SemaChecking.cpp revision 3c3b7f90a863af43fa63043d396553ecf205351c
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/StmtObjC.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "clang/Basic/TargetBuiltins.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include <limits>
39using namespace clang;
40using namespace sema;
41
42SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43                                                    unsigned ByteNo) const {
44  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
45                               PP.getLangOptions(), PP.getTargetInfo());
46}
47
48
49/// CheckablePrintfAttr - does a function call have a "printf" attribute
50/// and arguments that merit checking?
51bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
52  if (Format->getType() == "printf") return true;
53  if (Format->getType() == "printf0") {
54    // printf0 allows null "format" string; if so don't check format/args
55    unsigned format_idx = Format->getFormatIdx() - 1;
56    // Does the index refer to the implicit object argument?
57    if (isa<CXXMemberCallExpr>(TheCall)) {
58      if (format_idx == 0)
59        return false;
60      --format_idx;
61    }
62    if (format_idx < TheCall->getNumArgs()) {
63      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
64      if (!Format->isNullPointerConstant(Context,
65                                         Expr::NPC_ValueDependentIsNull))
66        return true;
67    }
68  }
69  return false;
70}
71
72/// Checks that a call expression's argument count is the desired number.
73/// This is useful when doing custom type-checking.  Returns true on error.
74static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
75  unsigned argCount = call->getNumArgs();
76  if (argCount == desiredArgCount) return false;
77
78  if (argCount < desiredArgCount)
79    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
80        << 0 /*function call*/ << desiredArgCount << argCount
81        << call->getSourceRange();
82
83  // Highlight all the excess arguments.
84  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
85                    call->getArg(argCount - 1)->getLocEnd());
86
87  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
88    << 0 /*function call*/ << desiredArgCount << argCount
89    << call->getArg(1)->getSourceRange();
90}
91
92/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
93/// annotation is a non wide string literal.
94static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
95  Arg = Arg->IgnoreParenCasts();
96  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
97  if (!Literal || !Literal->isAscii()) {
98    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
99      << Arg->getSourceRange();
100    return true;
101  }
102  return false;
103}
104
105ExprResult
106Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
107  ExprResult TheCallResult(Owned(TheCall));
108
109  // Find out if any arguments are required to be integer constant expressions.
110  unsigned ICEArguments = 0;
111  ASTContext::GetBuiltinTypeError Error;
112  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
113  if (Error != ASTContext::GE_None)
114    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
115
116  // If any arguments are required to be ICE's, check and diagnose.
117  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
118    // Skip arguments not required to be ICE's.
119    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
120
121    llvm::APSInt Result;
122    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
123      return true;
124    ICEArguments &= ~(1 << ArgNo);
125  }
126
127  switch (BuiltinID) {
128  case Builtin::BI__builtin___CFStringMakeConstantString:
129    assert(TheCall->getNumArgs() == 1 &&
130           "Wrong # arguments to builtin CFStringMakeConstantString");
131    if (CheckObjCString(TheCall->getArg(0)))
132      return ExprError();
133    break;
134  case Builtin::BI__builtin_stdarg_start:
135  case Builtin::BI__builtin_va_start:
136    if (SemaBuiltinVAStart(TheCall))
137      return ExprError();
138    break;
139  case Builtin::BI__builtin_isgreater:
140  case Builtin::BI__builtin_isgreaterequal:
141  case Builtin::BI__builtin_isless:
142  case Builtin::BI__builtin_islessequal:
143  case Builtin::BI__builtin_islessgreater:
144  case Builtin::BI__builtin_isunordered:
145    if (SemaBuiltinUnorderedCompare(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_fpclassify:
149    if (SemaBuiltinFPClassification(TheCall, 6))
150      return ExprError();
151    break;
152  case Builtin::BI__builtin_isfinite:
153  case Builtin::BI__builtin_isinf:
154  case Builtin::BI__builtin_isinf_sign:
155  case Builtin::BI__builtin_isnan:
156  case Builtin::BI__builtin_isnormal:
157    if (SemaBuiltinFPClassification(TheCall, 1))
158      return ExprError();
159    break;
160  case Builtin::BI__builtin_shufflevector:
161    return SemaBuiltinShuffleVector(TheCall);
162    // TheCall will be freed by the smart pointer here, but that's fine, since
163    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
164  case Builtin::BI__builtin_prefetch:
165    if (SemaBuiltinPrefetch(TheCall))
166      return ExprError();
167    break;
168  case Builtin::BI__builtin_object_size:
169    if (SemaBuiltinObjectSize(TheCall))
170      return ExprError();
171    break;
172  case Builtin::BI__builtin_longjmp:
173    if (SemaBuiltinLongjmp(TheCall))
174      return ExprError();
175    break;
176
177  case Builtin::BI__builtin_classify_type:
178    if (checkArgCount(*this, TheCall, 1)) return true;
179    TheCall->setType(Context.IntTy);
180    break;
181  case Builtin::BI__builtin_constant_p:
182    if (checkArgCount(*this, TheCall, 1)) return true;
183    TheCall->setType(Context.IntTy);
184    break;
185  case Builtin::BI__sync_fetch_and_add:
186  case Builtin::BI__sync_fetch_and_sub:
187  case Builtin::BI__sync_fetch_and_or:
188  case Builtin::BI__sync_fetch_and_and:
189  case Builtin::BI__sync_fetch_and_xor:
190  case Builtin::BI__sync_add_and_fetch:
191  case Builtin::BI__sync_sub_and_fetch:
192  case Builtin::BI__sync_and_and_fetch:
193  case Builtin::BI__sync_or_and_fetch:
194  case Builtin::BI__sync_xor_and_fetch:
195  case Builtin::BI__sync_val_compare_and_swap:
196  case Builtin::BI__sync_bool_compare_and_swap:
197  case Builtin::BI__sync_lock_test_and_set:
198  case Builtin::BI__sync_lock_release:
199  case Builtin::BI__sync_swap:
200    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
201  case Builtin::BI__atomic_load:
202    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Load);
203  case Builtin::BI__atomic_store:
204    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Store);
205  case Builtin::BI__atomic_exchange:
206    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xchg);
207  case Builtin::BI__atomic_compare_exchange_strong:
208    return SemaAtomicOpsOverloaded(move(TheCallResult),
209                                   AtomicExpr::CmpXchgStrong);
210  case Builtin::BI__atomic_compare_exchange_weak:
211    return SemaAtomicOpsOverloaded(move(TheCallResult),
212                                   AtomicExpr::CmpXchgWeak);
213  case Builtin::BI__atomic_fetch_add:
214    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Add);
215  case Builtin::BI__atomic_fetch_sub:
216    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Sub);
217  case Builtin::BI__atomic_fetch_and:
218    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::And);
219  case Builtin::BI__atomic_fetch_or:
220    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Or);
221  case Builtin::BI__atomic_fetch_xor:
222    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xor);
223  case Builtin::BI__builtin_annotation:
224    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
225      return ExprError();
226    break;
227  }
228
229  // Since the target specific builtins for each arch overlap, only check those
230  // of the arch we are compiling for.
231  if (BuiltinID >= Builtin::FirstTSBuiltin) {
232    switch (Context.getTargetInfo().getTriple().getArch()) {
233      case llvm::Triple::arm:
234      case llvm::Triple::thumb:
235        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
236          return ExprError();
237        break;
238      default:
239        break;
240    }
241  }
242
243  return move(TheCallResult);
244}
245
246// Get the valid immediate range for the specified NEON type code.
247static unsigned RFT(unsigned t, bool shift = false) {
248  bool quad = t & 0x10;
249
250  switch (t & 0x7) {
251    case 0: // i8
252      return shift ? 7 : (8 << (int)quad) - 1;
253    case 1: // i16
254      return shift ? 15 : (4 << (int)quad) - 1;
255    case 2: // i32
256      return shift ? 31 : (2 << (int)quad) - 1;
257    case 3: // i64
258      return shift ? 63 : (1 << (int)quad) - 1;
259    case 4: // f32
260      assert(!shift && "cannot shift float types!");
261      return (2 << (int)quad) - 1;
262    case 5: // poly8
263      return shift ? 7 : (8 << (int)quad) - 1;
264    case 6: // poly16
265      return shift ? 15 : (4 << (int)quad) - 1;
266    case 7: // float16
267      assert(!shift && "cannot shift float types!");
268      return (4 << (int)quad) - 1;
269  }
270  return 0;
271}
272
273bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
274  llvm::APSInt Result;
275
276  unsigned mask = 0;
277  unsigned TV = 0;
278  switch (BuiltinID) {
279#define GET_NEON_OVERLOAD_CHECK
280#include "clang/Basic/arm_neon.inc"
281#undef GET_NEON_OVERLOAD_CHECK
282  }
283
284  // For NEON intrinsics which are overloaded on vector element type, validate
285  // the immediate which specifies which variant to emit.
286  if (mask) {
287    unsigned ArgNo = TheCall->getNumArgs()-1;
288    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
289      return true;
290
291    TV = Result.getLimitedValue(32);
292    if ((TV > 31) || (mask & (1 << TV)) == 0)
293      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
294        << TheCall->getArg(ArgNo)->getSourceRange();
295  }
296
297  // For NEON intrinsics which take an immediate value as part of the
298  // instruction, range check them here.
299  unsigned i = 0, l = 0, u = 0;
300  switch (BuiltinID) {
301  default: return false;
302  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
303  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
304  case ARM::BI__builtin_arm_vcvtr_f:
305  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
306#define GET_NEON_IMMEDIATE_CHECK
307#include "clang/Basic/arm_neon.inc"
308#undef GET_NEON_IMMEDIATE_CHECK
309  };
310
311  // Check that the immediate argument is actually a constant.
312  if (SemaBuiltinConstantArg(TheCall, i, Result))
313    return true;
314
315  // Range check against the upper/lower values for this isntruction.
316  unsigned Val = Result.getZExtValue();
317  if (Val < l || Val > (u + l))
318    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
319      << l << u+l << TheCall->getArg(i)->getSourceRange();
320
321  // FIXME: VFP Intrinsics should error if VFP not present.
322  return false;
323}
324
325/// CheckFunctionCall - Check a direct function call for various correctness
326/// and safety properties not strictly enforced by the C type system.
327bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
328  // Get the IdentifierInfo* for the called function.
329  IdentifierInfo *FnInfo = FDecl->getIdentifier();
330
331  // None of the checks below are needed for functions that don't have
332  // simple names (e.g., C++ conversion functions).
333  if (!FnInfo)
334    return false;
335
336  // FIXME: This mechanism should be abstracted to be less fragile and
337  // more efficient. For example, just map function ids to custom
338  // handlers.
339
340  // Printf and scanf checking.
341  for (specific_attr_iterator<FormatAttr>
342         i = FDecl->specific_attr_begin<FormatAttr>(),
343         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
344
345    const FormatAttr *Format = *i;
346    const bool b = Format->getType() == "scanf";
347    if (b || CheckablePrintfAttr(Format, TheCall)) {
348      bool HasVAListArg = Format->getFirstArg() == 0;
349      CheckPrintfScanfArguments(TheCall, HasVAListArg,
350                                Format->getFormatIdx() - 1,
351                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
352                                !b);
353    }
354  }
355
356  for (specific_attr_iterator<NonNullAttr>
357         i = FDecl->specific_attr_begin<NonNullAttr>(),
358         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
359    CheckNonNullArguments(*i, TheCall->getArgs(),
360                          TheCall->getCallee()->getLocStart());
361  }
362
363  // Builtin handling
364  int CMF = -1;
365  switch (FDecl->getBuiltinID()) {
366  case Builtin::BI__builtin_memset:
367  case Builtin::BI__builtin___memset_chk:
368  case Builtin::BImemset:
369    CMF = CMF_Memset;
370    break;
371
372  case Builtin::BI__builtin_memcpy:
373  case Builtin::BI__builtin___memcpy_chk:
374  case Builtin::BImemcpy:
375    CMF = CMF_Memcpy;
376    break;
377
378  case Builtin::BI__builtin_memmove:
379  case Builtin::BI__builtin___memmove_chk:
380  case Builtin::BImemmove:
381    CMF = CMF_Memmove;
382    break;
383
384  case Builtin::BIstrlcpy:
385  case Builtin::BIstrlcat:
386    CheckStrlcpycatArguments(TheCall, FnInfo);
387    break;
388
389  case Builtin::BI__builtin_memcmp:
390    CMF = CMF_Memcmp;
391    break;
392
393  case Builtin::BI__builtin_strncpy:
394  case Builtin::BI__builtin___strncpy_chk:
395  case Builtin::BIstrncpy:
396    CMF = CMF_Strncpy;
397    break;
398
399  case Builtin::BI__builtin_strncmp:
400    CMF = CMF_Strncmp;
401    break;
402
403  case Builtin::BI__builtin_strncasecmp:
404    CMF = CMF_Strncasecmp;
405    break;
406
407  case Builtin::BI__builtin_strncat:
408  case Builtin::BIstrncat:
409    CMF = CMF_Strncat;
410    break;
411
412  case Builtin::BI__builtin_strndup:
413  case Builtin::BIstrndup:
414    CMF = CMF_Strndup;
415    break;
416
417  default:
418    if (FDecl->getLinkage() == ExternalLinkage &&
419        (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
420      if (FnInfo->isStr("memset"))
421        CMF = CMF_Memset;
422      else if (FnInfo->isStr("memcpy"))
423        CMF = CMF_Memcpy;
424      else if (FnInfo->isStr("memmove"))
425        CMF = CMF_Memmove;
426      else if (FnInfo->isStr("memcmp"))
427        CMF = CMF_Memcmp;
428      else if (FnInfo->isStr("strncpy"))
429        CMF = CMF_Strncpy;
430      else if (FnInfo->isStr("strncmp"))
431        CMF = CMF_Strncmp;
432      else if (FnInfo->isStr("strncasecmp"))
433        CMF = CMF_Strncasecmp;
434      else if (FnInfo->isStr("strncat"))
435        CMF = CMF_Strncat;
436      else if (FnInfo->isStr("strndup"))
437        CMF = CMF_Strndup;
438    }
439    break;
440  }
441
442  // Memset/memcpy/memmove handling
443  if (CMF != -1)
444    CheckMemaccessArguments(TheCall, CheckedMemoryFunction(CMF), FnInfo);
445
446  return false;
447}
448
449bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
450  // Printf checking.
451  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
452  if (!Format)
453    return false;
454
455  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
456  if (!V)
457    return false;
458
459  QualType Ty = V->getType();
460  if (!Ty->isBlockPointerType())
461    return false;
462
463  const bool b = Format->getType() == "scanf";
464  if (!b && !CheckablePrintfAttr(Format, TheCall))
465    return false;
466
467  bool HasVAListArg = Format->getFirstArg() == 0;
468  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
469                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
470
471  return false;
472}
473
474ExprResult
475Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op) {
476  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
477  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
478
479  // All these operations take one of the following four forms:
480  // T   __atomic_load(_Atomic(T)*, int)                              (loads)
481  // T*  __atomic_add(_Atomic(T*)*, ptrdiff_t, int)         (pointer add/sub)
482  // int __atomic_compare_exchange_strong(_Atomic(T)*, T*, T, int, int)
483  //                                                                (cmpxchg)
484  // T   __atomic_exchange(_Atomic(T)*, T, int)             (everything else)
485  // where T is an appropriate type, and the int paremeterss are for orderings.
486  unsigned NumVals = 1;
487  unsigned NumOrders = 1;
488  if (Op == AtomicExpr::Load) {
489    NumVals = 0;
490  } else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong) {
491    NumVals = 2;
492    NumOrders = 2;
493  }
494
495  if (TheCall->getNumArgs() < NumVals+NumOrders+1) {
496    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
497      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
498      << TheCall->getCallee()->getSourceRange();
499    return ExprError();
500  } else if (TheCall->getNumArgs() > NumVals+NumOrders+1) {
501    Diag(TheCall->getArg(NumVals+NumOrders+1)->getLocStart(),
502         diag::err_typecheck_call_too_many_args)
503      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
504      << TheCall->getCallee()->getSourceRange();
505    return ExprError();
506  }
507
508  // Inspect the first argument of the atomic operation.  This should always be
509  // a pointer to an _Atomic type.
510  Expr *Ptr = TheCall->getArg(0);
511  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
512  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
513  if (!pointerType) {
514    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
515      << Ptr->getType() << Ptr->getSourceRange();
516    return ExprError();
517  }
518
519  QualType AtomTy = pointerType->getPointeeType();
520  if (!AtomTy->isAtomicType()) {
521    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
522      << Ptr->getType() << Ptr->getSourceRange();
523    return ExprError();
524  }
525  QualType ValType = AtomTy->getAs<AtomicType>()->getValueType();
526
527  if ((Op == AtomicExpr::Add || Op == AtomicExpr::Sub) &&
528      !ValType->isIntegerType() && !ValType->isPointerType()) {
529    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
530      << Ptr->getType() << Ptr->getSourceRange();
531    return ExprError();
532  }
533
534  if (!ValType->isIntegerType() &&
535      (Op == AtomicExpr::And || Op == AtomicExpr::Or || Op == AtomicExpr::Xor)){
536    Diag(DRE->getLocStart(), diag::err_atomic_op_logical_needs_atomic_int)
537      << Ptr->getType() << Ptr->getSourceRange();
538    return ExprError();
539  }
540
541  switch (ValType.getObjCLifetime()) {
542  case Qualifiers::OCL_None:
543  case Qualifiers::OCL_ExplicitNone:
544    // okay
545    break;
546
547  case Qualifiers::OCL_Weak:
548  case Qualifiers::OCL_Strong:
549  case Qualifiers::OCL_Autoreleasing:
550    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
551      << ValType << Ptr->getSourceRange();
552    return ExprError();
553  }
554
555  QualType ResultType = ValType;
556  if (Op == AtomicExpr::Store)
557    ResultType = Context.VoidTy;
558  else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong)
559    ResultType = Context.BoolTy;
560
561  // The first argument --- the pointer --- has a fixed type; we
562  // deduce the types of the rest of the arguments accordingly.  Walk
563  // the remaining arguments, converting them to the deduced value type.
564  for (unsigned i = 1; i != NumVals+NumOrders+1; ++i) {
565    ExprResult Arg = TheCall->getArg(i);
566    QualType Ty;
567    if (i < NumVals+1) {
568      // The second argument to a cmpxchg is a pointer to the data which will
569      // be exchanged. The second argument to a pointer add/subtract is the
570      // amount to add/subtract, which must be a ptrdiff_t.  The third
571      // argument to a cmpxchg and the second argument in all other cases
572      // is the type of the value.
573      if (i == 1 && (Op == AtomicExpr::CmpXchgWeak ||
574                     Op == AtomicExpr::CmpXchgStrong))
575         Ty = Context.getPointerType(ValType.getUnqualifiedType());
576      else if (!ValType->isIntegerType() &&
577               (Op == AtomicExpr::Add || Op == AtomicExpr::Sub))
578        Ty = Context.getPointerDiffType();
579      else
580        Ty = ValType;
581    } else {
582      // The order(s) are always converted to int.
583      Ty = Context.IntTy;
584    }
585    InitializedEntity Entity =
586        InitializedEntity::InitializeParameter(Context, Ty, false);
587    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
588    if (Arg.isInvalid())
589      return true;
590    TheCall->setArg(i, Arg.get());
591  }
592
593  SmallVector<Expr*, 5> SubExprs;
594  SubExprs.push_back(Ptr);
595  if (Op == AtomicExpr::Load) {
596    SubExprs.push_back(TheCall->getArg(1)); // Order
597  } else if (Op != AtomicExpr::CmpXchgWeak && Op != AtomicExpr::CmpXchgStrong) {
598    SubExprs.push_back(TheCall->getArg(2)); // Order
599    SubExprs.push_back(TheCall->getArg(1)); // Val1
600  } else {
601    SubExprs.push_back(TheCall->getArg(3)); // Order
602    SubExprs.push_back(TheCall->getArg(1)); // Val1
603    SubExprs.push_back(TheCall->getArg(2)); // Val2
604    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
605  }
606
607  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
608                                        SubExprs.data(), SubExprs.size(),
609                                        ResultType, Op,
610                                        TheCall->getRParenLoc()));
611}
612
613
614/// checkBuiltinArgument - Given a call to a builtin function, perform
615/// normal type-checking on the given argument, updating the call in
616/// place.  This is useful when a builtin function requires custom
617/// type-checking for some of its arguments but not necessarily all of
618/// them.
619///
620/// Returns true on error.
621static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
622  FunctionDecl *Fn = E->getDirectCallee();
623  assert(Fn && "builtin call without direct callee!");
624
625  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
626  InitializedEntity Entity =
627    InitializedEntity::InitializeParameter(S.Context, Param);
628
629  ExprResult Arg = E->getArg(0);
630  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
631  if (Arg.isInvalid())
632    return true;
633
634  E->setArg(ArgIndex, Arg.take());
635  return false;
636}
637
638/// SemaBuiltinAtomicOverloaded - We have a call to a function like
639/// __sync_fetch_and_add, which is an overloaded function based on the pointer
640/// type of its first argument.  The main ActOnCallExpr routines have already
641/// promoted the types of arguments because all of these calls are prototyped as
642/// void(...).
643///
644/// This function goes through and does final semantic checking for these
645/// builtins,
646ExprResult
647Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
648  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
649  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
650  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
651
652  // Ensure that we have at least one argument to do type inference from.
653  if (TheCall->getNumArgs() < 1) {
654    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
655      << 0 << 1 << TheCall->getNumArgs()
656      << TheCall->getCallee()->getSourceRange();
657    return ExprError();
658  }
659
660  // Inspect the first argument of the atomic builtin.  This should always be
661  // a pointer type, whose element is an integral scalar or pointer type.
662  // Because it is a pointer type, we don't have to worry about any implicit
663  // casts here.
664  // FIXME: We don't allow floating point scalars as input.
665  Expr *FirstArg = TheCall->getArg(0);
666  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
667  if (!pointerType) {
668    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
669      << FirstArg->getType() << FirstArg->getSourceRange();
670    return ExprError();
671  }
672
673  QualType ValType = pointerType->getPointeeType();
674  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
675      !ValType->isBlockPointerType()) {
676    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
677      << FirstArg->getType() << FirstArg->getSourceRange();
678    return ExprError();
679  }
680
681  switch (ValType.getObjCLifetime()) {
682  case Qualifiers::OCL_None:
683  case Qualifiers::OCL_ExplicitNone:
684    // okay
685    break;
686
687  case Qualifiers::OCL_Weak:
688  case Qualifiers::OCL_Strong:
689  case Qualifiers::OCL_Autoreleasing:
690    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
691      << ValType << FirstArg->getSourceRange();
692    return ExprError();
693  }
694
695  // Strip any qualifiers off ValType.
696  ValType = ValType.getUnqualifiedType();
697
698  // The majority of builtins return a value, but a few have special return
699  // types, so allow them to override appropriately below.
700  QualType ResultType = ValType;
701
702  // We need to figure out which concrete builtin this maps onto.  For example,
703  // __sync_fetch_and_add with a 2 byte object turns into
704  // __sync_fetch_and_add_2.
705#define BUILTIN_ROW(x) \
706  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
707    Builtin::BI##x##_8, Builtin::BI##x##_16 }
708
709  static const unsigned BuiltinIndices[][5] = {
710    BUILTIN_ROW(__sync_fetch_and_add),
711    BUILTIN_ROW(__sync_fetch_and_sub),
712    BUILTIN_ROW(__sync_fetch_and_or),
713    BUILTIN_ROW(__sync_fetch_and_and),
714    BUILTIN_ROW(__sync_fetch_and_xor),
715
716    BUILTIN_ROW(__sync_add_and_fetch),
717    BUILTIN_ROW(__sync_sub_and_fetch),
718    BUILTIN_ROW(__sync_and_and_fetch),
719    BUILTIN_ROW(__sync_or_and_fetch),
720    BUILTIN_ROW(__sync_xor_and_fetch),
721
722    BUILTIN_ROW(__sync_val_compare_and_swap),
723    BUILTIN_ROW(__sync_bool_compare_and_swap),
724    BUILTIN_ROW(__sync_lock_test_and_set),
725    BUILTIN_ROW(__sync_lock_release),
726    BUILTIN_ROW(__sync_swap)
727  };
728#undef BUILTIN_ROW
729
730  // Determine the index of the size.
731  unsigned SizeIndex;
732  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
733  case 1: SizeIndex = 0; break;
734  case 2: SizeIndex = 1; break;
735  case 4: SizeIndex = 2; break;
736  case 8: SizeIndex = 3; break;
737  case 16: SizeIndex = 4; break;
738  default:
739    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
740      << FirstArg->getType() << FirstArg->getSourceRange();
741    return ExprError();
742  }
743
744  // Each of these builtins has one pointer argument, followed by some number of
745  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
746  // that we ignore.  Find out which row of BuiltinIndices to read from as well
747  // as the number of fixed args.
748  unsigned BuiltinID = FDecl->getBuiltinID();
749  unsigned BuiltinIndex, NumFixed = 1;
750  switch (BuiltinID) {
751  default: llvm_unreachable("Unknown overloaded atomic builtin!");
752  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
753  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
754  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
755  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
756  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
757
758  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
759  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
760  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
761  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
762  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
763
764  case Builtin::BI__sync_val_compare_and_swap:
765    BuiltinIndex = 10;
766    NumFixed = 2;
767    break;
768  case Builtin::BI__sync_bool_compare_and_swap:
769    BuiltinIndex = 11;
770    NumFixed = 2;
771    ResultType = Context.BoolTy;
772    break;
773  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
774  case Builtin::BI__sync_lock_release:
775    BuiltinIndex = 13;
776    NumFixed = 0;
777    ResultType = Context.VoidTy;
778    break;
779  case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
780  }
781
782  // Now that we know how many fixed arguments we expect, first check that we
783  // have at least that many.
784  if (TheCall->getNumArgs() < 1+NumFixed) {
785    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
786      << 0 << 1+NumFixed << TheCall->getNumArgs()
787      << TheCall->getCallee()->getSourceRange();
788    return ExprError();
789  }
790
791  // Get the decl for the concrete builtin from this, we can tell what the
792  // concrete integer type we should convert to is.
793  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
794  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
795  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
796  FunctionDecl *NewBuiltinDecl =
797    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
798                                           TUScope, false, DRE->getLocStart()));
799
800  // The first argument --- the pointer --- has a fixed type; we
801  // deduce the types of the rest of the arguments accordingly.  Walk
802  // the remaining arguments, converting them to the deduced value type.
803  for (unsigned i = 0; i != NumFixed; ++i) {
804    ExprResult Arg = TheCall->getArg(i+1);
805
806    // If the argument is an implicit cast, then there was a promotion due to
807    // "...", just remove it now.
808    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
809      Arg = ICE->getSubExpr();
810      ICE->setSubExpr(0);
811      TheCall->setArg(i+1, Arg.get());
812    }
813
814    // GCC does an implicit conversion to the pointer or integer ValType.  This
815    // can fail in some cases (1i -> int**), check for this error case now.
816    // Initialize the argument.
817    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
818                                                   ValType, /*consume*/ false);
819    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
820    if (Arg.isInvalid())
821      return ExprError();
822
823    // Okay, we have something that *can* be converted to the right type.  Check
824    // to see if there is a potentially weird extension going on here.  This can
825    // happen when you do an atomic operation on something like an char* and
826    // pass in 42.  The 42 gets converted to char.  This is even more strange
827    // for things like 45.123 -> char, etc.
828    // FIXME: Do this check.
829    TheCall->setArg(i+1, Arg.take());
830  }
831
832  ASTContext& Context = this->getASTContext();
833
834  // Create a new DeclRefExpr to refer to the new decl.
835  DeclRefExpr* NewDRE = DeclRefExpr::Create(
836      Context,
837      DRE->getQualifierLoc(),
838      NewBuiltinDecl,
839      DRE->getLocation(),
840      NewBuiltinDecl->getType(),
841      DRE->getValueKind());
842
843  // Set the callee in the CallExpr.
844  // FIXME: This leaks the original parens and implicit casts.
845  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
846  if (PromotedCall.isInvalid())
847    return ExprError();
848  TheCall->setCallee(PromotedCall.take());
849
850  // Change the result type of the call to match the original value type. This
851  // is arbitrary, but the codegen for these builtins ins design to handle it
852  // gracefully.
853  TheCall->setType(ResultType);
854
855  return move(TheCallResult);
856}
857
858/// CheckObjCString - Checks that the argument to the builtin
859/// CFString constructor is correct
860/// Note: It might also make sense to do the UTF-16 conversion here (would
861/// simplify the backend).
862bool Sema::CheckObjCString(Expr *Arg) {
863  Arg = Arg->IgnoreParenCasts();
864  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
865
866  if (!Literal || !Literal->isAscii()) {
867    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
868      << Arg->getSourceRange();
869    return true;
870  }
871
872  if (Literal->containsNonAsciiOrNull()) {
873    StringRef String = Literal->getString();
874    unsigned NumBytes = String.size();
875    SmallVector<UTF16, 128> ToBuf(NumBytes);
876    const UTF8 *FromPtr = (UTF8 *)String.data();
877    UTF16 *ToPtr = &ToBuf[0];
878
879    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
880                                                 &ToPtr, ToPtr + NumBytes,
881                                                 strictConversion);
882    // Check for conversion failure.
883    if (Result != conversionOK)
884      Diag(Arg->getLocStart(),
885           diag::warn_cfstring_truncated) << Arg->getSourceRange();
886  }
887  return false;
888}
889
890/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
891/// Emit an error and return true on failure, return false on success.
892bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
893  Expr *Fn = TheCall->getCallee();
894  if (TheCall->getNumArgs() > 2) {
895    Diag(TheCall->getArg(2)->getLocStart(),
896         diag::err_typecheck_call_too_many_args)
897      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
898      << Fn->getSourceRange()
899      << SourceRange(TheCall->getArg(2)->getLocStart(),
900                     (*(TheCall->arg_end()-1))->getLocEnd());
901    return true;
902  }
903
904  if (TheCall->getNumArgs() < 2) {
905    return Diag(TheCall->getLocEnd(),
906      diag::err_typecheck_call_too_few_args_at_least)
907      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
908  }
909
910  // Type-check the first argument normally.
911  if (checkBuiltinArgument(*this, TheCall, 0))
912    return true;
913
914  // Determine whether the current function is variadic or not.
915  BlockScopeInfo *CurBlock = getCurBlock();
916  bool isVariadic;
917  if (CurBlock)
918    isVariadic = CurBlock->TheDecl->isVariadic();
919  else if (FunctionDecl *FD = getCurFunctionDecl())
920    isVariadic = FD->isVariadic();
921  else
922    isVariadic = getCurMethodDecl()->isVariadic();
923
924  if (!isVariadic) {
925    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
926    return true;
927  }
928
929  // Verify that the second argument to the builtin is the last argument of the
930  // current function or method.
931  bool SecondArgIsLastNamedArgument = false;
932  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
933
934  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
935    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
936      // FIXME: This isn't correct for methods (results in bogus warning).
937      // Get the last formal in the current function.
938      const ParmVarDecl *LastArg;
939      if (CurBlock)
940        LastArg = *(CurBlock->TheDecl->param_end()-1);
941      else if (FunctionDecl *FD = getCurFunctionDecl())
942        LastArg = *(FD->param_end()-1);
943      else
944        LastArg = *(getCurMethodDecl()->param_end()-1);
945      SecondArgIsLastNamedArgument = PV == LastArg;
946    }
947  }
948
949  if (!SecondArgIsLastNamedArgument)
950    Diag(TheCall->getArg(1)->getLocStart(),
951         diag::warn_second_parameter_of_va_start_not_last_named_argument);
952  return false;
953}
954
955/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
956/// friends.  This is declared to take (...), so we have to check everything.
957bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
958  if (TheCall->getNumArgs() < 2)
959    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
960      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
961  if (TheCall->getNumArgs() > 2)
962    return Diag(TheCall->getArg(2)->getLocStart(),
963                diag::err_typecheck_call_too_many_args)
964      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
965      << SourceRange(TheCall->getArg(2)->getLocStart(),
966                     (*(TheCall->arg_end()-1))->getLocEnd());
967
968  ExprResult OrigArg0 = TheCall->getArg(0);
969  ExprResult OrigArg1 = TheCall->getArg(1);
970
971  // Do standard promotions between the two arguments, returning their common
972  // type.
973  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
974  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
975    return true;
976
977  // Make sure any conversions are pushed back into the call; this is
978  // type safe since unordered compare builtins are declared as "_Bool
979  // foo(...)".
980  TheCall->setArg(0, OrigArg0.get());
981  TheCall->setArg(1, OrigArg1.get());
982
983  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
984    return false;
985
986  // If the common type isn't a real floating type, then the arguments were
987  // invalid for this operation.
988  if (!Res->isRealFloatingType())
989    return Diag(OrigArg0.get()->getLocStart(),
990                diag::err_typecheck_call_invalid_ordered_compare)
991      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
992      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
993
994  return false;
995}
996
997/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
998/// __builtin_isnan and friends.  This is declared to take (...), so we have
999/// to check everything. We expect the last argument to be a floating point
1000/// value.
1001bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1002  if (TheCall->getNumArgs() < NumArgs)
1003    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1004      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1005  if (TheCall->getNumArgs() > NumArgs)
1006    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1007                diag::err_typecheck_call_too_many_args)
1008      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1009      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1010                     (*(TheCall->arg_end()-1))->getLocEnd());
1011
1012  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1013
1014  if (OrigArg->isTypeDependent())
1015    return false;
1016
1017  // This operation requires a non-_Complex floating-point number.
1018  if (!OrigArg->getType()->isRealFloatingType())
1019    return Diag(OrigArg->getLocStart(),
1020                diag::err_typecheck_call_invalid_unary_fp)
1021      << OrigArg->getType() << OrigArg->getSourceRange();
1022
1023  // If this is an implicit conversion from float -> double, remove it.
1024  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1025    Expr *CastArg = Cast->getSubExpr();
1026    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1027      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1028             "promotion from float to double is the only expected cast here");
1029      Cast->setSubExpr(0);
1030      TheCall->setArg(NumArgs-1, CastArg);
1031      OrigArg = CastArg;
1032    }
1033  }
1034
1035  return false;
1036}
1037
1038/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1039// This is declared to take (...), so we have to check everything.
1040ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1041  if (TheCall->getNumArgs() < 2)
1042    return ExprError(Diag(TheCall->getLocEnd(),
1043                          diag::err_typecheck_call_too_few_args_at_least)
1044      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1045      << TheCall->getSourceRange());
1046
1047  // Determine which of the following types of shufflevector we're checking:
1048  // 1) unary, vector mask: (lhs, mask)
1049  // 2) binary, vector mask: (lhs, rhs, mask)
1050  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1051  QualType resType = TheCall->getArg(0)->getType();
1052  unsigned numElements = 0;
1053
1054  if (!TheCall->getArg(0)->isTypeDependent() &&
1055      !TheCall->getArg(1)->isTypeDependent()) {
1056    QualType LHSType = TheCall->getArg(0)->getType();
1057    QualType RHSType = TheCall->getArg(1)->getType();
1058
1059    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1060      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1061        << SourceRange(TheCall->getArg(0)->getLocStart(),
1062                       TheCall->getArg(1)->getLocEnd());
1063      return ExprError();
1064    }
1065
1066    numElements = LHSType->getAs<VectorType>()->getNumElements();
1067    unsigned numResElements = TheCall->getNumArgs() - 2;
1068
1069    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1070    // with mask.  If so, verify that RHS is an integer vector type with the
1071    // same number of elts as lhs.
1072    if (TheCall->getNumArgs() == 2) {
1073      if (!RHSType->hasIntegerRepresentation() ||
1074          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1075        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1076          << SourceRange(TheCall->getArg(1)->getLocStart(),
1077                         TheCall->getArg(1)->getLocEnd());
1078      numResElements = numElements;
1079    }
1080    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1081      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1082        << SourceRange(TheCall->getArg(0)->getLocStart(),
1083                       TheCall->getArg(1)->getLocEnd());
1084      return ExprError();
1085    } else if (numElements != numResElements) {
1086      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1087      resType = Context.getVectorType(eltType, numResElements,
1088                                      VectorType::GenericVector);
1089    }
1090  }
1091
1092  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1093    if (TheCall->getArg(i)->isTypeDependent() ||
1094        TheCall->getArg(i)->isValueDependent())
1095      continue;
1096
1097    llvm::APSInt Result(32);
1098    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1099      return ExprError(Diag(TheCall->getLocStart(),
1100                  diag::err_shufflevector_nonconstant_argument)
1101                << TheCall->getArg(i)->getSourceRange());
1102
1103    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1104      return ExprError(Diag(TheCall->getLocStart(),
1105                  diag::err_shufflevector_argument_too_large)
1106               << TheCall->getArg(i)->getSourceRange());
1107  }
1108
1109  SmallVector<Expr*, 32> exprs;
1110
1111  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1112    exprs.push_back(TheCall->getArg(i));
1113    TheCall->setArg(i, 0);
1114  }
1115
1116  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1117                                            exprs.size(), resType,
1118                                            TheCall->getCallee()->getLocStart(),
1119                                            TheCall->getRParenLoc()));
1120}
1121
1122/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1123// This is declared to take (const void*, ...) and can take two
1124// optional constant int args.
1125bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1126  unsigned NumArgs = TheCall->getNumArgs();
1127
1128  if (NumArgs > 3)
1129    return Diag(TheCall->getLocEnd(),
1130             diag::err_typecheck_call_too_many_args_at_most)
1131             << 0 /*function call*/ << 3 << NumArgs
1132             << TheCall->getSourceRange();
1133
1134  // Argument 0 is checked for us and the remaining arguments must be
1135  // constant integers.
1136  for (unsigned i = 1; i != NumArgs; ++i) {
1137    Expr *Arg = TheCall->getArg(i);
1138
1139    llvm::APSInt Result;
1140    if (SemaBuiltinConstantArg(TheCall, i, Result))
1141      return true;
1142
1143    // FIXME: gcc issues a warning and rewrites these to 0. These
1144    // seems especially odd for the third argument since the default
1145    // is 3.
1146    if (i == 1) {
1147      if (Result.getLimitedValue() > 1)
1148        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1149             << "0" << "1" << Arg->getSourceRange();
1150    } else {
1151      if (Result.getLimitedValue() > 3)
1152        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1153            << "0" << "3" << Arg->getSourceRange();
1154    }
1155  }
1156
1157  return false;
1158}
1159
1160/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1161/// TheCall is a constant expression.
1162bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1163                                  llvm::APSInt &Result) {
1164  Expr *Arg = TheCall->getArg(ArgNum);
1165  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1166  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1167
1168  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1169
1170  if (!Arg->isIntegerConstantExpr(Result, Context))
1171    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1172                << FDecl->getDeclName() <<  Arg->getSourceRange();
1173
1174  return false;
1175}
1176
1177/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1178/// int type). This simply type checks that type is one of the defined
1179/// constants (0-3).
1180// For compatibility check 0-3, llvm only handles 0 and 2.
1181bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1182  llvm::APSInt Result;
1183
1184  // Check constant-ness first.
1185  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1186    return true;
1187
1188  Expr *Arg = TheCall->getArg(1);
1189  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1190    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1191             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1192  }
1193
1194  return false;
1195}
1196
1197/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1198/// This checks that val is a constant 1.
1199bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1200  Expr *Arg = TheCall->getArg(1);
1201  llvm::APSInt Result;
1202
1203  // TODO: This is less than ideal. Overload this to take a value.
1204  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1205    return true;
1206
1207  if (Result != 1)
1208    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1209             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1210
1211  return false;
1212}
1213
1214// Handle i > 1 ? "x" : "y", recursively.
1215bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
1216                                  bool HasVAListArg,
1217                                  unsigned format_idx, unsigned firstDataArg,
1218                                  bool isPrintf) {
1219 tryAgain:
1220  if (E->isTypeDependent() || E->isValueDependent())
1221    return false;
1222
1223  E = E->IgnoreParens();
1224
1225  switch (E->getStmtClass()) {
1226  case Stmt::BinaryConditionalOperatorClass:
1227  case Stmt::ConditionalOperatorClass: {
1228    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1229    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
1230                                  format_idx, firstDataArg, isPrintf)
1231        && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
1232                                  format_idx, firstDataArg, isPrintf);
1233  }
1234
1235  case Stmt::IntegerLiteralClass:
1236    // Technically -Wformat-nonliteral does not warn about this case.
1237    // The behavior of printf and friends in this case is implementation
1238    // dependent.  Ideally if the format string cannot be null then
1239    // it should have a 'nonnull' attribute in the function prototype.
1240    return true;
1241
1242  case Stmt::ImplicitCastExprClass: {
1243    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1244    goto tryAgain;
1245  }
1246
1247  case Stmt::OpaqueValueExprClass:
1248    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1249      E = src;
1250      goto tryAgain;
1251    }
1252    return false;
1253
1254  case Stmt::PredefinedExprClass:
1255    // While __func__, etc., are technically not string literals, they
1256    // cannot contain format specifiers and thus are not a security
1257    // liability.
1258    return true;
1259
1260  case Stmt::DeclRefExprClass: {
1261    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1262
1263    // As an exception, do not flag errors for variables binding to
1264    // const string literals.
1265    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1266      bool isConstant = false;
1267      QualType T = DR->getType();
1268
1269      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1270        isConstant = AT->getElementType().isConstant(Context);
1271      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1272        isConstant = T.isConstant(Context) &&
1273                     PT->getPointeeType().isConstant(Context);
1274      }
1275
1276      if (isConstant) {
1277        if (const Expr *Init = VD->getAnyInitializer())
1278          return SemaCheckStringLiteral(Init, TheCall,
1279                                        HasVAListArg, format_idx, firstDataArg,
1280                                        isPrintf);
1281      }
1282
1283      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1284      // special check to see if the format string is a function parameter
1285      // of the function calling the printf function.  If the function
1286      // has an attribute indicating it is a printf-like function, then we
1287      // should suppress warnings concerning non-literals being used in a call
1288      // to a vprintf function.  For example:
1289      //
1290      // void
1291      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1292      //      va_list ap;
1293      //      va_start(ap, fmt);
1294      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1295      //      ...
1296      //
1297      //
1298      //  FIXME: We don't have full attribute support yet, so just check to see
1299      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1300      //    add proper support for checking the attribute later.
1301      if (HasVAListArg)
1302        if (isa<ParmVarDecl>(VD))
1303          return true;
1304    }
1305
1306    return false;
1307  }
1308
1309  case Stmt::CallExprClass: {
1310    const CallExpr *CE = cast<CallExpr>(E);
1311    if (const ImplicitCastExpr *ICE
1312          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1313      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1314        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1315          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1316            unsigned ArgIndex = FA->getFormatIdx();
1317            const Expr *Arg = CE->getArg(ArgIndex - 1);
1318
1319            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1320                                          format_idx, firstDataArg, isPrintf);
1321          }
1322        }
1323      }
1324    }
1325
1326    return false;
1327  }
1328  case Stmt::ObjCStringLiteralClass:
1329  case Stmt::StringLiteralClass: {
1330    const StringLiteral *StrE = NULL;
1331
1332    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1333      StrE = ObjCFExpr->getString();
1334    else
1335      StrE = cast<StringLiteral>(E);
1336
1337    if (StrE) {
1338      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1339                        firstDataArg, isPrintf);
1340      return true;
1341    }
1342
1343    return false;
1344  }
1345
1346  default:
1347    return false;
1348  }
1349}
1350
1351void
1352Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1353                            const Expr * const *ExprArgs,
1354                            SourceLocation CallSiteLoc) {
1355  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1356                                  e = NonNull->args_end();
1357       i != e; ++i) {
1358    const Expr *ArgExpr = ExprArgs[*i];
1359    if (ArgExpr->isNullPointerConstant(Context,
1360                                       Expr::NPC_ValueDependentIsNotNull))
1361      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1362  }
1363}
1364
1365/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1366/// functions) for correct use of format strings.
1367void
1368Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1369                                unsigned format_idx, unsigned firstDataArg,
1370                                bool isPrintf) {
1371
1372  const Expr *Fn = TheCall->getCallee();
1373
1374  // The way the format attribute works in GCC, the implicit this argument
1375  // of member functions is counted. However, it doesn't appear in our own
1376  // lists, so decrement format_idx in that case.
1377  if (isa<CXXMemberCallExpr>(TheCall)) {
1378    const CXXMethodDecl *method_decl =
1379      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1380    if (method_decl && method_decl->isInstance()) {
1381      // Catch a format attribute mistakenly referring to the object argument.
1382      if (format_idx == 0)
1383        return;
1384      --format_idx;
1385      if(firstDataArg != 0)
1386        --firstDataArg;
1387    }
1388  }
1389
1390  // CHECK: printf/scanf-like function is called with no format string.
1391  if (format_idx >= TheCall->getNumArgs()) {
1392    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1393      << Fn->getSourceRange();
1394    return;
1395  }
1396
1397  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1398
1399  // CHECK: format string is not a string literal.
1400  //
1401  // Dynamically generated format strings are difficult to
1402  // automatically vet at compile time.  Requiring that format strings
1403  // are string literals: (1) permits the checking of format strings by
1404  // the compiler and thereby (2) can practically remove the source of
1405  // many format string exploits.
1406
1407  // Format string can be either ObjC string (e.g. @"%d") or
1408  // C string (e.g. "%d")
1409  // ObjC string uses the same format specifiers as C string, so we can use
1410  // the same format string checking logic for both ObjC and C strings.
1411  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1412                             firstDataArg, isPrintf))
1413    return;  // Literal format string found, check done!
1414
1415  // If there are no arguments specified, warn with -Wformat-security, otherwise
1416  // warn only with -Wformat-nonliteral.
1417  if (TheCall->getNumArgs() == format_idx+1)
1418    Diag(TheCall->getArg(format_idx)->getLocStart(),
1419         diag::warn_format_nonliteral_noargs)
1420      << OrigFormatExpr->getSourceRange();
1421  else
1422    Diag(TheCall->getArg(format_idx)->getLocStart(),
1423         diag::warn_format_nonliteral)
1424           << OrigFormatExpr->getSourceRange();
1425}
1426
1427namespace {
1428class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1429protected:
1430  Sema &S;
1431  const StringLiteral *FExpr;
1432  const Expr *OrigFormatExpr;
1433  const unsigned FirstDataArg;
1434  const unsigned NumDataArgs;
1435  const bool IsObjCLiteral;
1436  const char *Beg; // Start of format string.
1437  const bool HasVAListArg;
1438  const CallExpr *TheCall;
1439  unsigned FormatIdx;
1440  llvm::BitVector CoveredArgs;
1441  bool usesPositionalArgs;
1442  bool atFirstArg;
1443public:
1444  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1445                     const Expr *origFormatExpr, unsigned firstDataArg,
1446                     unsigned numDataArgs, bool isObjCLiteral,
1447                     const char *beg, bool hasVAListArg,
1448                     const CallExpr *theCall, unsigned formatIdx)
1449    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1450      FirstDataArg(firstDataArg),
1451      NumDataArgs(numDataArgs),
1452      IsObjCLiteral(isObjCLiteral), Beg(beg),
1453      HasVAListArg(hasVAListArg),
1454      TheCall(theCall), FormatIdx(formatIdx),
1455      usesPositionalArgs(false), atFirstArg(true) {
1456        CoveredArgs.resize(numDataArgs);
1457        CoveredArgs.reset();
1458      }
1459
1460  void DoneProcessing();
1461
1462  void HandleIncompleteSpecifier(const char *startSpecifier,
1463                                 unsigned specifierLen);
1464
1465  virtual void HandleInvalidPosition(const char *startSpecifier,
1466                                     unsigned specifierLen,
1467                                     analyze_format_string::PositionContext p);
1468
1469  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1470
1471  void HandleNullChar(const char *nullCharacter);
1472
1473protected:
1474  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1475                                        const char *startSpec,
1476                                        unsigned specifierLen,
1477                                        const char *csStart, unsigned csLen);
1478
1479  SourceRange getFormatStringRange();
1480  CharSourceRange getSpecifierRange(const char *startSpecifier,
1481                                    unsigned specifierLen);
1482  SourceLocation getLocationOfByte(const char *x);
1483
1484  const Expr *getDataArg(unsigned i) const;
1485
1486  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1487                    const analyze_format_string::ConversionSpecifier &CS,
1488                    const char *startSpecifier, unsigned specifierLen,
1489                    unsigned argIndex);
1490};
1491}
1492
1493SourceRange CheckFormatHandler::getFormatStringRange() {
1494  return OrigFormatExpr->getSourceRange();
1495}
1496
1497CharSourceRange CheckFormatHandler::
1498getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1499  SourceLocation Start = getLocationOfByte(startSpecifier);
1500  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1501
1502  // Advance the end SourceLocation by one due to half-open ranges.
1503  End = End.getLocWithOffset(1);
1504
1505  return CharSourceRange::getCharRange(Start, End);
1506}
1507
1508SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1509  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1510}
1511
1512void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1513                                                   unsigned specifierLen){
1514  SourceLocation Loc = getLocationOfByte(startSpecifier);
1515  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1516    << getSpecifierRange(startSpecifier, specifierLen);
1517}
1518
1519void
1520CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1521                                     analyze_format_string::PositionContext p) {
1522  SourceLocation Loc = getLocationOfByte(startPos);
1523  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1524    << (unsigned) p << getSpecifierRange(startPos, posLen);
1525}
1526
1527void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1528                                            unsigned posLen) {
1529  SourceLocation Loc = getLocationOfByte(startPos);
1530  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1531    << getSpecifierRange(startPos, posLen);
1532}
1533
1534void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1535  if (!IsObjCLiteral) {
1536    // The presence of a null character is likely an error.
1537    S.Diag(getLocationOfByte(nullCharacter),
1538           diag::warn_printf_format_string_contains_null_char)
1539      << getFormatStringRange();
1540  }
1541}
1542
1543const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1544  return TheCall->getArg(FirstDataArg + i);
1545}
1546
1547void CheckFormatHandler::DoneProcessing() {
1548    // Does the number of data arguments exceed the number of
1549    // format conversions in the format string?
1550  if (!HasVAListArg) {
1551      // Find any arguments that weren't covered.
1552    CoveredArgs.flip();
1553    signed notCoveredArg = CoveredArgs.find_first();
1554    if (notCoveredArg >= 0) {
1555      assert((unsigned)notCoveredArg < NumDataArgs);
1556      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1557             diag::warn_printf_data_arg_not_used)
1558      << getFormatStringRange();
1559    }
1560  }
1561}
1562
1563bool
1564CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1565                                                     SourceLocation Loc,
1566                                                     const char *startSpec,
1567                                                     unsigned specifierLen,
1568                                                     const char *csStart,
1569                                                     unsigned csLen) {
1570
1571  bool keepGoing = true;
1572  if (argIndex < NumDataArgs) {
1573    // Consider the argument coverered, even though the specifier doesn't
1574    // make sense.
1575    CoveredArgs.set(argIndex);
1576  }
1577  else {
1578    // If argIndex exceeds the number of data arguments we
1579    // don't issue a warning because that is just a cascade of warnings (and
1580    // they may have intended '%%' anyway). We don't want to continue processing
1581    // the format string after this point, however, as we will like just get
1582    // gibberish when trying to match arguments.
1583    keepGoing = false;
1584  }
1585
1586  S.Diag(Loc, diag::warn_format_invalid_conversion)
1587    << StringRef(csStart, csLen)
1588    << getSpecifierRange(startSpec, specifierLen);
1589
1590  return keepGoing;
1591}
1592
1593bool
1594CheckFormatHandler::CheckNumArgs(
1595  const analyze_format_string::FormatSpecifier &FS,
1596  const analyze_format_string::ConversionSpecifier &CS,
1597  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1598
1599  if (argIndex >= NumDataArgs) {
1600    if (FS.usesPositionalArg())  {
1601      S.Diag(getLocationOfByte(CS.getStart()),
1602             diag::warn_printf_positional_arg_exceeds_data_args)
1603      << (argIndex+1) << NumDataArgs
1604      << getSpecifierRange(startSpecifier, specifierLen);
1605    }
1606    else {
1607      S.Diag(getLocationOfByte(CS.getStart()),
1608             diag::warn_printf_insufficient_data_args)
1609      << getSpecifierRange(startSpecifier, specifierLen);
1610    }
1611
1612    return false;
1613  }
1614  return true;
1615}
1616
1617//===--- CHECK: Printf format string checking ------------------------------===//
1618
1619namespace {
1620class CheckPrintfHandler : public CheckFormatHandler {
1621public:
1622  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1623                     const Expr *origFormatExpr, unsigned firstDataArg,
1624                     unsigned numDataArgs, bool isObjCLiteral,
1625                     const char *beg, bool hasVAListArg,
1626                     const CallExpr *theCall, unsigned formatIdx)
1627  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1628                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1629                       theCall, formatIdx) {}
1630
1631
1632  bool HandleInvalidPrintfConversionSpecifier(
1633                                      const analyze_printf::PrintfSpecifier &FS,
1634                                      const char *startSpecifier,
1635                                      unsigned specifierLen);
1636
1637  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1638                             const char *startSpecifier,
1639                             unsigned specifierLen);
1640
1641  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1642                    const char *startSpecifier, unsigned specifierLen);
1643  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1644                           const analyze_printf::OptionalAmount &Amt,
1645                           unsigned type,
1646                           const char *startSpecifier, unsigned specifierLen);
1647  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1648                  const analyze_printf::OptionalFlag &flag,
1649                  const char *startSpecifier, unsigned specifierLen);
1650  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1651                         const analyze_printf::OptionalFlag &ignoredFlag,
1652                         const analyze_printf::OptionalFlag &flag,
1653                         const char *startSpecifier, unsigned specifierLen);
1654};
1655}
1656
1657bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1658                                      const analyze_printf::PrintfSpecifier &FS,
1659                                      const char *startSpecifier,
1660                                      unsigned specifierLen) {
1661  const analyze_printf::PrintfConversionSpecifier &CS =
1662    FS.getConversionSpecifier();
1663
1664  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1665                                          getLocationOfByte(CS.getStart()),
1666                                          startSpecifier, specifierLen,
1667                                          CS.getStart(), CS.getLength());
1668}
1669
1670bool CheckPrintfHandler::HandleAmount(
1671                               const analyze_format_string::OptionalAmount &Amt,
1672                               unsigned k, const char *startSpecifier,
1673                               unsigned specifierLen) {
1674
1675  if (Amt.hasDataArgument()) {
1676    if (!HasVAListArg) {
1677      unsigned argIndex = Amt.getArgIndex();
1678      if (argIndex >= NumDataArgs) {
1679        S.Diag(getLocationOfByte(Amt.getStart()),
1680               diag::warn_printf_asterisk_missing_arg)
1681          << k << getSpecifierRange(startSpecifier, specifierLen);
1682        // Don't do any more checking.  We will just emit
1683        // spurious errors.
1684        return false;
1685      }
1686
1687      // Type check the data argument.  It should be an 'int'.
1688      // Although not in conformance with C99, we also allow the argument to be
1689      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1690      // doesn't emit a warning for that case.
1691      CoveredArgs.set(argIndex);
1692      const Expr *Arg = getDataArg(argIndex);
1693      QualType T = Arg->getType();
1694
1695      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1696      assert(ATR.isValid());
1697
1698      if (!ATR.matchesType(S.Context, T)) {
1699        S.Diag(getLocationOfByte(Amt.getStart()),
1700               diag::warn_printf_asterisk_wrong_type)
1701          << k
1702          << ATR.getRepresentativeType(S.Context) << T
1703          << getSpecifierRange(startSpecifier, specifierLen)
1704          << Arg->getSourceRange();
1705        // Don't do any more checking.  We will just emit
1706        // spurious errors.
1707        return false;
1708      }
1709    }
1710  }
1711  return true;
1712}
1713
1714void CheckPrintfHandler::HandleInvalidAmount(
1715                                      const analyze_printf::PrintfSpecifier &FS,
1716                                      const analyze_printf::OptionalAmount &Amt,
1717                                      unsigned type,
1718                                      const char *startSpecifier,
1719                                      unsigned specifierLen) {
1720  const analyze_printf::PrintfConversionSpecifier &CS =
1721    FS.getConversionSpecifier();
1722  switch (Amt.getHowSpecified()) {
1723  case analyze_printf::OptionalAmount::Constant:
1724    S.Diag(getLocationOfByte(Amt.getStart()),
1725        diag::warn_printf_nonsensical_optional_amount)
1726      << type
1727      << CS.toString()
1728      << getSpecifierRange(startSpecifier, specifierLen)
1729      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1730          Amt.getConstantLength()));
1731    break;
1732
1733  default:
1734    S.Diag(getLocationOfByte(Amt.getStart()),
1735        diag::warn_printf_nonsensical_optional_amount)
1736      << type
1737      << CS.toString()
1738      << getSpecifierRange(startSpecifier, specifierLen);
1739    break;
1740  }
1741}
1742
1743void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1744                                    const analyze_printf::OptionalFlag &flag,
1745                                    const char *startSpecifier,
1746                                    unsigned specifierLen) {
1747  // Warn about pointless flag with a fixit removal.
1748  const analyze_printf::PrintfConversionSpecifier &CS =
1749    FS.getConversionSpecifier();
1750  S.Diag(getLocationOfByte(flag.getPosition()),
1751      diag::warn_printf_nonsensical_flag)
1752    << flag.toString() << CS.toString()
1753    << getSpecifierRange(startSpecifier, specifierLen)
1754    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1755}
1756
1757void CheckPrintfHandler::HandleIgnoredFlag(
1758                                const analyze_printf::PrintfSpecifier &FS,
1759                                const analyze_printf::OptionalFlag &ignoredFlag,
1760                                const analyze_printf::OptionalFlag &flag,
1761                                const char *startSpecifier,
1762                                unsigned specifierLen) {
1763  // Warn about ignored flag with a fixit removal.
1764  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1765      diag::warn_printf_ignored_flag)
1766    << ignoredFlag.toString() << flag.toString()
1767    << getSpecifierRange(startSpecifier, specifierLen)
1768    << FixItHint::CreateRemoval(getSpecifierRange(
1769        ignoredFlag.getPosition(), 1));
1770}
1771
1772bool
1773CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1774                                            &FS,
1775                                          const char *startSpecifier,
1776                                          unsigned specifierLen) {
1777
1778  using namespace analyze_format_string;
1779  using namespace analyze_printf;
1780  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1781
1782  if (FS.consumesDataArgument()) {
1783    if (atFirstArg) {
1784        atFirstArg = false;
1785        usesPositionalArgs = FS.usesPositionalArg();
1786    }
1787    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1788      // Cannot mix-and-match positional and non-positional arguments.
1789      S.Diag(getLocationOfByte(CS.getStart()),
1790             diag::warn_format_mix_positional_nonpositional_args)
1791        << getSpecifierRange(startSpecifier, specifierLen);
1792      return false;
1793    }
1794  }
1795
1796  // First check if the field width, precision, and conversion specifier
1797  // have matching data arguments.
1798  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1799                    startSpecifier, specifierLen)) {
1800    return false;
1801  }
1802
1803  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1804                    startSpecifier, specifierLen)) {
1805    return false;
1806  }
1807
1808  if (!CS.consumesDataArgument()) {
1809    // FIXME: Technically specifying a precision or field width here
1810    // makes no sense.  Worth issuing a warning at some point.
1811    return true;
1812  }
1813
1814  // Consume the argument.
1815  unsigned argIndex = FS.getArgIndex();
1816  if (argIndex < NumDataArgs) {
1817    // The check to see if the argIndex is valid will come later.
1818    // We set the bit here because we may exit early from this
1819    // function if we encounter some other error.
1820    CoveredArgs.set(argIndex);
1821  }
1822
1823  // Check for using an Objective-C specific conversion specifier
1824  // in a non-ObjC literal.
1825  if (!IsObjCLiteral && CS.isObjCArg()) {
1826    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1827                                                  specifierLen);
1828  }
1829
1830  // Check for invalid use of field width
1831  if (!FS.hasValidFieldWidth()) {
1832    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1833        startSpecifier, specifierLen);
1834  }
1835
1836  // Check for invalid use of precision
1837  if (!FS.hasValidPrecision()) {
1838    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1839        startSpecifier, specifierLen);
1840  }
1841
1842  // Check each flag does not conflict with any other component.
1843  if (!FS.hasValidThousandsGroupingPrefix())
1844    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
1845  if (!FS.hasValidLeadingZeros())
1846    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1847  if (!FS.hasValidPlusPrefix())
1848    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1849  if (!FS.hasValidSpacePrefix())
1850    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1851  if (!FS.hasValidAlternativeForm())
1852    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1853  if (!FS.hasValidLeftJustified())
1854    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1855
1856  // Check that flags are not ignored by another flag
1857  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1858    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1859        startSpecifier, specifierLen);
1860  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1861    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1862            startSpecifier, specifierLen);
1863
1864  // Check the length modifier is valid with the given conversion specifier.
1865  const LengthModifier &LM = FS.getLengthModifier();
1866  if (!FS.hasValidLengthModifier())
1867    S.Diag(getLocationOfByte(LM.getStart()),
1868        diag::warn_format_nonsensical_length)
1869      << LM.toString() << CS.toString()
1870      << getSpecifierRange(startSpecifier, specifierLen)
1871      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1872          LM.getLength()));
1873
1874  // Are we using '%n'?
1875  if (CS.getKind() == ConversionSpecifier::nArg) {
1876    // Issue a warning about this being a possible security issue.
1877    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1878      << getSpecifierRange(startSpecifier, specifierLen);
1879    // Continue checking the other format specifiers.
1880    return true;
1881  }
1882
1883  // The remaining checks depend on the data arguments.
1884  if (HasVAListArg)
1885    return true;
1886
1887  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1888    return false;
1889
1890  // Now type check the data expression that matches the
1891  // format specifier.
1892  const Expr *Ex = getDataArg(argIndex);
1893  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1894  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1895    // Check if we didn't match because of an implicit cast from a 'char'
1896    // or 'short' to an 'int'.  This is done because printf is a varargs
1897    // function.
1898    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1899      if (ICE->getType() == S.Context.IntTy) {
1900        // All further checking is done on the subexpression.
1901        Ex = ICE->getSubExpr();
1902        if (ATR.matchesType(S.Context, Ex->getType()))
1903          return true;
1904      }
1905
1906    // We may be able to offer a FixItHint if it is a supported type.
1907    PrintfSpecifier fixedFS = FS;
1908    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
1909
1910    if (success) {
1911      // Get the fix string from the fixed format specifier
1912      llvm::SmallString<128> buf;
1913      llvm::raw_svector_ostream os(buf);
1914      fixedFS.toString(os);
1915
1916      // FIXME: getRepresentativeType() perhaps should return a string
1917      // instead of a QualType to better handle when the representative
1918      // type is 'wint_t' (which is defined in the system headers).
1919      S.Diag(getLocationOfByte(CS.getStart()),
1920          diag::warn_printf_conversion_argument_type_mismatch)
1921        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1922        << getSpecifierRange(startSpecifier, specifierLen)
1923        << Ex->getSourceRange()
1924        << FixItHint::CreateReplacement(
1925            getSpecifierRange(startSpecifier, specifierLen),
1926            os.str());
1927    }
1928    else {
1929      S.Diag(getLocationOfByte(CS.getStart()),
1930             diag::warn_printf_conversion_argument_type_mismatch)
1931        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1932        << getSpecifierRange(startSpecifier, specifierLen)
1933        << Ex->getSourceRange();
1934    }
1935  }
1936
1937  return true;
1938}
1939
1940//===--- CHECK: Scanf format string checking ------------------------------===//
1941
1942namespace {
1943class CheckScanfHandler : public CheckFormatHandler {
1944public:
1945  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1946                    const Expr *origFormatExpr, unsigned firstDataArg,
1947                    unsigned numDataArgs, bool isObjCLiteral,
1948                    const char *beg, bool hasVAListArg,
1949                    const CallExpr *theCall, unsigned formatIdx)
1950  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1951                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1952                       theCall, formatIdx) {}
1953
1954  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1955                            const char *startSpecifier,
1956                            unsigned specifierLen);
1957
1958  bool HandleInvalidScanfConversionSpecifier(
1959          const analyze_scanf::ScanfSpecifier &FS,
1960          const char *startSpecifier,
1961          unsigned specifierLen);
1962
1963  void HandleIncompleteScanList(const char *start, const char *end);
1964};
1965}
1966
1967void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1968                                                 const char *end) {
1969  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1970    << getSpecifierRange(start, end - start);
1971}
1972
1973bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1974                                        const analyze_scanf::ScanfSpecifier &FS,
1975                                        const char *startSpecifier,
1976                                        unsigned specifierLen) {
1977
1978  const analyze_scanf::ScanfConversionSpecifier &CS =
1979    FS.getConversionSpecifier();
1980
1981  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1982                                          getLocationOfByte(CS.getStart()),
1983                                          startSpecifier, specifierLen,
1984                                          CS.getStart(), CS.getLength());
1985}
1986
1987bool CheckScanfHandler::HandleScanfSpecifier(
1988                                       const analyze_scanf::ScanfSpecifier &FS,
1989                                       const char *startSpecifier,
1990                                       unsigned specifierLen) {
1991
1992  using namespace analyze_scanf;
1993  using namespace analyze_format_string;
1994
1995  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1996
1997  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1998  // be used to decide if we are using positional arguments consistently.
1999  if (FS.consumesDataArgument()) {
2000    if (atFirstArg) {
2001      atFirstArg = false;
2002      usesPositionalArgs = FS.usesPositionalArg();
2003    }
2004    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2005      // Cannot mix-and-match positional and non-positional arguments.
2006      S.Diag(getLocationOfByte(CS.getStart()),
2007             diag::warn_format_mix_positional_nonpositional_args)
2008        << getSpecifierRange(startSpecifier, specifierLen);
2009      return false;
2010    }
2011  }
2012
2013  // Check if the field with is non-zero.
2014  const OptionalAmount &Amt = FS.getFieldWidth();
2015  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2016    if (Amt.getConstantAmount() == 0) {
2017      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2018                                                   Amt.getConstantLength());
2019      S.Diag(getLocationOfByte(Amt.getStart()),
2020             diag::warn_scanf_nonzero_width)
2021        << R << FixItHint::CreateRemoval(R);
2022    }
2023  }
2024
2025  if (!FS.consumesDataArgument()) {
2026    // FIXME: Technically specifying a precision or field width here
2027    // makes no sense.  Worth issuing a warning at some point.
2028    return true;
2029  }
2030
2031  // Consume the argument.
2032  unsigned argIndex = FS.getArgIndex();
2033  if (argIndex < NumDataArgs) {
2034      // The check to see if the argIndex is valid will come later.
2035      // We set the bit here because we may exit early from this
2036      // function if we encounter some other error.
2037    CoveredArgs.set(argIndex);
2038  }
2039
2040  // Check the length modifier is valid with the given conversion specifier.
2041  const LengthModifier &LM = FS.getLengthModifier();
2042  if (!FS.hasValidLengthModifier()) {
2043    S.Diag(getLocationOfByte(LM.getStart()),
2044           diag::warn_format_nonsensical_length)
2045      << LM.toString() << CS.toString()
2046      << getSpecifierRange(startSpecifier, specifierLen)
2047      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
2048                                                    LM.getLength()));
2049  }
2050
2051  // The remaining checks depend on the data arguments.
2052  if (HasVAListArg)
2053    return true;
2054
2055  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2056    return false;
2057
2058  // FIXME: Check that the argument type matches the format specifier.
2059
2060  return true;
2061}
2062
2063void Sema::CheckFormatString(const StringLiteral *FExpr,
2064                             const Expr *OrigFormatExpr,
2065                             const CallExpr *TheCall, bool HasVAListArg,
2066                             unsigned format_idx, unsigned firstDataArg,
2067                             bool isPrintf) {
2068
2069  // CHECK: is the format string a wide literal?
2070  if (!FExpr->isAscii()) {
2071    Diag(FExpr->getLocStart(),
2072         diag::warn_format_string_is_wide_literal)
2073    << OrigFormatExpr->getSourceRange();
2074    return;
2075  }
2076
2077  // Str - The format string.  NOTE: this is NOT null-terminated!
2078  StringRef StrRef = FExpr->getString();
2079  const char *Str = StrRef.data();
2080  unsigned StrLen = StrRef.size();
2081  const unsigned numDataArgs = TheCall->getNumArgs() - firstDataArg;
2082
2083  // CHECK: empty format string?
2084  if (StrLen == 0 && numDataArgs > 0) {
2085    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
2086    << OrigFormatExpr->getSourceRange();
2087    return;
2088  }
2089
2090  if (isPrintf) {
2091    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2092                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2093                         Str, HasVAListArg, TheCall, format_idx);
2094
2095    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
2096      H.DoneProcessing();
2097  }
2098  else {
2099    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2100                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2101                        Str, HasVAListArg, TheCall, format_idx);
2102
2103    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
2104      H.DoneProcessing();
2105  }
2106}
2107
2108//===--- CHECK: Standard memory functions ---------------------------------===//
2109
2110/// \brief Determine whether the given type is a dynamic class type (e.g.,
2111/// whether it has a vtable).
2112static bool isDynamicClassType(QualType T) {
2113  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2114    if (CXXRecordDecl *Definition = Record->getDefinition())
2115      if (Definition->isDynamicClass())
2116        return true;
2117
2118  return false;
2119}
2120
2121/// \brief If E is a sizeof expression, returns its argument expression,
2122/// otherwise returns NULL.
2123static const Expr *getSizeOfExprArg(const Expr* E) {
2124  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2125      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2126    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2127      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2128
2129  return 0;
2130}
2131
2132/// \brief If E is a sizeof expression, returns its argument type.
2133static QualType getSizeOfArgType(const Expr* E) {
2134  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2135      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2136    if (SizeOf->getKind() == clang::UETT_SizeOf)
2137      return SizeOf->getTypeOfArgument();
2138
2139  return QualType();
2140}
2141
2142/// \brief Check for dangerous or invalid arguments to memset().
2143///
2144/// This issues warnings on known problematic, dangerous or unspecified
2145/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2146/// function calls.
2147///
2148/// \param Call The call expression to diagnose.
2149void Sema::CheckMemaccessArguments(const CallExpr *Call,
2150                                   CheckedMemoryFunction CMF,
2151                                   IdentifierInfo *FnName) {
2152  // It is possible to have a non-standard definition of memset.  Validate
2153  // we have enough arguments, and if not, abort further checking.
2154  unsigned ExpectedNumArgs = (CMF == CMF_Strndup ? 2 : 3);
2155  if (Call->getNumArgs() < ExpectedNumArgs)
2156    return;
2157
2158  unsigned LastArg = (CMF == CMF_Memset || CMF == CMF_Strndup ? 1 : 2);
2159  unsigned LenArg = (CMF == CMF_Strndup ? 1 : 2);
2160  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2161
2162  // We have special checking when the length is a sizeof expression.
2163  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2164  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2165  llvm::FoldingSetNodeID SizeOfArgID;
2166
2167  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2168    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2169    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2170
2171    QualType DestTy = Dest->getType();
2172    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2173      QualType PointeeTy = DestPtrTy->getPointeeType();
2174
2175      // Never warn about void type pointers. This can be used to suppress
2176      // false positives.
2177      if (PointeeTy->isVoidType())
2178        continue;
2179
2180      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2181      // actually comparing the expressions for equality. Because computing the
2182      // expression IDs can be expensive, we only do this if the diagnostic is
2183      // enabled.
2184      if (SizeOfArg &&
2185          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2186                                   SizeOfArg->getExprLoc())) {
2187        // We only compute IDs for expressions if the warning is enabled, and
2188        // cache the sizeof arg's ID.
2189        if (SizeOfArgID == llvm::FoldingSetNodeID())
2190          SizeOfArg->Profile(SizeOfArgID, Context, true);
2191        llvm::FoldingSetNodeID DestID;
2192        Dest->Profile(DestID, Context, true);
2193        if (DestID == SizeOfArgID) {
2194          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2195          //       over sizeof(src) as well.
2196          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2197          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2198            if (UnaryOp->getOpcode() == UO_AddrOf)
2199              ActionIdx = 1; // If its an address-of operator, just remove it.
2200          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2201            ActionIdx = 2; // If the pointee's size is sizeof(char),
2202                           // suggest an explicit length.
2203          unsigned DestSrcSelect = (CMF == CMF_Strndup ? 1 : ArgIdx);
2204          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2205                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2206                                << FnName << DestSrcSelect << ActionIdx
2207                                << Dest->getSourceRange()
2208                                << SizeOfArg->getSourceRange());
2209          break;
2210        }
2211      }
2212
2213      // Also check for cases where the sizeof argument is the exact same
2214      // type as the memory argument, and where it points to a user-defined
2215      // record type.
2216      if (SizeOfArgTy != QualType()) {
2217        if (PointeeTy->isRecordType() &&
2218            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2219          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2220                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2221                                << FnName << SizeOfArgTy << ArgIdx
2222                                << PointeeTy << Dest->getSourceRange()
2223                                << LenExpr->getSourceRange());
2224          break;
2225        }
2226      }
2227
2228      // Always complain about dynamic classes.
2229      if (isDynamicClassType(PointeeTy))
2230        DiagRuntimeBehavior(
2231          Dest->getExprLoc(), Dest,
2232          PDiag(diag::warn_dyn_class_memaccess)
2233            << (CMF == CMF_Memcmp ? ArgIdx + 2 : ArgIdx) << FnName << PointeeTy
2234            // "overwritten" if we're warning about the destination for any call
2235            // but memcmp; otherwise a verb appropriate to the call.
2236            << (ArgIdx == 0 && CMF != CMF_Memcmp ? 0 : (unsigned)CMF)
2237            << Call->getCallee()->getSourceRange());
2238      else if (PointeeTy.hasNonTrivialObjCLifetime() && CMF != CMF_Memset)
2239        DiagRuntimeBehavior(
2240          Dest->getExprLoc(), Dest,
2241          PDiag(diag::warn_arc_object_memaccess)
2242            << ArgIdx << FnName << PointeeTy
2243            << Call->getCallee()->getSourceRange());
2244      else
2245        continue;
2246
2247      DiagRuntimeBehavior(
2248        Dest->getExprLoc(), Dest,
2249        PDiag(diag::note_bad_memaccess_silence)
2250          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2251      break;
2252    }
2253  }
2254}
2255
2256// A little helper routine: ignore addition and subtraction of integer literals.
2257// This intentionally does not ignore all integer constant expressions because
2258// we don't want to remove sizeof().
2259static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2260  Ex = Ex->IgnoreParenCasts();
2261
2262  for (;;) {
2263    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2264    if (!BO || !BO->isAdditiveOp())
2265      break;
2266
2267    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2268    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2269
2270    if (isa<IntegerLiteral>(RHS))
2271      Ex = LHS;
2272    else if (isa<IntegerLiteral>(LHS))
2273      Ex = RHS;
2274    else
2275      break;
2276  }
2277
2278  return Ex;
2279}
2280
2281// Warn if the user has made the 'size' argument to strlcpy or strlcat
2282// be the size of the source, instead of the destination.
2283void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2284                                    IdentifierInfo *FnName) {
2285
2286  // Don't crash if the user has the wrong number of arguments
2287  if (Call->getNumArgs() != 3)
2288    return;
2289
2290  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2291  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2292  const Expr *CompareWithSrc = NULL;
2293
2294  // Look for 'strlcpy(dst, x, sizeof(x))'
2295  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2296    CompareWithSrc = Ex;
2297  else {
2298    // Look for 'strlcpy(dst, x, strlen(x))'
2299    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2300      if (SizeCall->isBuiltinCall(Context) == Builtin::BIstrlen
2301          && SizeCall->getNumArgs() == 1)
2302        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2303    }
2304  }
2305
2306  if (!CompareWithSrc)
2307    return;
2308
2309  // Determine if the argument to sizeof/strlen is equal to the source
2310  // argument.  In principle there's all kinds of things you could do
2311  // here, for instance creating an == expression and evaluating it with
2312  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2313  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2314  if (!SrcArgDRE)
2315    return;
2316
2317  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2318  if (!CompareWithSrcDRE ||
2319      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2320    return;
2321
2322  const Expr *OriginalSizeArg = Call->getArg(2);
2323  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2324    << OriginalSizeArg->getSourceRange() << FnName;
2325
2326  // Output a FIXIT hint if the destination is an array (rather than a
2327  // pointer to an array).  This could be enhanced to handle some
2328  // pointers if we know the actual size, like if DstArg is 'array+2'
2329  // we could say 'sizeof(array)-2'.
2330  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2331  QualType DstArgTy = DstArg->getType();
2332
2333  // Only handle constant-sized or VLAs, but not flexible members.
2334  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2335    // Only issue the FIXIT for arrays of size > 1.
2336    if (CAT->getSize().getSExtValue() <= 1)
2337      return;
2338  } else if (!DstArgTy->isVariableArrayType()) {
2339    return;
2340  }
2341
2342  llvm::SmallString<128> sizeString;
2343  llvm::raw_svector_ostream OS(sizeString);
2344  OS << "sizeof(";
2345  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2346  OS << ")";
2347
2348  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2349    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2350                                    OS.str());
2351}
2352
2353//===--- CHECK: Return Address of Stack Variable --------------------------===//
2354
2355static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2356static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2357
2358/// CheckReturnStackAddr - Check if a return statement returns the address
2359///   of a stack variable.
2360void
2361Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2362                           SourceLocation ReturnLoc) {
2363
2364  Expr *stackE = 0;
2365  SmallVector<DeclRefExpr *, 8> refVars;
2366
2367  // Perform checking for returned stack addresses, local blocks,
2368  // label addresses or references to temporaries.
2369  if (lhsType->isPointerType() ||
2370      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2371    stackE = EvalAddr(RetValExp, refVars);
2372  } else if (lhsType->isReferenceType()) {
2373    stackE = EvalVal(RetValExp, refVars);
2374  }
2375
2376  if (stackE == 0)
2377    return; // Nothing suspicious was found.
2378
2379  SourceLocation diagLoc;
2380  SourceRange diagRange;
2381  if (refVars.empty()) {
2382    diagLoc = stackE->getLocStart();
2383    diagRange = stackE->getSourceRange();
2384  } else {
2385    // We followed through a reference variable. 'stackE' contains the
2386    // problematic expression but we will warn at the return statement pointing
2387    // at the reference variable. We will later display the "trail" of
2388    // reference variables using notes.
2389    diagLoc = refVars[0]->getLocStart();
2390    diagRange = refVars[0]->getSourceRange();
2391  }
2392
2393  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2394    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2395                                             : diag::warn_ret_stack_addr)
2396     << DR->getDecl()->getDeclName() << diagRange;
2397  } else if (isa<BlockExpr>(stackE)) { // local block.
2398    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2399  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2400    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2401  } else { // local temporary.
2402    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2403                                             : diag::warn_ret_local_temp_addr)
2404     << diagRange;
2405  }
2406
2407  // Display the "trail" of reference variables that we followed until we
2408  // found the problematic expression using notes.
2409  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2410    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2411    // If this var binds to another reference var, show the range of the next
2412    // var, otherwise the var binds to the problematic expression, in which case
2413    // show the range of the expression.
2414    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2415                                  : stackE->getSourceRange();
2416    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2417      << VD->getDeclName() << range;
2418  }
2419}
2420
2421/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2422///  check if the expression in a return statement evaluates to an address
2423///  to a location on the stack, a local block, an address of a label, or a
2424///  reference to local temporary. The recursion is used to traverse the
2425///  AST of the return expression, with recursion backtracking when we
2426///  encounter a subexpression that (1) clearly does not lead to one of the
2427///  above problematic expressions (2) is something we cannot determine leads to
2428///  a problematic expression based on such local checking.
2429///
2430///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2431///  the expression that they point to. Such variables are added to the
2432///  'refVars' vector so that we know what the reference variable "trail" was.
2433///
2434///  EvalAddr processes expressions that are pointers that are used as
2435///  references (and not L-values).  EvalVal handles all other values.
2436///  At the base case of the recursion is a check for the above problematic
2437///  expressions.
2438///
2439///  This implementation handles:
2440///
2441///   * pointer-to-pointer casts
2442///   * implicit conversions from array references to pointers
2443///   * taking the address of fields
2444///   * arbitrary interplay between "&" and "*" operators
2445///   * pointer arithmetic from an address of a stack variable
2446///   * taking the address of an array element where the array is on the stack
2447static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2448  if (E->isTypeDependent())
2449      return NULL;
2450
2451  // We should only be called for evaluating pointer expressions.
2452  assert((E->getType()->isAnyPointerType() ||
2453          E->getType()->isBlockPointerType() ||
2454          E->getType()->isObjCQualifiedIdType()) &&
2455         "EvalAddr only works on pointers");
2456
2457  E = E->IgnoreParens();
2458
2459  // Our "symbolic interpreter" is just a dispatch off the currently
2460  // viewed AST node.  We then recursively traverse the AST by calling
2461  // EvalAddr and EvalVal appropriately.
2462  switch (E->getStmtClass()) {
2463  case Stmt::DeclRefExprClass: {
2464    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2465
2466    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2467      // If this is a reference variable, follow through to the expression that
2468      // it points to.
2469      if (V->hasLocalStorage() &&
2470          V->getType()->isReferenceType() && V->hasInit()) {
2471        // Add the reference variable to the "trail".
2472        refVars.push_back(DR);
2473        return EvalAddr(V->getInit(), refVars);
2474      }
2475
2476    return NULL;
2477  }
2478
2479  case Stmt::UnaryOperatorClass: {
2480    // The only unary operator that make sense to handle here
2481    // is AddrOf.  All others don't make sense as pointers.
2482    UnaryOperator *U = cast<UnaryOperator>(E);
2483
2484    if (U->getOpcode() == UO_AddrOf)
2485      return EvalVal(U->getSubExpr(), refVars);
2486    else
2487      return NULL;
2488  }
2489
2490  case Stmt::BinaryOperatorClass: {
2491    // Handle pointer arithmetic.  All other binary operators are not valid
2492    // in this context.
2493    BinaryOperator *B = cast<BinaryOperator>(E);
2494    BinaryOperatorKind op = B->getOpcode();
2495
2496    if (op != BO_Add && op != BO_Sub)
2497      return NULL;
2498
2499    Expr *Base = B->getLHS();
2500
2501    // Determine which argument is the real pointer base.  It could be
2502    // the RHS argument instead of the LHS.
2503    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2504
2505    assert (Base->getType()->isPointerType());
2506    return EvalAddr(Base, refVars);
2507  }
2508
2509  // For conditional operators we need to see if either the LHS or RHS are
2510  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2511  case Stmt::ConditionalOperatorClass: {
2512    ConditionalOperator *C = cast<ConditionalOperator>(E);
2513
2514    // Handle the GNU extension for missing LHS.
2515    if (Expr *lhsExpr = C->getLHS()) {
2516    // In C++, we can have a throw-expression, which has 'void' type.
2517      if (!lhsExpr->getType()->isVoidType())
2518        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2519          return LHS;
2520    }
2521
2522    // In C++, we can have a throw-expression, which has 'void' type.
2523    if (C->getRHS()->getType()->isVoidType())
2524      return NULL;
2525
2526    return EvalAddr(C->getRHS(), refVars);
2527  }
2528
2529  case Stmt::BlockExprClass:
2530    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2531      return E; // local block.
2532    return NULL;
2533
2534  case Stmt::AddrLabelExprClass:
2535    return E; // address of label.
2536
2537  // For casts, we need to handle conversions from arrays to
2538  // pointer values, and pointer-to-pointer conversions.
2539  case Stmt::ImplicitCastExprClass:
2540  case Stmt::CStyleCastExprClass:
2541  case Stmt::CXXFunctionalCastExprClass:
2542  case Stmt::ObjCBridgedCastExprClass: {
2543    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2544    QualType T = SubExpr->getType();
2545
2546    if (SubExpr->getType()->isPointerType() ||
2547        SubExpr->getType()->isBlockPointerType() ||
2548        SubExpr->getType()->isObjCQualifiedIdType())
2549      return EvalAddr(SubExpr, refVars);
2550    else if (T->isArrayType())
2551      return EvalVal(SubExpr, refVars);
2552    else
2553      return 0;
2554  }
2555
2556  // C++ casts.  For dynamic casts, static casts, and const casts, we
2557  // are always converting from a pointer-to-pointer, so we just blow
2558  // through the cast.  In the case the dynamic cast doesn't fail (and
2559  // return NULL), we take the conservative route and report cases
2560  // where we return the address of a stack variable.  For Reinterpre
2561  // FIXME: The comment about is wrong; we're not always converting
2562  // from pointer to pointer. I'm guessing that this code should also
2563  // handle references to objects.
2564  case Stmt::CXXStaticCastExprClass:
2565  case Stmt::CXXDynamicCastExprClass:
2566  case Stmt::CXXConstCastExprClass:
2567  case Stmt::CXXReinterpretCastExprClass: {
2568      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2569      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2570        return EvalAddr(S, refVars);
2571      else
2572        return NULL;
2573  }
2574
2575  case Stmt::MaterializeTemporaryExprClass:
2576    if (Expr *Result = EvalAddr(
2577                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2578                                refVars))
2579      return Result;
2580
2581    return E;
2582
2583  // Everything else: we simply don't reason about them.
2584  default:
2585    return NULL;
2586  }
2587}
2588
2589
2590///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2591///   See the comments for EvalAddr for more details.
2592static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2593do {
2594  // We should only be called for evaluating non-pointer expressions, or
2595  // expressions with a pointer type that are not used as references but instead
2596  // are l-values (e.g., DeclRefExpr with a pointer type).
2597
2598  // Our "symbolic interpreter" is just a dispatch off the currently
2599  // viewed AST node.  We then recursively traverse the AST by calling
2600  // EvalAddr and EvalVal appropriately.
2601
2602  E = E->IgnoreParens();
2603  switch (E->getStmtClass()) {
2604  case Stmt::ImplicitCastExprClass: {
2605    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2606    if (IE->getValueKind() == VK_LValue) {
2607      E = IE->getSubExpr();
2608      continue;
2609    }
2610    return NULL;
2611  }
2612
2613  case Stmt::DeclRefExprClass: {
2614    // When we hit a DeclRefExpr we are looking at code that refers to a
2615    // variable's name. If it's not a reference variable we check if it has
2616    // local storage within the function, and if so, return the expression.
2617    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2618
2619    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2620      if (V->hasLocalStorage()) {
2621        if (!V->getType()->isReferenceType())
2622          return DR;
2623
2624        // Reference variable, follow through to the expression that
2625        // it points to.
2626        if (V->hasInit()) {
2627          // Add the reference variable to the "trail".
2628          refVars.push_back(DR);
2629          return EvalVal(V->getInit(), refVars);
2630        }
2631      }
2632
2633    return NULL;
2634  }
2635
2636  case Stmt::UnaryOperatorClass: {
2637    // The only unary operator that make sense to handle here
2638    // is Deref.  All others don't resolve to a "name."  This includes
2639    // handling all sorts of rvalues passed to a unary operator.
2640    UnaryOperator *U = cast<UnaryOperator>(E);
2641
2642    if (U->getOpcode() == UO_Deref)
2643      return EvalAddr(U->getSubExpr(), refVars);
2644
2645    return NULL;
2646  }
2647
2648  case Stmt::ArraySubscriptExprClass: {
2649    // Array subscripts are potential references to data on the stack.  We
2650    // retrieve the DeclRefExpr* for the array variable if it indeed
2651    // has local storage.
2652    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2653  }
2654
2655  case Stmt::ConditionalOperatorClass: {
2656    // For conditional operators we need to see if either the LHS or RHS are
2657    // non-NULL Expr's.  If one is non-NULL, we return it.
2658    ConditionalOperator *C = cast<ConditionalOperator>(E);
2659
2660    // Handle the GNU extension for missing LHS.
2661    if (Expr *lhsExpr = C->getLHS())
2662      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2663        return LHS;
2664
2665    return EvalVal(C->getRHS(), refVars);
2666  }
2667
2668  // Accesses to members are potential references to data on the stack.
2669  case Stmt::MemberExprClass: {
2670    MemberExpr *M = cast<MemberExpr>(E);
2671
2672    // Check for indirect access.  We only want direct field accesses.
2673    if (M->isArrow())
2674      return NULL;
2675
2676    // Check whether the member type is itself a reference, in which case
2677    // we're not going to refer to the member, but to what the member refers to.
2678    if (M->getMemberDecl()->getType()->isReferenceType())
2679      return NULL;
2680
2681    return EvalVal(M->getBase(), refVars);
2682  }
2683
2684  case Stmt::MaterializeTemporaryExprClass:
2685    if (Expr *Result = EvalVal(
2686                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2687                               refVars))
2688      return Result;
2689
2690    return E;
2691
2692  default:
2693    // Check that we don't return or take the address of a reference to a
2694    // temporary. This is only useful in C++.
2695    if (!E->isTypeDependent() && E->isRValue())
2696      return E;
2697
2698    // Everything else: we simply don't reason about them.
2699    return NULL;
2700  }
2701} while (true);
2702}
2703
2704//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2705
2706/// Check for comparisons of floating point operands using != and ==.
2707/// Issue a warning if these are no self-comparisons, as they are not likely
2708/// to do what the programmer intended.
2709void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
2710  bool EmitWarning = true;
2711
2712  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
2713  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
2714
2715  // Special case: check for x == x (which is OK).
2716  // Do not emit warnings for such cases.
2717  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2718    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2719      if (DRL->getDecl() == DRR->getDecl())
2720        EmitWarning = false;
2721
2722
2723  // Special case: check for comparisons against literals that can be exactly
2724  //  represented by APFloat.  In such cases, do not emit a warning.  This
2725  //  is a heuristic: often comparison against such literals are used to
2726  //  detect if a value in a variable has not changed.  This clearly can
2727  //  lead to false negatives.
2728  if (EmitWarning) {
2729    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2730      if (FLL->isExact())
2731        EmitWarning = false;
2732    } else
2733      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2734        if (FLR->isExact())
2735          EmitWarning = false;
2736    }
2737  }
2738
2739  // Check for comparisons with builtin types.
2740  if (EmitWarning)
2741    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2742      if (CL->isBuiltinCall(Context))
2743        EmitWarning = false;
2744
2745  if (EmitWarning)
2746    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2747      if (CR->isBuiltinCall(Context))
2748        EmitWarning = false;
2749
2750  // Emit the diagnostic.
2751  if (EmitWarning)
2752    Diag(Loc, diag::warn_floatingpoint_eq)
2753      << LHS->getSourceRange() << RHS->getSourceRange();
2754}
2755
2756//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2757//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2758
2759namespace {
2760
2761/// Structure recording the 'active' range of an integer-valued
2762/// expression.
2763struct IntRange {
2764  /// The number of bits active in the int.
2765  unsigned Width;
2766
2767  /// True if the int is known not to have negative values.
2768  bool NonNegative;
2769
2770  IntRange(unsigned Width, bool NonNegative)
2771    : Width(Width), NonNegative(NonNegative)
2772  {}
2773
2774  /// Returns the range of the bool type.
2775  static IntRange forBoolType() {
2776    return IntRange(1, true);
2777  }
2778
2779  /// Returns the range of an opaque value of the given integral type.
2780  static IntRange forValueOfType(ASTContext &C, QualType T) {
2781    return forValueOfCanonicalType(C,
2782                          T->getCanonicalTypeInternal().getTypePtr());
2783  }
2784
2785  /// Returns the range of an opaque value of a canonical integral type.
2786  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2787    assert(T->isCanonicalUnqualified());
2788
2789    if (const VectorType *VT = dyn_cast<VectorType>(T))
2790      T = VT->getElementType().getTypePtr();
2791    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2792      T = CT->getElementType().getTypePtr();
2793
2794    // For enum types, use the known bit width of the enumerators.
2795    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2796      EnumDecl *Enum = ET->getDecl();
2797      if (!Enum->isCompleteDefinition())
2798        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2799
2800      unsigned NumPositive = Enum->getNumPositiveBits();
2801      unsigned NumNegative = Enum->getNumNegativeBits();
2802
2803      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2804    }
2805
2806    const BuiltinType *BT = cast<BuiltinType>(T);
2807    assert(BT->isInteger());
2808
2809    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2810  }
2811
2812  /// Returns the "target" range of a canonical integral type, i.e.
2813  /// the range of values expressible in the type.
2814  ///
2815  /// This matches forValueOfCanonicalType except that enums have the
2816  /// full range of their type, not the range of their enumerators.
2817  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2818    assert(T->isCanonicalUnqualified());
2819
2820    if (const VectorType *VT = dyn_cast<VectorType>(T))
2821      T = VT->getElementType().getTypePtr();
2822    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2823      T = CT->getElementType().getTypePtr();
2824    if (const EnumType *ET = dyn_cast<EnumType>(T))
2825      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
2826
2827    const BuiltinType *BT = cast<BuiltinType>(T);
2828    assert(BT->isInteger());
2829
2830    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2831  }
2832
2833  /// Returns the supremum of two ranges: i.e. their conservative merge.
2834  static IntRange join(IntRange L, IntRange R) {
2835    return IntRange(std::max(L.Width, R.Width),
2836                    L.NonNegative && R.NonNegative);
2837  }
2838
2839  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2840  static IntRange meet(IntRange L, IntRange R) {
2841    return IntRange(std::min(L.Width, R.Width),
2842                    L.NonNegative || R.NonNegative);
2843  }
2844};
2845
2846IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2847  if (value.isSigned() && value.isNegative())
2848    return IntRange(value.getMinSignedBits(), false);
2849
2850  if (value.getBitWidth() > MaxWidth)
2851    value = value.trunc(MaxWidth);
2852
2853  // isNonNegative() just checks the sign bit without considering
2854  // signedness.
2855  return IntRange(value.getActiveBits(), true);
2856}
2857
2858IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2859                       unsigned MaxWidth) {
2860  if (result.isInt())
2861    return GetValueRange(C, result.getInt(), MaxWidth);
2862
2863  if (result.isVector()) {
2864    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2865    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2866      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2867      R = IntRange::join(R, El);
2868    }
2869    return R;
2870  }
2871
2872  if (result.isComplexInt()) {
2873    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2874    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2875    return IntRange::join(R, I);
2876  }
2877
2878  // This can happen with lossless casts to intptr_t of "based" lvalues.
2879  // Assume it might use arbitrary bits.
2880  // FIXME: The only reason we need to pass the type in here is to get
2881  // the sign right on this one case.  It would be nice if APValue
2882  // preserved this.
2883  assert(result.isLValue());
2884  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
2885}
2886
2887/// Pseudo-evaluate the given integer expression, estimating the
2888/// range of values it might take.
2889///
2890/// \param MaxWidth - the width to which the value will be truncated
2891IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2892  E = E->IgnoreParens();
2893
2894  // Try a full evaluation first.
2895  Expr::EvalResult result;
2896  if (E->Evaluate(result, C))
2897    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2898
2899  // I think we only want to look through implicit casts here; if the
2900  // user has an explicit widening cast, we should treat the value as
2901  // being of the new, wider type.
2902  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2903    if (CE->getCastKind() == CK_NoOp)
2904      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2905
2906    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2907
2908    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2909
2910    // Assume that non-integer casts can span the full range of the type.
2911    if (!isIntegerCast)
2912      return OutputTypeRange;
2913
2914    IntRange SubRange
2915      = GetExprRange(C, CE->getSubExpr(),
2916                     std::min(MaxWidth, OutputTypeRange.Width));
2917
2918    // Bail out if the subexpr's range is as wide as the cast type.
2919    if (SubRange.Width >= OutputTypeRange.Width)
2920      return OutputTypeRange;
2921
2922    // Otherwise, we take the smaller width, and we're non-negative if
2923    // either the output type or the subexpr is.
2924    return IntRange(SubRange.Width,
2925                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2926  }
2927
2928  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2929    // If we can fold the condition, just take that operand.
2930    bool CondResult;
2931    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2932      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2933                                        : CO->getFalseExpr(),
2934                          MaxWidth);
2935
2936    // Otherwise, conservatively merge.
2937    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2938    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2939    return IntRange::join(L, R);
2940  }
2941
2942  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2943    switch (BO->getOpcode()) {
2944
2945    // Boolean-valued operations are single-bit and positive.
2946    case BO_LAnd:
2947    case BO_LOr:
2948    case BO_LT:
2949    case BO_GT:
2950    case BO_LE:
2951    case BO_GE:
2952    case BO_EQ:
2953    case BO_NE:
2954      return IntRange::forBoolType();
2955
2956    // The type of the assignments is the type of the LHS, so the RHS
2957    // is not necessarily the same type.
2958    case BO_MulAssign:
2959    case BO_DivAssign:
2960    case BO_RemAssign:
2961    case BO_AddAssign:
2962    case BO_SubAssign:
2963    case BO_XorAssign:
2964    case BO_OrAssign:
2965      // TODO: bitfields?
2966      return IntRange::forValueOfType(C, E->getType());
2967
2968    // Simple assignments just pass through the RHS, which will have
2969    // been coerced to the LHS type.
2970    case BO_Assign:
2971      // TODO: bitfields?
2972      return GetExprRange(C, BO->getRHS(), MaxWidth);
2973
2974    // Operations with opaque sources are black-listed.
2975    case BO_PtrMemD:
2976    case BO_PtrMemI:
2977      return IntRange::forValueOfType(C, E->getType());
2978
2979    // Bitwise-and uses the *infinum* of the two source ranges.
2980    case BO_And:
2981    case BO_AndAssign:
2982      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2983                            GetExprRange(C, BO->getRHS(), MaxWidth));
2984
2985    // Left shift gets black-listed based on a judgement call.
2986    case BO_Shl:
2987      // ...except that we want to treat '1 << (blah)' as logically
2988      // positive.  It's an important idiom.
2989      if (IntegerLiteral *I
2990            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2991        if (I->getValue() == 1) {
2992          IntRange R = IntRange::forValueOfType(C, E->getType());
2993          return IntRange(R.Width, /*NonNegative*/ true);
2994        }
2995      }
2996      // fallthrough
2997
2998    case BO_ShlAssign:
2999      return IntRange::forValueOfType(C, E->getType());
3000
3001    // Right shift by a constant can narrow its left argument.
3002    case BO_Shr:
3003    case BO_ShrAssign: {
3004      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3005
3006      // If the shift amount is a positive constant, drop the width by
3007      // that much.
3008      llvm::APSInt shift;
3009      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3010          shift.isNonNegative()) {
3011        unsigned zext = shift.getZExtValue();
3012        if (zext >= L.Width)
3013          L.Width = (L.NonNegative ? 0 : 1);
3014        else
3015          L.Width -= zext;
3016      }
3017
3018      return L;
3019    }
3020
3021    // Comma acts as its right operand.
3022    case BO_Comma:
3023      return GetExprRange(C, BO->getRHS(), MaxWidth);
3024
3025    // Black-list pointer subtractions.
3026    case BO_Sub:
3027      if (BO->getLHS()->getType()->isPointerType())
3028        return IntRange::forValueOfType(C, E->getType());
3029      break;
3030
3031    // The width of a division result is mostly determined by the size
3032    // of the LHS.
3033    case BO_Div: {
3034      // Don't 'pre-truncate' the operands.
3035      unsigned opWidth = C.getIntWidth(E->getType());
3036      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3037
3038      // If the divisor is constant, use that.
3039      llvm::APSInt divisor;
3040      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3041        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3042        if (log2 >= L.Width)
3043          L.Width = (L.NonNegative ? 0 : 1);
3044        else
3045          L.Width = std::min(L.Width - log2, MaxWidth);
3046        return L;
3047      }
3048
3049      // Otherwise, just use the LHS's width.
3050      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3051      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3052    }
3053
3054    // The result of a remainder can't be larger than the result of
3055    // either side.
3056    case BO_Rem: {
3057      // Don't 'pre-truncate' the operands.
3058      unsigned opWidth = C.getIntWidth(E->getType());
3059      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3060      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3061
3062      IntRange meet = IntRange::meet(L, R);
3063      meet.Width = std::min(meet.Width, MaxWidth);
3064      return meet;
3065    }
3066
3067    // The default behavior is okay for these.
3068    case BO_Mul:
3069    case BO_Add:
3070    case BO_Xor:
3071    case BO_Or:
3072      break;
3073    }
3074
3075    // The default case is to treat the operation as if it were closed
3076    // on the narrowest type that encompasses both operands.
3077    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3078    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3079    return IntRange::join(L, R);
3080  }
3081
3082  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3083    switch (UO->getOpcode()) {
3084    // Boolean-valued operations are white-listed.
3085    case UO_LNot:
3086      return IntRange::forBoolType();
3087
3088    // Operations with opaque sources are black-listed.
3089    case UO_Deref:
3090    case UO_AddrOf: // should be impossible
3091      return IntRange::forValueOfType(C, E->getType());
3092
3093    default:
3094      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3095    }
3096  }
3097
3098  if (dyn_cast<OffsetOfExpr>(E)) {
3099    IntRange::forValueOfType(C, E->getType());
3100  }
3101
3102  if (FieldDecl *BitField = E->getBitField())
3103    return IntRange(BitField->getBitWidthValue(C),
3104                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3105
3106  return IntRange::forValueOfType(C, E->getType());
3107}
3108
3109IntRange GetExprRange(ASTContext &C, Expr *E) {
3110  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3111}
3112
3113/// Checks whether the given value, which currently has the given
3114/// source semantics, has the same value when coerced through the
3115/// target semantics.
3116bool IsSameFloatAfterCast(const llvm::APFloat &value,
3117                          const llvm::fltSemantics &Src,
3118                          const llvm::fltSemantics &Tgt) {
3119  llvm::APFloat truncated = value;
3120
3121  bool ignored;
3122  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3123  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3124
3125  return truncated.bitwiseIsEqual(value);
3126}
3127
3128/// Checks whether the given value, which currently has the given
3129/// source semantics, has the same value when coerced through the
3130/// target semantics.
3131///
3132/// The value might be a vector of floats (or a complex number).
3133bool IsSameFloatAfterCast(const APValue &value,
3134                          const llvm::fltSemantics &Src,
3135                          const llvm::fltSemantics &Tgt) {
3136  if (value.isFloat())
3137    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3138
3139  if (value.isVector()) {
3140    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3141      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3142        return false;
3143    return true;
3144  }
3145
3146  assert(value.isComplexFloat());
3147  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3148          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3149}
3150
3151void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3152
3153static bool IsZero(Sema &S, Expr *E) {
3154  // Suppress cases where we are comparing against an enum constant.
3155  if (const DeclRefExpr *DR =
3156      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3157    if (isa<EnumConstantDecl>(DR->getDecl()))
3158      return false;
3159
3160  // Suppress cases where the '0' value is expanded from a macro.
3161  if (E->getLocStart().isMacroID())
3162    return false;
3163
3164  llvm::APSInt Value;
3165  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3166}
3167
3168static bool HasEnumType(Expr *E) {
3169  // Strip off implicit integral promotions.
3170  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3171    if (ICE->getCastKind() != CK_IntegralCast &&
3172        ICE->getCastKind() != CK_NoOp)
3173      break;
3174    E = ICE->getSubExpr();
3175  }
3176
3177  return E->getType()->isEnumeralType();
3178}
3179
3180void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3181  BinaryOperatorKind op = E->getOpcode();
3182  if (E->isValueDependent())
3183    return;
3184
3185  if (op == BO_LT && IsZero(S, E->getRHS())) {
3186    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3187      << "< 0" << "false" << HasEnumType(E->getLHS())
3188      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3189  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3190    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3191      << ">= 0" << "true" << HasEnumType(E->getLHS())
3192      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3193  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3194    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3195      << "0 >" << "false" << HasEnumType(E->getRHS())
3196      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3197  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3198    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3199      << "0 <=" << "true" << HasEnumType(E->getRHS())
3200      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3201  }
3202}
3203
3204/// Analyze the operands of the given comparison.  Implements the
3205/// fallback case from AnalyzeComparison.
3206void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3207  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3208  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3209}
3210
3211/// \brief Implements -Wsign-compare.
3212///
3213/// \param E the binary operator to check for warnings
3214void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3215  // The type the comparison is being performed in.
3216  QualType T = E->getLHS()->getType();
3217  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3218         && "comparison with mismatched types");
3219
3220  // We don't do anything special if this isn't an unsigned integral
3221  // comparison:  we're only interested in integral comparisons, and
3222  // signed comparisons only happen in cases we don't care to warn about.
3223  //
3224  // We also don't care about value-dependent expressions or expressions
3225  // whose result is a constant.
3226  if (!T->hasUnsignedIntegerRepresentation()
3227      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3228    return AnalyzeImpConvsInComparison(S, E);
3229
3230  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3231  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3232
3233  // Check to see if one of the (unmodified) operands is of different
3234  // signedness.
3235  Expr *signedOperand, *unsignedOperand;
3236  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3237    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3238           "unsigned comparison between two signed integer expressions?");
3239    signedOperand = LHS;
3240    unsignedOperand = RHS;
3241  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3242    signedOperand = RHS;
3243    unsignedOperand = LHS;
3244  } else {
3245    CheckTrivialUnsignedComparison(S, E);
3246    return AnalyzeImpConvsInComparison(S, E);
3247  }
3248
3249  // Otherwise, calculate the effective range of the signed operand.
3250  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3251
3252  // Go ahead and analyze implicit conversions in the operands.  Note
3253  // that we skip the implicit conversions on both sides.
3254  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3255  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3256
3257  // If the signed range is non-negative, -Wsign-compare won't fire,
3258  // but we should still check for comparisons which are always true
3259  // or false.
3260  if (signedRange.NonNegative)
3261    return CheckTrivialUnsignedComparison(S, E);
3262
3263  // For (in)equality comparisons, if the unsigned operand is a
3264  // constant which cannot collide with a overflowed signed operand,
3265  // then reinterpreting the signed operand as unsigned will not
3266  // change the result of the comparison.
3267  if (E->isEqualityOp()) {
3268    unsigned comparisonWidth = S.Context.getIntWidth(T);
3269    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3270
3271    // We should never be unable to prove that the unsigned operand is
3272    // non-negative.
3273    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3274
3275    if (unsignedRange.Width < comparisonWidth)
3276      return;
3277  }
3278
3279  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3280    << LHS->getType() << RHS->getType()
3281    << LHS->getSourceRange() << RHS->getSourceRange();
3282}
3283
3284/// Analyzes an attempt to assign the given value to a bitfield.
3285///
3286/// Returns true if there was something fishy about the attempt.
3287bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3288                               SourceLocation InitLoc) {
3289  assert(Bitfield->isBitField());
3290  if (Bitfield->isInvalidDecl())
3291    return false;
3292
3293  // White-list bool bitfields.
3294  if (Bitfield->getType()->isBooleanType())
3295    return false;
3296
3297  // Ignore value- or type-dependent expressions.
3298  if (Bitfield->getBitWidth()->isValueDependent() ||
3299      Bitfield->getBitWidth()->isTypeDependent() ||
3300      Init->isValueDependent() ||
3301      Init->isTypeDependent())
3302    return false;
3303
3304  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3305
3306  Expr::EvalResult InitValue;
3307  if (!OriginalInit->Evaluate(InitValue, S.Context) ||
3308      !InitValue.Val.isInt())
3309    return false;
3310
3311  const llvm::APSInt &Value = InitValue.Val.getInt();
3312  unsigned OriginalWidth = Value.getBitWidth();
3313  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
3314
3315  if (OriginalWidth <= FieldWidth)
3316    return false;
3317
3318  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3319
3320  // It's fairly common to write values into signed bitfields
3321  // that, if sign-extended, would end up becoming a different
3322  // value.  We don't want to warn about that.
3323  if (Value.isSigned() && Value.isNegative())
3324    TruncatedValue = TruncatedValue.sext(OriginalWidth);
3325  else
3326    TruncatedValue = TruncatedValue.zext(OriginalWidth);
3327
3328  if (Value == TruncatedValue)
3329    return false;
3330
3331  std::string PrettyValue = Value.toString(10);
3332  std::string PrettyTrunc = TruncatedValue.toString(10);
3333
3334  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3335    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3336    << Init->getSourceRange();
3337
3338  return true;
3339}
3340
3341/// Analyze the given simple or compound assignment for warning-worthy
3342/// operations.
3343void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3344  // Just recurse on the LHS.
3345  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3346
3347  // We want to recurse on the RHS as normal unless we're assigning to
3348  // a bitfield.
3349  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3350    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3351                                  E->getOperatorLoc())) {
3352      // Recurse, ignoring any implicit conversions on the RHS.
3353      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3354                                        E->getOperatorLoc());
3355    }
3356  }
3357
3358  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3359}
3360
3361/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3362void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3363                     SourceLocation CContext, unsigned diag) {
3364  S.Diag(E->getExprLoc(), diag)
3365    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3366}
3367
3368/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3369void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3370                     unsigned diag) {
3371  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3372}
3373
3374/// Diagnose an implicit cast from a literal expression. Does not warn when the
3375/// cast wouldn't lose information.
3376void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3377                                    SourceLocation CContext) {
3378  // Try to convert the literal exactly to an integer. If we can, don't warn.
3379  bool isExact = false;
3380  const llvm::APFloat &Value = FL->getValue();
3381  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3382                            T->hasUnsignedIntegerRepresentation());
3383  if (Value.convertToInteger(IntegerValue,
3384                             llvm::APFloat::rmTowardZero, &isExact)
3385      == llvm::APFloat::opOK && isExact)
3386    return;
3387
3388  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3389    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3390}
3391
3392std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3393  if (!Range.Width) return "0";
3394
3395  llvm::APSInt ValueInRange = Value;
3396  ValueInRange.setIsSigned(!Range.NonNegative);
3397  ValueInRange = ValueInRange.trunc(Range.Width);
3398  return ValueInRange.toString(10);
3399}
3400
3401static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
3402  SourceManager &smgr = S.Context.getSourceManager();
3403  return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
3404}
3405
3406void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3407                             SourceLocation CC, bool *ICContext = 0) {
3408  if (E->isTypeDependent() || E->isValueDependent()) return;
3409
3410  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3411  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3412  if (Source == Target) return;
3413  if (Target->isDependentType()) return;
3414
3415  // If the conversion context location is invalid don't complain. We also
3416  // don't want to emit a warning if the issue occurs from the expansion of
3417  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3418  // delay this check as long as possible. Once we detect we are in that
3419  // scenario, we just return.
3420  if (CC.isInvalid())
3421    return;
3422
3423  // Diagnose implicit casts to bool.
3424  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
3425    if (isa<StringLiteral>(E))
3426      // Warn on string literal to bool.  Checks for string literals in logical
3427      // expressions, for instances, assert(0 && "error here"), is prevented
3428      // by a check in AnalyzeImplicitConversions().
3429      return DiagnoseImpCast(S, E, T, CC,
3430                             diag::warn_impcast_string_literal_to_bool);
3431    return; // Other casts to bool are not checked.
3432  }
3433
3434  // Strip vector types.
3435  if (isa<VectorType>(Source)) {
3436    if (!isa<VectorType>(Target)) {
3437      if (isFromSystemMacro(S, CC))
3438        return;
3439      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3440    }
3441
3442    // If the vector cast is cast between two vectors of the same size, it is
3443    // a bitcast, not a conversion.
3444    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3445      return;
3446
3447    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3448    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3449  }
3450
3451  // Strip complex types.
3452  if (isa<ComplexType>(Source)) {
3453    if (!isa<ComplexType>(Target)) {
3454      if (isFromSystemMacro(S, CC))
3455        return;
3456
3457      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3458    }
3459
3460    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3461    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3462  }
3463
3464  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3465  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3466
3467  // If the source is floating point...
3468  if (SourceBT && SourceBT->isFloatingPoint()) {
3469    // ...and the target is floating point...
3470    if (TargetBT && TargetBT->isFloatingPoint()) {
3471      // ...then warn if we're dropping FP rank.
3472
3473      // Builtin FP kinds are ordered by increasing FP rank.
3474      if (SourceBT->getKind() > TargetBT->getKind()) {
3475        // Don't warn about float constants that are precisely
3476        // representable in the target type.
3477        Expr::EvalResult result;
3478        if (E->Evaluate(result, S.Context)) {
3479          // Value might be a float, a float vector, or a float complex.
3480          if (IsSameFloatAfterCast(result.Val,
3481                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3482                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3483            return;
3484        }
3485
3486        if (isFromSystemMacro(S, CC))
3487          return;
3488
3489        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3490      }
3491      return;
3492    }
3493
3494    // If the target is integral, always warn.
3495    if ((TargetBT && TargetBT->isInteger())) {
3496      if (isFromSystemMacro(S, CC))
3497        return;
3498
3499      Expr *InnerE = E->IgnoreParenImpCasts();
3500      // We also want to warn on, e.g., "int i = -1.234"
3501      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
3502        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
3503          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
3504
3505      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3506        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3507      } else {
3508        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3509      }
3510    }
3511
3512    return;
3513  }
3514
3515  if (!Source->isIntegerType() || !Target->isIntegerType())
3516    return;
3517
3518  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3519           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3520    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3521        << E->getSourceRange() << clang::SourceRange(CC);
3522    return;
3523  }
3524
3525  IntRange SourceRange = GetExprRange(S.Context, E);
3526  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3527
3528  if (SourceRange.Width > TargetRange.Width) {
3529    // If the source is a constant, use a default-on diagnostic.
3530    // TODO: this should happen for bitfield stores, too.
3531    llvm::APSInt Value(32);
3532    if (E->isIntegerConstantExpr(Value, S.Context)) {
3533      if (isFromSystemMacro(S, CC))
3534        return;
3535
3536      std::string PrettySourceValue = Value.toString(10);
3537      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3538
3539      S.DiagRuntimeBehavior(E->getExprLoc(), E,
3540        S.PDiag(diag::warn_impcast_integer_precision_constant)
3541            << PrettySourceValue << PrettyTargetValue
3542            << E->getType() << T << E->getSourceRange()
3543            << clang::SourceRange(CC));
3544      return;
3545    }
3546
3547    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3548    if (isFromSystemMacro(S, CC))
3549      return;
3550
3551    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3552      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3553    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3554  }
3555
3556  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3557      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3558       SourceRange.Width == TargetRange.Width)) {
3559
3560    if (isFromSystemMacro(S, CC))
3561      return;
3562
3563    unsigned DiagID = diag::warn_impcast_integer_sign;
3564
3565    // Traditionally, gcc has warned about this under -Wsign-compare.
3566    // We also want to warn about it in -Wconversion.
3567    // So if -Wconversion is off, use a completely identical diagnostic
3568    // in the sign-compare group.
3569    // The conditional-checking code will
3570    if (ICContext) {
3571      DiagID = diag::warn_impcast_integer_sign_conditional;
3572      *ICContext = true;
3573    }
3574
3575    return DiagnoseImpCast(S, E, T, CC, DiagID);
3576  }
3577
3578  // Diagnose conversions between different enumeration types.
3579  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3580  // type, to give us better diagnostics.
3581  QualType SourceType = E->getType();
3582  if (!S.getLangOptions().CPlusPlus) {
3583    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3584      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3585        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3586        SourceType = S.Context.getTypeDeclType(Enum);
3587        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3588      }
3589  }
3590
3591  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3592    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3593      if ((SourceEnum->getDecl()->getIdentifier() ||
3594           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3595          (TargetEnum->getDecl()->getIdentifier() ||
3596           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3597          SourceEnum != TargetEnum) {
3598        if (isFromSystemMacro(S, CC))
3599          return;
3600
3601        return DiagnoseImpCast(S, E, SourceType, T, CC,
3602                               diag::warn_impcast_different_enum_types);
3603      }
3604
3605  return;
3606}
3607
3608void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3609
3610void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3611                             SourceLocation CC, bool &ICContext) {
3612  E = E->IgnoreParenImpCasts();
3613
3614  if (isa<ConditionalOperator>(E))
3615    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3616
3617  AnalyzeImplicitConversions(S, E, CC);
3618  if (E->getType() != T)
3619    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3620  return;
3621}
3622
3623void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3624  SourceLocation CC = E->getQuestionLoc();
3625
3626  AnalyzeImplicitConversions(S, E->getCond(), CC);
3627
3628  bool Suspicious = false;
3629  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3630  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3631
3632  // If -Wconversion would have warned about either of the candidates
3633  // for a signedness conversion to the context type...
3634  if (!Suspicious) return;
3635
3636  // ...but it's currently ignored...
3637  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3638                                 CC))
3639    return;
3640
3641  // ...then check whether it would have warned about either of the
3642  // candidates for a signedness conversion to the condition type.
3643  if (E->getType() == T) return;
3644
3645  Suspicious = false;
3646  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
3647                          E->getType(), CC, &Suspicious);
3648  if (!Suspicious)
3649    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
3650                            E->getType(), CC, &Suspicious);
3651}
3652
3653/// AnalyzeImplicitConversions - Find and report any interesting
3654/// implicit conversions in the given expression.  There are a couple
3655/// of competing diagnostics here, -Wconversion and -Wsign-compare.
3656void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
3657  QualType T = OrigE->getType();
3658  Expr *E = OrigE->IgnoreParenImpCasts();
3659
3660  if (E->isTypeDependent() || E->isValueDependent())
3661    return;
3662
3663  // For conditional operators, we analyze the arguments as if they
3664  // were being fed directly into the output.
3665  if (isa<ConditionalOperator>(E)) {
3666    ConditionalOperator *CO = cast<ConditionalOperator>(E);
3667    CheckConditionalOperator(S, CO, T);
3668    return;
3669  }
3670
3671  // Go ahead and check any implicit conversions we might have skipped.
3672  // The non-canonical typecheck is just an optimization;
3673  // CheckImplicitConversion will filter out dead implicit conversions.
3674  if (E->getType() != T)
3675    CheckImplicitConversion(S, E, T, CC);
3676
3677  // Now continue drilling into this expression.
3678
3679  // Skip past explicit casts.
3680  if (isa<ExplicitCastExpr>(E)) {
3681    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
3682    return AnalyzeImplicitConversions(S, E, CC);
3683  }
3684
3685  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3686    // Do a somewhat different check with comparison operators.
3687    if (BO->isComparisonOp())
3688      return AnalyzeComparison(S, BO);
3689
3690    // And with assignments and compound assignments.
3691    if (BO->isAssignmentOp())
3692      return AnalyzeAssignment(S, BO);
3693  }
3694
3695  // These break the otherwise-useful invariant below.  Fortunately,
3696  // we don't really need to recurse into them, because any internal
3697  // expressions should have been analyzed already when they were
3698  // built into statements.
3699  if (isa<StmtExpr>(E)) return;
3700
3701  // Don't descend into unevaluated contexts.
3702  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
3703
3704  // Now just recurse over the expression's children.
3705  CC = E->getExprLoc();
3706  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
3707  bool IsLogicalOperator = BO && BO->isLogicalOp();
3708  for (Stmt::child_range I = E->children(); I; ++I) {
3709    Expr *ChildExpr = cast<Expr>(*I);
3710    if (IsLogicalOperator &&
3711        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
3712      // Ignore checking string literals that are in logical operators.
3713      continue;
3714    AnalyzeImplicitConversions(S, ChildExpr, CC);
3715  }
3716}
3717
3718} // end anonymous namespace
3719
3720/// Diagnoses "dangerous" implicit conversions within the given
3721/// expression (which is a full expression).  Implements -Wconversion
3722/// and -Wsign-compare.
3723///
3724/// \param CC the "context" location of the implicit conversion, i.e.
3725///   the most location of the syntactic entity requiring the implicit
3726///   conversion
3727void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
3728  // Don't diagnose in unevaluated contexts.
3729  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
3730    return;
3731
3732  // Don't diagnose for value- or type-dependent expressions.
3733  if (E->isTypeDependent() || E->isValueDependent())
3734    return;
3735
3736  // Check for array bounds violations in cases where the check isn't triggered
3737  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
3738  // ArraySubscriptExpr is on the RHS of a variable initialization.
3739  CheckArrayAccess(E);
3740
3741  // This is not the right CC for (e.g.) a variable initialization.
3742  AnalyzeImplicitConversions(*this, E, CC);
3743}
3744
3745void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
3746                                       FieldDecl *BitField,
3747                                       Expr *Init) {
3748  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
3749}
3750
3751/// CheckParmsForFunctionDef - Check that the parameters of the given
3752/// function are appropriate for the definition of a function. This
3753/// takes care of any checks that cannot be performed on the
3754/// declaration itself, e.g., that the types of each of the function
3755/// parameters are complete.
3756bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
3757                                    bool CheckParameterNames) {
3758  bool HasInvalidParm = false;
3759  for (; P != PEnd; ++P) {
3760    ParmVarDecl *Param = *P;
3761
3762    // C99 6.7.5.3p4: the parameters in a parameter type list in a
3763    // function declarator that is part of a function definition of
3764    // that function shall not have incomplete type.
3765    //
3766    // This is also C++ [dcl.fct]p6.
3767    if (!Param->isInvalidDecl() &&
3768        RequireCompleteType(Param->getLocation(), Param->getType(),
3769                               diag::err_typecheck_decl_incomplete_type)) {
3770      Param->setInvalidDecl();
3771      HasInvalidParm = true;
3772    }
3773
3774    // C99 6.9.1p5: If the declarator includes a parameter type list, the
3775    // declaration of each parameter shall include an identifier.
3776    if (CheckParameterNames &&
3777        Param->getIdentifier() == 0 &&
3778        !Param->isImplicit() &&
3779        !getLangOptions().CPlusPlus)
3780      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3781
3782    // C99 6.7.5.3p12:
3783    //   If the function declarator is not part of a definition of that
3784    //   function, parameters may have incomplete type and may use the [*]
3785    //   notation in their sequences of declarator specifiers to specify
3786    //   variable length array types.
3787    QualType PType = Param->getOriginalType();
3788    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3789      if (AT->getSizeModifier() == ArrayType::Star) {
3790        // FIXME: This diagnosic should point the the '[*]' if source-location
3791        // information is added for it.
3792        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3793      }
3794    }
3795  }
3796
3797  return HasInvalidParm;
3798}
3799
3800/// CheckCastAlign - Implements -Wcast-align, which warns when a
3801/// pointer cast increases the alignment requirements.
3802void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3803  // This is actually a lot of work to potentially be doing on every
3804  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3805  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
3806                                          TRange.getBegin())
3807        == DiagnosticsEngine::Ignored)
3808    return;
3809
3810  // Ignore dependent types.
3811  if (T->isDependentType() || Op->getType()->isDependentType())
3812    return;
3813
3814  // Require that the destination be a pointer type.
3815  const PointerType *DestPtr = T->getAs<PointerType>();
3816  if (!DestPtr) return;
3817
3818  // If the destination has alignment 1, we're done.
3819  QualType DestPointee = DestPtr->getPointeeType();
3820  if (DestPointee->isIncompleteType()) return;
3821  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3822  if (DestAlign.isOne()) return;
3823
3824  // Require that the source be a pointer type.
3825  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3826  if (!SrcPtr) return;
3827  QualType SrcPointee = SrcPtr->getPointeeType();
3828
3829  // Whitelist casts from cv void*.  We already implicitly
3830  // whitelisted casts to cv void*, since they have alignment 1.
3831  // Also whitelist casts involving incomplete types, which implicitly
3832  // includes 'void'.
3833  if (SrcPointee->isIncompleteType()) return;
3834
3835  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3836  if (SrcAlign >= DestAlign) return;
3837
3838  Diag(TRange.getBegin(), diag::warn_cast_align)
3839    << Op->getType() << T
3840    << static_cast<unsigned>(SrcAlign.getQuantity())
3841    << static_cast<unsigned>(DestAlign.getQuantity())
3842    << TRange << Op->getSourceRange();
3843}
3844
3845static const Type* getElementType(const Expr *BaseExpr) {
3846  const Type* EltType = BaseExpr->getType().getTypePtr();
3847  if (EltType->isAnyPointerType())
3848    return EltType->getPointeeType().getTypePtr();
3849  else if (EltType->isArrayType())
3850    return EltType->getBaseElementTypeUnsafe();
3851  return EltType;
3852}
3853
3854/// \brief Check whether this array fits the idiom of a size-one tail padded
3855/// array member of a struct.
3856///
3857/// We avoid emitting out-of-bounds access warnings for such arrays as they are
3858/// commonly used to emulate flexible arrays in C89 code.
3859static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
3860                                    const NamedDecl *ND) {
3861  if (Size != 1 || !ND) return false;
3862
3863  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
3864  if (!FD) return false;
3865
3866  // Don't consider sizes resulting from macro expansions or template argument
3867  // substitution to form C89 tail-padded arrays.
3868  ConstantArrayTypeLoc TL =
3869    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
3870  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
3871  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
3872    return false;
3873
3874  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
3875  if (!RD || !RD->isStruct())
3876    return false;
3877
3878  // See if this is the last field decl in the record.
3879  const Decl *D = FD;
3880  while ((D = D->getNextDeclInContext()))
3881    if (isa<FieldDecl>(D))
3882      return false;
3883  return true;
3884}
3885
3886void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
3887                            bool isSubscript, bool AllowOnePastEnd) {
3888  const Type* EffectiveType = getElementType(BaseExpr);
3889  BaseExpr = BaseExpr->IgnoreParenCasts();
3890  IndexExpr = IndexExpr->IgnoreParenCasts();
3891
3892  const ConstantArrayType *ArrayTy =
3893    Context.getAsConstantArrayType(BaseExpr->getType());
3894  if (!ArrayTy)
3895    return;
3896
3897  if (IndexExpr->isValueDependent())
3898    return;
3899  llvm::APSInt index;
3900  if (!IndexExpr->isIntegerConstantExpr(index, Context))
3901    return;
3902
3903  const NamedDecl *ND = NULL;
3904  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
3905    ND = dyn_cast<NamedDecl>(DRE->getDecl());
3906  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
3907    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
3908
3909  if (index.isUnsigned() || !index.isNegative()) {
3910    llvm::APInt size = ArrayTy->getSize();
3911    if (!size.isStrictlyPositive())
3912      return;
3913
3914    const Type* BaseType = getElementType(BaseExpr);
3915    if (BaseType != EffectiveType) {
3916      // Make sure we're comparing apples to apples when comparing index to size
3917      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
3918      uint64_t array_typesize = Context.getTypeSize(BaseType);
3919      // Handle ptrarith_typesize being zero, such as when casting to void*
3920      if (!ptrarith_typesize) ptrarith_typesize = 1;
3921      if (ptrarith_typesize != array_typesize) {
3922        // There's a cast to a different size type involved
3923        uint64_t ratio = array_typesize / ptrarith_typesize;
3924        // TODO: Be smarter about handling cases where array_typesize is not a
3925        // multiple of ptrarith_typesize
3926        if (ptrarith_typesize * ratio == array_typesize)
3927          size *= llvm::APInt(size.getBitWidth(), ratio);
3928      }
3929    }
3930
3931    if (size.getBitWidth() > index.getBitWidth())
3932      index = index.sext(size.getBitWidth());
3933    else if (size.getBitWidth() < index.getBitWidth())
3934      size = size.sext(index.getBitWidth());
3935
3936    // For array subscripting the index must be less than size, but for pointer
3937    // arithmetic also allow the index (offset) to be equal to size since
3938    // computing the next address after the end of the array is legal and
3939    // commonly done e.g. in C++ iterators and range-based for loops.
3940    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
3941      return;
3942
3943    // Also don't warn for arrays of size 1 which are members of some
3944    // structure. These are often used to approximate flexible arrays in C89
3945    // code.
3946    if (IsTailPaddedMemberArray(*this, size, ND))
3947      return;
3948
3949    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
3950    if (isSubscript)
3951      DiagID = diag::warn_array_index_exceeds_bounds;
3952
3953    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
3954                        PDiag(DiagID) << index.toString(10, true)
3955                          << size.toString(10, true)
3956                          << (unsigned)size.getLimitedValue(~0U)
3957                          << IndexExpr->getSourceRange());
3958  } else {
3959    unsigned DiagID = diag::warn_array_index_precedes_bounds;
3960    if (!isSubscript) {
3961      DiagID = diag::warn_ptr_arith_precedes_bounds;
3962      if (index.isNegative()) index = -index;
3963    }
3964
3965    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
3966                        PDiag(DiagID) << index.toString(10, true)
3967                          << IndexExpr->getSourceRange());
3968  }
3969
3970  if (ND)
3971    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
3972                        PDiag(diag::note_array_index_out_of_bounds)
3973                          << ND->getDeclName());
3974}
3975
3976void Sema::CheckArrayAccess(const Expr *expr) {
3977  int AllowOnePastEnd = 0;
3978  while (expr) {
3979    expr = expr->IgnoreParenImpCasts();
3980    switch (expr->getStmtClass()) {
3981      case Stmt::ArraySubscriptExprClass: {
3982        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
3983        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), true,
3984                         AllowOnePastEnd > 0);
3985        return;
3986      }
3987      case Stmt::UnaryOperatorClass: {
3988        // Only unwrap the * and & unary operators
3989        const UnaryOperator *UO = cast<UnaryOperator>(expr);
3990        expr = UO->getSubExpr();
3991        switch (UO->getOpcode()) {
3992          case UO_AddrOf:
3993            AllowOnePastEnd++;
3994            break;
3995          case UO_Deref:
3996            AllowOnePastEnd--;
3997            break;
3998          default:
3999            return;
4000        }
4001        break;
4002      }
4003      case Stmt::ConditionalOperatorClass: {
4004        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4005        if (const Expr *lhs = cond->getLHS())
4006          CheckArrayAccess(lhs);
4007        if (const Expr *rhs = cond->getRHS())
4008          CheckArrayAccess(rhs);
4009        return;
4010      }
4011      default:
4012        return;
4013    }
4014  }
4015}
4016
4017//===--- CHECK: Objective-C retain cycles ----------------------------------//
4018
4019namespace {
4020  struct RetainCycleOwner {
4021    RetainCycleOwner() : Variable(0), Indirect(false) {}
4022    VarDecl *Variable;
4023    SourceRange Range;
4024    SourceLocation Loc;
4025    bool Indirect;
4026
4027    void setLocsFrom(Expr *e) {
4028      Loc = e->getExprLoc();
4029      Range = e->getSourceRange();
4030    }
4031  };
4032}
4033
4034/// Consider whether capturing the given variable can possibly lead to
4035/// a retain cycle.
4036static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4037  // In ARC, it's captured strongly iff the variable has __strong
4038  // lifetime.  In MRR, it's captured strongly if the variable is
4039  // __block and has an appropriate type.
4040  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4041    return false;
4042
4043  owner.Variable = var;
4044  owner.setLocsFrom(ref);
4045  return true;
4046}
4047
4048static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
4049  while (true) {
4050    e = e->IgnoreParens();
4051    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4052      switch (cast->getCastKind()) {
4053      case CK_BitCast:
4054      case CK_LValueBitCast:
4055      case CK_LValueToRValue:
4056      case CK_ARCReclaimReturnedObject:
4057        e = cast->getSubExpr();
4058        continue;
4059
4060      case CK_GetObjCProperty: {
4061        // Bail out if this isn't a strong explicit property.
4062        const ObjCPropertyRefExpr *pre = cast->getSubExpr()->getObjCProperty();
4063        if (pre->isImplicitProperty()) return false;
4064        ObjCPropertyDecl *property = pre->getExplicitProperty();
4065        if (!property->isRetaining() &&
4066            !(property->getPropertyIvarDecl() &&
4067              property->getPropertyIvarDecl()->getType()
4068                .getObjCLifetime() == Qualifiers::OCL_Strong))
4069          return false;
4070
4071        owner.Indirect = true;
4072        e = const_cast<Expr*>(pre->getBase());
4073        continue;
4074      }
4075
4076      default:
4077        return false;
4078      }
4079    }
4080
4081    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4082      ObjCIvarDecl *ivar = ref->getDecl();
4083      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4084        return false;
4085
4086      // Try to find a retain cycle in the base.
4087      if (!findRetainCycleOwner(ref->getBase(), owner))
4088        return false;
4089
4090      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4091      owner.Indirect = true;
4092      return true;
4093    }
4094
4095    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4096      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4097      if (!var) return false;
4098      return considerVariable(var, ref, owner);
4099    }
4100
4101    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
4102      owner.Variable = ref->getDecl();
4103      owner.setLocsFrom(ref);
4104      return true;
4105    }
4106
4107    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4108      if (member->isArrow()) return false;
4109
4110      // Don't count this as an indirect ownership.
4111      e = member->getBase();
4112      continue;
4113    }
4114
4115    // Array ivars?
4116
4117    return false;
4118  }
4119}
4120
4121namespace {
4122  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4123    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4124      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4125        Variable(variable), Capturer(0) {}
4126
4127    VarDecl *Variable;
4128    Expr *Capturer;
4129
4130    void VisitDeclRefExpr(DeclRefExpr *ref) {
4131      if (ref->getDecl() == Variable && !Capturer)
4132        Capturer = ref;
4133    }
4134
4135    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
4136      if (ref->getDecl() == Variable && !Capturer)
4137        Capturer = ref;
4138    }
4139
4140    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4141      if (Capturer) return;
4142      Visit(ref->getBase());
4143      if (Capturer && ref->isFreeIvar())
4144        Capturer = ref;
4145    }
4146
4147    void VisitBlockExpr(BlockExpr *block) {
4148      // Look inside nested blocks
4149      if (block->getBlockDecl()->capturesVariable(Variable))
4150        Visit(block->getBlockDecl()->getBody());
4151    }
4152  };
4153}
4154
4155/// Check whether the given argument is a block which captures a
4156/// variable.
4157static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4158  assert(owner.Variable && owner.Loc.isValid());
4159
4160  e = e->IgnoreParenCasts();
4161  BlockExpr *block = dyn_cast<BlockExpr>(e);
4162  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4163    return 0;
4164
4165  FindCaptureVisitor visitor(S.Context, owner.Variable);
4166  visitor.Visit(block->getBlockDecl()->getBody());
4167  return visitor.Capturer;
4168}
4169
4170static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4171                                RetainCycleOwner &owner) {
4172  assert(capturer);
4173  assert(owner.Variable && owner.Loc.isValid());
4174
4175  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4176    << owner.Variable << capturer->getSourceRange();
4177  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4178    << owner.Indirect << owner.Range;
4179}
4180
4181/// Check for a keyword selector that starts with the word 'add' or
4182/// 'set'.
4183static bool isSetterLikeSelector(Selector sel) {
4184  if (sel.isUnarySelector()) return false;
4185
4186  StringRef str = sel.getNameForSlot(0);
4187  while (!str.empty() && str.front() == '_') str = str.substr(1);
4188  if (str.startswith("set") || str.startswith("add"))
4189    str = str.substr(3);
4190  else
4191    return false;
4192
4193  if (str.empty()) return true;
4194  return !islower(str.front());
4195}
4196
4197/// Check a message send to see if it's likely to cause a retain cycle.
4198void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4199  // Only check instance methods whose selector looks like a setter.
4200  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4201    return;
4202
4203  // Try to find a variable that the receiver is strongly owned by.
4204  RetainCycleOwner owner;
4205  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4206    if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
4207      return;
4208  } else {
4209    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4210    owner.Variable = getCurMethodDecl()->getSelfDecl();
4211    owner.Loc = msg->getSuperLoc();
4212    owner.Range = msg->getSuperLoc();
4213  }
4214
4215  // Check whether the receiver is captured by any of the arguments.
4216  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4217    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4218      return diagnoseRetainCycle(*this, capturer, owner);
4219}
4220
4221/// Check a property assign to see if it's likely to cause a retain cycle.
4222void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4223  RetainCycleOwner owner;
4224  if (!findRetainCycleOwner(receiver, owner))
4225    return;
4226
4227  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4228    diagnoseRetainCycle(*this, capturer, owner);
4229}
4230
4231bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4232                              QualType LHS, Expr *RHS) {
4233  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4234  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4235    return false;
4236  // strip off any implicit cast added to get to the one arc-specific
4237  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4238    if (cast->getCastKind() == CK_ARCConsumeObject) {
4239      Diag(Loc, diag::warn_arc_retained_assign)
4240        << (LT == Qualifiers::OCL_ExplicitNone)
4241        << RHS->getSourceRange();
4242      return true;
4243    }
4244    RHS = cast->getSubExpr();
4245  }
4246  return false;
4247}
4248
4249void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4250                              Expr *LHS, Expr *RHS) {
4251  QualType LHSType = LHS->getType();
4252  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4253    return;
4254  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4255  // FIXME. Check for other life times.
4256  if (LT != Qualifiers::OCL_None)
4257    return;
4258
4259  if (ObjCPropertyRefExpr *PRE
4260        = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens())) {
4261    if (PRE->isImplicitProperty())
4262      return;
4263    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4264    if (!PD)
4265      return;
4266
4267    unsigned Attributes = PD->getPropertyAttributes();
4268    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign)
4269      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4270        if (cast->getCastKind() == CK_ARCConsumeObject) {
4271          Diag(Loc, diag::warn_arc_retained_property_assign)
4272          << RHS->getSourceRange();
4273          return;
4274        }
4275        RHS = cast->getSubExpr();
4276      }
4277  }
4278}
4279