SemaChecking.cpp revision 3bfc5f49e0e37e235bb0d33bcbcb36af9d1f84ab
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/Analyses/PrintfFormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "clang/Basic/TargetBuiltins.h"
31#include "clang/Basic/TargetInfo.h"
32#include <limits>
33using namespace clang;
34
35/// getLocationOfStringLiteralByte - Return a source location that points to the
36/// specified byte of the specified string literal.
37///
38/// Strings are amazingly complex.  They can be formed from multiple tokens and
39/// can have escape sequences in them in addition to the usual trigraph and
40/// escaped newline business.  This routine handles this complexity.
41///
42SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43                                                    unsigned ByteNo) const {
44  assert(!SL->isWide() && "This doesn't work for wide strings yet");
45
46  // Loop over all of the tokens in this string until we find the one that
47  // contains the byte we're looking for.
48  unsigned TokNo = 0;
49  while (1) {
50    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
51    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
52
53    // Get the spelling of the string so that we can get the data that makes up
54    // the string literal, not the identifier for the macro it is potentially
55    // expanded through.
56    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
57
58    // Re-lex the token to get its length and original spelling.
59    std::pair<FileID, unsigned> LocInfo =
60      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
61    bool Invalid = false;
62    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
63    if (Invalid)
64      return StrTokSpellingLoc;
65
66    const char *StrData = Buffer.data()+LocInfo.second;
67
68    // Create a langops struct and enable trigraphs.  This is sufficient for
69    // relexing tokens.
70    LangOptions LangOpts;
71    LangOpts.Trigraphs = true;
72
73    // Create a lexer starting at the beginning of this token.
74    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
75                   Buffer.end());
76    Token TheTok;
77    TheLexer.LexFromRawLexer(TheTok);
78
79    // Use the StringLiteralParser to compute the length of the string in bytes.
80    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
81    unsigned TokNumBytes = SLP.GetStringLength();
82
83    // If the byte is in this token, return the location of the byte.
84    if (ByteNo < TokNumBytes ||
85        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
86      unsigned Offset =
87        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
88                                                   /*Complain=*/false);
89
90      // Now that we know the offset of the token in the spelling, use the
91      // preprocessor to get the offset in the original source.
92      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
93    }
94
95    // Move to the next string token.
96    ++TokNo;
97    ByteNo -= TokNumBytes;
98  }
99}
100
101/// CheckablePrintfAttr - does a function call have a "printf" attribute
102/// and arguments that merit checking?
103bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
104  if (Format->getType() == "printf") return true;
105  if (Format->getType() == "printf0") {
106    // printf0 allows null "format" string; if so don't check format/args
107    unsigned format_idx = Format->getFormatIdx() - 1;
108    // Does the index refer to the implicit object argument?
109    if (isa<CXXMemberCallExpr>(TheCall)) {
110      if (format_idx == 0)
111        return false;
112      --format_idx;
113    }
114    if (format_idx < TheCall->getNumArgs()) {
115      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
116      if (!Format->isNullPointerConstant(Context,
117                                         Expr::NPC_ValueDependentIsNull))
118        return true;
119    }
120  }
121  return false;
122}
123
124Action::OwningExprResult
125Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
126  OwningExprResult TheCallResult(Owned(TheCall));
127
128  switch (BuiltinID) {
129  case Builtin::BI__builtin___CFStringMakeConstantString:
130    assert(TheCall->getNumArgs() == 1 &&
131           "Wrong # arguments to builtin CFStringMakeConstantString");
132    if (CheckObjCString(TheCall->getArg(0)))
133      return ExprError();
134    break;
135  case Builtin::BI__builtin_stdarg_start:
136  case Builtin::BI__builtin_va_start:
137    if (SemaBuiltinVAStart(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_isgreater:
141  case Builtin::BI__builtin_isgreaterequal:
142  case Builtin::BI__builtin_isless:
143  case Builtin::BI__builtin_islessequal:
144  case Builtin::BI__builtin_islessgreater:
145  case Builtin::BI__builtin_isunordered:
146    if (SemaBuiltinUnorderedCompare(TheCall))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_fpclassify:
150    if (SemaBuiltinFPClassification(TheCall, 6))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_isfinite:
154  case Builtin::BI__builtin_isinf:
155  case Builtin::BI__builtin_isinf_sign:
156  case Builtin::BI__builtin_isnan:
157  case Builtin::BI__builtin_isnormal:
158    if (SemaBuiltinFPClassification(TheCall, 1))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_return_address:
162  case Builtin::BI__builtin_frame_address: {
163    llvm::APSInt Result;
164    if (SemaBuiltinConstantArg(TheCall, 0, Result))
165      return ExprError();
166    break;
167  }
168  case Builtin::BI__builtin_eh_return_data_regno: {
169    llvm::APSInt Result;
170    if (SemaBuiltinConstantArg(TheCall, 0, Result))
171      return ExprError();
172    break;
173  }
174  case Builtin::BI__builtin_shufflevector:
175    return SemaBuiltinShuffleVector(TheCall);
176    // TheCall will be freed by the smart pointer here, but that's fine, since
177    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
178  case Builtin::BI__builtin_prefetch:
179    if (SemaBuiltinPrefetch(TheCall))
180      return ExprError();
181    break;
182  case Builtin::BI__builtin_object_size:
183    if (SemaBuiltinObjectSize(TheCall))
184      return ExprError();
185    break;
186  case Builtin::BI__builtin_longjmp:
187    if (SemaBuiltinLongjmp(TheCall))
188      return ExprError();
189    break;
190  case Builtin::BI__sync_fetch_and_add:
191  case Builtin::BI__sync_fetch_and_sub:
192  case Builtin::BI__sync_fetch_and_or:
193  case Builtin::BI__sync_fetch_and_and:
194  case Builtin::BI__sync_fetch_and_xor:
195  case Builtin::BI__sync_add_and_fetch:
196  case Builtin::BI__sync_sub_and_fetch:
197  case Builtin::BI__sync_and_and_fetch:
198  case Builtin::BI__sync_or_and_fetch:
199  case Builtin::BI__sync_xor_and_fetch:
200  case Builtin::BI__sync_val_compare_and_swap:
201  case Builtin::BI__sync_bool_compare_and_swap:
202  case Builtin::BI__sync_lock_test_and_set:
203  case Builtin::BI__sync_lock_release:
204    if (SemaBuiltinAtomicOverloaded(TheCall))
205      return ExprError();
206    break;
207  }
208
209  // Since the target specific builtins for each arch overlap, only check those
210  // of the arch we are compiling for.
211  if (BuiltinID >= Builtin::FirstTSBuiltin) {
212    switch (Context.Target.getTriple().getArch()) {
213      case llvm::Triple::arm:
214      case llvm::Triple::thumb:
215        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
216          return ExprError();
217        break;
218      case llvm::Triple::x86:
219      case llvm::Triple::x86_64:
220        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
221          return ExprError();
222        break;
223      default:
224        break;
225    }
226  }
227
228  return move(TheCallResult);
229}
230
231bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
232  switch (BuiltinID) {
233  case X86::BI__builtin_ia32_palignr128:
234  case X86::BI__builtin_ia32_palignr: {
235    llvm::APSInt Result;
236    if (SemaBuiltinConstantArg(TheCall, 2, Result))
237      return true;
238    break;
239  }
240  }
241  return false;
242}
243
244bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
245  llvm::APSInt Result;
246
247  switch (BuiltinID) {
248    case ARM::BI__builtin_neon_vget_lane_i8:
249    case ARM::BI__builtin_neon_vget_lane_i16:
250    case ARM::BI__builtin_neon_vget_lane_i32:
251    case ARM::BI__builtin_neon_vget_lane_f32:
252    case ARM::BI__builtin_neon_vget_lane_i64:
253    case ARM::BI__builtin_neon_vgetq_lane_i8:
254    case ARM::BI__builtin_neon_vgetq_lane_i16:
255    case ARM::BI__builtin_neon_vgetq_lane_i32:
256    case ARM::BI__builtin_neon_vgetq_lane_f32:
257    case ARM::BI__builtin_neon_vgetq_lane_i64:
258      // Check constant-ness first.
259      if (SemaBuiltinConstantArg(TheCall, 1, Result))
260        return true;
261      break;
262  }
263
264  // Now, range check values.
265  //unsigned lower = 0, upper = 0;
266
267  return false;
268}
269
270/// CheckFunctionCall - Check a direct function call for various correctness
271/// and safety properties not strictly enforced by the C type system.
272bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
273  // Get the IdentifierInfo* for the called function.
274  IdentifierInfo *FnInfo = FDecl->getIdentifier();
275
276  // None of the checks below are needed for functions that don't have
277  // simple names (e.g., C++ conversion functions).
278  if (!FnInfo)
279    return false;
280
281  // FIXME: This mechanism should be abstracted to be less fragile and
282  // more efficient. For example, just map function ids to custom
283  // handlers.
284
285  // Printf checking.
286  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
287    if (CheckablePrintfAttr(Format, TheCall)) {
288      bool HasVAListArg = Format->getFirstArg() == 0;
289      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
290                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
291    }
292  }
293
294  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
295       NonNull = NonNull->getNext<NonNullAttr>())
296    CheckNonNullArguments(NonNull, TheCall);
297
298  return false;
299}
300
301bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
302  // Printf checking.
303  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
304  if (!Format)
305    return false;
306
307  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
308  if (!V)
309    return false;
310
311  QualType Ty = V->getType();
312  if (!Ty->isBlockPointerType())
313    return false;
314
315  if (!CheckablePrintfAttr(Format, TheCall))
316    return false;
317
318  bool HasVAListArg = Format->getFirstArg() == 0;
319  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
320                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
321
322  return false;
323}
324
325/// SemaBuiltinAtomicOverloaded - We have a call to a function like
326/// __sync_fetch_and_add, which is an overloaded function based on the pointer
327/// type of its first argument.  The main ActOnCallExpr routines have already
328/// promoted the types of arguments because all of these calls are prototyped as
329/// void(...).
330///
331/// This function goes through and does final semantic checking for these
332/// builtins,
333bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
334  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
335  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
336
337  // Ensure that we have at least one argument to do type inference from.
338  if (TheCall->getNumArgs() < 1)
339    return Diag(TheCall->getLocEnd(),
340              diag::err_typecheck_call_too_few_args_at_least)
341              << 0 << 1 << TheCall->getNumArgs()
342              << TheCall->getCallee()->getSourceRange();
343
344  // Inspect the first argument of the atomic builtin.  This should always be
345  // a pointer type, whose element is an integral scalar or pointer type.
346  // Because it is a pointer type, we don't have to worry about any implicit
347  // casts here.
348  Expr *FirstArg = TheCall->getArg(0);
349  if (!FirstArg->getType()->isPointerType())
350    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
351             << FirstArg->getType() << FirstArg->getSourceRange();
352
353  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
354  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
355      !ValType->isBlockPointerType())
356    return Diag(DRE->getLocStart(),
357                diag::err_atomic_builtin_must_be_pointer_intptr)
358             << FirstArg->getType() << FirstArg->getSourceRange();
359
360  // We need to figure out which concrete builtin this maps onto.  For example,
361  // __sync_fetch_and_add with a 2 byte object turns into
362  // __sync_fetch_and_add_2.
363#define BUILTIN_ROW(x) \
364  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
365    Builtin::BI##x##_8, Builtin::BI##x##_16 }
366
367  static const unsigned BuiltinIndices[][5] = {
368    BUILTIN_ROW(__sync_fetch_and_add),
369    BUILTIN_ROW(__sync_fetch_and_sub),
370    BUILTIN_ROW(__sync_fetch_and_or),
371    BUILTIN_ROW(__sync_fetch_and_and),
372    BUILTIN_ROW(__sync_fetch_and_xor),
373
374    BUILTIN_ROW(__sync_add_and_fetch),
375    BUILTIN_ROW(__sync_sub_and_fetch),
376    BUILTIN_ROW(__sync_and_and_fetch),
377    BUILTIN_ROW(__sync_or_and_fetch),
378    BUILTIN_ROW(__sync_xor_and_fetch),
379
380    BUILTIN_ROW(__sync_val_compare_and_swap),
381    BUILTIN_ROW(__sync_bool_compare_and_swap),
382    BUILTIN_ROW(__sync_lock_test_and_set),
383    BUILTIN_ROW(__sync_lock_release)
384  };
385#undef BUILTIN_ROW
386
387  // Determine the index of the size.
388  unsigned SizeIndex;
389  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
390  case 1: SizeIndex = 0; break;
391  case 2: SizeIndex = 1; break;
392  case 4: SizeIndex = 2; break;
393  case 8: SizeIndex = 3; break;
394  case 16: SizeIndex = 4; break;
395  default:
396    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
397             << FirstArg->getType() << FirstArg->getSourceRange();
398  }
399
400  // Each of these builtins has one pointer argument, followed by some number of
401  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
402  // that we ignore.  Find out which row of BuiltinIndices to read from as well
403  // as the number of fixed args.
404  unsigned BuiltinID = FDecl->getBuiltinID();
405  unsigned BuiltinIndex, NumFixed = 1;
406  switch (BuiltinID) {
407  default: assert(0 && "Unknown overloaded atomic builtin!");
408  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
409  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
410  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
411  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
412  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
413
414  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
415  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
416  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
417  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
418  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
419
420  case Builtin::BI__sync_val_compare_and_swap:
421    BuiltinIndex = 10;
422    NumFixed = 2;
423    break;
424  case Builtin::BI__sync_bool_compare_and_swap:
425    BuiltinIndex = 11;
426    NumFixed = 2;
427    break;
428  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
429  case Builtin::BI__sync_lock_release:
430    BuiltinIndex = 13;
431    NumFixed = 0;
432    break;
433  }
434
435  // Now that we know how many fixed arguments we expect, first check that we
436  // have at least that many.
437  if (TheCall->getNumArgs() < 1+NumFixed)
438    return Diag(TheCall->getLocEnd(),
439            diag::err_typecheck_call_too_few_args_at_least)
440            << 0 << 1+NumFixed << TheCall->getNumArgs()
441            << TheCall->getCallee()->getSourceRange();
442
443
444  // Get the decl for the concrete builtin from this, we can tell what the
445  // concrete integer type we should convert to is.
446  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
447  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
448  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
449  FunctionDecl *NewBuiltinDecl =
450    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
451                                           TUScope, false, DRE->getLocStart()));
452  const FunctionProtoType *BuiltinFT =
453    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
454  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
455
456  // If the first type needs to be converted (e.g. void** -> int*), do it now.
457  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
458    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
459    TheCall->setArg(0, FirstArg);
460  }
461
462  // Next, walk the valid ones promoting to the right type.
463  for (unsigned i = 0; i != NumFixed; ++i) {
464    Expr *Arg = TheCall->getArg(i+1);
465
466    // If the argument is an implicit cast, then there was a promotion due to
467    // "...", just remove it now.
468    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
469      Arg = ICE->getSubExpr();
470      ICE->setSubExpr(0);
471      ICE->Destroy(Context);
472      TheCall->setArg(i+1, Arg);
473    }
474
475    // GCC does an implicit conversion to the pointer or integer ValType.  This
476    // can fail in some cases (1i -> int**), check for this error case now.
477    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
478    CXXBaseSpecifierArray BasePath;
479    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
480      return true;
481
482    // Okay, we have something that *can* be converted to the right type.  Check
483    // to see if there is a potentially weird extension going on here.  This can
484    // happen when you do an atomic operation on something like an char* and
485    // pass in 42.  The 42 gets converted to char.  This is even more strange
486    // for things like 45.123 -> char, etc.
487    // FIXME: Do this check.
488    ImpCastExprToType(Arg, ValType, Kind);
489    TheCall->setArg(i+1, Arg);
490  }
491
492  // Switch the DeclRefExpr to refer to the new decl.
493  DRE->setDecl(NewBuiltinDecl);
494  DRE->setType(NewBuiltinDecl->getType());
495
496  // Set the callee in the CallExpr.
497  // FIXME: This leaks the original parens and implicit casts.
498  Expr *PromotedCall = DRE;
499  UsualUnaryConversions(PromotedCall);
500  TheCall->setCallee(PromotedCall);
501
502
503  // Change the result type of the call to match the result type of the decl.
504  TheCall->setType(NewBuiltinDecl->getResultType());
505  return false;
506}
507
508
509/// CheckObjCString - Checks that the argument to the builtin
510/// CFString constructor is correct
511/// FIXME: GCC currently emits the following warning:
512/// "warning: input conversion stopped due to an input byte that does not
513///           belong to the input codeset UTF-8"
514/// Note: It might also make sense to do the UTF-16 conversion here (would
515/// simplify the backend).
516bool Sema::CheckObjCString(Expr *Arg) {
517  Arg = Arg->IgnoreParenCasts();
518  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
519
520  if (!Literal || Literal->isWide()) {
521    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
522      << Arg->getSourceRange();
523    return true;
524  }
525
526  const char *Data = Literal->getStrData();
527  unsigned Length = Literal->getByteLength();
528
529  for (unsigned i = 0; i < Length; ++i) {
530    if (!Data[i]) {
531      Diag(getLocationOfStringLiteralByte(Literal, i),
532           diag::warn_cfstring_literal_contains_nul_character)
533        << Arg->getSourceRange();
534      break;
535    }
536  }
537
538  return false;
539}
540
541/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
542/// Emit an error and return true on failure, return false on success.
543bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
544  Expr *Fn = TheCall->getCallee();
545  if (TheCall->getNumArgs() > 2) {
546    Diag(TheCall->getArg(2)->getLocStart(),
547         diag::err_typecheck_call_too_many_args)
548      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
549      << Fn->getSourceRange()
550      << SourceRange(TheCall->getArg(2)->getLocStart(),
551                     (*(TheCall->arg_end()-1))->getLocEnd());
552    return true;
553  }
554
555  if (TheCall->getNumArgs() < 2) {
556    return Diag(TheCall->getLocEnd(),
557      diag::err_typecheck_call_too_few_args_at_least)
558      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
559  }
560
561  // Determine whether the current function is variadic or not.
562  BlockScopeInfo *CurBlock = getCurBlock();
563  bool isVariadic;
564  if (CurBlock)
565    isVariadic = CurBlock->TheDecl->isVariadic();
566  else if (FunctionDecl *FD = getCurFunctionDecl())
567    isVariadic = FD->isVariadic();
568  else
569    isVariadic = getCurMethodDecl()->isVariadic();
570
571  if (!isVariadic) {
572    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
573    return true;
574  }
575
576  // Verify that the second argument to the builtin is the last argument of the
577  // current function or method.
578  bool SecondArgIsLastNamedArgument = false;
579  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
580
581  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
582    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
583      // FIXME: This isn't correct for methods (results in bogus warning).
584      // Get the last formal in the current function.
585      const ParmVarDecl *LastArg;
586      if (CurBlock)
587        LastArg = *(CurBlock->TheDecl->param_end()-1);
588      else if (FunctionDecl *FD = getCurFunctionDecl())
589        LastArg = *(FD->param_end()-1);
590      else
591        LastArg = *(getCurMethodDecl()->param_end()-1);
592      SecondArgIsLastNamedArgument = PV == LastArg;
593    }
594  }
595
596  if (!SecondArgIsLastNamedArgument)
597    Diag(TheCall->getArg(1)->getLocStart(),
598         diag::warn_second_parameter_of_va_start_not_last_named_argument);
599  return false;
600}
601
602/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
603/// friends.  This is declared to take (...), so we have to check everything.
604bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
605  if (TheCall->getNumArgs() < 2)
606    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
607      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
608  if (TheCall->getNumArgs() > 2)
609    return Diag(TheCall->getArg(2)->getLocStart(),
610                diag::err_typecheck_call_too_many_args)
611      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
612      << SourceRange(TheCall->getArg(2)->getLocStart(),
613                     (*(TheCall->arg_end()-1))->getLocEnd());
614
615  Expr *OrigArg0 = TheCall->getArg(0);
616  Expr *OrigArg1 = TheCall->getArg(1);
617
618  // Do standard promotions between the two arguments, returning their common
619  // type.
620  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
621
622  // Make sure any conversions are pushed back into the call; this is
623  // type safe since unordered compare builtins are declared as "_Bool
624  // foo(...)".
625  TheCall->setArg(0, OrigArg0);
626  TheCall->setArg(1, OrigArg1);
627
628  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
629    return false;
630
631  // If the common type isn't a real floating type, then the arguments were
632  // invalid for this operation.
633  if (!Res->isRealFloatingType())
634    return Diag(OrigArg0->getLocStart(),
635                diag::err_typecheck_call_invalid_ordered_compare)
636      << OrigArg0->getType() << OrigArg1->getType()
637      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
638
639  return false;
640}
641
642/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
643/// __builtin_isnan and friends.  This is declared to take (...), so we have
644/// to check everything. We expect the last argument to be a floating point
645/// value.
646bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
647  if (TheCall->getNumArgs() < NumArgs)
648    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
649      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
650  if (TheCall->getNumArgs() > NumArgs)
651    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
652                diag::err_typecheck_call_too_many_args)
653      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
654      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
655                     (*(TheCall->arg_end()-1))->getLocEnd());
656
657  Expr *OrigArg = TheCall->getArg(NumArgs-1);
658
659  if (OrigArg->isTypeDependent())
660    return false;
661
662  // This operation requires a non-_Complex floating-point number.
663  if (!OrigArg->getType()->isRealFloatingType())
664    return Diag(OrigArg->getLocStart(),
665                diag::err_typecheck_call_invalid_unary_fp)
666      << OrigArg->getType() << OrigArg->getSourceRange();
667
668  // If this is an implicit conversion from float -> double, remove it.
669  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
670    Expr *CastArg = Cast->getSubExpr();
671    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
672      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
673             "promotion from float to double is the only expected cast here");
674      Cast->setSubExpr(0);
675      Cast->Destroy(Context);
676      TheCall->setArg(NumArgs-1, CastArg);
677      OrigArg = CastArg;
678    }
679  }
680
681  return false;
682}
683
684/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
685// This is declared to take (...), so we have to check everything.
686Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
687  if (TheCall->getNumArgs() < 2)
688    return ExprError(Diag(TheCall->getLocEnd(),
689                          diag::err_typecheck_call_too_few_args_at_least)
690      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
691      << TheCall->getSourceRange());
692
693  // Determine which of the following types of shufflevector we're checking:
694  // 1) unary, vector mask: (lhs, mask)
695  // 2) binary, vector mask: (lhs, rhs, mask)
696  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
697  QualType resType = TheCall->getArg(0)->getType();
698  unsigned numElements = 0;
699
700  if (!TheCall->getArg(0)->isTypeDependent() &&
701      !TheCall->getArg(1)->isTypeDependent()) {
702    QualType LHSType = TheCall->getArg(0)->getType();
703    QualType RHSType = TheCall->getArg(1)->getType();
704
705    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
706      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
707        << SourceRange(TheCall->getArg(0)->getLocStart(),
708                       TheCall->getArg(1)->getLocEnd());
709      return ExprError();
710    }
711
712    numElements = LHSType->getAs<VectorType>()->getNumElements();
713    unsigned numResElements = TheCall->getNumArgs() - 2;
714
715    // Check to see if we have a call with 2 vector arguments, the unary shuffle
716    // with mask.  If so, verify that RHS is an integer vector type with the
717    // same number of elts as lhs.
718    if (TheCall->getNumArgs() == 2) {
719      if (!RHSType->isIntegerType() ||
720          RHSType->getAs<VectorType>()->getNumElements() != numElements)
721        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
722          << SourceRange(TheCall->getArg(1)->getLocStart(),
723                         TheCall->getArg(1)->getLocEnd());
724      numResElements = numElements;
725    }
726    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
727      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
728        << SourceRange(TheCall->getArg(0)->getLocStart(),
729                       TheCall->getArg(1)->getLocEnd());
730      return ExprError();
731    } else if (numElements != numResElements) {
732      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
733      resType = Context.getVectorType(eltType, numResElements, false, false);
734    }
735  }
736
737  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
738    if (TheCall->getArg(i)->isTypeDependent() ||
739        TheCall->getArg(i)->isValueDependent())
740      continue;
741
742    llvm::APSInt Result(32);
743    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
744      return ExprError(Diag(TheCall->getLocStart(),
745                  diag::err_shufflevector_nonconstant_argument)
746                << TheCall->getArg(i)->getSourceRange());
747
748    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
749      return ExprError(Diag(TheCall->getLocStart(),
750                  diag::err_shufflevector_argument_too_large)
751               << TheCall->getArg(i)->getSourceRange());
752  }
753
754  llvm::SmallVector<Expr*, 32> exprs;
755
756  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
757    exprs.push_back(TheCall->getArg(i));
758    TheCall->setArg(i, 0);
759  }
760
761  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
762                                            exprs.size(), resType,
763                                            TheCall->getCallee()->getLocStart(),
764                                            TheCall->getRParenLoc()));
765}
766
767/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
768// This is declared to take (const void*, ...) and can take two
769// optional constant int args.
770bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
771  unsigned NumArgs = TheCall->getNumArgs();
772
773  if (NumArgs > 3)
774    return Diag(TheCall->getLocEnd(),
775             diag::err_typecheck_call_too_many_args_at_most)
776             << 0 /*function call*/ << 3 << NumArgs
777             << TheCall->getSourceRange();
778
779  // Argument 0 is checked for us and the remaining arguments must be
780  // constant integers.
781  for (unsigned i = 1; i != NumArgs; ++i) {
782    Expr *Arg = TheCall->getArg(i);
783
784    llvm::APSInt Result;
785    if (SemaBuiltinConstantArg(TheCall, i, Result))
786      return true;
787
788    // FIXME: gcc issues a warning and rewrites these to 0. These
789    // seems especially odd for the third argument since the default
790    // is 3.
791    if (i == 1) {
792      if (Result.getLimitedValue() > 1)
793        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
794             << "0" << "1" << Arg->getSourceRange();
795    } else {
796      if (Result.getLimitedValue() > 3)
797        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
798            << "0" << "3" << Arg->getSourceRange();
799    }
800  }
801
802  return false;
803}
804
805/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
806/// TheCall is a constant expression.
807bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
808                                  llvm::APSInt &Result) {
809  Expr *Arg = TheCall->getArg(ArgNum);
810  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
811  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
812
813  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
814
815  if (!Arg->isIntegerConstantExpr(Result, Context))
816    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
817                << FDecl->getDeclName() <<  Arg->getSourceRange();
818
819  return false;
820}
821
822/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
823/// int type). This simply type checks that type is one of the defined
824/// constants (0-3).
825// For compatability check 0-3, llvm only handles 0 and 2.
826bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
827  llvm::APSInt Result;
828
829  // Check constant-ness first.
830  if (SemaBuiltinConstantArg(TheCall, 1, Result))
831    return true;
832
833  Expr *Arg = TheCall->getArg(1);
834  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
835    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
836             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
837  }
838
839  return false;
840}
841
842/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
843/// This checks that val is a constant 1.
844bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
845  Expr *Arg = TheCall->getArg(1);
846  llvm::APSInt Result;
847
848  // TODO: This is less than ideal. Overload this to take a value.
849  if (SemaBuiltinConstantArg(TheCall, 1, Result))
850    return true;
851
852  if (Result != 1)
853    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
854             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
855
856  return false;
857}
858
859// Handle i > 1 ? "x" : "y", recursivelly
860bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
861                                  bool HasVAListArg,
862                                  unsigned format_idx, unsigned firstDataArg) {
863  if (E->isTypeDependent() || E->isValueDependent())
864    return false;
865
866  switch (E->getStmtClass()) {
867  case Stmt::ConditionalOperatorClass: {
868    const ConditionalOperator *C = cast<ConditionalOperator>(E);
869    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
870                                  HasVAListArg, format_idx, firstDataArg)
871        && SemaCheckStringLiteral(C->getRHS(), TheCall,
872                                  HasVAListArg, format_idx, firstDataArg);
873  }
874
875  case Stmt::ImplicitCastExprClass: {
876    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
877    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
878                                  format_idx, firstDataArg);
879  }
880
881  case Stmt::ParenExprClass: {
882    const ParenExpr *Expr = cast<ParenExpr>(E);
883    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
884                                  format_idx, firstDataArg);
885  }
886
887  case Stmt::DeclRefExprClass: {
888    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
889
890    // As an exception, do not flag errors for variables binding to
891    // const string literals.
892    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
893      bool isConstant = false;
894      QualType T = DR->getType();
895
896      if (const ArrayType *AT = Context.getAsArrayType(T)) {
897        isConstant = AT->getElementType().isConstant(Context);
898      } else if (const PointerType *PT = T->getAs<PointerType>()) {
899        isConstant = T.isConstant(Context) &&
900                     PT->getPointeeType().isConstant(Context);
901      }
902
903      if (isConstant) {
904        if (const Expr *Init = VD->getAnyInitializer())
905          return SemaCheckStringLiteral(Init, TheCall,
906                                        HasVAListArg, format_idx, firstDataArg);
907      }
908
909      // For vprintf* functions (i.e., HasVAListArg==true), we add a
910      // special check to see if the format string is a function parameter
911      // of the function calling the printf function.  If the function
912      // has an attribute indicating it is a printf-like function, then we
913      // should suppress warnings concerning non-literals being used in a call
914      // to a vprintf function.  For example:
915      //
916      // void
917      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
918      //      va_list ap;
919      //      va_start(ap, fmt);
920      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
921      //      ...
922      //
923      //
924      //  FIXME: We don't have full attribute support yet, so just check to see
925      //    if the argument is a DeclRefExpr that references a parameter.  We'll
926      //    add proper support for checking the attribute later.
927      if (HasVAListArg)
928        if (isa<ParmVarDecl>(VD))
929          return true;
930    }
931
932    return false;
933  }
934
935  case Stmt::CallExprClass: {
936    const CallExpr *CE = cast<CallExpr>(E);
937    if (const ImplicitCastExpr *ICE
938          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
939      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
940        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
941          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
942            unsigned ArgIndex = FA->getFormatIdx();
943            const Expr *Arg = CE->getArg(ArgIndex - 1);
944
945            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
946                                          format_idx, firstDataArg);
947          }
948        }
949      }
950    }
951
952    return false;
953  }
954  case Stmt::ObjCStringLiteralClass:
955  case Stmt::StringLiteralClass: {
956    const StringLiteral *StrE = NULL;
957
958    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
959      StrE = ObjCFExpr->getString();
960    else
961      StrE = cast<StringLiteral>(E);
962
963    if (StrE) {
964      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
965                        firstDataArg);
966      return true;
967    }
968
969    return false;
970  }
971
972  default:
973    return false;
974  }
975}
976
977void
978Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
979                            const CallExpr *TheCall) {
980  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
981       i != e; ++i) {
982    const Expr *ArgExpr = TheCall->getArg(*i);
983    if (ArgExpr->isNullPointerConstant(Context,
984                                       Expr::NPC_ValueDependentIsNotNull))
985      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
986        << ArgExpr->getSourceRange();
987  }
988}
989
990/// CheckPrintfArguments - Check calls to printf (and similar functions) for
991/// correct use of format strings.
992///
993///  HasVAListArg - A predicate indicating whether the printf-like
994///    function is passed an explicit va_arg argument (e.g., vprintf)
995///
996///  format_idx - The index into Args for the format string.
997///
998/// Improper format strings to functions in the printf family can be
999/// the source of bizarre bugs and very serious security holes.  A
1000/// good source of information is available in the following paper
1001/// (which includes additional references):
1002///
1003///  FormatGuard: Automatic Protection From printf Format String
1004///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
1005///
1006/// TODO:
1007/// Functionality implemented:
1008///
1009///  We can statically check the following properties for string
1010///  literal format strings for non v.*printf functions (where the
1011///  arguments are passed directly):
1012//
1013///  (1) Are the number of format conversions equal to the number of
1014///      data arguments?
1015///
1016///  (2) Does each format conversion correctly match the type of the
1017///      corresponding data argument?
1018///
1019/// Moreover, for all printf functions we can:
1020///
1021///  (3) Check for a missing format string (when not caught by type checking).
1022///
1023///  (4) Check for no-operation flags; e.g. using "#" with format
1024///      conversion 'c'  (TODO)
1025///
1026///  (5) Check the use of '%n', a major source of security holes.
1027///
1028///  (6) Check for malformed format conversions that don't specify anything.
1029///
1030///  (7) Check for empty format strings.  e.g: printf("");
1031///
1032///  (8) Check that the format string is a wide literal.
1033///
1034/// All of these checks can be done by parsing the format string.
1035///
1036void
1037Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
1038                           unsigned format_idx, unsigned firstDataArg) {
1039  const Expr *Fn = TheCall->getCallee();
1040
1041  // The way the format attribute works in GCC, the implicit this argument
1042  // of member functions is counted. However, it doesn't appear in our own
1043  // lists, so decrement format_idx in that case.
1044  if (isa<CXXMemberCallExpr>(TheCall)) {
1045    // Catch a format attribute mistakenly referring to the object argument.
1046    if (format_idx == 0)
1047      return;
1048    --format_idx;
1049    if(firstDataArg != 0)
1050      --firstDataArg;
1051  }
1052
1053  // CHECK: printf-like function is called with no format string.
1054  if (format_idx >= TheCall->getNumArgs()) {
1055    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
1056      << Fn->getSourceRange();
1057    return;
1058  }
1059
1060  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1061
1062  // CHECK: format string is not a string literal.
1063  //
1064  // Dynamically generated format strings are difficult to
1065  // automatically vet at compile time.  Requiring that format strings
1066  // are string literals: (1) permits the checking of format strings by
1067  // the compiler and thereby (2) can practically remove the source of
1068  // many format string exploits.
1069
1070  // Format string can be either ObjC string (e.g. @"%d") or
1071  // C string (e.g. "%d")
1072  // ObjC string uses the same format specifiers as C string, so we can use
1073  // the same format string checking logic for both ObjC and C strings.
1074  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1075                             firstDataArg))
1076    return;  // Literal format string found, check done!
1077
1078  // If there are no arguments specified, warn with -Wformat-security, otherwise
1079  // warn only with -Wformat-nonliteral.
1080  if (TheCall->getNumArgs() == format_idx+1)
1081    Diag(TheCall->getArg(format_idx)->getLocStart(),
1082         diag::warn_printf_nonliteral_noargs)
1083      << OrigFormatExpr->getSourceRange();
1084  else
1085    Diag(TheCall->getArg(format_idx)->getLocStart(),
1086         diag::warn_printf_nonliteral)
1087           << OrigFormatExpr->getSourceRange();
1088}
1089
1090namespace {
1091class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
1092  Sema &S;
1093  const StringLiteral *FExpr;
1094  const Expr *OrigFormatExpr;
1095  const unsigned FirstDataArg;
1096  const unsigned NumDataArgs;
1097  const bool IsObjCLiteral;
1098  const char *Beg; // Start of format string.
1099  const bool HasVAListArg;
1100  const CallExpr *TheCall;
1101  unsigned FormatIdx;
1102  llvm::BitVector CoveredArgs;
1103  bool usesPositionalArgs;
1104  bool atFirstArg;
1105public:
1106  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1107                     const Expr *origFormatExpr, unsigned firstDataArg,
1108                     unsigned numDataArgs, bool isObjCLiteral,
1109                     const char *beg, bool hasVAListArg,
1110                     const CallExpr *theCall, unsigned formatIdx)
1111    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1112      FirstDataArg(firstDataArg),
1113      NumDataArgs(numDataArgs),
1114      IsObjCLiteral(isObjCLiteral), Beg(beg),
1115      HasVAListArg(hasVAListArg),
1116      TheCall(theCall), FormatIdx(formatIdx),
1117      usesPositionalArgs(false), atFirstArg(true) {
1118        CoveredArgs.resize(numDataArgs);
1119        CoveredArgs.reset();
1120      }
1121
1122  void DoneProcessing();
1123
1124  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1125                                       unsigned specifierLen);
1126
1127  bool
1128  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1129                                   const char *startSpecifier,
1130                                   unsigned specifierLen);
1131
1132  virtual void HandleInvalidPosition(const char *startSpecifier,
1133                                     unsigned specifierLen,
1134                                     analyze_printf::PositionContext p);
1135
1136  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1137
1138  void HandleNullChar(const char *nullCharacter);
1139
1140  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1141                             const char *startSpecifier,
1142                             unsigned specifierLen);
1143private:
1144  SourceRange getFormatStringRange();
1145  SourceRange getFormatSpecifierRange(const char *startSpecifier,
1146                                      unsigned specifierLen);
1147  SourceLocation getLocationOfByte(const char *x);
1148
1149  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
1150                    const char *startSpecifier, unsigned specifierLen);
1151  void HandleFlags(const analyze_printf::FormatSpecifier &FS,
1152                   llvm::StringRef flag, llvm::StringRef cspec,
1153                   const char *startSpecifier, unsigned specifierLen);
1154
1155  const Expr *getDataArg(unsigned i) const;
1156};
1157}
1158
1159SourceRange CheckPrintfHandler::getFormatStringRange() {
1160  return OrigFormatExpr->getSourceRange();
1161}
1162
1163SourceRange CheckPrintfHandler::
1164getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1165  return SourceRange(getLocationOfByte(startSpecifier),
1166                     getLocationOfByte(startSpecifier+specifierLen-1));
1167}
1168
1169SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1170  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1171}
1172
1173void CheckPrintfHandler::
1174HandleIncompleteFormatSpecifier(const char *startSpecifier,
1175                                unsigned specifierLen) {
1176  SourceLocation Loc = getLocationOfByte(startSpecifier);
1177  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1178    << getFormatSpecifierRange(startSpecifier, specifierLen);
1179}
1180
1181void
1182CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1183                                          analyze_printf::PositionContext p) {
1184  SourceLocation Loc = getLocationOfByte(startPos);
1185  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
1186    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
1187}
1188
1189void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
1190                                            unsigned posLen) {
1191  SourceLocation Loc = getLocationOfByte(startPos);
1192  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
1193    << getFormatSpecifierRange(startPos, posLen);
1194}
1195
1196bool CheckPrintfHandler::
1197HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1198                                 const char *startSpecifier,
1199                                 unsigned specifierLen) {
1200
1201  unsigned argIndex = FS.getArgIndex();
1202  bool keepGoing = true;
1203  if (argIndex < NumDataArgs) {
1204    // Consider the argument coverered, even though the specifier doesn't
1205    // make sense.
1206    CoveredArgs.set(argIndex);
1207  }
1208  else {
1209    // If argIndex exceeds the number of data arguments we
1210    // don't issue a warning because that is just a cascade of warnings (and
1211    // they may have intended '%%' anyway). We don't want to continue processing
1212    // the format string after this point, however, as we will like just get
1213    // gibberish when trying to match arguments.
1214    keepGoing = false;
1215  }
1216
1217  const analyze_printf::ConversionSpecifier &CS =
1218    FS.getConversionSpecifier();
1219  SourceLocation Loc = getLocationOfByte(CS.getStart());
1220  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1221      << llvm::StringRef(CS.getStart(), CS.getLength())
1222      << getFormatSpecifierRange(startSpecifier, specifierLen);
1223
1224  return keepGoing;
1225}
1226
1227void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1228  // The presence of a null character is likely an error.
1229  S.Diag(getLocationOfByte(nullCharacter),
1230         diag::warn_printf_format_string_contains_null_char)
1231    << getFormatStringRange();
1232}
1233
1234const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1235  return TheCall->getArg(FirstDataArg + i);
1236}
1237
1238void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
1239                                     llvm::StringRef flag,
1240                                     llvm::StringRef cspec,
1241                                     const char *startSpecifier,
1242                                     unsigned specifierLen) {
1243  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1244  S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
1245    << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
1246}
1247
1248bool
1249CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1250                                 unsigned k, const char *startSpecifier,
1251                                 unsigned specifierLen) {
1252
1253  if (Amt.hasDataArgument()) {
1254    if (!HasVAListArg) {
1255      unsigned argIndex = Amt.getArgIndex();
1256      if (argIndex >= NumDataArgs) {
1257        S.Diag(getLocationOfByte(Amt.getStart()),
1258               diag::warn_printf_asterisk_missing_arg)
1259          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
1260        // Don't do any more checking.  We will just emit
1261        // spurious errors.
1262        return false;
1263      }
1264
1265      // Type check the data argument.  It should be an 'int'.
1266      // Although not in conformance with C99, we also allow the argument to be
1267      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1268      // doesn't emit a warning for that case.
1269      CoveredArgs.set(argIndex);
1270      const Expr *Arg = getDataArg(argIndex);
1271      QualType T = Arg->getType();
1272
1273      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1274      assert(ATR.isValid());
1275
1276      if (!ATR.matchesType(S.Context, T)) {
1277        S.Diag(getLocationOfByte(Amt.getStart()),
1278               diag::warn_printf_asterisk_wrong_type)
1279          << k
1280          << ATR.getRepresentativeType(S.Context) << T
1281          << getFormatSpecifierRange(startSpecifier, specifierLen)
1282          << Arg->getSourceRange();
1283        // Don't do any more checking.  We will just emit
1284        // spurious errors.
1285        return false;
1286      }
1287    }
1288  }
1289  return true;
1290}
1291
1292bool
1293CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
1294                                            &FS,
1295                                          const char *startSpecifier,
1296                                          unsigned specifierLen) {
1297
1298  using namespace analyze_printf;
1299  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1300
1301  if (atFirstArg) {
1302    atFirstArg = false;
1303    usesPositionalArgs = FS.usesPositionalArg();
1304  }
1305  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1306    // Cannot mix-and-match positional and non-positional arguments.
1307    S.Diag(getLocationOfByte(CS.getStart()),
1308           diag::warn_printf_mix_positional_nonpositional_args)
1309      << getFormatSpecifierRange(startSpecifier, specifierLen);
1310    return false;
1311  }
1312
1313  // First check if the field width, precision, and conversion specifier
1314  // have matching data arguments.
1315  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1316                    startSpecifier, specifierLen)) {
1317    return false;
1318  }
1319
1320  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1321                    startSpecifier, specifierLen)) {
1322    return false;
1323  }
1324
1325  if (!CS.consumesDataArgument()) {
1326    // FIXME: Technically specifying a precision or field width here
1327    // makes no sense.  Worth issuing a warning at some point.
1328    return true;
1329  }
1330
1331  // Consume the argument.
1332  unsigned argIndex = FS.getArgIndex();
1333  if (argIndex < NumDataArgs) {
1334    // The check to see if the argIndex is valid will come later.
1335    // We set the bit here because we may exit early from this
1336    // function if we encounter some other error.
1337    CoveredArgs.set(argIndex);
1338  }
1339
1340  // Check for using an Objective-C specific conversion specifier
1341  // in a non-ObjC literal.
1342  if (!IsObjCLiteral && CS.isObjCArg()) {
1343    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1344  }
1345
1346  // Are we using '%n'?  Issue a warning about this being
1347  // a possible security issue.
1348  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1349    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1350      << getFormatSpecifierRange(startSpecifier, specifierLen);
1351    // Continue checking the other format specifiers.
1352    return true;
1353  }
1354
1355  if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
1356    if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
1357      S.Diag(getLocationOfByte(CS.getStart()),
1358             diag::warn_printf_nonsensical_precision)
1359        << CS.getCharacters()
1360        << getFormatSpecifierRange(startSpecifier, specifierLen);
1361  }
1362  if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
1363      CS.getKind() == ConversionSpecifier::CStrArg) {
1364    // FIXME: Instead of using "0", "+", etc., eventually get them from
1365    // the FormatSpecifier.
1366    if (FS.hasLeadingZeros())
1367      HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
1368    if (FS.hasPlusPrefix())
1369      HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
1370    if (FS.hasSpacePrefix())
1371      HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
1372  }
1373
1374  // The remaining checks depend on the data arguments.
1375  if (HasVAListArg)
1376    return true;
1377
1378  if (argIndex >= NumDataArgs) {
1379    if (FS.usesPositionalArg())  {
1380      S.Diag(getLocationOfByte(CS.getStart()),
1381             diag::warn_printf_positional_arg_exceeds_data_args)
1382        << (argIndex+1) << NumDataArgs
1383        << getFormatSpecifierRange(startSpecifier, specifierLen);
1384    }
1385    else {
1386      S.Diag(getLocationOfByte(CS.getStart()),
1387             diag::warn_printf_insufficient_data_args)
1388        << getFormatSpecifierRange(startSpecifier, specifierLen);
1389    }
1390
1391    // Don't do any more checking.
1392    return false;
1393  }
1394
1395  // Now type check the data expression that matches the
1396  // format specifier.
1397  const Expr *Ex = getDataArg(argIndex);
1398  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1399  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1400    // Check if we didn't match because of an implicit cast from a 'char'
1401    // or 'short' to an 'int'.  This is done because printf is a varargs
1402    // function.
1403    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1404      if (ICE->getType() == S.Context.IntTy)
1405        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1406          return true;
1407
1408    // We may be able to offer a FixItHint if it is a supported type.
1409    FormatSpecifier fixedFS = FS;
1410    bool success = fixedFS.fixType(Ex->getType());
1411
1412    if (success) {
1413      // Get the fix string from the fixed format specifier
1414      llvm::SmallString<128> buf;
1415      llvm::raw_svector_ostream os(buf);
1416      fixedFS.toString(os);
1417
1418      S.Diag(getLocationOfByte(CS.getStart()),
1419          diag::warn_printf_conversion_argument_type_mismatch)
1420        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1421        << getFormatSpecifierRange(startSpecifier, specifierLen)
1422        << Ex->getSourceRange()
1423        << FixItHint::CreateReplacement(
1424            getFormatSpecifierRange(startSpecifier, specifierLen),
1425            os.str());
1426    }
1427    else {
1428      S.Diag(getLocationOfByte(CS.getStart()),
1429             diag::warn_printf_conversion_argument_type_mismatch)
1430        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1431        << getFormatSpecifierRange(startSpecifier, specifierLen)
1432        << Ex->getSourceRange();
1433    }
1434  }
1435
1436  return true;
1437}
1438
1439void CheckPrintfHandler::DoneProcessing() {
1440  // Does the number of data arguments exceed the number of
1441  // format conversions in the format string?
1442  if (!HasVAListArg) {
1443    // Find any arguments that weren't covered.
1444    CoveredArgs.flip();
1445    signed notCoveredArg = CoveredArgs.find_first();
1446    if (notCoveredArg >= 0) {
1447      assert((unsigned)notCoveredArg < NumDataArgs);
1448      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1449             diag::warn_printf_data_arg_not_used)
1450        << getFormatStringRange();
1451    }
1452  }
1453}
1454
1455void Sema::CheckPrintfString(const StringLiteral *FExpr,
1456                             const Expr *OrigFormatExpr,
1457                             const CallExpr *TheCall, bool HasVAListArg,
1458                             unsigned format_idx, unsigned firstDataArg) {
1459
1460  // CHECK: is the format string a wide literal?
1461  if (FExpr->isWide()) {
1462    Diag(FExpr->getLocStart(),
1463         diag::warn_printf_format_string_is_wide_literal)
1464    << OrigFormatExpr->getSourceRange();
1465    return;
1466  }
1467
1468  // Str - The format string.  NOTE: this is NOT null-terminated!
1469  const char *Str = FExpr->getStrData();
1470
1471  // CHECK: empty format string?
1472  unsigned StrLen = FExpr->getByteLength();
1473
1474  if (StrLen == 0) {
1475    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1476    << OrigFormatExpr->getSourceRange();
1477    return;
1478  }
1479
1480  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1481                       TheCall->getNumArgs() - firstDataArg,
1482                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1483                       HasVAListArg, TheCall, format_idx);
1484
1485  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
1486    H.DoneProcessing();
1487}
1488
1489//===--- CHECK: Return Address of Stack Variable --------------------------===//
1490
1491static DeclRefExpr* EvalVal(Expr *E);
1492static DeclRefExpr* EvalAddr(Expr* E);
1493
1494/// CheckReturnStackAddr - Check if a return statement returns the address
1495///   of a stack variable.
1496void
1497Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1498                           SourceLocation ReturnLoc) {
1499
1500  // Perform checking for returned stack addresses.
1501  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1502    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1503      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1504       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1505
1506    // Skip over implicit cast expressions when checking for block expressions.
1507    RetValExp = RetValExp->IgnoreParenCasts();
1508
1509    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1510      if (C->hasBlockDeclRefExprs())
1511        Diag(C->getLocStart(), diag::err_ret_local_block)
1512          << C->getSourceRange();
1513
1514    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1515      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1516        << ALE->getSourceRange();
1517
1518  } else if (lhsType->isReferenceType()) {
1519    // Perform checking for stack values returned by reference.
1520    // Check for a reference to the stack
1521    if (DeclRefExpr *DR = EvalVal(RetValExp))
1522      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1523        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1524  }
1525}
1526
1527/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1528///  check if the expression in a return statement evaluates to an address
1529///  to a location on the stack.  The recursion is used to traverse the
1530///  AST of the return expression, with recursion backtracking when we
1531///  encounter a subexpression that (1) clearly does not lead to the address
1532///  of a stack variable or (2) is something we cannot determine leads to
1533///  the address of a stack variable based on such local checking.
1534///
1535///  EvalAddr processes expressions that are pointers that are used as
1536///  references (and not L-values).  EvalVal handles all other values.
1537///  At the base case of the recursion is a check for a DeclRefExpr* in
1538///  the refers to a stack variable.
1539///
1540///  This implementation handles:
1541///
1542///   * pointer-to-pointer casts
1543///   * implicit conversions from array references to pointers
1544///   * taking the address of fields
1545///   * arbitrary interplay between "&" and "*" operators
1546///   * pointer arithmetic from an address of a stack variable
1547///   * taking the address of an array element where the array is on the stack
1548static DeclRefExpr* EvalAddr(Expr *E) {
1549  // We should only be called for evaluating pointer expressions.
1550  assert((E->getType()->isAnyPointerType() ||
1551          E->getType()->isBlockPointerType() ||
1552          E->getType()->isObjCQualifiedIdType()) &&
1553         "EvalAddr only works on pointers");
1554
1555  // Our "symbolic interpreter" is just a dispatch off the currently
1556  // viewed AST node.  We then recursively traverse the AST by calling
1557  // EvalAddr and EvalVal appropriately.
1558  switch (E->getStmtClass()) {
1559  case Stmt::ParenExprClass:
1560    // Ignore parentheses.
1561    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1562
1563  case Stmt::UnaryOperatorClass: {
1564    // The only unary operator that make sense to handle here
1565    // is AddrOf.  All others don't make sense as pointers.
1566    UnaryOperator *U = cast<UnaryOperator>(E);
1567
1568    if (U->getOpcode() == UnaryOperator::AddrOf)
1569      return EvalVal(U->getSubExpr());
1570    else
1571      return NULL;
1572  }
1573
1574  case Stmt::BinaryOperatorClass: {
1575    // Handle pointer arithmetic.  All other binary operators are not valid
1576    // in this context.
1577    BinaryOperator *B = cast<BinaryOperator>(E);
1578    BinaryOperator::Opcode op = B->getOpcode();
1579
1580    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1581      return NULL;
1582
1583    Expr *Base = B->getLHS();
1584
1585    // Determine which argument is the real pointer base.  It could be
1586    // the RHS argument instead of the LHS.
1587    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1588
1589    assert (Base->getType()->isPointerType());
1590    return EvalAddr(Base);
1591  }
1592
1593  // For conditional operators we need to see if either the LHS or RHS are
1594  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1595  case Stmt::ConditionalOperatorClass: {
1596    ConditionalOperator *C = cast<ConditionalOperator>(E);
1597
1598    // Handle the GNU extension for missing LHS.
1599    if (Expr *lhsExpr = C->getLHS())
1600      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1601        return LHS;
1602
1603     return EvalAddr(C->getRHS());
1604  }
1605
1606  // For casts, we need to handle conversions from arrays to
1607  // pointer values, and pointer-to-pointer conversions.
1608  case Stmt::ImplicitCastExprClass:
1609  case Stmt::CStyleCastExprClass:
1610  case Stmt::CXXFunctionalCastExprClass: {
1611    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1612    QualType T = SubExpr->getType();
1613
1614    if (SubExpr->getType()->isPointerType() ||
1615        SubExpr->getType()->isBlockPointerType() ||
1616        SubExpr->getType()->isObjCQualifiedIdType())
1617      return EvalAddr(SubExpr);
1618    else if (T->isArrayType())
1619      return EvalVal(SubExpr);
1620    else
1621      return 0;
1622  }
1623
1624  // C++ casts.  For dynamic casts, static casts, and const casts, we
1625  // are always converting from a pointer-to-pointer, so we just blow
1626  // through the cast.  In the case the dynamic cast doesn't fail (and
1627  // return NULL), we take the conservative route and report cases
1628  // where we return the address of a stack variable.  For Reinterpre
1629  // FIXME: The comment about is wrong; we're not always converting
1630  // from pointer to pointer. I'm guessing that this code should also
1631  // handle references to objects.
1632  case Stmt::CXXStaticCastExprClass:
1633  case Stmt::CXXDynamicCastExprClass:
1634  case Stmt::CXXConstCastExprClass:
1635  case Stmt::CXXReinterpretCastExprClass: {
1636      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1637      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1638        return EvalAddr(S);
1639      else
1640        return NULL;
1641  }
1642
1643  // Everything else: we simply don't reason about them.
1644  default:
1645    return NULL;
1646  }
1647}
1648
1649
1650///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1651///   See the comments for EvalAddr for more details.
1652static DeclRefExpr* EvalVal(Expr *E) {
1653
1654  // We should only be called for evaluating non-pointer expressions, or
1655  // expressions with a pointer type that are not used as references but instead
1656  // are l-values (e.g., DeclRefExpr with a pointer type).
1657
1658  // Our "symbolic interpreter" is just a dispatch off the currently
1659  // viewed AST node.  We then recursively traverse the AST by calling
1660  // EvalAddr and EvalVal appropriately.
1661  switch (E->getStmtClass()) {
1662  case Stmt::DeclRefExprClass: {
1663    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1664    //  at code that refers to a variable's name.  We check if it has local
1665    //  storage within the function, and if so, return the expression.
1666    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1667
1668    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1669      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1670
1671    return NULL;
1672  }
1673
1674  case Stmt::ParenExprClass:
1675    // Ignore parentheses.
1676    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1677
1678  case Stmt::UnaryOperatorClass: {
1679    // The only unary operator that make sense to handle here
1680    // is Deref.  All others don't resolve to a "name."  This includes
1681    // handling all sorts of rvalues passed to a unary operator.
1682    UnaryOperator *U = cast<UnaryOperator>(E);
1683
1684    if (U->getOpcode() == UnaryOperator::Deref)
1685      return EvalAddr(U->getSubExpr());
1686
1687    return NULL;
1688  }
1689
1690  case Stmt::ArraySubscriptExprClass: {
1691    // Array subscripts are potential references to data on the stack.  We
1692    // retrieve the DeclRefExpr* for the array variable if it indeed
1693    // has local storage.
1694    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1695  }
1696
1697  case Stmt::ConditionalOperatorClass: {
1698    // For conditional operators we need to see if either the LHS or RHS are
1699    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1700    ConditionalOperator *C = cast<ConditionalOperator>(E);
1701
1702    // Handle the GNU extension for missing LHS.
1703    if (Expr *lhsExpr = C->getLHS())
1704      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1705        return LHS;
1706
1707    return EvalVal(C->getRHS());
1708  }
1709
1710  // Accesses to members are potential references to data on the stack.
1711  case Stmt::MemberExprClass: {
1712    MemberExpr *M = cast<MemberExpr>(E);
1713
1714    // Check for indirect access.  We only want direct field accesses.
1715    if (!M->isArrow())
1716      return EvalVal(M->getBase());
1717    else
1718      return NULL;
1719  }
1720
1721  // Everything else: we simply don't reason about them.
1722  default:
1723    return NULL;
1724  }
1725}
1726
1727//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1728
1729/// Check for comparisons of floating point operands using != and ==.
1730/// Issue a warning if these are no self-comparisons, as they are not likely
1731/// to do what the programmer intended.
1732void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1733  bool EmitWarning = true;
1734
1735  Expr* LeftExprSansParen = lex->IgnoreParens();
1736  Expr* RightExprSansParen = rex->IgnoreParens();
1737
1738  // Special case: check for x == x (which is OK).
1739  // Do not emit warnings for such cases.
1740  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1741    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1742      if (DRL->getDecl() == DRR->getDecl())
1743        EmitWarning = false;
1744
1745
1746  // Special case: check for comparisons against literals that can be exactly
1747  //  represented by APFloat.  In such cases, do not emit a warning.  This
1748  //  is a heuristic: often comparison against such literals are used to
1749  //  detect if a value in a variable has not changed.  This clearly can
1750  //  lead to false negatives.
1751  if (EmitWarning) {
1752    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1753      if (FLL->isExact())
1754        EmitWarning = false;
1755    } else
1756      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1757        if (FLR->isExact())
1758          EmitWarning = false;
1759    }
1760  }
1761
1762  // Check for comparisons with builtin types.
1763  if (EmitWarning)
1764    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1765      if (CL->isBuiltinCall(Context))
1766        EmitWarning = false;
1767
1768  if (EmitWarning)
1769    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1770      if (CR->isBuiltinCall(Context))
1771        EmitWarning = false;
1772
1773  // Emit the diagnostic.
1774  if (EmitWarning)
1775    Diag(loc, diag::warn_floatingpoint_eq)
1776      << lex->getSourceRange() << rex->getSourceRange();
1777}
1778
1779//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1780//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1781
1782namespace {
1783
1784/// Structure recording the 'active' range of an integer-valued
1785/// expression.
1786struct IntRange {
1787  /// The number of bits active in the int.
1788  unsigned Width;
1789
1790  /// True if the int is known not to have negative values.
1791  bool NonNegative;
1792
1793  IntRange() {}
1794  IntRange(unsigned Width, bool NonNegative)
1795    : Width(Width), NonNegative(NonNegative)
1796  {}
1797
1798  // Returns the range of the bool type.
1799  static IntRange forBoolType() {
1800    return IntRange(1, true);
1801  }
1802
1803  // Returns the range of an integral type.
1804  static IntRange forType(ASTContext &C, QualType T) {
1805    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1806  }
1807
1808  // Returns the range of an integeral type based on its canonical
1809  // representation.
1810  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1811    assert(T->isCanonicalUnqualified());
1812
1813    if (const VectorType *VT = dyn_cast<VectorType>(T))
1814      T = VT->getElementType().getTypePtr();
1815    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1816      T = CT->getElementType().getTypePtr();
1817
1818    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
1819      EnumDecl *Enum = ET->getDecl();
1820      unsigned NumPositive = Enum->getNumPositiveBits();
1821      unsigned NumNegative = Enum->getNumNegativeBits();
1822
1823      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
1824    }
1825
1826    const BuiltinType *BT = cast<BuiltinType>(T);
1827    assert(BT->isInteger());
1828
1829    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1830  }
1831
1832  // Returns the supremum of two ranges: i.e. their conservative merge.
1833  static IntRange join(IntRange L, IntRange R) {
1834    return IntRange(std::max(L.Width, R.Width),
1835                    L.NonNegative && R.NonNegative);
1836  }
1837
1838  // Returns the infinum of two ranges: i.e. their aggressive merge.
1839  static IntRange meet(IntRange L, IntRange R) {
1840    return IntRange(std::min(L.Width, R.Width),
1841                    L.NonNegative || R.NonNegative);
1842  }
1843};
1844
1845IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1846  if (value.isSigned() && value.isNegative())
1847    return IntRange(value.getMinSignedBits(), false);
1848
1849  if (value.getBitWidth() > MaxWidth)
1850    value.trunc(MaxWidth);
1851
1852  // isNonNegative() just checks the sign bit without considering
1853  // signedness.
1854  return IntRange(value.getActiveBits(), true);
1855}
1856
1857IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1858                       unsigned MaxWidth) {
1859  if (result.isInt())
1860    return GetValueRange(C, result.getInt(), MaxWidth);
1861
1862  if (result.isVector()) {
1863    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1864    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
1865      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
1866      R = IntRange::join(R, El);
1867    }
1868    return R;
1869  }
1870
1871  if (result.isComplexInt()) {
1872    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1873    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1874    return IntRange::join(R, I);
1875  }
1876
1877  // This can happen with lossless casts to intptr_t of "based" lvalues.
1878  // Assume it might use arbitrary bits.
1879  // FIXME: The only reason we need to pass the type in here is to get
1880  // the sign right on this one case.  It would be nice if APValue
1881  // preserved this.
1882  assert(result.isLValue());
1883  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
1884}
1885
1886/// Pseudo-evaluate the given integer expression, estimating the
1887/// range of values it might take.
1888///
1889/// \param MaxWidth - the width to which the value will be truncated
1890IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1891  E = E->IgnoreParens();
1892
1893  // Try a full evaluation first.
1894  Expr::EvalResult result;
1895  if (E->Evaluate(result, C))
1896    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
1897
1898  // I think we only want to look through implicit casts here; if the
1899  // user has an explicit widening cast, we should treat the value as
1900  // being of the new, wider type.
1901  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1902    if (CE->getCastKind() == CastExpr::CK_NoOp)
1903      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1904
1905    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1906
1907    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
1908    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
1909      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
1910
1911    // Assume that non-integer casts can span the full range of the type.
1912    if (!isIntegerCast)
1913      return OutputTypeRange;
1914
1915    IntRange SubRange
1916      = GetExprRange(C, CE->getSubExpr(),
1917                     std::min(MaxWidth, OutputTypeRange.Width));
1918
1919    // Bail out if the subexpr's range is as wide as the cast type.
1920    if (SubRange.Width >= OutputTypeRange.Width)
1921      return OutputTypeRange;
1922
1923    // Otherwise, we take the smaller width, and we're non-negative if
1924    // either the output type or the subexpr is.
1925    return IntRange(SubRange.Width,
1926                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1927  }
1928
1929  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1930    // If we can fold the condition, just take that operand.
1931    bool CondResult;
1932    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1933      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1934                                        : CO->getFalseExpr(),
1935                          MaxWidth);
1936
1937    // Otherwise, conservatively merge.
1938    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1939    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1940    return IntRange::join(L, R);
1941  }
1942
1943  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1944    switch (BO->getOpcode()) {
1945
1946    // Boolean-valued operations are single-bit and positive.
1947    case BinaryOperator::LAnd:
1948    case BinaryOperator::LOr:
1949    case BinaryOperator::LT:
1950    case BinaryOperator::GT:
1951    case BinaryOperator::LE:
1952    case BinaryOperator::GE:
1953    case BinaryOperator::EQ:
1954    case BinaryOperator::NE:
1955      return IntRange::forBoolType();
1956
1957    // The type of these compound assignments is the type of the LHS,
1958    // so the RHS is not necessarily an integer.
1959    case BinaryOperator::MulAssign:
1960    case BinaryOperator::DivAssign:
1961    case BinaryOperator::RemAssign:
1962    case BinaryOperator::AddAssign:
1963    case BinaryOperator::SubAssign:
1964      return IntRange::forType(C, E->getType());
1965
1966    // Operations with opaque sources are black-listed.
1967    case BinaryOperator::PtrMemD:
1968    case BinaryOperator::PtrMemI:
1969      return IntRange::forType(C, E->getType());
1970
1971    // Bitwise-and uses the *infinum* of the two source ranges.
1972    case BinaryOperator::And:
1973    case BinaryOperator::AndAssign:
1974      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
1975                            GetExprRange(C, BO->getRHS(), MaxWidth));
1976
1977    // Left shift gets black-listed based on a judgement call.
1978    case BinaryOperator::Shl:
1979      // ...except that we want to treat '1 << (blah)' as logically
1980      // positive.  It's an important idiom.
1981      if (IntegerLiteral *I
1982            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
1983        if (I->getValue() == 1) {
1984          IntRange R = IntRange::forType(C, E->getType());
1985          return IntRange(R.Width, /*NonNegative*/ true);
1986        }
1987      }
1988      // fallthrough
1989
1990    case BinaryOperator::ShlAssign:
1991      return IntRange::forType(C, E->getType());
1992
1993    // Right shift by a constant can narrow its left argument.
1994    case BinaryOperator::Shr:
1995    case BinaryOperator::ShrAssign: {
1996      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1997
1998      // If the shift amount is a positive constant, drop the width by
1999      // that much.
2000      llvm::APSInt shift;
2001      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2002          shift.isNonNegative()) {
2003        unsigned zext = shift.getZExtValue();
2004        if (zext >= L.Width)
2005          L.Width = (L.NonNegative ? 0 : 1);
2006        else
2007          L.Width -= zext;
2008      }
2009
2010      return L;
2011    }
2012
2013    // Comma acts as its right operand.
2014    case BinaryOperator::Comma:
2015      return GetExprRange(C, BO->getRHS(), MaxWidth);
2016
2017    // Black-list pointer subtractions.
2018    case BinaryOperator::Sub:
2019      if (BO->getLHS()->getType()->isPointerType())
2020        return IntRange::forType(C, E->getType());
2021      // fallthrough
2022
2023    default:
2024      break;
2025    }
2026
2027    // Treat every other operator as if it were closed on the
2028    // narrowest type that encompasses both operands.
2029    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2030    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2031    return IntRange::join(L, R);
2032  }
2033
2034  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2035    switch (UO->getOpcode()) {
2036    // Boolean-valued operations are white-listed.
2037    case UnaryOperator::LNot:
2038      return IntRange::forBoolType();
2039
2040    // Operations with opaque sources are black-listed.
2041    case UnaryOperator::Deref:
2042    case UnaryOperator::AddrOf: // should be impossible
2043    case UnaryOperator::OffsetOf:
2044      return IntRange::forType(C, E->getType());
2045
2046    default:
2047      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2048    }
2049  }
2050
2051  if (dyn_cast<OffsetOfExpr>(E)) {
2052    IntRange::forType(C, E->getType());
2053  }
2054
2055  FieldDecl *BitField = E->getBitField();
2056  if (BitField) {
2057    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2058    unsigned BitWidth = BitWidthAP.getZExtValue();
2059
2060    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2061  }
2062
2063  return IntRange::forType(C, E->getType());
2064}
2065
2066IntRange GetExprRange(ASTContext &C, Expr *E) {
2067  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2068}
2069
2070/// Checks whether the given value, which currently has the given
2071/// source semantics, has the same value when coerced through the
2072/// target semantics.
2073bool IsSameFloatAfterCast(const llvm::APFloat &value,
2074                          const llvm::fltSemantics &Src,
2075                          const llvm::fltSemantics &Tgt) {
2076  llvm::APFloat truncated = value;
2077
2078  bool ignored;
2079  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2080  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2081
2082  return truncated.bitwiseIsEqual(value);
2083}
2084
2085/// Checks whether the given value, which currently has the given
2086/// source semantics, has the same value when coerced through the
2087/// target semantics.
2088///
2089/// The value might be a vector of floats (or a complex number).
2090bool IsSameFloatAfterCast(const APValue &value,
2091                          const llvm::fltSemantics &Src,
2092                          const llvm::fltSemantics &Tgt) {
2093  if (value.isFloat())
2094    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2095
2096  if (value.isVector()) {
2097    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2098      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2099        return false;
2100    return true;
2101  }
2102
2103  assert(value.isComplexFloat());
2104  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2105          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2106}
2107
2108void AnalyzeImplicitConversions(Sema &S, Expr *E);
2109
2110bool IsZero(Sema &S, Expr *E) {
2111  llvm::APSInt Value;
2112  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2113}
2114
2115void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2116  BinaryOperator::Opcode op = E->getOpcode();
2117  if (op == BinaryOperator::LT && IsZero(S, E->getRHS())) {
2118    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2119      << "< 0" << "false"
2120      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2121  } else if (op == BinaryOperator::GE && IsZero(S, E->getRHS())) {
2122    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2123      << ">= 0" << "true"
2124      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2125  } else if (op == BinaryOperator::GT && IsZero(S, E->getLHS())) {
2126    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2127      << "0 >" << "false"
2128      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2129  } else if (op == BinaryOperator::LE && IsZero(S, E->getLHS())) {
2130    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2131      << "0 <=" << "true"
2132      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2133  }
2134}
2135
2136/// Analyze the operands of the given comparison.  Implements the
2137/// fallback case from AnalyzeComparison.
2138void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2139  AnalyzeImplicitConversions(S, E->getLHS());
2140  AnalyzeImplicitConversions(S, E->getRHS());
2141}
2142
2143/// \brief Implements -Wsign-compare.
2144///
2145/// \param lex the left-hand expression
2146/// \param rex the right-hand expression
2147/// \param OpLoc the location of the joining operator
2148/// \param BinOpc binary opcode or 0
2149void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2150  // The type the comparison is being performed in.
2151  QualType T = E->getLHS()->getType();
2152  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2153         && "comparison with mismatched types");
2154
2155  // We don't do anything special if this isn't an unsigned integral
2156  // comparison:  we're only interested in integral comparisons, and
2157  // signed comparisons only happen in cases we don't care to warn about.
2158  if (!T->isUnsignedIntegerType())
2159    return AnalyzeImpConvsInComparison(S, E);
2160
2161  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2162  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2163
2164  // Check to see if one of the (unmodified) operands is of different
2165  // signedness.
2166  Expr *signedOperand, *unsignedOperand;
2167  if (lex->getType()->isSignedIntegerType()) {
2168    assert(!rex->getType()->isSignedIntegerType() &&
2169           "unsigned comparison between two signed integer expressions?");
2170    signedOperand = lex;
2171    unsignedOperand = rex;
2172  } else if (rex->getType()->isSignedIntegerType()) {
2173    signedOperand = rex;
2174    unsignedOperand = lex;
2175  } else {
2176    CheckTrivialUnsignedComparison(S, E);
2177    return AnalyzeImpConvsInComparison(S, E);
2178  }
2179
2180  // Otherwise, calculate the effective range of the signed operand.
2181  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2182
2183  // Go ahead and analyze implicit conversions in the operands.  Note
2184  // that we skip the implicit conversions on both sides.
2185  AnalyzeImplicitConversions(S, lex);
2186  AnalyzeImplicitConversions(S, rex);
2187
2188  // If the signed range is non-negative, -Wsign-compare won't fire,
2189  // but we should still check for comparisons which are always true
2190  // or false.
2191  if (signedRange.NonNegative)
2192    return CheckTrivialUnsignedComparison(S, E);
2193
2194  // For (in)equality comparisons, if the unsigned operand is a
2195  // constant which cannot collide with a overflowed signed operand,
2196  // then reinterpreting the signed operand as unsigned will not
2197  // change the result of the comparison.
2198  if (E->isEqualityOp()) {
2199    unsigned comparisonWidth = S.Context.getIntWidth(T);
2200    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2201
2202    // We should never be unable to prove that the unsigned operand is
2203    // non-negative.
2204    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2205
2206    if (unsignedRange.Width < comparisonWidth)
2207      return;
2208  }
2209
2210  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2211    << lex->getType() << rex->getType()
2212    << lex->getSourceRange() << rex->getSourceRange();
2213}
2214
2215/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2216void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2217  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2218}
2219
2220void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2221                             bool *ICContext = 0) {
2222  if (E->isTypeDependent() || E->isValueDependent()) return;
2223
2224  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2225  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2226  if (Source == Target) return;
2227  if (Target->isDependentType()) return;
2228
2229  // Never diagnose implicit casts to bool.
2230  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2231    return;
2232
2233  // Strip vector types.
2234  if (isa<VectorType>(Source)) {
2235    if (!isa<VectorType>(Target))
2236      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2237
2238    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2239    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2240  }
2241
2242  // Strip complex types.
2243  if (isa<ComplexType>(Source)) {
2244    if (!isa<ComplexType>(Target))
2245      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2246
2247    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2248    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2249  }
2250
2251  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2252  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2253
2254  // If the source is floating point...
2255  if (SourceBT && SourceBT->isFloatingPoint()) {
2256    // ...and the target is floating point...
2257    if (TargetBT && TargetBT->isFloatingPoint()) {
2258      // ...then warn if we're dropping FP rank.
2259
2260      // Builtin FP kinds are ordered by increasing FP rank.
2261      if (SourceBT->getKind() > TargetBT->getKind()) {
2262        // Don't warn about float constants that are precisely
2263        // representable in the target type.
2264        Expr::EvalResult result;
2265        if (E->Evaluate(result, S.Context)) {
2266          // Value might be a float, a float vector, or a float complex.
2267          if (IsSameFloatAfterCast(result.Val,
2268                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2269                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2270            return;
2271        }
2272
2273        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2274      }
2275      return;
2276    }
2277
2278    // If the target is integral, always warn.
2279    if ((TargetBT && TargetBT->isInteger()))
2280      // TODO: don't warn for integer values?
2281      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2282
2283    return;
2284  }
2285
2286  if (!Source->isIntegerType() || !Target->isIntegerType())
2287    return;
2288
2289  IntRange SourceRange = GetExprRange(S.Context, E);
2290  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2291
2292  if (SourceRange.Width > TargetRange.Width) {
2293    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2294    // and by god we'll let them.
2295    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2296      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2297    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2298  }
2299
2300  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2301      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2302       SourceRange.Width == TargetRange.Width)) {
2303    unsigned DiagID = diag::warn_impcast_integer_sign;
2304
2305    // Traditionally, gcc has warned about this under -Wsign-compare.
2306    // We also want to warn about it in -Wconversion.
2307    // So if -Wconversion is off, use a completely identical diagnostic
2308    // in the sign-compare group.
2309    // The conditional-checking code will
2310    if (ICContext) {
2311      DiagID = diag::warn_impcast_integer_sign_conditional;
2312      *ICContext = true;
2313    }
2314
2315    return DiagnoseImpCast(S, E, T, DiagID);
2316  }
2317
2318  return;
2319}
2320
2321void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2322
2323void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2324                             bool &ICContext) {
2325  E = E->IgnoreParenImpCasts();
2326
2327  if (isa<ConditionalOperator>(E))
2328    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2329
2330  AnalyzeImplicitConversions(S, E);
2331  if (E->getType() != T)
2332    return CheckImplicitConversion(S, E, T, &ICContext);
2333  return;
2334}
2335
2336void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2337  AnalyzeImplicitConversions(S, E->getCond());
2338
2339  bool Suspicious = false;
2340  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2341  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2342
2343  // If -Wconversion would have warned about either of the candidates
2344  // for a signedness conversion to the context type...
2345  if (!Suspicious) return;
2346
2347  // ...but it's currently ignored...
2348  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2349    return;
2350
2351  // ...and -Wsign-compare isn't...
2352  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2353    return;
2354
2355  // ...then check whether it would have warned about either of the
2356  // candidates for a signedness conversion to the condition type.
2357  if (E->getType() != T) {
2358    Suspicious = false;
2359    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2360                            E->getType(), &Suspicious);
2361    if (!Suspicious)
2362      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2363                              E->getType(), &Suspicious);
2364    if (!Suspicious)
2365      return;
2366  }
2367
2368  // If so, emit a diagnostic under -Wsign-compare.
2369  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2370  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2371  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2372    << lex->getType() << rex->getType()
2373    << lex->getSourceRange() << rex->getSourceRange();
2374}
2375
2376/// AnalyzeImplicitConversions - Find and report any interesting
2377/// implicit conversions in the given expression.  There are a couple
2378/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2379void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2380  QualType T = OrigE->getType();
2381  Expr *E = OrigE->IgnoreParenImpCasts();
2382
2383  // For conditional operators, we analyze the arguments as if they
2384  // were being fed directly into the output.
2385  if (isa<ConditionalOperator>(E)) {
2386    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2387    CheckConditionalOperator(S, CO, T);
2388    return;
2389  }
2390
2391  // Go ahead and check any implicit conversions we might have skipped.
2392  // The non-canonical typecheck is just an optimization;
2393  // CheckImplicitConversion will filter out dead implicit conversions.
2394  if (E->getType() != T)
2395    CheckImplicitConversion(S, E, T);
2396
2397  // Now continue drilling into this expression.
2398
2399  // Skip past explicit casts.
2400  if (isa<ExplicitCastExpr>(E)) {
2401    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2402    return AnalyzeImplicitConversions(S, E);
2403  }
2404
2405  // Do a somewhat different check with comparison operators.
2406  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2407    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2408
2409  // These break the otherwise-useful invariant below.  Fortunately,
2410  // we don't really need to recurse into them, because any internal
2411  // expressions should have been analyzed already when they were
2412  // built into statements.
2413  if (isa<StmtExpr>(E)) return;
2414
2415  // Don't descend into unevaluated contexts.
2416  if (isa<SizeOfAlignOfExpr>(E)) return;
2417
2418  // Now just recurse over the expression's children.
2419  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2420         I != IE; ++I)
2421    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2422}
2423
2424} // end anonymous namespace
2425
2426/// Diagnoses "dangerous" implicit conversions within the given
2427/// expression (which is a full expression).  Implements -Wconversion
2428/// and -Wsign-compare.
2429void Sema::CheckImplicitConversions(Expr *E) {
2430  // Don't diagnose in unevaluated contexts.
2431  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2432    return;
2433
2434  // Don't diagnose for value- or type-dependent expressions.
2435  if (E->isTypeDependent() || E->isValueDependent())
2436    return;
2437
2438  AnalyzeImplicitConversions(*this, E);
2439}
2440
2441/// CheckParmsForFunctionDef - Check that the parameters of the given
2442/// function are appropriate for the definition of a function. This
2443/// takes care of any checks that cannot be performed on the
2444/// declaration itself, e.g., that the types of each of the function
2445/// parameters are complete.
2446bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2447  bool HasInvalidParm = false;
2448  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2449    ParmVarDecl *Param = FD->getParamDecl(p);
2450
2451    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2452    // function declarator that is part of a function definition of
2453    // that function shall not have incomplete type.
2454    //
2455    // This is also C++ [dcl.fct]p6.
2456    if (!Param->isInvalidDecl() &&
2457        RequireCompleteType(Param->getLocation(), Param->getType(),
2458                               diag::err_typecheck_decl_incomplete_type)) {
2459      Param->setInvalidDecl();
2460      HasInvalidParm = true;
2461    }
2462
2463    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2464    // declaration of each parameter shall include an identifier.
2465    if (Param->getIdentifier() == 0 &&
2466        !Param->isImplicit() &&
2467        !getLangOptions().CPlusPlus)
2468      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2469
2470    // C99 6.7.5.3p12:
2471    //   If the function declarator is not part of a definition of that
2472    //   function, parameters may have incomplete type and may use the [*]
2473    //   notation in their sequences of declarator specifiers to specify
2474    //   variable length array types.
2475    QualType PType = Param->getOriginalType();
2476    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2477      if (AT->getSizeModifier() == ArrayType::Star) {
2478        // FIXME: This diagnosic should point the the '[*]' if source-location
2479        // information is added for it.
2480        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2481      }
2482    }
2483  }
2484
2485  return HasInvalidParm;
2486}
2487