SemaChecking.cpp revision 392da48160bd92ceb486792780467cbfdb2d0e8c
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/StmtObjC.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "clang/Basic/TargetBuiltins.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Basic/ConvertUTF.h"
39#include <limits>
40using namespace clang;
41using namespace sema;
42
43SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
44                                                    unsigned ByteNo) const {
45  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
46                               PP.getLangOpts(), PP.getTargetInfo());
47}
48
49/// Checks that a call expression's argument count is the desired number.
50/// This is useful when doing custom type-checking.  Returns true on error.
51static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
52  unsigned argCount = call->getNumArgs();
53  if (argCount == desiredArgCount) return false;
54
55  if (argCount < desiredArgCount)
56    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
57        << 0 /*function call*/ << desiredArgCount << argCount
58        << call->getSourceRange();
59
60  // Highlight all the excess arguments.
61  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
62                    call->getArg(argCount - 1)->getLocEnd());
63
64  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
65    << 0 /*function call*/ << desiredArgCount << argCount
66    << call->getArg(1)->getSourceRange();
67}
68
69/// Check that the first argument to __builtin_annotation is an integer
70/// and the second argument is a non-wide string literal.
71static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
72  if (checkArgCount(S, TheCall, 2))
73    return true;
74
75  // First argument should be an integer.
76  Expr *ValArg = TheCall->getArg(0);
77  QualType Ty = ValArg->getType();
78  if (!Ty->isIntegerType()) {
79    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
80      << ValArg->getSourceRange();
81    return true;
82  }
83
84  // Second argument should be a constant string.
85  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
86  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
87  if (!Literal || !Literal->isAscii()) {
88    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
89      << StrArg->getSourceRange();
90    return true;
91  }
92
93  TheCall->setType(Ty);
94  return false;
95}
96
97ExprResult
98Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
99  ExprResult TheCallResult(Owned(TheCall));
100
101  // Find out if any arguments are required to be integer constant expressions.
102  unsigned ICEArguments = 0;
103  ASTContext::GetBuiltinTypeError Error;
104  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
105  if (Error != ASTContext::GE_None)
106    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
107
108  // If any arguments are required to be ICE's, check and diagnose.
109  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
110    // Skip arguments not required to be ICE's.
111    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
112
113    llvm::APSInt Result;
114    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
115      return true;
116    ICEArguments &= ~(1 << ArgNo);
117  }
118
119  switch (BuiltinID) {
120  case Builtin::BI__builtin___CFStringMakeConstantString:
121    assert(TheCall->getNumArgs() == 1 &&
122           "Wrong # arguments to builtin CFStringMakeConstantString");
123    if (CheckObjCString(TheCall->getArg(0)))
124      return ExprError();
125    break;
126  case Builtin::BI__builtin_stdarg_start:
127  case Builtin::BI__builtin_va_start:
128    if (SemaBuiltinVAStart(TheCall))
129      return ExprError();
130    break;
131  case Builtin::BI__builtin_isgreater:
132  case Builtin::BI__builtin_isgreaterequal:
133  case Builtin::BI__builtin_isless:
134  case Builtin::BI__builtin_islessequal:
135  case Builtin::BI__builtin_islessgreater:
136  case Builtin::BI__builtin_isunordered:
137    if (SemaBuiltinUnorderedCompare(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_fpclassify:
141    if (SemaBuiltinFPClassification(TheCall, 6))
142      return ExprError();
143    break;
144  case Builtin::BI__builtin_isfinite:
145  case Builtin::BI__builtin_isinf:
146  case Builtin::BI__builtin_isinf_sign:
147  case Builtin::BI__builtin_isnan:
148  case Builtin::BI__builtin_isnormal:
149    if (SemaBuiltinFPClassification(TheCall, 1))
150      return ExprError();
151    break;
152  case Builtin::BI__builtin_shufflevector:
153    return SemaBuiltinShuffleVector(TheCall);
154    // TheCall will be freed by the smart pointer here, but that's fine, since
155    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
156  case Builtin::BI__builtin_prefetch:
157    if (SemaBuiltinPrefetch(TheCall))
158      return ExprError();
159    break;
160  case Builtin::BI__builtin_object_size:
161    if (SemaBuiltinObjectSize(TheCall))
162      return ExprError();
163    break;
164  case Builtin::BI__builtin_longjmp:
165    if (SemaBuiltinLongjmp(TheCall))
166      return ExprError();
167    break;
168
169  case Builtin::BI__builtin_classify_type:
170    if (checkArgCount(*this, TheCall, 1)) return true;
171    TheCall->setType(Context.IntTy);
172    break;
173  case Builtin::BI__builtin_constant_p:
174    if (checkArgCount(*this, TheCall, 1)) return true;
175    TheCall->setType(Context.IntTy);
176    break;
177  case Builtin::BI__sync_fetch_and_add:
178  case Builtin::BI__sync_fetch_and_add_1:
179  case Builtin::BI__sync_fetch_and_add_2:
180  case Builtin::BI__sync_fetch_and_add_4:
181  case Builtin::BI__sync_fetch_and_add_8:
182  case Builtin::BI__sync_fetch_and_add_16:
183  case Builtin::BI__sync_fetch_and_sub:
184  case Builtin::BI__sync_fetch_and_sub_1:
185  case Builtin::BI__sync_fetch_and_sub_2:
186  case Builtin::BI__sync_fetch_and_sub_4:
187  case Builtin::BI__sync_fetch_and_sub_8:
188  case Builtin::BI__sync_fetch_and_sub_16:
189  case Builtin::BI__sync_fetch_and_or:
190  case Builtin::BI__sync_fetch_and_or_1:
191  case Builtin::BI__sync_fetch_and_or_2:
192  case Builtin::BI__sync_fetch_and_or_4:
193  case Builtin::BI__sync_fetch_and_or_8:
194  case Builtin::BI__sync_fetch_and_or_16:
195  case Builtin::BI__sync_fetch_and_and:
196  case Builtin::BI__sync_fetch_and_and_1:
197  case Builtin::BI__sync_fetch_and_and_2:
198  case Builtin::BI__sync_fetch_and_and_4:
199  case Builtin::BI__sync_fetch_and_and_8:
200  case Builtin::BI__sync_fetch_and_and_16:
201  case Builtin::BI__sync_fetch_and_xor:
202  case Builtin::BI__sync_fetch_and_xor_1:
203  case Builtin::BI__sync_fetch_and_xor_2:
204  case Builtin::BI__sync_fetch_and_xor_4:
205  case Builtin::BI__sync_fetch_and_xor_8:
206  case Builtin::BI__sync_fetch_and_xor_16:
207  case Builtin::BI__sync_add_and_fetch:
208  case Builtin::BI__sync_add_and_fetch_1:
209  case Builtin::BI__sync_add_and_fetch_2:
210  case Builtin::BI__sync_add_and_fetch_4:
211  case Builtin::BI__sync_add_and_fetch_8:
212  case Builtin::BI__sync_add_and_fetch_16:
213  case Builtin::BI__sync_sub_and_fetch:
214  case Builtin::BI__sync_sub_and_fetch_1:
215  case Builtin::BI__sync_sub_and_fetch_2:
216  case Builtin::BI__sync_sub_and_fetch_4:
217  case Builtin::BI__sync_sub_and_fetch_8:
218  case Builtin::BI__sync_sub_and_fetch_16:
219  case Builtin::BI__sync_and_and_fetch:
220  case Builtin::BI__sync_and_and_fetch_1:
221  case Builtin::BI__sync_and_and_fetch_2:
222  case Builtin::BI__sync_and_and_fetch_4:
223  case Builtin::BI__sync_and_and_fetch_8:
224  case Builtin::BI__sync_and_and_fetch_16:
225  case Builtin::BI__sync_or_and_fetch:
226  case Builtin::BI__sync_or_and_fetch_1:
227  case Builtin::BI__sync_or_and_fetch_2:
228  case Builtin::BI__sync_or_and_fetch_4:
229  case Builtin::BI__sync_or_and_fetch_8:
230  case Builtin::BI__sync_or_and_fetch_16:
231  case Builtin::BI__sync_xor_and_fetch:
232  case Builtin::BI__sync_xor_and_fetch_1:
233  case Builtin::BI__sync_xor_and_fetch_2:
234  case Builtin::BI__sync_xor_and_fetch_4:
235  case Builtin::BI__sync_xor_and_fetch_8:
236  case Builtin::BI__sync_xor_and_fetch_16:
237  case Builtin::BI__sync_val_compare_and_swap:
238  case Builtin::BI__sync_val_compare_and_swap_1:
239  case Builtin::BI__sync_val_compare_and_swap_2:
240  case Builtin::BI__sync_val_compare_and_swap_4:
241  case Builtin::BI__sync_val_compare_and_swap_8:
242  case Builtin::BI__sync_val_compare_and_swap_16:
243  case Builtin::BI__sync_bool_compare_and_swap:
244  case Builtin::BI__sync_bool_compare_and_swap_1:
245  case Builtin::BI__sync_bool_compare_and_swap_2:
246  case Builtin::BI__sync_bool_compare_and_swap_4:
247  case Builtin::BI__sync_bool_compare_and_swap_8:
248  case Builtin::BI__sync_bool_compare_and_swap_16:
249  case Builtin::BI__sync_lock_test_and_set:
250  case Builtin::BI__sync_lock_test_and_set_1:
251  case Builtin::BI__sync_lock_test_and_set_2:
252  case Builtin::BI__sync_lock_test_and_set_4:
253  case Builtin::BI__sync_lock_test_and_set_8:
254  case Builtin::BI__sync_lock_test_and_set_16:
255  case Builtin::BI__sync_lock_release:
256  case Builtin::BI__sync_lock_release_1:
257  case Builtin::BI__sync_lock_release_2:
258  case Builtin::BI__sync_lock_release_4:
259  case Builtin::BI__sync_lock_release_8:
260  case Builtin::BI__sync_lock_release_16:
261  case Builtin::BI__sync_swap:
262  case Builtin::BI__sync_swap_1:
263  case Builtin::BI__sync_swap_2:
264  case Builtin::BI__sync_swap_4:
265  case Builtin::BI__sync_swap_8:
266  case Builtin::BI__sync_swap_16:
267    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
268#define BUILTIN(ID, TYPE, ATTRS)
269#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
270  case Builtin::BI##ID: \
271    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::AO##ID);
272#include "clang/Basic/Builtins.def"
273  case Builtin::BI__builtin_annotation:
274    if (SemaBuiltinAnnotation(*this, TheCall))
275      return ExprError();
276    break;
277  }
278
279  // Since the target specific builtins for each arch overlap, only check those
280  // of the arch we are compiling for.
281  if (BuiltinID >= Builtin::FirstTSBuiltin) {
282    switch (Context.getTargetInfo().getTriple().getArch()) {
283      case llvm::Triple::arm:
284      case llvm::Triple::thumb:
285        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
286          return ExprError();
287        break;
288      default:
289        break;
290    }
291  }
292
293  return move(TheCallResult);
294}
295
296// Get the valid immediate range for the specified NEON type code.
297static unsigned RFT(unsigned t, bool shift = false) {
298  NeonTypeFlags Type(t);
299  int IsQuad = Type.isQuad();
300  switch (Type.getEltType()) {
301  case NeonTypeFlags::Int8:
302  case NeonTypeFlags::Poly8:
303    return shift ? 7 : (8 << IsQuad) - 1;
304  case NeonTypeFlags::Int16:
305  case NeonTypeFlags::Poly16:
306    return shift ? 15 : (4 << IsQuad) - 1;
307  case NeonTypeFlags::Int32:
308    return shift ? 31 : (2 << IsQuad) - 1;
309  case NeonTypeFlags::Int64:
310    return shift ? 63 : (1 << IsQuad) - 1;
311  case NeonTypeFlags::Float16:
312    assert(!shift && "cannot shift float types!");
313    return (4 << IsQuad) - 1;
314  case NeonTypeFlags::Float32:
315    assert(!shift && "cannot shift float types!");
316    return (2 << IsQuad) - 1;
317  }
318  llvm_unreachable("Invalid NeonTypeFlag!");
319}
320
321/// getNeonEltType - Return the QualType corresponding to the elements of
322/// the vector type specified by the NeonTypeFlags.  This is used to check
323/// the pointer arguments for Neon load/store intrinsics.
324static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
325  switch (Flags.getEltType()) {
326  case NeonTypeFlags::Int8:
327    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
328  case NeonTypeFlags::Int16:
329    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
330  case NeonTypeFlags::Int32:
331    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
332  case NeonTypeFlags::Int64:
333    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
334  case NeonTypeFlags::Poly8:
335    return Context.SignedCharTy;
336  case NeonTypeFlags::Poly16:
337    return Context.ShortTy;
338  case NeonTypeFlags::Float16:
339    return Context.UnsignedShortTy;
340  case NeonTypeFlags::Float32:
341    return Context.FloatTy;
342  }
343  llvm_unreachable("Invalid NeonTypeFlag!");
344}
345
346bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
347  llvm::APSInt Result;
348
349  unsigned mask = 0;
350  unsigned TV = 0;
351  int PtrArgNum = -1;
352  bool HasConstPtr = false;
353  switch (BuiltinID) {
354#define GET_NEON_OVERLOAD_CHECK
355#include "clang/Basic/arm_neon.inc"
356#undef GET_NEON_OVERLOAD_CHECK
357  }
358
359  // For NEON intrinsics which are overloaded on vector element type, validate
360  // the immediate which specifies which variant to emit.
361  unsigned ImmArg = TheCall->getNumArgs()-1;
362  if (mask) {
363    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
364      return true;
365
366    TV = Result.getLimitedValue(64);
367    if ((TV > 63) || (mask & (1 << TV)) == 0)
368      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
369        << TheCall->getArg(ImmArg)->getSourceRange();
370  }
371
372  if (PtrArgNum >= 0) {
373    // Check that pointer arguments have the specified type.
374    Expr *Arg = TheCall->getArg(PtrArgNum);
375    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
376      Arg = ICE->getSubExpr();
377    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
378    QualType RHSTy = RHS.get()->getType();
379    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
380    if (HasConstPtr)
381      EltTy = EltTy.withConst();
382    QualType LHSTy = Context.getPointerType(EltTy);
383    AssignConvertType ConvTy;
384    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
385    if (RHS.isInvalid())
386      return true;
387    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
388                                 RHS.get(), AA_Assigning))
389      return true;
390  }
391
392  // For NEON intrinsics which take an immediate value as part of the
393  // instruction, range check them here.
394  unsigned i = 0, l = 0, u = 0;
395  switch (BuiltinID) {
396  default: return false;
397  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
398  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
399  case ARM::BI__builtin_arm_vcvtr_f:
400  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
401#define GET_NEON_IMMEDIATE_CHECK
402#include "clang/Basic/arm_neon.inc"
403#undef GET_NEON_IMMEDIATE_CHECK
404  };
405
406  // Check that the immediate argument is actually a constant.
407  if (SemaBuiltinConstantArg(TheCall, i, Result))
408    return true;
409
410  // Range check against the upper/lower values for this isntruction.
411  unsigned Val = Result.getZExtValue();
412  if (Val < l || Val > (u + l))
413    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
414      << l << u+l << TheCall->getArg(i)->getSourceRange();
415
416  // FIXME: VFP Intrinsics should error if VFP not present.
417  return false;
418}
419
420/// CheckFunctionCall - Check a direct function call for various correctness
421/// and safety properties not strictly enforced by the C type system.
422bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
423  // Get the IdentifierInfo* for the called function.
424  IdentifierInfo *FnInfo = FDecl->getIdentifier();
425
426  // None of the checks below are needed for functions that don't have
427  // simple names (e.g., C++ conversion functions).
428  if (!FnInfo)
429    return false;
430
431  // FIXME: This mechanism should be abstracted to be less fragile and
432  // more efficient. For example, just map function ids to custom
433  // handlers.
434
435  // Printf and scanf checking.
436  for (specific_attr_iterator<FormatAttr>
437         i = FDecl->specific_attr_begin<FormatAttr>(),
438         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
439    CheckFormatArguments(*i, TheCall);
440  }
441
442  for (specific_attr_iterator<NonNullAttr>
443         i = FDecl->specific_attr_begin<NonNullAttr>(),
444         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
445    CheckNonNullArguments(*i, TheCall->getArgs(),
446                          TheCall->getCallee()->getLocStart());
447  }
448
449  unsigned CMId = FDecl->getMemoryFunctionKind();
450  if (CMId == 0)
451    return false;
452
453  // Handle memory setting and copying functions.
454  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
455    CheckStrlcpycatArguments(TheCall, FnInfo);
456  else if (CMId == Builtin::BIstrncat)
457    CheckStrncatArguments(TheCall, FnInfo);
458  else
459    CheckMemaccessArguments(TheCall, CMId, FnInfo);
460
461  return false;
462}
463
464bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
465                               Expr **Args, unsigned NumArgs) {
466  for (specific_attr_iterator<FormatAttr>
467       i = Method->specific_attr_begin<FormatAttr>(),
468       e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
469
470    CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
471                         Method->getSourceRange());
472  }
473
474  // diagnose nonnull arguments.
475  for (specific_attr_iterator<NonNullAttr>
476       i = Method->specific_attr_begin<NonNullAttr>(),
477       e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
478    CheckNonNullArguments(*i, Args, lbrac);
479  }
480
481  return false;
482}
483
484bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
485  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
486  if (!V)
487    return false;
488
489  QualType Ty = V->getType();
490  if (!Ty->isBlockPointerType())
491    return false;
492
493  // format string checking.
494  for (specific_attr_iterator<FormatAttr>
495       i = NDecl->specific_attr_begin<FormatAttr>(),
496       e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
497    CheckFormatArguments(*i, TheCall);
498  }
499
500  return false;
501}
502
503ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
504                                         AtomicExpr::AtomicOp Op) {
505  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
506  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
507
508  // All these operations take one of the following forms:
509  enum {
510    // C    __c11_atomic_init(A *, C)
511    Init,
512    // C    __c11_atomic_load(A *, int)
513    Load,
514    // void __atomic_load(A *, CP, int)
515    Copy,
516    // C    __c11_atomic_add(A *, M, int)
517    Arithmetic,
518    // C    __atomic_exchange_n(A *, CP, int)
519    Xchg,
520    // void __atomic_exchange(A *, C *, CP, int)
521    GNUXchg,
522    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
523    C11CmpXchg,
524    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
525    GNUCmpXchg
526  } Form = Init;
527  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
528  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
529  // where:
530  //   C is an appropriate type,
531  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
532  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
533  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
534  //   the int parameters are for orderings.
535
536  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
537         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
538         && "need to update code for modified C11 atomics");
539  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
540               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
541  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
542             Op == AtomicExpr::AO__atomic_store_n ||
543             Op == AtomicExpr::AO__atomic_exchange_n ||
544             Op == AtomicExpr::AO__atomic_compare_exchange_n;
545  bool IsAddSub = false;
546
547  switch (Op) {
548  case AtomicExpr::AO__c11_atomic_init:
549    Form = Init;
550    break;
551
552  case AtomicExpr::AO__c11_atomic_load:
553  case AtomicExpr::AO__atomic_load_n:
554    Form = Load;
555    break;
556
557  case AtomicExpr::AO__c11_atomic_store:
558  case AtomicExpr::AO__atomic_load:
559  case AtomicExpr::AO__atomic_store:
560  case AtomicExpr::AO__atomic_store_n:
561    Form = Copy;
562    break;
563
564  case AtomicExpr::AO__c11_atomic_fetch_add:
565  case AtomicExpr::AO__c11_atomic_fetch_sub:
566  case AtomicExpr::AO__atomic_fetch_add:
567  case AtomicExpr::AO__atomic_fetch_sub:
568  case AtomicExpr::AO__atomic_add_fetch:
569  case AtomicExpr::AO__atomic_sub_fetch:
570    IsAddSub = true;
571    // Fall through.
572  case AtomicExpr::AO__c11_atomic_fetch_and:
573  case AtomicExpr::AO__c11_atomic_fetch_or:
574  case AtomicExpr::AO__c11_atomic_fetch_xor:
575  case AtomicExpr::AO__atomic_fetch_and:
576  case AtomicExpr::AO__atomic_fetch_or:
577  case AtomicExpr::AO__atomic_fetch_xor:
578  case AtomicExpr::AO__atomic_fetch_nand:
579  case AtomicExpr::AO__atomic_and_fetch:
580  case AtomicExpr::AO__atomic_or_fetch:
581  case AtomicExpr::AO__atomic_xor_fetch:
582  case AtomicExpr::AO__atomic_nand_fetch:
583    Form = Arithmetic;
584    break;
585
586  case AtomicExpr::AO__c11_atomic_exchange:
587  case AtomicExpr::AO__atomic_exchange_n:
588    Form = Xchg;
589    break;
590
591  case AtomicExpr::AO__atomic_exchange:
592    Form = GNUXchg;
593    break;
594
595  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
596  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
597    Form = C11CmpXchg;
598    break;
599
600  case AtomicExpr::AO__atomic_compare_exchange:
601  case AtomicExpr::AO__atomic_compare_exchange_n:
602    Form = GNUCmpXchg;
603    break;
604  }
605
606  // Check we have the right number of arguments.
607  if (TheCall->getNumArgs() < NumArgs[Form]) {
608    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
609      << 0 << NumArgs[Form] << TheCall->getNumArgs()
610      << TheCall->getCallee()->getSourceRange();
611    return ExprError();
612  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
613    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
614         diag::err_typecheck_call_too_many_args)
615      << 0 << NumArgs[Form] << TheCall->getNumArgs()
616      << TheCall->getCallee()->getSourceRange();
617    return ExprError();
618  }
619
620  // Inspect the first argument of the atomic operation.
621  Expr *Ptr = TheCall->getArg(0);
622  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
623  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
624  if (!pointerType) {
625    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
626      << Ptr->getType() << Ptr->getSourceRange();
627    return ExprError();
628  }
629
630  // For a __c11 builtin, this should be a pointer to an _Atomic type.
631  QualType AtomTy = pointerType->getPointeeType(); // 'A'
632  QualType ValType = AtomTy; // 'C'
633  if (IsC11) {
634    if (!AtomTy->isAtomicType()) {
635      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
636        << Ptr->getType() << Ptr->getSourceRange();
637      return ExprError();
638    }
639    ValType = AtomTy->getAs<AtomicType>()->getValueType();
640  }
641
642  // For an arithmetic operation, the implied arithmetic must be well-formed.
643  if (Form == Arithmetic) {
644    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
645    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
646      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
647        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
648      return ExprError();
649    }
650    if (!IsAddSub && !ValType->isIntegerType()) {
651      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
652        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
653      return ExprError();
654    }
655  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
656    // For __atomic_*_n operations, the value type must be a scalar integral or
657    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
658    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
659      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
660    return ExprError();
661  }
662
663  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
664    // For GNU atomics, require a trivially-copyable type. This is not part of
665    // the GNU atomics specification, but we enforce it for sanity.
666    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
667      << Ptr->getType() << Ptr->getSourceRange();
668    return ExprError();
669  }
670
671  // FIXME: For any builtin other than a load, the ValType must not be
672  // const-qualified.
673
674  switch (ValType.getObjCLifetime()) {
675  case Qualifiers::OCL_None:
676  case Qualifiers::OCL_ExplicitNone:
677    // okay
678    break;
679
680  case Qualifiers::OCL_Weak:
681  case Qualifiers::OCL_Strong:
682  case Qualifiers::OCL_Autoreleasing:
683    // FIXME: Can this happen? By this point, ValType should be known
684    // to be trivially copyable.
685    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
686      << ValType << Ptr->getSourceRange();
687    return ExprError();
688  }
689
690  QualType ResultType = ValType;
691  if (Form == Copy || Form == GNUXchg || Form == Init)
692    ResultType = Context.VoidTy;
693  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
694    ResultType = Context.BoolTy;
695
696  // The type of a parameter passed 'by value'. In the GNU atomics, such
697  // arguments are actually passed as pointers.
698  QualType ByValType = ValType; // 'CP'
699  if (!IsC11 && !IsN)
700    ByValType = Ptr->getType();
701
702  // The first argument --- the pointer --- has a fixed type; we
703  // deduce the types of the rest of the arguments accordingly.  Walk
704  // the remaining arguments, converting them to the deduced value type.
705  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
706    QualType Ty;
707    if (i < NumVals[Form] + 1) {
708      switch (i) {
709      case 1:
710        // The second argument is the non-atomic operand. For arithmetic, this
711        // is always passed by value, and for a compare_exchange it is always
712        // passed by address. For the rest, GNU uses by-address and C11 uses
713        // by-value.
714        assert(Form != Load);
715        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
716          Ty = ValType;
717        else if (Form == Copy || Form == Xchg)
718          Ty = ByValType;
719        else if (Form == Arithmetic)
720          Ty = Context.getPointerDiffType();
721        else
722          Ty = Context.getPointerType(ValType.getUnqualifiedType());
723        break;
724      case 2:
725        // The third argument to compare_exchange / GNU exchange is a
726        // (pointer to a) desired value.
727        Ty = ByValType;
728        break;
729      case 3:
730        // The fourth argument to GNU compare_exchange is a 'weak' flag.
731        Ty = Context.BoolTy;
732        break;
733      }
734    } else {
735      // The order(s) are always converted to int.
736      Ty = Context.IntTy;
737    }
738
739    InitializedEntity Entity =
740        InitializedEntity::InitializeParameter(Context, Ty, false);
741    ExprResult Arg = TheCall->getArg(i);
742    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
743    if (Arg.isInvalid())
744      return true;
745    TheCall->setArg(i, Arg.get());
746  }
747
748  // Permute the arguments into a 'consistent' order.
749  SmallVector<Expr*, 5> SubExprs;
750  SubExprs.push_back(Ptr);
751  switch (Form) {
752  case Init:
753    // Note, AtomicExpr::getVal1() has a special case for this atomic.
754    SubExprs.push_back(TheCall->getArg(1)); // Val1
755    break;
756  case Load:
757    SubExprs.push_back(TheCall->getArg(1)); // Order
758    break;
759  case Copy:
760  case Arithmetic:
761  case Xchg:
762    SubExprs.push_back(TheCall->getArg(2)); // Order
763    SubExprs.push_back(TheCall->getArg(1)); // Val1
764    break;
765  case GNUXchg:
766    // Note, AtomicExpr::getVal2() has a special case for this atomic.
767    SubExprs.push_back(TheCall->getArg(3)); // Order
768    SubExprs.push_back(TheCall->getArg(1)); // Val1
769    SubExprs.push_back(TheCall->getArg(2)); // Val2
770    break;
771  case C11CmpXchg:
772    SubExprs.push_back(TheCall->getArg(3)); // Order
773    SubExprs.push_back(TheCall->getArg(1)); // Val1
774    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
775    SubExprs.push_back(TheCall->getArg(2)); // Val2
776    break;
777  case GNUCmpXchg:
778    SubExprs.push_back(TheCall->getArg(4)); // Order
779    SubExprs.push_back(TheCall->getArg(1)); // Val1
780    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
781    SubExprs.push_back(TheCall->getArg(2)); // Val2
782    SubExprs.push_back(TheCall->getArg(3)); // Weak
783    break;
784  }
785
786  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
787                                        SubExprs.data(), SubExprs.size(),
788                                        ResultType, Op,
789                                        TheCall->getRParenLoc()));
790}
791
792
793/// checkBuiltinArgument - Given a call to a builtin function, perform
794/// normal type-checking on the given argument, updating the call in
795/// place.  This is useful when a builtin function requires custom
796/// type-checking for some of its arguments but not necessarily all of
797/// them.
798///
799/// Returns true on error.
800static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
801  FunctionDecl *Fn = E->getDirectCallee();
802  assert(Fn && "builtin call without direct callee!");
803
804  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
805  InitializedEntity Entity =
806    InitializedEntity::InitializeParameter(S.Context, Param);
807
808  ExprResult Arg = E->getArg(0);
809  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
810  if (Arg.isInvalid())
811    return true;
812
813  E->setArg(ArgIndex, Arg.take());
814  return false;
815}
816
817/// SemaBuiltinAtomicOverloaded - We have a call to a function like
818/// __sync_fetch_and_add, which is an overloaded function based on the pointer
819/// type of its first argument.  The main ActOnCallExpr routines have already
820/// promoted the types of arguments because all of these calls are prototyped as
821/// void(...).
822///
823/// This function goes through and does final semantic checking for these
824/// builtins,
825ExprResult
826Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
827  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
828  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
829  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
830
831  // Ensure that we have at least one argument to do type inference from.
832  if (TheCall->getNumArgs() < 1) {
833    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
834      << 0 << 1 << TheCall->getNumArgs()
835      << TheCall->getCallee()->getSourceRange();
836    return ExprError();
837  }
838
839  // Inspect the first argument of the atomic builtin.  This should always be
840  // a pointer type, whose element is an integral scalar or pointer type.
841  // Because it is a pointer type, we don't have to worry about any implicit
842  // casts here.
843  // FIXME: We don't allow floating point scalars as input.
844  Expr *FirstArg = TheCall->getArg(0);
845  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
846  if (FirstArgResult.isInvalid())
847    return ExprError();
848  FirstArg = FirstArgResult.take();
849  TheCall->setArg(0, FirstArg);
850
851  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
852  if (!pointerType) {
853    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
854      << FirstArg->getType() << FirstArg->getSourceRange();
855    return ExprError();
856  }
857
858  QualType ValType = pointerType->getPointeeType();
859  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
860      !ValType->isBlockPointerType()) {
861    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
862      << FirstArg->getType() << FirstArg->getSourceRange();
863    return ExprError();
864  }
865
866  switch (ValType.getObjCLifetime()) {
867  case Qualifiers::OCL_None:
868  case Qualifiers::OCL_ExplicitNone:
869    // okay
870    break;
871
872  case Qualifiers::OCL_Weak:
873  case Qualifiers::OCL_Strong:
874  case Qualifiers::OCL_Autoreleasing:
875    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
876      << ValType << FirstArg->getSourceRange();
877    return ExprError();
878  }
879
880  // Strip any qualifiers off ValType.
881  ValType = ValType.getUnqualifiedType();
882
883  // The majority of builtins return a value, but a few have special return
884  // types, so allow them to override appropriately below.
885  QualType ResultType = ValType;
886
887  // We need to figure out which concrete builtin this maps onto.  For example,
888  // __sync_fetch_and_add with a 2 byte object turns into
889  // __sync_fetch_and_add_2.
890#define BUILTIN_ROW(x) \
891  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
892    Builtin::BI##x##_8, Builtin::BI##x##_16 }
893
894  static const unsigned BuiltinIndices[][5] = {
895    BUILTIN_ROW(__sync_fetch_and_add),
896    BUILTIN_ROW(__sync_fetch_and_sub),
897    BUILTIN_ROW(__sync_fetch_and_or),
898    BUILTIN_ROW(__sync_fetch_and_and),
899    BUILTIN_ROW(__sync_fetch_and_xor),
900
901    BUILTIN_ROW(__sync_add_and_fetch),
902    BUILTIN_ROW(__sync_sub_and_fetch),
903    BUILTIN_ROW(__sync_and_and_fetch),
904    BUILTIN_ROW(__sync_or_and_fetch),
905    BUILTIN_ROW(__sync_xor_and_fetch),
906
907    BUILTIN_ROW(__sync_val_compare_and_swap),
908    BUILTIN_ROW(__sync_bool_compare_and_swap),
909    BUILTIN_ROW(__sync_lock_test_and_set),
910    BUILTIN_ROW(__sync_lock_release),
911    BUILTIN_ROW(__sync_swap)
912  };
913#undef BUILTIN_ROW
914
915  // Determine the index of the size.
916  unsigned SizeIndex;
917  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
918  case 1: SizeIndex = 0; break;
919  case 2: SizeIndex = 1; break;
920  case 4: SizeIndex = 2; break;
921  case 8: SizeIndex = 3; break;
922  case 16: SizeIndex = 4; break;
923  default:
924    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
925      << FirstArg->getType() << FirstArg->getSourceRange();
926    return ExprError();
927  }
928
929  // Each of these builtins has one pointer argument, followed by some number of
930  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
931  // that we ignore.  Find out which row of BuiltinIndices to read from as well
932  // as the number of fixed args.
933  unsigned BuiltinID = FDecl->getBuiltinID();
934  unsigned BuiltinIndex, NumFixed = 1;
935  switch (BuiltinID) {
936  default: llvm_unreachable("Unknown overloaded atomic builtin!");
937  case Builtin::BI__sync_fetch_and_add:
938  case Builtin::BI__sync_fetch_and_add_1:
939  case Builtin::BI__sync_fetch_and_add_2:
940  case Builtin::BI__sync_fetch_and_add_4:
941  case Builtin::BI__sync_fetch_and_add_8:
942  case Builtin::BI__sync_fetch_and_add_16:
943    BuiltinIndex = 0;
944    break;
945
946  case Builtin::BI__sync_fetch_and_sub:
947  case Builtin::BI__sync_fetch_and_sub_1:
948  case Builtin::BI__sync_fetch_and_sub_2:
949  case Builtin::BI__sync_fetch_and_sub_4:
950  case Builtin::BI__sync_fetch_and_sub_8:
951  case Builtin::BI__sync_fetch_and_sub_16:
952    BuiltinIndex = 1;
953    break;
954
955  case Builtin::BI__sync_fetch_and_or:
956  case Builtin::BI__sync_fetch_and_or_1:
957  case Builtin::BI__sync_fetch_and_or_2:
958  case Builtin::BI__sync_fetch_and_or_4:
959  case Builtin::BI__sync_fetch_and_or_8:
960  case Builtin::BI__sync_fetch_and_or_16:
961    BuiltinIndex = 2;
962    break;
963
964  case Builtin::BI__sync_fetch_and_and:
965  case Builtin::BI__sync_fetch_and_and_1:
966  case Builtin::BI__sync_fetch_and_and_2:
967  case Builtin::BI__sync_fetch_and_and_4:
968  case Builtin::BI__sync_fetch_and_and_8:
969  case Builtin::BI__sync_fetch_and_and_16:
970    BuiltinIndex = 3;
971    break;
972
973  case Builtin::BI__sync_fetch_and_xor:
974  case Builtin::BI__sync_fetch_and_xor_1:
975  case Builtin::BI__sync_fetch_and_xor_2:
976  case Builtin::BI__sync_fetch_and_xor_4:
977  case Builtin::BI__sync_fetch_and_xor_8:
978  case Builtin::BI__sync_fetch_and_xor_16:
979    BuiltinIndex = 4;
980    break;
981
982  case Builtin::BI__sync_add_and_fetch:
983  case Builtin::BI__sync_add_and_fetch_1:
984  case Builtin::BI__sync_add_and_fetch_2:
985  case Builtin::BI__sync_add_and_fetch_4:
986  case Builtin::BI__sync_add_and_fetch_8:
987  case Builtin::BI__sync_add_and_fetch_16:
988    BuiltinIndex = 5;
989    break;
990
991  case Builtin::BI__sync_sub_and_fetch:
992  case Builtin::BI__sync_sub_and_fetch_1:
993  case Builtin::BI__sync_sub_and_fetch_2:
994  case Builtin::BI__sync_sub_and_fetch_4:
995  case Builtin::BI__sync_sub_and_fetch_8:
996  case Builtin::BI__sync_sub_and_fetch_16:
997    BuiltinIndex = 6;
998    break;
999
1000  case Builtin::BI__sync_and_and_fetch:
1001  case Builtin::BI__sync_and_and_fetch_1:
1002  case Builtin::BI__sync_and_and_fetch_2:
1003  case Builtin::BI__sync_and_and_fetch_4:
1004  case Builtin::BI__sync_and_and_fetch_8:
1005  case Builtin::BI__sync_and_and_fetch_16:
1006    BuiltinIndex = 7;
1007    break;
1008
1009  case Builtin::BI__sync_or_and_fetch:
1010  case Builtin::BI__sync_or_and_fetch_1:
1011  case Builtin::BI__sync_or_and_fetch_2:
1012  case Builtin::BI__sync_or_and_fetch_4:
1013  case Builtin::BI__sync_or_and_fetch_8:
1014  case Builtin::BI__sync_or_and_fetch_16:
1015    BuiltinIndex = 8;
1016    break;
1017
1018  case Builtin::BI__sync_xor_and_fetch:
1019  case Builtin::BI__sync_xor_and_fetch_1:
1020  case Builtin::BI__sync_xor_and_fetch_2:
1021  case Builtin::BI__sync_xor_and_fetch_4:
1022  case Builtin::BI__sync_xor_and_fetch_8:
1023  case Builtin::BI__sync_xor_and_fetch_16:
1024    BuiltinIndex = 9;
1025    break;
1026
1027  case Builtin::BI__sync_val_compare_and_swap:
1028  case Builtin::BI__sync_val_compare_and_swap_1:
1029  case Builtin::BI__sync_val_compare_and_swap_2:
1030  case Builtin::BI__sync_val_compare_and_swap_4:
1031  case Builtin::BI__sync_val_compare_and_swap_8:
1032  case Builtin::BI__sync_val_compare_and_swap_16:
1033    BuiltinIndex = 10;
1034    NumFixed = 2;
1035    break;
1036
1037  case Builtin::BI__sync_bool_compare_and_swap:
1038  case Builtin::BI__sync_bool_compare_and_swap_1:
1039  case Builtin::BI__sync_bool_compare_and_swap_2:
1040  case Builtin::BI__sync_bool_compare_and_swap_4:
1041  case Builtin::BI__sync_bool_compare_and_swap_8:
1042  case Builtin::BI__sync_bool_compare_and_swap_16:
1043    BuiltinIndex = 11;
1044    NumFixed = 2;
1045    ResultType = Context.BoolTy;
1046    break;
1047
1048  case Builtin::BI__sync_lock_test_and_set:
1049  case Builtin::BI__sync_lock_test_and_set_1:
1050  case Builtin::BI__sync_lock_test_and_set_2:
1051  case Builtin::BI__sync_lock_test_and_set_4:
1052  case Builtin::BI__sync_lock_test_and_set_8:
1053  case Builtin::BI__sync_lock_test_and_set_16:
1054    BuiltinIndex = 12;
1055    break;
1056
1057  case Builtin::BI__sync_lock_release:
1058  case Builtin::BI__sync_lock_release_1:
1059  case Builtin::BI__sync_lock_release_2:
1060  case Builtin::BI__sync_lock_release_4:
1061  case Builtin::BI__sync_lock_release_8:
1062  case Builtin::BI__sync_lock_release_16:
1063    BuiltinIndex = 13;
1064    NumFixed = 0;
1065    ResultType = Context.VoidTy;
1066    break;
1067
1068  case Builtin::BI__sync_swap:
1069  case Builtin::BI__sync_swap_1:
1070  case Builtin::BI__sync_swap_2:
1071  case Builtin::BI__sync_swap_4:
1072  case Builtin::BI__sync_swap_8:
1073  case Builtin::BI__sync_swap_16:
1074    BuiltinIndex = 14;
1075    break;
1076  }
1077
1078  // Now that we know how many fixed arguments we expect, first check that we
1079  // have at least that many.
1080  if (TheCall->getNumArgs() < 1+NumFixed) {
1081    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1082      << 0 << 1+NumFixed << TheCall->getNumArgs()
1083      << TheCall->getCallee()->getSourceRange();
1084    return ExprError();
1085  }
1086
1087  // Get the decl for the concrete builtin from this, we can tell what the
1088  // concrete integer type we should convert to is.
1089  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1090  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1091  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
1092  FunctionDecl *NewBuiltinDecl =
1093    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
1094                                           TUScope, false, DRE->getLocStart()));
1095
1096  // The first argument --- the pointer --- has a fixed type; we
1097  // deduce the types of the rest of the arguments accordingly.  Walk
1098  // the remaining arguments, converting them to the deduced value type.
1099  for (unsigned i = 0; i != NumFixed; ++i) {
1100    ExprResult Arg = TheCall->getArg(i+1);
1101
1102    // GCC does an implicit conversion to the pointer or integer ValType.  This
1103    // can fail in some cases (1i -> int**), check for this error case now.
1104    // Initialize the argument.
1105    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1106                                                   ValType, /*consume*/ false);
1107    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1108    if (Arg.isInvalid())
1109      return ExprError();
1110
1111    // Okay, we have something that *can* be converted to the right type.  Check
1112    // to see if there is a potentially weird extension going on here.  This can
1113    // happen when you do an atomic operation on something like an char* and
1114    // pass in 42.  The 42 gets converted to char.  This is even more strange
1115    // for things like 45.123 -> char, etc.
1116    // FIXME: Do this check.
1117    TheCall->setArg(i+1, Arg.take());
1118  }
1119
1120  ASTContext& Context = this->getASTContext();
1121
1122  // Create a new DeclRefExpr to refer to the new decl.
1123  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1124      Context,
1125      DRE->getQualifierLoc(),
1126      SourceLocation(),
1127      NewBuiltinDecl,
1128      /*enclosing*/ false,
1129      DRE->getLocation(),
1130      NewBuiltinDecl->getType(),
1131      DRE->getValueKind());
1132
1133  // Set the callee in the CallExpr.
1134  // FIXME: This leaks the original parens and implicit casts.
1135  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
1136  if (PromotedCall.isInvalid())
1137    return ExprError();
1138  TheCall->setCallee(PromotedCall.take());
1139
1140  // Change the result type of the call to match the original value type. This
1141  // is arbitrary, but the codegen for these builtins ins design to handle it
1142  // gracefully.
1143  TheCall->setType(ResultType);
1144
1145  return move(TheCallResult);
1146}
1147
1148/// CheckObjCString - Checks that the argument to the builtin
1149/// CFString constructor is correct
1150/// Note: It might also make sense to do the UTF-16 conversion here (would
1151/// simplify the backend).
1152bool Sema::CheckObjCString(Expr *Arg) {
1153  Arg = Arg->IgnoreParenCasts();
1154  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1155
1156  if (!Literal || !Literal->isAscii()) {
1157    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1158      << Arg->getSourceRange();
1159    return true;
1160  }
1161
1162  if (Literal->containsNonAsciiOrNull()) {
1163    StringRef String = Literal->getString();
1164    unsigned NumBytes = String.size();
1165    SmallVector<UTF16, 128> ToBuf(NumBytes);
1166    const UTF8 *FromPtr = (UTF8 *)String.data();
1167    UTF16 *ToPtr = &ToBuf[0];
1168
1169    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1170                                                 &ToPtr, ToPtr + NumBytes,
1171                                                 strictConversion);
1172    // Check for conversion failure.
1173    if (Result != conversionOK)
1174      Diag(Arg->getLocStart(),
1175           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1176  }
1177  return false;
1178}
1179
1180/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1181/// Emit an error and return true on failure, return false on success.
1182bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1183  Expr *Fn = TheCall->getCallee();
1184  if (TheCall->getNumArgs() > 2) {
1185    Diag(TheCall->getArg(2)->getLocStart(),
1186         diag::err_typecheck_call_too_many_args)
1187      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1188      << Fn->getSourceRange()
1189      << SourceRange(TheCall->getArg(2)->getLocStart(),
1190                     (*(TheCall->arg_end()-1))->getLocEnd());
1191    return true;
1192  }
1193
1194  if (TheCall->getNumArgs() < 2) {
1195    return Diag(TheCall->getLocEnd(),
1196      diag::err_typecheck_call_too_few_args_at_least)
1197      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1198  }
1199
1200  // Type-check the first argument normally.
1201  if (checkBuiltinArgument(*this, TheCall, 0))
1202    return true;
1203
1204  // Determine whether the current function is variadic or not.
1205  BlockScopeInfo *CurBlock = getCurBlock();
1206  bool isVariadic;
1207  if (CurBlock)
1208    isVariadic = CurBlock->TheDecl->isVariadic();
1209  else if (FunctionDecl *FD = getCurFunctionDecl())
1210    isVariadic = FD->isVariadic();
1211  else
1212    isVariadic = getCurMethodDecl()->isVariadic();
1213
1214  if (!isVariadic) {
1215    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1216    return true;
1217  }
1218
1219  // Verify that the second argument to the builtin is the last argument of the
1220  // current function or method.
1221  bool SecondArgIsLastNamedArgument = false;
1222  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1223
1224  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1225    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1226      // FIXME: This isn't correct for methods (results in bogus warning).
1227      // Get the last formal in the current function.
1228      const ParmVarDecl *LastArg;
1229      if (CurBlock)
1230        LastArg = *(CurBlock->TheDecl->param_end()-1);
1231      else if (FunctionDecl *FD = getCurFunctionDecl())
1232        LastArg = *(FD->param_end()-1);
1233      else
1234        LastArg = *(getCurMethodDecl()->param_end()-1);
1235      SecondArgIsLastNamedArgument = PV == LastArg;
1236    }
1237  }
1238
1239  if (!SecondArgIsLastNamedArgument)
1240    Diag(TheCall->getArg(1)->getLocStart(),
1241         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1242  return false;
1243}
1244
1245/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1246/// friends.  This is declared to take (...), so we have to check everything.
1247bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1248  if (TheCall->getNumArgs() < 2)
1249    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1250      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1251  if (TheCall->getNumArgs() > 2)
1252    return Diag(TheCall->getArg(2)->getLocStart(),
1253                diag::err_typecheck_call_too_many_args)
1254      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1255      << SourceRange(TheCall->getArg(2)->getLocStart(),
1256                     (*(TheCall->arg_end()-1))->getLocEnd());
1257
1258  ExprResult OrigArg0 = TheCall->getArg(0);
1259  ExprResult OrigArg1 = TheCall->getArg(1);
1260
1261  // Do standard promotions between the two arguments, returning their common
1262  // type.
1263  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1264  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1265    return true;
1266
1267  // Make sure any conversions are pushed back into the call; this is
1268  // type safe since unordered compare builtins are declared as "_Bool
1269  // foo(...)".
1270  TheCall->setArg(0, OrigArg0.get());
1271  TheCall->setArg(1, OrigArg1.get());
1272
1273  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1274    return false;
1275
1276  // If the common type isn't a real floating type, then the arguments were
1277  // invalid for this operation.
1278  if (!Res->isRealFloatingType())
1279    return Diag(OrigArg0.get()->getLocStart(),
1280                diag::err_typecheck_call_invalid_ordered_compare)
1281      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1282      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1283
1284  return false;
1285}
1286
1287/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1288/// __builtin_isnan and friends.  This is declared to take (...), so we have
1289/// to check everything. We expect the last argument to be a floating point
1290/// value.
1291bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1292  if (TheCall->getNumArgs() < NumArgs)
1293    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1294      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1295  if (TheCall->getNumArgs() > NumArgs)
1296    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1297                diag::err_typecheck_call_too_many_args)
1298      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1299      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1300                     (*(TheCall->arg_end()-1))->getLocEnd());
1301
1302  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1303
1304  if (OrigArg->isTypeDependent())
1305    return false;
1306
1307  // This operation requires a non-_Complex floating-point number.
1308  if (!OrigArg->getType()->isRealFloatingType())
1309    return Diag(OrigArg->getLocStart(),
1310                diag::err_typecheck_call_invalid_unary_fp)
1311      << OrigArg->getType() << OrigArg->getSourceRange();
1312
1313  // If this is an implicit conversion from float -> double, remove it.
1314  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1315    Expr *CastArg = Cast->getSubExpr();
1316    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1317      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1318             "promotion from float to double is the only expected cast here");
1319      Cast->setSubExpr(0);
1320      TheCall->setArg(NumArgs-1, CastArg);
1321    }
1322  }
1323
1324  return false;
1325}
1326
1327/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1328// This is declared to take (...), so we have to check everything.
1329ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1330  if (TheCall->getNumArgs() < 2)
1331    return ExprError(Diag(TheCall->getLocEnd(),
1332                          diag::err_typecheck_call_too_few_args_at_least)
1333      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1334      << TheCall->getSourceRange());
1335
1336  // Determine which of the following types of shufflevector we're checking:
1337  // 1) unary, vector mask: (lhs, mask)
1338  // 2) binary, vector mask: (lhs, rhs, mask)
1339  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1340  QualType resType = TheCall->getArg(0)->getType();
1341  unsigned numElements = 0;
1342
1343  if (!TheCall->getArg(0)->isTypeDependent() &&
1344      !TheCall->getArg(1)->isTypeDependent()) {
1345    QualType LHSType = TheCall->getArg(0)->getType();
1346    QualType RHSType = TheCall->getArg(1)->getType();
1347
1348    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1349      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1350        << SourceRange(TheCall->getArg(0)->getLocStart(),
1351                       TheCall->getArg(1)->getLocEnd());
1352      return ExprError();
1353    }
1354
1355    numElements = LHSType->getAs<VectorType>()->getNumElements();
1356    unsigned numResElements = TheCall->getNumArgs() - 2;
1357
1358    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1359    // with mask.  If so, verify that RHS is an integer vector type with the
1360    // same number of elts as lhs.
1361    if (TheCall->getNumArgs() == 2) {
1362      if (!RHSType->hasIntegerRepresentation() ||
1363          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1364        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1365          << SourceRange(TheCall->getArg(1)->getLocStart(),
1366                         TheCall->getArg(1)->getLocEnd());
1367      numResElements = numElements;
1368    }
1369    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1370      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1371        << SourceRange(TheCall->getArg(0)->getLocStart(),
1372                       TheCall->getArg(1)->getLocEnd());
1373      return ExprError();
1374    } else if (numElements != numResElements) {
1375      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1376      resType = Context.getVectorType(eltType, numResElements,
1377                                      VectorType::GenericVector);
1378    }
1379  }
1380
1381  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1382    if (TheCall->getArg(i)->isTypeDependent() ||
1383        TheCall->getArg(i)->isValueDependent())
1384      continue;
1385
1386    llvm::APSInt Result(32);
1387    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1388      return ExprError(Diag(TheCall->getLocStart(),
1389                  diag::err_shufflevector_nonconstant_argument)
1390                << TheCall->getArg(i)->getSourceRange());
1391
1392    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1393      return ExprError(Diag(TheCall->getLocStart(),
1394                  diag::err_shufflevector_argument_too_large)
1395               << TheCall->getArg(i)->getSourceRange());
1396  }
1397
1398  SmallVector<Expr*, 32> exprs;
1399
1400  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1401    exprs.push_back(TheCall->getArg(i));
1402    TheCall->setArg(i, 0);
1403  }
1404
1405  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1406                                            exprs.size(), resType,
1407                                            TheCall->getCallee()->getLocStart(),
1408                                            TheCall->getRParenLoc()));
1409}
1410
1411/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1412// This is declared to take (const void*, ...) and can take two
1413// optional constant int args.
1414bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1415  unsigned NumArgs = TheCall->getNumArgs();
1416
1417  if (NumArgs > 3)
1418    return Diag(TheCall->getLocEnd(),
1419             diag::err_typecheck_call_too_many_args_at_most)
1420             << 0 /*function call*/ << 3 << NumArgs
1421             << TheCall->getSourceRange();
1422
1423  // Argument 0 is checked for us and the remaining arguments must be
1424  // constant integers.
1425  for (unsigned i = 1; i != NumArgs; ++i) {
1426    Expr *Arg = TheCall->getArg(i);
1427
1428    llvm::APSInt Result;
1429    if (SemaBuiltinConstantArg(TheCall, i, Result))
1430      return true;
1431
1432    // FIXME: gcc issues a warning and rewrites these to 0. These
1433    // seems especially odd for the third argument since the default
1434    // is 3.
1435    if (i == 1) {
1436      if (Result.getLimitedValue() > 1)
1437        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1438             << "0" << "1" << Arg->getSourceRange();
1439    } else {
1440      if (Result.getLimitedValue() > 3)
1441        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1442            << "0" << "3" << Arg->getSourceRange();
1443    }
1444  }
1445
1446  return false;
1447}
1448
1449/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1450/// TheCall is a constant expression.
1451bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1452                                  llvm::APSInt &Result) {
1453  Expr *Arg = TheCall->getArg(ArgNum);
1454  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1455  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1456
1457  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1458
1459  if (!Arg->isIntegerConstantExpr(Result, Context))
1460    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1461                << FDecl->getDeclName() <<  Arg->getSourceRange();
1462
1463  return false;
1464}
1465
1466/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1467/// int type). This simply type checks that type is one of the defined
1468/// constants (0-3).
1469// For compatibility check 0-3, llvm only handles 0 and 2.
1470bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1471  llvm::APSInt Result;
1472
1473  // Check constant-ness first.
1474  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1475    return true;
1476
1477  Expr *Arg = TheCall->getArg(1);
1478  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1479    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1480             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1481  }
1482
1483  return false;
1484}
1485
1486/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1487/// This checks that val is a constant 1.
1488bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1489  Expr *Arg = TheCall->getArg(1);
1490  llvm::APSInt Result;
1491
1492  // TODO: This is less than ideal. Overload this to take a value.
1493  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1494    return true;
1495
1496  if (Result != 1)
1497    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1498             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1499
1500  return false;
1501}
1502
1503// Handle i > 1 ? "x" : "y", recursively.
1504bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
1505                                  unsigned NumArgs, bool HasVAListArg,
1506                                  unsigned format_idx, unsigned firstDataArg,
1507                                  FormatStringType Type, bool inFunctionCall) {
1508 tryAgain:
1509  if (E->isTypeDependent() || E->isValueDependent())
1510    return false;
1511
1512  E = E->IgnoreParenCasts();
1513
1514  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1515    // Technically -Wformat-nonliteral does not warn about this case.
1516    // The behavior of printf and friends in this case is implementation
1517    // dependent.  Ideally if the format string cannot be null then
1518    // it should have a 'nonnull' attribute in the function prototype.
1519    return true;
1520
1521  switch (E->getStmtClass()) {
1522  case Stmt::BinaryConditionalOperatorClass:
1523  case Stmt::ConditionalOperatorClass: {
1524    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1525    return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
1526                                  format_idx, firstDataArg, Type,
1527                                  inFunctionCall)
1528       && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
1529                                 format_idx, firstDataArg, Type,
1530                                 inFunctionCall);
1531  }
1532
1533  case Stmt::ImplicitCastExprClass: {
1534    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1535    goto tryAgain;
1536  }
1537
1538  case Stmt::OpaqueValueExprClass:
1539    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1540      E = src;
1541      goto tryAgain;
1542    }
1543    return false;
1544
1545  case Stmt::PredefinedExprClass:
1546    // While __func__, etc., are technically not string literals, they
1547    // cannot contain format specifiers and thus are not a security
1548    // liability.
1549    return true;
1550
1551  case Stmt::DeclRefExprClass: {
1552    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1553
1554    // As an exception, do not flag errors for variables binding to
1555    // const string literals.
1556    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1557      bool isConstant = false;
1558      QualType T = DR->getType();
1559
1560      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1561        isConstant = AT->getElementType().isConstant(Context);
1562      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1563        isConstant = T.isConstant(Context) &&
1564                     PT->getPointeeType().isConstant(Context);
1565      } else if (T->isObjCObjectPointerType()) {
1566        // In ObjC, there is usually no "const ObjectPointer" type,
1567        // so don't check if the pointee type is constant.
1568        isConstant = T.isConstant(Context);
1569      }
1570
1571      if (isConstant) {
1572        if (const Expr *Init = VD->getAnyInitializer())
1573          return SemaCheckStringLiteral(Init, Args, NumArgs,
1574                                        HasVAListArg, format_idx, firstDataArg,
1575                                        Type, /*inFunctionCall*/false);
1576      }
1577
1578      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1579      // special check to see if the format string is a function parameter
1580      // of the function calling the printf function.  If the function
1581      // has an attribute indicating it is a printf-like function, then we
1582      // should suppress warnings concerning non-literals being used in a call
1583      // to a vprintf function.  For example:
1584      //
1585      // void
1586      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1587      //      va_list ap;
1588      //      va_start(ap, fmt);
1589      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1590      //      ...
1591      //
1592      if (HasVAListArg) {
1593        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1594          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1595            int PVIndex = PV->getFunctionScopeIndex() + 1;
1596            for (specific_attr_iterator<FormatAttr>
1597                 i = ND->specific_attr_begin<FormatAttr>(),
1598                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1599              FormatAttr *PVFormat = *i;
1600              // adjust for implicit parameter
1601              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1602                if (MD->isInstance())
1603                  ++PVIndex;
1604              // We also check if the formats are compatible.
1605              // We can't pass a 'scanf' string to a 'printf' function.
1606              if (PVIndex == PVFormat->getFormatIdx() &&
1607                  Type == GetFormatStringType(PVFormat))
1608                return true;
1609            }
1610          }
1611        }
1612      }
1613    }
1614
1615    return false;
1616  }
1617
1618  case Stmt::CallExprClass:
1619  case Stmt::CXXMemberCallExprClass: {
1620    const CallExpr *CE = cast<CallExpr>(E);
1621    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1622      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1623        unsigned ArgIndex = FA->getFormatIdx();
1624        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1625          if (MD->isInstance())
1626            --ArgIndex;
1627        const Expr *Arg = CE->getArg(ArgIndex - 1);
1628
1629        return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1630                                      format_idx, firstDataArg, Type,
1631                                      inFunctionCall);
1632      }
1633    }
1634
1635    return false;
1636  }
1637  case Stmt::ObjCStringLiteralClass:
1638  case Stmt::StringLiteralClass: {
1639    const StringLiteral *StrE = NULL;
1640
1641    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1642      StrE = ObjCFExpr->getString();
1643    else
1644      StrE = cast<StringLiteral>(E);
1645
1646    if (StrE) {
1647      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1648                        firstDataArg, Type, inFunctionCall);
1649      return true;
1650    }
1651
1652    return false;
1653  }
1654
1655  default:
1656    return false;
1657  }
1658}
1659
1660void
1661Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1662                            const Expr * const *ExprArgs,
1663                            SourceLocation CallSiteLoc) {
1664  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1665                                  e = NonNull->args_end();
1666       i != e; ++i) {
1667    const Expr *ArgExpr = ExprArgs[*i];
1668    if (ArgExpr->isNullPointerConstant(Context,
1669                                       Expr::NPC_ValueDependentIsNotNull))
1670      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1671  }
1672}
1673
1674Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1675  return llvm::StringSwitch<FormatStringType>(Format->getType())
1676  .Case("scanf", FST_Scanf)
1677  .Cases("printf", "printf0", FST_Printf)
1678  .Cases("NSString", "CFString", FST_NSString)
1679  .Case("strftime", FST_Strftime)
1680  .Case("strfmon", FST_Strfmon)
1681  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1682  .Default(FST_Unknown);
1683}
1684
1685/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1686/// functions) for correct use of format strings.
1687void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
1688  bool IsCXXMember = false;
1689  // The way the format attribute works in GCC, the implicit this argument
1690  // of member functions is counted. However, it doesn't appear in our own
1691  // lists, so decrement format_idx in that case.
1692  IsCXXMember = isa<CXXMemberCallExpr>(TheCall);
1693  CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
1694                       IsCXXMember, TheCall->getRParenLoc(),
1695                       TheCall->getCallee()->getSourceRange());
1696}
1697
1698void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1699                                unsigned NumArgs, bool IsCXXMember,
1700                                SourceLocation Loc, SourceRange Range) {
1701  bool HasVAListArg = Format->getFirstArg() == 0;
1702  unsigned format_idx = Format->getFormatIdx() - 1;
1703  unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
1704  if (IsCXXMember) {
1705    if (format_idx == 0)
1706      return;
1707    --format_idx;
1708    if(firstDataArg != 0)
1709      --firstDataArg;
1710  }
1711  CheckFormatArguments(Args, NumArgs, HasVAListArg, format_idx,
1712                       firstDataArg, GetFormatStringType(Format), Loc, Range);
1713}
1714
1715void Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1716                                bool HasVAListArg, unsigned format_idx,
1717                                unsigned firstDataArg, FormatStringType Type,
1718                                SourceLocation Loc, SourceRange Range) {
1719  // CHECK: printf/scanf-like function is called with no format string.
1720  if (format_idx >= NumArgs) {
1721    Diag(Loc, diag::warn_missing_format_string) << Range;
1722    return;
1723  }
1724
1725  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1726
1727  // CHECK: format string is not a string literal.
1728  //
1729  // Dynamically generated format strings are difficult to
1730  // automatically vet at compile time.  Requiring that format strings
1731  // are string literals: (1) permits the checking of format strings by
1732  // the compiler and thereby (2) can practically remove the source of
1733  // many format string exploits.
1734
1735  // Format string can be either ObjC string (e.g. @"%d") or
1736  // C string (e.g. "%d")
1737  // ObjC string uses the same format specifiers as C string, so we can use
1738  // the same format string checking logic for both ObjC and C strings.
1739  if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1740                             format_idx, firstDataArg, Type))
1741    return;  // Literal format string found, check done!
1742
1743  // Strftime is particular as it always uses a single 'time' argument,
1744  // so it is safe to pass a non-literal string.
1745  if (Type == FST_Strftime)
1746    return;
1747
1748  // Do not emit diag when the string param is a macro expansion and the
1749  // format is either NSString or CFString. This is a hack to prevent
1750  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1751  // which are usually used in place of NS and CF string literals.
1752  if (Type == FST_NSString && Args[format_idx]->getLocStart().isMacroID())
1753    return;
1754
1755  // If there are no arguments specified, warn with -Wformat-security, otherwise
1756  // warn only with -Wformat-nonliteral.
1757  if (NumArgs == format_idx+1)
1758    Diag(Args[format_idx]->getLocStart(),
1759         diag::warn_format_nonliteral_noargs)
1760      << OrigFormatExpr->getSourceRange();
1761  else
1762    Diag(Args[format_idx]->getLocStart(),
1763         diag::warn_format_nonliteral)
1764           << OrigFormatExpr->getSourceRange();
1765}
1766
1767namespace {
1768class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1769protected:
1770  Sema &S;
1771  const StringLiteral *FExpr;
1772  const Expr *OrigFormatExpr;
1773  const unsigned FirstDataArg;
1774  const unsigned NumDataArgs;
1775  const bool IsObjCLiteral;
1776  const char *Beg; // Start of format string.
1777  const bool HasVAListArg;
1778  const Expr * const *Args;
1779  const unsigned NumArgs;
1780  unsigned FormatIdx;
1781  llvm::BitVector CoveredArgs;
1782  bool usesPositionalArgs;
1783  bool atFirstArg;
1784  bool inFunctionCall;
1785public:
1786  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1787                     const Expr *origFormatExpr, unsigned firstDataArg,
1788                     unsigned numDataArgs, bool isObjCLiteral,
1789                     const char *beg, bool hasVAListArg,
1790                     Expr **args, unsigned numArgs,
1791                     unsigned formatIdx, bool inFunctionCall)
1792    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1793      FirstDataArg(firstDataArg),
1794      NumDataArgs(numDataArgs),
1795      IsObjCLiteral(isObjCLiteral), Beg(beg),
1796      HasVAListArg(hasVAListArg),
1797      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1798      usesPositionalArgs(false), atFirstArg(true),
1799      inFunctionCall(inFunctionCall) {
1800        CoveredArgs.resize(numDataArgs);
1801        CoveredArgs.reset();
1802      }
1803
1804  void DoneProcessing();
1805
1806  void HandleIncompleteSpecifier(const char *startSpecifier,
1807                                 unsigned specifierLen);
1808
1809  void HandleNonStandardLengthModifier(
1810      const analyze_format_string::LengthModifier &LM,
1811      const char *startSpecifier, unsigned specifierLen);
1812
1813  void HandleNonStandardConversionSpecifier(
1814      const analyze_format_string::ConversionSpecifier &CS,
1815      const char *startSpecifier, unsigned specifierLen);
1816
1817  void HandleNonStandardConversionSpecification(
1818      const analyze_format_string::LengthModifier &LM,
1819      const analyze_format_string::ConversionSpecifier &CS,
1820      const char *startSpecifier, unsigned specifierLen);
1821
1822  virtual void HandlePosition(const char *startPos, unsigned posLen);
1823
1824  virtual void HandleInvalidPosition(const char *startSpecifier,
1825                                     unsigned specifierLen,
1826                                     analyze_format_string::PositionContext p);
1827
1828  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1829
1830  void HandleNullChar(const char *nullCharacter);
1831
1832  template <typename Range>
1833  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1834                                   const Expr *ArgumentExpr,
1835                                   PartialDiagnostic PDiag,
1836                                   SourceLocation StringLoc,
1837                                   bool IsStringLocation, Range StringRange,
1838                                   FixItHint Fixit = FixItHint());
1839
1840protected:
1841  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1842                                        const char *startSpec,
1843                                        unsigned specifierLen,
1844                                        const char *csStart, unsigned csLen);
1845
1846  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1847                                         const char *startSpec,
1848                                         unsigned specifierLen);
1849
1850  SourceRange getFormatStringRange();
1851  CharSourceRange getSpecifierRange(const char *startSpecifier,
1852                                    unsigned specifierLen);
1853  SourceLocation getLocationOfByte(const char *x);
1854
1855  const Expr *getDataArg(unsigned i) const;
1856
1857  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1858                    const analyze_format_string::ConversionSpecifier &CS,
1859                    const char *startSpecifier, unsigned specifierLen,
1860                    unsigned argIndex);
1861
1862  template <typename Range>
1863  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1864                            bool IsStringLocation, Range StringRange,
1865                            FixItHint Fixit = FixItHint());
1866
1867  void CheckPositionalAndNonpositionalArgs(
1868      const analyze_format_string::FormatSpecifier *FS);
1869};
1870}
1871
1872SourceRange CheckFormatHandler::getFormatStringRange() {
1873  return OrigFormatExpr->getSourceRange();
1874}
1875
1876CharSourceRange CheckFormatHandler::
1877getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1878  SourceLocation Start = getLocationOfByte(startSpecifier);
1879  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1880
1881  // Advance the end SourceLocation by one due to half-open ranges.
1882  End = End.getLocWithOffset(1);
1883
1884  return CharSourceRange::getCharRange(Start, End);
1885}
1886
1887SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1888  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1889}
1890
1891void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1892                                                   unsigned specifierLen){
1893  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1894                       getLocationOfByte(startSpecifier),
1895                       /*IsStringLocation*/true,
1896                       getSpecifierRange(startSpecifier, specifierLen));
1897}
1898
1899void CheckFormatHandler::HandleNonStandardLengthModifier(
1900    const analyze_format_string::LengthModifier &LM,
1901    const char *startSpecifier, unsigned specifierLen) {
1902  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << LM.toString()
1903                       << 0,
1904                       getLocationOfByte(LM.getStart()),
1905                       /*IsStringLocation*/true,
1906                       getSpecifierRange(startSpecifier, specifierLen));
1907}
1908
1909void CheckFormatHandler::HandleNonStandardConversionSpecifier(
1910    const analyze_format_string::ConversionSpecifier &CS,
1911    const char *startSpecifier, unsigned specifierLen) {
1912  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString()
1913                       << 1,
1914                       getLocationOfByte(CS.getStart()),
1915                       /*IsStringLocation*/true,
1916                       getSpecifierRange(startSpecifier, specifierLen));
1917}
1918
1919void CheckFormatHandler::HandleNonStandardConversionSpecification(
1920    const analyze_format_string::LengthModifier &LM,
1921    const analyze_format_string::ConversionSpecifier &CS,
1922    const char *startSpecifier, unsigned specifierLen) {
1923  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_conversion_spec)
1924                       << LM.toString() << CS.toString(),
1925                       getLocationOfByte(LM.getStart()),
1926                       /*IsStringLocation*/true,
1927                       getSpecifierRange(startSpecifier, specifierLen));
1928}
1929
1930void CheckFormatHandler::HandlePosition(const char *startPos,
1931                                        unsigned posLen) {
1932  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
1933                               getLocationOfByte(startPos),
1934                               /*IsStringLocation*/true,
1935                               getSpecifierRange(startPos, posLen));
1936}
1937
1938void
1939CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1940                                     analyze_format_string::PositionContext p) {
1941  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1942                         << (unsigned) p,
1943                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1944                       getSpecifierRange(startPos, posLen));
1945}
1946
1947void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1948                                            unsigned posLen) {
1949  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1950                               getLocationOfByte(startPos),
1951                               /*IsStringLocation*/true,
1952                               getSpecifierRange(startPos, posLen));
1953}
1954
1955void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1956  if (!IsObjCLiteral) {
1957    // The presence of a null character is likely an error.
1958    EmitFormatDiagnostic(
1959      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1960      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1961      getFormatStringRange());
1962  }
1963}
1964
1965const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1966  return Args[FirstDataArg + i];
1967}
1968
1969void CheckFormatHandler::DoneProcessing() {
1970    // Does the number of data arguments exceed the number of
1971    // format conversions in the format string?
1972  if (!HasVAListArg) {
1973      // Find any arguments that weren't covered.
1974    CoveredArgs.flip();
1975    signed notCoveredArg = CoveredArgs.find_first();
1976    if (notCoveredArg >= 0) {
1977      assert((unsigned)notCoveredArg < NumDataArgs);
1978      SourceLocation Loc = getDataArg((unsigned) notCoveredArg)->getLocStart();
1979      if (!S.getSourceManager().isInSystemMacro(Loc)) {
1980        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1981                             Loc,
1982                             /*IsStringLocation*/false, getFormatStringRange());
1983      }
1984    }
1985  }
1986}
1987
1988bool
1989CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1990                                                     SourceLocation Loc,
1991                                                     const char *startSpec,
1992                                                     unsigned specifierLen,
1993                                                     const char *csStart,
1994                                                     unsigned csLen) {
1995
1996  bool keepGoing = true;
1997  if (argIndex < NumDataArgs) {
1998    // Consider the argument coverered, even though the specifier doesn't
1999    // make sense.
2000    CoveredArgs.set(argIndex);
2001  }
2002  else {
2003    // If argIndex exceeds the number of data arguments we
2004    // don't issue a warning because that is just a cascade of warnings (and
2005    // they may have intended '%%' anyway). We don't want to continue processing
2006    // the format string after this point, however, as we will like just get
2007    // gibberish when trying to match arguments.
2008    keepGoing = false;
2009  }
2010
2011  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2012                         << StringRef(csStart, csLen),
2013                       Loc, /*IsStringLocation*/true,
2014                       getSpecifierRange(startSpec, specifierLen));
2015
2016  return keepGoing;
2017}
2018
2019void
2020CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2021                                                      const char *startSpec,
2022                                                      unsigned specifierLen) {
2023  EmitFormatDiagnostic(
2024    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2025    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2026}
2027
2028bool
2029CheckFormatHandler::CheckNumArgs(
2030  const analyze_format_string::FormatSpecifier &FS,
2031  const analyze_format_string::ConversionSpecifier &CS,
2032  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2033
2034  if (argIndex >= NumDataArgs) {
2035    PartialDiagnostic PDiag = FS.usesPositionalArg()
2036      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2037           << (argIndex+1) << NumDataArgs)
2038      : S.PDiag(diag::warn_printf_insufficient_data_args);
2039    EmitFormatDiagnostic(
2040      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2041      getSpecifierRange(startSpecifier, specifierLen));
2042    return false;
2043  }
2044  return true;
2045}
2046
2047template<typename Range>
2048void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2049                                              SourceLocation Loc,
2050                                              bool IsStringLocation,
2051                                              Range StringRange,
2052                                              FixItHint FixIt) {
2053  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2054                       Loc, IsStringLocation, StringRange, FixIt);
2055}
2056
2057/// \brief If the format string is not within the funcion call, emit a note
2058/// so that the function call and string are in diagnostic messages.
2059///
2060/// \param inFunctionCall if true, the format string is within the function
2061/// call and only one diagnostic message will be produced.  Otherwise, an
2062/// extra note will be emitted pointing to location of the format string.
2063///
2064/// \param ArgumentExpr the expression that is passed as the format string
2065/// argument in the function call.  Used for getting locations when two
2066/// diagnostics are emitted.
2067///
2068/// \param PDiag the callee should already have provided any strings for the
2069/// diagnostic message.  This function only adds locations and fixits
2070/// to diagnostics.
2071///
2072/// \param Loc primary location for diagnostic.  If two diagnostics are
2073/// required, one will be at Loc and a new SourceLocation will be created for
2074/// the other one.
2075///
2076/// \param IsStringLocation if true, Loc points to the format string should be
2077/// used for the note.  Otherwise, Loc points to the argument list and will
2078/// be used with PDiag.
2079///
2080/// \param StringRange some or all of the string to highlight.  This is
2081/// templated so it can accept either a CharSourceRange or a SourceRange.
2082///
2083/// \param Fixit optional fix it hint for the format string.
2084template<typename Range>
2085void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2086                                              const Expr *ArgumentExpr,
2087                                              PartialDiagnostic PDiag,
2088                                              SourceLocation Loc,
2089                                              bool IsStringLocation,
2090                                              Range StringRange,
2091                                              FixItHint FixIt) {
2092  if (InFunctionCall)
2093    S.Diag(Loc, PDiag) << StringRange << FixIt;
2094  else {
2095    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2096      << ArgumentExpr->getSourceRange();
2097    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2098           diag::note_format_string_defined)
2099      << StringRange << FixIt;
2100  }
2101}
2102
2103//===--- CHECK: Printf format string checking ------------------------------===//
2104
2105namespace {
2106class CheckPrintfHandler : public CheckFormatHandler {
2107public:
2108  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2109                     const Expr *origFormatExpr, unsigned firstDataArg,
2110                     unsigned numDataArgs, bool isObjCLiteral,
2111                     const char *beg, bool hasVAListArg,
2112                     Expr **Args, unsigned NumArgs,
2113                     unsigned formatIdx, bool inFunctionCall)
2114  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2115                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2116                       Args, NumArgs, formatIdx, inFunctionCall) {}
2117
2118
2119  bool HandleInvalidPrintfConversionSpecifier(
2120                                      const analyze_printf::PrintfSpecifier &FS,
2121                                      const char *startSpecifier,
2122                                      unsigned specifierLen);
2123
2124  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2125                             const char *startSpecifier,
2126                             unsigned specifierLen);
2127
2128  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2129                    const char *startSpecifier, unsigned specifierLen);
2130  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2131                           const analyze_printf::OptionalAmount &Amt,
2132                           unsigned type,
2133                           const char *startSpecifier, unsigned specifierLen);
2134  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2135                  const analyze_printf::OptionalFlag &flag,
2136                  const char *startSpecifier, unsigned specifierLen);
2137  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2138                         const analyze_printf::OptionalFlag &ignoredFlag,
2139                         const analyze_printf::OptionalFlag &flag,
2140                         const char *startSpecifier, unsigned specifierLen);
2141};
2142}
2143
2144bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2145                                      const analyze_printf::PrintfSpecifier &FS,
2146                                      const char *startSpecifier,
2147                                      unsigned specifierLen) {
2148  const analyze_printf::PrintfConversionSpecifier &CS =
2149    FS.getConversionSpecifier();
2150
2151  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2152                                          getLocationOfByte(CS.getStart()),
2153                                          startSpecifier, specifierLen,
2154                                          CS.getStart(), CS.getLength());
2155}
2156
2157bool CheckPrintfHandler::HandleAmount(
2158                               const analyze_format_string::OptionalAmount &Amt,
2159                               unsigned k, const char *startSpecifier,
2160                               unsigned specifierLen) {
2161
2162  if (Amt.hasDataArgument()) {
2163    if (!HasVAListArg) {
2164      unsigned argIndex = Amt.getArgIndex();
2165      if (argIndex >= NumDataArgs) {
2166        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2167                               << k,
2168                             getLocationOfByte(Amt.getStart()),
2169                             /*IsStringLocation*/true,
2170                             getSpecifierRange(startSpecifier, specifierLen));
2171        // Don't do any more checking.  We will just emit
2172        // spurious errors.
2173        return false;
2174      }
2175
2176      // Type check the data argument.  It should be an 'int'.
2177      // Although not in conformance with C99, we also allow the argument to be
2178      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2179      // doesn't emit a warning for that case.
2180      CoveredArgs.set(argIndex);
2181      const Expr *Arg = getDataArg(argIndex);
2182      QualType T = Arg->getType();
2183
2184      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
2185      assert(ATR.isValid());
2186
2187      if (!ATR.matchesType(S.Context, T)) {
2188        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2189                               << k << ATR.getRepresentativeTypeName(S.Context)
2190                               << T << Arg->getSourceRange(),
2191                             getLocationOfByte(Amt.getStart()),
2192                             /*IsStringLocation*/true,
2193                             getSpecifierRange(startSpecifier, specifierLen));
2194        // Don't do any more checking.  We will just emit
2195        // spurious errors.
2196        return false;
2197      }
2198    }
2199  }
2200  return true;
2201}
2202
2203void CheckPrintfHandler::HandleInvalidAmount(
2204                                      const analyze_printf::PrintfSpecifier &FS,
2205                                      const analyze_printf::OptionalAmount &Amt,
2206                                      unsigned type,
2207                                      const char *startSpecifier,
2208                                      unsigned specifierLen) {
2209  const analyze_printf::PrintfConversionSpecifier &CS =
2210    FS.getConversionSpecifier();
2211
2212  FixItHint fixit =
2213    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2214      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2215                                 Amt.getConstantLength()))
2216      : FixItHint();
2217
2218  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2219                         << type << CS.toString(),
2220                       getLocationOfByte(Amt.getStart()),
2221                       /*IsStringLocation*/true,
2222                       getSpecifierRange(startSpecifier, specifierLen),
2223                       fixit);
2224}
2225
2226void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2227                                    const analyze_printf::OptionalFlag &flag,
2228                                    const char *startSpecifier,
2229                                    unsigned specifierLen) {
2230  // Warn about pointless flag with a fixit removal.
2231  const analyze_printf::PrintfConversionSpecifier &CS =
2232    FS.getConversionSpecifier();
2233  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2234                         << flag.toString() << CS.toString(),
2235                       getLocationOfByte(flag.getPosition()),
2236                       /*IsStringLocation*/true,
2237                       getSpecifierRange(startSpecifier, specifierLen),
2238                       FixItHint::CreateRemoval(
2239                         getSpecifierRange(flag.getPosition(), 1)));
2240}
2241
2242void CheckPrintfHandler::HandleIgnoredFlag(
2243                                const analyze_printf::PrintfSpecifier &FS,
2244                                const analyze_printf::OptionalFlag &ignoredFlag,
2245                                const analyze_printf::OptionalFlag &flag,
2246                                const char *startSpecifier,
2247                                unsigned specifierLen) {
2248  // Warn about ignored flag with a fixit removal.
2249  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2250                         << ignoredFlag.toString() << flag.toString(),
2251                       getLocationOfByte(ignoredFlag.getPosition()),
2252                       /*IsStringLocation*/true,
2253                       getSpecifierRange(startSpecifier, specifierLen),
2254                       FixItHint::CreateRemoval(
2255                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2256}
2257
2258bool
2259CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2260                                            &FS,
2261                                          const char *startSpecifier,
2262                                          unsigned specifierLen) {
2263
2264  using namespace analyze_format_string;
2265  using namespace analyze_printf;
2266  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2267
2268  if (FS.consumesDataArgument()) {
2269    if (atFirstArg) {
2270        atFirstArg = false;
2271        usesPositionalArgs = FS.usesPositionalArg();
2272    }
2273    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2274      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2275                                        startSpecifier, specifierLen);
2276      return false;
2277    }
2278  }
2279
2280  // First check if the field width, precision, and conversion specifier
2281  // have matching data arguments.
2282  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2283                    startSpecifier, specifierLen)) {
2284    return false;
2285  }
2286
2287  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2288                    startSpecifier, specifierLen)) {
2289    return false;
2290  }
2291
2292  if (!CS.consumesDataArgument()) {
2293    // FIXME: Technically specifying a precision or field width here
2294    // makes no sense.  Worth issuing a warning at some point.
2295    return true;
2296  }
2297
2298  // Consume the argument.
2299  unsigned argIndex = FS.getArgIndex();
2300  if (argIndex < NumDataArgs) {
2301    // The check to see if the argIndex is valid will come later.
2302    // We set the bit here because we may exit early from this
2303    // function if we encounter some other error.
2304    CoveredArgs.set(argIndex);
2305  }
2306
2307  // Check for using an Objective-C specific conversion specifier
2308  // in a non-ObjC literal.
2309  if (!IsObjCLiteral && CS.isObjCArg()) {
2310    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2311                                                  specifierLen);
2312  }
2313
2314  // Check for invalid use of field width
2315  if (!FS.hasValidFieldWidth()) {
2316    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2317        startSpecifier, specifierLen);
2318  }
2319
2320  // Check for invalid use of precision
2321  if (!FS.hasValidPrecision()) {
2322    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2323        startSpecifier, specifierLen);
2324  }
2325
2326  // Check each flag does not conflict with any other component.
2327  if (!FS.hasValidThousandsGroupingPrefix())
2328    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2329  if (!FS.hasValidLeadingZeros())
2330    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2331  if (!FS.hasValidPlusPrefix())
2332    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2333  if (!FS.hasValidSpacePrefix())
2334    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2335  if (!FS.hasValidAlternativeForm())
2336    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2337  if (!FS.hasValidLeftJustified())
2338    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2339
2340  // Check that flags are not ignored by another flag
2341  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2342    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2343        startSpecifier, specifierLen);
2344  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2345    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2346            startSpecifier, specifierLen);
2347
2348  // Check the length modifier is valid with the given conversion specifier.
2349  const LengthModifier &LM = FS.getLengthModifier();
2350  if (!FS.hasValidLengthModifier())
2351    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2352                           << LM.toString() << CS.toString(),
2353                         getLocationOfByte(LM.getStart()),
2354                         /*IsStringLocation*/true,
2355                         getSpecifierRange(startSpecifier, specifierLen),
2356                         FixItHint::CreateRemoval(
2357                           getSpecifierRange(LM.getStart(),
2358                                             LM.getLength())));
2359  if (!FS.hasStandardLengthModifier())
2360    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2361  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2362    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2363  if (!FS.hasStandardLengthConversionCombination())
2364    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2365                                             specifierLen);
2366
2367  // Are we using '%n'?
2368  if (CS.getKind() == ConversionSpecifier::nArg) {
2369    // Issue a warning about this being a possible security issue.
2370    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2371                         getLocationOfByte(CS.getStart()),
2372                         /*IsStringLocation*/true,
2373                         getSpecifierRange(startSpecifier, specifierLen));
2374    // Continue checking the other format specifiers.
2375    return true;
2376  }
2377
2378  // The remaining checks depend on the data arguments.
2379  if (HasVAListArg)
2380    return true;
2381
2382  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2383    return false;
2384
2385  // Now type check the data expression that matches the
2386  // format specifier.
2387  const Expr *Ex = getDataArg(argIndex);
2388  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context,
2389                                                           IsObjCLiteral);
2390  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2391    // Check if we didn't match because of an implicit cast from a 'char'
2392    // or 'short' to an 'int'.  This is done because printf is a varargs
2393    // function.
2394    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
2395      if (ICE->getType() == S.Context.IntTy ||
2396          ICE->getType() == S.Context.UnsignedIntTy) {
2397        // All further checking is done on the subexpression.
2398        Ex = ICE->getSubExpr();
2399        if (ATR.matchesType(S.Context, Ex->getType()))
2400          return true;
2401      }
2402
2403    // We may be able to offer a FixItHint if it is a supported type.
2404    PrintfSpecifier fixedFS = FS;
2405    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2406                                   S.Context, IsObjCLiteral);
2407
2408    if (success) {
2409      // Get the fix string from the fixed format specifier
2410      SmallString<128> buf;
2411      llvm::raw_svector_ostream os(buf);
2412      fixedFS.toString(os);
2413
2414      EmitFormatDiagnostic(
2415        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2416          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2417          << Ex->getSourceRange(),
2418        getLocationOfByte(CS.getStart()),
2419        /*IsStringLocation*/true,
2420        getSpecifierRange(startSpecifier, specifierLen),
2421        FixItHint::CreateReplacement(
2422          getSpecifierRange(startSpecifier, specifierLen),
2423          os.str()));
2424    }
2425    else {
2426      EmitFormatDiagnostic(
2427        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2428          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2429          << getSpecifierRange(startSpecifier, specifierLen)
2430          << Ex->getSourceRange(),
2431        getLocationOfByte(CS.getStart()),
2432        true,
2433        getSpecifierRange(startSpecifier, specifierLen));
2434    }
2435  }
2436
2437  return true;
2438}
2439
2440//===--- CHECK: Scanf format string checking ------------------------------===//
2441
2442namespace {
2443class CheckScanfHandler : public CheckFormatHandler {
2444public:
2445  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2446                    const Expr *origFormatExpr, unsigned firstDataArg,
2447                    unsigned numDataArgs, bool isObjCLiteral,
2448                    const char *beg, bool hasVAListArg,
2449                    Expr **Args, unsigned NumArgs,
2450                    unsigned formatIdx, bool inFunctionCall)
2451  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2452                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2453                       Args, NumArgs, formatIdx, inFunctionCall) {}
2454
2455  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2456                            const char *startSpecifier,
2457                            unsigned specifierLen);
2458
2459  bool HandleInvalidScanfConversionSpecifier(
2460          const analyze_scanf::ScanfSpecifier &FS,
2461          const char *startSpecifier,
2462          unsigned specifierLen);
2463
2464  void HandleIncompleteScanList(const char *start, const char *end);
2465};
2466}
2467
2468void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2469                                                 const char *end) {
2470  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2471                       getLocationOfByte(end), /*IsStringLocation*/true,
2472                       getSpecifierRange(start, end - start));
2473}
2474
2475bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2476                                        const analyze_scanf::ScanfSpecifier &FS,
2477                                        const char *startSpecifier,
2478                                        unsigned specifierLen) {
2479
2480  const analyze_scanf::ScanfConversionSpecifier &CS =
2481    FS.getConversionSpecifier();
2482
2483  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2484                                          getLocationOfByte(CS.getStart()),
2485                                          startSpecifier, specifierLen,
2486                                          CS.getStart(), CS.getLength());
2487}
2488
2489bool CheckScanfHandler::HandleScanfSpecifier(
2490                                       const analyze_scanf::ScanfSpecifier &FS,
2491                                       const char *startSpecifier,
2492                                       unsigned specifierLen) {
2493
2494  using namespace analyze_scanf;
2495  using namespace analyze_format_string;
2496
2497  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2498
2499  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2500  // be used to decide if we are using positional arguments consistently.
2501  if (FS.consumesDataArgument()) {
2502    if (atFirstArg) {
2503      atFirstArg = false;
2504      usesPositionalArgs = FS.usesPositionalArg();
2505    }
2506    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2507      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2508                                        startSpecifier, specifierLen);
2509      return false;
2510    }
2511  }
2512
2513  // Check if the field with is non-zero.
2514  const OptionalAmount &Amt = FS.getFieldWidth();
2515  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2516    if (Amt.getConstantAmount() == 0) {
2517      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2518                                                   Amt.getConstantLength());
2519      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2520                           getLocationOfByte(Amt.getStart()),
2521                           /*IsStringLocation*/true, R,
2522                           FixItHint::CreateRemoval(R));
2523    }
2524  }
2525
2526  if (!FS.consumesDataArgument()) {
2527    // FIXME: Technically specifying a precision or field width here
2528    // makes no sense.  Worth issuing a warning at some point.
2529    return true;
2530  }
2531
2532  // Consume the argument.
2533  unsigned argIndex = FS.getArgIndex();
2534  if (argIndex < NumDataArgs) {
2535      // The check to see if the argIndex is valid will come later.
2536      // We set the bit here because we may exit early from this
2537      // function if we encounter some other error.
2538    CoveredArgs.set(argIndex);
2539  }
2540
2541  // Check the length modifier is valid with the given conversion specifier.
2542  const LengthModifier &LM = FS.getLengthModifier();
2543  if (!FS.hasValidLengthModifier()) {
2544    const CharSourceRange &R = getSpecifierRange(LM.getStart(), LM.getLength());
2545    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2546                         << LM.toString() << CS.toString()
2547                         << getSpecifierRange(startSpecifier, specifierLen),
2548                         getLocationOfByte(LM.getStart()),
2549                         /*IsStringLocation*/true, R,
2550                         FixItHint::CreateRemoval(R));
2551  }
2552
2553  if (!FS.hasStandardLengthModifier())
2554    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2555  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2556    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2557  if (!FS.hasStandardLengthConversionCombination())
2558    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2559                                             specifierLen);
2560
2561  // The remaining checks depend on the data arguments.
2562  if (HasVAListArg)
2563    return true;
2564
2565  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2566    return false;
2567
2568  // Check that the argument type matches the format specifier.
2569  const Expr *Ex = getDataArg(argIndex);
2570  const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context);
2571  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2572    ScanfSpecifier fixedFS = FS;
2573    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2574                                   S.Context);
2575
2576    if (success) {
2577      // Get the fix string from the fixed format specifier.
2578      SmallString<128> buf;
2579      llvm::raw_svector_ostream os(buf);
2580      fixedFS.toString(os);
2581
2582      EmitFormatDiagnostic(
2583        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2584          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2585          << Ex->getSourceRange(),
2586        getLocationOfByte(CS.getStart()),
2587        /*IsStringLocation*/true,
2588        getSpecifierRange(startSpecifier, specifierLen),
2589        FixItHint::CreateReplacement(
2590          getSpecifierRange(startSpecifier, specifierLen),
2591          os.str()));
2592    } else {
2593      EmitFormatDiagnostic(
2594        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2595          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2596          << Ex->getSourceRange(),
2597        getLocationOfByte(CS.getStart()),
2598        /*IsStringLocation*/true,
2599        getSpecifierRange(startSpecifier, specifierLen));
2600    }
2601  }
2602
2603  return true;
2604}
2605
2606void Sema::CheckFormatString(const StringLiteral *FExpr,
2607                             const Expr *OrigFormatExpr,
2608                             Expr **Args, unsigned NumArgs,
2609                             bool HasVAListArg, unsigned format_idx,
2610                             unsigned firstDataArg, FormatStringType Type,
2611                             bool inFunctionCall) {
2612
2613  // CHECK: is the format string a wide literal?
2614  if (!FExpr->isAscii()) {
2615    CheckFormatHandler::EmitFormatDiagnostic(
2616      *this, inFunctionCall, Args[format_idx],
2617      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2618      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2619    return;
2620  }
2621
2622  // Str - The format string.  NOTE: this is NOT null-terminated!
2623  StringRef StrRef = FExpr->getString();
2624  const char *Str = StrRef.data();
2625  unsigned StrLen = StrRef.size();
2626  const unsigned numDataArgs = NumArgs - firstDataArg;
2627
2628  // CHECK: empty format string?
2629  if (StrLen == 0 && numDataArgs > 0) {
2630    CheckFormatHandler::EmitFormatDiagnostic(
2631      *this, inFunctionCall, Args[format_idx],
2632      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2633      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2634    return;
2635  }
2636
2637  if (Type == FST_Printf || Type == FST_NSString) {
2638    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2639                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2640                         Str, HasVAListArg, Args, NumArgs, format_idx,
2641                         inFunctionCall);
2642
2643    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2644                                                  getLangOpts()))
2645      H.DoneProcessing();
2646  } else if (Type == FST_Scanf) {
2647    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2648                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2649                        Str, HasVAListArg, Args, NumArgs, format_idx,
2650                        inFunctionCall);
2651
2652    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2653                                                 getLangOpts()))
2654      H.DoneProcessing();
2655  } // TODO: handle other formats
2656}
2657
2658//===--- CHECK: Standard memory functions ---------------------------------===//
2659
2660/// \brief Determine whether the given type is a dynamic class type (e.g.,
2661/// whether it has a vtable).
2662static bool isDynamicClassType(QualType T) {
2663  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2664    if (CXXRecordDecl *Definition = Record->getDefinition())
2665      if (Definition->isDynamicClass())
2666        return true;
2667
2668  return false;
2669}
2670
2671/// \brief If E is a sizeof expression, returns its argument expression,
2672/// otherwise returns NULL.
2673static const Expr *getSizeOfExprArg(const Expr* E) {
2674  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2675      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2676    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2677      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2678
2679  return 0;
2680}
2681
2682/// \brief If E is a sizeof expression, returns its argument type.
2683static QualType getSizeOfArgType(const Expr* E) {
2684  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2685      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2686    if (SizeOf->getKind() == clang::UETT_SizeOf)
2687      return SizeOf->getTypeOfArgument();
2688
2689  return QualType();
2690}
2691
2692/// \brief Check for dangerous or invalid arguments to memset().
2693///
2694/// This issues warnings on known problematic, dangerous or unspecified
2695/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2696/// function calls.
2697///
2698/// \param Call The call expression to diagnose.
2699void Sema::CheckMemaccessArguments(const CallExpr *Call,
2700                                   unsigned BId,
2701                                   IdentifierInfo *FnName) {
2702  assert(BId != 0);
2703
2704  // It is possible to have a non-standard definition of memset.  Validate
2705  // we have enough arguments, and if not, abort further checking.
2706  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2707  if (Call->getNumArgs() < ExpectedNumArgs)
2708    return;
2709
2710  unsigned LastArg = (BId == Builtin::BImemset ||
2711                      BId == Builtin::BIstrndup ? 1 : 2);
2712  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2713  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2714
2715  // We have special checking when the length is a sizeof expression.
2716  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2717  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2718  llvm::FoldingSetNodeID SizeOfArgID;
2719
2720  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2721    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2722    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2723
2724    QualType DestTy = Dest->getType();
2725    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2726      QualType PointeeTy = DestPtrTy->getPointeeType();
2727
2728      // Never warn about void type pointers. This can be used to suppress
2729      // false positives.
2730      if (PointeeTy->isVoidType())
2731        continue;
2732
2733      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2734      // actually comparing the expressions for equality. Because computing the
2735      // expression IDs can be expensive, we only do this if the diagnostic is
2736      // enabled.
2737      if (SizeOfArg &&
2738          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2739                                   SizeOfArg->getExprLoc())) {
2740        // We only compute IDs for expressions if the warning is enabled, and
2741        // cache the sizeof arg's ID.
2742        if (SizeOfArgID == llvm::FoldingSetNodeID())
2743          SizeOfArg->Profile(SizeOfArgID, Context, true);
2744        llvm::FoldingSetNodeID DestID;
2745        Dest->Profile(DestID, Context, true);
2746        if (DestID == SizeOfArgID) {
2747          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2748          //       over sizeof(src) as well.
2749          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2750          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2751            if (UnaryOp->getOpcode() == UO_AddrOf)
2752              ActionIdx = 1; // If its an address-of operator, just remove it.
2753          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2754            ActionIdx = 2; // If the pointee's size is sizeof(char),
2755                           // suggest an explicit length.
2756          unsigned DestSrcSelect =
2757            (BId == Builtin::BIstrndup ? 1 : ArgIdx);
2758          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2759                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2760                                << FnName << DestSrcSelect << ActionIdx
2761                                << Dest->getSourceRange()
2762                                << SizeOfArg->getSourceRange());
2763          break;
2764        }
2765      }
2766
2767      // Also check for cases where the sizeof argument is the exact same
2768      // type as the memory argument, and where it points to a user-defined
2769      // record type.
2770      if (SizeOfArgTy != QualType()) {
2771        if (PointeeTy->isRecordType() &&
2772            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2773          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2774                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2775                                << FnName << SizeOfArgTy << ArgIdx
2776                                << PointeeTy << Dest->getSourceRange()
2777                                << LenExpr->getSourceRange());
2778          break;
2779        }
2780      }
2781
2782      // Always complain about dynamic classes.
2783      if (isDynamicClassType(PointeeTy)) {
2784
2785        unsigned OperationType = 0;
2786        // "overwritten" if we're warning about the destination for any call
2787        // but memcmp; otherwise a verb appropriate to the call.
2788        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
2789          if (BId == Builtin::BImemcpy)
2790            OperationType = 1;
2791          else if(BId == Builtin::BImemmove)
2792            OperationType = 2;
2793          else if (BId == Builtin::BImemcmp)
2794            OperationType = 3;
2795        }
2796
2797        DiagRuntimeBehavior(
2798          Dest->getExprLoc(), Dest,
2799          PDiag(diag::warn_dyn_class_memaccess)
2800            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
2801            << FnName << PointeeTy
2802            << OperationType
2803            << Call->getCallee()->getSourceRange());
2804      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
2805               BId != Builtin::BImemset)
2806        DiagRuntimeBehavior(
2807          Dest->getExprLoc(), Dest,
2808          PDiag(diag::warn_arc_object_memaccess)
2809            << ArgIdx << FnName << PointeeTy
2810            << Call->getCallee()->getSourceRange());
2811      else
2812        continue;
2813
2814      DiagRuntimeBehavior(
2815        Dest->getExprLoc(), Dest,
2816        PDiag(diag::note_bad_memaccess_silence)
2817          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2818      break;
2819    }
2820  }
2821}
2822
2823// A little helper routine: ignore addition and subtraction of integer literals.
2824// This intentionally does not ignore all integer constant expressions because
2825// we don't want to remove sizeof().
2826static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2827  Ex = Ex->IgnoreParenCasts();
2828
2829  for (;;) {
2830    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2831    if (!BO || !BO->isAdditiveOp())
2832      break;
2833
2834    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2835    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2836
2837    if (isa<IntegerLiteral>(RHS))
2838      Ex = LHS;
2839    else if (isa<IntegerLiteral>(LHS))
2840      Ex = RHS;
2841    else
2842      break;
2843  }
2844
2845  return Ex;
2846}
2847
2848// Warn if the user has made the 'size' argument to strlcpy or strlcat
2849// be the size of the source, instead of the destination.
2850void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2851                                    IdentifierInfo *FnName) {
2852
2853  // Don't crash if the user has the wrong number of arguments
2854  if (Call->getNumArgs() != 3)
2855    return;
2856
2857  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2858  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2859  const Expr *CompareWithSrc = NULL;
2860
2861  // Look for 'strlcpy(dst, x, sizeof(x))'
2862  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2863    CompareWithSrc = Ex;
2864  else {
2865    // Look for 'strlcpy(dst, x, strlen(x))'
2866    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2867      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
2868          && SizeCall->getNumArgs() == 1)
2869        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2870    }
2871  }
2872
2873  if (!CompareWithSrc)
2874    return;
2875
2876  // Determine if the argument to sizeof/strlen is equal to the source
2877  // argument.  In principle there's all kinds of things you could do
2878  // here, for instance creating an == expression and evaluating it with
2879  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2880  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2881  if (!SrcArgDRE)
2882    return;
2883
2884  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2885  if (!CompareWithSrcDRE ||
2886      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2887    return;
2888
2889  const Expr *OriginalSizeArg = Call->getArg(2);
2890  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2891    << OriginalSizeArg->getSourceRange() << FnName;
2892
2893  // Output a FIXIT hint if the destination is an array (rather than a
2894  // pointer to an array).  This could be enhanced to handle some
2895  // pointers if we know the actual size, like if DstArg is 'array+2'
2896  // we could say 'sizeof(array)-2'.
2897  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2898  QualType DstArgTy = DstArg->getType();
2899
2900  // Only handle constant-sized or VLAs, but not flexible members.
2901  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2902    // Only issue the FIXIT for arrays of size > 1.
2903    if (CAT->getSize().getSExtValue() <= 1)
2904      return;
2905  } else if (!DstArgTy->isVariableArrayType()) {
2906    return;
2907  }
2908
2909  SmallString<128> sizeString;
2910  llvm::raw_svector_ostream OS(sizeString);
2911  OS << "sizeof(";
2912  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2913  OS << ")";
2914
2915  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2916    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2917                                    OS.str());
2918}
2919
2920/// Check if two expressions refer to the same declaration.
2921static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
2922  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
2923    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
2924      return D1->getDecl() == D2->getDecl();
2925  return false;
2926}
2927
2928static const Expr *getStrlenExprArg(const Expr *E) {
2929  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2930    const FunctionDecl *FD = CE->getDirectCallee();
2931    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
2932      return 0;
2933    return CE->getArg(0)->IgnoreParenCasts();
2934  }
2935  return 0;
2936}
2937
2938// Warn on anti-patterns as the 'size' argument to strncat.
2939// The correct size argument should look like following:
2940//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
2941void Sema::CheckStrncatArguments(const CallExpr *CE,
2942                                 IdentifierInfo *FnName) {
2943  // Don't crash if the user has the wrong number of arguments.
2944  if (CE->getNumArgs() < 3)
2945    return;
2946  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
2947  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
2948  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
2949
2950  // Identify common expressions, which are wrongly used as the size argument
2951  // to strncat and may lead to buffer overflows.
2952  unsigned PatternType = 0;
2953  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
2954    // - sizeof(dst)
2955    if (referToTheSameDecl(SizeOfArg, DstArg))
2956      PatternType = 1;
2957    // - sizeof(src)
2958    else if (referToTheSameDecl(SizeOfArg, SrcArg))
2959      PatternType = 2;
2960  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
2961    if (BE->getOpcode() == BO_Sub) {
2962      const Expr *L = BE->getLHS()->IgnoreParenCasts();
2963      const Expr *R = BE->getRHS()->IgnoreParenCasts();
2964      // - sizeof(dst) - strlen(dst)
2965      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
2966          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
2967        PatternType = 1;
2968      // - sizeof(src) - (anything)
2969      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
2970        PatternType = 2;
2971    }
2972  }
2973
2974  if (PatternType == 0)
2975    return;
2976
2977  // Generate the diagnostic.
2978  SourceLocation SL = LenArg->getLocStart();
2979  SourceRange SR = LenArg->getSourceRange();
2980  SourceManager &SM  = PP.getSourceManager();
2981
2982  // If the function is defined as a builtin macro, do not show macro expansion.
2983  if (SM.isMacroArgExpansion(SL)) {
2984    SL = SM.getSpellingLoc(SL);
2985    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
2986                     SM.getSpellingLoc(SR.getEnd()));
2987  }
2988
2989  if (PatternType == 1)
2990    Diag(SL, diag::warn_strncat_large_size) << SR;
2991  else
2992    Diag(SL, diag::warn_strncat_src_size) << SR;
2993
2994  // Output a FIXIT hint if the destination is an array (rather than a
2995  // pointer to an array).  This could be enhanced to handle some
2996  // pointers if we know the actual size, like if DstArg is 'array+2'
2997  // we could say 'sizeof(array)-2'.
2998  QualType DstArgTy = DstArg->getType();
2999
3000  // Only handle constant-sized or VLAs, but not flexible members.
3001  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
3002    // Only issue the FIXIT for arrays of size > 1.
3003    if (CAT->getSize().getSExtValue() <= 1)
3004      return;
3005  } else if (!DstArgTy->isVariableArrayType()) {
3006    return;
3007  }
3008
3009  SmallString<128> sizeString;
3010  llvm::raw_svector_ostream OS(sizeString);
3011  OS << "sizeof(";
3012  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
3013  OS << ") - ";
3014  OS << "strlen(";
3015  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
3016  OS << ") - 1";
3017
3018  Diag(SL, diag::note_strncat_wrong_size)
3019    << FixItHint::CreateReplacement(SR, OS.str());
3020}
3021
3022//===--- CHECK: Return Address of Stack Variable --------------------------===//
3023
3024static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3025                     Decl *ParentDecl);
3026static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3027                      Decl *ParentDecl);
3028
3029/// CheckReturnStackAddr - Check if a return statement returns the address
3030///   of a stack variable.
3031void
3032Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3033                           SourceLocation ReturnLoc) {
3034
3035  Expr *stackE = 0;
3036  SmallVector<DeclRefExpr *, 8> refVars;
3037
3038  // Perform checking for returned stack addresses, local blocks,
3039  // label addresses or references to temporaries.
3040  if (lhsType->isPointerType() ||
3041      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3042    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3043  } else if (lhsType->isReferenceType()) {
3044    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3045  }
3046
3047  if (stackE == 0)
3048    return; // Nothing suspicious was found.
3049
3050  SourceLocation diagLoc;
3051  SourceRange diagRange;
3052  if (refVars.empty()) {
3053    diagLoc = stackE->getLocStart();
3054    diagRange = stackE->getSourceRange();
3055  } else {
3056    // We followed through a reference variable. 'stackE' contains the
3057    // problematic expression but we will warn at the return statement pointing
3058    // at the reference variable. We will later display the "trail" of
3059    // reference variables using notes.
3060    diagLoc = refVars[0]->getLocStart();
3061    diagRange = refVars[0]->getSourceRange();
3062  }
3063
3064  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3065    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3066                                             : diag::warn_ret_stack_addr)
3067     << DR->getDecl()->getDeclName() << diagRange;
3068  } else if (isa<BlockExpr>(stackE)) { // local block.
3069    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3070  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3071    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3072  } else { // local temporary.
3073    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3074                                             : diag::warn_ret_local_temp_addr)
3075     << diagRange;
3076  }
3077
3078  // Display the "trail" of reference variables that we followed until we
3079  // found the problematic expression using notes.
3080  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3081    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3082    // If this var binds to another reference var, show the range of the next
3083    // var, otherwise the var binds to the problematic expression, in which case
3084    // show the range of the expression.
3085    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3086                                  : stackE->getSourceRange();
3087    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3088      << VD->getDeclName() << range;
3089  }
3090}
3091
3092/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3093///  check if the expression in a return statement evaluates to an address
3094///  to a location on the stack, a local block, an address of a label, or a
3095///  reference to local temporary. The recursion is used to traverse the
3096///  AST of the return expression, with recursion backtracking when we
3097///  encounter a subexpression that (1) clearly does not lead to one of the
3098///  above problematic expressions (2) is something we cannot determine leads to
3099///  a problematic expression based on such local checking.
3100///
3101///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3102///  the expression that they point to. Such variables are added to the
3103///  'refVars' vector so that we know what the reference variable "trail" was.
3104///
3105///  EvalAddr processes expressions that are pointers that are used as
3106///  references (and not L-values).  EvalVal handles all other values.
3107///  At the base case of the recursion is a check for the above problematic
3108///  expressions.
3109///
3110///  This implementation handles:
3111///
3112///   * pointer-to-pointer casts
3113///   * implicit conversions from array references to pointers
3114///   * taking the address of fields
3115///   * arbitrary interplay between "&" and "*" operators
3116///   * pointer arithmetic from an address of a stack variable
3117///   * taking the address of an array element where the array is on the stack
3118static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3119                      Decl *ParentDecl) {
3120  if (E->isTypeDependent())
3121      return NULL;
3122
3123  // We should only be called for evaluating pointer expressions.
3124  assert((E->getType()->isAnyPointerType() ||
3125          E->getType()->isBlockPointerType() ||
3126          E->getType()->isObjCQualifiedIdType()) &&
3127         "EvalAddr only works on pointers");
3128
3129  E = E->IgnoreParens();
3130
3131  // Our "symbolic interpreter" is just a dispatch off the currently
3132  // viewed AST node.  We then recursively traverse the AST by calling
3133  // EvalAddr and EvalVal appropriately.
3134  switch (E->getStmtClass()) {
3135  case Stmt::DeclRefExprClass: {
3136    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3137
3138    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3139      // If this is a reference variable, follow through to the expression that
3140      // it points to.
3141      if (V->hasLocalStorage() &&
3142          V->getType()->isReferenceType() && V->hasInit()) {
3143        // Add the reference variable to the "trail".
3144        refVars.push_back(DR);
3145        return EvalAddr(V->getInit(), refVars, ParentDecl);
3146      }
3147
3148    return NULL;
3149  }
3150
3151  case Stmt::UnaryOperatorClass: {
3152    // The only unary operator that make sense to handle here
3153    // is AddrOf.  All others don't make sense as pointers.
3154    UnaryOperator *U = cast<UnaryOperator>(E);
3155
3156    if (U->getOpcode() == UO_AddrOf)
3157      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3158    else
3159      return NULL;
3160  }
3161
3162  case Stmt::BinaryOperatorClass: {
3163    // Handle pointer arithmetic.  All other binary operators are not valid
3164    // in this context.
3165    BinaryOperator *B = cast<BinaryOperator>(E);
3166    BinaryOperatorKind op = B->getOpcode();
3167
3168    if (op != BO_Add && op != BO_Sub)
3169      return NULL;
3170
3171    Expr *Base = B->getLHS();
3172
3173    // Determine which argument is the real pointer base.  It could be
3174    // the RHS argument instead of the LHS.
3175    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3176
3177    assert (Base->getType()->isPointerType());
3178    return EvalAddr(Base, refVars, ParentDecl);
3179  }
3180
3181  // For conditional operators we need to see if either the LHS or RHS are
3182  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3183  case Stmt::ConditionalOperatorClass: {
3184    ConditionalOperator *C = cast<ConditionalOperator>(E);
3185
3186    // Handle the GNU extension for missing LHS.
3187    if (Expr *lhsExpr = C->getLHS()) {
3188    // In C++, we can have a throw-expression, which has 'void' type.
3189      if (!lhsExpr->getType()->isVoidType())
3190        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3191          return LHS;
3192    }
3193
3194    // In C++, we can have a throw-expression, which has 'void' type.
3195    if (C->getRHS()->getType()->isVoidType())
3196      return NULL;
3197
3198    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3199  }
3200
3201  case Stmt::BlockExprClass:
3202    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3203      return E; // local block.
3204    return NULL;
3205
3206  case Stmt::AddrLabelExprClass:
3207    return E; // address of label.
3208
3209  case Stmt::ExprWithCleanupsClass:
3210    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3211                    ParentDecl);
3212
3213  // For casts, we need to handle conversions from arrays to
3214  // pointer values, and pointer-to-pointer conversions.
3215  case Stmt::ImplicitCastExprClass:
3216  case Stmt::CStyleCastExprClass:
3217  case Stmt::CXXFunctionalCastExprClass:
3218  case Stmt::ObjCBridgedCastExprClass:
3219  case Stmt::CXXStaticCastExprClass:
3220  case Stmt::CXXDynamicCastExprClass:
3221  case Stmt::CXXConstCastExprClass:
3222  case Stmt::CXXReinterpretCastExprClass: {
3223    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3224    switch (cast<CastExpr>(E)->getCastKind()) {
3225    case CK_BitCast:
3226    case CK_LValueToRValue:
3227    case CK_NoOp:
3228    case CK_BaseToDerived:
3229    case CK_DerivedToBase:
3230    case CK_UncheckedDerivedToBase:
3231    case CK_Dynamic:
3232    case CK_CPointerToObjCPointerCast:
3233    case CK_BlockPointerToObjCPointerCast:
3234    case CK_AnyPointerToBlockPointerCast:
3235      return EvalAddr(SubExpr, refVars, ParentDecl);
3236
3237    case CK_ArrayToPointerDecay:
3238      return EvalVal(SubExpr, refVars, ParentDecl);
3239
3240    default:
3241      return 0;
3242    }
3243  }
3244
3245  case Stmt::MaterializeTemporaryExprClass:
3246    if (Expr *Result = EvalAddr(
3247                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3248                                refVars, ParentDecl))
3249      return Result;
3250
3251    return E;
3252
3253  // Everything else: we simply don't reason about them.
3254  default:
3255    return NULL;
3256  }
3257}
3258
3259
3260///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3261///   See the comments for EvalAddr for more details.
3262static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3263                     Decl *ParentDecl) {
3264do {
3265  // We should only be called for evaluating non-pointer expressions, or
3266  // expressions with a pointer type that are not used as references but instead
3267  // are l-values (e.g., DeclRefExpr with a pointer type).
3268
3269  // Our "symbolic interpreter" is just a dispatch off the currently
3270  // viewed AST node.  We then recursively traverse the AST by calling
3271  // EvalAddr and EvalVal appropriately.
3272
3273  E = E->IgnoreParens();
3274  switch (E->getStmtClass()) {
3275  case Stmt::ImplicitCastExprClass: {
3276    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3277    if (IE->getValueKind() == VK_LValue) {
3278      E = IE->getSubExpr();
3279      continue;
3280    }
3281    return NULL;
3282  }
3283
3284  case Stmt::ExprWithCleanupsClass:
3285    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3286
3287  case Stmt::DeclRefExprClass: {
3288    // When we hit a DeclRefExpr we are looking at code that refers to a
3289    // variable's name. If it's not a reference variable we check if it has
3290    // local storage within the function, and if so, return the expression.
3291    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3292
3293    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3294      // Check if it refers to itself, e.g. "int& i = i;".
3295      if (V == ParentDecl)
3296        return DR;
3297
3298      if (V->hasLocalStorage()) {
3299        if (!V->getType()->isReferenceType())
3300          return DR;
3301
3302        // Reference variable, follow through to the expression that
3303        // it points to.
3304        if (V->hasInit()) {
3305          // Add the reference variable to the "trail".
3306          refVars.push_back(DR);
3307          return EvalVal(V->getInit(), refVars, V);
3308        }
3309      }
3310    }
3311
3312    return NULL;
3313  }
3314
3315  case Stmt::UnaryOperatorClass: {
3316    // The only unary operator that make sense to handle here
3317    // is Deref.  All others don't resolve to a "name."  This includes
3318    // handling all sorts of rvalues passed to a unary operator.
3319    UnaryOperator *U = cast<UnaryOperator>(E);
3320
3321    if (U->getOpcode() == UO_Deref)
3322      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3323
3324    return NULL;
3325  }
3326
3327  case Stmt::ArraySubscriptExprClass: {
3328    // Array subscripts are potential references to data on the stack.  We
3329    // retrieve the DeclRefExpr* for the array variable if it indeed
3330    // has local storage.
3331    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3332  }
3333
3334  case Stmt::ConditionalOperatorClass: {
3335    // For conditional operators we need to see if either the LHS or RHS are
3336    // non-NULL Expr's.  If one is non-NULL, we return it.
3337    ConditionalOperator *C = cast<ConditionalOperator>(E);
3338
3339    // Handle the GNU extension for missing LHS.
3340    if (Expr *lhsExpr = C->getLHS())
3341      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3342        return LHS;
3343
3344    return EvalVal(C->getRHS(), refVars, ParentDecl);
3345  }
3346
3347  // Accesses to members are potential references to data on the stack.
3348  case Stmt::MemberExprClass: {
3349    MemberExpr *M = cast<MemberExpr>(E);
3350
3351    // Check for indirect access.  We only want direct field accesses.
3352    if (M->isArrow())
3353      return NULL;
3354
3355    // Check whether the member type is itself a reference, in which case
3356    // we're not going to refer to the member, but to what the member refers to.
3357    if (M->getMemberDecl()->getType()->isReferenceType())
3358      return NULL;
3359
3360    return EvalVal(M->getBase(), refVars, ParentDecl);
3361  }
3362
3363  case Stmt::MaterializeTemporaryExprClass:
3364    if (Expr *Result = EvalVal(
3365                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3366                               refVars, ParentDecl))
3367      return Result;
3368
3369    return E;
3370
3371  default:
3372    // Check that we don't return or take the address of a reference to a
3373    // temporary. This is only useful in C++.
3374    if (!E->isTypeDependent() && E->isRValue())
3375      return E;
3376
3377    // Everything else: we simply don't reason about them.
3378    return NULL;
3379  }
3380} while (true);
3381}
3382
3383//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3384
3385/// Check for comparisons of floating point operands using != and ==.
3386/// Issue a warning if these are no self-comparisons, as they are not likely
3387/// to do what the programmer intended.
3388void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3389  bool EmitWarning = true;
3390
3391  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3392  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3393
3394  // Special case: check for x == x (which is OK).
3395  // Do not emit warnings for such cases.
3396  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3397    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3398      if (DRL->getDecl() == DRR->getDecl())
3399        EmitWarning = false;
3400
3401
3402  // Special case: check for comparisons against literals that can be exactly
3403  //  represented by APFloat.  In such cases, do not emit a warning.  This
3404  //  is a heuristic: often comparison against such literals are used to
3405  //  detect if a value in a variable has not changed.  This clearly can
3406  //  lead to false negatives.
3407  if (EmitWarning) {
3408    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3409      if (FLL->isExact())
3410        EmitWarning = false;
3411    } else
3412      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
3413        if (FLR->isExact())
3414          EmitWarning = false;
3415    }
3416  }
3417
3418  // Check for comparisons with builtin types.
3419  if (EmitWarning)
3420    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3421      if (CL->isBuiltinCall())
3422        EmitWarning = false;
3423
3424  if (EmitWarning)
3425    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3426      if (CR->isBuiltinCall())
3427        EmitWarning = false;
3428
3429  // Emit the diagnostic.
3430  if (EmitWarning)
3431    Diag(Loc, diag::warn_floatingpoint_eq)
3432      << LHS->getSourceRange() << RHS->getSourceRange();
3433}
3434
3435//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3436//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3437
3438namespace {
3439
3440/// Structure recording the 'active' range of an integer-valued
3441/// expression.
3442struct IntRange {
3443  /// The number of bits active in the int.
3444  unsigned Width;
3445
3446  /// True if the int is known not to have negative values.
3447  bool NonNegative;
3448
3449  IntRange(unsigned Width, bool NonNegative)
3450    : Width(Width), NonNegative(NonNegative)
3451  {}
3452
3453  /// Returns the range of the bool type.
3454  static IntRange forBoolType() {
3455    return IntRange(1, true);
3456  }
3457
3458  /// Returns the range of an opaque value of the given integral type.
3459  static IntRange forValueOfType(ASTContext &C, QualType T) {
3460    return forValueOfCanonicalType(C,
3461                          T->getCanonicalTypeInternal().getTypePtr());
3462  }
3463
3464  /// Returns the range of an opaque value of a canonical integral type.
3465  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3466    assert(T->isCanonicalUnqualified());
3467
3468    if (const VectorType *VT = dyn_cast<VectorType>(T))
3469      T = VT->getElementType().getTypePtr();
3470    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3471      T = CT->getElementType().getTypePtr();
3472
3473    // For enum types, use the known bit width of the enumerators.
3474    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3475      EnumDecl *Enum = ET->getDecl();
3476      if (!Enum->isCompleteDefinition())
3477        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3478
3479      unsigned NumPositive = Enum->getNumPositiveBits();
3480      unsigned NumNegative = Enum->getNumNegativeBits();
3481
3482      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3483    }
3484
3485    const BuiltinType *BT = cast<BuiltinType>(T);
3486    assert(BT->isInteger());
3487
3488    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3489  }
3490
3491  /// Returns the "target" range of a canonical integral type, i.e.
3492  /// the range of values expressible in the type.
3493  ///
3494  /// This matches forValueOfCanonicalType except that enums have the
3495  /// full range of their type, not the range of their enumerators.
3496  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3497    assert(T->isCanonicalUnqualified());
3498
3499    if (const VectorType *VT = dyn_cast<VectorType>(T))
3500      T = VT->getElementType().getTypePtr();
3501    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3502      T = CT->getElementType().getTypePtr();
3503    if (const EnumType *ET = dyn_cast<EnumType>(T))
3504      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3505
3506    const BuiltinType *BT = cast<BuiltinType>(T);
3507    assert(BT->isInteger());
3508
3509    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3510  }
3511
3512  /// Returns the supremum of two ranges: i.e. their conservative merge.
3513  static IntRange join(IntRange L, IntRange R) {
3514    return IntRange(std::max(L.Width, R.Width),
3515                    L.NonNegative && R.NonNegative);
3516  }
3517
3518  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3519  static IntRange meet(IntRange L, IntRange R) {
3520    return IntRange(std::min(L.Width, R.Width),
3521                    L.NonNegative || R.NonNegative);
3522  }
3523};
3524
3525static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
3526                              unsigned MaxWidth) {
3527  if (value.isSigned() && value.isNegative())
3528    return IntRange(value.getMinSignedBits(), false);
3529
3530  if (value.getBitWidth() > MaxWidth)
3531    value = value.trunc(MaxWidth);
3532
3533  // isNonNegative() just checks the sign bit without considering
3534  // signedness.
3535  return IntRange(value.getActiveBits(), true);
3536}
3537
3538static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3539                              unsigned MaxWidth) {
3540  if (result.isInt())
3541    return GetValueRange(C, result.getInt(), MaxWidth);
3542
3543  if (result.isVector()) {
3544    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3545    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3546      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3547      R = IntRange::join(R, El);
3548    }
3549    return R;
3550  }
3551
3552  if (result.isComplexInt()) {
3553    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3554    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3555    return IntRange::join(R, I);
3556  }
3557
3558  // This can happen with lossless casts to intptr_t of "based" lvalues.
3559  // Assume it might use arbitrary bits.
3560  // FIXME: The only reason we need to pass the type in here is to get
3561  // the sign right on this one case.  It would be nice if APValue
3562  // preserved this.
3563  assert(result.isLValue() || result.isAddrLabelDiff());
3564  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3565}
3566
3567/// Pseudo-evaluate the given integer expression, estimating the
3568/// range of values it might take.
3569///
3570/// \param MaxWidth - the width to which the value will be truncated
3571static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3572  E = E->IgnoreParens();
3573
3574  // Try a full evaluation first.
3575  Expr::EvalResult result;
3576  if (E->EvaluateAsRValue(result, C))
3577    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3578
3579  // I think we only want to look through implicit casts here; if the
3580  // user has an explicit widening cast, we should treat the value as
3581  // being of the new, wider type.
3582  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3583    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3584      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3585
3586    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3587
3588    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3589
3590    // Assume that non-integer casts can span the full range of the type.
3591    if (!isIntegerCast)
3592      return OutputTypeRange;
3593
3594    IntRange SubRange
3595      = GetExprRange(C, CE->getSubExpr(),
3596                     std::min(MaxWidth, OutputTypeRange.Width));
3597
3598    // Bail out if the subexpr's range is as wide as the cast type.
3599    if (SubRange.Width >= OutputTypeRange.Width)
3600      return OutputTypeRange;
3601
3602    // Otherwise, we take the smaller width, and we're non-negative if
3603    // either the output type or the subexpr is.
3604    return IntRange(SubRange.Width,
3605                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3606  }
3607
3608  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3609    // If we can fold the condition, just take that operand.
3610    bool CondResult;
3611    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3612      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3613                                        : CO->getFalseExpr(),
3614                          MaxWidth);
3615
3616    // Otherwise, conservatively merge.
3617    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3618    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3619    return IntRange::join(L, R);
3620  }
3621
3622  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3623    switch (BO->getOpcode()) {
3624
3625    // Boolean-valued operations are single-bit and positive.
3626    case BO_LAnd:
3627    case BO_LOr:
3628    case BO_LT:
3629    case BO_GT:
3630    case BO_LE:
3631    case BO_GE:
3632    case BO_EQ:
3633    case BO_NE:
3634      return IntRange::forBoolType();
3635
3636    // The type of the assignments is the type of the LHS, so the RHS
3637    // is not necessarily the same type.
3638    case BO_MulAssign:
3639    case BO_DivAssign:
3640    case BO_RemAssign:
3641    case BO_AddAssign:
3642    case BO_SubAssign:
3643    case BO_XorAssign:
3644    case BO_OrAssign:
3645      // TODO: bitfields?
3646      return IntRange::forValueOfType(C, E->getType());
3647
3648    // Simple assignments just pass through the RHS, which will have
3649    // been coerced to the LHS type.
3650    case BO_Assign:
3651      // TODO: bitfields?
3652      return GetExprRange(C, BO->getRHS(), MaxWidth);
3653
3654    // Operations with opaque sources are black-listed.
3655    case BO_PtrMemD:
3656    case BO_PtrMemI:
3657      return IntRange::forValueOfType(C, E->getType());
3658
3659    // Bitwise-and uses the *infinum* of the two source ranges.
3660    case BO_And:
3661    case BO_AndAssign:
3662      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3663                            GetExprRange(C, BO->getRHS(), MaxWidth));
3664
3665    // Left shift gets black-listed based on a judgement call.
3666    case BO_Shl:
3667      // ...except that we want to treat '1 << (blah)' as logically
3668      // positive.  It's an important idiom.
3669      if (IntegerLiteral *I
3670            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3671        if (I->getValue() == 1) {
3672          IntRange R = IntRange::forValueOfType(C, E->getType());
3673          return IntRange(R.Width, /*NonNegative*/ true);
3674        }
3675      }
3676      // fallthrough
3677
3678    case BO_ShlAssign:
3679      return IntRange::forValueOfType(C, E->getType());
3680
3681    // Right shift by a constant can narrow its left argument.
3682    case BO_Shr:
3683    case BO_ShrAssign: {
3684      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3685
3686      // If the shift amount is a positive constant, drop the width by
3687      // that much.
3688      llvm::APSInt shift;
3689      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3690          shift.isNonNegative()) {
3691        unsigned zext = shift.getZExtValue();
3692        if (zext >= L.Width)
3693          L.Width = (L.NonNegative ? 0 : 1);
3694        else
3695          L.Width -= zext;
3696      }
3697
3698      return L;
3699    }
3700
3701    // Comma acts as its right operand.
3702    case BO_Comma:
3703      return GetExprRange(C, BO->getRHS(), MaxWidth);
3704
3705    // Black-list pointer subtractions.
3706    case BO_Sub:
3707      if (BO->getLHS()->getType()->isPointerType())
3708        return IntRange::forValueOfType(C, E->getType());
3709      break;
3710
3711    // The width of a division result is mostly determined by the size
3712    // of the LHS.
3713    case BO_Div: {
3714      // Don't 'pre-truncate' the operands.
3715      unsigned opWidth = C.getIntWidth(E->getType());
3716      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3717
3718      // If the divisor is constant, use that.
3719      llvm::APSInt divisor;
3720      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3721        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3722        if (log2 >= L.Width)
3723          L.Width = (L.NonNegative ? 0 : 1);
3724        else
3725          L.Width = std::min(L.Width - log2, MaxWidth);
3726        return L;
3727      }
3728
3729      // Otherwise, just use the LHS's width.
3730      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3731      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3732    }
3733
3734    // The result of a remainder can't be larger than the result of
3735    // either side.
3736    case BO_Rem: {
3737      // Don't 'pre-truncate' the operands.
3738      unsigned opWidth = C.getIntWidth(E->getType());
3739      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3740      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3741
3742      IntRange meet = IntRange::meet(L, R);
3743      meet.Width = std::min(meet.Width, MaxWidth);
3744      return meet;
3745    }
3746
3747    // The default behavior is okay for these.
3748    case BO_Mul:
3749    case BO_Add:
3750    case BO_Xor:
3751    case BO_Or:
3752      break;
3753    }
3754
3755    // The default case is to treat the operation as if it were closed
3756    // on the narrowest type that encompasses both operands.
3757    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3758    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3759    return IntRange::join(L, R);
3760  }
3761
3762  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3763    switch (UO->getOpcode()) {
3764    // Boolean-valued operations are white-listed.
3765    case UO_LNot:
3766      return IntRange::forBoolType();
3767
3768    // Operations with opaque sources are black-listed.
3769    case UO_Deref:
3770    case UO_AddrOf: // should be impossible
3771      return IntRange::forValueOfType(C, E->getType());
3772
3773    default:
3774      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3775    }
3776  }
3777
3778  if (dyn_cast<OffsetOfExpr>(E)) {
3779    IntRange::forValueOfType(C, E->getType());
3780  }
3781
3782  if (FieldDecl *BitField = E->getBitField())
3783    return IntRange(BitField->getBitWidthValue(C),
3784                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3785
3786  return IntRange::forValueOfType(C, E->getType());
3787}
3788
3789static IntRange GetExprRange(ASTContext &C, Expr *E) {
3790  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3791}
3792
3793/// Checks whether the given value, which currently has the given
3794/// source semantics, has the same value when coerced through the
3795/// target semantics.
3796static bool IsSameFloatAfterCast(const llvm::APFloat &value,
3797                                 const llvm::fltSemantics &Src,
3798                                 const llvm::fltSemantics &Tgt) {
3799  llvm::APFloat truncated = value;
3800
3801  bool ignored;
3802  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3803  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3804
3805  return truncated.bitwiseIsEqual(value);
3806}
3807
3808/// Checks whether the given value, which currently has the given
3809/// source semantics, has the same value when coerced through the
3810/// target semantics.
3811///
3812/// The value might be a vector of floats (or a complex number).
3813static bool IsSameFloatAfterCast(const APValue &value,
3814                                 const llvm::fltSemantics &Src,
3815                                 const llvm::fltSemantics &Tgt) {
3816  if (value.isFloat())
3817    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3818
3819  if (value.isVector()) {
3820    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3821      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3822        return false;
3823    return true;
3824  }
3825
3826  assert(value.isComplexFloat());
3827  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3828          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3829}
3830
3831static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3832
3833static bool IsZero(Sema &S, Expr *E) {
3834  // Suppress cases where we are comparing against an enum constant.
3835  if (const DeclRefExpr *DR =
3836      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3837    if (isa<EnumConstantDecl>(DR->getDecl()))
3838      return false;
3839
3840  // Suppress cases where the '0' value is expanded from a macro.
3841  if (E->getLocStart().isMacroID())
3842    return false;
3843
3844  llvm::APSInt Value;
3845  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3846}
3847
3848static bool HasEnumType(Expr *E) {
3849  // Strip off implicit integral promotions.
3850  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3851    if (ICE->getCastKind() != CK_IntegralCast &&
3852        ICE->getCastKind() != CK_NoOp)
3853      break;
3854    E = ICE->getSubExpr();
3855  }
3856
3857  return E->getType()->isEnumeralType();
3858}
3859
3860static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3861  BinaryOperatorKind op = E->getOpcode();
3862  if (E->isValueDependent())
3863    return;
3864
3865  if (op == BO_LT && IsZero(S, E->getRHS())) {
3866    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3867      << "< 0" << "false" << HasEnumType(E->getLHS())
3868      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3869  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3870    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3871      << ">= 0" << "true" << HasEnumType(E->getLHS())
3872      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3873  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3874    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3875      << "0 >" << "false" << HasEnumType(E->getRHS())
3876      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3877  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3878    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3879      << "0 <=" << "true" << HasEnumType(E->getRHS())
3880      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3881  }
3882}
3883
3884/// Analyze the operands of the given comparison.  Implements the
3885/// fallback case from AnalyzeComparison.
3886static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3887  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3888  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3889}
3890
3891/// \brief Implements -Wsign-compare.
3892///
3893/// \param E the binary operator to check for warnings
3894static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3895  // The type the comparison is being performed in.
3896  QualType T = E->getLHS()->getType();
3897  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3898         && "comparison with mismatched types");
3899
3900  // We don't do anything special if this isn't an unsigned integral
3901  // comparison:  we're only interested in integral comparisons, and
3902  // signed comparisons only happen in cases we don't care to warn about.
3903  //
3904  // We also don't care about value-dependent expressions or expressions
3905  // whose result is a constant.
3906  if (!T->hasUnsignedIntegerRepresentation()
3907      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3908    return AnalyzeImpConvsInComparison(S, E);
3909
3910  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3911  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3912
3913  // Check to see if one of the (unmodified) operands is of different
3914  // signedness.
3915  Expr *signedOperand, *unsignedOperand;
3916  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3917    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3918           "unsigned comparison between two signed integer expressions?");
3919    signedOperand = LHS;
3920    unsignedOperand = RHS;
3921  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3922    signedOperand = RHS;
3923    unsignedOperand = LHS;
3924  } else {
3925    CheckTrivialUnsignedComparison(S, E);
3926    return AnalyzeImpConvsInComparison(S, E);
3927  }
3928
3929  // Otherwise, calculate the effective range of the signed operand.
3930  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3931
3932  // Go ahead and analyze implicit conversions in the operands.  Note
3933  // that we skip the implicit conversions on both sides.
3934  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3935  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3936
3937  // If the signed range is non-negative, -Wsign-compare won't fire,
3938  // but we should still check for comparisons which are always true
3939  // or false.
3940  if (signedRange.NonNegative)
3941    return CheckTrivialUnsignedComparison(S, E);
3942
3943  // For (in)equality comparisons, if the unsigned operand is a
3944  // constant which cannot collide with a overflowed signed operand,
3945  // then reinterpreting the signed operand as unsigned will not
3946  // change the result of the comparison.
3947  if (E->isEqualityOp()) {
3948    unsigned comparisonWidth = S.Context.getIntWidth(T);
3949    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3950
3951    // We should never be unable to prove that the unsigned operand is
3952    // non-negative.
3953    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3954
3955    if (unsignedRange.Width < comparisonWidth)
3956      return;
3957  }
3958
3959  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
3960    S.PDiag(diag::warn_mixed_sign_comparison)
3961      << LHS->getType() << RHS->getType()
3962      << LHS->getSourceRange() << RHS->getSourceRange());
3963}
3964
3965/// Analyzes an attempt to assign the given value to a bitfield.
3966///
3967/// Returns true if there was something fishy about the attempt.
3968static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3969                                      SourceLocation InitLoc) {
3970  assert(Bitfield->isBitField());
3971  if (Bitfield->isInvalidDecl())
3972    return false;
3973
3974  // White-list bool bitfields.
3975  if (Bitfield->getType()->isBooleanType())
3976    return false;
3977
3978  // Ignore value- or type-dependent expressions.
3979  if (Bitfield->getBitWidth()->isValueDependent() ||
3980      Bitfield->getBitWidth()->isTypeDependent() ||
3981      Init->isValueDependent() ||
3982      Init->isTypeDependent())
3983    return false;
3984
3985  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3986
3987  llvm::APSInt Value;
3988  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
3989    return false;
3990
3991  unsigned OriginalWidth = Value.getBitWidth();
3992  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
3993
3994  if (OriginalWidth <= FieldWidth)
3995    return false;
3996
3997  // Compute the value which the bitfield will contain.
3998  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3999  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4000
4001  // Check whether the stored value is equal to the original value.
4002  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4003  if (Value == TruncatedValue)
4004    return false;
4005
4006  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4007  // therefore don't strictly fit into a signed bitfield of width 1.
4008  if (FieldWidth == 1 && Value == 1)
4009    return false;
4010
4011  std::string PrettyValue = Value.toString(10);
4012  std::string PrettyTrunc = TruncatedValue.toString(10);
4013
4014  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4015    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4016    << Init->getSourceRange();
4017
4018  return true;
4019}
4020
4021/// Analyze the given simple or compound assignment for warning-worthy
4022/// operations.
4023static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4024  // Just recurse on the LHS.
4025  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4026
4027  // We want to recurse on the RHS as normal unless we're assigning to
4028  // a bitfield.
4029  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4030    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4031                                  E->getOperatorLoc())) {
4032      // Recurse, ignoring any implicit conversions on the RHS.
4033      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4034                                        E->getOperatorLoc());
4035    }
4036  }
4037
4038  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4039}
4040
4041/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4042static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4043                            SourceLocation CContext, unsigned diag,
4044                            bool pruneControlFlow = false) {
4045  if (pruneControlFlow) {
4046    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4047                          S.PDiag(diag)
4048                            << SourceType << T << E->getSourceRange()
4049                            << SourceRange(CContext));
4050    return;
4051  }
4052  S.Diag(E->getExprLoc(), diag)
4053    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4054}
4055
4056/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4057static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4058                            SourceLocation CContext, unsigned diag,
4059                            bool pruneControlFlow = false) {
4060  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4061}
4062
4063/// Diagnose an implicit cast from a literal expression. Does not warn when the
4064/// cast wouldn't lose information.
4065void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4066                                    SourceLocation CContext) {
4067  // Try to convert the literal exactly to an integer. If we can, don't warn.
4068  bool isExact = false;
4069  const llvm::APFloat &Value = FL->getValue();
4070  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4071                            T->hasUnsignedIntegerRepresentation());
4072  if (Value.convertToInteger(IntegerValue,
4073                             llvm::APFloat::rmTowardZero, &isExact)
4074      == llvm::APFloat::opOK && isExact)
4075    return;
4076
4077  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4078    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
4079}
4080
4081std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4082  if (!Range.Width) return "0";
4083
4084  llvm::APSInt ValueInRange = Value;
4085  ValueInRange.setIsSigned(!Range.NonNegative);
4086  ValueInRange = ValueInRange.trunc(Range.Width);
4087  return ValueInRange.toString(10);
4088}
4089
4090void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4091                             SourceLocation CC, bool *ICContext = 0) {
4092  if (E->isTypeDependent() || E->isValueDependent()) return;
4093
4094  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4095  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4096  if (Source == Target) return;
4097  if (Target->isDependentType()) return;
4098
4099  // If the conversion context location is invalid don't complain. We also
4100  // don't want to emit a warning if the issue occurs from the expansion of
4101  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4102  // delay this check as long as possible. Once we detect we are in that
4103  // scenario, we just return.
4104  if (CC.isInvalid())
4105    return;
4106
4107  // Diagnose implicit casts to bool.
4108  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4109    if (isa<StringLiteral>(E))
4110      // Warn on string literal to bool.  Checks for string literals in logical
4111      // expressions, for instances, assert(0 && "error here"), is prevented
4112      // by a check in AnalyzeImplicitConversions().
4113      return DiagnoseImpCast(S, E, T, CC,
4114                             diag::warn_impcast_string_literal_to_bool);
4115    if (Source->isFunctionType()) {
4116      // Warn on function to bool. Checks free functions and static member
4117      // functions. Weakly imported functions are excluded from the check,
4118      // since it's common to test their value to check whether the linker
4119      // found a definition for them.
4120      ValueDecl *D = 0;
4121      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4122        D = R->getDecl();
4123      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4124        D = M->getMemberDecl();
4125      }
4126
4127      if (D && !D->isWeak()) {
4128        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4129          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4130            << F << E->getSourceRange() << SourceRange(CC);
4131          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4132            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4133          QualType ReturnType;
4134          UnresolvedSet<4> NonTemplateOverloads;
4135          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4136          if (!ReturnType.isNull()
4137              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4138            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4139              << FixItHint::CreateInsertion(
4140                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4141          return;
4142        }
4143      }
4144    }
4145    return; // Other casts to bool are not checked.
4146  }
4147
4148  // Strip vector types.
4149  if (isa<VectorType>(Source)) {
4150    if (!isa<VectorType>(Target)) {
4151      if (S.SourceMgr.isInSystemMacro(CC))
4152        return;
4153      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4154    }
4155
4156    // If the vector cast is cast between two vectors of the same size, it is
4157    // a bitcast, not a conversion.
4158    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4159      return;
4160
4161    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4162    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4163  }
4164
4165  // Strip complex types.
4166  if (isa<ComplexType>(Source)) {
4167    if (!isa<ComplexType>(Target)) {
4168      if (S.SourceMgr.isInSystemMacro(CC))
4169        return;
4170
4171      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4172    }
4173
4174    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4175    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4176  }
4177
4178  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4179  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4180
4181  // If the source is floating point...
4182  if (SourceBT && SourceBT->isFloatingPoint()) {
4183    // ...and the target is floating point...
4184    if (TargetBT && TargetBT->isFloatingPoint()) {
4185      // ...then warn if we're dropping FP rank.
4186
4187      // Builtin FP kinds are ordered by increasing FP rank.
4188      if (SourceBT->getKind() > TargetBT->getKind()) {
4189        // Don't warn about float constants that are precisely
4190        // representable in the target type.
4191        Expr::EvalResult result;
4192        if (E->EvaluateAsRValue(result, S.Context)) {
4193          // Value might be a float, a float vector, or a float complex.
4194          if (IsSameFloatAfterCast(result.Val,
4195                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4196                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4197            return;
4198        }
4199
4200        if (S.SourceMgr.isInSystemMacro(CC))
4201          return;
4202
4203        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4204      }
4205      return;
4206    }
4207
4208    // If the target is integral, always warn.
4209    if ((TargetBT && TargetBT->isInteger())) {
4210      if (S.SourceMgr.isInSystemMacro(CC))
4211        return;
4212
4213      Expr *InnerE = E->IgnoreParenImpCasts();
4214      // We also want to warn on, e.g., "int i = -1.234"
4215      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4216        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4217          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4218
4219      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4220        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4221      } else {
4222        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4223      }
4224    }
4225
4226    return;
4227  }
4228
4229  if (!Source->isIntegerType() || !Target->isIntegerType())
4230    return;
4231
4232  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4233           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
4234    SourceLocation Loc = E->getSourceRange().getBegin();
4235    if (Loc.isMacroID())
4236      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4237    S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4238        << T << clang::SourceRange(CC)
4239        << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4240    return;
4241  }
4242
4243  IntRange SourceRange = GetExprRange(S.Context, E);
4244  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4245
4246  if (SourceRange.Width > TargetRange.Width) {
4247    // If the source is a constant, use a default-on diagnostic.
4248    // TODO: this should happen for bitfield stores, too.
4249    llvm::APSInt Value(32);
4250    if (E->isIntegerConstantExpr(Value, S.Context)) {
4251      if (S.SourceMgr.isInSystemMacro(CC))
4252        return;
4253
4254      std::string PrettySourceValue = Value.toString(10);
4255      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4256
4257      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4258        S.PDiag(diag::warn_impcast_integer_precision_constant)
4259            << PrettySourceValue << PrettyTargetValue
4260            << E->getType() << T << E->getSourceRange()
4261            << clang::SourceRange(CC));
4262      return;
4263    }
4264
4265    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4266    if (S.SourceMgr.isInSystemMacro(CC))
4267      return;
4268
4269    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
4270      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4271                             /* pruneControlFlow */ true);
4272    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4273  }
4274
4275  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4276      (!TargetRange.NonNegative && SourceRange.NonNegative &&
4277       SourceRange.Width == TargetRange.Width)) {
4278
4279    if (S.SourceMgr.isInSystemMacro(CC))
4280      return;
4281
4282    unsigned DiagID = diag::warn_impcast_integer_sign;
4283
4284    // Traditionally, gcc has warned about this under -Wsign-compare.
4285    // We also want to warn about it in -Wconversion.
4286    // So if -Wconversion is off, use a completely identical diagnostic
4287    // in the sign-compare group.
4288    // The conditional-checking code will
4289    if (ICContext) {
4290      DiagID = diag::warn_impcast_integer_sign_conditional;
4291      *ICContext = true;
4292    }
4293
4294    return DiagnoseImpCast(S, E, T, CC, DiagID);
4295  }
4296
4297  // Diagnose conversions between different enumeration types.
4298  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
4299  // type, to give us better diagnostics.
4300  QualType SourceType = E->getType();
4301  if (!S.getLangOpts().CPlusPlus) {
4302    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4303      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
4304        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
4305        SourceType = S.Context.getTypeDeclType(Enum);
4306        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
4307      }
4308  }
4309
4310  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
4311    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
4312      if ((SourceEnum->getDecl()->getIdentifier() ||
4313           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4314          (TargetEnum->getDecl()->getIdentifier() ||
4315           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4316          SourceEnum != TargetEnum) {
4317        if (S.SourceMgr.isInSystemMacro(CC))
4318          return;
4319
4320        return DiagnoseImpCast(S, E, SourceType, T, CC,
4321                               diag::warn_impcast_different_enum_types);
4322      }
4323
4324  return;
4325}
4326
4327void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
4328
4329void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
4330                             SourceLocation CC, bool &ICContext) {
4331  E = E->IgnoreParenImpCasts();
4332
4333  if (isa<ConditionalOperator>(E))
4334    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
4335
4336  AnalyzeImplicitConversions(S, E, CC);
4337  if (E->getType() != T)
4338    return CheckImplicitConversion(S, E, T, CC, &ICContext);
4339  return;
4340}
4341
4342void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
4343  SourceLocation CC = E->getQuestionLoc();
4344
4345  AnalyzeImplicitConversions(S, E->getCond(), CC);
4346
4347  bool Suspicious = false;
4348  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
4349  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
4350
4351  // If -Wconversion would have warned about either of the candidates
4352  // for a signedness conversion to the context type...
4353  if (!Suspicious) return;
4354
4355  // ...but it's currently ignored...
4356  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4357                                 CC))
4358    return;
4359
4360  // ...then check whether it would have warned about either of the
4361  // candidates for a signedness conversion to the condition type.
4362  if (E->getType() == T) return;
4363
4364  Suspicious = false;
4365  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4366                          E->getType(), CC, &Suspicious);
4367  if (!Suspicious)
4368    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4369                            E->getType(), CC, &Suspicious);
4370}
4371
4372/// AnalyzeImplicitConversions - Find and report any interesting
4373/// implicit conversions in the given expression.  There are a couple
4374/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4375void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4376  QualType T = OrigE->getType();
4377  Expr *E = OrigE->IgnoreParenImpCasts();
4378
4379  if (E->isTypeDependent() || E->isValueDependent())
4380    return;
4381
4382  // For conditional operators, we analyze the arguments as if they
4383  // were being fed directly into the output.
4384  if (isa<ConditionalOperator>(E)) {
4385    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4386    CheckConditionalOperator(S, CO, T);
4387    return;
4388  }
4389
4390  // Go ahead and check any implicit conversions we might have skipped.
4391  // The non-canonical typecheck is just an optimization;
4392  // CheckImplicitConversion will filter out dead implicit conversions.
4393  if (E->getType() != T)
4394    CheckImplicitConversion(S, E, T, CC);
4395
4396  // Now continue drilling into this expression.
4397
4398  // Skip past explicit casts.
4399  if (isa<ExplicitCastExpr>(E)) {
4400    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4401    return AnalyzeImplicitConversions(S, E, CC);
4402  }
4403
4404  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4405    // Do a somewhat different check with comparison operators.
4406    if (BO->isComparisonOp())
4407      return AnalyzeComparison(S, BO);
4408
4409    // And with simple assignments.
4410    if (BO->getOpcode() == BO_Assign)
4411      return AnalyzeAssignment(S, BO);
4412  }
4413
4414  // These break the otherwise-useful invariant below.  Fortunately,
4415  // we don't really need to recurse into them, because any internal
4416  // expressions should have been analyzed already when they were
4417  // built into statements.
4418  if (isa<StmtExpr>(E)) return;
4419
4420  // Don't descend into unevaluated contexts.
4421  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4422
4423  // Now just recurse over the expression's children.
4424  CC = E->getExprLoc();
4425  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4426  bool IsLogicalOperator = BO && BO->isLogicalOp();
4427  for (Stmt::child_range I = E->children(); I; ++I) {
4428    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
4429    if (!ChildExpr)
4430      continue;
4431
4432    if (IsLogicalOperator &&
4433        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4434      // Ignore checking string literals that are in logical operators.
4435      continue;
4436    AnalyzeImplicitConversions(S, ChildExpr, CC);
4437  }
4438}
4439
4440} // end anonymous namespace
4441
4442/// Diagnoses "dangerous" implicit conversions within the given
4443/// expression (which is a full expression).  Implements -Wconversion
4444/// and -Wsign-compare.
4445///
4446/// \param CC the "context" location of the implicit conversion, i.e.
4447///   the most location of the syntactic entity requiring the implicit
4448///   conversion
4449void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4450  // Don't diagnose in unevaluated contexts.
4451  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
4452    return;
4453
4454  // Don't diagnose for value- or type-dependent expressions.
4455  if (E->isTypeDependent() || E->isValueDependent())
4456    return;
4457
4458  // Check for array bounds violations in cases where the check isn't triggered
4459  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4460  // ArraySubscriptExpr is on the RHS of a variable initialization.
4461  CheckArrayAccess(E);
4462
4463  // This is not the right CC for (e.g.) a variable initialization.
4464  AnalyzeImplicitConversions(*this, E, CC);
4465}
4466
4467void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4468                                       FieldDecl *BitField,
4469                                       Expr *Init) {
4470  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4471}
4472
4473/// CheckParmsForFunctionDef - Check that the parameters of the given
4474/// function are appropriate for the definition of a function. This
4475/// takes care of any checks that cannot be performed on the
4476/// declaration itself, e.g., that the types of each of the function
4477/// parameters are complete.
4478bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4479                                    bool CheckParameterNames) {
4480  bool HasInvalidParm = false;
4481  for (; P != PEnd; ++P) {
4482    ParmVarDecl *Param = *P;
4483
4484    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4485    // function declarator that is part of a function definition of
4486    // that function shall not have incomplete type.
4487    //
4488    // This is also C++ [dcl.fct]p6.
4489    if (!Param->isInvalidDecl() &&
4490        RequireCompleteType(Param->getLocation(), Param->getType(),
4491                               diag::err_typecheck_decl_incomplete_type)) {
4492      Param->setInvalidDecl();
4493      HasInvalidParm = true;
4494    }
4495
4496    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4497    // declaration of each parameter shall include an identifier.
4498    if (CheckParameterNames &&
4499        Param->getIdentifier() == 0 &&
4500        !Param->isImplicit() &&
4501        !getLangOpts().CPlusPlus)
4502      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4503
4504    // C99 6.7.5.3p12:
4505    //   If the function declarator is not part of a definition of that
4506    //   function, parameters may have incomplete type and may use the [*]
4507    //   notation in their sequences of declarator specifiers to specify
4508    //   variable length array types.
4509    QualType PType = Param->getOriginalType();
4510    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4511      if (AT->getSizeModifier() == ArrayType::Star) {
4512        // FIXME: This diagnosic should point the the '[*]' if source-location
4513        // information is added for it.
4514        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4515      }
4516    }
4517  }
4518
4519  return HasInvalidParm;
4520}
4521
4522/// CheckCastAlign - Implements -Wcast-align, which warns when a
4523/// pointer cast increases the alignment requirements.
4524void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4525  // This is actually a lot of work to potentially be doing on every
4526  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4527  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4528                                          TRange.getBegin())
4529        == DiagnosticsEngine::Ignored)
4530    return;
4531
4532  // Ignore dependent types.
4533  if (T->isDependentType() || Op->getType()->isDependentType())
4534    return;
4535
4536  // Require that the destination be a pointer type.
4537  const PointerType *DestPtr = T->getAs<PointerType>();
4538  if (!DestPtr) return;
4539
4540  // If the destination has alignment 1, we're done.
4541  QualType DestPointee = DestPtr->getPointeeType();
4542  if (DestPointee->isIncompleteType()) return;
4543  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4544  if (DestAlign.isOne()) return;
4545
4546  // Require that the source be a pointer type.
4547  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4548  if (!SrcPtr) return;
4549  QualType SrcPointee = SrcPtr->getPointeeType();
4550
4551  // Whitelist casts from cv void*.  We already implicitly
4552  // whitelisted casts to cv void*, since they have alignment 1.
4553  // Also whitelist casts involving incomplete types, which implicitly
4554  // includes 'void'.
4555  if (SrcPointee->isIncompleteType()) return;
4556
4557  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4558  if (SrcAlign >= DestAlign) return;
4559
4560  Diag(TRange.getBegin(), diag::warn_cast_align)
4561    << Op->getType() << T
4562    << static_cast<unsigned>(SrcAlign.getQuantity())
4563    << static_cast<unsigned>(DestAlign.getQuantity())
4564    << TRange << Op->getSourceRange();
4565}
4566
4567static const Type* getElementType(const Expr *BaseExpr) {
4568  const Type* EltType = BaseExpr->getType().getTypePtr();
4569  if (EltType->isAnyPointerType())
4570    return EltType->getPointeeType().getTypePtr();
4571  else if (EltType->isArrayType())
4572    return EltType->getBaseElementTypeUnsafe();
4573  return EltType;
4574}
4575
4576/// \brief Check whether this array fits the idiom of a size-one tail padded
4577/// array member of a struct.
4578///
4579/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4580/// commonly used to emulate flexible arrays in C89 code.
4581static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4582                                    const NamedDecl *ND) {
4583  if (Size != 1 || !ND) return false;
4584
4585  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4586  if (!FD) return false;
4587
4588  // Don't consider sizes resulting from macro expansions or template argument
4589  // substitution to form C89 tail-padded arrays.
4590  ConstantArrayTypeLoc TL =
4591    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
4592  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
4593  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4594    return false;
4595
4596  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4597  if (!RD) return false;
4598  if (RD->isUnion()) return false;
4599  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4600    if (!CRD->isStandardLayout()) return false;
4601  }
4602
4603  // See if this is the last field decl in the record.
4604  const Decl *D = FD;
4605  while ((D = D->getNextDeclInContext()))
4606    if (isa<FieldDecl>(D))
4607      return false;
4608  return true;
4609}
4610
4611void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4612                            const ArraySubscriptExpr *ASE,
4613                            bool AllowOnePastEnd, bool IndexNegated) {
4614  IndexExpr = IndexExpr->IgnoreParenImpCasts();
4615  if (IndexExpr->isValueDependent())
4616    return;
4617
4618  const Type *EffectiveType = getElementType(BaseExpr);
4619  BaseExpr = BaseExpr->IgnoreParenCasts();
4620  const ConstantArrayType *ArrayTy =
4621    Context.getAsConstantArrayType(BaseExpr->getType());
4622  if (!ArrayTy)
4623    return;
4624
4625  llvm::APSInt index;
4626  if (!IndexExpr->EvaluateAsInt(index, Context))
4627    return;
4628  if (IndexNegated)
4629    index = -index;
4630
4631  const NamedDecl *ND = NULL;
4632  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4633    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4634  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4635    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4636
4637  if (index.isUnsigned() || !index.isNegative()) {
4638    llvm::APInt size = ArrayTy->getSize();
4639    if (!size.isStrictlyPositive())
4640      return;
4641
4642    const Type* BaseType = getElementType(BaseExpr);
4643    if (BaseType != EffectiveType) {
4644      // Make sure we're comparing apples to apples when comparing index to size
4645      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4646      uint64_t array_typesize = Context.getTypeSize(BaseType);
4647      // Handle ptrarith_typesize being zero, such as when casting to void*
4648      if (!ptrarith_typesize) ptrarith_typesize = 1;
4649      if (ptrarith_typesize != array_typesize) {
4650        // There's a cast to a different size type involved
4651        uint64_t ratio = array_typesize / ptrarith_typesize;
4652        // TODO: Be smarter about handling cases where array_typesize is not a
4653        // multiple of ptrarith_typesize
4654        if (ptrarith_typesize * ratio == array_typesize)
4655          size *= llvm::APInt(size.getBitWidth(), ratio);
4656      }
4657    }
4658
4659    if (size.getBitWidth() > index.getBitWidth())
4660      index = index.zext(size.getBitWidth());
4661    else if (size.getBitWidth() < index.getBitWidth())
4662      size = size.zext(index.getBitWidth());
4663
4664    // For array subscripting the index must be less than size, but for pointer
4665    // arithmetic also allow the index (offset) to be equal to size since
4666    // computing the next address after the end of the array is legal and
4667    // commonly done e.g. in C++ iterators and range-based for loops.
4668    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
4669      return;
4670
4671    // Also don't warn for arrays of size 1 which are members of some
4672    // structure. These are often used to approximate flexible arrays in C89
4673    // code.
4674    if (IsTailPaddedMemberArray(*this, size, ND))
4675      return;
4676
4677    // Suppress the warning if the subscript expression (as identified by the
4678    // ']' location) and the index expression are both from macro expansions
4679    // within a system header.
4680    if (ASE) {
4681      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4682          ASE->getRBracketLoc());
4683      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4684        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4685            IndexExpr->getLocStart());
4686        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4687          return;
4688      }
4689    }
4690
4691    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4692    if (ASE)
4693      DiagID = diag::warn_array_index_exceeds_bounds;
4694
4695    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4696                        PDiag(DiagID) << index.toString(10, true)
4697                          << size.toString(10, true)
4698                          << (unsigned)size.getLimitedValue(~0U)
4699                          << IndexExpr->getSourceRange());
4700  } else {
4701    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4702    if (!ASE) {
4703      DiagID = diag::warn_ptr_arith_precedes_bounds;
4704      if (index.isNegative()) index = -index;
4705    }
4706
4707    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4708                        PDiag(DiagID) << index.toString(10, true)
4709                          << IndexExpr->getSourceRange());
4710  }
4711
4712  if (!ND) {
4713    // Try harder to find a NamedDecl to point at in the note.
4714    while (const ArraySubscriptExpr *ASE =
4715           dyn_cast<ArraySubscriptExpr>(BaseExpr))
4716      BaseExpr = ASE->getBase()->IgnoreParenCasts();
4717    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4718      ND = dyn_cast<NamedDecl>(DRE->getDecl());
4719    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4720      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4721  }
4722
4723  if (ND)
4724    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4725                        PDiag(diag::note_array_index_out_of_bounds)
4726                          << ND->getDeclName());
4727}
4728
4729void Sema::CheckArrayAccess(const Expr *expr) {
4730  int AllowOnePastEnd = 0;
4731  while (expr) {
4732    expr = expr->IgnoreParenImpCasts();
4733    switch (expr->getStmtClass()) {
4734      case Stmt::ArraySubscriptExprClass: {
4735        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4736        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
4737                         AllowOnePastEnd > 0);
4738        return;
4739      }
4740      case Stmt::UnaryOperatorClass: {
4741        // Only unwrap the * and & unary operators
4742        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4743        expr = UO->getSubExpr();
4744        switch (UO->getOpcode()) {
4745          case UO_AddrOf:
4746            AllowOnePastEnd++;
4747            break;
4748          case UO_Deref:
4749            AllowOnePastEnd--;
4750            break;
4751          default:
4752            return;
4753        }
4754        break;
4755      }
4756      case Stmt::ConditionalOperatorClass: {
4757        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4758        if (const Expr *lhs = cond->getLHS())
4759          CheckArrayAccess(lhs);
4760        if (const Expr *rhs = cond->getRHS())
4761          CheckArrayAccess(rhs);
4762        return;
4763      }
4764      default:
4765        return;
4766    }
4767  }
4768}
4769
4770//===--- CHECK: Objective-C retain cycles ----------------------------------//
4771
4772namespace {
4773  struct RetainCycleOwner {
4774    RetainCycleOwner() : Variable(0), Indirect(false) {}
4775    VarDecl *Variable;
4776    SourceRange Range;
4777    SourceLocation Loc;
4778    bool Indirect;
4779
4780    void setLocsFrom(Expr *e) {
4781      Loc = e->getExprLoc();
4782      Range = e->getSourceRange();
4783    }
4784  };
4785}
4786
4787/// Consider whether capturing the given variable can possibly lead to
4788/// a retain cycle.
4789static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4790  // In ARC, it's captured strongly iff the variable has __strong
4791  // lifetime.  In MRR, it's captured strongly if the variable is
4792  // __block and has an appropriate type.
4793  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4794    return false;
4795
4796  owner.Variable = var;
4797  owner.setLocsFrom(ref);
4798  return true;
4799}
4800
4801static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
4802  while (true) {
4803    e = e->IgnoreParens();
4804    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4805      switch (cast->getCastKind()) {
4806      case CK_BitCast:
4807      case CK_LValueBitCast:
4808      case CK_LValueToRValue:
4809      case CK_ARCReclaimReturnedObject:
4810        e = cast->getSubExpr();
4811        continue;
4812
4813      default:
4814        return false;
4815      }
4816    }
4817
4818    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4819      ObjCIvarDecl *ivar = ref->getDecl();
4820      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4821        return false;
4822
4823      // Try to find a retain cycle in the base.
4824      if (!findRetainCycleOwner(S, ref->getBase(), owner))
4825        return false;
4826
4827      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4828      owner.Indirect = true;
4829      return true;
4830    }
4831
4832    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4833      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4834      if (!var) return false;
4835      return considerVariable(var, ref, owner);
4836    }
4837
4838    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4839      if (member->isArrow()) return false;
4840
4841      // Don't count this as an indirect ownership.
4842      e = member->getBase();
4843      continue;
4844    }
4845
4846    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4847      // Only pay attention to pseudo-objects on property references.
4848      ObjCPropertyRefExpr *pre
4849        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4850                                              ->IgnoreParens());
4851      if (!pre) return false;
4852      if (pre->isImplicitProperty()) return false;
4853      ObjCPropertyDecl *property = pre->getExplicitProperty();
4854      if (!property->isRetaining() &&
4855          !(property->getPropertyIvarDecl() &&
4856            property->getPropertyIvarDecl()->getType()
4857              .getObjCLifetime() == Qualifiers::OCL_Strong))
4858          return false;
4859
4860      owner.Indirect = true;
4861      if (pre->isSuperReceiver()) {
4862        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
4863        if (!owner.Variable)
4864          return false;
4865        owner.Loc = pre->getLocation();
4866        owner.Range = pre->getSourceRange();
4867        return true;
4868      }
4869      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4870                              ->getSourceExpr());
4871      continue;
4872    }
4873
4874    // Array ivars?
4875
4876    return false;
4877  }
4878}
4879
4880namespace {
4881  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4882    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4883      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4884        Variable(variable), Capturer(0) {}
4885
4886    VarDecl *Variable;
4887    Expr *Capturer;
4888
4889    void VisitDeclRefExpr(DeclRefExpr *ref) {
4890      if (ref->getDecl() == Variable && !Capturer)
4891        Capturer = ref;
4892    }
4893
4894    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4895      if (Capturer) return;
4896      Visit(ref->getBase());
4897      if (Capturer && ref->isFreeIvar())
4898        Capturer = ref;
4899    }
4900
4901    void VisitBlockExpr(BlockExpr *block) {
4902      // Look inside nested blocks
4903      if (block->getBlockDecl()->capturesVariable(Variable))
4904        Visit(block->getBlockDecl()->getBody());
4905    }
4906  };
4907}
4908
4909/// Check whether the given argument is a block which captures a
4910/// variable.
4911static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4912  assert(owner.Variable && owner.Loc.isValid());
4913
4914  e = e->IgnoreParenCasts();
4915  BlockExpr *block = dyn_cast<BlockExpr>(e);
4916  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4917    return 0;
4918
4919  FindCaptureVisitor visitor(S.Context, owner.Variable);
4920  visitor.Visit(block->getBlockDecl()->getBody());
4921  return visitor.Capturer;
4922}
4923
4924static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4925                                RetainCycleOwner &owner) {
4926  assert(capturer);
4927  assert(owner.Variable && owner.Loc.isValid());
4928
4929  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4930    << owner.Variable << capturer->getSourceRange();
4931  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4932    << owner.Indirect << owner.Range;
4933}
4934
4935/// Check for a keyword selector that starts with the word 'add' or
4936/// 'set'.
4937static bool isSetterLikeSelector(Selector sel) {
4938  if (sel.isUnarySelector()) return false;
4939
4940  StringRef str = sel.getNameForSlot(0);
4941  while (!str.empty() && str.front() == '_') str = str.substr(1);
4942  if (str.startswith("set"))
4943    str = str.substr(3);
4944  else if (str.startswith("add")) {
4945    // Specially whitelist 'addOperationWithBlock:'.
4946    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
4947      return false;
4948    str = str.substr(3);
4949  }
4950  else
4951    return false;
4952
4953  if (str.empty()) return true;
4954  return !islower(str.front());
4955}
4956
4957/// Check a message send to see if it's likely to cause a retain cycle.
4958void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4959  // Only check instance methods whose selector looks like a setter.
4960  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4961    return;
4962
4963  // Try to find a variable that the receiver is strongly owned by.
4964  RetainCycleOwner owner;
4965  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4966    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
4967      return;
4968  } else {
4969    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4970    owner.Variable = getCurMethodDecl()->getSelfDecl();
4971    owner.Loc = msg->getSuperLoc();
4972    owner.Range = msg->getSuperLoc();
4973  }
4974
4975  // Check whether the receiver is captured by any of the arguments.
4976  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4977    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4978      return diagnoseRetainCycle(*this, capturer, owner);
4979}
4980
4981/// Check a property assign to see if it's likely to cause a retain cycle.
4982void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4983  RetainCycleOwner owner;
4984  if (!findRetainCycleOwner(*this, receiver, owner))
4985    return;
4986
4987  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4988    diagnoseRetainCycle(*this, capturer, owner);
4989}
4990
4991bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4992                              QualType LHS, Expr *RHS) {
4993  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4994  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4995    return false;
4996  // strip off any implicit cast added to get to the one arc-specific
4997  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4998    if (cast->getCastKind() == CK_ARCConsumeObject) {
4999      Diag(Loc, diag::warn_arc_retained_assign)
5000        << (LT == Qualifiers::OCL_ExplicitNone)
5001        << RHS->getSourceRange();
5002      return true;
5003    }
5004    RHS = cast->getSubExpr();
5005  }
5006  return false;
5007}
5008
5009void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
5010                              Expr *LHS, Expr *RHS) {
5011  QualType LHSType;
5012  // PropertyRef on LHS type need be directly obtained from
5013  // its declaration as it has a PsuedoType.
5014  ObjCPropertyRefExpr *PRE
5015    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
5016  if (PRE && !PRE->isImplicitProperty()) {
5017    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5018    if (PD)
5019      LHSType = PD->getType();
5020  }
5021
5022  if (LHSType.isNull())
5023    LHSType = LHS->getType();
5024  if (checkUnsafeAssigns(Loc, LHSType, RHS))
5025    return;
5026  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
5027  // FIXME. Check for other life times.
5028  if (LT != Qualifiers::OCL_None)
5029    return;
5030
5031  if (PRE) {
5032    if (PRE->isImplicitProperty())
5033      return;
5034    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5035    if (!PD)
5036      return;
5037
5038    unsigned Attributes = PD->getPropertyAttributes();
5039    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
5040      // when 'assign' attribute was not explicitly specified
5041      // by user, ignore it and rely on property type itself
5042      // for lifetime info.
5043      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
5044      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
5045          LHSType->isObjCRetainableType())
5046        return;
5047
5048      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5049        if (cast->getCastKind() == CK_ARCConsumeObject) {
5050          Diag(Loc, diag::warn_arc_retained_property_assign)
5051          << RHS->getSourceRange();
5052          return;
5053        }
5054        RHS = cast->getSubExpr();
5055      }
5056    }
5057  }
5058}
5059
5060//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
5061
5062namespace {
5063bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
5064                                 SourceLocation StmtLoc,
5065                                 const NullStmt *Body) {
5066  // Do not warn if the body is a macro that expands to nothing, e.g:
5067  //
5068  // #define CALL(x)
5069  // if (condition)
5070  //   CALL(0);
5071  //
5072  if (Body->hasLeadingEmptyMacro())
5073    return false;
5074
5075  // Get line numbers of statement and body.
5076  bool StmtLineInvalid;
5077  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
5078                                                      &StmtLineInvalid);
5079  if (StmtLineInvalid)
5080    return false;
5081
5082  bool BodyLineInvalid;
5083  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
5084                                                      &BodyLineInvalid);
5085  if (BodyLineInvalid)
5086    return false;
5087
5088  // Warn if null statement and body are on the same line.
5089  if (StmtLine != BodyLine)
5090    return false;
5091
5092  return true;
5093}
5094} // Unnamed namespace
5095
5096void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
5097                                 const Stmt *Body,
5098                                 unsigned DiagID) {
5099  // Since this is a syntactic check, don't emit diagnostic for template
5100  // instantiations, this just adds noise.
5101  if (CurrentInstantiationScope)
5102    return;
5103
5104  // The body should be a null statement.
5105  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5106  if (!NBody)
5107    return;
5108
5109  // Do the usual checks.
5110  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5111    return;
5112
5113  Diag(NBody->getSemiLoc(), DiagID);
5114  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5115}
5116
5117void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
5118                                 const Stmt *PossibleBody) {
5119  assert(!CurrentInstantiationScope); // Ensured by caller
5120
5121  SourceLocation StmtLoc;
5122  const Stmt *Body;
5123  unsigned DiagID;
5124  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
5125    StmtLoc = FS->getRParenLoc();
5126    Body = FS->getBody();
5127    DiagID = diag::warn_empty_for_body;
5128  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
5129    StmtLoc = WS->getCond()->getSourceRange().getEnd();
5130    Body = WS->getBody();
5131    DiagID = diag::warn_empty_while_body;
5132  } else
5133    return; // Neither `for' nor `while'.
5134
5135  // The body should be a null statement.
5136  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5137  if (!NBody)
5138    return;
5139
5140  // Skip expensive checks if diagnostic is disabled.
5141  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
5142          DiagnosticsEngine::Ignored)
5143    return;
5144
5145  // Do the usual checks.
5146  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5147    return;
5148
5149  // `for(...);' and `while(...);' are popular idioms, so in order to keep
5150  // noise level low, emit diagnostics only if for/while is followed by a
5151  // CompoundStmt, e.g.:
5152  //    for (int i = 0; i < n; i++);
5153  //    {
5154  //      a(i);
5155  //    }
5156  // or if for/while is followed by a statement with more indentation
5157  // than for/while itself:
5158  //    for (int i = 0; i < n; i++);
5159  //      a(i);
5160  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
5161  if (!ProbableTypo) {
5162    bool BodyColInvalid;
5163    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
5164                             PossibleBody->getLocStart(),
5165                             &BodyColInvalid);
5166    if (BodyColInvalid)
5167      return;
5168
5169    bool StmtColInvalid;
5170    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
5171                             S->getLocStart(),
5172                             &StmtColInvalid);
5173    if (StmtColInvalid)
5174      return;
5175
5176    if (BodyCol > StmtCol)
5177      ProbableTypo = true;
5178  }
5179
5180  if (ProbableTypo) {
5181    Diag(NBody->getSemiLoc(), DiagID);
5182    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5183  }
5184}
5185