SemaChecking.cpp revision 372e103dab4239ec52b65b9eda69fd43c0b348d4
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "clang/Basic/TargetBuiltins.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Basic/ConvertUTF.h"
36
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41/// getLocationOfStringLiteralByte - Return a source location that points to the
42/// specified byte of the specified string literal.
43///
44/// Strings are amazingly complex.  They can be formed from multiple tokens and
45/// can have escape sequences in them in addition to the usual trigraph and
46/// escaped newline business.  This routine handles this complexity.
47///
48SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
49                                                    unsigned ByteNo) const {
50  assert(!SL->isWide() && "This doesn't work for wide strings yet");
51
52  // Loop over all of the tokens in this string until we find the one that
53  // contains the byte we're looking for.
54  unsigned TokNo = 0;
55  while (1) {
56    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
57    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
58
59    // Get the spelling of the string so that we can get the data that makes up
60    // the string literal, not the identifier for the macro it is potentially
61    // expanded through.
62    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
63
64    // Re-lex the token to get its length and original spelling.
65    std::pair<FileID, unsigned> LocInfo =
66      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
67    bool Invalid = false;
68    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
69    if (Invalid)
70      return StrTokSpellingLoc;
71
72    const char *StrData = Buffer.data()+LocInfo.second;
73
74    // Create a langops struct and enable trigraphs.  This is sufficient for
75    // relexing tokens.
76    LangOptions LangOpts;
77    LangOpts.Trigraphs = true;
78
79    // Create a lexer starting at the beginning of this token.
80    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
81                   Buffer.end());
82    Token TheTok;
83    TheLexer.LexFromRawLexer(TheTok);
84
85    // Use the StringLiteralParser to compute the length of the string in bytes.
86    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
87    unsigned TokNumBytes = SLP.GetStringLength();
88
89    // If the byte is in this token, return the location of the byte.
90    if (ByteNo < TokNumBytes ||
91        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
92      unsigned Offset =
93        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
94                                                   /*Complain=*/false);
95
96      // Now that we know the offset of the token in the spelling, use the
97      // preprocessor to get the offset in the original source.
98      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
99    }
100
101    // Move to the next string token.
102    ++TokNo;
103    ByteNo -= TokNumBytes;
104  }
105}
106
107/// CheckablePrintfAttr - does a function call have a "printf" attribute
108/// and arguments that merit checking?
109bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
110  if (Format->getType() == "printf") return true;
111  if (Format->getType() == "printf0") {
112    // printf0 allows null "format" string; if so don't check format/args
113    unsigned format_idx = Format->getFormatIdx() - 1;
114    // Does the index refer to the implicit object argument?
115    if (isa<CXXMemberCallExpr>(TheCall)) {
116      if (format_idx == 0)
117        return false;
118      --format_idx;
119    }
120    if (format_idx < TheCall->getNumArgs()) {
121      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
122      if (!Format->isNullPointerConstant(Context,
123                                         Expr::NPC_ValueDependentIsNull))
124        return true;
125    }
126  }
127  return false;
128}
129
130ExprResult
131Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
132  ExprResult TheCallResult(Owned(TheCall));
133
134  // Find out if any arguments are required to be integer constant expressions.
135  unsigned ICEArguments = 0;
136  ASTContext::GetBuiltinTypeError Error;
137  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
138  if (Error != ASTContext::GE_None)
139    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
140
141  // If any arguments are required to be ICE's, check and diagnose.
142  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
143    // Skip arguments not required to be ICE's.
144    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
145
146    llvm::APSInt Result;
147    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
148      return true;
149    ICEArguments &= ~(1 << ArgNo);
150  }
151
152  switch (BuiltinID) {
153  case Builtin::BI__builtin___CFStringMakeConstantString:
154    assert(TheCall->getNumArgs() == 1 &&
155           "Wrong # arguments to builtin CFStringMakeConstantString");
156    if (CheckObjCString(TheCall->getArg(0)))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_stdarg_start:
160  case Builtin::BI__builtin_va_start:
161    if (SemaBuiltinVAStart(TheCall))
162      return ExprError();
163    break;
164  case Builtin::BI__builtin_isgreater:
165  case Builtin::BI__builtin_isgreaterequal:
166  case Builtin::BI__builtin_isless:
167  case Builtin::BI__builtin_islessequal:
168  case Builtin::BI__builtin_islessgreater:
169  case Builtin::BI__builtin_isunordered:
170    if (SemaBuiltinUnorderedCompare(TheCall))
171      return ExprError();
172    break;
173  case Builtin::BI__builtin_fpclassify:
174    if (SemaBuiltinFPClassification(TheCall, 6))
175      return ExprError();
176    break;
177  case Builtin::BI__builtin_isfinite:
178  case Builtin::BI__builtin_isinf:
179  case Builtin::BI__builtin_isinf_sign:
180  case Builtin::BI__builtin_isnan:
181  case Builtin::BI__builtin_isnormal:
182    if (SemaBuiltinFPClassification(TheCall, 1))
183      return ExprError();
184    break;
185  case Builtin::BI__builtin_shufflevector:
186    return SemaBuiltinShuffleVector(TheCall);
187    // TheCall will be freed by the smart pointer here, but that's fine, since
188    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
189  case Builtin::BI__builtin_prefetch:
190    if (SemaBuiltinPrefetch(TheCall))
191      return ExprError();
192    break;
193  case Builtin::BI__builtin_object_size:
194    if (SemaBuiltinObjectSize(TheCall))
195      return ExprError();
196    break;
197  case Builtin::BI__builtin_longjmp:
198    if (SemaBuiltinLongjmp(TheCall))
199      return ExprError();
200    break;
201  case Builtin::BI__sync_fetch_and_add:
202  case Builtin::BI__sync_fetch_and_sub:
203  case Builtin::BI__sync_fetch_and_or:
204  case Builtin::BI__sync_fetch_and_and:
205  case Builtin::BI__sync_fetch_and_xor:
206  case Builtin::BI__sync_add_and_fetch:
207  case Builtin::BI__sync_sub_and_fetch:
208  case Builtin::BI__sync_and_and_fetch:
209  case Builtin::BI__sync_or_and_fetch:
210  case Builtin::BI__sync_xor_and_fetch:
211  case Builtin::BI__sync_val_compare_and_swap:
212  case Builtin::BI__sync_bool_compare_and_swap:
213  case Builtin::BI__sync_lock_test_and_set:
214  case Builtin::BI__sync_lock_release:
215    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
216  }
217
218  // Since the target specific builtins for each arch overlap, only check those
219  // of the arch we are compiling for.
220  if (BuiltinID >= Builtin::FirstTSBuiltin) {
221    switch (Context.Target.getTriple().getArch()) {
222      case llvm::Triple::arm:
223      case llvm::Triple::thumb:
224        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
225          return ExprError();
226        break;
227      default:
228        break;
229    }
230  }
231
232  return move(TheCallResult);
233}
234
235// Get the valid immediate range for the specified NEON type code.
236static unsigned RFT(unsigned t, bool shift = false) {
237  bool quad = t & 0x10;
238
239  switch (t & 0x7) {
240    case 0: // i8
241      return shift ? 7 : (8 << (int)quad) - 1;
242    case 1: // i16
243      return shift ? 15 : (4 << (int)quad) - 1;
244    case 2: // i32
245      return shift ? 31 : (2 << (int)quad) - 1;
246    case 3: // i64
247      return shift ? 63 : (1 << (int)quad) - 1;
248    case 4: // f32
249      assert(!shift && "cannot shift float types!");
250      return (2 << (int)quad) - 1;
251    case 5: // poly8
252      assert(!shift && "cannot shift polynomial types!");
253      return (8 << (int)quad) - 1;
254    case 6: // poly16
255      assert(!shift && "cannot shift polynomial types!");
256      return (4 << (int)quad) - 1;
257    case 7: // float16
258      assert(!shift && "cannot shift float types!");
259      return (4 << (int)quad) - 1;
260  }
261  return 0;
262}
263
264bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
265  llvm::APSInt Result;
266
267  unsigned mask = 0;
268  unsigned TV = 0;
269  switch (BuiltinID) {
270#define GET_NEON_OVERLOAD_CHECK
271#include "clang/Basic/arm_neon.inc"
272#undef GET_NEON_OVERLOAD_CHECK
273  }
274
275  // For NEON intrinsics which are overloaded on vector element type, validate
276  // the immediate which specifies which variant to emit.
277  if (mask) {
278    unsigned ArgNo = TheCall->getNumArgs()-1;
279    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
280      return true;
281
282    TV = Result.getLimitedValue(32);
283    if ((TV > 31) || (mask & (1 << TV)) == 0)
284      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
285        << TheCall->getArg(ArgNo)->getSourceRange();
286  }
287
288  // For NEON intrinsics which take an immediate value as part of the
289  // instruction, range check them here.
290  unsigned i = 0, l = 0, u = 0;
291  switch (BuiltinID) {
292  default: return false;
293  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
294  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
295  case ARM::BI__builtin_arm_vcvtr_f:
296  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
297#define GET_NEON_IMMEDIATE_CHECK
298#include "clang/Basic/arm_neon.inc"
299#undef GET_NEON_IMMEDIATE_CHECK
300  };
301
302  // Check that the immediate argument is actually a constant.
303  if (SemaBuiltinConstantArg(TheCall, i, Result))
304    return true;
305
306  // Range check against the upper/lower values for this isntruction.
307  unsigned Val = Result.getZExtValue();
308  if (Val < l || Val > (u + l))
309    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
310      << l << u+l << TheCall->getArg(i)->getSourceRange();
311
312  // FIXME: VFP Intrinsics should error if VFP not present.
313  return false;
314}
315
316/// CheckFunctionCall - Check a direct function call for various correctness
317/// and safety properties not strictly enforced by the C type system.
318bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
319  // Get the IdentifierInfo* for the called function.
320  IdentifierInfo *FnInfo = FDecl->getIdentifier();
321
322  // None of the checks below are needed for functions that don't have
323  // simple names (e.g., C++ conversion functions).
324  if (!FnInfo)
325    return false;
326
327  // FIXME: This mechanism should be abstracted to be less fragile and
328  // more efficient. For example, just map function ids to custom
329  // handlers.
330
331  // Printf and scanf checking.
332  for (specific_attr_iterator<FormatAttr>
333         i = FDecl->specific_attr_begin<FormatAttr>(),
334         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
335
336    const FormatAttr *Format = *i;
337    const bool b = Format->getType() == "scanf";
338    if (b || CheckablePrintfAttr(Format, TheCall)) {
339      bool HasVAListArg = Format->getFirstArg() == 0;
340      CheckPrintfScanfArguments(TheCall, HasVAListArg,
341                                Format->getFormatIdx() - 1,
342                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
343                                !b);
344    }
345  }
346
347  for (specific_attr_iterator<NonNullAttr>
348         i = FDecl->specific_attr_begin<NonNullAttr>(),
349         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
350    CheckNonNullArguments(*i, TheCall);
351  }
352
353  return false;
354}
355
356bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
357  // Printf checking.
358  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
359  if (!Format)
360    return false;
361
362  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
363  if (!V)
364    return false;
365
366  QualType Ty = V->getType();
367  if (!Ty->isBlockPointerType())
368    return false;
369
370  const bool b = Format->getType() == "scanf";
371  if (!b && !CheckablePrintfAttr(Format, TheCall))
372    return false;
373
374  bool HasVAListArg = Format->getFirstArg() == 0;
375  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
376                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
377
378  return false;
379}
380
381/// SemaBuiltinAtomicOverloaded - We have a call to a function like
382/// __sync_fetch_and_add, which is an overloaded function based on the pointer
383/// type of its first argument.  The main ActOnCallExpr routines have already
384/// promoted the types of arguments because all of these calls are prototyped as
385/// void(...).
386///
387/// This function goes through and does final semantic checking for these
388/// builtins,
389ExprResult
390Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
391  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
392  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
393  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
394
395  // Ensure that we have at least one argument to do type inference from.
396  if (TheCall->getNumArgs() < 1) {
397    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
398      << 0 << 1 << TheCall->getNumArgs()
399      << TheCall->getCallee()->getSourceRange();
400    return ExprError();
401  }
402
403  // Inspect the first argument of the atomic builtin.  This should always be
404  // a pointer type, whose element is an integral scalar or pointer type.
405  // Because it is a pointer type, we don't have to worry about any implicit
406  // casts here.
407  // FIXME: We don't allow floating point scalars as input.
408  Expr *FirstArg = TheCall->getArg(0);
409  if (!FirstArg->getType()->isPointerType()) {
410    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
411      << FirstArg->getType() << FirstArg->getSourceRange();
412    return ExprError();
413  }
414
415  QualType ValType =
416    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
417  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
418      !ValType->isBlockPointerType()) {
419    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
420      << FirstArg->getType() << FirstArg->getSourceRange();
421    return ExprError();
422  }
423
424  // The majority of builtins return a value, but a few have special return
425  // types, so allow them to override appropriately below.
426  QualType ResultType = ValType;
427
428  // We need to figure out which concrete builtin this maps onto.  For example,
429  // __sync_fetch_and_add with a 2 byte object turns into
430  // __sync_fetch_and_add_2.
431#define BUILTIN_ROW(x) \
432  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
433    Builtin::BI##x##_8, Builtin::BI##x##_16 }
434
435  static const unsigned BuiltinIndices[][5] = {
436    BUILTIN_ROW(__sync_fetch_and_add),
437    BUILTIN_ROW(__sync_fetch_and_sub),
438    BUILTIN_ROW(__sync_fetch_and_or),
439    BUILTIN_ROW(__sync_fetch_and_and),
440    BUILTIN_ROW(__sync_fetch_and_xor),
441
442    BUILTIN_ROW(__sync_add_and_fetch),
443    BUILTIN_ROW(__sync_sub_and_fetch),
444    BUILTIN_ROW(__sync_and_and_fetch),
445    BUILTIN_ROW(__sync_or_and_fetch),
446    BUILTIN_ROW(__sync_xor_and_fetch),
447
448    BUILTIN_ROW(__sync_val_compare_and_swap),
449    BUILTIN_ROW(__sync_bool_compare_and_swap),
450    BUILTIN_ROW(__sync_lock_test_and_set),
451    BUILTIN_ROW(__sync_lock_release)
452  };
453#undef BUILTIN_ROW
454
455  // Determine the index of the size.
456  unsigned SizeIndex;
457  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
458  case 1: SizeIndex = 0; break;
459  case 2: SizeIndex = 1; break;
460  case 4: SizeIndex = 2; break;
461  case 8: SizeIndex = 3; break;
462  case 16: SizeIndex = 4; break;
463  default:
464    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
465      << FirstArg->getType() << FirstArg->getSourceRange();
466    return ExprError();
467  }
468
469  // Each of these builtins has one pointer argument, followed by some number of
470  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
471  // that we ignore.  Find out which row of BuiltinIndices to read from as well
472  // as the number of fixed args.
473  unsigned BuiltinID = FDecl->getBuiltinID();
474  unsigned BuiltinIndex, NumFixed = 1;
475  switch (BuiltinID) {
476  default: assert(0 && "Unknown overloaded atomic builtin!");
477  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
478  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
479  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
480  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
481  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
482
483  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
484  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
485  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
486  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
487  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
488
489  case Builtin::BI__sync_val_compare_and_swap:
490    BuiltinIndex = 10;
491    NumFixed = 2;
492    break;
493  case Builtin::BI__sync_bool_compare_and_swap:
494    BuiltinIndex = 11;
495    NumFixed = 2;
496    ResultType = Context.BoolTy;
497    break;
498  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
499  case Builtin::BI__sync_lock_release:
500    BuiltinIndex = 13;
501    NumFixed = 0;
502    ResultType = Context.VoidTy;
503    break;
504  }
505
506  // Now that we know how many fixed arguments we expect, first check that we
507  // have at least that many.
508  if (TheCall->getNumArgs() < 1+NumFixed) {
509    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
510      << 0 << 1+NumFixed << TheCall->getNumArgs()
511      << TheCall->getCallee()->getSourceRange();
512    return ExprError();
513  }
514
515  // Get the decl for the concrete builtin from this, we can tell what the
516  // concrete integer type we should convert to is.
517  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
518  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
519  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
520  FunctionDecl *NewBuiltinDecl =
521    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
522                                           TUScope, false, DRE->getLocStart()));
523
524  // The first argument --- the pointer --- has a fixed type; we
525  // deduce the types of the rest of the arguments accordingly.  Walk
526  // the remaining arguments, converting them to the deduced value type.
527  for (unsigned i = 0; i != NumFixed; ++i) {
528    Expr *Arg = TheCall->getArg(i+1);
529
530    // If the argument is an implicit cast, then there was a promotion due to
531    // "...", just remove it now.
532    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
533      Arg = ICE->getSubExpr();
534      ICE->setSubExpr(0);
535      TheCall->setArg(i+1, Arg);
536    }
537
538    // GCC does an implicit conversion to the pointer or integer ValType.  This
539    // can fail in some cases (1i -> int**), check for this error case now.
540    CastKind Kind = CK_Unknown;
541    CXXCastPath BasePath;
542    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
543      return ExprError();
544
545    // Okay, we have something that *can* be converted to the right type.  Check
546    // to see if there is a potentially weird extension going on here.  This can
547    // happen when you do an atomic operation on something like an char* and
548    // pass in 42.  The 42 gets converted to char.  This is even more strange
549    // for things like 45.123 -> char, etc.
550    // FIXME: Do this check.
551    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
552    TheCall->setArg(i+1, Arg);
553  }
554
555  // Switch the DeclRefExpr to refer to the new decl.
556  DRE->setDecl(NewBuiltinDecl);
557  DRE->setType(NewBuiltinDecl->getType());
558
559  // Set the callee in the CallExpr.
560  // FIXME: This leaks the original parens and implicit casts.
561  Expr *PromotedCall = DRE;
562  UsualUnaryConversions(PromotedCall);
563  TheCall->setCallee(PromotedCall);
564
565  // Change the result type of the call to match the original value type. This
566  // is arbitrary, but the codegen for these builtins ins design to handle it
567  // gracefully.
568  TheCall->setType(ResultType);
569
570  return move(TheCallResult);
571}
572
573
574/// CheckObjCString - Checks that the argument to the builtin
575/// CFString constructor is correct
576/// Note: It might also make sense to do the UTF-16 conversion here (would
577/// simplify the backend).
578bool Sema::CheckObjCString(Expr *Arg) {
579  Arg = Arg->IgnoreParenCasts();
580  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
581
582  if (!Literal || Literal->isWide()) {
583    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
584      << Arg->getSourceRange();
585    return true;
586  }
587
588  size_t NulPos = Literal->getString().find('\0');
589  if (NulPos != llvm::StringRef::npos) {
590    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
591         diag::warn_cfstring_literal_contains_nul_character)
592      << Arg->getSourceRange();
593  }
594  if (Literal->containsNonAsciiOrNull()) {
595    llvm::StringRef String = Literal->getString();
596    unsigned NumBytes = String.size();
597    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
598    const UTF8 *FromPtr = (UTF8 *)String.data();
599    UTF16 *ToPtr = &ToBuf[0];
600
601    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
602                                                 &ToPtr, ToPtr + NumBytes,
603                                                 strictConversion);
604    // Check for conversion failure.
605    if (Result != conversionOK)
606      Diag(Arg->getLocStart(),
607           diag::warn_cfstring_truncated) << Arg->getSourceRange();
608  }
609  return false;
610}
611
612/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
613/// Emit an error and return true on failure, return false on success.
614bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
615  Expr *Fn = TheCall->getCallee();
616  if (TheCall->getNumArgs() > 2) {
617    Diag(TheCall->getArg(2)->getLocStart(),
618         diag::err_typecheck_call_too_many_args)
619      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
620      << Fn->getSourceRange()
621      << SourceRange(TheCall->getArg(2)->getLocStart(),
622                     (*(TheCall->arg_end()-1))->getLocEnd());
623    return true;
624  }
625
626  if (TheCall->getNumArgs() < 2) {
627    return Diag(TheCall->getLocEnd(),
628      diag::err_typecheck_call_too_few_args_at_least)
629      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
630  }
631
632  // Determine whether the current function is variadic or not.
633  BlockScopeInfo *CurBlock = getCurBlock();
634  bool isVariadic;
635  if (CurBlock)
636    isVariadic = CurBlock->TheDecl->isVariadic();
637  else if (FunctionDecl *FD = getCurFunctionDecl())
638    isVariadic = FD->isVariadic();
639  else
640    isVariadic = getCurMethodDecl()->isVariadic();
641
642  if (!isVariadic) {
643    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
644    return true;
645  }
646
647  // Verify that the second argument to the builtin is the last argument of the
648  // current function or method.
649  bool SecondArgIsLastNamedArgument = false;
650  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
651
652  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
653    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
654      // FIXME: This isn't correct for methods (results in bogus warning).
655      // Get the last formal in the current function.
656      const ParmVarDecl *LastArg;
657      if (CurBlock)
658        LastArg = *(CurBlock->TheDecl->param_end()-1);
659      else if (FunctionDecl *FD = getCurFunctionDecl())
660        LastArg = *(FD->param_end()-1);
661      else
662        LastArg = *(getCurMethodDecl()->param_end()-1);
663      SecondArgIsLastNamedArgument = PV == LastArg;
664    }
665  }
666
667  if (!SecondArgIsLastNamedArgument)
668    Diag(TheCall->getArg(1)->getLocStart(),
669         diag::warn_second_parameter_of_va_start_not_last_named_argument);
670  return false;
671}
672
673/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
674/// friends.  This is declared to take (...), so we have to check everything.
675bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
676  if (TheCall->getNumArgs() < 2)
677    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
678      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
679  if (TheCall->getNumArgs() > 2)
680    return Diag(TheCall->getArg(2)->getLocStart(),
681                diag::err_typecheck_call_too_many_args)
682      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
683      << SourceRange(TheCall->getArg(2)->getLocStart(),
684                     (*(TheCall->arg_end()-1))->getLocEnd());
685
686  Expr *OrigArg0 = TheCall->getArg(0);
687  Expr *OrigArg1 = TheCall->getArg(1);
688
689  // Do standard promotions between the two arguments, returning their common
690  // type.
691  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
692
693  // Make sure any conversions are pushed back into the call; this is
694  // type safe since unordered compare builtins are declared as "_Bool
695  // foo(...)".
696  TheCall->setArg(0, OrigArg0);
697  TheCall->setArg(1, OrigArg1);
698
699  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
700    return false;
701
702  // If the common type isn't a real floating type, then the arguments were
703  // invalid for this operation.
704  if (!Res->isRealFloatingType())
705    return Diag(OrigArg0->getLocStart(),
706                diag::err_typecheck_call_invalid_ordered_compare)
707      << OrigArg0->getType() << OrigArg1->getType()
708      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
709
710  return false;
711}
712
713/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
714/// __builtin_isnan and friends.  This is declared to take (...), so we have
715/// to check everything. We expect the last argument to be a floating point
716/// value.
717bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
718  if (TheCall->getNumArgs() < NumArgs)
719    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
720      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
721  if (TheCall->getNumArgs() > NumArgs)
722    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
723                diag::err_typecheck_call_too_many_args)
724      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
725      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
726                     (*(TheCall->arg_end()-1))->getLocEnd());
727
728  Expr *OrigArg = TheCall->getArg(NumArgs-1);
729
730  if (OrigArg->isTypeDependent())
731    return false;
732
733  // This operation requires a non-_Complex floating-point number.
734  if (!OrigArg->getType()->isRealFloatingType())
735    return Diag(OrigArg->getLocStart(),
736                diag::err_typecheck_call_invalid_unary_fp)
737      << OrigArg->getType() << OrigArg->getSourceRange();
738
739  // If this is an implicit conversion from float -> double, remove it.
740  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
741    Expr *CastArg = Cast->getSubExpr();
742    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
743      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
744             "promotion from float to double is the only expected cast here");
745      Cast->setSubExpr(0);
746      TheCall->setArg(NumArgs-1, CastArg);
747      OrigArg = CastArg;
748    }
749  }
750
751  return false;
752}
753
754/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
755// This is declared to take (...), so we have to check everything.
756ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
757  if (TheCall->getNumArgs() < 2)
758    return ExprError(Diag(TheCall->getLocEnd(),
759                          diag::err_typecheck_call_too_few_args_at_least)
760      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
761      << TheCall->getSourceRange());
762
763  // Determine which of the following types of shufflevector we're checking:
764  // 1) unary, vector mask: (lhs, mask)
765  // 2) binary, vector mask: (lhs, rhs, mask)
766  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
767  QualType resType = TheCall->getArg(0)->getType();
768  unsigned numElements = 0;
769
770  if (!TheCall->getArg(0)->isTypeDependent() &&
771      !TheCall->getArg(1)->isTypeDependent()) {
772    QualType LHSType = TheCall->getArg(0)->getType();
773    QualType RHSType = TheCall->getArg(1)->getType();
774
775    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
776      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
777        << SourceRange(TheCall->getArg(0)->getLocStart(),
778                       TheCall->getArg(1)->getLocEnd());
779      return ExprError();
780    }
781
782    numElements = LHSType->getAs<VectorType>()->getNumElements();
783    unsigned numResElements = TheCall->getNumArgs() - 2;
784
785    // Check to see if we have a call with 2 vector arguments, the unary shuffle
786    // with mask.  If so, verify that RHS is an integer vector type with the
787    // same number of elts as lhs.
788    if (TheCall->getNumArgs() == 2) {
789      if (!RHSType->hasIntegerRepresentation() ||
790          RHSType->getAs<VectorType>()->getNumElements() != numElements)
791        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
792          << SourceRange(TheCall->getArg(1)->getLocStart(),
793                         TheCall->getArg(1)->getLocEnd());
794      numResElements = numElements;
795    }
796    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
797      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
798        << SourceRange(TheCall->getArg(0)->getLocStart(),
799                       TheCall->getArg(1)->getLocEnd());
800      return ExprError();
801    } else if (numElements != numResElements) {
802      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
803      resType = Context.getVectorType(eltType, numResElements,
804                                      VectorType::NotAltiVec);
805    }
806  }
807
808  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
809    if (TheCall->getArg(i)->isTypeDependent() ||
810        TheCall->getArg(i)->isValueDependent())
811      continue;
812
813    llvm::APSInt Result(32);
814    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
815      return ExprError(Diag(TheCall->getLocStart(),
816                  diag::err_shufflevector_nonconstant_argument)
817                << TheCall->getArg(i)->getSourceRange());
818
819    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
820      return ExprError(Diag(TheCall->getLocStart(),
821                  diag::err_shufflevector_argument_too_large)
822               << TheCall->getArg(i)->getSourceRange());
823  }
824
825  llvm::SmallVector<Expr*, 32> exprs;
826
827  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
828    exprs.push_back(TheCall->getArg(i));
829    TheCall->setArg(i, 0);
830  }
831
832  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
833                                            exprs.size(), resType,
834                                            TheCall->getCallee()->getLocStart(),
835                                            TheCall->getRParenLoc()));
836}
837
838/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
839// This is declared to take (const void*, ...) and can take two
840// optional constant int args.
841bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
842  unsigned NumArgs = TheCall->getNumArgs();
843
844  if (NumArgs > 3)
845    return Diag(TheCall->getLocEnd(),
846             diag::err_typecheck_call_too_many_args_at_most)
847             << 0 /*function call*/ << 3 << NumArgs
848             << TheCall->getSourceRange();
849
850  // Argument 0 is checked for us and the remaining arguments must be
851  // constant integers.
852  for (unsigned i = 1; i != NumArgs; ++i) {
853    Expr *Arg = TheCall->getArg(i);
854
855    llvm::APSInt Result;
856    if (SemaBuiltinConstantArg(TheCall, i, Result))
857      return true;
858
859    // FIXME: gcc issues a warning and rewrites these to 0. These
860    // seems especially odd for the third argument since the default
861    // is 3.
862    if (i == 1) {
863      if (Result.getLimitedValue() > 1)
864        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
865             << "0" << "1" << Arg->getSourceRange();
866    } else {
867      if (Result.getLimitedValue() > 3)
868        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
869            << "0" << "3" << Arg->getSourceRange();
870    }
871  }
872
873  return false;
874}
875
876/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
877/// TheCall is a constant expression.
878bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
879                                  llvm::APSInt &Result) {
880  Expr *Arg = TheCall->getArg(ArgNum);
881  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
882  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
883
884  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
885
886  if (!Arg->isIntegerConstantExpr(Result, Context))
887    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
888                << FDecl->getDeclName() <<  Arg->getSourceRange();
889
890  return false;
891}
892
893/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
894/// int type). This simply type checks that type is one of the defined
895/// constants (0-3).
896// For compatability check 0-3, llvm only handles 0 and 2.
897bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
898  llvm::APSInt Result;
899
900  // Check constant-ness first.
901  if (SemaBuiltinConstantArg(TheCall, 1, Result))
902    return true;
903
904  Expr *Arg = TheCall->getArg(1);
905  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
906    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
907             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
908  }
909
910  return false;
911}
912
913/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
914/// This checks that val is a constant 1.
915bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
916  Expr *Arg = TheCall->getArg(1);
917  llvm::APSInt Result;
918
919  // TODO: This is less than ideal. Overload this to take a value.
920  if (SemaBuiltinConstantArg(TheCall, 1, Result))
921    return true;
922
923  if (Result != 1)
924    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
925             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
926
927  return false;
928}
929
930// Handle i > 1 ? "x" : "y", recursivelly
931bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
932                                  bool HasVAListArg,
933                                  unsigned format_idx, unsigned firstDataArg,
934                                  bool isPrintf) {
935 tryAgain:
936  if (E->isTypeDependent() || E->isValueDependent())
937    return false;
938
939  switch (E->getStmtClass()) {
940  case Stmt::ConditionalOperatorClass: {
941    const ConditionalOperator *C = cast<ConditionalOperator>(E);
942    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
943                                  format_idx, firstDataArg, isPrintf)
944        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
945                                  format_idx, firstDataArg, isPrintf);
946  }
947
948  case Stmt::IntegerLiteralClass:
949    // Technically -Wformat-nonliteral does not warn about this case.
950    // The behavior of printf and friends in this case is implementation
951    // dependent.  Ideally if the format string cannot be null then
952    // it should have a 'nonnull' attribute in the function prototype.
953    return true;
954
955  case Stmt::ImplicitCastExprClass: {
956    E = cast<ImplicitCastExpr>(E)->getSubExpr();
957    goto tryAgain;
958  }
959
960  case Stmt::ParenExprClass: {
961    E = cast<ParenExpr>(E)->getSubExpr();
962    goto tryAgain;
963  }
964
965  case Stmt::DeclRefExprClass: {
966    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
967
968    // As an exception, do not flag errors for variables binding to
969    // const string literals.
970    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
971      bool isConstant = false;
972      QualType T = DR->getType();
973
974      if (const ArrayType *AT = Context.getAsArrayType(T)) {
975        isConstant = AT->getElementType().isConstant(Context);
976      } else if (const PointerType *PT = T->getAs<PointerType>()) {
977        isConstant = T.isConstant(Context) &&
978                     PT->getPointeeType().isConstant(Context);
979      }
980
981      if (isConstant) {
982        if (const Expr *Init = VD->getAnyInitializer())
983          return SemaCheckStringLiteral(Init, TheCall,
984                                        HasVAListArg, format_idx, firstDataArg,
985                                        isPrintf);
986      }
987
988      // For vprintf* functions (i.e., HasVAListArg==true), we add a
989      // special check to see if the format string is a function parameter
990      // of the function calling the printf function.  If the function
991      // has an attribute indicating it is a printf-like function, then we
992      // should suppress warnings concerning non-literals being used in a call
993      // to a vprintf function.  For example:
994      //
995      // void
996      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
997      //      va_list ap;
998      //      va_start(ap, fmt);
999      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1000      //      ...
1001      //
1002      //
1003      //  FIXME: We don't have full attribute support yet, so just check to see
1004      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1005      //    add proper support for checking the attribute later.
1006      if (HasVAListArg)
1007        if (isa<ParmVarDecl>(VD))
1008          return true;
1009    }
1010
1011    return false;
1012  }
1013
1014  case Stmt::CallExprClass: {
1015    const CallExpr *CE = cast<CallExpr>(E);
1016    if (const ImplicitCastExpr *ICE
1017          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1018      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1019        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1020          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1021            unsigned ArgIndex = FA->getFormatIdx();
1022            const Expr *Arg = CE->getArg(ArgIndex - 1);
1023
1024            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1025                                          format_idx, firstDataArg, isPrintf);
1026          }
1027        }
1028      }
1029    }
1030
1031    return false;
1032  }
1033  case Stmt::ObjCStringLiteralClass:
1034  case Stmt::StringLiteralClass: {
1035    const StringLiteral *StrE = NULL;
1036
1037    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1038      StrE = ObjCFExpr->getString();
1039    else
1040      StrE = cast<StringLiteral>(E);
1041
1042    if (StrE) {
1043      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1044                        firstDataArg, isPrintf);
1045      return true;
1046    }
1047
1048    return false;
1049  }
1050
1051  default:
1052    return false;
1053  }
1054}
1055
1056void
1057Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1058                            const CallExpr *TheCall) {
1059  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1060                                  e = NonNull->args_end();
1061       i != e; ++i) {
1062    const Expr *ArgExpr = TheCall->getArg(*i);
1063    if (ArgExpr->isNullPointerConstant(Context,
1064                                       Expr::NPC_ValueDependentIsNotNull))
1065      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1066        << ArgExpr->getSourceRange();
1067  }
1068}
1069
1070/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1071/// functions) for correct use of format strings.
1072void
1073Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1074                                unsigned format_idx, unsigned firstDataArg,
1075                                bool isPrintf) {
1076
1077  const Expr *Fn = TheCall->getCallee();
1078
1079  // The way the format attribute works in GCC, the implicit this argument
1080  // of member functions is counted. However, it doesn't appear in our own
1081  // lists, so decrement format_idx in that case.
1082  if (isa<CXXMemberCallExpr>(TheCall)) {
1083    // Catch a format attribute mistakenly referring to the object argument.
1084    if (format_idx == 0)
1085      return;
1086    --format_idx;
1087    if(firstDataArg != 0)
1088      --firstDataArg;
1089  }
1090
1091  // CHECK: printf/scanf-like function is called with no format string.
1092  if (format_idx >= TheCall->getNumArgs()) {
1093    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1094      << Fn->getSourceRange();
1095    return;
1096  }
1097
1098  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1099
1100  // CHECK: format string is not a string literal.
1101  //
1102  // Dynamically generated format strings are difficult to
1103  // automatically vet at compile time.  Requiring that format strings
1104  // are string literals: (1) permits the checking of format strings by
1105  // the compiler and thereby (2) can practically remove the source of
1106  // many format string exploits.
1107
1108  // Format string can be either ObjC string (e.g. @"%d") or
1109  // C string (e.g. "%d")
1110  // ObjC string uses the same format specifiers as C string, so we can use
1111  // the same format string checking logic for both ObjC and C strings.
1112  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1113                             firstDataArg, isPrintf))
1114    return;  // Literal format string found, check done!
1115
1116  // If there are no arguments specified, warn with -Wformat-security, otherwise
1117  // warn only with -Wformat-nonliteral.
1118  if (TheCall->getNumArgs() == format_idx+1)
1119    Diag(TheCall->getArg(format_idx)->getLocStart(),
1120         diag::warn_format_nonliteral_noargs)
1121      << OrigFormatExpr->getSourceRange();
1122  else
1123    Diag(TheCall->getArg(format_idx)->getLocStart(),
1124         diag::warn_format_nonliteral)
1125           << OrigFormatExpr->getSourceRange();
1126}
1127
1128namespace {
1129class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1130protected:
1131  Sema &S;
1132  const StringLiteral *FExpr;
1133  const Expr *OrigFormatExpr;
1134  const unsigned FirstDataArg;
1135  const unsigned NumDataArgs;
1136  const bool IsObjCLiteral;
1137  const char *Beg; // Start of format string.
1138  const bool HasVAListArg;
1139  const CallExpr *TheCall;
1140  unsigned FormatIdx;
1141  llvm::BitVector CoveredArgs;
1142  bool usesPositionalArgs;
1143  bool atFirstArg;
1144public:
1145  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1146                     const Expr *origFormatExpr, unsigned firstDataArg,
1147                     unsigned numDataArgs, bool isObjCLiteral,
1148                     const char *beg, bool hasVAListArg,
1149                     const CallExpr *theCall, unsigned formatIdx)
1150    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1151      FirstDataArg(firstDataArg),
1152      NumDataArgs(numDataArgs),
1153      IsObjCLiteral(isObjCLiteral), Beg(beg),
1154      HasVAListArg(hasVAListArg),
1155      TheCall(theCall), FormatIdx(formatIdx),
1156      usesPositionalArgs(false), atFirstArg(true) {
1157        CoveredArgs.resize(numDataArgs);
1158        CoveredArgs.reset();
1159      }
1160
1161  void DoneProcessing();
1162
1163  void HandleIncompleteSpecifier(const char *startSpecifier,
1164                                 unsigned specifierLen);
1165
1166  virtual void HandleInvalidPosition(const char *startSpecifier,
1167                                     unsigned specifierLen,
1168                                     analyze_format_string::PositionContext p);
1169
1170  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1171
1172  void HandleNullChar(const char *nullCharacter);
1173
1174protected:
1175  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1176                                        const char *startSpec,
1177                                        unsigned specifierLen,
1178                                        const char *csStart, unsigned csLen);
1179
1180  SourceRange getFormatStringRange();
1181  CharSourceRange getSpecifierRange(const char *startSpecifier,
1182                                    unsigned specifierLen);
1183  SourceLocation getLocationOfByte(const char *x);
1184
1185  const Expr *getDataArg(unsigned i) const;
1186
1187  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1188                    const analyze_format_string::ConversionSpecifier &CS,
1189                    const char *startSpecifier, unsigned specifierLen,
1190                    unsigned argIndex);
1191};
1192}
1193
1194SourceRange CheckFormatHandler::getFormatStringRange() {
1195  return OrigFormatExpr->getSourceRange();
1196}
1197
1198CharSourceRange CheckFormatHandler::
1199getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1200  SourceLocation Start = getLocationOfByte(startSpecifier);
1201  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1202
1203  // Advance the end SourceLocation by one due to half-open ranges.
1204  End = End.getFileLocWithOffset(1);
1205
1206  return CharSourceRange::getCharRange(Start, End);
1207}
1208
1209SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1210  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1211}
1212
1213void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1214                                                   unsigned specifierLen){
1215  SourceLocation Loc = getLocationOfByte(startSpecifier);
1216  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1217    << getSpecifierRange(startSpecifier, specifierLen);
1218}
1219
1220void
1221CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1222                                     analyze_format_string::PositionContext p) {
1223  SourceLocation Loc = getLocationOfByte(startPos);
1224  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1225    << (unsigned) p << getSpecifierRange(startPos, posLen);
1226}
1227
1228void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1229                                            unsigned posLen) {
1230  SourceLocation Loc = getLocationOfByte(startPos);
1231  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1232    << getSpecifierRange(startPos, posLen);
1233}
1234
1235void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1236  // The presence of a null character is likely an error.
1237  S.Diag(getLocationOfByte(nullCharacter),
1238         diag::warn_printf_format_string_contains_null_char)
1239    << getFormatStringRange();
1240}
1241
1242const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1243  return TheCall->getArg(FirstDataArg + i);
1244}
1245
1246void CheckFormatHandler::DoneProcessing() {
1247    // Does the number of data arguments exceed the number of
1248    // format conversions in the format string?
1249  if (!HasVAListArg) {
1250      // Find any arguments that weren't covered.
1251    CoveredArgs.flip();
1252    signed notCoveredArg = CoveredArgs.find_first();
1253    if (notCoveredArg >= 0) {
1254      assert((unsigned)notCoveredArg < NumDataArgs);
1255      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1256             diag::warn_printf_data_arg_not_used)
1257      << getFormatStringRange();
1258    }
1259  }
1260}
1261
1262bool
1263CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1264                                                     SourceLocation Loc,
1265                                                     const char *startSpec,
1266                                                     unsigned specifierLen,
1267                                                     const char *csStart,
1268                                                     unsigned csLen) {
1269
1270  bool keepGoing = true;
1271  if (argIndex < NumDataArgs) {
1272    // Consider the argument coverered, even though the specifier doesn't
1273    // make sense.
1274    CoveredArgs.set(argIndex);
1275  }
1276  else {
1277    // If argIndex exceeds the number of data arguments we
1278    // don't issue a warning because that is just a cascade of warnings (and
1279    // they may have intended '%%' anyway). We don't want to continue processing
1280    // the format string after this point, however, as we will like just get
1281    // gibberish when trying to match arguments.
1282    keepGoing = false;
1283  }
1284
1285  S.Diag(Loc, diag::warn_format_invalid_conversion)
1286    << llvm::StringRef(csStart, csLen)
1287    << getSpecifierRange(startSpec, specifierLen);
1288
1289  return keepGoing;
1290}
1291
1292bool
1293CheckFormatHandler::CheckNumArgs(
1294  const analyze_format_string::FormatSpecifier &FS,
1295  const analyze_format_string::ConversionSpecifier &CS,
1296  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1297
1298  if (argIndex >= NumDataArgs) {
1299    if (FS.usesPositionalArg())  {
1300      S.Diag(getLocationOfByte(CS.getStart()),
1301             diag::warn_printf_positional_arg_exceeds_data_args)
1302      << (argIndex+1) << NumDataArgs
1303      << getSpecifierRange(startSpecifier, specifierLen);
1304    }
1305    else {
1306      S.Diag(getLocationOfByte(CS.getStart()),
1307             diag::warn_printf_insufficient_data_args)
1308      << getSpecifierRange(startSpecifier, specifierLen);
1309    }
1310
1311    return false;
1312  }
1313  return true;
1314}
1315
1316//===--- CHECK: Printf format string checking ------------------------------===//
1317
1318namespace {
1319class CheckPrintfHandler : public CheckFormatHandler {
1320public:
1321  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1322                     const Expr *origFormatExpr, unsigned firstDataArg,
1323                     unsigned numDataArgs, bool isObjCLiteral,
1324                     const char *beg, bool hasVAListArg,
1325                     const CallExpr *theCall, unsigned formatIdx)
1326  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1327                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1328                       theCall, formatIdx) {}
1329
1330
1331  bool HandleInvalidPrintfConversionSpecifier(
1332                                      const analyze_printf::PrintfSpecifier &FS,
1333                                      const char *startSpecifier,
1334                                      unsigned specifierLen);
1335
1336  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1337                             const char *startSpecifier,
1338                             unsigned specifierLen);
1339
1340  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1341                    const char *startSpecifier, unsigned specifierLen);
1342  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1343                           const analyze_printf::OptionalAmount &Amt,
1344                           unsigned type,
1345                           const char *startSpecifier, unsigned specifierLen);
1346  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1347                  const analyze_printf::OptionalFlag &flag,
1348                  const char *startSpecifier, unsigned specifierLen);
1349  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1350                         const analyze_printf::OptionalFlag &ignoredFlag,
1351                         const analyze_printf::OptionalFlag &flag,
1352                         const char *startSpecifier, unsigned specifierLen);
1353};
1354}
1355
1356bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1357                                      const analyze_printf::PrintfSpecifier &FS,
1358                                      const char *startSpecifier,
1359                                      unsigned specifierLen) {
1360  const analyze_printf::PrintfConversionSpecifier &CS =
1361    FS.getConversionSpecifier();
1362
1363  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1364                                          getLocationOfByte(CS.getStart()),
1365                                          startSpecifier, specifierLen,
1366                                          CS.getStart(), CS.getLength());
1367}
1368
1369bool CheckPrintfHandler::HandleAmount(
1370                               const analyze_format_string::OptionalAmount &Amt,
1371                               unsigned k, const char *startSpecifier,
1372                               unsigned specifierLen) {
1373
1374  if (Amt.hasDataArgument()) {
1375    if (!HasVAListArg) {
1376      unsigned argIndex = Amt.getArgIndex();
1377      if (argIndex >= NumDataArgs) {
1378        S.Diag(getLocationOfByte(Amt.getStart()),
1379               diag::warn_printf_asterisk_missing_arg)
1380          << k << getSpecifierRange(startSpecifier, specifierLen);
1381        // Don't do any more checking.  We will just emit
1382        // spurious errors.
1383        return false;
1384      }
1385
1386      // Type check the data argument.  It should be an 'int'.
1387      // Although not in conformance with C99, we also allow the argument to be
1388      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1389      // doesn't emit a warning for that case.
1390      CoveredArgs.set(argIndex);
1391      const Expr *Arg = getDataArg(argIndex);
1392      QualType T = Arg->getType();
1393
1394      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1395      assert(ATR.isValid());
1396
1397      if (!ATR.matchesType(S.Context, T)) {
1398        S.Diag(getLocationOfByte(Amt.getStart()),
1399               diag::warn_printf_asterisk_wrong_type)
1400          << k
1401          << ATR.getRepresentativeType(S.Context) << T
1402          << getSpecifierRange(startSpecifier, specifierLen)
1403          << Arg->getSourceRange();
1404        // Don't do any more checking.  We will just emit
1405        // spurious errors.
1406        return false;
1407      }
1408    }
1409  }
1410  return true;
1411}
1412
1413void CheckPrintfHandler::HandleInvalidAmount(
1414                                      const analyze_printf::PrintfSpecifier &FS,
1415                                      const analyze_printf::OptionalAmount &Amt,
1416                                      unsigned type,
1417                                      const char *startSpecifier,
1418                                      unsigned specifierLen) {
1419  const analyze_printf::PrintfConversionSpecifier &CS =
1420    FS.getConversionSpecifier();
1421  switch (Amt.getHowSpecified()) {
1422  case analyze_printf::OptionalAmount::Constant:
1423    S.Diag(getLocationOfByte(Amt.getStart()),
1424        diag::warn_printf_nonsensical_optional_amount)
1425      << type
1426      << CS.toString()
1427      << getSpecifierRange(startSpecifier, specifierLen)
1428      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1429          Amt.getConstantLength()));
1430    break;
1431
1432  default:
1433    S.Diag(getLocationOfByte(Amt.getStart()),
1434        diag::warn_printf_nonsensical_optional_amount)
1435      << type
1436      << CS.toString()
1437      << getSpecifierRange(startSpecifier, specifierLen);
1438    break;
1439  }
1440}
1441
1442void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1443                                    const analyze_printf::OptionalFlag &flag,
1444                                    const char *startSpecifier,
1445                                    unsigned specifierLen) {
1446  // Warn about pointless flag with a fixit removal.
1447  const analyze_printf::PrintfConversionSpecifier &CS =
1448    FS.getConversionSpecifier();
1449  S.Diag(getLocationOfByte(flag.getPosition()),
1450      diag::warn_printf_nonsensical_flag)
1451    << flag.toString() << CS.toString()
1452    << getSpecifierRange(startSpecifier, specifierLen)
1453    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1454}
1455
1456void CheckPrintfHandler::HandleIgnoredFlag(
1457                                const analyze_printf::PrintfSpecifier &FS,
1458                                const analyze_printf::OptionalFlag &ignoredFlag,
1459                                const analyze_printf::OptionalFlag &flag,
1460                                const char *startSpecifier,
1461                                unsigned specifierLen) {
1462  // Warn about ignored flag with a fixit removal.
1463  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1464      diag::warn_printf_ignored_flag)
1465    << ignoredFlag.toString() << flag.toString()
1466    << getSpecifierRange(startSpecifier, specifierLen)
1467    << FixItHint::CreateRemoval(getSpecifierRange(
1468        ignoredFlag.getPosition(), 1));
1469}
1470
1471bool
1472CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1473                                            &FS,
1474                                          const char *startSpecifier,
1475                                          unsigned specifierLen) {
1476
1477  using namespace analyze_format_string;
1478  using namespace analyze_printf;
1479  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1480
1481  if (FS.consumesDataArgument()) {
1482    if (atFirstArg) {
1483        atFirstArg = false;
1484        usesPositionalArgs = FS.usesPositionalArg();
1485    }
1486    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1487      // Cannot mix-and-match positional and non-positional arguments.
1488      S.Diag(getLocationOfByte(CS.getStart()),
1489             diag::warn_format_mix_positional_nonpositional_args)
1490        << getSpecifierRange(startSpecifier, specifierLen);
1491      return false;
1492    }
1493  }
1494
1495  // First check if the field width, precision, and conversion specifier
1496  // have matching data arguments.
1497  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1498                    startSpecifier, specifierLen)) {
1499    return false;
1500  }
1501
1502  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1503                    startSpecifier, specifierLen)) {
1504    return false;
1505  }
1506
1507  if (!CS.consumesDataArgument()) {
1508    // FIXME: Technically specifying a precision or field width here
1509    // makes no sense.  Worth issuing a warning at some point.
1510    return true;
1511  }
1512
1513  // Consume the argument.
1514  unsigned argIndex = FS.getArgIndex();
1515  if (argIndex < NumDataArgs) {
1516    // The check to see if the argIndex is valid will come later.
1517    // We set the bit here because we may exit early from this
1518    // function if we encounter some other error.
1519    CoveredArgs.set(argIndex);
1520  }
1521
1522  // Check for using an Objective-C specific conversion specifier
1523  // in a non-ObjC literal.
1524  if (!IsObjCLiteral && CS.isObjCArg()) {
1525    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1526                                                  specifierLen);
1527  }
1528
1529  // Check for invalid use of field width
1530  if (!FS.hasValidFieldWidth()) {
1531    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1532        startSpecifier, specifierLen);
1533  }
1534
1535  // Check for invalid use of precision
1536  if (!FS.hasValidPrecision()) {
1537    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1538        startSpecifier, specifierLen);
1539  }
1540
1541  // Check each flag does not conflict with any other component.
1542  if (!FS.hasValidLeadingZeros())
1543    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1544  if (!FS.hasValidPlusPrefix())
1545    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1546  if (!FS.hasValidSpacePrefix())
1547    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1548  if (!FS.hasValidAlternativeForm())
1549    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1550  if (!FS.hasValidLeftJustified())
1551    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1552
1553  // Check that flags are not ignored by another flag
1554  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1555    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1556        startSpecifier, specifierLen);
1557  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1558    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1559            startSpecifier, specifierLen);
1560
1561  // Check the length modifier is valid with the given conversion specifier.
1562  const LengthModifier &LM = FS.getLengthModifier();
1563  if (!FS.hasValidLengthModifier())
1564    S.Diag(getLocationOfByte(LM.getStart()),
1565        diag::warn_format_nonsensical_length)
1566      << LM.toString() << CS.toString()
1567      << getSpecifierRange(startSpecifier, specifierLen)
1568      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1569          LM.getLength()));
1570
1571  // Are we using '%n'?
1572  if (CS.getKind() == ConversionSpecifier::nArg) {
1573    // Issue a warning about this being a possible security issue.
1574    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1575      << getSpecifierRange(startSpecifier, specifierLen);
1576    // Continue checking the other format specifiers.
1577    return true;
1578  }
1579
1580  // The remaining checks depend on the data arguments.
1581  if (HasVAListArg)
1582    return true;
1583
1584  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1585    return false;
1586
1587  // Now type check the data expression that matches the
1588  // format specifier.
1589  const Expr *Ex = getDataArg(argIndex);
1590  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1591  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1592    // Check if we didn't match because of an implicit cast from a 'char'
1593    // or 'short' to an 'int'.  This is done because printf is a varargs
1594    // function.
1595    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1596      if (ICE->getType() == S.Context.IntTy)
1597        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1598          return true;
1599
1600    // We may be able to offer a FixItHint if it is a supported type.
1601    PrintfSpecifier fixedFS = FS;
1602    bool success = fixedFS.fixType(Ex->getType());
1603
1604    if (success) {
1605      // Get the fix string from the fixed format specifier
1606      llvm::SmallString<128> buf;
1607      llvm::raw_svector_ostream os(buf);
1608      fixedFS.toString(os);
1609
1610      // FIXME: getRepresentativeType() perhaps should return a string
1611      // instead of a QualType to better handle when the representative
1612      // type is 'wint_t' (which is defined in the system headers).
1613      S.Diag(getLocationOfByte(CS.getStart()),
1614          diag::warn_printf_conversion_argument_type_mismatch)
1615        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1616        << getSpecifierRange(startSpecifier, specifierLen)
1617        << Ex->getSourceRange()
1618        << FixItHint::CreateReplacement(
1619            getSpecifierRange(startSpecifier, specifierLen),
1620            os.str());
1621    }
1622    else {
1623      S.Diag(getLocationOfByte(CS.getStart()),
1624             diag::warn_printf_conversion_argument_type_mismatch)
1625        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1626        << getSpecifierRange(startSpecifier, specifierLen)
1627        << Ex->getSourceRange();
1628    }
1629  }
1630
1631  return true;
1632}
1633
1634//===--- CHECK: Scanf format string checking ------------------------------===//
1635
1636namespace {
1637class CheckScanfHandler : public CheckFormatHandler {
1638public:
1639  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1640                    const Expr *origFormatExpr, unsigned firstDataArg,
1641                    unsigned numDataArgs, bool isObjCLiteral,
1642                    const char *beg, bool hasVAListArg,
1643                    const CallExpr *theCall, unsigned formatIdx)
1644  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1645                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1646                       theCall, formatIdx) {}
1647
1648  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1649                            const char *startSpecifier,
1650                            unsigned specifierLen);
1651
1652  bool HandleInvalidScanfConversionSpecifier(
1653          const analyze_scanf::ScanfSpecifier &FS,
1654          const char *startSpecifier,
1655          unsigned specifierLen);
1656
1657  void HandleIncompleteScanList(const char *start, const char *end);
1658};
1659}
1660
1661void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1662                                                 const char *end) {
1663  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1664    << getSpecifierRange(start, end - start);
1665}
1666
1667bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1668                                        const analyze_scanf::ScanfSpecifier &FS,
1669                                        const char *startSpecifier,
1670                                        unsigned specifierLen) {
1671
1672  const analyze_scanf::ScanfConversionSpecifier &CS =
1673    FS.getConversionSpecifier();
1674
1675  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1676                                          getLocationOfByte(CS.getStart()),
1677                                          startSpecifier, specifierLen,
1678                                          CS.getStart(), CS.getLength());
1679}
1680
1681bool CheckScanfHandler::HandleScanfSpecifier(
1682                                       const analyze_scanf::ScanfSpecifier &FS,
1683                                       const char *startSpecifier,
1684                                       unsigned specifierLen) {
1685
1686  using namespace analyze_scanf;
1687  using namespace analyze_format_string;
1688
1689  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1690
1691  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1692  // be used to decide if we are using positional arguments consistently.
1693  if (FS.consumesDataArgument()) {
1694    if (atFirstArg) {
1695      atFirstArg = false;
1696      usesPositionalArgs = FS.usesPositionalArg();
1697    }
1698    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1699      // Cannot mix-and-match positional and non-positional arguments.
1700      S.Diag(getLocationOfByte(CS.getStart()),
1701             diag::warn_format_mix_positional_nonpositional_args)
1702        << getSpecifierRange(startSpecifier, specifierLen);
1703      return false;
1704    }
1705  }
1706
1707  // Check if the field with is non-zero.
1708  const OptionalAmount &Amt = FS.getFieldWidth();
1709  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1710    if (Amt.getConstantAmount() == 0) {
1711      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1712                                                   Amt.getConstantLength());
1713      S.Diag(getLocationOfByte(Amt.getStart()),
1714             diag::warn_scanf_nonzero_width)
1715        << R << FixItHint::CreateRemoval(R);
1716    }
1717  }
1718
1719  if (!FS.consumesDataArgument()) {
1720    // FIXME: Technically specifying a precision or field width here
1721    // makes no sense.  Worth issuing a warning at some point.
1722    return true;
1723  }
1724
1725  // Consume the argument.
1726  unsigned argIndex = FS.getArgIndex();
1727  if (argIndex < NumDataArgs) {
1728      // The check to see if the argIndex is valid will come later.
1729      // We set the bit here because we may exit early from this
1730      // function if we encounter some other error.
1731    CoveredArgs.set(argIndex);
1732  }
1733
1734  // Check the length modifier is valid with the given conversion specifier.
1735  const LengthModifier &LM = FS.getLengthModifier();
1736  if (!FS.hasValidLengthModifier()) {
1737    S.Diag(getLocationOfByte(LM.getStart()),
1738           diag::warn_format_nonsensical_length)
1739      << LM.toString() << CS.toString()
1740      << getSpecifierRange(startSpecifier, specifierLen)
1741      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1742                                                    LM.getLength()));
1743  }
1744
1745  // The remaining checks depend on the data arguments.
1746  if (HasVAListArg)
1747    return true;
1748
1749  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1750    return false;
1751
1752  // FIXME: Check that the argument type matches the format specifier.
1753
1754  return true;
1755}
1756
1757void Sema::CheckFormatString(const StringLiteral *FExpr,
1758                             const Expr *OrigFormatExpr,
1759                             const CallExpr *TheCall, bool HasVAListArg,
1760                             unsigned format_idx, unsigned firstDataArg,
1761                             bool isPrintf) {
1762
1763  // CHECK: is the format string a wide literal?
1764  if (FExpr->isWide()) {
1765    Diag(FExpr->getLocStart(),
1766         diag::warn_format_string_is_wide_literal)
1767    << OrigFormatExpr->getSourceRange();
1768    return;
1769  }
1770
1771  // Str - The format string.  NOTE: this is NOT null-terminated!
1772  llvm::StringRef StrRef = FExpr->getString();
1773  const char *Str = StrRef.data();
1774  unsigned StrLen = StrRef.size();
1775
1776  // CHECK: empty format string?
1777  if (StrLen == 0) {
1778    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1779    << OrigFormatExpr->getSourceRange();
1780    return;
1781  }
1782
1783  if (isPrintf) {
1784    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1785                         TheCall->getNumArgs() - firstDataArg,
1786                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1787                         HasVAListArg, TheCall, format_idx);
1788
1789    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1790      H.DoneProcessing();
1791  }
1792  else {
1793    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1794                        TheCall->getNumArgs() - firstDataArg,
1795                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1796                        HasVAListArg, TheCall, format_idx);
1797
1798    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1799      H.DoneProcessing();
1800  }
1801}
1802
1803//===--- CHECK: Return Address of Stack Variable --------------------------===//
1804
1805static DeclRefExpr* EvalVal(Expr *E);
1806static DeclRefExpr* EvalAddr(Expr* E);
1807
1808/// CheckReturnStackAddr - Check if a return statement returns the address
1809///   of a stack variable.
1810void
1811Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1812                           SourceLocation ReturnLoc) {
1813
1814  // Perform checking for returned stack addresses.
1815  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1816    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1817      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1818       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1819
1820    // Skip over implicit cast expressions when checking for block expressions.
1821    RetValExp = RetValExp->IgnoreParenCasts();
1822
1823    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1824      if (C->hasBlockDeclRefExprs())
1825        Diag(C->getLocStart(), diag::err_ret_local_block)
1826          << C->getSourceRange();
1827
1828    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1829      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1830        << ALE->getSourceRange();
1831
1832  } else if (lhsType->isReferenceType()) {
1833    // Perform checking for stack values returned by reference.
1834    // Check for a reference to the stack
1835    if (DeclRefExpr *DR = EvalVal(RetValExp))
1836      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1837        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1838  }
1839}
1840
1841/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1842///  check if the expression in a return statement evaluates to an address
1843///  to a location on the stack.  The recursion is used to traverse the
1844///  AST of the return expression, with recursion backtracking when we
1845///  encounter a subexpression that (1) clearly does not lead to the address
1846///  of a stack variable or (2) is something we cannot determine leads to
1847///  the address of a stack variable based on such local checking.
1848///
1849///  EvalAddr processes expressions that are pointers that are used as
1850///  references (and not L-values).  EvalVal handles all other values.
1851///  At the base case of the recursion is a check for a DeclRefExpr* in
1852///  the refers to a stack variable.
1853///
1854///  This implementation handles:
1855///
1856///   * pointer-to-pointer casts
1857///   * implicit conversions from array references to pointers
1858///   * taking the address of fields
1859///   * arbitrary interplay between "&" and "*" operators
1860///   * pointer arithmetic from an address of a stack variable
1861///   * taking the address of an array element where the array is on the stack
1862static DeclRefExpr* EvalAddr(Expr *E) {
1863  // We should only be called for evaluating pointer expressions.
1864  assert((E->getType()->isAnyPointerType() ||
1865          E->getType()->isBlockPointerType() ||
1866          E->getType()->isObjCQualifiedIdType()) &&
1867         "EvalAddr only works on pointers");
1868
1869  // Our "symbolic interpreter" is just a dispatch off the currently
1870  // viewed AST node.  We then recursively traverse the AST by calling
1871  // EvalAddr and EvalVal appropriately.
1872  switch (E->getStmtClass()) {
1873  case Stmt::ParenExprClass:
1874    // Ignore parentheses.
1875    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1876
1877  case Stmt::UnaryOperatorClass: {
1878    // The only unary operator that make sense to handle here
1879    // is AddrOf.  All others don't make sense as pointers.
1880    UnaryOperator *U = cast<UnaryOperator>(E);
1881
1882    if (U->getOpcode() == UO_AddrOf)
1883      return EvalVal(U->getSubExpr());
1884    else
1885      return NULL;
1886  }
1887
1888  case Stmt::BinaryOperatorClass: {
1889    // Handle pointer arithmetic.  All other binary operators are not valid
1890    // in this context.
1891    BinaryOperator *B = cast<BinaryOperator>(E);
1892    BinaryOperatorKind op = B->getOpcode();
1893
1894    if (op != BO_Add && op != BO_Sub)
1895      return NULL;
1896
1897    Expr *Base = B->getLHS();
1898
1899    // Determine which argument is the real pointer base.  It could be
1900    // the RHS argument instead of the LHS.
1901    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1902
1903    assert (Base->getType()->isPointerType());
1904    return EvalAddr(Base);
1905  }
1906
1907  // For conditional operators we need to see if either the LHS or RHS are
1908  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1909  case Stmt::ConditionalOperatorClass: {
1910    ConditionalOperator *C = cast<ConditionalOperator>(E);
1911
1912    // Handle the GNU extension for missing LHS.
1913    if (Expr *lhsExpr = C->getLHS())
1914      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1915        return LHS;
1916
1917     return EvalAddr(C->getRHS());
1918  }
1919
1920  // For casts, we need to handle conversions from arrays to
1921  // pointer values, and pointer-to-pointer conversions.
1922  case Stmt::ImplicitCastExprClass:
1923  case Stmt::CStyleCastExprClass:
1924  case Stmt::CXXFunctionalCastExprClass: {
1925    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1926    QualType T = SubExpr->getType();
1927
1928    if (SubExpr->getType()->isPointerType() ||
1929        SubExpr->getType()->isBlockPointerType() ||
1930        SubExpr->getType()->isObjCQualifiedIdType())
1931      return EvalAddr(SubExpr);
1932    else if (T->isArrayType())
1933      return EvalVal(SubExpr);
1934    else
1935      return 0;
1936  }
1937
1938  // C++ casts.  For dynamic casts, static casts, and const casts, we
1939  // are always converting from a pointer-to-pointer, so we just blow
1940  // through the cast.  In the case the dynamic cast doesn't fail (and
1941  // return NULL), we take the conservative route and report cases
1942  // where we return the address of a stack variable.  For Reinterpre
1943  // FIXME: The comment about is wrong; we're not always converting
1944  // from pointer to pointer. I'm guessing that this code should also
1945  // handle references to objects.
1946  case Stmt::CXXStaticCastExprClass:
1947  case Stmt::CXXDynamicCastExprClass:
1948  case Stmt::CXXConstCastExprClass:
1949  case Stmt::CXXReinterpretCastExprClass: {
1950      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1951      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1952        return EvalAddr(S);
1953      else
1954        return NULL;
1955  }
1956
1957  // Everything else: we simply don't reason about them.
1958  default:
1959    return NULL;
1960  }
1961}
1962
1963
1964///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1965///   See the comments for EvalAddr for more details.
1966static DeclRefExpr* EvalVal(Expr *E) {
1967do {
1968  // We should only be called for evaluating non-pointer expressions, or
1969  // expressions with a pointer type that are not used as references but instead
1970  // are l-values (e.g., DeclRefExpr with a pointer type).
1971
1972  // Our "symbolic interpreter" is just a dispatch off the currently
1973  // viewed AST node.  We then recursively traverse the AST by calling
1974  // EvalAddr and EvalVal appropriately.
1975  switch (E->getStmtClass()) {
1976  case Stmt::ImplicitCastExprClass: {
1977    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
1978    if (IE->getValueKind() == VK_LValue) {
1979      E = IE->getSubExpr();
1980      continue;
1981    }
1982    return NULL;
1983  }
1984
1985  case Stmt::DeclRefExprClass: {
1986    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1987    //  at code that refers to a variable's name.  We check if it has local
1988    //  storage within the function, and if so, return the expression.
1989    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1990
1991    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1992      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1993
1994    return NULL;
1995  }
1996
1997  case Stmt::ParenExprClass: {
1998    // Ignore parentheses.
1999    E = cast<ParenExpr>(E)->getSubExpr();
2000    continue;
2001  }
2002
2003  case Stmt::UnaryOperatorClass: {
2004    // The only unary operator that make sense to handle here
2005    // is Deref.  All others don't resolve to a "name."  This includes
2006    // handling all sorts of rvalues passed to a unary operator.
2007    UnaryOperator *U = cast<UnaryOperator>(E);
2008
2009    if (U->getOpcode() == UO_Deref)
2010      return EvalAddr(U->getSubExpr());
2011
2012    return NULL;
2013  }
2014
2015  case Stmt::ArraySubscriptExprClass: {
2016    // Array subscripts are potential references to data on the stack.  We
2017    // retrieve the DeclRefExpr* for the array variable if it indeed
2018    // has local storage.
2019    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2020  }
2021
2022  case Stmt::ConditionalOperatorClass: {
2023    // For conditional operators we need to see if either the LHS or RHS are
2024    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2025    ConditionalOperator *C = cast<ConditionalOperator>(E);
2026
2027    // Handle the GNU extension for missing LHS.
2028    if (Expr *lhsExpr = C->getLHS())
2029      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2030        return LHS;
2031
2032    return EvalVal(C->getRHS());
2033  }
2034
2035  // Accesses to members are potential references to data on the stack.
2036  case Stmt::MemberExprClass: {
2037    MemberExpr *M = cast<MemberExpr>(E);
2038
2039    // Check for indirect access.  We only want direct field accesses.
2040    if (M->isArrow())
2041      return NULL;
2042
2043    // Check whether the member type is itself a reference, in which case
2044    // we're not going to refer to the member, but to what the member refers to.
2045    if (M->getMemberDecl()->getType()->isReferenceType())
2046      return NULL;
2047
2048    return EvalVal(M->getBase());
2049  }
2050
2051  // Everything else: we simply don't reason about them.
2052  default:
2053    return NULL;
2054  }
2055} while (true);
2056}
2057
2058//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2059
2060/// Check for comparisons of floating point operands using != and ==.
2061/// Issue a warning if these are no self-comparisons, as they are not likely
2062/// to do what the programmer intended.
2063void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2064  bool EmitWarning = true;
2065
2066  Expr* LeftExprSansParen = lex->IgnoreParens();
2067  Expr* RightExprSansParen = rex->IgnoreParens();
2068
2069  // Special case: check for x == x (which is OK).
2070  // Do not emit warnings for such cases.
2071  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2072    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2073      if (DRL->getDecl() == DRR->getDecl())
2074        EmitWarning = false;
2075
2076
2077  // Special case: check for comparisons against literals that can be exactly
2078  //  represented by APFloat.  In such cases, do not emit a warning.  This
2079  //  is a heuristic: often comparison against such literals are used to
2080  //  detect if a value in a variable has not changed.  This clearly can
2081  //  lead to false negatives.
2082  if (EmitWarning) {
2083    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2084      if (FLL->isExact())
2085        EmitWarning = false;
2086    } else
2087      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2088        if (FLR->isExact())
2089          EmitWarning = false;
2090    }
2091  }
2092
2093  // Check for comparisons with builtin types.
2094  if (EmitWarning)
2095    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2096      if (CL->isBuiltinCall(Context))
2097        EmitWarning = false;
2098
2099  if (EmitWarning)
2100    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2101      if (CR->isBuiltinCall(Context))
2102        EmitWarning = false;
2103
2104  // Emit the diagnostic.
2105  if (EmitWarning)
2106    Diag(loc, diag::warn_floatingpoint_eq)
2107      << lex->getSourceRange() << rex->getSourceRange();
2108}
2109
2110//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2111//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2112
2113namespace {
2114
2115/// Structure recording the 'active' range of an integer-valued
2116/// expression.
2117struct IntRange {
2118  /// The number of bits active in the int.
2119  unsigned Width;
2120
2121  /// True if the int is known not to have negative values.
2122  bool NonNegative;
2123
2124  IntRange(unsigned Width, bool NonNegative)
2125    : Width(Width), NonNegative(NonNegative)
2126  {}
2127
2128  // Returns the range of the bool type.
2129  static IntRange forBoolType() {
2130    return IntRange(1, true);
2131  }
2132
2133  // Returns the range of an integral type.
2134  static IntRange forType(ASTContext &C, QualType T) {
2135    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2136  }
2137
2138  // Returns the range of an integeral type based on its canonical
2139  // representation.
2140  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2141    assert(T->isCanonicalUnqualified());
2142
2143    if (const VectorType *VT = dyn_cast<VectorType>(T))
2144      T = VT->getElementType().getTypePtr();
2145    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2146      T = CT->getElementType().getTypePtr();
2147
2148    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2149      EnumDecl *Enum = ET->getDecl();
2150      unsigned NumPositive = Enum->getNumPositiveBits();
2151      unsigned NumNegative = Enum->getNumNegativeBits();
2152
2153      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2154    }
2155
2156    const BuiltinType *BT = cast<BuiltinType>(T);
2157    assert(BT->isInteger());
2158
2159    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2160  }
2161
2162  // Returns the supremum of two ranges: i.e. their conservative merge.
2163  static IntRange join(IntRange L, IntRange R) {
2164    return IntRange(std::max(L.Width, R.Width),
2165                    L.NonNegative && R.NonNegative);
2166  }
2167
2168  // Returns the infinum of two ranges: i.e. their aggressive merge.
2169  static IntRange meet(IntRange L, IntRange R) {
2170    return IntRange(std::min(L.Width, R.Width),
2171                    L.NonNegative || R.NonNegative);
2172  }
2173};
2174
2175IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2176  if (value.isSigned() && value.isNegative())
2177    return IntRange(value.getMinSignedBits(), false);
2178
2179  if (value.getBitWidth() > MaxWidth)
2180    value.trunc(MaxWidth);
2181
2182  // isNonNegative() just checks the sign bit without considering
2183  // signedness.
2184  return IntRange(value.getActiveBits(), true);
2185}
2186
2187IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2188                       unsigned MaxWidth) {
2189  if (result.isInt())
2190    return GetValueRange(C, result.getInt(), MaxWidth);
2191
2192  if (result.isVector()) {
2193    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2194    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2195      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2196      R = IntRange::join(R, El);
2197    }
2198    return R;
2199  }
2200
2201  if (result.isComplexInt()) {
2202    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2203    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2204    return IntRange::join(R, I);
2205  }
2206
2207  // This can happen with lossless casts to intptr_t of "based" lvalues.
2208  // Assume it might use arbitrary bits.
2209  // FIXME: The only reason we need to pass the type in here is to get
2210  // the sign right on this one case.  It would be nice if APValue
2211  // preserved this.
2212  assert(result.isLValue());
2213  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2214}
2215
2216/// Pseudo-evaluate the given integer expression, estimating the
2217/// range of values it might take.
2218///
2219/// \param MaxWidth - the width to which the value will be truncated
2220IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2221  E = E->IgnoreParens();
2222
2223  // Try a full evaluation first.
2224  Expr::EvalResult result;
2225  if (E->Evaluate(result, C))
2226    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2227
2228  // I think we only want to look through implicit casts here; if the
2229  // user has an explicit widening cast, we should treat the value as
2230  // being of the new, wider type.
2231  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2232    if (CE->getCastKind() == CK_NoOp)
2233      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2234
2235    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2236
2237    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2238    if (!isIntegerCast && CE->getCastKind() == CK_Unknown)
2239      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2240
2241    // Assume that non-integer casts can span the full range of the type.
2242    if (!isIntegerCast)
2243      return OutputTypeRange;
2244
2245    IntRange SubRange
2246      = GetExprRange(C, CE->getSubExpr(),
2247                     std::min(MaxWidth, OutputTypeRange.Width));
2248
2249    // Bail out if the subexpr's range is as wide as the cast type.
2250    if (SubRange.Width >= OutputTypeRange.Width)
2251      return OutputTypeRange;
2252
2253    // Otherwise, we take the smaller width, and we're non-negative if
2254    // either the output type or the subexpr is.
2255    return IntRange(SubRange.Width,
2256                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2257  }
2258
2259  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2260    // If we can fold the condition, just take that operand.
2261    bool CondResult;
2262    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2263      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2264                                        : CO->getFalseExpr(),
2265                          MaxWidth);
2266
2267    // Otherwise, conservatively merge.
2268    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2269    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2270    return IntRange::join(L, R);
2271  }
2272
2273  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2274    switch (BO->getOpcode()) {
2275
2276    // Boolean-valued operations are single-bit and positive.
2277    case BO_LAnd:
2278    case BO_LOr:
2279    case BO_LT:
2280    case BO_GT:
2281    case BO_LE:
2282    case BO_GE:
2283    case BO_EQ:
2284    case BO_NE:
2285      return IntRange::forBoolType();
2286
2287    // The type of these compound assignments is the type of the LHS,
2288    // so the RHS is not necessarily an integer.
2289    case BO_MulAssign:
2290    case BO_DivAssign:
2291    case BO_RemAssign:
2292    case BO_AddAssign:
2293    case BO_SubAssign:
2294      return IntRange::forType(C, E->getType());
2295
2296    // Operations with opaque sources are black-listed.
2297    case BO_PtrMemD:
2298    case BO_PtrMemI:
2299      return IntRange::forType(C, E->getType());
2300
2301    // Bitwise-and uses the *infinum* of the two source ranges.
2302    case BO_And:
2303    case BO_AndAssign:
2304      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2305                            GetExprRange(C, BO->getRHS(), MaxWidth));
2306
2307    // Left shift gets black-listed based on a judgement call.
2308    case BO_Shl:
2309      // ...except that we want to treat '1 << (blah)' as logically
2310      // positive.  It's an important idiom.
2311      if (IntegerLiteral *I
2312            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2313        if (I->getValue() == 1) {
2314          IntRange R = IntRange::forType(C, E->getType());
2315          return IntRange(R.Width, /*NonNegative*/ true);
2316        }
2317      }
2318      // fallthrough
2319
2320    case BO_ShlAssign:
2321      return IntRange::forType(C, E->getType());
2322
2323    // Right shift by a constant can narrow its left argument.
2324    case BO_Shr:
2325    case BO_ShrAssign: {
2326      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2327
2328      // If the shift amount is a positive constant, drop the width by
2329      // that much.
2330      llvm::APSInt shift;
2331      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2332          shift.isNonNegative()) {
2333        unsigned zext = shift.getZExtValue();
2334        if (zext >= L.Width)
2335          L.Width = (L.NonNegative ? 0 : 1);
2336        else
2337          L.Width -= zext;
2338      }
2339
2340      return L;
2341    }
2342
2343    // Comma acts as its right operand.
2344    case BO_Comma:
2345      return GetExprRange(C, BO->getRHS(), MaxWidth);
2346
2347    // Black-list pointer subtractions.
2348    case BO_Sub:
2349      if (BO->getLHS()->getType()->isPointerType())
2350        return IntRange::forType(C, E->getType());
2351      // fallthrough
2352
2353    default:
2354      break;
2355    }
2356
2357    // Treat every other operator as if it were closed on the
2358    // narrowest type that encompasses both operands.
2359    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2360    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2361    return IntRange::join(L, R);
2362  }
2363
2364  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2365    switch (UO->getOpcode()) {
2366    // Boolean-valued operations are white-listed.
2367    case UO_LNot:
2368      return IntRange::forBoolType();
2369
2370    // Operations with opaque sources are black-listed.
2371    case UO_Deref:
2372    case UO_AddrOf: // should be impossible
2373      return IntRange::forType(C, E->getType());
2374
2375    default:
2376      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2377    }
2378  }
2379
2380  if (dyn_cast<OffsetOfExpr>(E)) {
2381    IntRange::forType(C, E->getType());
2382  }
2383
2384  FieldDecl *BitField = E->getBitField();
2385  if (BitField) {
2386    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2387    unsigned BitWidth = BitWidthAP.getZExtValue();
2388
2389    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2390  }
2391
2392  return IntRange::forType(C, E->getType());
2393}
2394
2395IntRange GetExprRange(ASTContext &C, Expr *E) {
2396  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2397}
2398
2399/// Checks whether the given value, which currently has the given
2400/// source semantics, has the same value when coerced through the
2401/// target semantics.
2402bool IsSameFloatAfterCast(const llvm::APFloat &value,
2403                          const llvm::fltSemantics &Src,
2404                          const llvm::fltSemantics &Tgt) {
2405  llvm::APFloat truncated = value;
2406
2407  bool ignored;
2408  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2409  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2410
2411  return truncated.bitwiseIsEqual(value);
2412}
2413
2414/// Checks whether the given value, which currently has the given
2415/// source semantics, has the same value when coerced through the
2416/// target semantics.
2417///
2418/// The value might be a vector of floats (or a complex number).
2419bool IsSameFloatAfterCast(const APValue &value,
2420                          const llvm::fltSemantics &Src,
2421                          const llvm::fltSemantics &Tgt) {
2422  if (value.isFloat())
2423    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2424
2425  if (value.isVector()) {
2426    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2427      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2428        return false;
2429    return true;
2430  }
2431
2432  assert(value.isComplexFloat());
2433  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2434          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2435}
2436
2437void AnalyzeImplicitConversions(Sema &S, Expr *E);
2438
2439static bool IsZero(Sema &S, Expr *E) {
2440  // Suppress cases where we are comparing against an enum constant.
2441  if (const DeclRefExpr *DR =
2442      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2443    if (isa<EnumConstantDecl>(DR->getDecl()))
2444      return false;
2445
2446  // Suppress cases where the '0' value is expanded from a macro.
2447  if (E->getLocStart().isMacroID())
2448    return false;
2449
2450  llvm::APSInt Value;
2451  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2452}
2453
2454static bool HasEnumType(Expr *E) {
2455  // Strip off implicit integral promotions.
2456  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2457    switch (ICE->getCastKind()) {
2458    case CK_IntegralCast:
2459    case CK_NoOp:
2460      E = ICE->getSubExpr();
2461      continue;
2462    default:
2463      break;
2464    }
2465  }
2466
2467  return E->getType()->isEnumeralType();
2468}
2469
2470void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2471  BinaryOperatorKind op = E->getOpcode();
2472  if (op == BO_LT && IsZero(S, E->getRHS())) {
2473    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2474      << "< 0" << "false" << HasEnumType(E->getLHS())
2475      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2476  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2477    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2478      << ">= 0" << "true" << HasEnumType(E->getLHS())
2479      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2480  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2481    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2482      << "0 >" << "false" << HasEnumType(E->getRHS())
2483      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2484  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2485    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2486      << "0 <=" << "true" << HasEnumType(E->getRHS())
2487      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2488  }
2489}
2490
2491/// Analyze the operands of the given comparison.  Implements the
2492/// fallback case from AnalyzeComparison.
2493void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2494  AnalyzeImplicitConversions(S, E->getLHS());
2495  AnalyzeImplicitConversions(S, E->getRHS());
2496}
2497
2498/// \brief Implements -Wsign-compare.
2499///
2500/// \param lex the left-hand expression
2501/// \param rex the right-hand expression
2502/// \param OpLoc the location of the joining operator
2503/// \param BinOpc binary opcode or 0
2504void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2505  // The type the comparison is being performed in.
2506  QualType T = E->getLHS()->getType();
2507  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2508         && "comparison with mismatched types");
2509
2510  // We don't do anything special if this isn't an unsigned integral
2511  // comparison:  we're only interested in integral comparisons, and
2512  // signed comparisons only happen in cases we don't care to warn about.
2513  if (!T->hasUnsignedIntegerRepresentation())
2514    return AnalyzeImpConvsInComparison(S, E);
2515
2516  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2517  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2518
2519  // Check to see if one of the (unmodified) operands is of different
2520  // signedness.
2521  Expr *signedOperand, *unsignedOperand;
2522  if (lex->getType()->hasSignedIntegerRepresentation()) {
2523    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2524           "unsigned comparison between two signed integer expressions?");
2525    signedOperand = lex;
2526    unsignedOperand = rex;
2527  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2528    signedOperand = rex;
2529    unsignedOperand = lex;
2530  } else {
2531    CheckTrivialUnsignedComparison(S, E);
2532    return AnalyzeImpConvsInComparison(S, E);
2533  }
2534
2535  // Otherwise, calculate the effective range of the signed operand.
2536  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2537
2538  // Go ahead and analyze implicit conversions in the operands.  Note
2539  // that we skip the implicit conversions on both sides.
2540  AnalyzeImplicitConversions(S, lex);
2541  AnalyzeImplicitConversions(S, rex);
2542
2543  // If the signed range is non-negative, -Wsign-compare won't fire,
2544  // but we should still check for comparisons which are always true
2545  // or false.
2546  if (signedRange.NonNegative)
2547    return CheckTrivialUnsignedComparison(S, E);
2548
2549  // For (in)equality comparisons, if the unsigned operand is a
2550  // constant which cannot collide with a overflowed signed operand,
2551  // then reinterpreting the signed operand as unsigned will not
2552  // change the result of the comparison.
2553  if (E->isEqualityOp()) {
2554    unsigned comparisonWidth = S.Context.getIntWidth(T);
2555    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2556
2557    // We should never be unable to prove that the unsigned operand is
2558    // non-negative.
2559    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2560
2561    if (unsignedRange.Width < comparisonWidth)
2562      return;
2563  }
2564
2565  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2566    << lex->getType() << rex->getType()
2567    << lex->getSourceRange() << rex->getSourceRange();
2568}
2569
2570/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2571void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2572  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2573}
2574
2575void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2576                             bool *ICContext = 0) {
2577  if (E->isTypeDependent() || E->isValueDependent()) return;
2578
2579  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2580  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2581  if (Source == Target) return;
2582  if (Target->isDependentType()) return;
2583
2584  // Never diagnose implicit casts to bool.
2585  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2586    return;
2587
2588  // Strip vector types.
2589  if (isa<VectorType>(Source)) {
2590    if (!isa<VectorType>(Target))
2591      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2592
2593    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2594    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2595  }
2596
2597  // Strip complex types.
2598  if (isa<ComplexType>(Source)) {
2599    if (!isa<ComplexType>(Target))
2600      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2601
2602    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2603    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2604  }
2605
2606  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2607  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2608
2609  // If the source is floating point...
2610  if (SourceBT && SourceBT->isFloatingPoint()) {
2611    // ...and the target is floating point...
2612    if (TargetBT && TargetBT->isFloatingPoint()) {
2613      // ...then warn if we're dropping FP rank.
2614
2615      // Builtin FP kinds are ordered by increasing FP rank.
2616      if (SourceBT->getKind() > TargetBT->getKind()) {
2617        // Don't warn about float constants that are precisely
2618        // representable in the target type.
2619        Expr::EvalResult result;
2620        if (E->Evaluate(result, S.Context)) {
2621          // Value might be a float, a float vector, or a float complex.
2622          if (IsSameFloatAfterCast(result.Val,
2623                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2624                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2625            return;
2626        }
2627
2628        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2629      }
2630      return;
2631    }
2632
2633    // If the target is integral, always warn.
2634    if ((TargetBT && TargetBT->isInteger()))
2635      // TODO: don't warn for integer values?
2636      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2637
2638    return;
2639  }
2640
2641  if (!Source->isIntegerType() || !Target->isIntegerType())
2642    return;
2643
2644  IntRange SourceRange = GetExprRange(S.Context, E);
2645  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2646
2647  if (SourceRange.Width > TargetRange.Width) {
2648    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2649    // and by god we'll let them.
2650    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2651      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2652    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2653  }
2654
2655  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2656      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2657       SourceRange.Width == TargetRange.Width)) {
2658    unsigned DiagID = diag::warn_impcast_integer_sign;
2659
2660    // Traditionally, gcc has warned about this under -Wsign-compare.
2661    // We also want to warn about it in -Wconversion.
2662    // So if -Wconversion is off, use a completely identical diagnostic
2663    // in the sign-compare group.
2664    // The conditional-checking code will
2665    if (ICContext) {
2666      DiagID = diag::warn_impcast_integer_sign_conditional;
2667      *ICContext = true;
2668    }
2669
2670    return DiagnoseImpCast(S, E, T, DiagID);
2671  }
2672
2673  return;
2674}
2675
2676void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2677
2678void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2679                             bool &ICContext) {
2680  E = E->IgnoreParenImpCasts();
2681
2682  if (isa<ConditionalOperator>(E))
2683    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2684
2685  AnalyzeImplicitConversions(S, E);
2686  if (E->getType() != T)
2687    return CheckImplicitConversion(S, E, T, &ICContext);
2688  return;
2689}
2690
2691void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2692  AnalyzeImplicitConversions(S, E->getCond());
2693
2694  bool Suspicious = false;
2695  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2696  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2697
2698  // If -Wconversion would have warned about either of the candidates
2699  // for a signedness conversion to the context type...
2700  if (!Suspicious) return;
2701
2702  // ...but it's currently ignored...
2703  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2704    return;
2705
2706  // ...and -Wsign-compare isn't...
2707  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2708    return;
2709
2710  // ...then check whether it would have warned about either of the
2711  // candidates for a signedness conversion to the condition type.
2712  if (E->getType() != T) {
2713    Suspicious = false;
2714    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2715                            E->getType(), &Suspicious);
2716    if (!Suspicious)
2717      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2718                              E->getType(), &Suspicious);
2719    if (!Suspicious)
2720      return;
2721  }
2722
2723  // If so, emit a diagnostic under -Wsign-compare.
2724  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2725  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2726  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2727    << lex->getType() << rex->getType()
2728    << lex->getSourceRange() << rex->getSourceRange();
2729}
2730
2731/// AnalyzeImplicitConversions - Find and report any interesting
2732/// implicit conversions in the given expression.  There are a couple
2733/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2734void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2735  QualType T = OrigE->getType();
2736  Expr *E = OrigE->IgnoreParenImpCasts();
2737
2738  // For conditional operators, we analyze the arguments as if they
2739  // were being fed directly into the output.
2740  if (isa<ConditionalOperator>(E)) {
2741    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2742    CheckConditionalOperator(S, CO, T);
2743    return;
2744  }
2745
2746  // Go ahead and check any implicit conversions we might have skipped.
2747  // The non-canonical typecheck is just an optimization;
2748  // CheckImplicitConversion will filter out dead implicit conversions.
2749  if (E->getType() != T)
2750    CheckImplicitConversion(S, E, T);
2751
2752  // Now continue drilling into this expression.
2753
2754  // Skip past explicit casts.
2755  if (isa<ExplicitCastExpr>(E)) {
2756    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2757    return AnalyzeImplicitConversions(S, E);
2758  }
2759
2760  // Do a somewhat different check with comparison operators.
2761  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2762    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2763
2764  // These break the otherwise-useful invariant below.  Fortunately,
2765  // we don't really need to recurse into them, because any internal
2766  // expressions should have been analyzed already when they were
2767  // built into statements.
2768  if (isa<StmtExpr>(E)) return;
2769
2770  // Don't descend into unevaluated contexts.
2771  if (isa<SizeOfAlignOfExpr>(E)) return;
2772
2773  // Now just recurse over the expression's children.
2774  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2775         I != IE; ++I)
2776    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2777}
2778
2779} // end anonymous namespace
2780
2781/// Diagnoses "dangerous" implicit conversions within the given
2782/// expression (which is a full expression).  Implements -Wconversion
2783/// and -Wsign-compare.
2784void Sema::CheckImplicitConversions(Expr *E) {
2785  // Don't diagnose in unevaluated contexts.
2786  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2787    return;
2788
2789  // Don't diagnose for value- or type-dependent expressions.
2790  if (E->isTypeDependent() || E->isValueDependent())
2791    return;
2792
2793  AnalyzeImplicitConversions(*this, E);
2794}
2795
2796/// CheckParmsForFunctionDef - Check that the parameters of the given
2797/// function are appropriate for the definition of a function. This
2798/// takes care of any checks that cannot be performed on the
2799/// declaration itself, e.g., that the types of each of the function
2800/// parameters are complete.
2801bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2802  bool HasInvalidParm = false;
2803  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2804    ParmVarDecl *Param = FD->getParamDecl(p);
2805
2806    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2807    // function declarator that is part of a function definition of
2808    // that function shall not have incomplete type.
2809    //
2810    // This is also C++ [dcl.fct]p6.
2811    if (!Param->isInvalidDecl() &&
2812        RequireCompleteType(Param->getLocation(), Param->getType(),
2813                               diag::err_typecheck_decl_incomplete_type)) {
2814      Param->setInvalidDecl();
2815      HasInvalidParm = true;
2816    }
2817
2818    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2819    // declaration of each parameter shall include an identifier.
2820    if (Param->getIdentifier() == 0 &&
2821        !Param->isImplicit() &&
2822        !getLangOptions().CPlusPlus)
2823      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2824
2825    // C99 6.7.5.3p12:
2826    //   If the function declarator is not part of a definition of that
2827    //   function, parameters may have incomplete type and may use the [*]
2828    //   notation in their sequences of declarator specifiers to specify
2829    //   variable length array types.
2830    QualType PType = Param->getOriginalType();
2831    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2832      if (AT->getSizeModifier() == ArrayType::Star) {
2833        // FIXME: This diagnosic should point the the '[*]' if source-location
2834        // information is added for it.
2835        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2836      }
2837    }
2838  }
2839
2840  return HasInvalidParm;
2841}
2842
2843/// CheckCastAlign - Implements -Wcast-align, which warns when a
2844/// pointer cast increases the alignment requirements.
2845void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
2846  // This is actually a lot of work to potentially be doing on every
2847  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
2848  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
2849        == Diagnostic::Ignored)
2850    return;
2851
2852  // Ignore dependent types.
2853  if (T->isDependentType() || Op->getType()->isDependentType())
2854    return;
2855
2856  // Require that the destination be a pointer type.
2857  const PointerType *DestPtr = T->getAs<PointerType>();
2858  if (!DestPtr) return;
2859
2860  // If the destination has alignment 1, we're done.
2861  QualType DestPointee = DestPtr->getPointeeType();
2862  if (DestPointee->isIncompleteType()) return;
2863  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
2864  if (DestAlign.isOne()) return;
2865
2866  // Require that the source be a pointer type.
2867  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
2868  if (!SrcPtr) return;
2869  QualType SrcPointee = SrcPtr->getPointeeType();
2870
2871  // Whitelist casts from cv void*.  We already implicitly
2872  // whitelisted casts to cv void*, since they have alignment 1.
2873  // Also whitelist casts involving incomplete types, which implicitly
2874  // includes 'void'.
2875  if (SrcPointee->isIncompleteType()) return;
2876
2877  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
2878  if (SrcAlign >= DestAlign) return;
2879
2880  Diag(TRange.getBegin(), diag::warn_cast_align)
2881    << Op->getType() << T
2882    << static_cast<unsigned>(SrcAlign.getQuantity())
2883    << static_cast<unsigned>(DestAlign.getQuantity())
2884    << TRange << Op->getSourceRange();
2885}
2886
2887