'
2618    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2619      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
2620          && SizeCall->getNumArgs() == 1)
2621        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2622    }
2623  }
2624
2625  if (!CompareWithSrc)
2626    return;
2627
2628  // Determine if the argument to sizeof/strlen is equal to the source
2629  // argument.  In principle there's all kinds of things you could do
2630  // here, for instance creating an == expression and evaluating it with
2631  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2632  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2633  if (!SrcArgDRE)
2634    return;
2635
2636  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2637  if (!CompareWithSrcDRE ||
2638      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2639    return;
2640
2641  const Expr *OriginalSizeArg = Call->getArg(2);
2642  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2643    << OriginalSizeArg->getSourceRange() << FnName;
2644
2645  // Output a FIXIT hint if the destination is an array (rather than a
2646  // pointer to an array).  This could be enhanced to handle some
2647  // pointers if we know the actual size, like if DstArg is 'array+2'
2648  // we could say 'sizeof(array)-2'.
2649  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2650  QualType DstArgTy = DstArg->getType();
2651
2652  // Only handle constant-sized or VLAs, but not flexible members.
2653  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2654    // Only issue the FIXIT for arrays of size > 1.
2655    if (CAT->getSize().getSExtValue() <= 1)
2656      return;
2657  } else if (!DstArgTy->isVariableArrayType()) {
2658    return;
2659  }
2660
2661  llvm::SmallString<128> sizeString;
2662  llvm::raw_svector_ostream OS(sizeString);
2663  OS << "sizeof(";
2664  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2665  OS << ")";
2666
2667  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2668    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2669                                    OS.str());
2670}
2671
2672//===--- CHECK: Return Address of Stack Variable --------------------------===//
2673
2674static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2675static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2676
2677/// CheckReturnStackAddr - Check if a return statement returns the address
2678///   of a stack variable.
2679void
2680Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2681                           SourceLocation ReturnLoc) {
2682
2683  Expr *stackE = 0;
2684  SmallVector<DeclRefExpr *, 8> refVars;
2685
2686  // Perform checking for returned stack addresses, local blocks,
2687  // label addresses or references to temporaries.
2688  if (lhsType->isPointerType() ||
2689      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2690    stackE = EvalAddr(RetValExp, refVars);
2691  } else if (lhsType->isReferenceType()) {
2692    stackE = EvalVal(RetValExp, refVars);
2693  }
2694
2695  if (stackE == 0)
2696    return; // Nothing suspicious was found.
2697
2698  SourceLocation diagLoc;
2699  SourceRange diagRange;
2700  if (refVars.empty()) {
2701    diagLoc = stackE->getLocStart();
2702    diagRange = stackE->getSourceRange();
2703  } else {
2704    // We followed through a reference variable. 'stackE' contains the
2705    // problematic expression but we will warn at the return statement pointing
2706    // at the reference variable. We will later display the "trail" of
2707    // reference variables using notes.
2708    diagLoc = refVars[0]->getLocStart();
2709    diagRange = refVars[0]->getSourceRange();
2710  }
2711
2712  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2713    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2714                                             : diag::warn_ret_stack_addr)
2715     << DR->getDecl()->getDeclName() << diagRange;
2716  } else if (isa<BlockExpr>(stackE)) { // local block.
2717    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2718  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2719    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2720  } else { // local temporary.
2721    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2722                                             : diag::warn_ret_local_temp_addr)
2723     << diagRange;
2724  }
2725
2726  // Display the "trail" of reference variables that we followed until we
2727  // found the problematic expression using notes.
2728  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2729    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2730    // If this var binds to another reference var, show the range of the next
2731    // var, otherwise the var binds to the problematic expression, in which case
2732    // show the range of the expression.
2733    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2734                                  : stackE->getSourceRange();
2735    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2736      << VD->getDeclName() << range;
2737  }
2738}
2739
2740/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2741///  check if the expression in a return statement evaluates to an address
2742///  to a location on the stack, a local block, an address of a label, or a
2743///  reference to local temporary. The recursion is used to traverse the
2744///  AST of the return expression, with recursion backtracking when we
2745///  encounter a subexpression that (1) clearly does not lead to one of the
2746///  above problematic expressions (2) is something we cannot determine leads to
2747///  a problematic expression based on such local checking.
2748///
2749///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2750///  the expression that they point to. Such variables are added to the
2751///  'refVars' vector so that we know what the reference variable "trail" was.
2752///
2753///  EvalAddr processes expressions that are pointers that are used as
2754///  references (and not L-values).  EvalVal handles all other values.
2755///  At the base case of the recursion is a check for the above problematic
2756///  expressions.
2757///
2758///  This implementation handles:
2759///
2760///   * pointer-to-pointer casts
2761///   * implicit conversions from array references to pointers
2762///   * taking the address of fields
2763///   * arbitrary interplay between "&" and "*" operators
2764///   * pointer arithmetic from an address of a stack variable
2765///   * taking the address of an array element where the array is on the stack
2766static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2767  if (E->isTypeDependent())
2768      return NULL;
2769
2770  // We should only be called for evaluating pointer expressions.
2771  assert((E->getType()->isAnyPointerType() ||
2772          E->getType()->isBlockPointerType() ||
2773          E->getType()->isObjCQualifiedIdType()) &&
2774         "EvalAddr only works on pointers");
2775
2776  E = E->IgnoreParens();
2777
2778  // Our "symbolic interpreter" is just a dispatch off the currently
2779  // viewed AST node.  We then recursively traverse the AST by calling
2780  // EvalAddr and EvalVal appropriately.
2781  switch (E->getStmtClass()) {
2782  case Stmt::DeclRefExprClass: {
2783    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2784
2785    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2786      // If this is a reference variable, follow through to the expression that
2787      // it points to.
2788      if (V->hasLocalStorage() &&
2789          V->getType()->isReferenceType() && V->hasInit()) {
2790        // Add the reference variable to the "trail".
2791        refVars.push_back(DR);
2792        return EvalAddr(V->getInit(), refVars);
2793      }
2794
2795    return NULL;
2796  }
2797
2798  case Stmt::UnaryOperatorClass: {
2799    // The only unary operator that make sense to handle here
2800    // is AddrOf.  All others don't make sense as pointers.
2801    UnaryOperator *U = cast<UnaryOperator>(E);
2802
2803    if (U->getOpcode() == UO_AddrOf)
2804      return EvalVal(U->getSubExpr(), refVars);
2805    else
2806      return NULL;
2807  }
2808
2809  case Stmt::BinaryOperatorClass: {
2810    // Handle pointer arithmetic.  All other binary operators are not valid
2811    // in this context.
2812    BinaryOperator *B = cast<BinaryOperator>(E);
2813    BinaryOperatorKind op = B->getOpcode();
2814
2815    if (op != BO_Add && op != BO_Sub)
2816      return NULL;
2817
2818    Expr *Base = B->getLHS();
2819
2820    // Determine which argument is the real pointer base.  It could be
2821    // the RHS argument instead of the LHS.
2822    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2823
2824    assert (Base->getType()->isPointerType());
2825    return EvalAddr(Base, refVars);
2826  }
2827
2828  // For conditional operators we need to see if either the LHS or RHS are
2829  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2830  case Stmt::ConditionalOperatorClass: {
2831    ConditionalOperator *C = cast<ConditionalOperator>(E);
2832
2833    // Handle the GNU extension for missing LHS.
2834    if (Expr *lhsExpr = C->getLHS()) {
2835    // In C++, we can have a throw-expression, which has 'void' type.
2836      if (!lhsExpr->getType()->isVoidType())
2837        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2838          return LHS;
2839    }
2840
2841    // In C++, we can have a throw-expression, which has 'void' type.
2842    if (C->getRHS()->getType()->isVoidType())
2843      return NULL;
2844
2845    return EvalAddr(C->getRHS(), refVars);
2846  }
2847
2848  case Stmt::BlockExprClass:
2849    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2850      return E; // local block.
2851    return NULL;
2852
2853  case Stmt::AddrLabelExprClass:
2854    return E; // address of label.
2855
2856  case Stmt::ExprWithCleanupsClass:
2857    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
2858
2859  // For casts, we need to handle conversions from arrays to
2860  // pointer values, and pointer-to-pointer conversions.
2861  case Stmt::ImplicitCastExprClass:
2862  case Stmt::CStyleCastExprClass:
2863  case Stmt::CXXFunctionalCastExprClass:
2864  case Stmt::ObjCBridgedCastExprClass: {
2865    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2866    QualType T = SubExpr->getType();
2867
2868    if (SubExpr->getType()->isPointerType() ||
2869        SubExpr->getType()->isBlockPointerType() ||
2870        SubExpr->getType()->isObjCQualifiedIdType())
2871      return EvalAddr(SubExpr, refVars);
2872    else if (T->isArrayType())
2873      return EvalVal(SubExpr, refVars);
2874    else
2875      return 0;
2876  }
2877
2878  // C++ casts.  For dynamic casts, static casts, and const casts, we
2879  // are always converting from a pointer-to-pointer, so we just blow
2880  // through the cast.  In the case the dynamic cast doesn't fail (and
2881  // return NULL), we take the conservative route and report cases
2882  // where we return the address of a stack variable.  For Reinterpre
2883  // FIXME: The comment about is wrong; we're not always converting
2884  // from pointer to pointer. I'm guessing that this code should also
2885  // handle references to objects.
2886  case Stmt::CXXStaticCastExprClass:
2887  case Stmt::CXXDynamicCastExprClass:
2888  case Stmt::CXXConstCastExprClass:
2889  case Stmt::CXXReinterpretCastExprClass: {
2890      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2891      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2892        return EvalAddr(S, refVars);
2893      else
2894        return NULL;
2895  }
2896
2897  case Stmt::MaterializeTemporaryExprClass:
2898    if (Expr *Result = EvalAddr(
2899                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2900                                refVars))
2901      return Result;
2902
2903    return E;
2904
2905  // Everything else: we simply don't reason about them.
2906  default:
2907    return NULL;
2908  }
2909}
2910
2911
2912///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2913///   See the comments for EvalAddr for more details.
2914static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2915do {
2916  // We should only be called for evaluating non-pointer expressions, or
2917  // expressions with a pointer type that are not used as references but instead
2918  // are l-values (e.g., DeclRefExpr with a pointer type).
2919
2920  // Our "symbolic interpreter" is just a dispatch off the currently
2921  // viewed AST node.  We then recursively traverse the AST by calling
2922  // EvalAddr and EvalVal appropriately.
2923
2924  E = E->IgnoreParens();
2925  switch (E->getStmtClass()) {
2926  case Stmt::ImplicitCastExprClass: {
2927    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2928    if (IE->getValueKind() == VK_LValue) {
2929      E = IE->getSubExpr();
2930      continue;
2931    }
2932    return NULL;
2933  }
2934
2935  case Stmt::ExprWithCleanupsClass:
2936    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
2937
2938  case Stmt::DeclRefExprClass: {
2939    // When we hit a DeclRefExpr we are looking at code that refers to a
2940    // variable's name. If it's not a reference variable we check if it has
2941    // local storage within the function, and if so, return the expression.
2942    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2943
2944    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2945      if (V->hasLocalStorage()) {
2946        if (!V->getType()->isReferenceType())
2947          return DR;
2948
2949        // Reference variable, follow through to the expression that
2950        // it points to.
2951        if (V->hasInit()) {
2952          // Add the reference variable to the "trail".
2953          refVars.push_back(DR);
2954          return EvalVal(V->getInit(), refVars);
2955        }
2956      }
2957
2958    return NULL;
2959  }
2960
2961  case Stmt::UnaryOperatorClass: {
2962    // The only unary operator that make sense to handle here
2963    // is Deref.  All others don't resolve to a "name."  This includes
2964    // handling all sorts of rvalues passed to a unary operator.
2965    UnaryOperator *U = cast<UnaryOperator>(E);
2966
2967    if (U->getOpcode() == UO_Deref)
2968      return EvalAddr(U->getSubExpr(), refVars);
2969
2970    return NULL;
2971  }
2972
2973  case Stmt::ArraySubscriptExprClass: {
2974    // Array subscripts are potential references to data on the stack.  We
2975    // retrieve the DeclRefExpr* for the array variable if it indeed
2976    // has local storage.
2977    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2978  }
2979
2980  case Stmt::ConditionalOperatorClass: {
2981    // For conditional operators we need to see if either the LHS or RHS are
2982    // non-NULL Expr's.  If one is non-NULL, we return it.
2983    ConditionalOperator *C = cast<ConditionalOperator>(E);
2984
2985    // Handle the GNU extension for missing LHS.
2986    if (Expr *lhsExpr = C->getLHS())
2987      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2988        return LHS;
2989
2990    return EvalVal(C->getRHS(), refVars);
2991  }
2992
2993  // Accesses to members are potential references to data on the stack.
2994  case Stmt::MemberExprClass: {
2995    MemberExpr *M = cast<MemberExpr>(E);
2996
2997    // Check for indirect access.  We only want direct field accesses.
2998    if (M->isArrow())
2999      return NULL;
3000
3001    // Check whether the member type is itself a reference, in which case
3002    // we're not going to refer to the member, but to what the member refers to.
3003    if (M->getMemberDecl()->getType()->isReferenceType())
3004      return NULL;
3005
3006    return EvalVal(M->getBase(), refVars);
3007  }
3008
3009  case Stmt::MaterializeTemporaryExprClass:
3010    if (Expr *Result = EvalVal(
3011                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3012                               refVars))
3013      return Result;
3014
3015    return E;
3016
3017  default:
3018    // Check that we don't return or take the address of a reference to a
3019    // temporary. This is only useful in C++.
3020    if (!E->isTypeDependent() && E->isRValue())
3021      return E;
3022
3023    // Everything else: we simply don't reason about them.
3024    return NULL;
3025  }
3026} while (true);
3027}
3028
3029//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3030
3031/// Check for comparisons of floating point operands using != and ==.
3032/// Issue a warning if these are no self-comparisons, as they are not likely
3033/// to do what the programmer intended.
3034void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3035  bool EmitWarning = true;
3036
3037  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3038  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3039
3040  // Special case: check for x == x (which is OK).
3041  // Do not emit warnings for such cases.
3042  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3043    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3044      if (DRL->getDecl() == DRR->getDecl())
3045        EmitWarning = false;
3046
3047
3048  // Special case: check for comparisons against literals that can be exactly
3049  //  represented by APFloat.  In such cases, do not emit a warning.  This
3050  //  is a heuristic: often comparison against such literals are used to
3051  //  detect if a value in a variable has not changed.  This clearly can
3052  //  lead to false negatives.
3053  if (EmitWarning) {
3054    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3055      if (FLL->isExact())
3056        EmitWarning = false;
3057    } else
3058      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
3059        if (FLR->isExact())
3060          EmitWarning = false;
3061    }
3062  }
3063
3064  // Check for comparisons with builtin types.
3065  if (EmitWarning)
3066    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3067      if (CL->isBuiltinCall())
3068        EmitWarning = false;
3069
3070  if (EmitWarning)
3071    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3072      if (CR->isBuiltinCall())
3073        EmitWarning = false;
3074
3075  // Emit the diagnostic.
3076  if (EmitWarning)
3077    Diag(Loc, diag::warn_floatingpoint_eq)
3078      << LHS->getSourceRange() << RHS->getSourceRange();
3079}
3080
3081//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3082//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3083
3084namespace {
3085
3086/// Structure recording the 'active' range of an integer-valued
3087/// expression.
3088struct IntRange {
3089  /// The number of bits active in the int.
3090  unsigned Width;
3091
3092  /// True if the int is known not to have negative values.
3093  bool NonNegative;
3094
3095  IntRange(unsigned Width, bool NonNegative)
3096    : Width(Width), NonNegative(NonNegative)
3097  {}
3098
3099  /// Returns the range of the bool type.
3100  static IntRange forBoolType() {
3101    return IntRange(1, true);
3102  }
3103
3104  /// Returns the range of an opaque value of the given integral type.
3105  static IntRange forValueOfType(ASTContext &C, QualType T) {
3106    return forValueOfCanonicalType(C,
3107                          T->getCanonicalTypeInternal().getTypePtr());
3108  }
3109
3110  /// Returns the range of an opaque value of a canonical integral type.
3111  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3112    assert(T->isCanonicalUnqualified());
3113
3114    if (const VectorType *VT = dyn_cast<VectorType>(T))
3115      T = VT->getElementType().getTypePtr();
3116    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3117      T = CT->getElementType().getTypePtr();
3118
3119    // For enum types, use the known bit width of the enumerators.
3120    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3121      EnumDecl *Enum = ET->getDecl();
3122      if (!Enum->isCompleteDefinition())
3123        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3124
3125      unsigned NumPositive = Enum->getNumPositiveBits();
3126      unsigned NumNegative = Enum->getNumNegativeBits();
3127
3128      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3129    }
3130
3131    const BuiltinType *BT = cast<BuiltinType>(T);
3132    assert(BT->isInteger());
3133
3134    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3135  }
3136
3137  /// Returns the "target" range of a canonical integral type, i.e.
3138  /// the range of values expressible in the type.
3139  ///
3140  /// This matches forValueOfCanonicalType except that enums have the
3141  /// full range of their type, not the range of their enumerators.
3142  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3143    assert(T->isCanonicalUnqualified());
3144
3145    if (const VectorType *VT = dyn_cast<VectorType>(T))
3146      T = VT->getElementType().getTypePtr();
3147    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3148      T = CT->getElementType().getTypePtr();
3149    if (const EnumType *ET = dyn_cast<EnumType>(T))
3150      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3151
3152    const BuiltinType *BT = cast<BuiltinType>(T);
3153    assert(BT->isInteger());
3154
3155    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3156  }
3157
3158  /// Returns the supremum of two ranges: i.e. their conservative merge.
3159  static IntRange join(IntRange L, IntRange R) {
3160    return IntRange(std::max(L.Width, R.Width),
3161                    L.NonNegative && R.NonNegative);
3162  }
3163
3164  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3165  static IntRange meet(IntRange L, IntRange R) {
3166    return IntRange(std::min(L.Width, R.Width),
3167                    L.NonNegative || R.NonNegative);
3168  }
3169};
3170
3171IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
3172  if (value.isSigned() && value.isNegative())
3173    return IntRange(value.getMinSignedBits(), false);
3174
3175  if (value.getBitWidth() > MaxWidth)
3176    value = value.trunc(MaxWidth);
3177
3178  // isNonNegative() just checks the sign bit without considering
3179  // signedness.
3180  return IntRange(value.getActiveBits(), true);
3181}
3182
3183IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3184                       unsigned MaxWidth) {
3185  if (result.isInt())
3186    return GetValueRange(C, result.getInt(), MaxWidth);
3187
3188  if (result.isVector()) {
3189    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3190    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3191      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3192      R = IntRange::join(R, El);
3193    }
3194    return R;
3195  }
3196
3197  if (result.isComplexInt()) {
3198    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3199    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3200    return IntRange::join(R, I);
3201  }
3202
3203  // This can happen with lossless casts to intptr_t of "based" lvalues.
3204  // Assume it might use arbitrary bits.
3205  // FIXME: The only reason we need to pass the type in here is to get
3206  // the sign right on this one case.  It would be nice if APValue
3207  // preserved this.
3208  assert(result.isLValue() || result.isAddrLabelDiff());
3209  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3210}
3211
3212/// Pseudo-evaluate the given integer expression, estimating the
3213/// range of values it might take.
3214///
3215/// \param MaxWidth - the width to which the value will be truncated
3216IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3217  E = E->IgnoreParens();
3218
3219  // Try a full evaluation first.
3220  Expr::EvalResult result;
3221  if (E->EvaluateAsRValue(result, C))
3222    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3223
3224  // I think we only want to look through implicit casts here; if the
3225  // user has an explicit widening cast, we should treat the value as
3226  // being of the new, wider type.
3227  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3228    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3229      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3230
3231    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3232
3233    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3234
3235    // Assume that non-integer casts can span the full range of the type.
3236    if (!isIntegerCast)
3237      return OutputTypeRange;
3238
3239    IntRange SubRange
3240      = GetExprRange(C, CE->getSubExpr(),
3241                     std::min(MaxWidth, OutputTypeRange.Width));
3242
3243    // Bail out if the subexpr's range is as wide as the cast type.
3244    if (SubRange.Width >= OutputTypeRange.Width)
3245      return OutputTypeRange;
3246
3247    // Otherwise, we take the smaller width, and we're non-negative if
3248    // either the output type or the subexpr is.
3249    return IntRange(SubRange.Width,
3250                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3251  }
3252
3253  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3254    // If we can fold the condition, just take that operand.
3255    bool CondResult;
3256    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3257      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3258                                        : CO->getFalseExpr(),
3259                          MaxWidth);
3260
3261    // Otherwise, conservatively merge.
3262    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3263    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3264    return IntRange::join(L, R);
3265  }
3266
3267  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3268    switch (BO->getOpcode()) {
3269
3270    // Boolean-valued operations are single-bit and positive.
3271    case BO_LAnd:
3272    case BO_LOr:
3273    case BO_LT:
3274    case BO_GT:
3275    case BO_LE:
3276    case BO_GE:
3277    case BO_EQ:
3278    case BO_NE:
3279      return IntRange::forBoolType();
3280
3281    // The type of the assignments is the type of the LHS, so the RHS
3282    // is not necessarily the same type.
3283    case BO_MulAssign:
3284    case BO_DivAssign:
3285    case BO_RemAssign:
3286    case BO_AddAssign:
3287    case BO_SubAssign:
3288    case BO_XorAssign:
3289    case BO_OrAssign:
3290      // TODO: bitfields?
3291      return IntRange::forValueOfType(C, E->getType());
3292
3293    // Simple assignments just pass through the RHS, which will have
3294    // been coerced to the LHS type.
3295    case BO_Assign:
3296      // TODO: bitfields?
3297      return GetExprRange(C, BO->getRHS(), MaxWidth);
3298
3299    // Operations with opaque sources are black-listed.
3300    case BO_PtrMemD:
3301    case BO_PtrMemI:
3302      return IntRange::forValueOfType(C, E->getType());
3303
3304    // Bitwise-and uses the *infinum* of the two source ranges.
3305    case BO_And:
3306    case BO_AndAssign:
3307      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3308                            GetExprRange(C, BO->getRHS(), MaxWidth));
3309
3310    // Left shift gets black-listed based on a judgement call.
3311    case BO_Shl:
3312      // ...except that we want to treat '1 << (blah)' as logically
3313      // positive.  It's an important idiom.
3314      if (IntegerLiteral *I
3315            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3316        if (I->getValue() == 1) {
3317          IntRange R = IntRange::forValueOfType(C, E->getType());
3318          return IntRange(R.Width, /*NonNegative*/ true);
3319        }
3320      }
3321      // fallthrough
3322
3323    case BO_ShlAssign:
3324      return IntRange::forValueOfType(C, E->getType());
3325
3326    // Right shift by a constant can narrow its left argument.
3327    case BO_Shr:
3328    case BO_ShrAssign: {
3329      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3330
3331      // If the shift amount is a positive constant, drop the width by
3332      // that much.
3333      llvm::APSInt shift;
3334      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3335          shift.isNonNegative()) {
3336        unsigned zext = shift.getZExtValue();
3337        if (zext >= L.Width)
3338          L.Width = (L.NonNegative ? 0 : 1);
3339        else
3340          L.Width -= zext;
3341      }
3342
3343      return L;
3344    }
3345
3346    // Comma acts as its right operand.
3347    case BO_Comma:
3348      return GetExprRange(C, BO->getRHS(), MaxWidth);
3349
3350    // Black-list pointer subtractions.
3351    case BO_Sub:
3352      if (BO->getLHS()->getType()->isPointerType())
3353        return IntRange::forValueOfType(C, E->getType());
3354      break;
3355
3356    // The width of a division result is mostly determined by the size
3357    // of the LHS.
3358    case BO_Div: {
3359      // Don't 'pre-truncate' the operands.
3360      unsigned opWidth = C.getIntWidth(E->getType());
3361      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3362
3363      // If the divisor is constant, use that.
3364      llvm::APSInt divisor;
3365      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3366        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3367        if (log2 >= L.Width)
3368          L.Width = (L.NonNegative ? 0 : 1);
3369        else
3370          L.Width = std::min(L.Width - log2, MaxWidth);
3371        return L;
3372      }
3373
3374      // Otherwise, just use the LHS's width.
3375      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3376      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3377    }
3378
3379    // The result of a remainder can't be larger than the result of
3380    // either side.
3381    case BO_Rem: {
3382      // Don't 'pre-truncate' the operands.
3383      unsigned opWidth = C.getIntWidth(E->getType());
3384      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3385      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3386
3387      IntRange meet = IntRange::meet(L, R);
3388      meet.Width = std::min(meet.Width, MaxWidth);
3389      return meet;
3390    }
3391
3392    // The default behavior is okay for these.
3393    case BO_Mul:
3394    case BO_Add:
3395    case BO_Xor:
3396    case BO_Or:
3397      break;
3398    }
3399
3400    // The default case is to treat the operation as if it were closed
3401    // on the narrowest type that encompasses both operands.
3402    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3403    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3404    return IntRange::join(L, R);
3405  }
3406
3407  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3408    switch (UO->getOpcode()) {
3409    // Boolean-valued operations are white-listed.
3410    case UO_LNot:
3411      return IntRange::forBoolType();
3412
3413    // Operations with opaque sources are black-listed.
3414    case UO_Deref:
3415    case UO_AddrOf: // should be impossible
3416      return IntRange::forValueOfType(C, E->getType());
3417
3418    default:
3419      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3420    }
3421  }
3422
3423  if (dyn_cast<OffsetOfExpr>(E)) {
3424    IntRange::forValueOfType(C, E->getType());
3425  }
3426
3427  if (FieldDecl *BitField = E->getBitField())
3428    return IntRange(BitField->getBitWidthValue(C),
3429                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3430
3431  return IntRange::forValueOfType(C, E->getType());
3432}
3433
3434IntRange GetExprRange(ASTContext &C, Expr *E) {
3435  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3436}
3437
3438/// Checks whether the given value, which currently has the given
3439/// source semantics, has the same value when coerced through the
3440/// target semantics.
3441bool IsSameFloatAfterCast(const llvm::APFloat &value,
3442                          const llvm::fltSemantics &Src,
3443                          const llvm::fltSemantics &Tgt) {
3444  llvm::APFloat truncated = value;
3445
3446  bool ignored;
3447  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3448  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3449
3450  return truncated.bitwiseIsEqual(value);
3451}
3452
3453/// Checks whether the given value, which currently has the given
3454/// source semantics, has the same value when coerced through the
3455/// target semantics.
3456///
3457/// The value might be a vector of floats (or a complex number).
3458bool IsSameFloatAfterCast(const APValue &value,
3459                          const llvm::fltSemantics &Src,
3460                          const llvm::fltSemantics &Tgt) {
3461  if (value.isFloat())
3462    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3463
3464  if (value.isVector()) {
3465    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3466      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3467        return false;
3468    return true;
3469  }
3470
3471  assert(value.isComplexFloat());
3472  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3473          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3474}
3475
3476void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3477
3478static bool IsZero(Sema &S, Expr *E) {
3479  // Suppress cases where we are comparing against an enum constant.
3480  if (const DeclRefExpr *DR =
3481      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3482    if (isa<EnumConstantDecl>(DR->getDecl()))
3483      return false;
3484
3485  // Suppress cases where the '0' value is expanded from a macro.
3486  if (E->getLocStart().isMacroID())
3487    return false;
3488
3489  llvm::APSInt Value;
3490  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3491}
3492
3493static bool HasEnumType(Expr *E) {
3494  // Strip off implicit integral promotions.
3495  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3496    if (ICE->getCastKind() != CK_IntegralCast &&
3497        ICE->getCastKind() != CK_NoOp)
3498      break;
3499    E = ICE->getSubExpr();
3500  }
3501
3502  return E->getType()->isEnumeralType();
3503}
3504
3505void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3506  BinaryOperatorKind op = E->getOpcode();
3507  if (E->isValueDependent())
3508    return;
3509
3510  if (op == BO_LT && IsZero(S, E->getRHS())) {
3511    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3512      << "< 0" << "false" << HasEnumType(E->getLHS())
3513      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3514  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3515    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3516      << ">= 0" << "true" << HasEnumType(E->getLHS())
3517      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3518  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3519    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3520      << "0 >" << "false" << HasEnumType(E->getRHS())
3521      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3522  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3523    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3524      << "0 <=" << "true" << HasEnumType(E->getRHS())
3525      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3526  }
3527}
3528
3529/// Analyze the operands of the given comparison.  Implements the
3530/// fallback case from AnalyzeComparison.
3531void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3532  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3533  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3534}
3535
3536/// \brief Implements -Wsign-compare.
3537///
3538/// \param E the binary operator to check for warnings
3539void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3540  // The type the comparison is being performed in.
3541  QualType T = E->getLHS()->getType();
3542  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3543         && "comparison with mismatched types");
3544
3545  // We don't do anything special if this isn't an unsigned integral
3546  // comparison:  we're only interested in integral comparisons, and
3547  // signed comparisons only happen in cases we don't care to warn about.
3548  //
3549  // We also don't care about value-dependent expressions or expressions
3550  // whose result is a constant.
3551  if (!T->hasUnsignedIntegerRepresentation()
3552      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3553    return AnalyzeImpConvsInComparison(S, E);
3554
3555  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3556  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3557
3558  // Check to see if one of the (unmodified) operands is of different
3559  // signedness.
3560  Expr *signedOperand, *unsignedOperand;
3561  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3562    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3563           "unsigned comparison between two signed integer expressions?");
3564    signedOperand = LHS;
3565    unsignedOperand = RHS;
3566  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3567    signedOperand = RHS;
3568    unsignedOperand = LHS;
3569  } else {
3570    CheckTrivialUnsignedComparison(S, E);
3571    return AnalyzeImpConvsInComparison(S, E);
3572  }
3573
3574  // Otherwise, calculate the effective range of the signed operand.
3575  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3576
3577  // Go ahead and analyze implicit conversions in the operands.  Note
3578  // that we skip the implicit conversions on both sides.
3579  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3580  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3581
3582  // If the signed range is non-negative, -Wsign-compare won't fire,
3583  // but we should still check for comparisons which are always true
3584  // or false.
3585  if (signedRange.NonNegative)
3586    return CheckTrivialUnsignedComparison(S, E);
3587
3588  // For (in)equality comparisons, if the unsigned operand is a
3589  // constant which cannot collide with a overflowed signed operand,
3590  // then reinterpreting the signed operand as unsigned will not
3591  // change the result of the comparison.
3592  if (E->isEqualityOp()) {
3593    unsigned comparisonWidth = S.Context.getIntWidth(T);
3594    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3595
3596    // We should never be unable to prove that the unsigned operand is
3597    // non-negative.
3598    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3599
3600    if (unsignedRange.Width < comparisonWidth)
3601      return;
3602  }
3603
3604  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3605    << LHS->getType() << RHS->getType()
3606    << LHS->getSourceRange() << RHS->getSourceRange();
3607}
3608
3609/// Analyzes an attempt to assign the given value to a bitfield.
3610///
3611/// Returns true if there was something fishy about the attempt.
3612bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3613                               SourceLocation InitLoc) {
3614  assert(Bitfield->isBitField());
3615  if (Bitfield->isInvalidDecl())
3616    return false;
3617
3618  // White-list bool bitfields.
3619  if (Bitfield->getType()->isBooleanType())
3620    return false;
3621
3622  // Ignore value- or type-dependent expressions.
3623  if (Bitfield->getBitWidth()->isValueDependent() ||
3624      Bitfield->getBitWidth()->isTypeDependent() ||
3625      Init->isValueDependent() ||
3626      Init->isTypeDependent())
3627    return false;
3628
3629  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3630
3631  llvm::APSInt Value;
3632  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
3633    return false;
3634
3635  unsigned OriginalWidth = Value.getBitWidth();
3636  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
3637
3638  if (OriginalWidth <= FieldWidth)
3639    return false;
3640
3641  // Compute the value which the bitfield will contain.
3642  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3643  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
3644
3645  // Check whether the stored value is equal to the original value.
3646  TruncatedValue = TruncatedValue.extend(OriginalWidth);
3647  if (Value == TruncatedValue)
3648    return false;
3649
3650  // Special-case bitfields of width 1: booleans are naturally 0/1, and
3651  // therefore don't strictly fit into a bitfield of width 1.
3652  if (FieldWidth == 1 && Value.getBoolValue() == TruncatedValue.getBoolValue())
3653    return false;
3654
3655  std::string PrettyValue = Value.toString(10);
3656  std::string PrettyTrunc = TruncatedValue.toString(10);
3657
3658  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3659    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3660    << Init->getSourceRange();
3661
3662  return true;
3663}
3664
3665/// Analyze the given simple or compound assignment for warning-worthy
3666/// operations.
3667void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3668  // Just recurse on the LHS.
3669  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3670
3671  // We want to recurse on the RHS as normal unless we're assigning to
3672  // a bitfield.
3673  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3674    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3675                                  E->getOperatorLoc())) {
3676      // Recurse, ignoring any implicit conversions on the RHS.
3677      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3678                                        E->getOperatorLoc());
3679    }
3680  }
3681
3682  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3683}
3684
3685/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3686void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3687                     SourceLocation CContext, unsigned diag) {
3688  S.Diag(E->getExprLoc(), diag)
3689    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3690}
3691
3692/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3693void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3694                     unsigned diag) {
3695  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3696}
3697
3698/// Diagnose an implicit cast from a literal expression. Does not warn when the
3699/// cast wouldn't lose information.
3700void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3701                                    SourceLocation CContext) {
3702  // Try to convert the literal exactly to an integer. If we can, don't warn.
3703  bool isExact = false;
3704  const llvm::APFloat &Value = FL->getValue();
3705  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3706                            T->hasUnsignedIntegerRepresentation());
3707  if (Value.convertToInteger(IntegerValue,
3708                             llvm::APFloat::rmTowardZero, &isExact)
3709      == llvm::APFloat::opOK && isExact)
3710    return;
3711
3712  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3713    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3714}
3715
3716std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3717  if (!Range.Width) return "0";
3718
3719  llvm::APSInt ValueInRange = Value;
3720  ValueInRange.setIsSigned(!Range.NonNegative);
3721  ValueInRange = ValueInRange.trunc(Range.Width);
3722  return ValueInRange.toString(10);
3723}
3724
3725void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3726                             SourceLocation CC, bool *ICContext = 0) {
3727  if (E->isTypeDependent() || E->isValueDependent()) return;
3728
3729  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3730  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3731  if (Source == Target) return;
3732  if (Target->isDependentType()) return;
3733
3734  // If the conversion context location is invalid don't complain. We also
3735  // don't want to emit a warning if the issue occurs from the expansion of
3736  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3737  // delay this check as long as possible. Once we detect we are in that
3738  // scenario, we just return.
3739  if (CC.isInvalid())
3740    return;
3741
3742  // Diagnose implicit casts to bool.
3743  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
3744    if (isa<StringLiteral>(E))
3745      // Warn on string literal to bool.  Checks for string literals in logical
3746      // expressions, for instances, assert(0 && "error here"), is prevented
3747      // by a check in AnalyzeImplicitConversions().
3748      return DiagnoseImpCast(S, E, T, CC,
3749                             diag::warn_impcast_string_literal_to_bool);
3750    if (Source->isFunctionType()) {
3751      // Warn on function to bool. Checks free functions and static member
3752      // functions. Weakly imported functions are excluded from the check,
3753      // since it's common to test their value to check whether the linker
3754      // found a definition for them.
3755      ValueDecl *D = 0;
3756      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
3757        D = R->getDecl();
3758      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
3759        D = M->getMemberDecl();
3760      }
3761
3762      if (D && !D->isWeak()) {
3763        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
3764          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
3765            << F << E->getSourceRange() << SourceRange(CC);
3766          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
3767            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
3768          QualType ReturnType;
3769          UnresolvedSet<4> NonTemplateOverloads;
3770          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
3771          if (!ReturnType.isNull()
3772              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
3773            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
3774              << FixItHint::CreateInsertion(
3775                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
3776          return;
3777        }
3778      }
3779    }
3780    return; // Other casts to bool are not checked.
3781  }
3782
3783  // Strip vector types.
3784  if (isa<VectorType>(Source)) {
3785    if (!isa<VectorType>(Target)) {
3786      if (S.SourceMgr.isInSystemMacro(CC))
3787        return;
3788      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3789    }
3790
3791    // If the vector cast is cast between two vectors of the same size, it is
3792    // a bitcast, not a conversion.
3793    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3794      return;
3795
3796    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3797    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3798  }
3799
3800  // Strip complex types.
3801  if (isa<ComplexType>(Source)) {
3802    if (!isa<ComplexType>(Target)) {
3803      if (S.SourceMgr.isInSystemMacro(CC))
3804        return;
3805
3806      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3807    }
3808
3809    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3810    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3811  }
3812
3813  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3814  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3815
3816  // If the source is floating point...
3817  if (SourceBT && SourceBT->isFloatingPoint()) {
3818    // ...and the target is floating point...
3819    if (TargetBT && TargetBT->isFloatingPoint()) {
3820      // ...then warn if we're dropping FP rank.
3821
3822      // Builtin FP kinds are ordered by increasing FP rank.
3823      if (SourceBT->getKind() > TargetBT->getKind()) {
3824        // Don't warn about float constants that are precisely
3825        // representable in the target type.
3826        Expr::EvalResult result;
3827        if (E->EvaluateAsRValue(result, S.Context)) {
3828          // Value might be a float, a float vector, or a float complex.
3829          if (IsSameFloatAfterCast(result.Val,
3830                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3831                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3832            return;
3833        }
3834
3835        if (S.SourceMgr.isInSystemMacro(CC))
3836          return;
3837
3838        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3839      }
3840      return;
3841    }
3842
3843    // If the target is integral, always warn.
3844    if ((TargetBT && TargetBT->isInteger())) {
3845      if (S.SourceMgr.isInSystemMacro(CC))
3846        return;
3847
3848      Expr *InnerE = E->IgnoreParenImpCasts();
3849      // We also want to warn on, e.g., "int i = -1.234"
3850      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
3851        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
3852          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
3853
3854      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3855        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3856      } else {
3857        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3858      }
3859    }
3860
3861    return;
3862  }
3863
3864  if (!Source->isIntegerType() || !Target->isIntegerType())
3865    return;
3866
3867  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3868           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3869    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3870        << E->getSourceRange() << clang::SourceRange(CC);
3871    return;
3872  }
3873
3874  IntRange SourceRange = GetExprRange(S.Context, E);
3875  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3876
3877  if (SourceRange.Width > TargetRange.Width) {
3878    // If the source is a constant, use a default-on diagnostic.
3879    // TODO: this should happen for bitfield stores, too.
3880    llvm::APSInt Value(32);
3881    if (E->isIntegerConstantExpr(Value, S.Context)) {
3882      if (S.SourceMgr.isInSystemMacro(CC))
3883        return;
3884
3885      std::string PrettySourceValue = Value.toString(10);
3886      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3887
3888      S.DiagRuntimeBehavior(E->getExprLoc(), E,
3889        S.PDiag(diag::warn_impcast_integer_precision_constant)
3890            << PrettySourceValue << PrettyTargetValue
3891            << E->getType() << T << E->getSourceRange()
3892            << clang::SourceRange(CC));
3893      return;
3894    }
3895
3896    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3897    if (S.SourceMgr.isInSystemMacro(CC))
3898      return;
3899
3900    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3901      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3902    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3903  }
3904
3905  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3906      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3907       SourceRange.Width == TargetRange.Width)) {
3908
3909    if (S.SourceMgr.isInSystemMacro(CC))
3910      return;
3911
3912    unsigned DiagID = diag::warn_impcast_integer_sign;
3913
3914    // Traditionally, gcc has warned about this under -Wsign-compare.
3915    // We also want to warn about it in -Wconversion.
3916    // So if -Wconversion is off, use a completely identical diagnostic
3917    // in the sign-compare group.
3918    // The conditional-checking code will
3919    if (ICContext) {
3920      DiagID = diag::warn_impcast_integer_sign_conditional;
3921      *ICContext = true;
3922    }
3923
3924    return DiagnoseImpCast(S, E, T, CC, DiagID);
3925  }
3926
3927  // Diagnose conversions between different enumeration types.
3928  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3929  // type, to give us better diagnostics.
3930  QualType SourceType = E->getType();
3931  if (!S.getLangOptions().CPlusPlus) {
3932    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3933      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3934        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3935        SourceType = S.Context.getTypeDeclType(Enum);
3936        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3937      }
3938  }
3939
3940  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3941    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3942      if ((SourceEnum->getDecl()->getIdentifier() ||
3943           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3944          (TargetEnum->getDecl()->getIdentifier() ||
3945           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3946          SourceEnum != TargetEnum) {
3947        if (S.SourceMgr.isInSystemMacro(CC))
3948          return;
3949
3950        return DiagnoseImpCast(S, E, SourceType, T, CC,
3951                               diag::warn_impcast_different_enum_types);
3952      }
3953
3954  return;
3955}
3956
3957void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3958
3959void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3960                             SourceLocation CC, bool &ICContext) {
3961  E = E->IgnoreParenImpCasts();
3962
3963  if (isa<ConditionalOperator>(E))
3964    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3965
3966  AnalyzeImplicitConversions(S, E, CC);
3967  if (E->getType() != T)
3968    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3969  return;
3970}
3971
3972void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3973  SourceLocation CC = E->getQuestionLoc();
3974
3975  AnalyzeImplicitConversions(S, E->getCond(), CC);
3976
3977  bool Suspicious = false;
3978  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3979  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3980
3981  // If -Wconversion would have warned about either of the candidates
3982  // for a signedness conversion to the context type...
3983  if (!Suspicious) return;
3984
3985  // ...but it's currently ignored...
3986  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3987                                 CC))
3988    return;
3989
3990  // ...then check whether it would have warned about either of the
3991  // candidates for a signedness conversion to the condition type.
3992  if (E->getType() == T) return;
3993
3994  Suspicious = false;
3995  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
3996                          E->getType(), CC, &Suspicious);
3997  if (!Suspicious)
3998    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
3999                            E->getType(), CC, &Suspicious);
4000}
4001
4002/// AnalyzeImplicitConversions - Find and report any interesting
4003/// implicit conversions in the given expression.  There are a couple
4004/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4005void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4006  QualType T = OrigE->getType();
4007  Expr *E = OrigE->IgnoreParenImpCasts();
4008
4009  if (E->isTypeDependent() || E->isValueDependent())
4010    return;
4011
4012  // For conditional operators, we analyze the arguments as if they
4013  // were being fed directly into the output.
4014  if (isa<ConditionalOperator>(E)) {
4015    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4016    CheckConditionalOperator(S, CO, T);
4017    return;
4018  }
4019
4020  // Go ahead and check any implicit conversions we might have skipped.
4021  // The non-canonical typecheck is just an optimization;
4022  // CheckImplicitConversion will filter out dead implicit conversions.
4023  if (E->getType() != T)
4024    CheckImplicitConversion(S, E, T, CC);
4025
4026  // Now continue drilling into this expression.
4027
4028  // Skip past explicit casts.
4029  if (isa<ExplicitCastExpr>(E)) {
4030    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4031    return AnalyzeImplicitConversions(S, E, CC);
4032  }
4033
4034  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4035    // Do a somewhat different check with comparison operators.
4036    if (BO->isComparisonOp())
4037      return AnalyzeComparison(S, BO);
4038
4039    // And with simple assignments.
4040    if (BO->getOpcode() == BO_Assign)
4041      return AnalyzeAssignment(S, BO);
4042  }
4043
4044  // These break the otherwise-useful invariant below.  Fortunately,
4045  // we don't really need to recurse into them, because any internal
4046  // expressions should have been analyzed already when they were
4047  // built into statements.
4048  if (isa<StmtExpr>(E)) return;
4049
4050  // Don't descend into unevaluated contexts.
4051  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4052
4053  // Now just recurse over the expression's children.
4054  CC = E->getExprLoc();
4055  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4056  bool IsLogicalOperator = BO && BO->isLogicalOp();
4057  for (Stmt::child_range I = E->children(); I; ++I) {
4058    Expr *ChildExpr = cast<Expr>(*I);
4059    if (IsLogicalOperator &&
4060        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4061      // Ignore checking string literals that are in logical operators.
4062      continue;
4063    AnalyzeImplicitConversions(S, ChildExpr, CC);
4064  }
4065}
4066
4067} // end anonymous namespace
4068
4069/// Diagnoses "dangerous" implicit conversions within the given
4070/// expression (which is a full expression).  Implements -Wconversion
4071/// and -Wsign-compare.
4072///
4073/// \param CC the "context" location of the implicit conversion, i.e.
4074///   the most location of the syntactic entity requiring the implicit
4075///   conversion
4076void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4077  // Don't diagnose in unevaluated contexts.
4078  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
4079    return;
4080
4081  // Don't diagnose for value- or type-dependent expressions.
4082  if (E->isTypeDependent() || E->isValueDependent())
4083    return;
4084
4085  // Check for array bounds violations in cases where the check isn't triggered
4086  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4087  // ArraySubscriptExpr is on the RHS of a variable initialization.
4088  CheckArrayAccess(E);
4089
4090  // This is not the right CC for (e.g.) a variable initialization.
4091  AnalyzeImplicitConversions(*this, E, CC);
4092}
4093
4094void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4095                                       FieldDecl *BitField,
4096                                       Expr *Init) {
4097  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4098}
4099
4100/// CheckParmsForFunctionDef - Check that the parameters of the given
4101/// function are appropriate for the definition of a function. This
4102/// takes care of any checks that cannot be performed on the
4103/// declaration itself, e.g., that the types of each of the function
4104/// parameters are complete.
4105bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4106                                    bool CheckParameterNames) {
4107  bool HasInvalidParm = false;
4108  for (; P != PEnd; ++P) {
4109    ParmVarDecl *Param = *P;
4110
4111    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4112    // function declarator that is part of a function definition of
4113    // that function shall not have incomplete type.
4114    //
4115    // This is also C++ [dcl.fct]p6.
4116    if (!Param->isInvalidDecl() &&
4117        RequireCompleteType(Param->getLocation(), Param->getType(),
4118                               diag::err_typecheck_decl_incomplete_type)) {
4119      Param->setInvalidDecl();
4120      HasInvalidParm = true;
4121    }
4122
4123    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4124    // declaration of each parameter shall include an identifier.
4125    if (CheckParameterNames &&
4126        Param->getIdentifier() == 0 &&
4127        !Param->isImplicit() &&
4128        !getLangOptions().CPlusPlus)
4129      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4130
4131    // C99 6.7.5.3p12:
4132    //   If the function declarator is not part of a definition of that
4133    //   function, parameters may have incomplete type and may use the [*]
4134    //   notation in their sequences of declarator specifiers to specify
4135    //   variable length array types.
4136    QualType PType = Param->getOriginalType();
4137    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4138      if (AT->getSizeModifier() == ArrayType::Star) {
4139        // FIXME: This diagnosic should point the the '[*]' if source-location
4140        // information is added for it.
4141        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4142      }
4143    }
4144  }
4145
4146  return HasInvalidParm;
4147}
4148
4149/// CheckCastAlign - Implements -Wcast-align, which warns when a
4150/// pointer cast increases the alignment requirements.
4151void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4152  // This is actually a lot of work to potentially be doing on every
4153  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4154  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4155                                          TRange.getBegin())
4156        == DiagnosticsEngine::Ignored)
4157    return;
4158
4159  // Ignore dependent types.
4160  if (T->isDependentType() || Op->getType()->isDependentType())
4161    return;
4162
4163  // Require that the destination be a pointer type.
4164  const PointerType *DestPtr = T->getAs<PointerType>();
4165  if (!DestPtr) return;
4166
4167  // If the destination has alignment 1, we're done.
4168  QualType DestPointee = DestPtr->getPointeeType();
4169  if (DestPointee->isIncompleteType()) return;
4170  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4171  if (DestAlign.isOne()) return;
4172
4173  // Require that the source be a pointer type.
4174  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4175  if (!SrcPtr) return;
4176  QualType SrcPointee = SrcPtr->getPointeeType();
4177
4178  // Whitelist casts from cv void*.  We already implicitly
4179  // whitelisted casts to cv void*, since they have alignment 1.
4180  // Also whitelist casts involving incomplete types, which implicitly
4181  // includes 'void'.
4182  if (SrcPointee->isIncompleteType()) return;
4183
4184  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4185  if (SrcAlign >= DestAlign) return;
4186
4187  Diag(TRange.getBegin(), diag::warn_cast_align)
4188    << Op->getType() << T
4189    << static_cast<unsigned>(SrcAlign.getQuantity())
4190    << static_cast<unsigned>(DestAlign.getQuantity())
4191    << TRange << Op->getSourceRange();
4192}
4193
4194static const Type* getElementType(const Expr *BaseExpr) {
4195  const Type* EltType = BaseExpr->getType().getTypePtr();
4196  if (EltType->isAnyPointerType())
4197    return EltType->getPointeeType().getTypePtr();
4198  else if (EltType->isArrayType())
4199    return EltType->getBaseElementTypeUnsafe();
4200  return EltType;
4201}
4202
4203/// \brief Check whether this array fits the idiom of a size-one tail padded
4204/// array member of a struct.
4205///
4206/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4207/// commonly used to emulate flexible arrays in C89 code.
4208static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4209                                    const NamedDecl *ND) {
4210  if (Size != 1 || !ND) return false;
4211
4212  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4213  if (!FD) return false;
4214
4215  // Don't consider sizes resulting from macro expansions or template argument
4216  // substitution to form C89 tail-padded arrays.
4217  ConstantArrayTypeLoc TL =
4218    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
4219  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
4220  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4221    return false;
4222
4223  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4224  if (!RD) return false;
4225  if (RD->isUnion()) return false;
4226  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4227    if (!CRD->isStandardLayout()) return false;
4228  }
4229
4230  // See if this is the last field decl in the record.
4231  const Decl *D = FD;
4232  while ((D = D->getNextDeclInContext()))
4233    if (isa<FieldDecl>(D))
4234      return false;
4235  return true;
4236}
4237
4238void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4239                            const ArraySubscriptExpr *ASE,
4240                            bool AllowOnePastEnd, bool IndexNegated) {
4241  IndexExpr = IndexExpr->IgnoreParenCasts();
4242  if (IndexExpr->isValueDependent())
4243    return;
4244
4245  const Type *EffectiveType = getElementType(BaseExpr);
4246  BaseExpr = BaseExpr->IgnoreParenCasts();
4247  const ConstantArrayType *ArrayTy =
4248    Context.getAsConstantArrayType(BaseExpr->getType());
4249  if (!ArrayTy)
4250    return;
4251
4252  llvm::APSInt index;
4253  if (!IndexExpr->EvaluateAsInt(index, Context))
4254    return;
4255  if (IndexNegated)
4256    index = -index;
4257
4258  const NamedDecl *ND = NULL;
4259  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4260    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4261  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4262    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4263
4264  if (index.isUnsigned() || !index.isNegative()) {
4265    llvm::APInt size = ArrayTy->getSize();
4266    if (!size.isStrictlyPositive())
4267      return;
4268
4269    const Type* BaseType = getElementType(BaseExpr);
4270    if (BaseType != EffectiveType) {
4271      // Make sure we're comparing apples to apples when comparing index to size
4272      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4273      uint64_t array_typesize = Context.getTypeSize(BaseType);
4274      // Handle ptrarith_typesize being zero, such as when casting to void*
4275      if (!ptrarith_typesize) ptrarith_typesize = 1;
4276      if (ptrarith_typesize != array_typesize) {
4277        // There's a cast to a different size type involved
4278        uint64_t ratio = array_typesize / ptrarith_typesize;
4279        // TODO: Be smarter about handling cases where array_typesize is not a
4280        // multiple of ptrarith_typesize
4281        if (ptrarith_typesize * ratio == array_typesize)
4282          size *= llvm::APInt(size.getBitWidth(), ratio);
4283      }
4284    }
4285
4286    if (size.getBitWidth() > index.getBitWidth())
4287      index = index.sext(size.getBitWidth());
4288    else if (size.getBitWidth() < index.getBitWidth())
4289      size = size.sext(index.getBitWidth());
4290
4291    // For array subscripting the index must be less than size, but for pointer
4292    // arithmetic also allow the index (offset) to be equal to size since
4293    // computing the next address after the end of the array is legal and
4294    // commonly done e.g. in C++ iterators and range-based for loops.
4295    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
4296      return;
4297
4298    // Also don't warn for arrays of size 1 which are members of some
4299    // structure. These are often used to approximate flexible arrays in C89
4300    // code.
4301    if (IsTailPaddedMemberArray(*this, size, ND))
4302      return;
4303
4304    // Suppress the warning if the subscript expression (as identified by the
4305    // ']' location) and the index expression are both from macro expansions
4306    // within a system header.
4307    if (ASE) {
4308      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4309          ASE->getRBracketLoc());
4310      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4311        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4312            IndexExpr->getLocStart());
4313        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4314          return;
4315      }
4316    }
4317
4318    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4319    if (ASE)
4320      DiagID = diag::warn_array_index_exceeds_bounds;
4321
4322    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4323                        PDiag(DiagID) << index.toString(10, true)
4324                          << size.toString(10, true)
4325                          << (unsigned)size.getLimitedValue(~0U)
4326                          << IndexExpr->getSourceRange());
4327  } else {
4328    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4329    if (!ASE) {
4330      DiagID = diag::warn_ptr_arith_precedes_bounds;
4331      if (index.isNegative()) index = -index;
4332    }
4333
4334    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4335                        PDiag(DiagID) << index.toString(10, true)
4336                          << IndexExpr->getSourceRange());
4337  }
4338
4339  if (!ND) {
4340    // Try harder to find a NamedDecl to point at in the note.
4341    while (const ArraySubscriptExpr *ASE =
4342           dyn_cast<ArraySubscriptExpr>(BaseExpr))
4343      BaseExpr = ASE->getBase()->IgnoreParenCasts();
4344    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4345      ND = dyn_cast<NamedDecl>(DRE->getDecl());
4346    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4347      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4348  }
4349
4350  if (ND)
4351    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4352                        PDiag(diag::note_array_index_out_of_bounds)
4353                          << ND->getDeclName());
4354}
4355
4356void Sema::CheckArrayAccess(const Expr *expr) {
4357  int AllowOnePastEnd = 0;
4358  while (expr) {
4359    expr = expr->IgnoreParenImpCasts();
4360    switch (expr->getStmtClass()) {
4361      case Stmt::ArraySubscriptExprClass: {
4362        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4363        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
4364                         AllowOnePastEnd > 0);
4365        return;
4366      }
4367      case Stmt::UnaryOperatorClass: {
4368        // Only unwrap the * and & unary operators
4369        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4370        expr = UO->getSubExpr();
4371        switch (UO->getOpcode()) {
4372          case UO_AddrOf:
4373            AllowOnePastEnd++;
4374            break;
4375          case UO_Deref:
4376            AllowOnePastEnd--;
4377            break;
4378          default:
4379            return;
4380        }
4381        break;
4382      }
4383      case Stmt::ConditionalOperatorClass: {
4384        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4385        if (const Expr *lhs = cond->getLHS())
4386          CheckArrayAccess(lhs);
4387        if (const Expr *rhs = cond->getRHS())
4388          CheckArrayAccess(rhs);
4389        return;
4390      }
4391      default:
4392        return;
4393    }
4394  }
4395}
4396
4397//===--- CHECK: Objective-C retain cycles ----------------------------------//
4398
4399namespace {
4400  struct RetainCycleOwner {
4401    RetainCycleOwner() : Variable(0), Indirect(false) {}
4402    VarDecl *Variable;
4403    SourceRange Range;
4404    SourceLocation Loc;
4405    bool Indirect;
4406
4407    void setLocsFrom(Expr *e) {
4408      Loc = e->getExprLoc();
4409      Range = e->getSourceRange();
4410    }
4411  };
4412}
4413
4414/// Consider whether capturing the given variable can possibly lead to
4415/// a retain cycle.
4416static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4417  // In ARC, it's captured strongly iff the variable has __strong
4418  // lifetime.  In MRR, it's captured strongly if the variable is
4419  // __block and has an appropriate type.
4420  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4421    return false;
4422
4423  owner.Variable = var;
4424  owner.setLocsFrom(ref);
4425  return true;
4426}
4427
4428static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
4429  while (true) {
4430    e = e->IgnoreParens();
4431    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4432      switch (cast->getCastKind()) {
4433      case CK_BitCast:
4434      case CK_LValueBitCast:
4435      case CK_LValueToRValue:
4436      case CK_ARCReclaimReturnedObject:
4437        e = cast->getSubExpr();
4438        continue;
4439
4440      default:
4441        return false;
4442      }
4443    }
4444
4445    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4446      ObjCIvarDecl *ivar = ref->getDecl();
4447      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4448        return false;
4449
4450      // Try to find a retain cycle in the base.
4451      if (!findRetainCycleOwner(S, ref->getBase(), owner))
4452        return false;
4453
4454      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4455      owner.Indirect = true;
4456      return true;
4457    }
4458
4459    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4460      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4461      if (!var) return false;
4462      return considerVariable(var, ref, owner);
4463    }
4464
4465    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
4466      owner.Variable = ref->getDecl();
4467      owner.setLocsFrom(ref);
4468      return true;
4469    }
4470
4471    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4472      if (member->isArrow()) return false;
4473
4474      // Don't count this as an indirect ownership.
4475      e = member->getBase();
4476      continue;
4477    }
4478
4479    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4480      // Only pay attention to pseudo-objects on property references.
4481      ObjCPropertyRefExpr *pre
4482        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4483                                              ->IgnoreParens());
4484      if (!pre) return false;
4485      if (pre->isImplicitProperty()) return false;
4486      ObjCPropertyDecl *property = pre->getExplicitProperty();
4487      if (!property->isRetaining() &&
4488          !(property->getPropertyIvarDecl() &&
4489            property->getPropertyIvarDecl()->getType()
4490              .getObjCLifetime() == Qualifiers::OCL_Strong))
4491          return false;
4492
4493      owner.Indirect = true;
4494      if (pre->isSuperReceiver()) {
4495        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
4496        if (!owner.Variable)
4497          return false;
4498        owner.Loc = pre->getLocation();
4499        owner.Range = pre->getSourceRange();
4500        return true;
4501      }
4502      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4503                              ->getSourceExpr());
4504      continue;
4505    }
4506
4507    // Array ivars?
4508
4509    return false;
4510  }
4511}
4512
4513namespace {
4514  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4515    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4516      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4517        Variable(variable), Capturer(0) {}
4518
4519    VarDecl *Variable;
4520    Expr *Capturer;
4521
4522    void VisitDeclRefExpr(DeclRefExpr *ref) {
4523      if (ref->getDecl() == Variable && !Capturer)
4524        Capturer = ref;
4525    }
4526
4527    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
4528      if (ref->getDecl() == Variable && !Capturer)
4529        Capturer = ref;
4530    }
4531
4532    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4533      if (Capturer) return;
4534      Visit(ref->getBase());
4535      if (Capturer && ref->isFreeIvar())
4536        Capturer = ref;
4537    }
4538
4539    void VisitBlockExpr(BlockExpr *block) {
4540      // Look inside nested blocks
4541      if (block->getBlockDecl()->capturesVariable(Variable))
4542        Visit(block->getBlockDecl()->getBody());
4543    }
4544  };
4545}
4546
4547/// Check whether the given argument is a block which captures a
4548/// variable.
4549static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4550  assert(owner.Variable && owner.Loc.isValid());
4551
4552  e = e->IgnoreParenCasts();
4553  BlockExpr *block = dyn_cast<BlockExpr>(e);
4554  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4555    return 0;
4556
4557  FindCaptureVisitor visitor(S.Context, owner.Variable);
4558  visitor.Visit(block->getBlockDecl()->getBody());
4559  return visitor.Capturer;
4560}
4561
4562static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4563                                RetainCycleOwner &owner) {
4564  assert(capturer);
4565  assert(owner.Variable && owner.Loc.isValid());
4566
4567  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4568    << owner.Variable << capturer->getSourceRange();
4569  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4570    << owner.Indirect << owner.Range;
4571}
4572
4573/// Check for a keyword selector that starts with the word 'add' or
4574/// 'set'.
4575static bool isSetterLikeSelector(Selector sel) {
4576  if (sel.isUnarySelector()) return false;
4577
4578  StringRef str = sel.getNameForSlot(0);
4579  while (!str.empty() && str.front() == '_') str = str.substr(1);
4580  if (str.startswith("set"))
4581    str = str.substr(3);
4582  else if (str.startswith("add")) {
4583    // Specially whitelist 'addOperationWithBlock:'.
4584    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
4585      return false;
4586    str = str.substr(3);
4587  }
4588  else
4589    return false;
4590
4591  if (str.empty()) return true;
4592  return !islower(str.front());
4593}
4594
4595/// Check a message send to see if it's likely to cause a retain cycle.
4596void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4597  // Only check instance methods whose selector looks like a setter.
4598  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4599    return;
4600
4601  // Try to find a variable that the receiver is strongly owned by.
4602  RetainCycleOwner owner;
4603  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4604    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
4605      return;
4606  } else {
4607    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4608    owner.Variable = getCurMethodDecl()->getSelfDecl();
4609    owner.Loc = msg->getSuperLoc();
4610    owner.Range = msg->getSuperLoc();
4611  }
4612
4613  // Check whether the receiver is captured by any of the arguments.
4614  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4615    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4616      return diagnoseRetainCycle(*this, capturer, owner);
4617}
4618
4619/// Check a property assign to see if it's likely to cause a retain cycle.
4620void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4621  RetainCycleOwner owner;
4622  if (!findRetainCycleOwner(*this, receiver, owner))
4623    return;
4624
4625  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4626    diagnoseRetainCycle(*this, capturer, owner);
4627}
4628
4629bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4630                              QualType LHS, Expr *RHS) {
4631  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4632  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4633    return false;
4634  // strip off any implicit cast added to get to the one arc-specific
4635  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4636    if (cast->getCastKind() == CK_ARCConsumeObject) {
4637      Diag(Loc, diag::warn_arc_retained_assign)
4638        << (LT == Qualifiers::OCL_ExplicitNone)
4639        << RHS->getSourceRange();
4640      return true;
4641    }
4642    RHS = cast->getSubExpr();
4643  }
4644  return false;
4645}
4646
4647void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4648                              Expr *LHS, Expr *RHS) {
4649  QualType LHSType;
4650  // PropertyRef on LHS type need be directly obtained from
4651  // its declaration as it has a PsuedoType.
4652  ObjCPropertyRefExpr *PRE
4653    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
4654  if (PRE && !PRE->isImplicitProperty()) {
4655    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4656    if (PD)
4657      LHSType = PD->getType();
4658  }
4659
4660  if (LHSType.isNull())
4661    LHSType = LHS->getType();
4662  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4663    return;
4664  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4665  // FIXME. Check for other life times.
4666  if (LT != Qualifiers::OCL_None)
4667    return;
4668
4669  if (PRE) {
4670    if (PRE->isImplicitProperty())
4671      return;
4672    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4673    if (!PD)
4674      return;
4675
4676    unsigned Attributes = PD->getPropertyAttributes();
4677    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
4678      // when 'assign' attribute was not explicitly specified
4679      // by user, ignore it and rely on property type itself
4680      // for lifetime info.
4681      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
4682      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
4683          LHSType->isObjCRetainableType())
4684        return;
4685
4686      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4687        if (cast->getCastKind() == CK_ARCConsumeObject) {
4688          Diag(Loc, diag::warn_arc_retained_property_assign)
4689          << RHS->getSourceRange();
4690          return;
4691        }
4692        RHS = cast->getSubExpr();
4693      }
4694    }
4695  }
4696}
4697