SemaChecking.cpp revision 414a1bdbdaf250e0488589f12865c8961831b65d
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/SmallBitVector.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98/// Check that the argument to __builtin_addressof is a glvalue, and set the
99/// result type to the corresponding pointer type.
100static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101  if (checkArgCount(S, TheCall, 1))
102    return true;
103
104  ExprResult Arg(S.Owned(TheCall->getArg(0)));
105  QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106  if (ResultType.isNull())
107    return true;
108
109  TheCall->setArg(0, Arg.take());
110  TheCall->setType(ResultType);
111  return false;
112}
113
114ExprResult
115Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
116  ExprResult TheCallResult(Owned(TheCall));
117
118  // Find out if any arguments are required to be integer constant expressions.
119  unsigned ICEArguments = 0;
120  ASTContext::GetBuiltinTypeError Error;
121  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
122  if (Error != ASTContext::GE_None)
123    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
124
125  // If any arguments are required to be ICE's, check and diagnose.
126  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
127    // Skip arguments not required to be ICE's.
128    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
129
130    llvm::APSInt Result;
131    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
132      return true;
133    ICEArguments &= ~(1 << ArgNo);
134  }
135
136  switch (BuiltinID) {
137  case Builtin::BI__builtin___CFStringMakeConstantString:
138    assert(TheCall->getNumArgs() == 1 &&
139           "Wrong # arguments to builtin CFStringMakeConstantString");
140    if (CheckObjCString(TheCall->getArg(0)))
141      return ExprError();
142    break;
143  case Builtin::BI__builtin_stdarg_start:
144  case Builtin::BI__builtin_va_start:
145    if (SemaBuiltinVAStart(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_isgreater:
149  case Builtin::BI__builtin_isgreaterequal:
150  case Builtin::BI__builtin_isless:
151  case Builtin::BI__builtin_islessequal:
152  case Builtin::BI__builtin_islessgreater:
153  case Builtin::BI__builtin_isunordered:
154    if (SemaBuiltinUnorderedCompare(TheCall))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_fpclassify:
158    if (SemaBuiltinFPClassification(TheCall, 6))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_isfinite:
162  case Builtin::BI__builtin_isinf:
163  case Builtin::BI__builtin_isinf_sign:
164  case Builtin::BI__builtin_isnan:
165  case Builtin::BI__builtin_isnormal:
166    if (SemaBuiltinFPClassification(TheCall, 1))
167      return ExprError();
168    break;
169  case Builtin::BI__builtin_shufflevector:
170    return SemaBuiltinShuffleVector(TheCall);
171    // TheCall will be freed by the smart pointer here, but that's fine, since
172    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
173  case Builtin::BI__builtin_prefetch:
174    if (SemaBuiltinPrefetch(TheCall))
175      return ExprError();
176    break;
177  case Builtin::BI__builtin_object_size:
178    if (SemaBuiltinObjectSize(TheCall))
179      return ExprError();
180    break;
181  case Builtin::BI__builtin_longjmp:
182    if (SemaBuiltinLongjmp(TheCall))
183      return ExprError();
184    break;
185
186  case Builtin::BI__builtin_classify_type:
187    if (checkArgCount(*this, TheCall, 1)) return true;
188    TheCall->setType(Context.IntTy);
189    break;
190  case Builtin::BI__builtin_constant_p:
191    if (checkArgCount(*this, TheCall, 1)) return true;
192    TheCall->setType(Context.IntTy);
193    break;
194  case Builtin::BI__sync_fetch_and_add:
195  case Builtin::BI__sync_fetch_and_add_1:
196  case Builtin::BI__sync_fetch_and_add_2:
197  case Builtin::BI__sync_fetch_and_add_4:
198  case Builtin::BI__sync_fetch_and_add_8:
199  case Builtin::BI__sync_fetch_and_add_16:
200  case Builtin::BI__sync_fetch_and_sub:
201  case Builtin::BI__sync_fetch_and_sub_1:
202  case Builtin::BI__sync_fetch_and_sub_2:
203  case Builtin::BI__sync_fetch_and_sub_4:
204  case Builtin::BI__sync_fetch_and_sub_8:
205  case Builtin::BI__sync_fetch_and_sub_16:
206  case Builtin::BI__sync_fetch_and_or:
207  case Builtin::BI__sync_fetch_and_or_1:
208  case Builtin::BI__sync_fetch_and_or_2:
209  case Builtin::BI__sync_fetch_and_or_4:
210  case Builtin::BI__sync_fetch_and_or_8:
211  case Builtin::BI__sync_fetch_and_or_16:
212  case Builtin::BI__sync_fetch_and_and:
213  case Builtin::BI__sync_fetch_and_and_1:
214  case Builtin::BI__sync_fetch_and_and_2:
215  case Builtin::BI__sync_fetch_and_and_4:
216  case Builtin::BI__sync_fetch_and_and_8:
217  case Builtin::BI__sync_fetch_and_and_16:
218  case Builtin::BI__sync_fetch_and_xor:
219  case Builtin::BI__sync_fetch_and_xor_1:
220  case Builtin::BI__sync_fetch_and_xor_2:
221  case Builtin::BI__sync_fetch_and_xor_4:
222  case Builtin::BI__sync_fetch_and_xor_8:
223  case Builtin::BI__sync_fetch_and_xor_16:
224  case Builtin::BI__sync_add_and_fetch:
225  case Builtin::BI__sync_add_and_fetch_1:
226  case Builtin::BI__sync_add_and_fetch_2:
227  case Builtin::BI__sync_add_and_fetch_4:
228  case Builtin::BI__sync_add_and_fetch_8:
229  case Builtin::BI__sync_add_and_fetch_16:
230  case Builtin::BI__sync_sub_and_fetch:
231  case Builtin::BI__sync_sub_and_fetch_1:
232  case Builtin::BI__sync_sub_and_fetch_2:
233  case Builtin::BI__sync_sub_and_fetch_4:
234  case Builtin::BI__sync_sub_and_fetch_8:
235  case Builtin::BI__sync_sub_and_fetch_16:
236  case Builtin::BI__sync_and_and_fetch:
237  case Builtin::BI__sync_and_and_fetch_1:
238  case Builtin::BI__sync_and_and_fetch_2:
239  case Builtin::BI__sync_and_and_fetch_4:
240  case Builtin::BI__sync_and_and_fetch_8:
241  case Builtin::BI__sync_and_and_fetch_16:
242  case Builtin::BI__sync_or_and_fetch:
243  case Builtin::BI__sync_or_and_fetch_1:
244  case Builtin::BI__sync_or_and_fetch_2:
245  case Builtin::BI__sync_or_and_fetch_4:
246  case Builtin::BI__sync_or_and_fetch_8:
247  case Builtin::BI__sync_or_and_fetch_16:
248  case Builtin::BI__sync_xor_and_fetch:
249  case Builtin::BI__sync_xor_and_fetch_1:
250  case Builtin::BI__sync_xor_and_fetch_2:
251  case Builtin::BI__sync_xor_and_fetch_4:
252  case Builtin::BI__sync_xor_and_fetch_8:
253  case Builtin::BI__sync_xor_and_fetch_16:
254  case Builtin::BI__sync_val_compare_and_swap:
255  case Builtin::BI__sync_val_compare_and_swap_1:
256  case Builtin::BI__sync_val_compare_and_swap_2:
257  case Builtin::BI__sync_val_compare_and_swap_4:
258  case Builtin::BI__sync_val_compare_and_swap_8:
259  case Builtin::BI__sync_val_compare_and_swap_16:
260  case Builtin::BI__sync_bool_compare_and_swap:
261  case Builtin::BI__sync_bool_compare_and_swap_1:
262  case Builtin::BI__sync_bool_compare_and_swap_2:
263  case Builtin::BI__sync_bool_compare_and_swap_4:
264  case Builtin::BI__sync_bool_compare_and_swap_8:
265  case Builtin::BI__sync_bool_compare_and_swap_16:
266  case Builtin::BI__sync_lock_test_and_set:
267  case Builtin::BI__sync_lock_test_and_set_1:
268  case Builtin::BI__sync_lock_test_and_set_2:
269  case Builtin::BI__sync_lock_test_and_set_4:
270  case Builtin::BI__sync_lock_test_and_set_8:
271  case Builtin::BI__sync_lock_test_and_set_16:
272  case Builtin::BI__sync_lock_release:
273  case Builtin::BI__sync_lock_release_1:
274  case Builtin::BI__sync_lock_release_2:
275  case Builtin::BI__sync_lock_release_4:
276  case Builtin::BI__sync_lock_release_8:
277  case Builtin::BI__sync_lock_release_16:
278  case Builtin::BI__sync_swap:
279  case Builtin::BI__sync_swap_1:
280  case Builtin::BI__sync_swap_2:
281  case Builtin::BI__sync_swap_4:
282  case Builtin::BI__sync_swap_8:
283  case Builtin::BI__sync_swap_16:
284    return SemaBuiltinAtomicOverloaded(TheCallResult);
285#define BUILTIN(ID, TYPE, ATTRS)
286#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
287  case Builtin::BI##ID: \
288    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
289#include "clang/Basic/Builtins.def"
290  case Builtin::BI__builtin_annotation:
291    if (SemaBuiltinAnnotation(*this, TheCall))
292      return ExprError();
293    break;
294  case Builtin::BI__builtin_addressof:
295    if (SemaBuiltinAddressof(*this, TheCall))
296      return ExprError();
297    break;
298  }
299
300  // Since the target specific builtins for each arch overlap, only check those
301  // of the arch we are compiling for.
302  if (BuiltinID >= Builtin::FirstTSBuiltin) {
303    switch (Context.getTargetInfo().getTriple().getArch()) {
304      case llvm::Triple::arm:
305      case llvm::Triple::thumb:
306        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
307          return ExprError();
308        break;
309      case llvm::Triple::aarch64:
310        if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
311          return ExprError();
312        break;
313      case llvm::Triple::mips:
314      case llvm::Triple::mipsel:
315      case llvm::Triple::mips64:
316      case llvm::Triple::mips64el:
317        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
318          return ExprError();
319        break;
320      default:
321        break;
322    }
323  }
324
325  return TheCallResult;
326}
327
328// Get the valid immediate range for the specified NEON type code.
329static unsigned RFT(unsigned t, bool shift = false) {
330  NeonTypeFlags Type(t);
331  int IsQuad = Type.isQuad();
332  switch (Type.getEltType()) {
333  case NeonTypeFlags::Int8:
334  case NeonTypeFlags::Poly8:
335    return shift ? 7 : (8 << IsQuad) - 1;
336  case NeonTypeFlags::Int16:
337  case NeonTypeFlags::Poly16:
338    return shift ? 15 : (4 << IsQuad) - 1;
339  case NeonTypeFlags::Int32:
340    return shift ? 31 : (2 << IsQuad) - 1;
341  case NeonTypeFlags::Int64:
342    return shift ? 63 : (1 << IsQuad) - 1;
343  case NeonTypeFlags::Float16:
344    assert(!shift && "cannot shift float types!");
345    return (4 << IsQuad) - 1;
346  case NeonTypeFlags::Float32:
347    assert(!shift && "cannot shift float types!");
348    return (2 << IsQuad) - 1;
349  case NeonTypeFlags::Float64:
350    assert(!shift && "cannot shift float types!");
351    return (1 << IsQuad) - 1;
352  }
353  llvm_unreachable("Invalid NeonTypeFlag!");
354}
355
356/// getNeonEltType - Return the QualType corresponding to the elements of
357/// the vector type specified by the NeonTypeFlags.  This is used to check
358/// the pointer arguments for Neon load/store intrinsics.
359static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
360  switch (Flags.getEltType()) {
361  case NeonTypeFlags::Int8:
362    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
363  case NeonTypeFlags::Int16:
364    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
365  case NeonTypeFlags::Int32:
366    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
367  case NeonTypeFlags::Int64:
368    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
369  case NeonTypeFlags::Poly8:
370    return Context.SignedCharTy;
371  case NeonTypeFlags::Poly16:
372    return Context.ShortTy;
373  case NeonTypeFlags::Float16:
374    return Context.UnsignedShortTy;
375  case NeonTypeFlags::Float32:
376    return Context.FloatTy;
377  case NeonTypeFlags::Float64:
378    return Context.DoubleTy;
379  }
380  llvm_unreachable("Invalid NeonTypeFlag!");
381}
382
383bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
384                                           CallExpr *TheCall) {
385
386  llvm::APSInt Result;
387
388  uint64_t mask = 0;
389  unsigned TV = 0;
390  int PtrArgNum = -1;
391  bool HasConstPtr = false;
392  switch (BuiltinID) {
393#define GET_NEON_AARCH64_OVERLOAD_CHECK
394#include "clang/Basic/arm_neon.inc"
395#undef GET_NEON_AARCH64_OVERLOAD_CHECK
396  }
397
398  // For NEON intrinsics which are overloaded on vector element type, validate
399  // the immediate which specifies which variant to emit.
400  unsigned ImmArg = TheCall->getNumArgs() - 1;
401  if (mask) {
402    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
403      return true;
404
405    TV = Result.getLimitedValue(64);
406    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
407      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
408             << TheCall->getArg(ImmArg)->getSourceRange();
409  }
410
411  if (PtrArgNum >= 0) {
412    // Check that pointer arguments have the specified type.
413    Expr *Arg = TheCall->getArg(PtrArgNum);
414    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
415      Arg = ICE->getSubExpr();
416    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
417    QualType RHSTy = RHS.get()->getType();
418    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
419    if (HasConstPtr)
420      EltTy = EltTy.withConst();
421    QualType LHSTy = Context.getPointerType(EltTy);
422    AssignConvertType ConvTy;
423    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
424    if (RHS.isInvalid())
425      return true;
426    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
427                                 RHS.get(), AA_Assigning))
428      return true;
429  }
430
431  // For NEON intrinsics which take an immediate value as part of the
432  // instruction, range check them here.
433  unsigned i = 0, l = 0, u = 0;
434  switch (BuiltinID) {
435  default:
436    return false;
437#define GET_NEON_AARCH64_IMMEDIATE_CHECK
438#include "clang/Basic/arm_neon.inc"
439#undef GET_NEON_AARCH64_IMMEDIATE_CHECK
440  }
441  ;
442
443  // We can't check the value of a dependent argument.
444  if (TheCall->getArg(i)->isTypeDependent() ||
445      TheCall->getArg(i)->isValueDependent())
446    return false;
447
448  // Check that the immediate argument is actually a constant.
449  if (SemaBuiltinConstantArg(TheCall, i, Result))
450    return true;
451
452  // Range check against the upper/lower values for this isntruction.
453  unsigned Val = Result.getZExtValue();
454  if (Val < l || Val > (u + l))
455    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
456           << l << u + l << TheCall->getArg(i)->getSourceRange();
457
458  return false;
459}
460
461bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall) {
462  assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
463          BuiltinID == ARM::BI__builtin_arm_strex) &&
464         "unexpected ARM builtin");
465  bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex;
466
467  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
468
469  // Ensure that we have the proper number of arguments.
470  if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
471    return true;
472
473  // Inspect the pointer argument of the atomic builtin.  This should always be
474  // a pointer type, whose element is an integral scalar or pointer type.
475  // Because it is a pointer type, we don't have to worry about any implicit
476  // casts here.
477  Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
478  ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
479  if (PointerArgRes.isInvalid())
480    return true;
481  PointerArg = PointerArgRes.take();
482
483  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
484  if (!pointerType) {
485    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
486      << PointerArg->getType() << PointerArg->getSourceRange();
487    return true;
488  }
489
490  // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
491  // task is to insert the appropriate casts into the AST. First work out just
492  // what the appropriate type is.
493  QualType ValType = pointerType->getPointeeType();
494  QualType AddrType = ValType.getUnqualifiedType().withVolatile();
495  if (IsLdrex)
496    AddrType.addConst();
497
498  // Issue a warning if the cast is dodgy.
499  CastKind CastNeeded = CK_NoOp;
500  if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
501    CastNeeded = CK_BitCast;
502    Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
503      << PointerArg->getType()
504      << Context.getPointerType(AddrType)
505      << AA_Passing << PointerArg->getSourceRange();
506  }
507
508  // Finally, do the cast and replace the argument with the corrected version.
509  AddrType = Context.getPointerType(AddrType);
510  PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
511  if (PointerArgRes.isInvalid())
512    return true;
513  PointerArg = PointerArgRes.take();
514
515  TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
516
517  // In general, we allow ints, floats and pointers to be loaded and stored.
518  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
519      !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
520    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
521      << PointerArg->getType() << PointerArg->getSourceRange();
522    return true;
523  }
524
525  // But ARM doesn't have instructions to deal with 128-bit versions.
526  if (Context.getTypeSize(ValType) > 64) {
527    Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
528      << PointerArg->getType() << PointerArg->getSourceRange();
529    return true;
530  }
531
532  switch (ValType.getObjCLifetime()) {
533  case Qualifiers::OCL_None:
534  case Qualifiers::OCL_ExplicitNone:
535    // okay
536    break;
537
538  case Qualifiers::OCL_Weak:
539  case Qualifiers::OCL_Strong:
540  case Qualifiers::OCL_Autoreleasing:
541    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
542      << ValType << PointerArg->getSourceRange();
543    return true;
544  }
545
546
547  if (IsLdrex) {
548    TheCall->setType(ValType);
549    return false;
550  }
551
552  // Initialize the argument to be stored.
553  ExprResult ValArg = TheCall->getArg(0);
554  InitializedEntity Entity = InitializedEntity::InitializeParameter(
555      Context, ValType, /*consume*/ false);
556  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
557  if (ValArg.isInvalid())
558    return true;
559
560  TheCall->setArg(0, ValArg.get());
561  return false;
562}
563
564bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
565  llvm::APSInt Result;
566
567  if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
568      BuiltinID == ARM::BI__builtin_arm_strex) {
569    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall);
570  }
571
572  uint64_t mask = 0;
573  unsigned TV = 0;
574  int PtrArgNum = -1;
575  bool HasConstPtr = false;
576  switch (BuiltinID) {
577#define GET_NEON_OVERLOAD_CHECK
578#include "clang/Basic/arm_neon.inc"
579#undef GET_NEON_OVERLOAD_CHECK
580  }
581
582  // For NEON intrinsics which are overloaded on vector element type, validate
583  // the immediate which specifies which variant to emit.
584  unsigned ImmArg = TheCall->getNumArgs()-1;
585  if (mask) {
586    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
587      return true;
588
589    TV = Result.getLimitedValue(64);
590    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
591      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
592        << TheCall->getArg(ImmArg)->getSourceRange();
593  }
594
595  if (PtrArgNum >= 0) {
596    // Check that pointer arguments have the specified type.
597    Expr *Arg = TheCall->getArg(PtrArgNum);
598    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
599      Arg = ICE->getSubExpr();
600    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
601    QualType RHSTy = RHS.get()->getType();
602    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
603    if (HasConstPtr)
604      EltTy = EltTy.withConst();
605    QualType LHSTy = Context.getPointerType(EltTy);
606    AssignConvertType ConvTy;
607    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
608    if (RHS.isInvalid())
609      return true;
610    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
611                                 RHS.get(), AA_Assigning))
612      return true;
613  }
614
615  // For NEON intrinsics which take an immediate value as part of the
616  // instruction, range check them here.
617  unsigned i = 0, l = 0, u = 0;
618  switch (BuiltinID) {
619  default: return false;
620  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
621  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
622  case ARM::BI__builtin_arm_vcvtr_f:
623  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
624#define GET_NEON_IMMEDIATE_CHECK
625#include "clang/Basic/arm_neon.inc"
626#undef GET_NEON_IMMEDIATE_CHECK
627  };
628
629  // We can't check the value of a dependent argument.
630  if (TheCall->getArg(i)->isTypeDependent() ||
631      TheCall->getArg(i)->isValueDependent())
632    return false;
633
634  // Check that the immediate argument is actually a constant.
635  if (SemaBuiltinConstantArg(TheCall, i, Result))
636    return true;
637
638  // Range check against the upper/lower values for this isntruction.
639  unsigned Val = Result.getZExtValue();
640  if (Val < l || Val > (u + l))
641    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
642      << l << u+l << TheCall->getArg(i)->getSourceRange();
643
644  // FIXME: VFP Intrinsics should error if VFP not present.
645  return false;
646}
647
648bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
649  unsigned i = 0, l = 0, u = 0;
650  switch (BuiltinID) {
651  default: return false;
652  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
653  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
654  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
655  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
656  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
657  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
658  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
659  };
660
661  // We can't check the value of a dependent argument.
662  if (TheCall->getArg(i)->isTypeDependent() ||
663      TheCall->getArg(i)->isValueDependent())
664    return false;
665
666  // Check that the immediate argument is actually a constant.
667  llvm::APSInt Result;
668  if (SemaBuiltinConstantArg(TheCall, i, Result))
669    return true;
670
671  // Range check against the upper/lower values for this instruction.
672  unsigned Val = Result.getZExtValue();
673  if (Val < l || Val > u)
674    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
675      << l << u << TheCall->getArg(i)->getSourceRange();
676
677  return false;
678}
679
680/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
681/// parameter with the FormatAttr's correct format_idx and firstDataArg.
682/// Returns true when the format fits the function and the FormatStringInfo has
683/// been populated.
684bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
685                               FormatStringInfo *FSI) {
686  FSI->HasVAListArg = Format->getFirstArg() == 0;
687  FSI->FormatIdx = Format->getFormatIdx() - 1;
688  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
689
690  // The way the format attribute works in GCC, the implicit this argument
691  // of member functions is counted. However, it doesn't appear in our own
692  // lists, so decrement format_idx in that case.
693  if (IsCXXMember) {
694    if(FSI->FormatIdx == 0)
695      return false;
696    --FSI->FormatIdx;
697    if (FSI->FirstDataArg != 0)
698      --FSI->FirstDataArg;
699  }
700  return true;
701}
702
703/// Handles the checks for format strings, non-POD arguments to vararg
704/// functions, and NULL arguments passed to non-NULL parameters.
705void Sema::checkCall(NamedDecl *FDecl,
706                     ArrayRef<const Expr *> Args,
707                     unsigned NumProtoArgs,
708                     bool IsMemberFunction,
709                     SourceLocation Loc,
710                     SourceRange Range,
711                     VariadicCallType CallType) {
712  // FIXME: We should check as much as we can in the template definition.
713  if (CurContext->isDependentContext())
714    return;
715
716  // Printf and scanf checking.
717  llvm::SmallBitVector CheckedVarArgs;
718  if (FDecl) {
719    for (specific_attr_iterator<FormatAttr>
720             I = FDecl->specific_attr_begin<FormatAttr>(),
721             E = FDecl->specific_attr_end<FormatAttr>();
722         I != E; ++I) {
723      // Only create vector if there are format attributes.
724      CheckedVarArgs.resize(Args.size());
725
726      CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range,
727                           CheckedVarArgs);
728    }
729  }
730
731  // Refuse POD arguments that weren't caught by the format string
732  // checks above.
733  if (CallType != VariadicDoesNotApply) {
734    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
735      // Args[ArgIdx] can be null in malformed code.
736      if (const Expr *Arg = Args[ArgIdx]) {
737        if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
738          checkVariadicArgument(Arg, CallType);
739      }
740    }
741  }
742
743  if (FDecl) {
744    for (specific_attr_iterator<NonNullAttr>
745           I = FDecl->specific_attr_begin<NonNullAttr>(),
746           E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
747      CheckNonNullArguments(*I, Args.data(), Loc);
748
749    // Type safety checking.
750    for (specific_attr_iterator<ArgumentWithTypeTagAttr>
751           i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
752           e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>();
753         i != e; ++i) {
754      CheckArgumentWithTypeTag(*i, Args.data());
755    }
756  }
757}
758
759/// CheckConstructorCall - Check a constructor call for correctness and safety
760/// properties not enforced by the C type system.
761void Sema::CheckConstructorCall(FunctionDecl *FDecl,
762                                ArrayRef<const Expr *> Args,
763                                const FunctionProtoType *Proto,
764                                SourceLocation Loc) {
765  VariadicCallType CallType =
766    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
767  checkCall(FDecl, Args, Proto->getNumArgs(),
768            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
769}
770
771/// CheckFunctionCall - Check a direct function call for various correctness
772/// and safety properties not strictly enforced by the C type system.
773bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
774                             const FunctionProtoType *Proto) {
775  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
776                              isa<CXXMethodDecl>(FDecl);
777  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
778                          IsMemberOperatorCall;
779  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
780                                                  TheCall->getCallee());
781  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
782  Expr** Args = TheCall->getArgs();
783  unsigned NumArgs = TheCall->getNumArgs();
784  if (IsMemberOperatorCall) {
785    // If this is a call to a member operator, hide the first argument
786    // from checkCall.
787    // FIXME: Our choice of AST representation here is less than ideal.
788    ++Args;
789    --NumArgs;
790  }
791  checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
792            NumProtoArgs,
793            IsMemberFunction, TheCall->getRParenLoc(),
794            TheCall->getCallee()->getSourceRange(), CallType);
795
796  IdentifierInfo *FnInfo = FDecl->getIdentifier();
797  // None of the checks below are needed for functions that don't have
798  // simple names (e.g., C++ conversion functions).
799  if (!FnInfo)
800    return false;
801
802  unsigned CMId = FDecl->getMemoryFunctionKind();
803  if (CMId == 0)
804    return false;
805
806  // Handle memory setting and copying functions.
807  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
808    CheckStrlcpycatArguments(TheCall, FnInfo);
809  else if (CMId == Builtin::BIstrncat)
810    CheckStrncatArguments(TheCall, FnInfo);
811  else
812    CheckMemaccessArguments(TheCall, CMId, FnInfo);
813
814  return false;
815}
816
817bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
818                               ArrayRef<const Expr *> Args) {
819  VariadicCallType CallType =
820      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
821
822  checkCall(Method, Args, Method->param_size(),
823            /*IsMemberFunction=*/false,
824            lbrac, Method->getSourceRange(), CallType);
825
826  return false;
827}
828
829bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
830                            const FunctionProtoType *Proto) {
831  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
832  if (!V)
833    return false;
834
835  QualType Ty = V->getType();
836  if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
837    return false;
838
839  VariadicCallType CallType;
840  if (!Proto || !Proto->isVariadic()) {
841    CallType = VariadicDoesNotApply;
842  } else if (Ty->isBlockPointerType()) {
843    CallType = VariadicBlock;
844  } else { // Ty->isFunctionPointerType()
845    CallType = VariadicFunction;
846  }
847  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
848
849  checkCall(NDecl,
850            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
851                                             TheCall->getNumArgs()),
852            NumProtoArgs, /*IsMemberFunction=*/false,
853            TheCall->getRParenLoc(),
854            TheCall->getCallee()->getSourceRange(), CallType);
855
856  return false;
857}
858
859/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
860/// such as function pointers returned from functions.
861bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
862  VariadicCallType CallType = getVariadicCallType(/*FDecl=*/0, Proto,
863                                                  TheCall->getCallee());
864  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
865
866  checkCall(/*FDecl=*/0,
867            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
868                                             TheCall->getNumArgs()),
869            NumProtoArgs, /*IsMemberFunction=*/false,
870            TheCall->getRParenLoc(),
871            TheCall->getCallee()->getSourceRange(), CallType);
872
873  return false;
874}
875
876ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
877                                         AtomicExpr::AtomicOp Op) {
878  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
879  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
880
881  // All these operations take one of the following forms:
882  enum {
883    // C    __c11_atomic_init(A *, C)
884    Init,
885    // C    __c11_atomic_load(A *, int)
886    Load,
887    // void __atomic_load(A *, CP, int)
888    Copy,
889    // C    __c11_atomic_add(A *, M, int)
890    Arithmetic,
891    // C    __atomic_exchange_n(A *, CP, int)
892    Xchg,
893    // void __atomic_exchange(A *, C *, CP, int)
894    GNUXchg,
895    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
896    C11CmpXchg,
897    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
898    GNUCmpXchg
899  } Form = Init;
900  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
901  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
902  // where:
903  //   C is an appropriate type,
904  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
905  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
906  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
907  //   the int parameters are for orderings.
908
909  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
910         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
911         && "need to update code for modified C11 atomics");
912  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
913               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
914  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
915             Op == AtomicExpr::AO__atomic_store_n ||
916             Op == AtomicExpr::AO__atomic_exchange_n ||
917             Op == AtomicExpr::AO__atomic_compare_exchange_n;
918  bool IsAddSub = false;
919
920  switch (Op) {
921  case AtomicExpr::AO__c11_atomic_init:
922    Form = Init;
923    break;
924
925  case AtomicExpr::AO__c11_atomic_load:
926  case AtomicExpr::AO__atomic_load_n:
927    Form = Load;
928    break;
929
930  case AtomicExpr::AO__c11_atomic_store:
931  case AtomicExpr::AO__atomic_load:
932  case AtomicExpr::AO__atomic_store:
933  case AtomicExpr::AO__atomic_store_n:
934    Form = Copy;
935    break;
936
937  case AtomicExpr::AO__c11_atomic_fetch_add:
938  case AtomicExpr::AO__c11_atomic_fetch_sub:
939  case AtomicExpr::AO__atomic_fetch_add:
940  case AtomicExpr::AO__atomic_fetch_sub:
941  case AtomicExpr::AO__atomic_add_fetch:
942  case AtomicExpr::AO__atomic_sub_fetch:
943    IsAddSub = true;
944    // Fall through.
945  case AtomicExpr::AO__c11_atomic_fetch_and:
946  case AtomicExpr::AO__c11_atomic_fetch_or:
947  case AtomicExpr::AO__c11_atomic_fetch_xor:
948  case AtomicExpr::AO__atomic_fetch_and:
949  case AtomicExpr::AO__atomic_fetch_or:
950  case AtomicExpr::AO__atomic_fetch_xor:
951  case AtomicExpr::AO__atomic_fetch_nand:
952  case AtomicExpr::AO__atomic_and_fetch:
953  case AtomicExpr::AO__atomic_or_fetch:
954  case AtomicExpr::AO__atomic_xor_fetch:
955  case AtomicExpr::AO__atomic_nand_fetch:
956    Form = Arithmetic;
957    break;
958
959  case AtomicExpr::AO__c11_atomic_exchange:
960  case AtomicExpr::AO__atomic_exchange_n:
961    Form = Xchg;
962    break;
963
964  case AtomicExpr::AO__atomic_exchange:
965    Form = GNUXchg;
966    break;
967
968  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
969  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
970    Form = C11CmpXchg;
971    break;
972
973  case AtomicExpr::AO__atomic_compare_exchange:
974  case AtomicExpr::AO__atomic_compare_exchange_n:
975    Form = GNUCmpXchg;
976    break;
977  }
978
979  // Check we have the right number of arguments.
980  if (TheCall->getNumArgs() < NumArgs[Form]) {
981    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
982      << 0 << NumArgs[Form] << TheCall->getNumArgs()
983      << TheCall->getCallee()->getSourceRange();
984    return ExprError();
985  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
986    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
987         diag::err_typecheck_call_too_many_args)
988      << 0 << NumArgs[Form] << TheCall->getNumArgs()
989      << TheCall->getCallee()->getSourceRange();
990    return ExprError();
991  }
992
993  // Inspect the first argument of the atomic operation.
994  Expr *Ptr = TheCall->getArg(0);
995  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
996  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
997  if (!pointerType) {
998    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
999      << Ptr->getType() << Ptr->getSourceRange();
1000    return ExprError();
1001  }
1002
1003  // For a __c11 builtin, this should be a pointer to an _Atomic type.
1004  QualType AtomTy = pointerType->getPointeeType(); // 'A'
1005  QualType ValType = AtomTy; // 'C'
1006  if (IsC11) {
1007    if (!AtomTy->isAtomicType()) {
1008      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1009        << Ptr->getType() << Ptr->getSourceRange();
1010      return ExprError();
1011    }
1012    if (AtomTy.isConstQualified()) {
1013      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1014        << Ptr->getType() << Ptr->getSourceRange();
1015      return ExprError();
1016    }
1017    ValType = AtomTy->getAs<AtomicType>()->getValueType();
1018  }
1019
1020  // For an arithmetic operation, the implied arithmetic must be well-formed.
1021  if (Form == Arithmetic) {
1022    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1023    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1024      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1025        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1026      return ExprError();
1027    }
1028    if (!IsAddSub && !ValType->isIntegerType()) {
1029      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1030        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1031      return ExprError();
1032    }
1033  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1034    // For __atomic_*_n operations, the value type must be a scalar integral or
1035    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1036    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1037      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1038    return ExprError();
1039  }
1040
1041  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
1042      !AtomTy->isScalarType()) {
1043    // For GNU atomics, require a trivially-copyable type. This is not part of
1044    // the GNU atomics specification, but we enforce it for sanity.
1045    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1046      << Ptr->getType() << Ptr->getSourceRange();
1047    return ExprError();
1048  }
1049
1050  // FIXME: For any builtin other than a load, the ValType must not be
1051  // const-qualified.
1052
1053  switch (ValType.getObjCLifetime()) {
1054  case Qualifiers::OCL_None:
1055  case Qualifiers::OCL_ExplicitNone:
1056    // okay
1057    break;
1058
1059  case Qualifiers::OCL_Weak:
1060  case Qualifiers::OCL_Strong:
1061  case Qualifiers::OCL_Autoreleasing:
1062    // FIXME: Can this happen? By this point, ValType should be known
1063    // to be trivially copyable.
1064    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1065      << ValType << Ptr->getSourceRange();
1066    return ExprError();
1067  }
1068
1069  QualType ResultType = ValType;
1070  if (Form == Copy || Form == GNUXchg || Form == Init)
1071    ResultType = Context.VoidTy;
1072  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1073    ResultType = Context.BoolTy;
1074
1075  // The type of a parameter passed 'by value'. In the GNU atomics, such
1076  // arguments are actually passed as pointers.
1077  QualType ByValType = ValType; // 'CP'
1078  if (!IsC11 && !IsN)
1079    ByValType = Ptr->getType();
1080
1081  // The first argument --- the pointer --- has a fixed type; we
1082  // deduce the types of the rest of the arguments accordingly.  Walk
1083  // the remaining arguments, converting them to the deduced value type.
1084  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1085    QualType Ty;
1086    if (i < NumVals[Form] + 1) {
1087      switch (i) {
1088      case 1:
1089        // The second argument is the non-atomic operand. For arithmetic, this
1090        // is always passed by value, and for a compare_exchange it is always
1091        // passed by address. For the rest, GNU uses by-address and C11 uses
1092        // by-value.
1093        assert(Form != Load);
1094        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1095          Ty = ValType;
1096        else if (Form == Copy || Form == Xchg)
1097          Ty = ByValType;
1098        else if (Form == Arithmetic)
1099          Ty = Context.getPointerDiffType();
1100        else
1101          Ty = Context.getPointerType(ValType.getUnqualifiedType());
1102        break;
1103      case 2:
1104        // The third argument to compare_exchange / GNU exchange is a
1105        // (pointer to a) desired value.
1106        Ty = ByValType;
1107        break;
1108      case 3:
1109        // The fourth argument to GNU compare_exchange is a 'weak' flag.
1110        Ty = Context.BoolTy;
1111        break;
1112      }
1113    } else {
1114      // The order(s) are always converted to int.
1115      Ty = Context.IntTy;
1116    }
1117
1118    InitializedEntity Entity =
1119        InitializedEntity::InitializeParameter(Context, Ty, false);
1120    ExprResult Arg = TheCall->getArg(i);
1121    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1122    if (Arg.isInvalid())
1123      return true;
1124    TheCall->setArg(i, Arg.get());
1125  }
1126
1127  // Permute the arguments into a 'consistent' order.
1128  SmallVector<Expr*, 5> SubExprs;
1129  SubExprs.push_back(Ptr);
1130  switch (Form) {
1131  case Init:
1132    // Note, AtomicExpr::getVal1() has a special case for this atomic.
1133    SubExprs.push_back(TheCall->getArg(1)); // Val1
1134    break;
1135  case Load:
1136    SubExprs.push_back(TheCall->getArg(1)); // Order
1137    break;
1138  case Copy:
1139  case Arithmetic:
1140  case Xchg:
1141    SubExprs.push_back(TheCall->getArg(2)); // Order
1142    SubExprs.push_back(TheCall->getArg(1)); // Val1
1143    break;
1144  case GNUXchg:
1145    // Note, AtomicExpr::getVal2() has a special case for this atomic.
1146    SubExprs.push_back(TheCall->getArg(3)); // Order
1147    SubExprs.push_back(TheCall->getArg(1)); // Val1
1148    SubExprs.push_back(TheCall->getArg(2)); // Val2
1149    break;
1150  case C11CmpXchg:
1151    SubExprs.push_back(TheCall->getArg(3)); // Order
1152    SubExprs.push_back(TheCall->getArg(1)); // Val1
1153    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1154    SubExprs.push_back(TheCall->getArg(2)); // Val2
1155    break;
1156  case GNUCmpXchg:
1157    SubExprs.push_back(TheCall->getArg(4)); // Order
1158    SubExprs.push_back(TheCall->getArg(1)); // Val1
1159    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1160    SubExprs.push_back(TheCall->getArg(2)); // Val2
1161    SubExprs.push_back(TheCall->getArg(3)); // Weak
1162    break;
1163  }
1164
1165  AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1166                                            SubExprs, ResultType, Op,
1167                                            TheCall->getRParenLoc());
1168
1169  if ((Op == AtomicExpr::AO__c11_atomic_load ||
1170       (Op == AtomicExpr::AO__c11_atomic_store)) &&
1171      Context.AtomicUsesUnsupportedLibcall(AE))
1172    Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1173    ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1174
1175  return Owned(AE);
1176}
1177
1178
1179/// checkBuiltinArgument - Given a call to a builtin function, perform
1180/// normal type-checking on the given argument, updating the call in
1181/// place.  This is useful when a builtin function requires custom
1182/// type-checking for some of its arguments but not necessarily all of
1183/// them.
1184///
1185/// Returns true on error.
1186static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1187  FunctionDecl *Fn = E->getDirectCallee();
1188  assert(Fn && "builtin call without direct callee!");
1189
1190  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1191  InitializedEntity Entity =
1192    InitializedEntity::InitializeParameter(S.Context, Param);
1193
1194  ExprResult Arg = E->getArg(0);
1195  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1196  if (Arg.isInvalid())
1197    return true;
1198
1199  E->setArg(ArgIndex, Arg.take());
1200  return false;
1201}
1202
1203/// SemaBuiltinAtomicOverloaded - We have a call to a function like
1204/// __sync_fetch_and_add, which is an overloaded function based on the pointer
1205/// type of its first argument.  The main ActOnCallExpr routines have already
1206/// promoted the types of arguments because all of these calls are prototyped as
1207/// void(...).
1208///
1209/// This function goes through and does final semantic checking for these
1210/// builtins,
1211ExprResult
1212Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1213  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1214  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1215  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1216
1217  // Ensure that we have at least one argument to do type inference from.
1218  if (TheCall->getNumArgs() < 1) {
1219    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1220      << 0 << 1 << TheCall->getNumArgs()
1221      << TheCall->getCallee()->getSourceRange();
1222    return ExprError();
1223  }
1224
1225  // Inspect the first argument of the atomic builtin.  This should always be
1226  // a pointer type, whose element is an integral scalar or pointer type.
1227  // Because it is a pointer type, we don't have to worry about any implicit
1228  // casts here.
1229  // FIXME: We don't allow floating point scalars as input.
1230  Expr *FirstArg = TheCall->getArg(0);
1231  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1232  if (FirstArgResult.isInvalid())
1233    return ExprError();
1234  FirstArg = FirstArgResult.take();
1235  TheCall->setArg(0, FirstArg);
1236
1237  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1238  if (!pointerType) {
1239    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1240      << FirstArg->getType() << FirstArg->getSourceRange();
1241    return ExprError();
1242  }
1243
1244  QualType ValType = pointerType->getPointeeType();
1245  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1246      !ValType->isBlockPointerType()) {
1247    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1248      << FirstArg->getType() << FirstArg->getSourceRange();
1249    return ExprError();
1250  }
1251
1252  switch (ValType.getObjCLifetime()) {
1253  case Qualifiers::OCL_None:
1254  case Qualifiers::OCL_ExplicitNone:
1255    // okay
1256    break;
1257
1258  case Qualifiers::OCL_Weak:
1259  case Qualifiers::OCL_Strong:
1260  case Qualifiers::OCL_Autoreleasing:
1261    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1262      << ValType << FirstArg->getSourceRange();
1263    return ExprError();
1264  }
1265
1266  // Strip any qualifiers off ValType.
1267  ValType = ValType.getUnqualifiedType();
1268
1269  // The majority of builtins return a value, but a few have special return
1270  // types, so allow them to override appropriately below.
1271  QualType ResultType = ValType;
1272
1273  // We need to figure out which concrete builtin this maps onto.  For example,
1274  // __sync_fetch_and_add with a 2 byte object turns into
1275  // __sync_fetch_and_add_2.
1276#define BUILTIN_ROW(x) \
1277  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1278    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1279
1280  static const unsigned BuiltinIndices[][5] = {
1281    BUILTIN_ROW(__sync_fetch_and_add),
1282    BUILTIN_ROW(__sync_fetch_and_sub),
1283    BUILTIN_ROW(__sync_fetch_and_or),
1284    BUILTIN_ROW(__sync_fetch_and_and),
1285    BUILTIN_ROW(__sync_fetch_and_xor),
1286
1287    BUILTIN_ROW(__sync_add_and_fetch),
1288    BUILTIN_ROW(__sync_sub_and_fetch),
1289    BUILTIN_ROW(__sync_and_and_fetch),
1290    BUILTIN_ROW(__sync_or_and_fetch),
1291    BUILTIN_ROW(__sync_xor_and_fetch),
1292
1293    BUILTIN_ROW(__sync_val_compare_and_swap),
1294    BUILTIN_ROW(__sync_bool_compare_and_swap),
1295    BUILTIN_ROW(__sync_lock_test_and_set),
1296    BUILTIN_ROW(__sync_lock_release),
1297    BUILTIN_ROW(__sync_swap)
1298  };
1299#undef BUILTIN_ROW
1300
1301  // Determine the index of the size.
1302  unsigned SizeIndex;
1303  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1304  case 1: SizeIndex = 0; break;
1305  case 2: SizeIndex = 1; break;
1306  case 4: SizeIndex = 2; break;
1307  case 8: SizeIndex = 3; break;
1308  case 16: SizeIndex = 4; break;
1309  default:
1310    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1311      << FirstArg->getType() << FirstArg->getSourceRange();
1312    return ExprError();
1313  }
1314
1315  // Each of these builtins has one pointer argument, followed by some number of
1316  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1317  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1318  // as the number of fixed args.
1319  unsigned BuiltinID = FDecl->getBuiltinID();
1320  unsigned BuiltinIndex, NumFixed = 1;
1321  switch (BuiltinID) {
1322  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1323  case Builtin::BI__sync_fetch_and_add:
1324  case Builtin::BI__sync_fetch_and_add_1:
1325  case Builtin::BI__sync_fetch_and_add_2:
1326  case Builtin::BI__sync_fetch_and_add_4:
1327  case Builtin::BI__sync_fetch_and_add_8:
1328  case Builtin::BI__sync_fetch_and_add_16:
1329    BuiltinIndex = 0;
1330    break;
1331
1332  case Builtin::BI__sync_fetch_and_sub:
1333  case Builtin::BI__sync_fetch_and_sub_1:
1334  case Builtin::BI__sync_fetch_and_sub_2:
1335  case Builtin::BI__sync_fetch_and_sub_4:
1336  case Builtin::BI__sync_fetch_and_sub_8:
1337  case Builtin::BI__sync_fetch_and_sub_16:
1338    BuiltinIndex = 1;
1339    break;
1340
1341  case Builtin::BI__sync_fetch_and_or:
1342  case Builtin::BI__sync_fetch_and_or_1:
1343  case Builtin::BI__sync_fetch_and_or_2:
1344  case Builtin::BI__sync_fetch_and_or_4:
1345  case Builtin::BI__sync_fetch_and_or_8:
1346  case Builtin::BI__sync_fetch_and_or_16:
1347    BuiltinIndex = 2;
1348    break;
1349
1350  case Builtin::BI__sync_fetch_and_and:
1351  case Builtin::BI__sync_fetch_and_and_1:
1352  case Builtin::BI__sync_fetch_and_and_2:
1353  case Builtin::BI__sync_fetch_and_and_4:
1354  case Builtin::BI__sync_fetch_and_and_8:
1355  case Builtin::BI__sync_fetch_and_and_16:
1356    BuiltinIndex = 3;
1357    break;
1358
1359  case Builtin::BI__sync_fetch_and_xor:
1360  case Builtin::BI__sync_fetch_and_xor_1:
1361  case Builtin::BI__sync_fetch_and_xor_2:
1362  case Builtin::BI__sync_fetch_and_xor_4:
1363  case Builtin::BI__sync_fetch_and_xor_8:
1364  case Builtin::BI__sync_fetch_and_xor_16:
1365    BuiltinIndex = 4;
1366    break;
1367
1368  case Builtin::BI__sync_add_and_fetch:
1369  case Builtin::BI__sync_add_and_fetch_1:
1370  case Builtin::BI__sync_add_and_fetch_2:
1371  case Builtin::BI__sync_add_and_fetch_4:
1372  case Builtin::BI__sync_add_and_fetch_8:
1373  case Builtin::BI__sync_add_and_fetch_16:
1374    BuiltinIndex = 5;
1375    break;
1376
1377  case Builtin::BI__sync_sub_and_fetch:
1378  case Builtin::BI__sync_sub_and_fetch_1:
1379  case Builtin::BI__sync_sub_and_fetch_2:
1380  case Builtin::BI__sync_sub_and_fetch_4:
1381  case Builtin::BI__sync_sub_and_fetch_8:
1382  case Builtin::BI__sync_sub_and_fetch_16:
1383    BuiltinIndex = 6;
1384    break;
1385
1386  case Builtin::BI__sync_and_and_fetch:
1387  case Builtin::BI__sync_and_and_fetch_1:
1388  case Builtin::BI__sync_and_and_fetch_2:
1389  case Builtin::BI__sync_and_and_fetch_4:
1390  case Builtin::BI__sync_and_and_fetch_8:
1391  case Builtin::BI__sync_and_and_fetch_16:
1392    BuiltinIndex = 7;
1393    break;
1394
1395  case Builtin::BI__sync_or_and_fetch:
1396  case Builtin::BI__sync_or_and_fetch_1:
1397  case Builtin::BI__sync_or_and_fetch_2:
1398  case Builtin::BI__sync_or_and_fetch_4:
1399  case Builtin::BI__sync_or_and_fetch_8:
1400  case Builtin::BI__sync_or_and_fetch_16:
1401    BuiltinIndex = 8;
1402    break;
1403
1404  case Builtin::BI__sync_xor_and_fetch:
1405  case Builtin::BI__sync_xor_and_fetch_1:
1406  case Builtin::BI__sync_xor_and_fetch_2:
1407  case Builtin::BI__sync_xor_and_fetch_4:
1408  case Builtin::BI__sync_xor_and_fetch_8:
1409  case Builtin::BI__sync_xor_and_fetch_16:
1410    BuiltinIndex = 9;
1411    break;
1412
1413  case Builtin::BI__sync_val_compare_and_swap:
1414  case Builtin::BI__sync_val_compare_and_swap_1:
1415  case Builtin::BI__sync_val_compare_and_swap_2:
1416  case Builtin::BI__sync_val_compare_and_swap_4:
1417  case Builtin::BI__sync_val_compare_and_swap_8:
1418  case Builtin::BI__sync_val_compare_and_swap_16:
1419    BuiltinIndex = 10;
1420    NumFixed = 2;
1421    break;
1422
1423  case Builtin::BI__sync_bool_compare_and_swap:
1424  case Builtin::BI__sync_bool_compare_and_swap_1:
1425  case Builtin::BI__sync_bool_compare_and_swap_2:
1426  case Builtin::BI__sync_bool_compare_and_swap_4:
1427  case Builtin::BI__sync_bool_compare_and_swap_8:
1428  case Builtin::BI__sync_bool_compare_and_swap_16:
1429    BuiltinIndex = 11;
1430    NumFixed = 2;
1431    ResultType = Context.BoolTy;
1432    break;
1433
1434  case Builtin::BI__sync_lock_test_and_set:
1435  case Builtin::BI__sync_lock_test_and_set_1:
1436  case Builtin::BI__sync_lock_test_and_set_2:
1437  case Builtin::BI__sync_lock_test_and_set_4:
1438  case Builtin::BI__sync_lock_test_and_set_8:
1439  case Builtin::BI__sync_lock_test_and_set_16:
1440    BuiltinIndex = 12;
1441    break;
1442
1443  case Builtin::BI__sync_lock_release:
1444  case Builtin::BI__sync_lock_release_1:
1445  case Builtin::BI__sync_lock_release_2:
1446  case Builtin::BI__sync_lock_release_4:
1447  case Builtin::BI__sync_lock_release_8:
1448  case Builtin::BI__sync_lock_release_16:
1449    BuiltinIndex = 13;
1450    NumFixed = 0;
1451    ResultType = Context.VoidTy;
1452    break;
1453
1454  case Builtin::BI__sync_swap:
1455  case Builtin::BI__sync_swap_1:
1456  case Builtin::BI__sync_swap_2:
1457  case Builtin::BI__sync_swap_4:
1458  case Builtin::BI__sync_swap_8:
1459  case Builtin::BI__sync_swap_16:
1460    BuiltinIndex = 14;
1461    break;
1462  }
1463
1464  // Now that we know how many fixed arguments we expect, first check that we
1465  // have at least that many.
1466  if (TheCall->getNumArgs() < 1+NumFixed) {
1467    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1468      << 0 << 1+NumFixed << TheCall->getNumArgs()
1469      << TheCall->getCallee()->getSourceRange();
1470    return ExprError();
1471  }
1472
1473  // Get the decl for the concrete builtin from this, we can tell what the
1474  // concrete integer type we should convert to is.
1475  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1476  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1477  FunctionDecl *NewBuiltinDecl;
1478  if (NewBuiltinID == BuiltinID)
1479    NewBuiltinDecl = FDecl;
1480  else {
1481    // Perform builtin lookup to avoid redeclaring it.
1482    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1483    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1484    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1485    assert(Res.getFoundDecl());
1486    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1487    if (NewBuiltinDecl == 0)
1488      return ExprError();
1489  }
1490
1491  // The first argument --- the pointer --- has a fixed type; we
1492  // deduce the types of the rest of the arguments accordingly.  Walk
1493  // the remaining arguments, converting them to the deduced value type.
1494  for (unsigned i = 0; i != NumFixed; ++i) {
1495    ExprResult Arg = TheCall->getArg(i+1);
1496
1497    // GCC does an implicit conversion to the pointer or integer ValType.  This
1498    // can fail in some cases (1i -> int**), check for this error case now.
1499    // Initialize the argument.
1500    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1501                                                   ValType, /*consume*/ false);
1502    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1503    if (Arg.isInvalid())
1504      return ExprError();
1505
1506    // Okay, we have something that *can* be converted to the right type.  Check
1507    // to see if there is a potentially weird extension going on here.  This can
1508    // happen when you do an atomic operation on something like an char* and
1509    // pass in 42.  The 42 gets converted to char.  This is even more strange
1510    // for things like 45.123 -> char, etc.
1511    // FIXME: Do this check.
1512    TheCall->setArg(i+1, Arg.take());
1513  }
1514
1515  ASTContext& Context = this->getASTContext();
1516
1517  // Create a new DeclRefExpr to refer to the new decl.
1518  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1519      Context,
1520      DRE->getQualifierLoc(),
1521      SourceLocation(),
1522      NewBuiltinDecl,
1523      /*enclosing*/ false,
1524      DRE->getLocation(),
1525      Context.BuiltinFnTy,
1526      DRE->getValueKind());
1527
1528  // Set the callee in the CallExpr.
1529  // FIXME: This loses syntactic information.
1530  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1531  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1532                                              CK_BuiltinFnToFnPtr);
1533  TheCall->setCallee(PromotedCall.take());
1534
1535  // Change the result type of the call to match the original value type. This
1536  // is arbitrary, but the codegen for these builtins ins design to handle it
1537  // gracefully.
1538  TheCall->setType(ResultType);
1539
1540  return TheCallResult;
1541}
1542
1543/// CheckObjCString - Checks that the argument to the builtin
1544/// CFString constructor is correct
1545/// Note: It might also make sense to do the UTF-16 conversion here (would
1546/// simplify the backend).
1547bool Sema::CheckObjCString(Expr *Arg) {
1548  Arg = Arg->IgnoreParenCasts();
1549  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1550
1551  if (!Literal || !Literal->isAscii()) {
1552    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1553      << Arg->getSourceRange();
1554    return true;
1555  }
1556
1557  if (Literal->containsNonAsciiOrNull()) {
1558    StringRef String = Literal->getString();
1559    unsigned NumBytes = String.size();
1560    SmallVector<UTF16, 128> ToBuf(NumBytes);
1561    const UTF8 *FromPtr = (const UTF8 *)String.data();
1562    UTF16 *ToPtr = &ToBuf[0];
1563
1564    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1565                                                 &ToPtr, ToPtr + NumBytes,
1566                                                 strictConversion);
1567    // Check for conversion failure.
1568    if (Result != conversionOK)
1569      Diag(Arg->getLocStart(),
1570           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1571  }
1572  return false;
1573}
1574
1575/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1576/// Emit an error and return true on failure, return false on success.
1577bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1578  Expr *Fn = TheCall->getCallee();
1579  if (TheCall->getNumArgs() > 2) {
1580    Diag(TheCall->getArg(2)->getLocStart(),
1581         diag::err_typecheck_call_too_many_args)
1582      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1583      << Fn->getSourceRange()
1584      << SourceRange(TheCall->getArg(2)->getLocStart(),
1585                     (*(TheCall->arg_end()-1))->getLocEnd());
1586    return true;
1587  }
1588
1589  if (TheCall->getNumArgs() < 2) {
1590    return Diag(TheCall->getLocEnd(),
1591      diag::err_typecheck_call_too_few_args_at_least)
1592      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1593  }
1594
1595  // Type-check the first argument normally.
1596  if (checkBuiltinArgument(*this, TheCall, 0))
1597    return true;
1598
1599  // Determine whether the current function is variadic or not.
1600  BlockScopeInfo *CurBlock = getCurBlock();
1601  bool isVariadic;
1602  if (CurBlock)
1603    isVariadic = CurBlock->TheDecl->isVariadic();
1604  else if (FunctionDecl *FD = getCurFunctionDecl())
1605    isVariadic = FD->isVariadic();
1606  else
1607    isVariadic = getCurMethodDecl()->isVariadic();
1608
1609  if (!isVariadic) {
1610    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1611    return true;
1612  }
1613
1614  // Verify that the second argument to the builtin is the last argument of the
1615  // current function or method.
1616  bool SecondArgIsLastNamedArgument = false;
1617  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1618
1619  // These are valid if SecondArgIsLastNamedArgument is false after the next
1620  // block.
1621  QualType Type;
1622  SourceLocation ParamLoc;
1623
1624  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1625    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1626      // FIXME: This isn't correct for methods (results in bogus warning).
1627      // Get the last formal in the current function.
1628      const ParmVarDecl *LastArg;
1629      if (CurBlock)
1630        LastArg = *(CurBlock->TheDecl->param_end()-1);
1631      else if (FunctionDecl *FD = getCurFunctionDecl())
1632        LastArg = *(FD->param_end()-1);
1633      else
1634        LastArg = *(getCurMethodDecl()->param_end()-1);
1635      SecondArgIsLastNamedArgument = PV == LastArg;
1636
1637      Type = PV->getType();
1638      ParamLoc = PV->getLocation();
1639    }
1640  }
1641
1642  if (!SecondArgIsLastNamedArgument)
1643    Diag(TheCall->getArg(1)->getLocStart(),
1644         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1645  else if (Type->isReferenceType()) {
1646    Diag(Arg->getLocStart(),
1647         diag::warn_va_start_of_reference_type_is_undefined);
1648    Diag(ParamLoc, diag::note_parameter_type) << Type;
1649  }
1650
1651  return false;
1652}
1653
1654/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1655/// friends.  This is declared to take (...), so we have to check everything.
1656bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1657  if (TheCall->getNumArgs() < 2)
1658    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1659      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1660  if (TheCall->getNumArgs() > 2)
1661    return Diag(TheCall->getArg(2)->getLocStart(),
1662                diag::err_typecheck_call_too_many_args)
1663      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1664      << SourceRange(TheCall->getArg(2)->getLocStart(),
1665                     (*(TheCall->arg_end()-1))->getLocEnd());
1666
1667  ExprResult OrigArg0 = TheCall->getArg(0);
1668  ExprResult OrigArg1 = TheCall->getArg(1);
1669
1670  // Do standard promotions between the two arguments, returning their common
1671  // type.
1672  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1673  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1674    return true;
1675
1676  // Make sure any conversions are pushed back into the call; this is
1677  // type safe since unordered compare builtins are declared as "_Bool
1678  // foo(...)".
1679  TheCall->setArg(0, OrigArg0.get());
1680  TheCall->setArg(1, OrigArg1.get());
1681
1682  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1683    return false;
1684
1685  // If the common type isn't a real floating type, then the arguments were
1686  // invalid for this operation.
1687  if (Res.isNull() || !Res->isRealFloatingType())
1688    return Diag(OrigArg0.get()->getLocStart(),
1689                diag::err_typecheck_call_invalid_ordered_compare)
1690      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1691      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1692
1693  return false;
1694}
1695
1696/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1697/// __builtin_isnan and friends.  This is declared to take (...), so we have
1698/// to check everything. We expect the last argument to be a floating point
1699/// value.
1700bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1701  if (TheCall->getNumArgs() < NumArgs)
1702    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1703      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1704  if (TheCall->getNumArgs() > NumArgs)
1705    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1706                diag::err_typecheck_call_too_many_args)
1707      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1708      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1709                     (*(TheCall->arg_end()-1))->getLocEnd());
1710
1711  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1712
1713  if (OrigArg->isTypeDependent())
1714    return false;
1715
1716  // This operation requires a non-_Complex floating-point number.
1717  if (!OrigArg->getType()->isRealFloatingType())
1718    return Diag(OrigArg->getLocStart(),
1719                diag::err_typecheck_call_invalid_unary_fp)
1720      << OrigArg->getType() << OrigArg->getSourceRange();
1721
1722  // If this is an implicit conversion from float -> double, remove it.
1723  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1724    Expr *CastArg = Cast->getSubExpr();
1725    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1726      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1727             "promotion from float to double is the only expected cast here");
1728      Cast->setSubExpr(0);
1729      TheCall->setArg(NumArgs-1, CastArg);
1730    }
1731  }
1732
1733  return false;
1734}
1735
1736/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1737// This is declared to take (...), so we have to check everything.
1738ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1739  if (TheCall->getNumArgs() < 2)
1740    return ExprError(Diag(TheCall->getLocEnd(),
1741                          diag::err_typecheck_call_too_few_args_at_least)
1742                     << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1743                     << TheCall->getSourceRange());
1744
1745  // Determine which of the following types of shufflevector we're checking:
1746  // 1) unary, vector mask: (lhs, mask)
1747  // 2) binary, vector mask: (lhs, rhs, mask)
1748  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1749  QualType resType = TheCall->getArg(0)->getType();
1750  unsigned numElements = 0;
1751
1752  if (!TheCall->getArg(0)->isTypeDependent() &&
1753      !TheCall->getArg(1)->isTypeDependent()) {
1754    QualType LHSType = TheCall->getArg(0)->getType();
1755    QualType RHSType = TheCall->getArg(1)->getType();
1756
1757    if (!LHSType->isVectorType() || !RHSType->isVectorType())
1758      return ExprError(Diag(TheCall->getLocStart(),
1759                            diag::err_shufflevector_non_vector)
1760                       << SourceRange(TheCall->getArg(0)->getLocStart(),
1761                                      TheCall->getArg(1)->getLocEnd()));
1762
1763    numElements = LHSType->getAs<VectorType>()->getNumElements();
1764    unsigned numResElements = TheCall->getNumArgs() - 2;
1765
1766    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1767    // with mask.  If so, verify that RHS is an integer vector type with the
1768    // same number of elts as lhs.
1769    if (TheCall->getNumArgs() == 2) {
1770      if (!RHSType->hasIntegerRepresentation() ||
1771          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1772        return ExprError(Diag(TheCall->getLocStart(),
1773                              diag::err_shufflevector_incompatible_vector)
1774                         << SourceRange(TheCall->getArg(1)->getLocStart(),
1775                                        TheCall->getArg(1)->getLocEnd()));
1776    } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1777      return ExprError(Diag(TheCall->getLocStart(),
1778                            diag::err_shufflevector_incompatible_vector)
1779                       << SourceRange(TheCall->getArg(0)->getLocStart(),
1780                                      TheCall->getArg(1)->getLocEnd()));
1781    } else if (numElements != numResElements) {
1782      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1783      resType = Context.getVectorType(eltType, numResElements,
1784                                      VectorType::GenericVector);
1785    }
1786  }
1787
1788  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1789    if (TheCall->getArg(i)->isTypeDependent() ||
1790        TheCall->getArg(i)->isValueDependent())
1791      continue;
1792
1793    llvm::APSInt Result(32);
1794    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1795      return ExprError(Diag(TheCall->getLocStart(),
1796                            diag::err_shufflevector_nonconstant_argument)
1797                       << TheCall->getArg(i)->getSourceRange());
1798
1799    // Allow -1 which will be translated to undef in the IR.
1800    if (Result.isSigned() && Result.isAllOnesValue())
1801      continue;
1802
1803    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1804      return ExprError(Diag(TheCall->getLocStart(),
1805                            diag::err_shufflevector_argument_too_large)
1806                       << TheCall->getArg(i)->getSourceRange());
1807  }
1808
1809  SmallVector<Expr*, 32> exprs;
1810
1811  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1812    exprs.push_back(TheCall->getArg(i));
1813    TheCall->setArg(i, 0);
1814  }
1815
1816  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1817                                            TheCall->getCallee()->getLocStart(),
1818                                            TheCall->getRParenLoc()));
1819}
1820
1821/// SemaConvertVectorExpr - Handle __builtin_convertvector
1822ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
1823                                       SourceLocation BuiltinLoc,
1824                                       SourceLocation RParenLoc) {
1825  ExprValueKind VK = VK_RValue;
1826  ExprObjectKind OK = OK_Ordinary;
1827  QualType DstTy = TInfo->getType();
1828  QualType SrcTy = E->getType();
1829
1830  if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
1831    return ExprError(Diag(BuiltinLoc,
1832                          diag::err_convertvector_non_vector)
1833                     << E->getSourceRange());
1834  if (!DstTy->isVectorType() && !DstTy->isDependentType())
1835    return ExprError(Diag(BuiltinLoc,
1836                          diag::err_convertvector_non_vector_type));
1837
1838  if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
1839    unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
1840    unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
1841    if (SrcElts != DstElts)
1842      return ExprError(Diag(BuiltinLoc,
1843                            diag::err_convertvector_incompatible_vector)
1844                       << E->getSourceRange());
1845  }
1846
1847  return Owned(new (Context) ConvertVectorExpr(E, TInfo, DstTy, VK, OK,
1848               BuiltinLoc, RParenLoc));
1849
1850}
1851
1852/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1853// This is declared to take (const void*, ...) and can take two
1854// optional constant int args.
1855bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1856  unsigned NumArgs = TheCall->getNumArgs();
1857
1858  if (NumArgs > 3)
1859    return Diag(TheCall->getLocEnd(),
1860             diag::err_typecheck_call_too_many_args_at_most)
1861             << 0 /*function call*/ << 3 << NumArgs
1862             << TheCall->getSourceRange();
1863
1864  // Argument 0 is checked for us and the remaining arguments must be
1865  // constant integers.
1866  for (unsigned i = 1; i != NumArgs; ++i) {
1867    Expr *Arg = TheCall->getArg(i);
1868
1869    // We can't check the value of a dependent argument.
1870    if (Arg->isTypeDependent() || Arg->isValueDependent())
1871      continue;
1872
1873    llvm::APSInt Result;
1874    if (SemaBuiltinConstantArg(TheCall, i, Result))
1875      return true;
1876
1877    // FIXME: gcc issues a warning and rewrites these to 0. These
1878    // seems especially odd for the third argument since the default
1879    // is 3.
1880    if (i == 1) {
1881      if (Result.getLimitedValue() > 1)
1882        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1883             << "0" << "1" << Arg->getSourceRange();
1884    } else {
1885      if (Result.getLimitedValue() > 3)
1886        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1887            << "0" << "3" << Arg->getSourceRange();
1888    }
1889  }
1890
1891  return false;
1892}
1893
1894/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1895/// TheCall is a constant expression.
1896bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1897                                  llvm::APSInt &Result) {
1898  Expr *Arg = TheCall->getArg(ArgNum);
1899  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1900  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1901
1902  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1903
1904  if (!Arg->isIntegerConstantExpr(Result, Context))
1905    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1906                << FDecl->getDeclName() <<  Arg->getSourceRange();
1907
1908  return false;
1909}
1910
1911/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1912/// int type). This simply type checks that type is one of the defined
1913/// constants (0-3).
1914// For compatibility check 0-3, llvm only handles 0 and 2.
1915bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1916  llvm::APSInt Result;
1917
1918  // We can't check the value of a dependent argument.
1919  if (TheCall->getArg(1)->isTypeDependent() ||
1920      TheCall->getArg(1)->isValueDependent())
1921    return false;
1922
1923  // Check constant-ness first.
1924  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1925    return true;
1926
1927  Expr *Arg = TheCall->getArg(1);
1928  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1929    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1930             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1931  }
1932
1933  return false;
1934}
1935
1936/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1937/// This checks that val is a constant 1.
1938bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1939  Expr *Arg = TheCall->getArg(1);
1940  llvm::APSInt Result;
1941
1942  // TODO: This is less than ideal. Overload this to take a value.
1943  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1944    return true;
1945
1946  if (Result != 1)
1947    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1948             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1949
1950  return false;
1951}
1952
1953namespace {
1954enum StringLiteralCheckType {
1955  SLCT_NotALiteral,
1956  SLCT_UncheckedLiteral,
1957  SLCT_CheckedLiteral
1958};
1959}
1960
1961// Determine if an expression is a string literal or constant string.
1962// If this function returns false on the arguments to a function expecting a
1963// format string, we will usually need to emit a warning.
1964// True string literals are then checked by CheckFormatString.
1965static StringLiteralCheckType
1966checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
1967                      bool HasVAListArg, unsigned format_idx,
1968                      unsigned firstDataArg, Sema::FormatStringType Type,
1969                      Sema::VariadicCallType CallType, bool InFunctionCall,
1970                      llvm::SmallBitVector &CheckedVarArgs) {
1971 tryAgain:
1972  if (E->isTypeDependent() || E->isValueDependent())
1973    return SLCT_NotALiteral;
1974
1975  E = E->IgnoreParenCasts();
1976
1977  if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
1978    // Technically -Wformat-nonliteral does not warn about this case.
1979    // The behavior of printf and friends in this case is implementation
1980    // dependent.  Ideally if the format string cannot be null then
1981    // it should have a 'nonnull' attribute in the function prototype.
1982    return SLCT_UncheckedLiteral;
1983
1984  switch (E->getStmtClass()) {
1985  case Stmt::BinaryConditionalOperatorClass:
1986  case Stmt::ConditionalOperatorClass: {
1987    // The expression is a literal if both sub-expressions were, and it was
1988    // completely checked only if both sub-expressions were checked.
1989    const AbstractConditionalOperator *C =
1990        cast<AbstractConditionalOperator>(E);
1991    StringLiteralCheckType Left =
1992        checkFormatStringExpr(S, C->getTrueExpr(), Args,
1993                              HasVAListArg, format_idx, firstDataArg,
1994                              Type, CallType, InFunctionCall, CheckedVarArgs);
1995    if (Left == SLCT_NotALiteral)
1996      return SLCT_NotALiteral;
1997    StringLiteralCheckType Right =
1998        checkFormatStringExpr(S, C->getFalseExpr(), Args,
1999                              HasVAListArg, format_idx, firstDataArg,
2000                              Type, CallType, InFunctionCall, CheckedVarArgs);
2001    return Left < Right ? Left : Right;
2002  }
2003
2004  case Stmt::ImplicitCastExprClass: {
2005    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2006    goto tryAgain;
2007  }
2008
2009  case Stmt::OpaqueValueExprClass:
2010    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
2011      E = src;
2012      goto tryAgain;
2013    }
2014    return SLCT_NotALiteral;
2015
2016  case Stmt::PredefinedExprClass:
2017    // While __func__, etc., are technically not string literals, they
2018    // cannot contain format specifiers and thus are not a security
2019    // liability.
2020    return SLCT_UncheckedLiteral;
2021
2022  case Stmt::DeclRefExprClass: {
2023    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
2024
2025    // As an exception, do not flag errors for variables binding to
2026    // const string literals.
2027    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
2028      bool isConstant = false;
2029      QualType T = DR->getType();
2030
2031      if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
2032        isConstant = AT->getElementType().isConstant(S.Context);
2033      } else if (const PointerType *PT = T->getAs<PointerType>()) {
2034        isConstant = T.isConstant(S.Context) &&
2035                     PT->getPointeeType().isConstant(S.Context);
2036      } else if (T->isObjCObjectPointerType()) {
2037        // In ObjC, there is usually no "const ObjectPointer" type,
2038        // so don't check if the pointee type is constant.
2039        isConstant = T.isConstant(S.Context);
2040      }
2041
2042      if (isConstant) {
2043        if (const Expr *Init = VD->getAnyInitializer()) {
2044          // Look through initializers like const char c[] = { "foo" }
2045          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2046            if (InitList->isStringLiteralInit())
2047              Init = InitList->getInit(0)->IgnoreParenImpCasts();
2048          }
2049          return checkFormatStringExpr(S, Init, Args,
2050                                       HasVAListArg, format_idx,
2051                                       firstDataArg, Type, CallType,
2052                                       /*InFunctionCall*/false, CheckedVarArgs);
2053        }
2054      }
2055
2056      // For vprintf* functions (i.e., HasVAListArg==true), we add a
2057      // special check to see if the format string is a function parameter
2058      // of the function calling the printf function.  If the function
2059      // has an attribute indicating it is a printf-like function, then we
2060      // should suppress warnings concerning non-literals being used in a call
2061      // to a vprintf function.  For example:
2062      //
2063      // void
2064      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2065      //      va_list ap;
2066      //      va_start(ap, fmt);
2067      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
2068      //      ...
2069      // }
2070      if (HasVAListArg) {
2071        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2072          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2073            int PVIndex = PV->getFunctionScopeIndex() + 1;
2074            for (specific_attr_iterator<FormatAttr>
2075                 i = ND->specific_attr_begin<FormatAttr>(),
2076                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
2077              FormatAttr *PVFormat = *i;
2078              // adjust for implicit parameter
2079              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2080                if (MD->isInstance())
2081                  ++PVIndex;
2082              // We also check if the formats are compatible.
2083              // We can't pass a 'scanf' string to a 'printf' function.
2084              if (PVIndex == PVFormat->getFormatIdx() &&
2085                  Type == S.GetFormatStringType(PVFormat))
2086                return SLCT_UncheckedLiteral;
2087            }
2088          }
2089        }
2090      }
2091    }
2092
2093    return SLCT_NotALiteral;
2094  }
2095
2096  case Stmt::CallExprClass:
2097  case Stmt::CXXMemberCallExprClass: {
2098    const CallExpr *CE = cast<CallExpr>(E);
2099    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2100      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2101        unsigned ArgIndex = FA->getFormatIdx();
2102        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2103          if (MD->isInstance())
2104            --ArgIndex;
2105        const Expr *Arg = CE->getArg(ArgIndex - 1);
2106
2107        return checkFormatStringExpr(S, Arg, Args,
2108                                     HasVAListArg, format_idx, firstDataArg,
2109                                     Type, CallType, InFunctionCall,
2110                                     CheckedVarArgs);
2111      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2112        unsigned BuiltinID = FD->getBuiltinID();
2113        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2114            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2115          const Expr *Arg = CE->getArg(0);
2116          return checkFormatStringExpr(S, Arg, Args,
2117                                       HasVAListArg, format_idx,
2118                                       firstDataArg, Type, CallType,
2119                                       InFunctionCall, CheckedVarArgs);
2120        }
2121      }
2122    }
2123
2124    return SLCT_NotALiteral;
2125  }
2126  case Stmt::ObjCStringLiteralClass:
2127  case Stmt::StringLiteralClass: {
2128    const StringLiteral *StrE = NULL;
2129
2130    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2131      StrE = ObjCFExpr->getString();
2132    else
2133      StrE = cast<StringLiteral>(E);
2134
2135    if (StrE) {
2136      S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
2137                          Type, InFunctionCall, CallType, CheckedVarArgs);
2138      return SLCT_CheckedLiteral;
2139    }
2140
2141    return SLCT_NotALiteral;
2142  }
2143
2144  default:
2145    return SLCT_NotALiteral;
2146  }
2147}
2148
2149void
2150Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
2151                            const Expr * const *ExprArgs,
2152                            SourceLocation CallSiteLoc) {
2153  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
2154                                  e = NonNull->args_end();
2155       i != e; ++i) {
2156    const Expr *ArgExpr = ExprArgs[*i];
2157
2158    // As a special case, transparent unions initialized with zero are
2159    // considered null for the purposes of the nonnull attribute.
2160    if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
2161      if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
2162        if (const CompoundLiteralExpr *CLE =
2163            dyn_cast<CompoundLiteralExpr>(ArgExpr))
2164          if (const InitListExpr *ILE =
2165              dyn_cast<InitListExpr>(CLE->getInitializer()))
2166            ArgExpr = ILE->getInit(0);
2167    }
2168
2169    bool Result;
2170    if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
2171      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
2172  }
2173}
2174
2175Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2176  return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
2177  .Case("scanf", FST_Scanf)
2178  .Cases("printf", "printf0", FST_Printf)
2179  .Cases("NSString", "CFString", FST_NSString)
2180  .Case("strftime", FST_Strftime)
2181  .Case("strfmon", FST_Strfmon)
2182  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2183  .Default(FST_Unknown);
2184}
2185
2186/// CheckFormatArguments - Check calls to printf and scanf (and similar
2187/// functions) for correct use of format strings.
2188/// Returns true if a format string has been fully checked.
2189bool Sema::CheckFormatArguments(const FormatAttr *Format,
2190                                ArrayRef<const Expr *> Args,
2191                                bool IsCXXMember,
2192                                VariadicCallType CallType,
2193                                SourceLocation Loc, SourceRange Range,
2194                                llvm::SmallBitVector &CheckedVarArgs) {
2195  FormatStringInfo FSI;
2196  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2197    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2198                                FSI.FirstDataArg, GetFormatStringType(Format),
2199                                CallType, Loc, Range, CheckedVarArgs);
2200  return false;
2201}
2202
2203bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2204                                bool HasVAListArg, unsigned format_idx,
2205                                unsigned firstDataArg, FormatStringType Type,
2206                                VariadicCallType CallType,
2207                                SourceLocation Loc, SourceRange Range,
2208                                llvm::SmallBitVector &CheckedVarArgs) {
2209  // CHECK: printf/scanf-like function is called with no format string.
2210  if (format_idx >= Args.size()) {
2211    Diag(Loc, diag::warn_missing_format_string) << Range;
2212    return false;
2213  }
2214
2215  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2216
2217  // CHECK: format string is not a string literal.
2218  //
2219  // Dynamically generated format strings are difficult to
2220  // automatically vet at compile time.  Requiring that format strings
2221  // are string literals: (1) permits the checking of format strings by
2222  // the compiler and thereby (2) can practically remove the source of
2223  // many format string exploits.
2224
2225  // Format string can be either ObjC string (e.g. @"%d") or
2226  // C string (e.g. "%d")
2227  // ObjC string uses the same format specifiers as C string, so we can use
2228  // the same format string checking logic for both ObjC and C strings.
2229  StringLiteralCheckType CT =
2230      checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
2231                            format_idx, firstDataArg, Type, CallType,
2232                            /*IsFunctionCall*/true, CheckedVarArgs);
2233  if (CT != SLCT_NotALiteral)
2234    // Literal format string found, check done!
2235    return CT == SLCT_CheckedLiteral;
2236
2237  // Strftime is particular as it always uses a single 'time' argument,
2238  // so it is safe to pass a non-literal string.
2239  if (Type == FST_Strftime)
2240    return false;
2241
2242  // Do not emit diag when the string param is a macro expansion and the
2243  // format is either NSString or CFString. This is a hack to prevent
2244  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2245  // which are usually used in place of NS and CF string literals.
2246  if (Type == FST_NSString &&
2247      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2248    return false;
2249
2250  // If there are no arguments specified, warn with -Wformat-security, otherwise
2251  // warn only with -Wformat-nonliteral.
2252  if (Args.size() == firstDataArg)
2253    Diag(Args[format_idx]->getLocStart(),
2254         diag::warn_format_nonliteral_noargs)
2255      << OrigFormatExpr->getSourceRange();
2256  else
2257    Diag(Args[format_idx]->getLocStart(),
2258         diag::warn_format_nonliteral)
2259           << OrigFormatExpr->getSourceRange();
2260  return false;
2261}
2262
2263namespace {
2264class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2265protected:
2266  Sema &S;
2267  const StringLiteral *FExpr;
2268  const Expr *OrigFormatExpr;
2269  const unsigned FirstDataArg;
2270  const unsigned NumDataArgs;
2271  const char *Beg; // Start of format string.
2272  const bool HasVAListArg;
2273  ArrayRef<const Expr *> Args;
2274  unsigned FormatIdx;
2275  llvm::SmallBitVector CoveredArgs;
2276  bool usesPositionalArgs;
2277  bool atFirstArg;
2278  bool inFunctionCall;
2279  Sema::VariadicCallType CallType;
2280  llvm::SmallBitVector &CheckedVarArgs;
2281public:
2282  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2283                     const Expr *origFormatExpr, unsigned firstDataArg,
2284                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
2285                     ArrayRef<const Expr *> Args,
2286                     unsigned formatIdx, bool inFunctionCall,
2287                     Sema::VariadicCallType callType,
2288                     llvm::SmallBitVector &CheckedVarArgs)
2289    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2290      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2291      Beg(beg), HasVAListArg(hasVAListArg),
2292      Args(Args), FormatIdx(formatIdx),
2293      usesPositionalArgs(false), atFirstArg(true),
2294      inFunctionCall(inFunctionCall), CallType(callType),
2295      CheckedVarArgs(CheckedVarArgs) {
2296    CoveredArgs.resize(numDataArgs);
2297    CoveredArgs.reset();
2298  }
2299
2300  void DoneProcessing();
2301
2302  void HandleIncompleteSpecifier(const char *startSpecifier,
2303                                 unsigned specifierLen);
2304
2305  void HandleInvalidLengthModifier(
2306      const analyze_format_string::FormatSpecifier &FS,
2307      const analyze_format_string::ConversionSpecifier &CS,
2308      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
2309
2310  void HandleNonStandardLengthModifier(
2311      const analyze_format_string::FormatSpecifier &FS,
2312      const char *startSpecifier, unsigned specifierLen);
2313
2314  void HandleNonStandardConversionSpecifier(
2315      const analyze_format_string::ConversionSpecifier &CS,
2316      const char *startSpecifier, unsigned specifierLen);
2317
2318  virtual void HandlePosition(const char *startPos, unsigned posLen);
2319
2320  virtual void HandleInvalidPosition(const char *startSpecifier,
2321                                     unsigned specifierLen,
2322                                     analyze_format_string::PositionContext p);
2323
2324  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2325
2326  void HandleNullChar(const char *nullCharacter);
2327
2328  template <typename Range>
2329  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2330                                   const Expr *ArgumentExpr,
2331                                   PartialDiagnostic PDiag,
2332                                   SourceLocation StringLoc,
2333                                   bool IsStringLocation, Range StringRange,
2334                                   ArrayRef<FixItHint> Fixit = None);
2335
2336protected:
2337  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2338                                        const char *startSpec,
2339                                        unsigned specifierLen,
2340                                        const char *csStart, unsigned csLen);
2341
2342  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2343                                         const char *startSpec,
2344                                         unsigned specifierLen);
2345
2346  SourceRange getFormatStringRange();
2347  CharSourceRange getSpecifierRange(const char *startSpecifier,
2348                                    unsigned specifierLen);
2349  SourceLocation getLocationOfByte(const char *x);
2350
2351  const Expr *getDataArg(unsigned i) const;
2352
2353  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2354                    const analyze_format_string::ConversionSpecifier &CS,
2355                    const char *startSpecifier, unsigned specifierLen,
2356                    unsigned argIndex);
2357
2358  template <typename Range>
2359  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2360                            bool IsStringLocation, Range StringRange,
2361                            ArrayRef<FixItHint> Fixit = None);
2362
2363  void CheckPositionalAndNonpositionalArgs(
2364      const analyze_format_string::FormatSpecifier *FS);
2365};
2366}
2367
2368SourceRange CheckFormatHandler::getFormatStringRange() {
2369  return OrigFormatExpr->getSourceRange();
2370}
2371
2372CharSourceRange CheckFormatHandler::
2373getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2374  SourceLocation Start = getLocationOfByte(startSpecifier);
2375  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2376
2377  // Advance the end SourceLocation by one due to half-open ranges.
2378  End = End.getLocWithOffset(1);
2379
2380  return CharSourceRange::getCharRange(Start, End);
2381}
2382
2383SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2384  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2385}
2386
2387void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2388                                                   unsigned specifierLen){
2389  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2390                       getLocationOfByte(startSpecifier),
2391                       /*IsStringLocation*/true,
2392                       getSpecifierRange(startSpecifier, specifierLen));
2393}
2394
2395void CheckFormatHandler::HandleInvalidLengthModifier(
2396    const analyze_format_string::FormatSpecifier &FS,
2397    const analyze_format_string::ConversionSpecifier &CS,
2398    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2399  using namespace analyze_format_string;
2400
2401  const LengthModifier &LM = FS.getLengthModifier();
2402  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2403
2404  // See if we know how to fix this length modifier.
2405  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2406  if (FixedLM) {
2407    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2408                         getLocationOfByte(LM.getStart()),
2409                         /*IsStringLocation*/true,
2410                         getSpecifierRange(startSpecifier, specifierLen));
2411
2412    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2413      << FixedLM->toString()
2414      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2415
2416  } else {
2417    FixItHint Hint;
2418    if (DiagID == diag::warn_format_nonsensical_length)
2419      Hint = FixItHint::CreateRemoval(LMRange);
2420
2421    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2422                         getLocationOfByte(LM.getStart()),
2423                         /*IsStringLocation*/true,
2424                         getSpecifierRange(startSpecifier, specifierLen),
2425                         Hint);
2426  }
2427}
2428
2429void CheckFormatHandler::HandleNonStandardLengthModifier(
2430    const analyze_format_string::FormatSpecifier &FS,
2431    const char *startSpecifier, unsigned specifierLen) {
2432  using namespace analyze_format_string;
2433
2434  const LengthModifier &LM = FS.getLengthModifier();
2435  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2436
2437  // See if we know how to fix this length modifier.
2438  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2439  if (FixedLM) {
2440    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2441                           << LM.toString() << 0,
2442                         getLocationOfByte(LM.getStart()),
2443                         /*IsStringLocation*/true,
2444                         getSpecifierRange(startSpecifier, specifierLen));
2445
2446    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2447      << FixedLM->toString()
2448      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2449
2450  } else {
2451    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2452                           << LM.toString() << 0,
2453                         getLocationOfByte(LM.getStart()),
2454                         /*IsStringLocation*/true,
2455                         getSpecifierRange(startSpecifier, specifierLen));
2456  }
2457}
2458
2459void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2460    const analyze_format_string::ConversionSpecifier &CS,
2461    const char *startSpecifier, unsigned specifierLen) {
2462  using namespace analyze_format_string;
2463
2464  // See if we know how to fix this conversion specifier.
2465  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2466  if (FixedCS) {
2467    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2468                          << CS.toString() << /*conversion specifier*/1,
2469                         getLocationOfByte(CS.getStart()),
2470                         /*IsStringLocation*/true,
2471                         getSpecifierRange(startSpecifier, specifierLen));
2472
2473    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2474    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2475      << FixedCS->toString()
2476      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2477  } else {
2478    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2479                          << CS.toString() << /*conversion specifier*/1,
2480                         getLocationOfByte(CS.getStart()),
2481                         /*IsStringLocation*/true,
2482                         getSpecifierRange(startSpecifier, specifierLen));
2483  }
2484}
2485
2486void CheckFormatHandler::HandlePosition(const char *startPos,
2487                                        unsigned posLen) {
2488  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2489                               getLocationOfByte(startPos),
2490                               /*IsStringLocation*/true,
2491                               getSpecifierRange(startPos, posLen));
2492}
2493
2494void
2495CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2496                                     analyze_format_string::PositionContext p) {
2497  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2498                         << (unsigned) p,
2499                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2500                       getSpecifierRange(startPos, posLen));
2501}
2502
2503void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2504                                            unsigned posLen) {
2505  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2506                               getLocationOfByte(startPos),
2507                               /*IsStringLocation*/true,
2508                               getSpecifierRange(startPos, posLen));
2509}
2510
2511void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2512  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2513    // The presence of a null character is likely an error.
2514    EmitFormatDiagnostic(
2515      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2516      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2517      getFormatStringRange());
2518  }
2519}
2520
2521// Note that this may return NULL if there was an error parsing or building
2522// one of the argument expressions.
2523const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2524  return Args[FirstDataArg + i];
2525}
2526
2527void CheckFormatHandler::DoneProcessing() {
2528    // Does the number of data arguments exceed the number of
2529    // format conversions in the format string?
2530  if (!HasVAListArg) {
2531      // Find any arguments that weren't covered.
2532    CoveredArgs.flip();
2533    signed notCoveredArg = CoveredArgs.find_first();
2534    if (notCoveredArg >= 0) {
2535      assert((unsigned)notCoveredArg < NumDataArgs);
2536      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2537        SourceLocation Loc = E->getLocStart();
2538        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2539          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2540                               Loc, /*IsStringLocation*/false,
2541                               getFormatStringRange());
2542        }
2543      }
2544    }
2545  }
2546}
2547
2548bool
2549CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2550                                                     SourceLocation Loc,
2551                                                     const char *startSpec,
2552                                                     unsigned specifierLen,
2553                                                     const char *csStart,
2554                                                     unsigned csLen) {
2555
2556  bool keepGoing = true;
2557  if (argIndex < NumDataArgs) {
2558    // Consider the argument coverered, even though the specifier doesn't
2559    // make sense.
2560    CoveredArgs.set(argIndex);
2561  }
2562  else {
2563    // If argIndex exceeds the number of data arguments we
2564    // don't issue a warning because that is just a cascade of warnings (and
2565    // they may have intended '%%' anyway). We don't want to continue processing
2566    // the format string after this point, however, as we will like just get
2567    // gibberish when trying to match arguments.
2568    keepGoing = false;
2569  }
2570
2571  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2572                         << StringRef(csStart, csLen),
2573                       Loc, /*IsStringLocation*/true,
2574                       getSpecifierRange(startSpec, specifierLen));
2575
2576  return keepGoing;
2577}
2578
2579void
2580CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2581                                                      const char *startSpec,
2582                                                      unsigned specifierLen) {
2583  EmitFormatDiagnostic(
2584    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2585    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2586}
2587
2588bool
2589CheckFormatHandler::CheckNumArgs(
2590  const analyze_format_string::FormatSpecifier &FS,
2591  const analyze_format_string::ConversionSpecifier &CS,
2592  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2593
2594  if (argIndex >= NumDataArgs) {
2595    PartialDiagnostic PDiag = FS.usesPositionalArg()
2596      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2597           << (argIndex+1) << NumDataArgs)
2598      : S.PDiag(diag::warn_printf_insufficient_data_args);
2599    EmitFormatDiagnostic(
2600      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2601      getSpecifierRange(startSpecifier, specifierLen));
2602    return false;
2603  }
2604  return true;
2605}
2606
2607template<typename Range>
2608void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2609                                              SourceLocation Loc,
2610                                              bool IsStringLocation,
2611                                              Range StringRange,
2612                                              ArrayRef<FixItHint> FixIt) {
2613  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2614                       Loc, IsStringLocation, StringRange, FixIt);
2615}
2616
2617/// \brief If the format string is not within the funcion call, emit a note
2618/// so that the function call and string are in diagnostic messages.
2619///
2620/// \param InFunctionCall if true, the format string is within the function
2621/// call and only one diagnostic message will be produced.  Otherwise, an
2622/// extra note will be emitted pointing to location of the format string.
2623///
2624/// \param ArgumentExpr the expression that is passed as the format string
2625/// argument in the function call.  Used for getting locations when two
2626/// diagnostics are emitted.
2627///
2628/// \param PDiag the callee should already have provided any strings for the
2629/// diagnostic message.  This function only adds locations and fixits
2630/// to diagnostics.
2631///
2632/// \param Loc primary location for diagnostic.  If two diagnostics are
2633/// required, one will be at Loc and a new SourceLocation will be created for
2634/// the other one.
2635///
2636/// \param IsStringLocation if true, Loc points to the format string should be
2637/// used for the note.  Otherwise, Loc points to the argument list and will
2638/// be used with PDiag.
2639///
2640/// \param StringRange some or all of the string to highlight.  This is
2641/// templated so it can accept either a CharSourceRange or a SourceRange.
2642///
2643/// \param FixIt optional fix it hint for the format string.
2644template<typename Range>
2645void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2646                                              const Expr *ArgumentExpr,
2647                                              PartialDiagnostic PDiag,
2648                                              SourceLocation Loc,
2649                                              bool IsStringLocation,
2650                                              Range StringRange,
2651                                              ArrayRef<FixItHint> FixIt) {
2652  if (InFunctionCall) {
2653    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2654    D << StringRange;
2655    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2656         I != E; ++I) {
2657      D << *I;
2658    }
2659  } else {
2660    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2661      << ArgumentExpr->getSourceRange();
2662
2663    const Sema::SemaDiagnosticBuilder &Note =
2664      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2665             diag::note_format_string_defined);
2666
2667    Note << StringRange;
2668    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2669         I != E; ++I) {
2670      Note << *I;
2671    }
2672  }
2673}
2674
2675//===--- CHECK: Printf format string checking ------------------------------===//
2676
2677namespace {
2678class CheckPrintfHandler : public CheckFormatHandler {
2679  bool ObjCContext;
2680public:
2681  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2682                     const Expr *origFormatExpr, unsigned firstDataArg,
2683                     unsigned numDataArgs, bool isObjC,
2684                     const char *beg, bool hasVAListArg,
2685                     ArrayRef<const Expr *> Args,
2686                     unsigned formatIdx, bool inFunctionCall,
2687                     Sema::VariadicCallType CallType,
2688                     llvm::SmallBitVector &CheckedVarArgs)
2689    : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2690                         numDataArgs, beg, hasVAListArg, Args,
2691                         formatIdx, inFunctionCall, CallType, CheckedVarArgs),
2692      ObjCContext(isObjC)
2693  {}
2694
2695
2696  bool HandleInvalidPrintfConversionSpecifier(
2697                                      const analyze_printf::PrintfSpecifier &FS,
2698                                      const char *startSpecifier,
2699                                      unsigned specifierLen);
2700
2701  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2702                             const char *startSpecifier,
2703                             unsigned specifierLen);
2704  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2705                       const char *StartSpecifier,
2706                       unsigned SpecifierLen,
2707                       const Expr *E);
2708
2709  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2710                    const char *startSpecifier, unsigned specifierLen);
2711  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2712                           const analyze_printf::OptionalAmount &Amt,
2713                           unsigned type,
2714                           const char *startSpecifier, unsigned specifierLen);
2715  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2716                  const analyze_printf::OptionalFlag &flag,
2717                  const char *startSpecifier, unsigned specifierLen);
2718  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2719                         const analyze_printf::OptionalFlag &ignoredFlag,
2720                         const analyze_printf::OptionalFlag &flag,
2721                         const char *startSpecifier, unsigned specifierLen);
2722  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2723                           const Expr *E, const CharSourceRange &CSR);
2724
2725};
2726}
2727
2728bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2729                                      const analyze_printf::PrintfSpecifier &FS,
2730                                      const char *startSpecifier,
2731                                      unsigned specifierLen) {
2732  const analyze_printf::PrintfConversionSpecifier &CS =
2733    FS.getConversionSpecifier();
2734
2735  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2736                                          getLocationOfByte(CS.getStart()),
2737                                          startSpecifier, specifierLen,
2738                                          CS.getStart(), CS.getLength());
2739}
2740
2741bool CheckPrintfHandler::HandleAmount(
2742                               const analyze_format_string::OptionalAmount &Amt,
2743                               unsigned k, const char *startSpecifier,
2744                               unsigned specifierLen) {
2745
2746  if (Amt.hasDataArgument()) {
2747    if (!HasVAListArg) {
2748      unsigned argIndex = Amt.getArgIndex();
2749      if (argIndex >= NumDataArgs) {
2750        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2751                               << k,
2752                             getLocationOfByte(Amt.getStart()),
2753                             /*IsStringLocation*/true,
2754                             getSpecifierRange(startSpecifier, specifierLen));
2755        // Don't do any more checking.  We will just emit
2756        // spurious errors.
2757        return false;
2758      }
2759
2760      // Type check the data argument.  It should be an 'int'.
2761      // Although not in conformance with C99, we also allow the argument to be
2762      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2763      // doesn't emit a warning for that case.
2764      CoveredArgs.set(argIndex);
2765      const Expr *Arg = getDataArg(argIndex);
2766      if (!Arg)
2767        return false;
2768
2769      QualType T = Arg->getType();
2770
2771      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2772      assert(AT.isValid());
2773
2774      if (!AT.matchesType(S.Context, T)) {
2775        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2776                               << k << AT.getRepresentativeTypeName(S.Context)
2777                               << T << Arg->getSourceRange(),
2778                             getLocationOfByte(Amt.getStart()),
2779                             /*IsStringLocation*/true,
2780                             getSpecifierRange(startSpecifier, specifierLen));
2781        // Don't do any more checking.  We will just emit
2782        // spurious errors.
2783        return false;
2784      }
2785    }
2786  }
2787  return true;
2788}
2789
2790void CheckPrintfHandler::HandleInvalidAmount(
2791                                      const analyze_printf::PrintfSpecifier &FS,
2792                                      const analyze_printf::OptionalAmount &Amt,
2793                                      unsigned type,
2794                                      const char *startSpecifier,
2795                                      unsigned specifierLen) {
2796  const analyze_printf::PrintfConversionSpecifier &CS =
2797    FS.getConversionSpecifier();
2798
2799  FixItHint fixit =
2800    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2801      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2802                                 Amt.getConstantLength()))
2803      : FixItHint();
2804
2805  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2806                         << type << CS.toString(),
2807                       getLocationOfByte(Amt.getStart()),
2808                       /*IsStringLocation*/true,
2809                       getSpecifierRange(startSpecifier, specifierLen),
2810                       fixit);
2811}
2812
2813void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2814                                    const analyze_printf::OptionalFlag &flag,
2815                                    const char *startSpecifier,
2816                                    unsigned specifierLen) {
2817  // Warn about pointless flag with a fixit removal.
2818  const analyze_printf::PrintfConversionSpecifier &CS =
2819    FS.getConversionSpecifier();
2820  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2821                         << flag.toString() << CS.toString(),
2822                       getLocationOfByte(flag.getPosition()),
2823                       /*IsStringLocation*/true,
2824                       getSpecifierRange(startSpecifier, specifierLen),
2825                       FixItHint::CreateRemoval(
2826                         getSpecifierRange(flag.getPosition(), 1)));
2827}
2828
2829void CheckPrintfHandler::HandleIgnoredFlag(
2830                                const analyze_printf::PrintfSpecifier &FS,
2831                                const analyze_printf::OptionalFlag &ignoredFlag,
2832                                const analyze_printf::OptionalFlag &flag,
2833                                const char *startSpecifier,
2834                                unsigned specifierLen) {
2835  // Warn about ignored flag with a fixit removal.
2836  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2837                         << ignoredFlag.toString() << flag.toString(),
2838                       getLocationOfByte(ignoredFlag.getPosition()),
2839                       /*IsStringLocation*/true,
2840                       getSpecifierRange(startSpecifier, specifierLen),
2841                       FixItHint::CreateRemoval(
2842                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2843}
2844
2845// Determines if the specified is a C++ class or struct containing
2846// a member with the specified name and kind (e.g. a CXXMethodDecl named
2847// "c_str()").
2848template<typename MemberKind>
2849static llvm::SmallPtrSet<MemberKind*, 1>
2850CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2851  const RecordType *RT = Ty->getAs<RecordType>();
2852  llvm::SmallPtrSet<MemberKind*, 1> Results;
2853
2854  if (!RT)
2855    return Results;
2856  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2857  if (!RD)
2858    return Results;
2859
2860  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2861                 Sema::LookupMemberName);
2862
2863  // We just need to include all members of the right kind turned up by the
2864  // filter, at this point.
2865  if (S.LookupQualifiedName(R, RT->getDecl()))
2866    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2867      NamedDecl *decl = (*I)->getUnderlyingDecl();
2868      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2869        Results.insert(FK);
2870    }
2871  return Results;
2872}
2873
2874// Check if a (w)string was passed when a (w)char* was needed, and offer a
2875// better diagnostic if so. AT is assumed to be valid.
2876// Returns true when a c_str() conversion method is found.
2877bool CheckPrintfHandler::checkForCStrMembers(
2878    const analyze_printf::ArgType &AT, const Expr *E,
2879    const CharSourceRange &CSR) {
2880  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2881
2882  MethodSet Results =
2883      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2884
2885  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2886       MI != ME; ++MI) {
2887    const CXXMethodDecl *Method = *MI;
2888    if (Method->getNumParams() == 0 &&
2889          AT.matchesType(S.Context, Method->getResultType())) {
2890      // FIXME: Suggest parens if the expression needs them.
2891      SourceLocation EndLoc =
2892          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2893      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2894          << "c_str()"
2895          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2896      return true;
2897    }
2898  }
2899
2900  return false;
2901}
2902
2903bool
2904CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2905                                            &FS,
2906                                          const char *startSpecifier,
2907                                          unsigned specifierLen) {
2908
2909  using namespace analyze_format_string;
2910  using namespace analyze_printf;
2911  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2912
2913  if (FS.consumesDataArgument()) {
2914    if (atFirstArg) {
2915        atFirstArg = false;
2916        usesPositionalArgs = FS.usesPositionalArg();
2917    }
2918    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2919      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2920                                        startSpecifier, specifierLen);
2921      return false;
2922    }
2923  }
2924
2925  // First check if the field width, precision, and conversion specifier
2926  // have matching data arguments.
2927  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2928                    startSpecifier, specifierLen)) {
2929    return false;
2930  }
2931
2932  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2933                    startSpecifier, specifierLen)) {
2934    return false;
2935  }
2936
2937  if (!CS.consumesDataArgument()) {
2938    // FIXME: Technically specifying a precision or field width here
2939    // makes no sense.  Worth issuing a warning at some point.
2940    return true;
2941  }
2942
2943  // Consume the argument.
2944  unsigned argIndex = FS.getArgIndex();
2945  if (argIndex < NumDataArgs) {
2946    // The check to see if the argIndex is valid will come later.
2947    // We set the bit here because we may exit early from this
2948    // function if we encounter some other error.
2949    CoveredArgs.set(argIndex);
2950  }
2951
2952  // Check for using an Objective-C specific conversion specifier
2953  // in a non-ObjC literal.
2954  if (!ObjCContext && CS.isObjCArg()) {
2955    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2956                                                  specifierLen);
2957  }
2958
2959  // Check for invalid use of field width
2960  if (!FS.hasValidFieldWidth()) {
2961    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2962        startSpecifier, specifierLen);
2963  }
2964
2965  // Check for invalid use of precision
2966  if (!FS.hasValidPrecision()) {
2967    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2968        startSpecifier, specifierLen);
2969  }
2970
2971  // Check each flag does not conflict with any other component.
2972  if (!FS.hasValidThousandsGroupingPrefix())
2973    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2974  if (!FS.hasValidLeadingZeros())
2975    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2976  if (!FS.hasValidPlusPrefix())
2977    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2978  if (!FS.hasValidSpacePrefix())
2979    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2980  if (!FS.hasValidAlternativeForm())
2981    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2982  if (!FS.hasValidLeftJustified())
2983    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2984
2985  // Check that flags are not ignored by another flag
2986  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2987    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2988        startSpecifier, specifierLen);
2989  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2990    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2991            startSpecifier, specifierLen);
2992
2993  // Check the length modifier is valid with the given conversion specifier.
2994  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2995    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2996                                diag::warn_format_nonsensical_length);
2997  else if (!FS.hasStandardLengthModifier())
2998    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2999  else if (!FS.hasStandardLengthConversionCombination())
3000    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3001                                diag::warn_format_non_standard_conversion_spec);
3002
3003  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3004    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3005
3006  // The remaining checks depend on the data arguments.
3007  if (HasVAListArg)
3008    return true;
3009
3010  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3011    return false;
3012
3013  const Expr *Arg = getDataArg(argIndex);
3014  if (!Arg)
3015    return true;
3016
3017  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
3018}
3019
3020static bool requiresParensToAddCast(const Expr *E) {
3021  // FIXME: We should have a general way to reason about operator
3022  // precedence and whether parens are actually needed here.
3023  // Take care of a few common cases where they aren't.
3024  const Expr *Inside = E->IgnoreImpCasts();
3025  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
3026    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
3027
3028  switch (Inside->getStmtClass()) {
3029  case Stmt::ArraySubscriptExprClass:
3030  case Stmt::CallExprClass:
3031  case Stmt::CharacterLiteralClass:
3032  case Stmt::CXXBoolLiteralExprClass:
3033  case Stmt::DeclRefExprClass:
3034  case Stmt::FloatingLiteralClass:
3035  case Stmt::IntegerLiteralClass:
3036  case Stmt::MemberExprClass:
3037  case Stmt::ObjCArrayLiteralClass:
3038  case Stmt::ObjCBoolLiteralExprClass:
3039  case Stmt::ObjCBoxedExprClass:
3040  case Stmt::ObjCDictionaryLiteralClass:
3041  case Stmt::ObjCEncodeExprClass:
3042  case Stmt::ObjCIvarRefExprClass:
3043  case Stmt::ObjCMessageExprClass:
3044  case Stmt::ObjCPropertyRefExprClass:
3045  case Stmt::ObjCStringLiteralClass:
3046  case Stmt::ObjCSubscriptRefExprClass:
3047  case Stmt::ParenExprClass:
3048  case Stmt::StringLiteralClass:
3049  case Stmt::UnaryOperatorClass:
3050    return false;
3051  default:
3052    return true;
3053  }
3054}
3055
3056bool
3057CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3058                                    const char *StartSpecifier,
3059                                    unsigned SpecifierLen,
3060                                    const Expr *E) {
3061  using namespace analyze_format_string;
3062  using namespace analyze_printf;
3063  // Now type check the data expression that matches the
3064  // format specifier.
3065  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3066                                                    ObjCContext);
3067  if (!AT.isValid())
3068    return true;
3069
3070  QualType ExprTy = E->getType();
3071  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3072    ExprTy = TET->getUnderlyingExpr()->getType();
3073  }
3074
3075  if (AT.matchesType(S.Context, ExprTy))
3076    return true;
3077
3078  // Look through argument promotions for our error message's reported type.
3079  // This includes the integral and floating promotions, but excludes array
3080  // and function pointer decay; seeing that an argument intended to be a
3081  // string has type 'char [6]' is probably more confusing than 'char *'.
3082  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3083    if (ICE->getCastKind() == CK_IntegralCast ||
3084        ICE->getCastKind() == CK_FloatingCast) {
3085      E = ICE->getSubExpr();
3086      ExprTy = E->getType();
3087
3088      // Check if we didn't match because of an implicit cast from a 'char'
3089      // or 'short' to an 'int'.  This is done because printf is a varargs
3090      // function.
3091      if (ICE->getType() == S.Context.IntTy ||
3092          ICE->getType() == S.Context.UnsignedIntTy) {
3093        // All further checking is done on the subexpression.
3094        if (AT.matchesType(S.Context, ExprTy))
3095          return true;
3096      }
3097    }
3098  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3099    // Special case for 'a', which has type 'int' in C.
3100    // Note, however, that we do /not/ want to treat multibyte constants like
3101    // 'MooV' as characters! This form is deprecated but still exists.
3102    if (ExprTy == S.Context.IntTy)
3103      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3104        ExprTy = S.Context.CharTy;
3105  }
3106
3107  // %C in an Objective-C context prints a unichar, not a wchar_t.
3108  // If the argument is an integer of some kind, believe the %C and suggest
3109  // a cast instead of changing the conversion specifier.
3110  QualType IntendedTy = ExprTy;
3111  if (ObjCContext &&
3112      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3113    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3114        !ExprTy->isCharType()) {
3115      // 'unichar' is defined as a typedef of unsigned short, but we should
3116      // prefer using the typedef if it is visible.
3117      IntendedTy = S.Context.UnsignedShortTy;
3118
3119      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3120                          Sema::LookupOrdinaryName);
3121      if (S.LookupName(Result, S.getCurScope())) {
3122        NamedDecl *ND = Result.getFoundDecl();
3123        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3124          if (TD->getUnderlyingType() == IntendedTy)
3125            IntendedTy = S.Context.getTypedefType(TD);
3126      }
3127    }
3128  }
3129
3130  // Special-case some of Darwin's platform-independence types by suggesting
3131  // casts to primitive types that are known to be large enough.
3132  bool ShouldNotPrintDirectly = false;
3133  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3134    // Use a 'while' to peel off layers of typedefs.
3135    QualType TyTy = IntendedTy;
3136    while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3137      StringRef Name = UserTy->getDecl()->getName();
3138      QualType CastTy = llvm::StringSwitch<QualType>(Name)
3139        .Case("NSInteger", S.Context.LongTy)
3140        .Case("NSUInteger", S.Context.UnsignedLongTy)
3141        .Case("SInt32", S.Context.IntTy)
3142        .Case("UInt32", S.Context.UnsignedIntTy)
3143        .Default(QualType());
3144
3145      if (!CastTy.isNull()) {
3146        ShouldNotPrintDirectly = true;
3147        IntendedTy = CastTy;
3148        break;
3149      }
3150      TyTy = UserTy->desugar();
3151    }
3152  }
3153
3154  // We may be able to offer a FixItHint if it is a supported type.
3155  PrintfSpecifier fixedFS = FS;
3156  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3157                                 S.Context, ObjCContext);
3158
3159  if (success) {
3160    // Get the fix string from the fixed format specifier
3161    SmallString<16> buf;
3162    llvm::raw_svector_ostream os(buf);
3163    fixedFS.toString(os);
3164
3165    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3166
3167    if (IntendedTy == ExprTy) {
3168      // In this case, the specifier is wrong and should be changed to match
3169      // the argument.
3170      EmitFormatDiagnostic(
3171        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3172          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
3173          << E->getSourceRange(),
3174        E->getLocStart(),
3175        /*IsStringLocation*/false,
3176        SpecRange,
3177        FixItHint::CreateReplacement(SpecRange, os.str()));
3178
3179    } else {
3180      // The canonical type for formatting this value is different from the
3181      // actual type of the expression. (This occurs, for example, with Darwin's
3182      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3183      // should be printed as 'long' for 64-bit compatibility.)
3184      // Rather than emitting a normal format/argument mismatch, we want to
3185      // add a cast to the recommended type (and correct the format string
3186      // if necessary).
3187      SmallString<16> CastBuf;
3188      llvm::raw_svector_ostream CastFix(CastBuf);
3189      CastFix << "(";
3190      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3191      CastFix << ")";
3192
3193      SmallVector<FixItHint,4> Hints;
3194      if (!AT.matchesType(S.Context, IntendedTy))
3195        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3196
3197      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3198        // If there's already a cast present, just replace it.
3199        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3200        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3201
3202      } else if (!requiresParensToAddCast(E)) {
3203        // If the expression has high enough precedence,
3204        // just write the C-style cast.
3205        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3206                                                   CastFix.str()));
3207      } else {
3208        // Otherwise, add parens around the expression as well as the cast.
3209        CastFix << "(";
3210        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3211                                                   CastFix.str()));
3212
3213        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
3214        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3215      }
3216
3217      if (ShouldNotPrintDirectly) {
3218        // The expression has a type that should not be printed directly.
3219        // We extract the name from the typedef because we don't want to show
3220        // the underlying type in the diagnostic.
3221        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
3222
3223        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3224                               << Name << IntendedTy
3225                               << E->getSourceRange(),
3226                             E->getLocStart(), /*IsStringLocation=*/false,
3227                             SpecRange, Hints);
3228      } else {
3229        // In this case, the expression could be printed using a different
3230        // specifier, but we've decided that the specifier is probably correct
3231        // and we should cast instead. Just use the normal warning message.
3232        EmitFormatDiagnostic(
3233          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3234            << AT.getRepresentativeTypeName(S.Context) << ExprTy
3235            << E->getSourceRange(),
3236          E->getLocStart(), /*IsStringLocation*/false,
3237          SpecRange, Hints);
3238      }
3239    }
3240  } else {
3241    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3242                                                   SpecifierLen);
3243    // Since the warning for passing non-POD types to variadic functions
3244    // was deferred until now, we emit a warning for non-POD
3245    // arguments here.
3246    switch (S.isValidVarArgType(ExprTy)) {
3247    case Sema::VAK_Valid:
3248    case Sema::VAK_ValidInCXX11:
3249      EmitFormatDiagnostic(
3250        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3251          << AT.getRepresentativeTypeName(S.Context) << ExprTy
3252          << CSR
3253          << E->getSourceRange(),
3254        E->getLocStart(), /*IsStringLocation*/false, CSR);
3255      break;
3256
3257    case Sema::VAK_Undefined:
3258      EmitFormatDiagnostic(
3259        S.PDiag(diag::warn_non_pod_vararg_with_format_string)
3260          << S.getLangOpts().CPlusPlus11
3261          << ExprTy
3262          << CallType
3263          << AT.getRepresentativeTypeName(S.Context)
3264          << CSR
3265          << E->getSourceRange(),
3266        E->getLocStart(), /*IsStringLocation*/false, CSR);
3267      checkForCStrMembers(AT, E, CSR);
3268      break;
3269
3270    case Sema::VAK_Invalid:
3271      if (ExprTy->isObjCObjectType())
3272        EmitFormatDiagnostic(
3273          S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
3274            << S.getLangOpts().CPlusPlus11
3275            << ExprTy
3276            << CallType
3277            << AT.getRepresentativeTypeName(S.Context)
3278            << CSR
3279            << E->getSourceRange(),
3280          E->getLocStart(), /*IsStringLocation*/false, CSR);
3281      else
3282        // FIXME: If this is an initializer list, suggest removing the braces
3283        // or inserting a cast to the target type.
3284        S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
3285          << isa<InitListExpr>(E) << ExprTy << CallType
3286          << AT.getRepresentativeTypeName(S.Context)
3287          << E->getSourceRange();
3288      break;
3289    }
3290
3291    assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
3292           "format string specifier index out of range");
3293    CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
3294  }
3295
3296  return true;
3297}
3298
3299//===--- CHECK: Scanf format string checking ------------------------------===//
3300
3301namespace {
3302class CheckScanfHandler : public CheckFormatHandler {
3303public:
3304  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
3305                    const Expr *origFormatExpr, unsigned firstDataArg,
3306                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
3307                    ArrayRef<const Expr *> Args,
3308                    unsigned formatIdx, bool inFunctionCall,
3309                    Sema::VariadicCallType CallType,
3310                    llvm::SmallBitVector &CheckedVarArgs)
3311    : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3312                         numDataArgs, beg, hasVAListArg,
3313                         Args, formatIdx, inFunctionCall, CallType,
3314                         CheckedVarArgs)
3315  {}
3316
3317  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
3318                            const char *startSpecifier,
3319                            unsigned specifierLen);
3320
3321  bool HandleInvalidScanfConversionSpecifier(
3322          const analyze_scanf::ScanfSpecifier &FS,
3323          const char *startSpecifier,
3324          unsigned specifierLen);
3325
3326  void HandleIncompleteScanList(const char *start, const char *end);
3327};
3328}
3329
3330void CheckScanfHandler::HandleIncompleteScanList(const char *start,
3331                                                 const char *end) {
3332  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
3333                       getLocationOfByte(end), /*IsStringLocation*/true,
3334                       getSpecifierRange(start, end - start));
3335}
3336
3337bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3338                                        const analyze_scanf::ScanfSpecifier &FS,
3339                                        const char *startSpecifier,
3340                                        unsigned specifierLen) {
3341
3342  const analyze_scanf::ScanfConversionSpecifier &CS =
3343    FS.getConversionSpecifier();
3344
3345  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3346                                          getLocationOfByte(CS.getStart()),
3347                                          startSpecifier, specifierLen,
3348                                          CS.getStart(), CS.getLength());
3349}
3350
3351bool CheckScanfHandler::HandleScanfSpecifier(
3352                                       const analyze_scanf::ScanfSpecifier &FS,
3353                                       const char *startSpecifier,
3354                                       unsigned specifierLen) {
3355
3356  using namespace analyze_scanf;
3357  using namespace analyze_format_string;
3358
3359  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3360
3361  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3362  // be used to decide if we are using positional arguments consistently.
3363  if (FS.consumesDataArgument()) {
3364    if (atFirstArg) {
3365      atFirstArg = false;
3366      usesPositionalArgs = FS.usesPositionalArg();
3367    }
3368    else if (usesPositionalArgs != FS.usesPositionalArg()) {
3369      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3370                                        startSpecifier, specifierLen);
3371      return false;
3372    }
3373  }
3374
3375  // Check if the field with is non-zero.
3376  const OptionalAmount &Amt = FS.getFieldWidth();
3377  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3378    if (Amt.getConstantAmount() == 0) {
3379      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3380                                                   Amt.getConstantLength());
3381      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3382                           getLocationOfByte(Amt.getStart()),
3383                           /*IsStringLocation*/true, R,
3384                           FixItHint::CreateRemoval(R));
3385    }
3386  }
3387
3388  if (!FS.consumesDataArgument()) {
3389    // FIXME: Technically specifying a precision or field width here
3390    // makes no sense.  Worth issuing a warning at some point.
3391    return true;
3392  }
3393
3394  // Consume the argument.
3395  unsigned argIndex = FS.getArgIndex();
3396  if (argIndex < NumDataArgs) {
3397      // The check to see if the argIndex is valid will come later.
3398      // We set the bit here because we may exit early from this
3399      // function if we encounter some other error.
3400    CoveredArgs.set(argIndex);
3401  }
3402
3403  // Check the length modifier is valid with the given conversion specifier.
3404  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3405    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3406                                diag::warn_format_nonsensical_length);
3407  else if (!FS.hasStandardLengthModifier())
3408    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3409  else if (!FS.hasStandardLengthConversionCombination())
3410    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3411                                diag::warn_format_non_standard_conversion_spec);
3412
3413  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3414    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3415
3416  // The remaining checks depend on the data arguments.
3417  if (HasVAListArg)
3418    return true;
3419
3420  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3421    return false;
3422
3423  // Check that the argument type matches the format specifier.
3424  const Expr *Ex = getDataArg(argIndex);
3425  if (!Ex)
3426    return true;
3427
3428  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3429  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3430    ScanfSpecifier fixedFS = FS;
3431    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3432                                   S.Context);
3433
3434    if (success) {
3435      // Get the fix string from the fixed format specifier.
3436      SmallString<128> buf;
3437      llvm::raw_svector_ostream os(buf);
3438      fixedFS.toString(os);
3439
3440      EmitFormatDiagnostic(
3441        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3442          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3443          << Ex->getSourceRange(),
3444        Ex->getLocStart(),
3445        /*IsStringLocation*/false,
3446        getSpecifierRange(startSpecifier, specifierLen),
3447        FixItHint::CreateReplacement(
3448          getSpecifierRange(startSpecifier, specifierLen),
3449          os.str()));
3450    } else {
3451      EmitFormatDiagnostic(
3452        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3453          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3454          << Ex->getSourceRange(),
3455        Ex->getLocStart(),
3456        /*IsStringLocation*/false,
3457        getSpecifierRange(startSpecifier, specifierLen));
3458    }
3459  }
3460
3461  return true;
3462}
3463
3464void Sema::CheckFormatString(const StringLiteral *FExpr,
3465                             const Expr *OrigFormatExpr,
3466                             ArrayRef<const Expr *> Args,
3467                             bool HasVAListArg, unsigned format_idx,
3468                             unsigned firstDataArg, FormatStringType Type,
3469                             bool inFunctionCall, VariadicCallType CallType,
3470                             llvm::SmallBitVector &CheckedVarArgs) {
3471
3472  // CHECK: is the format string a wide literal?
3473  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3474    CheckFormatHandler::EmitFormatDiagnostic(
3475      *this, inFunctionCall, Args[format_idx],
3476      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3477      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3478    return;
3479  }
3480
3481  // Str - The format string.  NOTE: this is NOT null-terminated!
3482  StringRef StrRef = FExpr->getString();
3483  const char *Str = StrRef.data();
3484  unsigned StrLen = StrRef.size();
3485  const unsigned numDataArgs = Args.size() - firstDataArg;
3486
3487  // CHECK: empty format string?
3488  if (StrLen == 0 && numDataArgs > 0) {
3489    CheckFormatHandler::EmitFormatDiagnostic(
3490      *this, inFunctionCall, Args[format_idx],
3491      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3492      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3493    return;
3494  }
3495
3496  if (Type == FST_Printf || Type == FST_NSString) {
3497    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3498                         numDataArgs, (Type == FST_NSString),
3499                         Str, HasVAListArg, Args, format_idx,
3500                         inFunctionCall, CallType, CheckedVarArgs);
3501
3502    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3503                                                  getLangOpts(),
3504                                                  Context.getTargetInfo()))
3505      H.DoneProcessing();
3506  } else if (Type == FST_Scanf) {
3507    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3508                        Str, HasVAListArg, Args, format_idx,
3509                        inFunctionCall, CallType, CheckedVarArgs);
3510
3511    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3512                                                 getLangOpts(),
3513                                                 Context.getTargetInfo()))
3514      H.DoneProcessing();
3515  } // TODO: handle other formats
3516}
3517
3518//===--- CHECK: Standard memory functions ---------------------------------===//
3519
3520/// \brief Determine whether the given type is a dynamic class type (e.g.,
3521/// whether it has a vtable).
3522static bool isDynamicClassType(QualType T) {
3523  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3524    if (CXXRecordDecl *Definition = Record->getDefinition())
3525      if (Definition->isDynamicClass())
3526        return true;
3527
3528  return false;
3529}
3530
3531/// \brief If E is a sizeof expression, returns its argument expression,
3532/// otherwise returns NULL.
3533static const Expr *getSizeOfExprArg(const Expr* E) {
3534  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3535      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3536    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3537      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3538
3539  return 0;
3540}
3541
3542/// \brief If E is a sizeof expression, returns its argument type.
3543static QualType getSizeOfArgType(const Expr* E) {
3544  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3545      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3546    if (SizeOf->getKind() == clang::UETT_SizeOf)
3547      return SizeOf->getTypeOfArgument();
3548
3549  return QualType();
3550}
3551
3552/// \brief Check for dangerous or invalid arguments to memset().
3553///
3554/// This issues warnings on known problematic, dangerous or unspecified
3555/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3556/// function calls.
3557///
3558/// \param Call The call expression to diagnose.
3559void Sema::CheckMemaccessArguments(const CallExpr *Call,
3560                                   unsigned BId,
3561                                   IdentifierInfo *FnName) {
3562  assert(BId != 0);
3563
3564  // It is possible to have a non-standard definition of memset.  Validate
3565  // we have enough arguments, and if not, abort further checking.
3566  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3567  if (Call->getNumArgs() < ExpectedNumArgs)
3568    return;
3569
3570  unsigned LastArg = (BId == Builtin::BImemset ||
3571                      BId == Builtin::BIstrndup ? 1 : 2);
3572  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3573  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3574
3575  // We have special checking when the length is a sizeof expression.
3576  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3577  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3578  llvm::FoldingSetNodeID SizeOfArgID;
3579
3580  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3581    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3582    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3583
3584    QualType DestTy = Dest->getType();
3585    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3586      QualType PointeeTy = DestPtrTy->getPointeeType();
3587
3588      // Never warn about void type pointers. This can be used to suppress
3589      // false positives.
3590      if (PointeeTy->isVoidType())
3591        continue;
3592
3593      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3594      // actually comparing the expressions for equality. Because computing the
3595      // expression IDs can be expensive, we only do this if the diagnostic is
3596      // enabled.
3597      if (SizeOfArg &&
3598          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3599                                   SizeOfArg->getExprLoc())) {
3600        // We only compute IDs for expressions if the warning is enabled, and
3601        // cache the sizeof arg's ID.
3602        if (SizeOfArgID == llvm::FoldingSetNodeID())
3603          SizeOfArg->Profile(SizeOfArgID, Context, true);
3604        llvm::FoldingSetNodeID DestID;
3605        Dest->Profile(DestID, Context, true);
3606        if (DestID == SizeOfArgID) {
3607          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3608          //       over sizeof(src) as well.
3609          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3610          StringRef ReadableName = FnName->getName();
3611
3612          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3613            if (UnaryOp->getOpcode() == UO_AddrOf)
3614              ActionIdx = 1; // If its an address-of operator, just remove it.
3615          if (!PointeeTy->isIncompleteType() &&
3616              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3617            ActionIdx = 2; // If the pointee's size is sizeof(char),
3618                           // suggest an explicit length.
3619
3620          // If the function is defined as a builtin macro, do not show macro
3621          // expansion.
3622          SourceLocation SL = SizeOfArg->getExprLoc();
3623          SourceRange DSR = Dest->getSourceRange();
3624          SourceRange SSR = SizeOfArg->getSourceRange();
3625          SourceManager &SM  = PP.getSourceManager();
3626
3627          if (SM.isMacroArgExpansion(SL)) {
3628            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3629            SL = SM.getSpellingLoc(SL);
3630            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3631                             SM.getSpellingLoc(DSR.getEnd()));
3632            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3633                             SM.getSpellingLoc(SSR.getEnd()));
3634          }
3635
3636          DiagRuntimeBehavior(SL, SizeOfArg,
3637                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3638                                << ReadableName
3639                                << PointeeTy
3640                                << DestTy
3641                                << DSR
3642                                << SSR);
3643          DiagRuntimeBehavior(SL, SizeOfArg,
3644                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3645                                << ActionIdx
3646                                << SSR);
3647
3648          break;
3649        }
3650      }
3651
3652      // Also check for cases where the sizeof argument is the exact same
3653      // type as the memory argument, and where it points to a user-defined
3654      // record type.
3655      if (SizeOfArgTy != QualType()) {
3656        if (PointeeTy->isRecordType() &&
3657            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3658          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3659                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3660                                << FnName << SizeOfArgTy << ArgIdx
3661                                << PointeeTy << Dest->getSourceRange()
3662                                << LenExpr->getSourceRange());
3663          break;
3664        }
3665      }
3666
3667      // Always complain about dynamic classes.
3668      if (isDynamicClassType(PointeeTy)) {
3669
3670        unsigned OperationType = 0;
3671        // "overwritten" if we're warning about the destination for any call
3672        // but memcmp; otherwise a verb appropriate to the call.
3673        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3674          if (BId == Builtin::BImemcpy)
3675            OperationType = 1;
3676          else if(BId == Builtin::BImemmove)
3677            OperationType = 2;
3678          else if (BId == Builtin::BImemcmp)
3679            OperationType = 3;
3680        }
3681
3682        DiagRuntimeBehavior(
3683          Dest->getExprLoc(), Dest,
3684          PDiag(diag::warn_dyn_class_memaccess)
3685            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3686            << FnName << PointeeTy
3687            << OperationType
3688            << Call->getCallee()->getSourceRange());
3689      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3690               BId != Builtin::BImemset)
3691        DiagRuntimeBehavior(
3692          Dest->getExprLoc(), Dest,
3693          PDiag(diag::warn_arc_object_memaccess)
3694            << ArgIdx << FnName << PointeeTy
3695            << Call->getCallee()->getSourceRange());
3696      else
3697        continue;
3698
3699      DiagRuntimeBehavior(
3700        Dest->getExprLoc(), Dest,
3701        PDiag(diag::note_bad_memaccess_silence)
3702          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3703      break;
3704    }
3705  }
3706}
3707
3708// A little helper routine: ignore addition and subtraction of integer literals.
3709// This intentionally does not ignore all integer constant expressions because
3710// we don't want to remove sizeof().
3711static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3712  Ex = Ex->IgnoreParenCasts();
3713
3714  for (;;) {
3715    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3716    if (!BO || !BO->isAdditiveOp())
3717      break;
3718
3719    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3720    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3721
3722    if (isa<IntegerLiteral>(RHS))
3723      Ex = LHS;
3724    else if (isa<IntegerLiteral>(LHS))
3725      Ex = RHS;
3726    else
3727      break;
3728  }
3729
3730  return Ex;
3731}
3732
3733static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3734                                                      ASTContext &Context) {
3735  // Only handle constant-sized or VLAs, but not flexible members.
3736  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3737    // Only issue the FIXIT for arrays of size > 1.
3738    if (CAT->getSize().getSExtValue() <= 1)
3739      return false;
3740  } else if (!Ty->isVariableArrayType()) {
3741    return false;
3742  }
3743  return true;
3744}
3745
3746// Warn if the user has made the 'size' argument to strlcpy or strlcat
3747// be the size of the source, instead of the destination.
3748void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3749                                    IdentifierInfo *FnName) {
3750
3751  // Don't crash if the user has the wrong number of arguments
3752  if (Call->getNumArgs() != 3)
3753    return;
3754
3755  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3756  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3757  const Expr *CompareWithSrc = NULL;
3758
3759  // Look for 'strlcpy(dst, x, sizeof(x))'
3760  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3761    CompareWithSrc = Ex;
3762  else {
3763    // Look for 'strlcpy(dst, x, strlen(x))'
3764    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3765      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3766          && SizeCall->getNumArgs() == 1)
3767        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3768    }
3769  }
3770
3771  if (!CompareWithSrc)
3772    return;
3773
3774  // Determine if the argument to sizeof/strlen is equal to the source
3775  // argument.  In principle there's all kinds of things you could do
3776  // here, for instance creating an == expression and evaluating it with
3777  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3778  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3779  if (!SrcArgDRE)
3780    return;
3781
3782  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3783  if (!CompareWithSrcDRE ||
3784      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3785    return;
3786
3787  const Expr *OriginalSizeArg = Call->getArg(2);
3788  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3789    << OriginalSizeArg->getSourceRange() << FnName;
3790
3791  // Output a FIXIT hint if the destination is an array (rather than a
3792  // pointer to an array).  This could be enhanced to handle some
3793  // pointers if we know the actual size, like if DstArg is 'array+2'
3794  // we could say 'sizeof(array)-2'.
3795  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3796  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3797    return;
3798
3799  SmallString<128> sizeString;
3800  llvm::raw_svector_ostream OS(sizeString);
3801  OS << "sizeof(";
3802  DstArg->printPretty(OS, 0, getPrintingPolicy());
3803  OS << ")";
3804
3805  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3806    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3807                                    OS.str());
3808}
3809
3810/// Check if two expressions refer to the same declaration.
3811static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3812  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3813    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3814      return D1->getDecl() == D2->getDecl();
3815  return false;
3816}
3817
3818static const Expr *getStrlenExprArg(const Expr *E) {
3819  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3820    const FunctionDecl *FD = CE->getDirectCallee();
3821    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3822      return 0;
3823    return CE->getArg(0)->IgnoreParenCasts();
3824  }
3825  return 0;
3826}
3827
3828// Warn on anti-patterns as the 'size' argument to strncat.
3829// The correct size argument should look like following:
3830//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3831void Sema::CheckStrncatArguments(const CallExpr *CE,
3832                                 IdentifierInfo *FnName) {
3833  // Don't crash if the user has the wrong number of arguments.
3834  if (CE->getNumArgs() < 3)
3835    return;
3836  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3837  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3838  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3839
3840  // Identify common expressions, which are wrongly used as the size argument
3841  // to strncat and may lead to buffer overflows.
3842  unsigned PatternType = 0;
3843  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3844    // - sizeof(dst)
3845    if (referToTheSameDecl(SizeOfArg, DstArg))
3846      PatternType = 1;
3847    // - sizeof(src)
3848    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3849      PatternType = 2;
3850  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3851    if (BE->getOpcode() == BO_Sub) {
3852      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3853      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3854      // - sizeof(dst) - strlen(dst)
3855      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3856          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3857        PatternType = 1;
3858      // - sizeof(src) - (anything)
3859      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3860        PatternType = 2;
3861    }
3862  }
3863
3864  if (PatternType == 0)
3865    return;
3866
3867  // Generate the diagnostic.
3868  SourceLocation SL = LenArg->getLocStart();
3869  SourceRange SR = LenArg->getSourceRange();
3870  SourceManager &SM  = PP.getSourceManager();
3871
3872  // If the function is defined as a builtin macro, do not show macro expansion.
3873  if (SM.isMacroArgExpansion(SL)) {
3874    SL = SM.getSpellingLoc(SL);
3875    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3876                     SM.getSpellingLoc(SR.getEnd()));
3877  }
3878
3879  // Check if the destination is an array (rather than a pointer to an array).
3880  QualType DstTy = DstArg->getType();
3881  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3882                                                                    Context);
3883  if (!isKnownSizeArray) {
3884    if (PatternType == 1)
3885      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3886    else
3887      Diag(SL, diag::warn_strncat_src_size) << SR;
3888    return;
3889  }
3890
3891  if (PatternType == 1)
3892    Diag(SL, diag::warn_strncat_large_size) << SR;
3893  else
3894    Diag(SL, diag::warn_strncat_src_size) << SR;
3895
3896  SmallString<128> sizeString;
3897  llvm::raw_svector_ostream OS(sizeString);
3898  OS << "sizeof(";
3899  DstArg->printPretty(OS, 0, getPrintingPolicy());
3900  OS << ") - ";
3901  OS << "strlen(";
3902  DstArg->printPretty(OS, 0, getPrintingPolicy());
3903  OS << ") - 1";
3904
3905  Diag(SL, diag::note_strncat_wrong_size)
3906    << FixItHint::CreateReplacement(SR, OS.str());
3907}
3908
3909//===--- CHECK: Return Address of Stack Variable --------------------------===//
3910
3911static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3912                     Decl *ParentDecl);
3913static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3914                      Decl *ParentDecl);
3915
3916/// CheckReturnStackAddr - Check if a return statement returns the address
3917///   of a stack variable.
3918void
3919Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3920                           SourceLocation ReturnLoc) {
3921
3922  Expr *stackE = 0;
3923  SmallVector<DeclRefExpr *, 8> refVars;
3924
3925  // Perform checking for returned stack addresses, local blocks,
3926  // label addresses or references to temporaries.
3927  if (lhsType->isPointerType() ||
3928      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3929    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3930  } else if (lhsType->isReferenceType()) {
3931    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3932  }
3933
3934  if (stackE == 0)
3935    return; // Nothing suspicious was found.
3936
3937  SourceLocation diagLoc;
3938  SourceRange diagRange;
3939  if (refVars.empty()) {
3940    diagLoc = stackE->getLocStart();
3941    diagRange = stackE->getSourceRange();
3942  } else {
3943    // We followed through a reference variable. 'stackE' contains the
3944    // problematic expression but we will warn at the return statement pointing
3945    // at the reference variable. We will later display the "trail" of
3946    // reference variables using notes.
3947    diagLoc = refVars[0]->getLocStart();
3948    diagRange = refVars[0]->getSourceRange();
3949  }
3950
3951  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3952    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3953                                             : diag::warn_ret_stack_addr)
3954     << DR->getDecl()->getDeclName() << diagRange;
3955  } else if (isa<BlockExpr>(stackE)) { // local block.
3956    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3957  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3958    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3959  } else { // local temporary.
3960    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3961                                             : diag::warn_ret_local_temp_addr)
3962     << diagRange;
3963  }
3964
3965  // Display the "trail" of reference variables that we followed until we
3966  // found the problematic expression using notes.
3967  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3968    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3969    // If this var binds to another reference var, show the range of the next
3970    // var, otherwise the var binds to the problematic expression, in which case
3971    // show the range of the expression.
3972    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3973                                  : stackE->getSourceRange();
3974    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3975      << VD->getDeclName() << range;
3976  }
3977}
3978
3979/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3980///  check if the expression in a return statement evaluates to an address
3981///  to a location on the stack, a local block, an address of a label, or a
3982///  reference to local temporary. The recursion is used to traverse the
3983///  AST of the return expression, with recursion backtracking when we
3984///  encounter a subexpression that (1) clearly does not lead to one of the
3985///  above problematic expressions (2) is something we cannot determine leads to
3986///  a problematic expression based on such local checking.
3987///
3988///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3989///  the expression that they point to. Such variables are added to the
3990///  'refVars' vector so that we know what the reference variable "trail" was.
3991///
3992///  EvalAddr processes expressions that are pointers that are used as
3993///  references (and not L-values).  EvalVal handles all other values.
3994///  At the base case of the recursion is a check for the above problematic
3995///  expressions.
3996///
3997///  This implementation handles:
3998///
3999///   * pointer-to-pointer casts
4000///   * implicit conversions from array references to pointers
4001///   * taking the address of fields
4002///   * arbitrary interplay between "&" and "*" operators
4003///   * pointer arithmetic from an address of a stack variable
4004///   * taking the address of an array element where the array is on the stack
4005static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4006                      Decl *ParentDecl) {
4007  if (E->isTypeDependent())
4008    return NULL;
4009
4010  // We should only be called for evaluating pointer expressions.
4011  assert((E->getType()->isAnyPointerType() ||
4012          E->getType()->isBlockPointerType() ||
4013          E->getType()->isObjCQualifiedIdType()) &&
4014         "EvalAddr only works on pointers");
4015
4016  E = E->IgnoreParens();
4017
4018  // Our "symbolic interpreter" is just a dispatch off the currently
4019  // viewed AST node.  We then recursively traverse the AST by calling
4020  // EvalAddr and EvalVal appropriately.
4021  switch (E->getStmtClass()) {
4022  case Stmt::DeclRefExprClass: {
4023    DeclRefExpr *DR = cast<DeclRefExpr>(E);
4024
4025    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
4026      // If this is a reference variable, follow through to the expression that
4027      // it points to.
4028      if (V->hasLocalStorage() &&
4029          V->getType()->isReferenceType() && V->hasInit()) {
4030        // Add the reference variable to the "trail".
4031        refVars.push_back(DR);
4032        return EvalAddr(V->getInit(), refVars, ParentDecl);
4033      }
4034
4035    return NULL;
4036  }
4037
4038  case Stmt::UnaryOperatorClass: {
4039    // The only unary operator that make sense to handle here
4040    // is AddrOf.  All others don't make sense as pointers.
4041    UnaryOperator *U = cast<UnaryOperator>(E);
4042
4043    if (U->getOpcode() == UO_AddrOf)
4044      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
4045    else
4046      return NULL;
4047  }
4048
4049  case Stmt::BinaryOperatorClass: {
4050    // Handle pointer arithmetic.  All other binary operators are not valid
4051    // in this context.
4052    BinaryOperator *B = cast<BinaryOperator>(E);
4053    BinaryOperatorKind op = B->getOpcode();
4054
4055    if (op != BO_Add && op != BO_Sub)
4056      return NULL;
4057
4058    Expr *Base = B->getLHS();
4059
4060    // Determine which argument is the real pointer base.  It could be
4061    // the RHS argument instead of the LHS.
4062    if (!Base->getType()->isPointerType()) Base = B->getRHS();
4063
4064    assert (Base->getType()->isPointerType());
4065    return EvalAddr(Base, refVars, ParentDecl);
4066  }
4067
4068  // For conditional operators we need to see if either the LHS or RHS are
4069  // valid DeclRefExpr*s.  If one of them is valid, we return it.
4070  case Stmt::ConditionalOperatorClass: {
4071    ConditionalOperator *C = cast<ConditionalOperator>(E);
4072
4073    // Handle the GNU extension for missing LHS.
4074    if (Expr *lhsExpr = C->getLHS()) {
4075    // In C++, we can have a throw-expression, which has 'void' type.
4076      if (!lhsExpr->getType()->isVoidType())
4077        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
4078          return LHS;
4079    }
4080
4081    // In C++, we can have a throw-expression, which has 'void' type.
4082    if (C->getRHS()->getType()->isVoidType())
4083      return NULL;
4084
4085    return EvalAddr(C->getRHS(), refVars, ParentDecl);
4086  }
4087
4088  case Stmt::BlockExprClass:
4089    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
4090      return E; // local block.
4091    return NULL;
4092
4093  case Stmt::AddrLabelExprClass:
4094    return E; // address of label.
4095
4096  case Stmt::ExprWithCleanupsClass:
4097    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
4098                    ParentDecl);
4099
4100  // For casts, we need to handle conversions from arrays to
4101  // pointer values, and pointer-to-pointer conversions.
4102  case Stmt::ImplicitCastExprClass:
4103  case Stmt::CStyleCastExprClass:
4104  case Stmt::CXXFunctionalCastExprClass:
4105  case Stmt::ObjCBridgedCastExprClass:
4106  case Stmt::CXXStaticCastExprClass:
4107  case Stmt::CXXDynamicCastExprClass:
4108  case Stmt::CXXConstCastExprClass:
4109  case Stmt::CXXReinterpretCastExprClass: {
4110    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
4111    switch (cast<CastExpr>(E)->getCastKind()) {
4112    case CK_BitCast:
4113    case CK_LValueToRValue:
4114    case CK_NoOp:
4115    case CK_BaseToDerived:
4116    case CK_DerivedToBase:
4117    case CK_UncheckedDerivedToBase:
4118    case CK_Dynamic:
4119    case CK_CPointerToObjCPointerCast:
4120    case CK_BlockPointerToObjCPointerCast:
4121    case CK_AnyPointerToBlockPointerCast:
4122      return EvalAddr(SubExpr, refVars, ParentDecl);
4123
4124    case CK_ArrayToPointerDecay:
4125      return EvalVal(SubExpr, refVars, ParentDecl);
4126
4127    default:
4128      return 0;
4129    }
4130  }
4131
4132  case Stmt::MaterializeTemporaryExprClass:
4133    if (Expr *Result = EvalAddr(
4134                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4135                                refVars, ParentDecl))
4136      return Result;
4137
4138    return E;
4139
4140  // Everything else: we simply don't reason about them.
4141  default:
4142    return NULL;
4143  }
4144}
4145
4146
4147///  EvalVal - This function is complements EvalAddr in the mutual recursion.
4148///   See the comments for EvalAddr for more details.
4149static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4150                     Decl *ParentDecl) {
4151do {
4152  // We should only be called for evaluating non-pointer expressions, or
4153  // expressions with a pointer type that are not used as references but instead
4154  // are l-values (e.g., DeclRefExpr with a pointer type).
4155
4156  // Our "symbolic interpreter" is just a dispatch off the currently
4157  // viewed AST node.  We then recursively traverse the AST by calling
4158  // EvalAddr and EvalVal appropriately.
4159
4160  E = E->IgnoreParens();
4161  switch (E->getStmtClass()) {
4162  case Stmt::ImplicitCastExprClass: {
4163    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
4164    if (IE->getValueKind() == VK_LValue) {
4165      E = IE->getSubExpr();
4166      continue;
4167    }
4168    return NULL;
4169  }
4170
4171  case Stmt::ExprWithCleanupsClass:
4172    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
4173
4174  case Stmt::DeclRefExprClass: {
4175    // When we hit a DeclRefExpr we are looking at code that refers to a
4176    // variable's name. If it's not a reference variable we check if it has
4177    // local storage within the function, and if so, return the expression.
4178    DeclRefExpr *DR = cast<DeclRefExpr>(E);
4179
4180    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
4181      // Check if it refers to itself, e.g. "int& i = i;".
4182      if (V == ParentDecl)
4183        return DR;
4184
4185      if (V->hasLocalStorage()) {
4186        if (!V->getType()->isReferenceType())
4187          return DR;
4188
4189        // Reference variable, follow through to the expression that
4190        // it points to.
4191        if (V->hasInit()) {
4192          // Add the reference variable to the "trail".
4193          refVars.push_back(DR);
4194          return EvalVal(V->getInit(), refVars, V);
4195        }
4196      }
4197    }
4198
4199    return NULL;
4200  }
4201
4202  case Stmt::UnaryOperatorClass: {
4203    // The only unary operator that make sense to handle here
4204    // is Deref.  All others don't resolve to a "name."  This includes
4205    // handling all sorts of rvalues passed to a unary operator.
4206    UnaryOperator *U = cast<UnaryOperator>(E);
4207
4208    if (U->getOpcode() == UO_Deref)
4209      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
4210
4211    return NULL;
4212  }
4213
4214  case Stmt::ArraySubscriptExprClass: {
4215    // Array subscripts are potential references to data on the stack.  We
4216    // retrieve the DeclRefExpr* for the array variable if it indeed
4217    // has local storage.
4218    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
4219  }
4220
4221  case Stmt::ConditionalOperatorClass: {
4222    // For conditional operators we need to see if either the LHS or RHS are
4223    // non-NULL Expr's.  If one is non-NULL, we return it.
4224    ConditionalOperator *C = cast<ConditionalOperator>(E);
4225
4226    // Handle the GNU extension for missing LHS.
4227    if (Expr *lhsExpr = C->getLHS())
4228      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
4229        return LHS;
4230
4231    return EvalVal(C->getRHS(), refVars, ParentDecl);
4232  }
4233
4234  // Accesses to members are potential references to data on the stack.
4235  case Stmt::MemberExprClass: {
4236    MemberExpr *M = cast<MemberExpr>(E);
4237
4238    // Check for indirect access.  We only want direct field accesses.
4239    if (M->isArrow())
4240      return NULL;
4241
4242    // Check whether the member type is itself a reference, in which case
4243    // we're not going to refer to the member, but to what the member refers to.
4244    if (M->getMemberDecl()->getType()->isReferenceType())
4245      return NULL;
4246
4247    return EvalVal(M->getBase(), refVars, ParentDecl);
4248  }
4249
4250  case Stmt::MaterializeTemporaryExprClass:
4251    if (Expr *Result = EvalVal(
4252                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4253                               refVars, ParentDecl))
4254      return Result;
4255
4256    return E;
4257
4258  default:
4259    // Check that we don't return or take the address of a reference to a
4260    // temporary. This is only useful in C++.
4261    if (!E->isTypeDependent() && E->isRValue())
4262      return E;
4263
4264    // Everything else: we simply don't reason about them.
4265    return NULL;
4266  }
4267} while (true);
4268}
4269
4270//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
4271
4272/// Check for comparisons of floating point operands using != and ==.
4273/// Issue a warning if these are no self-comparisons, as they are not likely
4274/// to do what the programmer intended.
4275void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
4276  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
4277  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
4278
4279  // Special case: check for x == x (which is OK).
4280  // Do not emit warnings for such cases.
4281  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
4282    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
4283      if (DRL->getDecl() == DRR->getDecl())
4284        return;
4285
4286
4287  // Special case: check for comparisons against literals that can be exactly
4288  //  represented by APFloat.  In such cases, do not emit a warning.  This
4289  //  is a heuristic: often comparison against such literals are used to
4290  //  detect if a value in a variable has not changed.  This clearly can
4291  //  lead to false negatives.
4292  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
4293    if (FLL->isExact())
4294      return;
4295  } else
4296    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
4297      if (FLR->isExact())
4298        return;
4299
4300  // Check for comparisons with builtin types.
4301  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
4302    if (CL->isBuiltinCall())
4303      return;
4304
4305  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
4306    if (CR->isBuiltinCall())
4307      return;
4308
4309  // Emit the diagnostic.
4310  Diag(Loc, diag::warn_floatingpoint_eq)
4311    << LHS->getSourceRange() << RHS->getSourceRange();
4312}
4313
4314//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
4315//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
4316
4317namespace {
4318
4319/// Structure recording the 'active' range of an integer-valued
4320/// expression.
4321struct IntRange {
4322  /// The number of bits active in the int.
4323  unsigned Width;
4324
4325  /// True if the int is known not to have negative values.
4326  bool NonNegative;
4327
4328  IntRange(unsigned Width, bool NonNegative)
4329    : Width(Width), NonNegative(NonNegative)
4330  {}
4331
4332  /// Returns the range of the bool type.
4333  static IntRange forBoolType() {
4334    return IntRange(1, true);
4335  }
4336
4337  /// Returns the range of an opaque value of the given integral type.
4338  static IntRange forValueOfType(ASTContext &C, QualType T) {
4339    return forValueOfCanonicalType(C,
4340                          T->getCanonicalTypeInternal().getTypePtr());
4341  }
4342
4343  /// Returns the range of an opaque value of a canonical integral type.
4344  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
4345    assert(T->isCanonicalUnqualified());
4346
4347    if (const VectorType *VT = dyn_cast<VectorType>(T))
4348      T = VT->getElementType().getTypePtr();
4349    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4350      T = CT->getElementType().getTypePtr();
4351
4352    // For enum types, use the known bit width of the enumerators.
4353    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4354      EnumDecl *Enum = ET->getDecl();
4355      if (!Enum->isCompleteDefinition())
4356        return IntRange(C.getIntWidth(QualType(T, 0)), false);
4357
4358      unsigned NumPositive = Enum->getNumPositiveBits();
4359      unsigned NumNegative = Enum->getNumNegativeBits();
4360
4361      if (NumNegative == 0)
4362        return IntRange(NumPositive, true/*NonNegative*/);
4363      else
4364        return IntRange(std::max(NumPositive + 1, NumNegative),
4365                        false/*NonNegative*/);
4366    }
4367
4368    const BuiltinType *BT = cast<BuiltinType>(T);
4369    assert(BT->isInteger());
4370
4371    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4372  }
4373
4374  /// Returns the "target" range of a canonical integral type, i.e.
4375  /// the range of values expressible in the type.
4376  ///
4377  /// This matches forValueOfCanonicalType except that enums have the
4378  /// full range of their type, not the range of their enumerators.
4379  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4380    assert(T->isCanonicalUnqualified());
4381
4382    if (const VectorType *VT = dyn_cast<VectorType>(T))
4383      T = VT->getElementType().getTypePtr();
4384    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4385      T = CT->getElementType().getTypePtr();
4386    if (const EnumType *ET = dyn_cast<EnumType>(T))
4387      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4388
4389    const BuiltinType *BT = cast<BuiltinType>(T);
4390    assert(BT->isInteger());
4391
4392    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4393  }
4394
4395  /// Returns the supremum of two ranges: i.e. their conservative merge.
4396  static IntRange join(IntRange L, IntRange R) {
4397    return IntRange(std::max(L.Width, R.Width),
4398                    L.NonNegative && R.NonNegative);
4399  }
4400
4401  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4402  static IntRange meet(IntRange L, IntRange R) {
4403    return IntRange(std::min(L.Width, R.Width),
4404                    L.NonNegative || R.NonNegative);
4405  }
4406};
4407
4408static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4409                              unsigned MaxWidth) {
4410  if (value.isSigned() && value.isNegative())
4411    return IntRange(value.getMinSignedBits(), false);
4412
4413  if (value.getBitWidth() > MaxWidth)
4414    value = value.trunc(MaxWidth);
4415
4416  // isNonNegative() just checks the sign bit without considering
4417  // signedness.
4418  return IntRange(value.getActiveBits(), true);
4419}
4420
4421static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4422                              unsigned MaxWidth) {
4423  if (result.isInt())
4424    return GetValueRange(C, result.getInt(), MaxWidth);
4425
4426  if (result.isVector()) {
4427    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4428    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4429      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4430      R = IntRange::join(R, El);
4431    }
4432    return R;
4433  }
4434
4435  if (result.isComplexInt()) {
4436    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4437    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4438    return IntRange::join(R, I);
4439  }
4440
4441  // This can happen with lossless casts to intptr_t of "based" lvalues.
4442  // Assume it might use arbitrary bits.
4443  // FIXME: The only reason we need to pass the type in here is to get
4444  // the sign right on this one case.  It would be nice if APValue
4445  // preserved this.
4446  assert(result.isLValue() || result.isAddrLabelDiff());
4447  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4448}
4449
4450static QualType GetExprType(Expr *E) {
4451  QualType Ty = E->getType();
4452  if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
4453    Ty = AtomicRHS->getValueType();
4454  return Ty;
4455}
4456
4457/// Pseudo-evaluate the given integer expression, estimating the
4458/// range of values it might take.
4459///
4460/// \param MaxWidth - the width to which the value will be truncated
4461static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4462  E = E->IgnoreParens();
4463
4464  // Try a full evaluation first.
4465  Expr::EvalResult result;
4466  if (E->EvaluateAsRValue(result, C))
4467    return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
4468
4469  // I think we only want to look through implicit casts here; if the
4470  // user has an explicit widening cast, we should treat the value as
4471  // being of the new, wider type.
4472  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4473    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4474      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4475
4476    IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
4477
4478    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4479
4480    // Assume that non-integer casts can span the full range of the type.
4481    if (!isIntegerCast)
4482      return OutputTypeRange;
4483
4484    IntRange SubRange
4485      = GetExprRange(C, CE->getSubExpr(),
4486                     std::min(MaxWidth, OutputTypeRange.Width));
4487
4488    // Bail out if the subexpr's range is as wide as the cast type.
4489    if (SubRange.Width >= OutputTypeRange.Width)
4490      return OutputTypeRange;
4491
4492    // Otherwise, we take the smaller width, and we're non-negative if
4493    // either the output type or the subexpr is.
4494    return IntRange(SubRange.Width,
4495                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4496  }
4497
4498  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4499    // If we can fold the condition, just take that operand.
4500    bool CondResult;
4501    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4502      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4503                                        : CO->getFalseExpr(),
4504                          MaxWidth);
4505
4506    // Otherwise, conservatively merge.
4507    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4508    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4509    return IntRange::join(L, R);
4510  }
4511
4512  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4513    switch (BO->getOpcode()) {
4514
4515    // Boolean-valued operations are single-bit and positive.
4516    case BO_LAnd:
4517    case BO_LOr:
4518    case BO_LT:
4519    case BO_GT:
4520    case BO_LE:
4521    case BO_GE:
4522    case BO_EQ:
4523    case BO_NE:
4524      return IntRange::forBoolType();
4525
4526    // The type of the assignments is the type of the LHS, so the RHS
4527    // is not necessarily the same type.
4528    case BO_MulAssign:
4529    case BO_DivAssign:
4530    case BO_RemAssign:
4531    case BO_AddAssign:
4532    case BO_SubAssign:
4533    case BO_XorAssign:
4534    case BO_OrAssign:
4535      // TODO: bitfields?
4536      return IntRange::forValueOfType(C, GetExprType(E));
4537
4538    // Simple assignments just pass through the RHS, which will have
4539    // been coerced to the LHS type.
4540    case BO_Assign:
4541      // TODO: bitfields?
4542      return GetExprRange(C, BO->getRHS(), MaxWidth);
4543
4544    // Operations with opaque sources are black-listed.
4545    case BO_PtrMemD:
4546    case BO_PtrMemI:
4547      return IntRange::forValueOfType(C, GetExprType(E));
4548
4549    // Bitwise-and uses the *infinum* of the two source ranges.
4550    case BO_And:
4551    case BO_AndAssign:
4552      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4553                            GetExprRange(C, BO->getRHS(), MaxWidth));
4554
4555    // Left shift gets black-listed based on a judgement call.
4556    case BO_Shl:
4557      // ...except that we want to treat '1 << (blah)' as logically
4558      // positive.  It's an important idiom.
4559      if (IntegerLiteral *I
4560            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4561        if (I->getValue() == 1) {
4562          IntRange R = IntRange::forValueOfType(C, GetExprType(E));
4563          return IntRange(R.Width, /*NonNegative*/ true);
4564        }
4565      }
4566      // fallthrough
4567
4568    case BO_ShlAssign:
4569      return IntRange::forValueOfType(C, GetExprType(E));
4570
4571    // Right shift by a constant can narrow its left argument.
4572    case BO_Shr:
4573    case BO_ShrAssign: {
4574      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4575
4576      // If the shift amount is a positive constant, drop the width by
4577      // that much.
4578      llvm::APSInt shift;
4579      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4580          shift.isNonNegative()) {
4581        unsigned zext = shift.getZExtValue();
4582        if (zext >= L.Width)
4583          L.Width = (L.NonNegative ? 0 : 1);
4584        else
4585          L.Width -= zext;
4586      }
4587
4588      return L;
4589    }
4590
4591    // Comma acts as its right operand.
4592    case BO_Comma:
4593      return GetExprRange(C, BO->getRHS(), MaxWidth);
4594
4595    // Black-list pointer subtractions.
4596    case BO_Sub:
4597      if (BO->getLHS()->getType()->isPointerType())
4598        return IntRange::forValueOfType(C, GetExprType(E));
4599      break;
4600
4601    // The width of a division result is mostly determined by the size
4602    // of the LHS.
4603    case BO_Div: {
4604      // Don't 'pre-truncate' the operands.
4605      unsigned opWidth = C.getIntWidth(GetExprType(E));
4606      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4607
4608      // If the divisor is constant, use that.
4609      llvm::APSInt divisor;
4610      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4611        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4612        if (log2 >= L.Width)
4613          L.Width = (L.NonNegative ? 0 : 1);
4614        else
4615          L.Width = std::min(L.Width - log2, MaxWidth);
4616        return L;
4617      }
4618
4619      // Otherwise, just use the LHS's width.
4620      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4621      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4622    }
4623
4624    // The result of a remainder can't be larger than the result of
4625    // either side.
4626    case BO_Rem: {
4627      // Don't 'pre-truncate' the operands.
4628      unsigned opWidth = C.getIntWidth(GetExprType(E));
4629      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4630      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4631
4632      IntRange meet = IntRange::meet(L, R);
4633      meet.Width = std::min(meet.Width, MaxWidth);
4634      return meet;
4635    }
4636
4637    // The default behavior is okay for these.
4638    case BO_Mul:
4639    case BO_Add:
4640    case BO_Xor:
4641    case BO_Or:
4642      break;
4643    }
4644
4645    // The default case is to treat the operation as if it were closed
4646    // on the narrowest type that encompasses both operands.
4647    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4648    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4649    return IntRange::join(L, R);
4650  }
4651
4652  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4653    switch (UO->getOpcode()) {
4654    // Boolean-valued operations are white-listed.
4655    case UO_LNot:
4656      return IntRange::forBoolType();
4657
4658    // Operations with opaque sources are black-listed.
4659    case UO_Deref:
4660    case UO_AddrOf: // should be impossible
4661      return IntRange::forValueOfType(C, GetExprType(E));
4662
4663    default:
4664      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4665    }
4666  }
4667
4668  if (FieldDecl *BitField = E->getSourceBitField())
4669    return IntRange(BitField->getBitWidthValue(C),
4670                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4671
4672  return IntRange::forValueOfType(C, GetExprType(E));
4673}
4674
4675static IntRange GetExprRange(ASTContext &C, Expr *E) {
4676  return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
4677}
4678
4679/// Checks whether the given value, which currently has the given
4680/// source semantics, has the same value when coerced through the
4681/// target semantics.
4682static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4683                                 const llvm::fltSemantics &Src,
4684                                 const llvm::fltSemantics &Tgt) {
4685  llvm::APFloat truncated = value;
4686
4687  bool ignored;
4688  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4689  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4690
4691  return truncated.bitwiseIsEqual(value);
4692}
4693
4694/// Checks whether the given value, which currently has the given
4695/// source semantics, has the same value when coerced through the
4696/// target semantics.
4697///
4698/// The value might be a vector of floats (or a complex number).
4699static bool IsSameFloatAfterCast(const APValue &value,
4700                                 const llvm::fltSemantics &Src,
4701                                 const llvm::fltSemantics &Tgt) {
4702  if (value.isFloat())
4703    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4704
4705  if (value.isVector()) {
4706    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4707      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4708        return false;
4709    return true;
4710  }
4711
4712  assert(value.isComplexFloat());
4713  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4714          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4715}
4716
4717static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4718
4719static bool IsZero(Sema &S, Expr *E) {
4720  // Suppress cases where we are comparing against an enum constant.
4721  if (const DeclRefExpr *DR =
4722      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4723    if (isa<EnumConstantDecl>(DR->getDecl()))
4724      return false;
4725
4726  // Suppress cases where the '0' value is expanded from a macro.
4727  if (E->getLocStart().isMacroID())
4728    return false;
4729
4730  llvm::APSInt Value;
4731  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4732}
4733
4734static bool HasEnumType(Expr *E) {
4735  // Strip off implicit integral promotions.
4736  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4737    if (ICE->getCastKind() != CK_IntegralCast &&
4738        ICE->getCastKind() != CK_NoOp)
4739      break;
4740    E = ICE->getSubExpr();
4741  }
4742
4743  return E->getType()->isEnumeralType();
4744}
4745
4746static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4747  BinaryOperatorKind op = E->getOpcode();
4748  if (E->isValueDependent())
4749    return;
4750
4751  if (op == BO_LT && IsZero(S, E->getRHS())) {
4752    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4753      << "< 0" << "false" << HasEnumType(E->getLHS())
4754      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4755  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4756    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4757      << ">= 0" << "true" << HasEnumType(E->getLHS())
4758      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4759  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4760    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4761      << "0 >" << "false" << HasEnumType(E->getRHS())
4762      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4763  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4764    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4765      << "0 <=" << "true" << HasEnumType(E->getRHS())
4766      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4767  }
4768}
4769
4770static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4771                                         Expr *Constant, Expr *Other,
4772                                         llvm::APSInt Value,
4773                                         bool RhsConstant) {
4774  // 0 values are handled later by CheckTrivialUnsignedComparison().
4775  if (Value == 0)
4776    return;
4777
4778  BinaryOperatorKind op = E->getOpcode();
4779  QualType OtherT = Other->getType();
4780  QualType ConstantT = Constant->getType();
4781  QualType CommonT = E->getLHS()->getType();
4782  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4783    return;
4784  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4785         && "comparison with non-integer type");
4786
4787  bool ConstantSigned = ConstantT->isSignedIntegerType();
4788  bool CommonSigned = CommonT->isSignedIntegerType();
4789
4790  bool EqualityOnly = false;
4791
4792  // TODO: Investigate using GetExprRange() to get tighter bounds on
4793  // on the bit ranges.
4794  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4795  unsigned OtherWidth = OtherRange.Width;
4796
4797  if (CommonSigned) {
4798    // The common type is signed, therefore no signed to unsigned conversion.
4799    if (!OtherRange.NonNegative) {
4800      // Check that the constant is representable in type OtherT.
4801      if (ConstantSigned) {
4802        if (OtherWidth >= Value.getMinSignedBits())
4803          return;
4804      } else { // !ConstantSigned
4805        if (OtherWidth >= Value.getActiveBits() + 1)
4806          return;
4807      }
4808    } else { // !OtherSigned
4809      // Check that the constant is representable in type OtherT.
4810      // Negative values are out of range.
4811      if (ConstantSigned) {
4812        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4813          return;
4814      } else { // !ConstantSigned
4815        if (OtherWidth >= Value.getActiveBits())
4816          return;
4817      }
4818    }
4819  } else {  // !CommonSigned
4820    if (OtherRange.NonNegative) {
4821      if (OtherWidth >= Value.getActiveBits())
4822        return;
4823    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4824      // Check to see if the constant is representable in OtherT.
4825      if (OtherWidth > Value.getActiveBits())
4826        return;
4827      // Check to see if the constant is equivalent to a negative value
4828      // cast to CommonT.
4829      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4830          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4831        return;
4832      // The constant value rests between values that OtherT can represent after
4833      // conversion.  Relational comparison still works, but equality
4834      // comparisons will be tautological.
4835      EqualityOnly = true;
4836    } else { // OtherSigned && ConstantSigned
4837      assert(0 && "Two signed types converted to unsigned types.");
4838    }
4839  }
4840
4841  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4842
4843  bool IsTrue = true;
4844  if (op == BO_EQ || op == BO_NE) {
4845    IsTrue = op == BO_NE;
4846  } else if (EqualityOnly) {
4847    return;
4848  } else if (RhsConstant) {
4849    if (op == BO_GT || op == BO_GE)
4850      IsTrue = !PositiveConstant;
4851    else // op == BO_LT || op == BO_LE
4852      IsTrue = PositiveConstant;
4853  } else {
4854    if (op == BO_LT || op == BO_LE)
4855      IsTrue = !PositiveConstant;
4856    else // op == BO_GT || op == BO_GE
4857      IsTrue = PositiveConstant;
4858  }
4859
4860  // If this is a comparison to an enum constant, include that
4861  // constant in the diagnostic.
4862  const EnumConstantDecl *ED = 0;
4863  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4864    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4865
4866  SmallString<64> PrettySourceValue;
4867  llvm::raw_svector_ostream OS(PrettySourceValue);
4868  if (ED)
4869    OS << '\'' << *ED << "' (" << Value << ")";
4870  else
4871    OS << Value;
4872
4873  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4874      << OS.str() << OtherT << IsTrue
4875      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4876}
4877
4878/// Analyze the operands of the given comparison.  Implements the
4879/// fallback case from AnalyzeComparison.
4880static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4881  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4882  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4883}
4884
4885/// \brief Implements -Wsign-compare.
4886///
4887/// \param E the binary operator to check for warnings
4888static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4889  // The type the comparison is being performed in.
4890  QualType T = E->getLHS()->getType();
4891  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4892         && "comparison with mismatched types");
4893  if (E->isValueDependent())
4894    return AnalyzeImpConvsInComparison(S, E);
4895
4896  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4897  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4898
4899  bool IsComparisonConstant = false;
4900
4901  // Check whether an integer constant comparison results in a value
4902  // of 'true' or 'false'.
4903  if (T->isIntegralType(S.Context)) {
4904    llvm::APSInt RHSValue;
4905    bool IsRHSIntegralLiteral =
4906      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4907    llvm::APSInt LHSValue;
4908    bool IsLHSIntegralLiteral =
4909      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4910    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4911        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4912    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4913      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4914    else
4915      IsComparisonConstant =
4916        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4917  } else if (!T->hasUnsignedIntegerRepresentation())
4918      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4919
4920  // We don't do anything special if this isn't an unsigned integral
4921  // comparison:  we're only interested in integral comparisons, and
4922  // signed comparisons only happen in cases we don't care to warn about.
4923  //
4924  // We also don't care about value-dependent expressions or expressions
4925  // whose result is a constant.
4926  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4927    return AnalyzeImpConvsInComparison(S, E);
4928
4929  // Check to see if one of the (unmodified) operands is of different
4930  // signedness.
4931  Expr *signedOperand, *unsignedOperand;
4932  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4933    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4934           "unsigned comparison between two signed integer expressions?");
4935    signedOperand = LHS;
4936    unsignedOperand = RHS;
4937  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4938    signedOperand = RHS;
4939    unsignedOperand = LHS;
4940  } else {
4941    CheckTrivialUnsignedComparison(S, E);
4942    return AnalyzeImpConvsInComparison(S, E);
4943  }
4944
4945  // Otherwise, calculate the effective range of the signed operand.
4946  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4947
4948  // Go ahead and analyze implicit conversions in the operands.  Note
4949  // that we skip the implicit conversions on both sides.
4950  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4951  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4952
4953  // If the signed range is non-negative, -Wsign-compare won't fire,
4954  // but we should still check for comparisons which are always true
4955  // or false.
4956  if (signedRange.NonNegative)
4957    return CheckTrivialUnsignedComparison(S, E);
4958
4959  // For (in)equality comparisons, if the unsigned operand is a
4960  // constant which cannot collide with a overflowed signed operand,
4961  // then reinterpreting the signed operand as unsigned will not
4962  // change the result of the comparison.
4963  if (E->isEqualityOp()) {
4964    unsigned comparisonWidth = S.Context.getIntWidth(T);
4965    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4966
4967    // We should never be unable to prove that the unsigned operand is
4968    // non-negative.
4969    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4970
4971    if (unsignedRange.Width < comparisonWidth)
4972      return;
4973  }
4974
4975  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4976    S.PDiag(diag::warn_mixed_sign_comparison)
4977      << LHS->getType() << RHS->getType()
4978      << LHS->getSourceRange() << RHS->getSourceRange());
4979}
4980
4981/// Analyzes an attempt to assign the given value to a bitfield.
4982///
4983/// Returns true if there was something fishy about the attempt.
4984static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4985                                      SourceLocation InitLoc) {
4986  assert(Bitfield->isBitField());
4987  if (Bitfield->isInvalidDecl())
4988    return false;
4989
4990  // White-list bool bitfields.
4991  if (Bitfield->getType()->isBooleanType())
4992    return false;
4993
4994  // Ignore value- or type-dependent expressions.
4995  if (Bitfield->getBitWidth()->isValueDependent() ||
4996      Bitfield->getBitWidth()->isTypeDependent() ||
4997      Init->isValueDependent() ||
4998      Init->isTypeDependent())
4999    return false;
5000
5001  Expr *OriginalInit = Init->IgnoreParenImpCasts();
5002
5003  llvm::APSInt Value;
5004  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
5005    return false;
5006
5007  unsigned OriginalWidth = Value.getBitWidth();
5008  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
5009
5010  if (OriginalWidth <= FieldWidth)
5011    return false;
5012
5013  // Compute the value which the bitfield will contain.
5014  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
5015  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
5016
5017  // Check whether the stored value is equal to the original value.
5018  TruncatedValue = TruncatedValue.extend(OriginalWidth);
5019  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
5020    return false;
5021
5022  // Special-case bitfields of width 1: booleans are naturally 0/1, and
5023  // therefore don't strictly fit into a signed bitfield of width 1.
5024  if (FieldWidth == 1 && Value == 1)
5025    return false;
5026
5027  std::string PrettyValue = Value.toString(10);
5028  std::string PrettyTrunc = TruncatedValue.toString(10);
5029
5030  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
5031    << PrettyValue << PrettyTrunc << OriginalInit->getType()
5032    << Init->getSourceRange();
5033
5034  return true;
5035}
5036
5037/// Analyze the given simple or compound assignment for warning-worthy
5038/// operations.
5039static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
5040  // Just recurse on the LHS.
5041  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
5042
5043  // We want to recurse on the RHS as normal unless we're assigning to
5044  // a bitfield.
5045  if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
5046    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
5047                                  E->getOperatorLoc())) {
5048      // Recurse, ignoring any implicit conversions on the RHS.
5049      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
5050                                        E->getOperatorLoc());
5051    }
5052  }
5053
5054  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
5055}
5056
5057/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
5058static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
5059                            SourceLocation CContext, unsigned diag,
5060                            bool pruneControlFlow = false) {
5061  if (pruneControlFlow) {
5062    S.DiagRuntimeBehavior(E->getExprLoc(), E,
5063                          S.PDiag(diag)
5064                            << SourceType << T << E->getSourceRange()
5065                            << SourceRange(CContext));
5066    return;
5067  }
5068  S.Diag(E->getExprLoc(), diag)
5069    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
5070}
5071
5072/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
5073static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
5074                            SourceLocation CContext, unsigned diag,
5075                            bool pruneControlFlow = false) {
5076  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
5077}
5078
5079/// Diagnose an implicit cast from a literal expression. Does not warn when the
5080/// cast wouldn't lose information.
5081void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
5082                                    SourceLocation CContext) {
5083  // Try to convert the literal exactly to an integer. If we can, don't warn.
5084  bool isExact = false;
5085  const llvm::APFloat &Value = FL->getValue();
5086  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
5087                            T->hasUnsignedIntegerRepresentation());
5088  if (Value.convertToInteger(IntegerValue,
5089                             llvm::APFloat::rmTowardZero, &isExact)
5090      == llvm::APFloat::opOK && isExact)
5091    return;
5092
5093  // FIXME: Force the precision of the source value down so we don't print
5094  // digits which are usually useless (we don't really care here if we
5095  // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
5096  // would automatically print the shortest representation, but it's a bit
5097  // tricky to implement.
5098  SmallString<16> PrettySourceValue;
5099  unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
5100  precision = (precision * 59 + 195) / 196;
5101  Value.toString(PrettySourceValue, precision);
5102
5103  SmallString<16> PrettyTargetValue;
5104  if (T->isSpecificBuiltinType(BuiltinType::Bool))
5105    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
5106  else
5107    IntegerValue.toString(PrettyTargetValue);
5108
5109  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
5110    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
5111    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
5112}
5113
5114std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
5115  if (!Range.Width) return "0";
5116
5117  llvm::APSInt ValueInRange = Value;
5118  ValueInRange.setIsSigned(!Range.NonNegative);
5119  ValueInRange = ValueInRange.trunc(Range.Width);
5120  return ValueInRange.toString(10);
5121}
5122
5123static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
5124  if (!isa<ImplicitCastExpr>(Ex))
5125    return false;
5126
5127  Expr *InnerE = Ex->IgnoreParenImpCasts();
5128  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
5129  const Type *Source =
5130    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5131  if (Target->isDependentType())
5132    return false;
5133
5134  const BuiltinType *FloatCandidateBT =
5135    dyn_cast<BuiltinType>(ToBool ? Source : Target);
5136  const Type *BoolCandidateType = ToBool ? Target : Source;
5137
5138  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
5139          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
5140}
5141
5142void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
5143                                      SourceLocation CC) {
5144  unsigned NumArgs = TheCall->getNumArgs();
5145  for (unsigned i = 0; i < NumArgs; ++i) {
5146    Expr *CurrA = TheCall->getArg(i);
5147    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
5148      continue;
5149
5150    bool IsSwapped = ((i > 0) &&
5151        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
5152    IsSwapped |= ((i < (NumArgs - 1)) &&
5153        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
5154    if (IsSwapped) {
5155      // Warn on this floating-point to bool conversion.
5156      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
5157                      CurrA->getType(), CC,
5158                      diag::warn_impcast_floating_point_to_bool);
5159    }
5160  }
5161}
5162
5163void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
5164                             SourceLocation CC, bool *ICContext = 0) {
5165  if (E->isTypeDependent() || E->isValueDependent()) return;
5166
5167  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
5168  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
5169  if (Source == Target) return;
5170  if (Target->isDependentType()) return;
5171
5172  // If the conversion context location is invalid don't complain. We also
5173  // don't want to emit a warning if the issue occurs from the expansion of
5174  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
5175  // delay this check as long as possible. Once we detect we are in that
5176  // scenario, we just return.
5177  if (CC.isInvalid())
5178    return;
5179
5180  // Diagnose implicit casts to bool.
5181  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
5182    if (isa<StringLiteral>(E))
5183      // Warn on string literal to bool.  Checks for string literals in logical
5184      // expressions, for instances, assert(0 && "error here"), is prevented
5185      // by a check in AnalyzeImplicitConversions().
5186      return DiagnoseImpCast(S, E, T, CC,
5187                             diag::warn_impcast_string_literal_to_bool);
5188    if (Source->isFunctionType()) {
5189      // Warn on function to bool. Checks free functions and static member
5190      // functions. Weakly imported functions are excluded from the check,
5191      // since it's common to test their value to check whether the linker
5192      // found a definition for them.
5193      ValueDecl *D = 0;
5194      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
5195        D = R->getDecl();
5196      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
5197        D = M->getMemberDecl();
5198      }
5199
5200      if (D && !D->isWeak()) {
5201        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
5202          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
5203            << F << E->getSourceRange() << SourceRange(CC);
5204          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
5205            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
5206          QualType ReturnType;
5207          UnresolvedSet<4> NonTemplateOverloads;
5208          S.tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
5209          if (!ReturnType.isNull()
5210              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
5211            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
5212              << FixItHint::CreateInsertion(
5213                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
5214          return;
5215        }
5216      }
5217    }
5218  }
5219
5220  // Strip vector types.
5221  if (isa<VectorType>(Source)) {
5222    if (!isa<VectorType>(Target)) {
5223      if (S.SourceMgr.isInSystemMacro(CC))
5224        return;
5225      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
5226    }
5227
5228    // If the vector cast is cast between two vectors of the same size, it is
5229    // a bitcast, not a conversion.
5230    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
5231      return;
5232
5233    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
5234    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
5235  }
5236
5237  // Strip complex types.
5238  if (isa<ComplexType>(Source)) {
5239    if (!isa<ComplexType>(Target)) {
5240      if (S.SourceMgr.isInSystemMacro(CC))
5241        return;
5242
5243      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
5244    }
5245
5246    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
5247    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
5248  }
5249
5250  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
5251  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
5252
5253  // If the source is floating point...
5254  if (SourceBT && SourceBT->isFloatingPoint()) {
5255    // ...and the target is floating point...
5256    if (TargetBT && TargetBT->isFloatingPoint()) {
5257      // ...then warn if we're dropping FP rank.
5258
5259      // Builtin FP kinds are ordered by increasing FP rank.
5260      if (SourceBT->getKind() > TargetBT->getKind()) {
5261        // Don't warn about float constants that are precisely
5262        // representable in the target type.
5263        Expr::EvalResult result;
5264        if (E->EvaluateAsRValue(result, S.Context)) {
5265          // Value might be a float, a float vector, or a float complex.
5266          if (IsSameFloatAfterCast(result.Val,
5267                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
5268                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
5269            return;
5270        }
5271
5272        if (S.SourceMgr.isInSystemMacro(CC))
5273          return;
5274
5275        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
5276      }
5277      return;
5278    }
5279
5280    // If the target is integral, always warn.
5281    if (TargetBT && TargetBT->isInteger()) {
5282      if (S.SourceMgr.isInSystemMacro(CC))
5283        return;
5284
5285      Expr *InnerE = E->IgnoreParenImpCasts();
5286      // We also want to warn on, e.g., "int i = -1.234"
5287      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
5288        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
5289          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
5290
5291      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
5292        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
5293      } else {
5294        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
5295      }
5296    }
5297
5298    // If the target is bool, warn if expr is a function or method call.
5299    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
5300        isa<CallExpr>(E)) {
5301      // Check last argument of function call to see if it is an
5302      // implicit cast from a type matching the type the result
5303      // is being cast to.
5304      CallExpr *CEx = cast<CallExpr>(E);
5305      unsigned NumArgs = CEx->getNumArgs();
5306      if (NumArgs > 0) {
5307        Expr *LastA = CEx->getArg(NumArgs - 1);
5308        Expr *InnerE = LastA->IgnoreParenImpCasts();
5309        const Type *InnerType =
5310          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5311        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
5312          // Warn on this floating-point to bool conversion
5313          DiagnoseImpCast(S, E, T, CC,
5314                          diag::warn_impcast_floating_point_to_bool);
5315        }
5316      }
5317    }
5318    return;
5319  }
5320
5321  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
5322           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
5323      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
5324      && Target->isScalarType() && !Target->isNullPtrType()) {
5325    SourceLocation Loc = E->getSourceRange().getBegin();
5326    if (Loc.isMacroID())
5327      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
5328    if (!Loc.isMacroID() || CC.isMacroID())
5329      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
5330          << T << clang::SourceRange(CC)
5331          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
5332  }
5333
5334  if (!Source->isIntegerType() || !Target->isIntegerType())
5335    return;
5336
5337  // TODO: remove this early return once the false positives for constant->bool
5338  // in templates, macros, etc, are reduced or removed.
5339  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
5340    return;
5341
5342  IntRange SourceRange = GetExprRange(S.Context, E);
5343  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
5344
5345  if (SourceRange.Width > TargetRange.Width) {
5346    // If the source is a constant, use a default-on diagnostic.
5347    // TODO: this should happen for bitfield stores, too.
5348    llvm::APSInt Value(32);
5349    if (E->isIntegerConstantExpr(Value, S.Context)) {
5350      if (S.SourceMgr.isInSystemMacro(CC))
5351        return;
5352
5353      std::string PrettySourceValue = Value.toString(10);
5354      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
5355
5356      S.DiagRuntimeBehavior(E->getExprLoc(), E,
5357        S.PDiag(diag::warn_impcast_integer_precision_constant)
5358            << PrettySourceValue << PrettyTargetValue
5359            << E->getType() << T << E->getSourceRange()
5360            << clang::SourceRange(CC));
5361      return;
5362    }
5363
5364    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5365    if (S.SourceMgr.isInSystemMacro(CC))
5366      return;
5367
5368    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5369      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5370                             /* pruneControlFlow */ true);
5371    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5372  }
5373
5374  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5375      (!TargetRange.NonNegative && SourceRange.NonNegative &&
5376       SourceRange.Width == TargetRange.Width)) {
5377
5378    if (S.SourceMgr.isInSystemMacro(CC))
5379      return;
5380
5381    unsigned DiagID = diag::warn_impcast_integer_sign;
5382
5383    // Traditionally, gcc has warned about this under -Wsign-compare.
5384    // We also want to warn about it in -Wconversion.
5385    // So if -Wconversion is off, use a completely identical diagnostic
5386    // in the sign-compare group.
5387    // The conditional-checking code will
5388    if (ICContext) {
5389      DiagID = diag::warn_impcast_integer_sign_conditional;
5390      *ICContext = true;
5391    }
5392
5393    return DiagnoseImpCast(S, E, T, CC, DiagID);
5394  }
5395
5396  // Diagnose conversions between different enumeration types.
5397  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5398  // type, to give us better diagnostics.
5399  QualType SourceType = E->getType();
5400  if (!S.getLangOpts().CPlusPlus) {
5401    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5402      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5403        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5404        SourceType = S.Context.getTypeDeclType(Enum);
5405        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5406      }
5407  }
5408
5409  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5410    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5411      if (SourceEnum->getDecl()->hasNameForLinkage() &&
5412          TargetEnum->getDecl()->hasNameForLinkage() &&
5413          SourceEnum != TargetEnum) {
5414        if (S.SourceMgr.isInSystemMacro(CC))
5415          return;
5416
5417        return DiagnoseImpCast(S, E, SourceType, T, CC,
5418                               diag::warn_impcast_different_enum_types);
5419      }
5420
5421  return;
5422}
5423
5424void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5425                              SourceLocation CC, QualType T);
5426
5427void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5428                             SourceLocation CC, bool &ICContext) {
5429  E = E->IgnoreParenImpCasts();
5430
5431  if (isa<ConditionalOperator>(E))
5432    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5433
5434  AnalyzeImplicitConversions(S, E, CC);
5435  if (E->getType() != T)
5436    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5437  return;
5438}
5439
5440void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5441                              SourceLocation CC, QualType T) {
5442  AnalyzeImplicitConversions(S, E->getCond(), CC);
5443
5444  bool Suspicious = false;
5445  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5446  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5447
5448  // If -Wconversion would have warned about either of the candidates
5449  // for a signedness conversion to the context type...
5450  if (!Suspicious) return;
5451
5452  // ...but it's currently ignored...
5453  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5454                                 CC))
5455    return;
5456
5457  // ...then check whether it would have warned about either of the
5458  // candidates for a signedness conversion to the condition type.
5459  if (E->getType() == T) return;
5460
5461  Suspicious = false;
5462  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5463                          E->getType(), CC, &Suspicious);
5464  if (!Suspicious)
5465    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5466                            E->getType(), CC, &Suspicious);
5467}
5468
5469/// AnalyzeImplicitConversions - Find and report any interesting
5470/// implicit conversions in the given expression.  There are a couple
5471/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5472void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5473  QualType T = OrigE->getType();
5474  Expr *E = OrigE->IgnoreParenImpCasts();
5475
5476  if (E->isTypeDependent() || E->isValueDependent())
5477    return;
5478
5479  // For conditional operators, we analyze the arguments as if they
5480  // were being fed directly into the output.
5481  if (isa<ConditionalOperator>(E)) {
5482    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5483    CheckConditionalOperator(S, CO, CC, T);
5484    return;
5485  }
5486
5487  // Check implicit argument conversions for function calls.
5488  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5489    CheckImplicitArgumentConversions(S, Call, CC);
5490
5491  // Go ahead and check any implicit conversions we might have skipped.
5492  // The non-canonical typecheck is just an optimization;
5493  // CheckImplicitConversion will filter out dead implicit conversions.
5494  if (E->getType() != T)
5495    CheckImplicitConversion(S, E, T, CC);
5496
5497  // Now continue drilling into this expression.
5498
5499  if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
5500    if (POE->getResultExpr())
5501      E = POE->getResultExpr();
5502  }
5503
5504  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5505    return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
5506
5507  // Skip past explicit casts.
5508  if (isa<ExplicitCastExpr>(E)) {
5509    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5510    return AnalyzeImplicitConversions(S, E, CC);
5511  }
5512
5513  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5514    // Do a somewhat different check with comparison operators.
5515    if (BO->isComparisonOp())
5516      return AnalyzeComparison(S, BO);
5517
5518    // And with simple assignments.
5519    if (BO->getOpcode() == BO_Assign)
5520      return AnalyzeAssignment(S, BO);
5521  }
5522
5523  // These break the otherwise-useful invariant below.  Fortunately,
5524  // we don't really need to recurse into them, because any internal
5525  // expressions should have been analyzed already when they were
5526  // built into statements.
5527  if (isa<StmtExpr>(E)) return;
5528
5529  // Don't descend into unevaluated contexts.
5530  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5531
5532  // Now just recurse over the expression's children.
5533  CC = E->getExprLoc();
5534  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5535  bool IsLogicalOperator = BO && BO->isLogicalOp();
5536  for (Stmt::child_range I = E->children(); I; ++I) {
5537    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5538    if (!ChildExpr)
5539      continue;
5540
5541    if (IsLogicalOperator &&
5542        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5543      // Ignore checking string literals that are in logical operators.
5544      continue;
5545    AnalyzeImplicitConversions(S, ChildExpr, CC);
5546  }
5547}
5548
5549} // end anonymous namespace
5550
5551/// Diagnoses "dangerous" implicit conversions within the given
5552/// expression (which is a full expression).  Implements -Wconversion
5553/// and -Wsign-compare.
5554///
5555/// \param CC the "context" location of the implicit conversion, i.e.
5556///   the most location of the syntactic entity requiring the implicit
5557///   conversion
5558void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5559  // Don't diagnose in unevaluated contexts.
5560  if (isUnevaluatedContext())
5561    return;
5562
5563  // Don't diagnose for value- or type-dependent expressions.
5564  if (E->isTypeDependent() || E->isValueDependent())
5565    return;
5566
5567  // Check for array bounds violations in cases where the check isn't triggered
5568  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5569  // ArraySubscriptExpr is on the RHS of a variable initialization.
5570  CheckArrayAccess(E);
5571
5572  // This is not the right CC for (e.g.) a variable initialization.
5573  AnalyzeImplicitConversions(*this, E, CC);
5574}
5575
5576/// Diagnose when expression is an integer constant expression and its evaluation
5577/// results in integer overflow
5578void Sema::CheckForIntOverflow (Expr *E) {
5579  if (isa<BinaryOperator>(E->IgnoreParens())) {
5580    SmallVector<PartialDiagnosticAt, 4> Diags;
5581    E->EvaluateForOverflow(Context, &Diags);
5582  }
5583}
5584
5585namespace {
5586/// \brief Visitor for expressions which looks for unsequenced operations on the
5587/// same object.
5588class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5589  typedef EvaluatedExprVisitor<SequenceChecker> Base;
5590
5591  /// \brief A tree of sequenced regions within an expression. Two regions are
5592  /// unsequenced if one is an ancestor or a descendent of the other. When we
5593  /// finish processing an expression with sequencing, such as a comma
5594  /// expression, we fold its tree nodes into its parent, since they are
5595  /// unsequenced with respect to nodes we will visit later.
5596  class SequenceTree {
5597    struct Value {
5598      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5599      unsigned Parent : 31;
5600      bool Merged : 1;
5601    };
5602    SmallVector<Value, 8> Values;
5603
5604  public:
5605    /// \brief A region within an expression which may be sequenced with respect
5606    /// to some other region.
5607    class Seq {
5608      explicit Seq(unsigned N) : Index(N) {}
5609      unsigned Index;
5610      friend class SequenceTree;
5611    public:
5612      Seq() : Index(0) {}
5613    };
5614
5615    SequenceTree() { Values.push_back(Value(0)); }
5616    Seq root() const { return Seq(0); }
5617
5618    /// \brief Create a new sequence of operations, which is an unsequenced
5619    /// subset of \p Parent. This sequence of operations is sequenced with
5620    /// respect to other children of \p Parent.
5621    Seq allocate(Seq Parent) {
5622      Values.push_back(Value(Parent.Index));
5623      return Seq(Values.size() - 1);
5624    }
5625
5626    /// \brief Merge a sequence of operations into its parent.
5627    void merge(Seq S) {
5628      Values[S.Index].Merged = true;
5629    }
5630
5631    /// \brief Determine whether two operations are unsequenced. This operation
5632    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5633    /// should have been merged into its parent as appropriate.
5634    bool isUnsequenced(Seq Cur, Seq Old) {
5635      unsigned C = representative(Cur.Index);
5636      unsigned Target = representative(Old.Index);
5637      while (C >= Target) {
5638        if (C == Target)
5639          return true;
5640        C = Values[C].Parent;
5641      }
5642      return false;
5643    }
5644
5645  private:
5646    /// \brief Pick a representative for a sequence.
5647    unsigned representative(unsigned K) {
5648      if (Values[K].Merged)
5649        // Perform path compression as we go.
5650        return Values[K].Parent = representative(Values[K].Parent);
5651      return K;
5652    }
5653  };
5654
5655  /// An object for which we can track unsequenced uses.
5656  typedef NamedDecl *Object;
5657
5658  /// Different flavors of object usage which we track. We only track the
5659  /// least-sequenced usage of each kind.
5660  enum UsageKind {
5661    /// A read of an object. Multiple unsequenced reads are OK.
5662    UK_Use,
5663    /// A modification of an object which is sequenced before the value
5664    /// computation of the expression, such as ++n in C++.
5665    UK_ModAsValue,
5666    /// A modification of an object which is not sequenced before the value
5667    /// computation of the expression, such as n++.
5668    UK_ModAsSideEffect,
5669
5670    UK_Count = UK_ModAsSideEffect + 1
5671  };
5672
5673  struct Usage {
5674    Usage() : Use(0), Seq() {}
5675    Expr *Use;
5676    SequenceTree::Seq Seq;
5677  };
5678
5679  struct UsageInfo {
5680    UsageInfo() : Diagnosed(false) {}
5681    Usage Uses[UK_Count];
5682    /// Have we issued a diagnostic for this variable already?
5683    bool Diagnosed;
5684  };
5685  typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5686
5687  Sema &SemaRef;
5688  /// Sequenced regions within the expression.
5689  SequenceTree Tree;
5690  /// Declaration modifications and references which we have seen.
5691  UsageInfoMap UsageMap;
5692  /// The region we are currently within.
5693  SequenceTree::Seq Region;
5694  /// Filled in with declarations which were modified as a side-effect
5695  /// (that is, post-increment operations).
5696  SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5697  /// Expressions to check later. We defer checking these to reduce
5698  /// stack usage.
5699  SmallVectorImpl<Expr *> &WorkList;
5700
5701  /// RAII object wrapping the visitation of a sequenced subexpression of an
5702  /// expression. At the end of this process, the side-effects of the evaluation
5703  /// become sequenced with respect to the value computation of the result, so
5704  /// we downgrade any UK_ModAsSideEffect within the evaluation to
5705  /// UK_ModAsValue.
5706  struct SequencedSubexpression {
5707    SequencedSubexpression(SequenceChecker &Self)
5708      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5709      Self.ModAsSideEffect = &ModAsSideEffect;
5710    }
5711    ~SequencedSubexpression() {
5712      for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5713        UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5714        U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5715        Self.addUsage(U, ModAsSideEffect[I].first,
5716                      ModAsSideEffect[I].second.Use, UK_ModAsValue);
5717      }
5718      Self.ModAsSideEffect = OldModAsSideEffect;
5719    }
5720
5721    SequenceChecker &Self;
5722    SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5723    SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5724  };
5725
5726  /// RAII object wrapping the visitation of a subexpression which we might
5727  /// choose to evaluate as a constant. If any subexpression is evaluated and
5728  /// found to be non-constant, this allows us to suppress the evaluation of
5729  /// the outer expression.
5730  class EvaluationTracker {
5731  public:
5732    EvaluationTracker(SequenceChecker &Self)
5733        : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
5734      Self.EvalTracker = this;
5735    }
5736    ~EvaluationTracker() {
5737      Self.EvalTracker = Prev;
5738      if (Prev)
5739        Prev->EvalOK &= EvalOK;
5740    }
5741
5742    bool evaluate(const Expr *E, bool &Result) {
5743      if (!EvalOK || E->isValueDependent())
5744        return false;
5745      EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
5746      return EvalOK;
5747    }
5748
5749  private:
5750    SequenceChecker &Self;
5751    EvaluationTracker *Prev;
5752    bool EvalOK;
5753  } *EvalTracker;
5754
5755  /// \brief Find the object which is produced by the specified expression,
5756  /// if any.
5757  Object getObject(Expr *E, bool Mod) const {
5758    E = E->IgnoreParenCasts();
5759    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5760      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5761        return getObject(UO->getSubExpr(), Mod);
5762    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5763      if (BO->getOpcode() == BO_Comma)
5764        return getObject(BO->getRHS(), Mod);
5765      if (Mod && BO->isAssignmentOp())
5766        return getObject(BO->getLHS(), Mod);
5767    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5768      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5769      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5770        return ME->getMemberDecl();
5771    } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5772      // FIXME: If this is a reference, map through to its value.
5773      return DRE->getDecl();
5774    return 0;
5775  }
5776
5777  /// \brief Note that an object was modified or used by an expression.
5778  void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5779    Usage &U = UI.Uses[UK];
5780    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5781      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5782        ModAsSideEffect->push_back(std::make_pair(O, U));
5783      U.Use = Ref;
5784      U.Seq = Region;
5785    }
5786  }
5787  /// \brief Check whether a modification or use conflicts with a prior usage.
5788  void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5789                  bool IsModMod) {
5790    if (UI.Diagnosed)
5791      return;
5792
5793    const Usage &U = UI.Uses[OtherKind];
5794    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5795      return;
5796
5797    Expr *Mod = U.Use;
5798    Expr *ModOrUse = Ref;
5799    if (OtherKind == UK_Use)
5800      std::swap(Mod, ModOrUse);
5801
5802    SemaRef.Diag(Mod->getExprLoc(),
5803                 IsModMod ? diag::warn_unsequenced_mod_mod
5804                          : diag::warn_unsequenced_mod_use)
5805      << O << SourceRange(ModOrUse->getExprLoc());
5806    UI.Diagnosed = true;
5807  }
5808
5809  void notePreUse(Object O, Expr *Use) {
5810    UsageInfo &U = UsageMap[O];
5811    // Uses conflict with other modifications.
5812    checkUsage(O, U, Use, UK_ModAsValue, false);
5813  }
5814  void notePostUse(Object O, Expr *Use) {
5815    UsageInfo &U = UsageMap[O];
5816    checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5817    addUsage(U, O, Use, UK_Use);
5818  }
5819
5820  void notePreMod(Object O, Expr *Mod) {
5821    UsageInfo &U = UsageMap[O];
5822    // Modifications conflict with other modifications and with uses.
5823    checkUsage(O, U, Mod, UK_ModAsValue, true);
5824    checkUsage(O, U, Mod, UK_Use, false);
5825  }
5826  void notePostMod(Object O, Expr *Use, UsageKind UK) {
5827    UsageInfo &U = UsageMap[O];
5828    checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5829    addUsage(U, O, Use, UK);
5830  }
5831
5832public:
5833  SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
5834      : Base(S.Context), SemaRef(S), Region(Tree.root()), ModAsSideEffect(0),
5835        WorkList(WorkList), EvalTracker(0) {
5836    Visit(E);
5837  }
5838
5839  void VisitStmt(Stmt *S) {
5840    // Skip all statements which aren't expressions for now.
5841  }
5842
5843  void VisitExpr(Expr *E) {
5844    // By default, just recurse to evaluated subexpressions.
5845    Base::VisitStmt(E);
5846  }
5847
5848  void VisitCastExpr(CastExpr *E) {
5849    Object O = Object();
5850    if (E->getCastKind() == CK_LValueToRValue)
5851      O = getObject(E->getSubExpr(), false);
5852
5853    if (O)
5854      notePreUse(O, E);
5855    VisitExpr(E);
5856    if (O)
5857      notePostUse(O, E);
5858  }
5859
5860  void VisitBinComma(BinaryOperator *BO) {
5861    // C++11 [expr.comma]p1:
5862    //   Every value computation and side effect associated with the left
5863    //   expression is sequenced before every value computation and side
5864    //   effect associated with the right expression.
5865    SequenceTree::Seq LHS = Tree.allocate(Region);
5866    SequenceTree::Seq RHS = Tree.allocate(Region);
5867    SequenceTree::Seq OldRegion = Region;
5868
5869    {
5870      SequencedSubexpression SeqLHS(*this);
5871      Region = LHS;
5872      Visit(BO->getLHS());
5873    }
5874
5875    Region = RHS;
5876    Visit(BO->getRHS());
5877
5878    Region = OldRegion;
5879
5880    // Forget that LHS and RHS are sequenced. They are both unsequenced
5881    // with respect to other stuff.
5882    Tree.merge(LHS);
5883    Tree.merge(RHS);
5884  }
5885
5886  void VisitBinAssign(BinaryOperator *BO) {
5887    // The modification is sequenced after the value computation of the LHS
5888    // and RHS, so check it before inspecting the operands and update the
5889    // map afterwards.
5890    Object O = getObject(BO->getLHS(), true);
5891    if (!O)
5892      return VisitExpr(BO);
5893
5894    notePreMod(O, BO);
5895
5896    // C++11 [expr.ass]p7:
5897    //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5898    //   only once.
5899    //
5900    // Therefore, for a compound assignment operator, O is considered used
5901    // everywhere except within the evaluation of E1 itself.
5902    if (isa<CompoundAssignOperator>(BO))
5903      notePreUse(O, BO);
5904
5905    Visit(BO->getLHS());
5906
5907    if (isa<CompoundAssignOperator>(BO))
5908      notePostUse(O, BO);
5909
5910    Visit(BO->getRHS());
5911
5912    // C++11 [expr.ass]p1:
5913    //   the assignment is sequenced [...] before the value computation of the
5914    //   assignment expression.
5915    // C11 6.5.16/3 has no such rule.
5916    notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5917                                                       : UK_ModAsSideEffect);
5918  }
5919  void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5920    VisitBinAssign(CAO);
5921  }
5922
5923  void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5924  void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5925  void VisitUnaryPreIncDec(UnaryOperator *UO) {
5926    Object O = getObject(UO->getSubExpr(), true);
5927    if (!O)
5928      return VisitExpr(UO);
5929
5930    notePreMod(O, UO);
5931    Visit(UO->getSubExpr());
5932    // C++11 [expr.pre.incr]p1:
5933    //   the expression ++x is equivalent to x+=1
5934    notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5935                                                       : UK_ModAsSideEffect);
5936  }
5937
5938  void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5939  void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5940  void VisitUnaryPostIncDec(UnaryOperator *UO) {
5941    Object O = getObject(UO->getSubExpr(), true);
5942    if (!O)
5943      return VisitExpr(UO);
5944
5945    notePreMod(O, UO);
5946    Visit(UO->getSubExpr());
5947    notePostMod(O, UO, UK_ModAsSideEffect);
5948  }
5949
5950  /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
5951  void VisitBinLOr(BinaryOperator *BO) {
5952    // The side-effects of the LHS of an '&&' are sequenced before the
5953    // value computation of the RHS, and hence before the value computation
5954    // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5955    // as if they were unconditionally sequenced.
5956    EvaluationTracker Eval(*this);
5957    {
5958      SequencedSubexpression Sequenced(*this);
5959      Visit(BO->getLHS());
5960    }
5961
5962    bool Result;
5963    if (Eval.evaluate(BO->getLHS(), Result)) {
5964      if (!Result)
5965        Visit(BO->getRHS());
5966    } else {
5967      // Check for unsequenced operations in the RHS, treating it as an
5968      // entirely separate evaluation.
5969      //
5970      // FIXME: If there are operations in the RHS which are unsequenced
5971      // with respect to operations outside the RHS, and those operations
5972      // are unconditionally evaluated, diagnose them.
5973      WorkList.push_back(BO->getRHS());
5974    }
5975  }
5976  void VisitBinLAnd(BinaryOperator *BO) {
5977    EvaluationTracker Eval(*this);
5978    {
5979      SequencedSubexpression Sequenced(*this);
5980      Visit(BO->getLHS());
5981    }
5982
5983    bool Result;
5984    if (Eval.evaluate(BO->getLHS(), Result)) {
5985      if (Result)
5986        Visit(BO->getRHS());
5987    } else {
5988      WorkList.push_back(BO->getRHS());
5989    }
5990  }
5991
5992  // Only visit the condition, unless we can be sure which subexpression will
5993  // be chosen.
5994  void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5995    EvaluationTracker Eval(*this);
5996    {
5997      SequencedSubexpression Sequenced(*this);
5998      Visit(CO->getCond());
5999    }
6000
6001    bool Result;
6002    if (Eval.evaluate(CO->getCond(), Result))
6003      Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
6004    else {
6005      WorkList.push_back(CO->getTrueExpr());
6006      WorkList.push_back(CO->getFalseExpr());
6007    }
6008  }
6009
6010  void VisitCallExpr(CallExpr *CE) {
6011    // C++11 [intro.execution]p15:
6012    //   When calling a function [...], every value computation and side effect
6013    //   associated with any argument expression, or with the postfix expression
6014    //   designating the called function, is sequenced before execution of every
6015    //   expression or statement in the body of the function [and thus before
6016    //   the value computation of its result].
6017    SequencedSubexpression Sequenced(*this);
6018    Base::VisitCallExpr(CE);
6019
6020    // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
6021  }
6022
6023  void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
6024    // This is a call, so all subexpressions are sequenced before the result.
6025    SequencedSubexpression Sequenced(*this);
6026
6027    if (!CCE->isListInitialization())
6028      return VisitExpr(CCE);
6029
6030    // In C++11, list initializations are sequenced.
6031    SmallVector<SequenceTree::Seq, 32> Elts;
6032    SequenceTree::Seq Parent = Region;
6033    for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
6034                                        E = CCE->arg_end();
6035         I != E; ++I) {
6036      Region = Tree.allocate(Parent);
6037      Elts.push_back(Region);
6038      Visit(*I);
6039    }
6040
6041    // Forget that the initializers are sequenced.
6042    Region = Parent;
6043    for (unsigned I = 0; I < Elts.size(); ++I)
6044      Tree.merge(Elts[I]);
6045  }
6046
6047  void VisitInitListExpr(InitListExpr *ILE) {
6048    if (!SemaRef.getLangOpts().CPlusPlus11)
6049      return VisitExpr(ILE);
6050
6051    // In C++11, list initializations are sequenced.
6052    SmallVector<SequenceTree::Seq, 32> Elts;
6053    SequenceTree::Seq Parent = Region;
6054    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
6055      Expr *E = ILE->getInit(I);
6056      if (!E) continue;
6057      Region = Tree.allocate(Parent);
6058      Elts.push_back(Region);
6059      Visit(E);
6060    }
6061
6062    // Forget that the initializers are sequenced.
6063    Region = Parent;
6064    for (unsigned I = 0; I < Elts.size(); ++I)
6065      Tree.merge(Elts[I]);
6066  }
6067};
6068}
6069
6070void Sema::CheckUnsequencedOperations(Expr *E) {
6071  SmallVector<Expr *, 8> WorkList;
6072  WorkList.push_back(E);
6073  while (!WorkList.empty()) {
6074    Expr *Item = WorkList.pop_back_val();
6075    SequenceChecker(*this, Item, WorkList);
6076  }
6077}
6078
6079void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
6080                              bool IsConstexpr) {
6081  CheckImplicitConversions(E, CheckLoc);
6082  CheckUnsequencedOperations(E);
6083  if (!IsConstexpr && !E->isValueDependent())
6084    CheckForIntOverflow(E);
6085}
6086
6087void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
6088                                       FieldDecl *BitField,
6089                                       Expr *Init) {
6090  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
6091}
6092
6093/// CheckParmsForFunctionDef - Check that the parameters of the given
6094/// function are appropriate for the definition of a function. This
6095/// takes care of any checks that cannot be performed on the
6096/// declaration itself, e.g., that the types of each of the function
6097/// parameters are complete.
6098bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
6099                                    ParmVarDecl *const *PEnd,
6100                                    bool CheckParameterNames) {
6101  bool HasInvalidParm = false;
6102  for (; P != PEnd; ++P) {
6103    ParmVarDecl *Param = *P;
6104
6105    // C99 6.7.5.3p4: the parameters in a parameter type list in a
6106    // function declarator that is part of a function definition of
6107    // that function shall not have incomplete type.
6108    //
6109    // This is also C++ [dcl.fct]p6.
6110    if (!Param->isInvalidDecl() &&
6111        RequireCompleteType(Param->getLocation(), Param->getType(),
6112                            diag::err_typecheck_decl_incomplete_type)) {
6113      Param->setInvalidDecl();
6114      HasInvalidParm = true;
6115    }
6116
6117    // C99 6.9.1p5: If the declarator includes a parameter type list, the
6118    // declaration of each parameter shall include an identifier.
6119    if (CheckParameterNames &&
6120        Param->getIdentifier() == 0 &&
6121        !Param->isImplicit() &&
6122        !getLangOpts().CPlusPlus)
6123      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6124
6125    // C99 6.7.5.3p12:
6126    //   If the function declarator is not part of a definition of that
6127    //   function, parameters may have incomplete type and may use the [*]
6128    //   notation in their sequences of declarator specifiers to specify
6129    //   variable length array types.
6130    QualType PType = Param->getOriginalType();
6131    while (const ArrayType *AT = Context.getAsArrayType(PType)) {
6132      if (AT->getSizeModifier() == ArrayType::Star) {
6133        // FIXME: This diagnostic should point the '[*]' if source-location
6134        // information is added for it.
6135        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
6136        break;
6137      }
6138      PType= AT->getElementType();
6139    }
6140
6141    // MSVC destroys objects passed by value in the callee.  Therefore a
6142    // function definition which takes such a parameter must be able to call the
6143    // object's destructor.
6144    if (getLangOpts().CPlusPlus &&
6145        Context.getTargetInfo().getCXXABI().isArgumentDestroyedByCallee()) {
6146      if (const RecordType *RT = Param->getType()->getAs<RecordType>())
6147        FinalizeVarWithDestructor(Param, RT);
6148    }
6149  }
6150
6151  return HasInvalidParm;
6152}
6153
6154/// CheckCastAlign - Implements -Wcast-align, which warns when a
6155/// pointer cast increases the alignment requirements.
6156void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
6157  // This is actually a lot of work to potentially be doing on every
6158  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
6159  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
6160                                          TRange.getBegin())
6161        == DiagnosticsEngine::Ignored)
6162    return;
6163
6164  // Ignore dependent types.
6165  if (T->isDependentType() || Op->getType()->isDependentType())
6166    return;
6167
6168  // Require that the destination be a pointer type.
6169  const PointerType *DestPtr = T->getAs<PointerType>();
6170  if (!DestPtr) return;
6171
6172  // If the destination has alignment 1, we're done.
6173  QualType DestPointee = DestPtr->getPointeeType();
6174  if (DestPointee->isIncompleteType()) return;
6175  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
6176  if (DestAlign.isOne()) return;
6177
6178  // Require that the source be a pointer type.
6179  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
6180  if (!SrcPtr) return;
6181  QualType SrcPointee = SrcPtr->getPointeeType();
6182
6183  // Whitelist casts from cv void*.  We already implicitly
6184  // whitelisted casts to cv void*, since they have alignment 1.
6185  // Also whitelist casts involving incomplete types, which implicitly
6186  // includes 'void'.
6187  if (SrcPointee->isIncompleteType()) return;
6188
6189  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
6190  if (SrcAlign >= DestAlign) return;
6191
6192  Diag(TRange.getBegin(), diag::warn_cast_align)
6193    << Op->getType() << T
6194    << static_cast<unsigned>(SrcAlign.getQuantity())
6195    << static_cast<unsigned>(DestAlign.getQuantity())
6196    << TRange << Op->getSourceRange();
6197}
6198
6199static const Type* getElementType(const Expr *BaseExpr) {
6200  const Type* EltType = BaseExpr->getType().getTypePtr();
6201  if (EltType->isAnyPointerType())
6202    return EltType->getPointeeType().getTypePtr();
6203  else if (EltType->isArrayType())
6204    return EltType->getBaseElementTypeUnsafe();
6205  return EltType;
6206}
6207
6208/// \brief Check whether this array fits the idiom of a size-one tail padded
6209/// array member of a struct.
6210///
6211/// We avoid emitting out-of-bounds access warnings for such arrays as they are
6212/// commonly used to emulate flexible arrays in C89 code.
6213static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
6214                                    const NamedDecl *ND) {
6215  if (Size != 1 || !ND) return false;
6216
6217  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
6218  if (!FD) return false;
6219
6220  // Don't consider sizes resulting from macro expansions or template argument
6221  // substitution to form C89 tail-padded arrays.
6222
6223  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
6224  while (TInfo) {
6225    TypeLoc TL = TInfo->getTypeLoc();
6226    // Look through typedefs.
6227    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
6228      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
6229      TInfo = TDL->getTypeSourceInfo();
6230      continue;
6231    }
6232    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
6233      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
6234      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
6235        return false;
6236    }
6237    break;
6238  }
6239
6240  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
6241  if (!RD) return false;
6242  if (RD->isUnion()) return false;
6243  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6244    if (!CRD->isStandardLayout()) return false;
6245  }
6246
6247  // See if this is the last field decl in the record.
6248  const Decl *D = FD;
6249  while ((D = D->getNextDeclInContext()))
6250    if (isa<FieldDecl>(D))
6251      return false;
6252  return true;
6253}
6254
6255void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
6256                            const ArraySubscriptExpr *ASE,
6257                            bool AllowOnePastEnd, bool IndexNegated) {
6258  IndexExpr = IndexExpr->IgnoreParenImpCasts();
6259  if (IndexExpr->isValueDependent())
6260    return;
6261
6262  const Type *EffectiveType = getElementType(BaseExpr);
6263  BaseExpr = BaseExpr->IgnoreParenCasts();
6264  const ConstantArrayType *ArrayTy =
6265    Context.getAsConstantArrayType(BaseExpr->getType());
6266  if (!ArrayTy)
6267    return;
6268
6269  llvm::APSInt index;
6270  if (!IndexExpr->EvaluateAsInt(index, Context))
6271    return;
6272  if (IndexNegated)
6273    index = -index;
6274
6275  const NamedDecl *ND = NULL;
6276  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6277    ND = dyn_cast<NamedDecl>(DRE->getDecl());
6278  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6279    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6280
6281  if (index.isUnsigned() || !index.isNegative()) {
6282    llvm::APInt size = ArrayTy->getSize();
6283    if (!size.isStrictlyPositive())
6284      return;
6285
6286    const Type* BaseType = getElementType(BaseExpr);
6287    if (BaseType != EffectiveType) {
6288      // Make sure we're comparing apples to apples when comparing index to size
6289      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
6290      uint64_t array_typesize = Context.getTypeSize(BaseType);
6291      // Handle ptrarith_typesize being zero, such as when casting to void*
6292      if (!ptrarith_typesize) ptrarith_typesize = 1;
6293      if (ptrarith_typesize != array_typesize) {
6294        // There's a cast to a different size type involved
6295        uint64_t ratio = array_typesize / ptrarith_typesize;
6296        // TODO: Be smarter about handling cases where array_typesize is not a
6297        // multiple of ptrarith_typesize
6298        if (ptrarith_typesize * ratio == array_typesize)
6299          size *= llvm::APInt(size.getBitWidth(), ratio);
6300      }
6301    }
6302
6303    if (size.getBitWidth() > index.getBitWidth())
6304      index = index.zext(size.getBitWidth());
6305    else if (size.getBitWidth() < index.getBitWidth())
6306      size = size.zext(index.getBitWidth());
6307
6308    // For array subscripting the index must be less than size, but for pointer
6309    // arithmetic also allow the index (offset) to be equal to size since
6310    // computing the next address after the end of the array is legal and
6311    // commonly done e.g. in C++ iterators and range-based for loops.
6312    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
6313      return;
6314
6315    // Also don't warn for arrays of size 1 which are members of some
6316    // structure. These are often used to approximate flexible arrays in C89
6317    // code.
6318    if (IsTailPaddedMemberArray(*this, size, ND))
6319      return;
6320
6321    // Suppress the warning if the subscript expression (as identified by the
6322    // ']' location) and the index expression are both from macro expansions
6323    // within a system header.
6324    if (ASE) {
6325      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
6326          ASE->getRBracketLoc());
6327      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
6328        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
6329            IndexExpr->getLocStart());
6330        if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
6331          return;
6332      }
6333    }
6334
6335    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
6336    if (ASE)
6337      DiagID = diag::warn_array_index_exceeds_bounds;
6338
6339    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6340                        PDiag(DiagID) << index.toString(10, true)
6341                          << size.toString(10, true)
6342                          << (unsigned)size.getLimitedValue(~0U)
6343                          << IndexExpr->getSourceRange());
6344  } else {
6345    unsigned DiagID = diag::warn_array_index_precedes_bounds;
6346    if (!ASE) {
6347      DiagID = diag::warn_ptr_arith_precedes_bounds;
6348      if (index.isNegative()) index = -index;
6349    }
6350
6351    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6352                        PDiag(DiagID) << index.toString(10, true)
6353                          << IndexExpr->getSourceRange());
6354  }
6355
6356  if (!ND) {
6357    // Try harder to find a NamedDecl to point at in the note.
6358    while (const ArraySubscriptExpr *ASE =
6359           dyn_cast<ArraySubscriptExpr>(BaseExpr))
6360      BaseExpr = ASE->getBase()->IgnoreParenCasts();
6361    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6362      ND = dyn_cast<NamedDecl>(DRE->getDecl());
6363    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6364      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6365  }
6366
6367  if (ND)
6368    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
6369                        PDiag(diag::note_array_index_out_of_bounds)
6370                          << ND->getDeclName());
6371}
6372
6373void Sema::CheckArrayAccess(const Expr *expr) {
6374  int AllowOnePastEnd = 0;
6375  while (expr) {
6376    expr = expr->IgnoreParenImpCasts();
6377    switch (expr->getStmtClass()) {
6378      case Stmt::ArraySubscriptExprClass: {
6379        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
6380        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
6381                         AllowOnePastEnd > 0);
6382        return;
6383      }
6384      case Stmt::UnaryOperatorClass: {
6385        // Only unwrap the * and & unary operators
6386        const UnaryOperator *UO = cast<UnaryOperator>(expr);
6387        expr = UO->getSubExpr();
6388        switch (UO->getOpcode()) {
6389          case UO_AddrOf:
6390            AllowOnePastEnd++;
6391            break;
6392          case UO_Deref:
6393            AllowOnePastEnd--;
6394            break;
6395          default:
6396            return;
6397        }
6398        break;
6399      }
6400      case Stmt::ConditionalOperatorClass: {
6401        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
6402        if (const Expr *lhs = cond->getLHS())
6403          CheckArrayAccess(lhs);
6404        if (const Expr *rhs = cond->getRHS())
6405          CheckArrayAccess(rhs);
6406        return;
6407      }
6408      default:
6409        return;
6410    }
6411  }
6412}
6413
6414//===--- CHECK: Objective-C retain cycles ----------------------------------//
6415
6416namespace {
6417  struct RetainCycleOwner {
6418    RetainCycleOwner() : Variable(0), Indirect(false) {}
6419    VarDecl *Variable;
6420    SourceRange Range;
6421    SourceLocation Loc;
6422    bool Indirect;
6423
6424    void setLocsFrom(Expr *e) {
6425      Loc = e->getExprLoc();
6426      Range = e->getSourceRange();
6427    }
6428  };
6429}
6430
6431/// Consider whether capturing the given variable can possibly lead to
6432/// a retain cycle.
6433static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
6434  // In ARC, it's captured strongly iff the variable has __strong
6435  // lifetime.  In MRR, it's captured strongly if the variable is
6436  // __block and has an appropriate type.
6437  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6438    return false;
6439
6440  owner.Variable = var;
6441  if (ref)
6442    owner.setLocsFrom(ref);
6443  return true;
6444}
6445
6446static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6447  while (true) {
6448    e = e->IgnoreParens();
6449    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6450      switch (cast->getCastKind()) {
6451      case CK_BitCast:
6452      case CK_LValueBitCast:
6453      case CK_LValueToRValue:
6454      case CK_ARCReclaimReturnedObject:
6455        e = cast->getSubExpr();
6456        continue;
6457
6458      default:
6459        return false;
6460      }
6461    }
6462
6463    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6464      ObjCIvarDecl *ivar = ref->getDecl();
6465      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6466        return false;
6467
6468      // Try to find a retain cycle in the base.
6469      if (!findRetainCycleOwner(S, ref->getBase(), owner))
6470        return false;
6471
6472      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6473      owner.Indirect = true;
6474      return true;
6475    }
6476
6477    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6478      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6479      if (!var) return false;
6480      return considerVariable(var, ref, owner);
6481    }
6482
6483    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6484      if (member->isArrow()) return false;
6485
6486      // Don't count this as an indirect ownership.
6487      e = member->getBase();
6488      continue;
6489    }
6490
6491    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6492      // Only pay attention to pseudo-objects on property references.
6493      ObjCPropertyRefExpr *pre
6494        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6495                                              ->IgnoreParens());
6496      if (!pre) return false;
6497      if (pre->isImplicitProperty()) return false;
6498      ObjCPropertyDecl *property = pre->getExplicitProperty();
6499      if (!property->isRetaining() &&
6500          !(property->getPropertyIvarDecl() &&
6501            property->getPropertyIvarDecl()->getType()
6502              .getObjCLifetime() == Qualifiers::OCL_Strong))
6503          return false;
6504
6505      owner.Indirect = true;
6506      if (pre->isSuperReceiver()) {
6507        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6508        if (!owner.Variable)
6509          return false;
6510        owner.Loc = pre->getLocation();
6511        owner.Range = pre->getSourceRange();
6512        return true;
6513      }
6514      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6515                              ->getSourceExpr());
6516      continue;
6517    }
6518
6519    // Array ivars?
6520
6521    return false;
6522  }
6523}
6524
6525namespace {
6526  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6527    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6528      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6529        Variable(variable), Capturer(0) {}
6530
6531    VarDecl *Variable;
6532    Expr *Capturer;
6533
6534    void VisitDeclRefExpr(DeclRefExpr *ref) {
6535      if (ref->getDecl() == Variable && !Capturer)
6536        Capturer = ref;
6537    }
6538
6539    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6540      if (Capturer) return;
6541      Visit(ref->getBase());
6542      if (Capturer && ref->isFreeIvar())
6543        Capturer = ref;
6544    }
6545
6546    void VisitBlockExpr(BlockExpr *block) {
6547      // Look inside nested blocks
6548      if (block->getBlockDecl()->capturesVariable(Variable))
6549        Visit(block->getBlockDecl()->getBody());
6550    }
6551
6552    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6553      if (Capturer) return;
6554      if (OVE->getSourceExpr())
6555        Visit(OVE->getSourceExpr());
6556    }
6557  };
6558}
6559
6560/// Check whether the given argument is a block which captures a
6561/// variable.
6562static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6563  assert(owner.Variable && owner.Loc.isValid());
6564
6565  e = e->IgnoreParenCasts();
6566
6567  // Look through [^{...} copy] and Block_copy(^{...}).
6568  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6569    Selector Cmd = ME->getSelector();
6570    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6571      e = ME->getInstanceReceiver();
6572      if (!e)
6573        return 0;
6574      e = e->IgnoreParenCasts();
6575    }
6576  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6577    if (CE->getNumArgs() == 1) {
6578      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6579      if (Fn) {
6580        const IdentifierInfo *FnI = Fn->getIdentifier();
6581        if (FnI && FnI->isStr("_Block_copy")) {
6582          e = CE->getArg(0)->IgnoreParenCasts();
6583        }
6584      }
6585    }
6586  }
6587
6588  BlockExpr *block = dyn_cast<BlockExpr>(e);
6589  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6590    return 0;
6591
6592  FindCaptureVisitor visitor(S.Context, owner.Variable);
6593  visitor.Visit(block->getBlockDecl()->getBody());
6594  return visitor.Capturer;
6595}
6596
6597static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6598                                RetainCycleOwner &owner) {
6599  assert(capturer);
6600  assert(owner.Variable && owner.Loc.isValid());
6601
6602  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6603    << owner.Variable << capturer->getSourceRange();
6604  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6605    << owner.Indirect << owner.Range;
6606}
6607
6608/// Check for a keyword selector that starts with the word 'add' or
6609/// 'set'.
6610static bool isSetterLikeSelector(Selector sel) {
6611  if (sel.isUnarySelector()) return false;
6612
6613  StringRef str = sel.getNameForSlot(0);
6614  while (!str.empty() && str.front() == '_') str = str.substr(1);
6615  if (str.startswith("set"))
6616    str = str.substr(3);
6617  else if (str.startswith("add")) {
6618    // Specially whitelist 'addOperationWithBlock:'.
6619    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6620      return false;
6621    str = str.substr(3);
6622  }
6623  else
6624    return false;
6625
6626  if (str.empty()) return true;
6627  return !isLowercase(str.front());
6628}
6629
6630/// Check a message send to see if it's likely to cause a retain cycle.
6631void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6632  // Only check instance methods whose selector looks like a setter.
6633  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6634    return;
6635
6636  // Try to find a variable that the receiver is strongly owned by.
6637  RetainCycleOwner owner;
6638  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6639    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6640      return;
6641  } else {
6642    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6643    owner.Variable = getCurMethodDecl()->getSelfDecl();
6644    owner.Loc = msg->getSuperLoc();
6645    owner.Range = msg->getSuperLoc();
6646  }
6647
6648  // Check whether the receiver is captured by any of the arguments.
6649  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6650    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6651      return diagnoseRetainCycle(*this, capturer, owner);
6652}
6653
6654/// Check a property assign to see if it's likely to cause a retain cycle.
6655void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6656  RetainCycleOwner owner;
6657  if (!findRetainCycleOwner(*this, receiver, owner))
6658    return;
6659
6660  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6661    diagnoseRetainCycle(*this, capturer, owner);
6662}
6663
6664void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6665  RetainCycleOwner Owner;
6666  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6667    return;
6668
6669  // Because we don't have an expression for the variable, we have to set the
6670  // location explicitly here.
6671  Owner.Loc = Var->getLocation();
6672  Owner.Range = Var->getSourceRange();
6673
6674  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6675    diagnoseRetainCycle(*this, Capturer, Owner);
6676}
6677
6678static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6679                                     Expr *RHS, bool isProperty) {
6680  // Check if RHS is an Objective-C object literal, which also can get
6681  // immediately zapped in a weak reference.  Note that we explicitly
6682  // allow ObjCStringLiterals, since those are designed to never really die.
6683  RHS = RHS->IgnoreParenImpCasts();
6684
6685  // This enum needs to match with the 'select' in
6686  // warn_objc_arc_literal_assign (off-by-1).
6687  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6688  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6689    return false;
6690
6691  S.Diag(Loc, diag::warn_arc_literal_assign)
6692    << (unsigned) Kind
6693    << (isProperty ? 0 : 1)
6694    << RHS->getSourceRange();
6695
6696  return true;
6697}
6698
6699static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6700                                    Qualifiers::ObjCLifetime LT,
6701                                    Expr *RHS, bool isProperty) {
6702  // Strip off any implicit cast added to get to the one ARC-specific.
6703  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6704    if (cast->getCastKind() == CK_ARCConsumeObject) {
6705      S.Diag(Loc, diag::warn_arc_retained_assign)
6706        << (LT == Qualifiers::OCL_ExplicitNone)
6707        << (isProperty ? 0 : 1)
6708        << RHS->getSourceRange();
6709      return true;
6710    }
6711    RHS = cast->getSubExpr();
6712  }
6713
6714  if (LT == Qualifiers::OCL_Weak &&
6715      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6716    return true;
6717
6718  return false;
6719}
6720
6721bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6722                              QualType LHS, Expr *RHS) {
6723  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6724
6725  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6726    return false;
6727
6728  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6729    return true;
6730
6731  return false;
6732}
6733
6734void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6735                              Expr *LHS, Expr *RHS) {
6736  QualType LHSType;
6737  // PropertyRef on LHS type need be directly obtained from
6738  // its declaration as it has a PsuedoType.
6739  ObjCPropertyRefExpr *PRE
6740    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6741  if (PRE && !PRE->isImplicitProperty()) {
6742    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6743    if (PD)
6744      LHSType = PD->getType();
6745  }
6746
6747  if (LHSType.isNull())
6748    LHSType = LHS->getType();
6749
6750  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6751
6752  if (LT == Qualifiers::OCL_Weak) {
6753    DiagnosticsEngine::Level Level =
6754      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6755    if (Level != DiagnosticsEngine::Ignored)
6756      getCurFunction()->markSafeWeakUse(LHS);
6757  }
6758
6759  if (checkUnsafeAssigns(Loc, LHSType, RHS))
6760    return;
6761
6762  // FIXME. Check for other life times.
6763  if (LT != Qualifiers::OCL_None)
6764    return;
6765
6766  if (PRE) {
6767    if (PRE->isImplicitProperty())
6768      return;
6769    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6770    if (!PD)
6771      return;
6772
6773    unsigned Attributes = PD->getPropertyAttributes();
6774    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6775      // when 'assign' attribute was not explicitly specified
6776      // by user, ignore it and rely on property type itself
6777      // for lifetime info.
6778      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6779      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6780          LHSType->isObjCRetainableType())
6781        return;
6782
6783      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6784        if (cast->getCastKind() == CK_ARCConsumeObject) {
6785          Diag(Loc, diag::warn_arc_retained_property_assign)
6786          << RHS->getSourceRange();
6787          return;
6788        }
6789        RHS = cast->getSubExpr();
6790      }
6791    }
6792    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6793      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6794        return;
6795    }
6796  }
6797}
6798
6799//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6800
6801namespace {
6802bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6803                                 SourceLocation StmtLoc,
6804                                 const NullStmt *Body) {
6805  // Do not warn if the body is a macro that expands to nothing, e.g:
6806  //
6807  // #define CALL(x)
6808  // if (condition)
6809  //   CALL(0);
6810  //
6811  if (Body->hasLeadingEmptyMacro())
6812    return false;
6813
6814  // Get line numbers of statement and body.
6815  bool StmtLineInvalid;
6816  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6817                                                      &StmtLineInvalid);
6818  if (StmtLineInvalid)
6819    return false;
6820
6821  bool BodyLineInvalid;
6822  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6823                                                      &BodyLineInvalid);
6824  if (BodyLineInvalid)
6825    return false;
6826
6827  // Warn if null statement and body are on the same line.
6828  if (StmtLine != BodyLine)
6829    return false;
6830
6831  return true;
6832}
6833} // Unnamed namespace
6834
6835void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6836                                 const Stmt *Body,
6837                                 unsigned DiagID) {
6838  // Since this is a syntactic check, don't emit diagnostic for template
6839  // instantiations, this just adds noise.
6840  if (CurrentInstantiationScope)
6841    return;
6842
6843  // The body should be a null statement.
6844  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6845  if (!NBody)
6846    return;
6847
6848  // Do the usual checks.
6849  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6850    return;
6851
6852  Diag(NBody->getSemiLoc(), DiagID);
6853  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6854}
6855
6856void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6857                                 const Stmt *PossibleBody) {
6858  assert(!CurrentInstantiationScope); // Ensured by caller
6859
6860  SourceLocation StmtLoc;
6861  const Stmt *Body;
6862  unsigned DiagID;
6863  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6864    StmtLoc = FS->getRParenLoc();
6865    Body = FS->getBody();
6866    DiagID = diag::warn_empty_for_body;
6867  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6868    StmtLoc = WS->getCond()->getSourceRange().getEnd();
6869    Body = WS->getBody();
6870    DiagID = diag::warn_empty_while_body;
6871  } else
6872    return; // Neither `for' nor `while'.
6873
6874  // The body should be a null statement.
6875  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6876  if (!NBody)
6877    return;
6878
6879  // Skip expensive checks if diagnostic is disabled.
6880  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6881          DiagnosticsEngine::Ignored)
6882    return;
6883
6884  // Do the usual checks.
6885  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6886    return;
6887
6888  // `for(...);' and `while(...);' are popular idioms, so in order to keep
6889  // noise level low, emit diagnostics only if for/while is followed by a
6890  // CompoundStmt, e.g.:
6891  //    for (int i = 0; i < n; i++);
6892  //    {
6893  //      a(i);
6894  //    }
6895  // or if for/while is followed by a statement with more indentation
6896  // than for/while itself:
6897  //    for (int i = 0; i < n; i++);
6898  //      a(i);
6899  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6900  if (!ProbableTypo) {
6901    bool BodyColInvalid;
6902    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6903                             PossibleBody->getLocStart(),
6904                             &BodyColInvalid);
6905    if (BodyColInvalid)
6906      return;
6907
6908    bool StmtColInvalid;
6909    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6910                             S->getLocStart(),
6911                             &StmtColInvalid);
6912    if (StmtColInvalid)
6913      return;
6914
6915    if (BodyCol > StmtCol)
6916      ProbableTypo = true;
6917  }
6918
6919  if (ProbableTypo) {
6920    Diag(NBody->getSemiLoc(), DiagID);
6921    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6922  }
6923}
6924
6925//===--- Layout compatibility ----------------------------------------------//
6926
6927namespace {
6928
6929bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6930
6931/// \brief Check if two enumeration types are layout-compatible.
6932bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6933  // C++11 [dcl.enum] p8:
6934  // Two enumeration types are layout-compatible if they have the same
6935  // underlying type.
6936  return ED1->isComplete() && ED2->isComplete() &&
6937         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6938}
6939
6940/// \brief Check if two fields are layout-compatible.
6941bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6942  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6943    return false;
6944
6945  if (Field1->isBitField() != Field2->isBitField())
6946    return false;
6947
6948  if (Field1->isBitField()) {
6949    // Make sure that the bit-fields are the same length.
6950    unsigned Bits1 = Field1->getBitWidthValue(C);
6951    unsigned Bits2 = Field2->getBitWidthValue(C);
6952
6953    if (Bits1 != Bits2)
6954      return false;
6955  }
6956
6957  return true;
6958}
6959
6960/// \brief Check if two standard-layout structs are layout-compatible.
6961/// (C++11 [class.mem] p17)
6962bool isLayoutCompatibleStruct(ASTContext &C,
6963                              RecordDecl *RD1,
6964                              RecordDecl *RD2) {
6965  // If both records are C++ classes, check that base classes match.
6966  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6967    // If one of records is a CXXRecordDecl we are in C++ mode,
6968    // thus the other one is a CXXRecordDecl, too.
6969    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6970    // Check number of base classes.
6971    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6972      return false;
6973
6974    // Check the base classes.
6975    for (CXXRecordDecl::base_class_const_iterator
6976               Base1 = D1CXX->bases_begin(),
6977           BaseEnd1 = D1CXX->bases_end(),
6978              Base2 = D2CXX->bases_begin();
6979         Base1 != BaseEnd1;
6980         ++Base1, ++Base2) {
6981      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6982        return false;
6983    }
6984  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6985    // If only RD2 is a C++ class, it should have zero base classes.
6986    if (D2CXX->getNumBases() > 0)
6987      return false;
6988  }
6989
6990  // Check the fields.
6991  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6992                             Field2End = RD2->field_end(),
6993                             Field1 = RD1->field_begin(),
6994                             Field1End = RD1->field_end();
6995  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6996    if (!isLayoutCompatible(C, *Field1, *Field2))
6997      return false;
6998  }
6999  if (Field1 != Field1End || Field2 != Field2End)
7000    return false;
7001
7002  return true;
7003}
7004
7005/// \brief Check if two standard-layout unions are layout-compatible.
7006/// (C++11 [class.mem] p18)
7007bool isLayoutCompatibleUnion(ASTContext &C,
7008                             RecordDecl *RD1,
7009                             RecordDecl *RD2) {
7010  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
7011  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
7012                                  Field2End = RD2->field_end();
7013       Field2 != Field2End; ++Field2) {
7014    UnmatchedFields.insert(*Field2);
7015  }
7016
7017  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
7018                                  Field1End = RD1->field_end();
7019       Field1 != Field1End; ++Field1) {
7020    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
7021        I = UnmatchedFields.begin(),
7022        E = UnmatchedFields.end();
7023
7024    for ( ; I != E; ++I) {
7025      if (isLayoutCompatible(C, *Field1, *I)) {
7026        bool Result = UnmatchedFields.erase(*I);
7027        (void) Result;
7028        assert(Result);
7029        break;
7030      }
7031    }
7032    if (I == E)
7033      return false;
7034  }
7035
7036  return UnmatchedFields.empty();
7037}
7038
7039bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
7040  if (RD1->isUnion() != RD2->isUnion())
7041    return false;
7042
7043  if (RD1->isUnion())
7044    return isLayoutCompatibleUnion(C, RD1, RD2);
7045  else
7046    return isLayoutCompatibleStruct(C, RD1, RD2);
7047}
7048
7049/// \brief Check if two types are layout-compatible in C++11 sense.
7050bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
7051  if (T1.isNull() || T2.isNull())
7052    return false;
7053
7054  // C++11 [basic.types] p11:
7055  // If two types T1 and T2 are the same type, then T1 and T2 are
7056  // layout-compatible types.
7057  if (C.hasSameType(T1, T2))
7058    return true;
7059
7060  T1 = T1.getCanonicalType().getUnqualifiedType();
7061  T2 = T2.getCanonicalType().getUnqualifiedType();
7062
7063  const Type::TypeClass TC1 = T1->getTypeClass();
7064  const Type::TypeClass TC2 = T2->getTypeClass();
7065
7066  if (TC1 != TC2)
7067    return false;
7068
7069  if (TC1 == Type::Enum) {
7070    return isLayoutCompatible(C,
7071                              cast<EnumType>(T1)->getDecl(),
7072                              cast<EnumType>(T2)->getDecl());
7073  } else if (TC1 == Type::Record) {
7074    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
7075      return false;
7076
7077    return isLayoutCompatible(C,
7078                              cast<RecordType>(T1)->getDecl(),
7079                              cast<RecordType>(T2)->getDecl());
7080  }
7081
7082  return false;
7083}
7084}
7085
7086//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
7087
7088namespace {
7089/// \brief Given a type tag expression find the type tag itself.
7090///
7091/// \param TypeExpr Type tag expression, as it appears in user's code.
7092///
7093/// \param VD Declaration of an identifier that appears in a type tag.
7094///
7095/// \param MagicValue Type tag magic value.
7096bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
7097                     const ValueDecl **VD, uint64_t *MagicValue) {
7098  while(true) {
7099    if (!TypeExpr)
7100      return false;
7101
7102    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
7103
7104    switch (TypeExpr->getStmtClass()) {
7105    case Stmt::UnaryOperatorClass: {
7106      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
7107      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
7108        TypeExpr = UO->getSubExpr();
7109        continue;
7110      }
7111      return false;
7112    }
7113
7114    case Stmt::DeclRefExprClass: {
7115      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
7116      *VD = DRE->getDecl();
7117      return true;
7118    }
7119
7120    case Stmt::IntegerLiteralClass: {
7121      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
7122      llvm::APInt MagicValueAPInt = IL->getValue();
7123      if (MagicValueAPInt.getActiveBits() <= 64) {
7124        *MagicValue = MagicValueAPInt.getZExtValue();
7125        return true;
7126      } else
7127        return false;
7128    }
7129
7130    case Stmt::BinaryConditionalOperatorClass:
7131    case Stmt::ConditionalOperatorClass: {
7132      const AbstractConditionalOperator *ACO =
7133          cast<AbstractConditionalOperator>(TypeExpr);
7134      bool Result;
7135      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
7136        if (Result)
7137          TypeExpr = ACO->getTrueExpr();
7138        else
7139          TypeExpr = ACO->getFalseExpr();
7140        continue;
7141      }
7142      return false;
7143    }
7144
7145    case Stmt::BinaryOperatorClass: {
7146      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
7147      if (BO->getOpcode() == BO_Comma) {
7148        TypeExpr = BO->getRHS();
7149        continue;
7150      }
7151      return false;
7152    }
7153
7154    default:
7155      return false;
7156    }
7157  }
7158}
7159
7160/// \brief Retrieve the C type corresponding to type tag TypeExpr.
7161///
7162/// \param TypeExpr Expression that specifies a type tag.
7163///
7164/// \param MagicValues Registered magic values.
7165///
7166/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
7167///        kind.
7168///
7169/// \param TypeInfo Information about the corresponding C type.
7170///
7171/// \returns true if the corresponding C type was found.
7172bool GetMatchingCType(
7173        const IdentifierInfo *ArgumentKind,
7174        const Expr *TypeExpr, const ASTContext &Ctx,
7175        const llvm::DenseMap<Sema::TypeTagMagicValue,
7176                             Sema::TypeTagData> *MagicValues,
7177        bool &FoundWrongKind,
7178        Sema::TypeTagData &TypeInfo) {
7179  FoundWrongKind = false;
7180
7181  // Variable declaration that has type_tag_for_datatype attribute.
7182  const ValueDecl *VD = NULL;
7183
7184  uint64_t MagicValue;
7185
7186  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
7187    return false;
7188
7189  if (VD) {
7190    for (specific_attr_iterator<TypeTagForDatatypeAttr>
7191             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
7192             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
7193         I != E; ++I) {
7194      if (I->getArgumentKind() != ArgumentKind) {
7195        FoundWrongKind = true;
7196        return false;
7197      }
7198      TypeInfo.Type = I->getMatchingCType();
7199      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
7200      TypeInfo.MustBeNull = I->getMustBeNull();
7201      return true;
7202    }
7203    return false;
7204  }
7205
7206  if (!MagicValues)
7207    return false;
7208
7209  llvm::DenseMap<Sema::TypeTagMagicValue,
7210                 Sema::TypeTagData>::const_iterator I =
7211      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
7212  if (I == MagicValues->end())
7213    return false;
7214
7215  TypeInfo = I->second;
7216  return true;
7217}
7218} // unnamed namespace
7219
7220void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
7221                                      uint64_t MagicValue, QualType Type,
7222                                      bool LayoutCompatible,
7223                                      bool MustBeNull) {
7224  if (!TypeTagForDatatypeMagicValues)
7225    TypeTagForDatatypeMagicValues.reset(
7226        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
7227
7228  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
7229  (*TypeTagForDatatypeMagicValues)[Magic] =
7230      TypeTagData(Type, LayoutCompatible, MustBeNull);
7231}
7232
7233namespace {
7234bool IsSameCharType(QualType T1, QualType T2) {
7235  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
7236  if (!BT1)
7237    return false;
7238
7239  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
7240  if (!BT2)
7241    return false;
7242
7243  BuiltinType::Kind T1Kind = BT1->getKind();
7244  BuiltinType::Kind T2Kind = BT2->getKind();
7245
7246  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
7247         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
7248         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
7249         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
7250}
7251} // unnamed namespace
7252
7253void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
7254                                    const Expr * const *ExprArgs) {
7255  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
7256  bool IsPointerAttr = Attr->getIsPointer();
7257
7258  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
7259  bool FoundWrongKind;
7260  TypeTagData TypeInfo;
7261  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
7262                        TypeTagForDatatypeMagicValues.get(),
7263                        FoundWrongKind, TypeInfo)) {
7264    if (FoundWrongKind)
7265      Diag(TypeTagExpr->getExprLoc(),
7266           diag::warn_type_tag_for_datatype_wrong_kind)
7267        << TypeTagExpr->getSourceRange();
7268    return;
7269  }
7270
7271  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
7272  if (IsPointerAttr) {
7273    // Skip implicit cast of pointer to `void *' (as a function argument).
7274    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
7275      if (ICE->getType()->isVoidPointerType() &&
7276          ICE->getCastKind() == CK_BitCast)
7277        ArgumentExpr = ICE->getSubExpr();
7278  }
7279  QualType ArgumentType = ArgumentExpr->getType();
7280
7281  // Passing a `void*' pointer shouldn't trigger a warning.
7282  if (IsPointerAttr && ArgumentType->isVoidPointerType())
7283    return;
7284
7285  if (TypeInfo.MustBeNull) {
7286    // Type tag with matching void type requires a null pointer.
7287    if (!ArgumentExpr->isNullPointerConstant(Context,
7288                                             Expr::NPC_ValueDependentIsNotNull)) {
7289      Diag(ArgumentExpr->getExprLoc(),
7290           diag::warn_type_safety_null_pointer_required)
7291          << ArgumentKind->getName()
7292          << ArgumentExpr->getSourceRange()
7293          << TypeTagExpr->getSourceRange();
7294    }
7295    return;
7296  }
7297
7298  QualType RequiredType = TypeInfo.Type;
7299  if (IsPointerAttr)
7300    RequiredType = Context.getPointerType(RequiredType);
7301
7302  bool mismatch = false;
7303  if (!TypeInfo.LayoutCompatible) {
7304    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
7305
7306    // C++11 [basic.fundamental] p1:
7307    // Plain char, signed char, and unsigned char are three distinct types.
7308    //
7309    // But we treat plain `char' as equivalent to `signed char' or `unsigned
7310    // char' depending on the current char signedness mode.
7311    if (mismatch)
7312      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
7313                                           RequiredType->getPointeeType())) ||
7314          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
7315        mismatch = false;
7316  } else
7317    if (IsPointerAttr)
7318      mismatch = !isLayoutCompatible(Context,
7319                                     ArgumentType->getPointeeType(),
7320                                     RequiredType->getPointeeType());
7321    else
7322      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
7323
7324  if (mismatch)
7325    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
7326        << ArgumentType << ArgumentKind->getName()
7327        << TypeInfo.LayoutCompatible << RequiredType
7328        << ArgumentExpr->getSourceRange()
7329        << TypeTagExpr->getSourceRange();
7330}
7331