SemaChecking.cpp revision 4493f79fce48cd9cbd9f55fa9d452cde736747a0
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Lex/LiteralSupport.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/StringExtras.h"
30#include "SemaUtil.h"
31using namespace clang;
32
33/// CheckFunctionCall - Check a direct function call for various correctness
34/// and safety properties not strictly enforced by the C type system.
35Action::ExprResult
36Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
37  llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
38  // Get the IdentifierInfo* for the called function.
39  IdentifierInfo *FnInfo = FDecl->getIdentifier();
40
41  switch (FnInfo->getBuiltinID()) {
42  case Builtin::BI__builtin___CFStringMakeConstantString:
43    assert(TheCall->getNumArgs() == 1 &&
44           "Wrong # arguments to builtin CFStringMakeConstantString");
45    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
46      return true;
47    return TheCall.take();
48  case Builtin::BI__builtin_stdarg_start:
49  case Builtin::BI__builtin_va_start:
50    if (SemaBuiltinVAStart(TheCall.get()))
51      return true;
52    return TheCall.take();
53  case Builtin::BI__builtin_isgreater:
54  case Builtin::BI__builtin_isgreaterequal:
55  case Builtin::BI__builtin_isless:
56  case Builtin::BI__builtin_islessequal:
57  case Builtin::BI__builtin_islessgreater:
58  case Builtin::BI__builtin_isunordered:
59    if (SemaBuiltinUnorderedCompare(TheCall.get()))
60      return true;
61    return TheCall.take();
62  case Builtin::BI__builtin_return_address:
63  case Builtin::BI__builtin_frame_address:
64    if (SemaBuiltinStackAddress(TheCall.get()))
65      return true;
66    return TheCall.take();
67  case Builtin::BI__builtin_shufflevector:
68    return SemaBuiltinShuffleVector(TheCall.get());
69  case Builtin::BI__builtin_prefetch:
70    if (SemaBuiltinPrefetch(TheCall.get()))
71      return true;
72    return TheCall.take();
73  }
74
75  // Search the KnownFunctionIDs for the identifier.
76  unsigned i = 0, e = id_num_known_functions;
77  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
78  if (i == e) return TheCall.take();
79
80  // Printf checking.
81  if (i <= id_vprintf) {
82    // Retrieve the index of the format string parameter and determine
83    // if the function is passed a va_arg argument.
84    unsigned format_idx = 0;
85    bool HasVAListArg = false;
86
87    switch (i) {
88    default: assert(false && "No format string argument index.");
89    case id_printf:    format_idx = 0; break;
90    case id_fprintf:   format_idx = 1; break;
91    case id_sprintf:   format_idx = 1; break;
92    case id_snprintf:  format_idx = 2; break;
93    case id_asprintf:  format_idx = 1; break;
94    case id_NSLog:     format_idx = 0; break;
95    case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
96    case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
97    case id_vfprintf:  format_idx = 1; HasVAListArg = true; break;
98    case id_vsprintf:  format_idx = 1; HasVAListArg = true; break;
99    case id_vprintf:   format_idx = 0; HasVAListArg = true; break;
100    }
101
102    CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
103  }
104
105  return TheCall.take();
106}
107
108/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
109/// CFString constructor is correct
110bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
111  Arg = Arg->IgnoreParenCasts();
112
113  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
114
115  if (!Literal || Literal->isWide()) {
116    Diag(Arg->getLocStart(),
117         diag::err_cfstring_literal_not_string_constant,
118         Arg->getSourceRange());
119    return true;
120  }
121
122  const char *Data = Literal->getStrData();
123  unsigned Length = Literal->getByteLength();
124
125  for (unsigned i = 0; i < Length; ++i) {
126    if (!isascii(Data[i])) {
127      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
128           diag::warn_cfstring_literal_contains_non_ascii_character,
129           Arg->getSourceRange());
130      break;
131    }
132
133    if (!Data[i]) {
134      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
135           diag::warn_cfstring_literal_contains_nul_character,
136           Arg->getSourceRange());
137      break;
138    }
139  }
140
141  return false;
142}
143
144/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
145/// Emit an error and return true on failure, return false on success.
146bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
147  Expr *Fn = TheCall->getCallee();
148  if (TheCall->getNumArgs() > 2) {
149    Diag(TheCall->getArg(2)->getLocStart(),
150         diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
151         SourceRange(TheCall->getArg(2)->getLocStart(),
152                     (*(TheCall->arg_end()-1))->getLocEnd()));
153    return true;
154  }
155
156  // Determine whether the current function is variadic or not.
157  bool isVariadic;
158  if (getCurFunctionDecl())
159    isVariadic =
160      cast<FunctionTypeProto>(getCurFunctionDecl()->getType())->isVariadic();
161  else
162    isVariadic = getCurMethodDecl()->isVariadic();
163
164  if (!isVariadic) {
165    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
166    return true;
167  }
168
169  // Verify that the second argument to the builtin is the last argument of the
170  // current function or method.
171  bool SecondArgIsLastNamedArgument = false;
172  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
173
174  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
175    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
176      // FIXME: This isn't correct for methods (results in bogus warning).
177      // Get the last formal in the current function.
178      const ParmVarDecl *LastArg;
179      if (getCurFunctionDecl())
180        LastArg = *(getCurFunctionDecl()->param_end()-1);
181      else
182        LastArg = *(getCurMethodDecl()->param_end()-1);
183      SecondArgIsLastNamedArgument = PV == LastArg;
184    }
185  }
186
187  if (!SecondArgIsLastNamedArgument)
188    Diag(TheCall->getArg(1)->getLocStart(),
189         diag::warn_second_parameter_of_va_start_not_last_named_argument);
190  return false;
191}
192
193/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
194/// friends.  This is declared to take (...), so we have to check everything.
195bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
196  if (TheCall->getNumArgs() < 2)
197    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args);
198  if (TheCall->getNumArgs() > 2)
199    return Diag(TheCall->getArg(2)->getLocStart(),
200                diag::err_typecheck_call_too_many_args,
201                SourceRange(TheCall->getArg(2)->getLocStart(),
202                            (*(TheCall->arg_end()-1))->getLocEnd()));
203
204  Expr *OrigArg0 = TheCall->getArg(0);
205  Expr *OrigArg1 = TheCall->getArg(1);
206
207  // Do standard promotions between the two arguments, returning their common
208  // type.
209  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
210
211  // If the common type isn't a real floating type, then the arguments were
212  // invalid for this operation.
213  if (!Res->isRealFloatingType())
214    return Diag(OrigArg0->getLocStart(),
215                diag::err_typecheck_call_invalid_ordered_compare,
216                OrigArg0->getType().getAsString(),
217                OrigArg1->getType().getAsString(),
218                SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd()));
219
220  return false;
221}
222
223bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
224  // The signature for these builtins is exact; the only thing we need
225  // to check is that the argument is a constant.
226  SourceLocation Loc;
227  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc)) {
228    return Diag(Loc, diag::err_stack_const_level, TheCall->getSourceRange());
229  }
230  return false;
231}
232
233/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
234// This is declared to take (...), so we have to check everything.
235Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
236  if (TheCall->getNumArgs() < 3)
237    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
238                TheCall->getSourceRange());
239
240  QualType FAType = TheCall->getArg(0)->getType();
241  QualType SAType = TheCall->getArg(1)->getType();
242
243  if (!FAType->isVectorType() || !SAType->isVectorType()) {
244    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector,
245         SourceRange(TheCall->getArg(0)->getLocStart(),
246                     TheCall->getArg(1)->getLocEnd()));
247    return true;
248  }
249
250  if (FAType.getCanonicalType().getUnqualifiedType() !=
251      SAType.getCanonicalType().getUnqualifiedType()) {
252    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector,
253         SourceRange(TheCall->getArg(0)->getLocStart(),
254                     TheCall->getArg(1)->getLocEnd()));
255    return true;
256  }
257
258  unsigned numElements = FAType->getAsVectorType()->getNumElements();
259  if (TheCall->getNumArgs() != numElements+2) {
260    if (TheCall->getNumArgs() < numElements+2)
261      Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
262           TheCall->getSourceRange());
263    else
264      Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
265           TheCall->getSourceRange());
266    return true;
267  }
268
269  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
270    llvm::APSInt Result(32);
271    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) {
272      Diag(TheCall->getLocStart(),
273           diag::err_shufflevector_nonconstant_argument,
274           TheCall->getArg(i)->getSourceRange());
275      return true;
276    }
277    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) {
278      Diag(TheCall->getLocStart(),
279           diag::err_shufflevector_argument_too_large,
280           TheCall->getArg(i)->getSourceRange());
281      return true;
282    }
283  }
284
285  llvm::SmallVector<Expr*, 32> exprs;
286
287  for (unsigned i = 0; i < TheCall->getNumArgs(); i++) {
288    exprs.push_back(TheCall->getArg(i));
289    TheCall->setArg(i, 0);
290  }
291
292  ShuffleVectorExpr* E = new ShuffleVectorExpr(
293      exprs.begin(), numElements+2, FAType,
294      TheCall->getCallee()->getLocStart(),
295      TheCall->getRParenLoc());
296
297  return E;
298}
299
300/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
301// This is declared to take (const void*, ...) and can take two
302// optional constant int args.
303bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
304  unsigned numArgs = TheCall->getNumArgs();
305  bool res = false;
306
307  if (numArgs > 3) {
308    res |= Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
309                TheCall->getSourceRange());
310  }
311
312  // Argument 0 is checked for us and the remaining arguments must be
313  // constant integers.
314  for (unsigned i=1; i<numArgs; ++i) {
315    Expr *Arg = TheCall->getArg(i);
316    QualType RWType = Arg->getType();
317
318    const BuiltinType *BT = RWType->getAsBuiltinType();
319    // FIXME: 32 is wrong, needs to be proper width of Int
320    llvm::APSInt Result(32);
321    if (!BT || BT->getKind() != BuiltinType::Int ||
322        !Arg->isIntegerConstantExpr(Result, Context)) {
323      if (Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument,
324               SourceRange(Arg->getLocStart(), Arg->getLocEnd()))) {
325        res = true;
326        continue;
327      }
328    }
329
330    // FIXME: gcc issues a warning and rewrites these to 0. These
331    // seems especially odd for the third argument since the default
332    // is 3.
333    if (i==1) {
334      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
335        res |= Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_range,
336                    "0", "1",
337                    SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
338    } else {
339      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
340        res |= Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_range,
341                    "0", "3",
342                    SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
343    }
344  }
345
346  return res;
347}
348
349/// CheckPrintfArguments - Check calls to printf (and similar functions) for
350/// correct use of format strings.
351///
352///  HasVAListArg - A predicate indicating whether the printf-like
353///    function is passed an explicit va_arg argument (e.g., vprintf)
354///
355///  format_idx - The index into Args for the format string.
356///
357/// Improper format strings to functions in the printf family can be
358/// the source of bizarre bugs and very serious security holes.  A
359/// good source of information is available in the following paper
360/// (which includes additional references):
361///
362///  FormatGuard: Automatic Protection From printf Format String
363///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
364///
365/// Functionality implemented:
366///
367///  We can statically check the following properties for string
368///  literal format strings for non v.*printf functions (where the
369///  arguments are passed directly):
370//
371///  (1) Are the number of format conversions equal to the number of
372///      data arguments?
373///
374///  (2) Does each format conversion correctly match the type of the
375///      corresponding data argument?  (TODO)
376///
377/// Moreover, for all printf functions we can:
378///
379///  (3) Check for a missing format string (when not caught by type checking).
380///
381///  (4) Check for no-operation flags; e.g. using "#" with format
382///      conversion 'c'  (TODO)
383///
384///  (5) Check the use of '%n', a major source of security holes.
385///
386///  (6) Check for malformed format conversions that don't specify anything.
387///
388///  (7) Check for empty format strings.  e.g: printf("");
389///
390///  (8) Check that the format string is a wide literal.
391///
392///  (9) Also check the arguments of functions with the __format__ attribute.
393///      (TODO).
394///
395/// All of these checks can be done by parsing the format string.
396///
397/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
398void
399Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
400                           unsigned format_idx) {
401  Expr *Fn = TheCall->getCallee();
402
403  // CHECK: printf-like function is called with no format string.
404  if (format_idx >= TheCall->getNumArgs()) {
405    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string,
406         Fn->getSourceRange());
407    return;
408  }
409
410  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
411
412  // CHECK: format string is not a string literal.
413  //
414  // Dynamically generated format strings are difficult to
415  // automatically vet at compile time.  Requiring that format strings
416  // are string literals: (1) permits the checking of format strings by
417  // the compiler and thereby (2) can practically remove the source of
418  // many format string exploits.
419
420  // Format string can be either ObjC string (e.g. @"%d") or
421  // C string (e.g. "%d")
422  // ObjC string uses the same format specifiers as C string, so we can use
423  // the same format string checking logic for both ObjC and C strings.
424  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
425  StringLiteral *FExpr = NULL;
426
427  if(ObjCFExpr != NULL)
428    FExpr = ObjCFExpr->getString();
429  else
430    FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
431
432  if (FExpr == NULL) {
433    // For vprintf* functions (i.e., HasVAListArg==true), we add a
434    // special check to see if the format string is a function parameter
435    // of the function calling the printf function.  If the function
436    // has an attribute indicating it is a printf-like function, then we
437    // should suppress warnings concerning non-literals being used in a call
438    // to a vprintf function.  For example:
439    //
440    // void
441    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
442    //      va_list ap;
443    //      va_start(ap, fmt);
444    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
445    //      ...
446    //
447    //
448    //  FIXME: We don't have full attribute support yet, so just check to see
449    //    if the argument is a DeclRefExpr that references a parameter.  We'll
450    //    add proper support for checking the attribute later.
451    if (HasVAListArg)
452      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
453        if (isa<ParmVarDecl>(DR->getDecl()))
454          return;
455
456    Diag(TheCall->getArg(format_idx)->getLocStart(),
457         diag::warn_printf_not_string_constant, Fn->getSourceRange());
458    return;
459  }
460
461  // CHECK: is the format string a wide literal?
462  if (FExpr->isWide()) {
463    Diag(FExpr->getLocStart(),
464         diag::warn_printf_format_string_is_wide_literal, Fn->getSourceRange());
465    return;
466  }
467
468  // Str - The format string.  NOTE: this is NOT null-terminated!
469  const char * const Str = FExpr->getStrData();
470
471  // CHECK: empty format string?
472  const unsigned StrLen = FExpr->getByteLength();
473
474  if (StrLen == 0) {
475    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string,
476         Fn->getSourceRange());
477    return;
478  }
479
480  // We process the format string using a binary state machine.  The
481  // current state is stored in CurrentState.
482  enum {
483    state_OrdChr,
484    state_Conversion
485  } CurrentState = state_OrdChr;
486
487  // numConversions - The number of conversions seen so far.  This is
488  //  incremented as we traverse the format string.
489  unsigned numConversions = 0;
490
491  // numDataArgs - The number of data arguments after the format
492  //  string.  This can only be determined for non vprintf-like
493  //  functions.  For those functions, this value is 1 (the sole
494  //  va_arg argument).
495  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
496
497  // Inspect the format string.
498  unsigned StrIdx = 0;
499
500  // LastConversionIdx - Index within the format string where we last saw
501  //  a '%' character that starts a new format conversion.
502  unsigned LastConversionIdx = 0;
503
504  for (; StrIdx < StrLen; ++StrIdx) {
505
506    // Is the number of detected conversion conversions greater than
507    // the number of matching data arguments?  If so, stop.
508    if (!HasVAListArg && numConversions > numDataArgs) break;
509
510    // Handle "\0"
511    if (Str[StrIdx] == '\0') {
512      // The string returned by getStrData() is not null-terminated,
513      // so the presence of a null character is likely an error.
514      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
515           diag::warn_printf_format_string_contains_null_char,
516           Fn->getSourceRange());
517      return;
518    }
519
520    // Ordinary characters (not processing a format conversion).
521    if (CurrentState == state_OrdChr) {
522      if (Str[StrIdx] == '%') {
523        CurrentState = state_Conversion;
524        LastConversionIdx = StrIdx;
525      }
526      continue;
527    }
528
529    // Seen '%'.  Now processing a format conversion.
530    switch (Str[StrIdx]) {
531    // Handle dynamic precision or width specifier.
532    case '*': {
533      ++numConversions;
534
535      if (!HasVAListArg && numConversions > numDataArgs) {
536        SourceLocation Loc = FExpr->getLocStart();
537        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
538
539        if (Str[StrIdx-1] == '.')
540          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg,
541               Fn->getSourceRange());
542        else
543          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg,
544               Fn->getSourceRange());
545
546        // Don't do any more checking.  We'll just emit spurious errors.
547        return;
548      }
549
550      // Perform type checking on width/precision specifier.
551      Expr *E = TheCall->getArg(format_idx+numConversions);
552      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
553        if (BT->getKind() == BuiltinType::Int)
554          break;
555
556      SourceLocation Loc =
557        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
558
559      if (Str[StrIdx-1] == '.')
560        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type,
561             E->getType().getAsString(), E->getSourceRange());
562      else
563        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type,
564             E->getType().getAsString(), E->getSourceRange());
565
566      break;
567    }
568
569    // Characters which can terminate a format conversion
570    // (e.g. "%d").  Characters that specify length modifiers or
571    // other flags are handled by the default case below.
572    //
573    // FIXME: additional checks will go into the following cases.
574    case 'i':
575    case 'd':
576    case 'o':
577    case 'u':
578    case 'x':
579    case 'X':
580    case 'D':
581    case 'O':
582    case 'U':
583    case 'e':
584    case 'E':
585    case 'f':
586    case 'F':
587    case 'g':
588    case 'G':
589    case 'a':
590    case 'A':
591    case 'c':
592    case 'C':
593    case 'S':
594    case 's':
595    case 'p':
596      ++numConversions;
597      CurrentState = state_OrdChr;
598      break;
599
600    // CHECK: Are we using "%n"?  Issue a warning.
601    case 'n': {
602      ++numConversions;
603      CurrentState = state_OrdChr;
604      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
605                                                      LastConversionIdx+1);
606
607      Diag(Loc, diag::warn_printf_write_back, Fn->getSourceRange());
608      break;
609    }
610
611    // Handle "%@"
612    case '@':
613      // %@ is allowed in ObjC format strings only.
614      if(ObjCFExpr != NULL)
615        CurrentState = state_OrdChr;
616      else {
617        // Issue a warning: invalid format conversion.
618        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
619                                                    LastConversionIdx+1);
620
621        Diag(Loc, diag::warn_printf_invalid_conversion,
622          std::string(Str+LastConversionIdx,
623          Str+std::min(LastConversionIdx+2, StrLen)),
624          Fn->getSourceRange());
625      }
626      ++numConversions;
627      break;
628
629    // Handle "%%"
630    case '%':
631      // Sanity check: Was the first "%" character the previous one?
632      // If not, we will assume that we have a malformed format
633      // conversion, and that the current "%" character is the start
634      // of a new conversion.
635      if (StrIdx - LastConversionIdx == 1)
636        CurrentState = state_OrdChr;
637      else {
638        // Issue a warning: invalid format conversion.
639        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
640                                                        LastConversionIdx+1);
641
642        Diag(Loc, diag::warn_printf_invalid_conversion,
643             std::string(Str+LastConversionIdx, Str+StrIdx),
644             Fn->getSourceRange());
645
646        // This conversion is broken.  Advance to the next format
647        // conversion.
648        LastConversionIdx = StrIdx;
649        ++numConversions;
650      }
651      break;
652
653    default:
654      // This case catches all other characters: flags, widths, etc.
655      // We should eventually process those as well.
656      break;
657    }
658  }
659
660  if (CurrentState == state_Conversion) {
661    // Issue a warning: invalid format conversion.
662    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
663                                                    LastConversionIdx+1);
664
665    Diag(Loc, diag::warn_printf_invalid_conversion,
666         std::string(Str+LastConversionIdx,
667                     Str+std::min(LastConversionIdx+2, StrLen)),
668         Fn->getSourceRange());
669    return;
670  }
671
672  if (!HasVAListArg) {
673    // CHECK: Does the number of format conversions exceed the number
674    //        of data arguments?
675    if (numConversions > numDataArgs) {
676      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
677                                                      LastConversionIdx);
678
679      Diag(Loc, diag::warn_printf_insufficient_data_args,
680           Fn->getSourceRange());
681    }
682    // CHECK: Does the number of data arguments exceed the number of
683    //        format conversions in the format string?
684    else if (numConversions < numDataArgs)
685      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
686           diag::warn_printf_too_many_data_args, Fn->getSourceRange());
687  }
688}
689
690//===--- CHECK: Return Address of Stack Variable --------------------------===//
691
692static DeclRefExpr* EvalVal(Expr *E);
693static DeclRefExpr* EvalAddr(Expr* E);
694
695/// CheckReturnStackAddr - Check if a return statement returns the address
696///   of a stack variable.
697void
698Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
699                           SourceLocation ReturnLoc) {
700
701  // Perform checking for returned stack addresses.
702  if (lhsType->isPointerType()) {
703    if (DeclRefExpr *DR = EvalAddr(RetValExp))
704      Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
705           DR->getDecl()->getIdentifier()->getName(),
706           RetValExp->getSourceRange());
707  }
708  // Perform checking for stack values returned by reference.
709  else if (lhsType->isReferenceType()) {
710    // Check for an implicit cast to a reference.
711    if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp))
712      if (DeclRefExpr *DR = EvalVal(I->getSubExpr()))
713        Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
714             DR->getDecl()->getIdentifier()->getName(),
715             RetValExp->getSourceRange());
716  }
717}
718
719/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
720///  check if the expression in a return statement evaluates to an address
721///  to a location on the stack.  The recursion is used to traverse the
722///  AST of the return expression, with recursion backtracking when we
723///  encounter a subexpression that (1) clearly does not lead to the address
724///  of a stack variable or (2) is something we cannot determine leads to
725///  the address of a stack variable based on such local checking.
726///
727///  EvalAddr processes expressions that are pointers that are used as
728///  references (and not L-values).  EvalVal handles all other values.
729///  At the base case of the recursion is a check for a DeclRefExpr* in
730///  the refers to a stack variable.
731///
732///  This implementation handles:
733///
734///   * pointer-to-pointer casts
735///   * implicit conversions from array references to pointers
736///   * taking the address of fields
737///   * arbitrary interplay between "&" and "*" operators
738///   * pointer arithmetic from an address of a stack variable
739///   * taking the address of an array element where the array is on the stack
740static DeclRefExpr* EvalAddr(Expr *E) {
741  // We should only be called for evaluating pointer expressions.
742  assert((E->getType()->isPointerType() ||
743          E->getType()->isObjCQualifiedIdType()) &&
744         "EvalAddr only works on pointers");
745
746  // Our "symbolic interpreter" is just a dispatch off the currently
747  // viewed AST node.  We then recursively traverse the AST by calling
748  // EvalAddr and EvalVal appropriately.
749  switch (E->getStmtClass()) {
750  case Stmt::ParenExprClass:
751    // Ignore parentheses.
752    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
753
754  case Stmt::UnaryOperatorClass: {
755    // The only unary operator that make sense to handle here
756    // is AddrOf.  All others don't make sense as pointers.
757    UnaryOperator *U = cast<UnaryOperator>(E);
758
759    if (U->getOpcode() == UnaryOperator::AddrOf)
760      return EvalVal(U->getSubExpr());
761    else
762      return NULL;
763  }
764
765  case Stmt::BinaryOperatorClass: {
766    // Handle pointer arithmetic.  All other binary operators are not valid
767    // in this context.
768    BinaryOperator *B = cast<BinaryOperator>(E);
769    BinaryOperator::Opcode op = B->getOpcode();
770
771    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
772      return NULL;
773
774    Expr *Base = B->getLHS();
775
776    // Determine which argument is the real pointer base.  It could be
777    // the RHS argument instead of the LHS.
778    if (!Base->getType()->isPointerType()) Base = B->getRHS();
779
780    assert (Base->getType()->isPointerType());
781    return EvalAddr(Base);
782  }
783
784  // For conditional operators we need to see if either the LHS or RHS are
785  // valid DeclRefExpr*s.  If one of them is valid, we return it.
786  case Stmt::ConditionalOperatorClass: {
787    ConditionalOperator *C = cast<ConditionalOperator>(E);
788
789    // Handle the GNU extension for missing LHS.
790    if (Expr *lhsExpr = C->getLHS())
791      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
792        return LHS;
793
794     return EvalAddr(C->getRHS());
795  }
796
797  // For implicit casts, we need to handle conversions from arrays to
798  // pointer values, and implicit pointer-to-pointer conversions.
799  case Stmt::ImplicitCastExprClass: {
800    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
801    Expr* SubExpr = IE->getSubExpr();
802
803    if (SubExpr->getType()->isPointerType() ||
804        SubExpr->getType()->isObjCQualifiedIdType())
805      return EvalAddr(SubExpr);
806    else
807      return EvalVal(SubExpr);
808  }
809
810  // For casts, we handle pointer-to-pointer conversions (which
811  // is essentially a no-op from our mini-interpreter's standpoint).
812  // For other casts we abort.
813  case Stmt::CastExprClass: {
814    CastExpr *C = cast<CastExpr>(E);
815    Expr *SubExpr = C->getSubExpr();
816
817    if (SubExpr->getType()->isPointerType())
818      return EvalAddr(SubExpr);
819    else
820      return NULL;
821  }
822
823  // C++ casts.  For dynamic casts, static casts, and const casts, we
824  // are always converting from a pointer-to-pointer, so we just blow
825  // through the cast.  In the case the dynamic cast doesn't fail
826  // (and return NULL), we take the conservative route and report cases
827  // where we return the address of a stack variable.  For Reinterpre
828  case Stmt::CXXCastExprClass: {
829    CXXCastExpr *C = cast<CXXCastExpr>(E);
830
831    if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
832      Expr *S = C->getSubExpr();
833      if (S->getType()->isPointerType())
834        return EvalAddr(S);
835      else
836        return NULL;
837    }
838    else
839      return EvalAddr(C->getSubExpr());
840  }
841
842  // Everything else: we simply don't reason about them.
843  default:
844    return NULL;
845  }
846}
847
848
849///  EvalVal - This function is complements EvalAddr in the mutual recursion.
850///   See the comments for EvalAddr for more details.
851static DeclRefExpr* EvalVal(Expr *E) {
852
853  // We should only be called for evaluating non-pointer expressions, or
854  // expressions with a pointer type that are not used as references but instead
855  // are l-values (e.g., DeclRefExpr with a pointer type).
856
857  // Our "symbolic interpreter" is just a dispatch off the currently
858  // viewed AST node.  We then recursively traverse the AST by calling
859  // EvalAddr and EvalVal appropriately.
860  switch (E->getStmtClass()) {
861  case Stmt::DeclRefExprClass: {
862    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
863    //  at code that refers to a variable's name.  We check if it has local
864    //  storage within the function, and if so, return the expression.
865    DeclRefExpr *DR = cast<DeclRefExpr>(E);
866
867    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
868      if(V->hasLocalStorage()) return DR;
869
870    return NULL;
871  }
872
873  case Stmt::ParenExprClass:
874    // Ignore parentheses.
875    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
876
877  case Stmt::UnaryOperatorClass: {
878    // The only unary operator that make sense to handle here
879    // is Deref.  All others don't resolve to a "name."  This includes
880    // handling all sorts of rvalues passed to a unary operator.
881    UnaryOperator *U = cast<UnaryOperator>(E);
882
883    if (U->getOpcode() == UnaryOperator::Deref)
884      return EvalAddr(U->getSubExpr());
885
886    return NULL;
887  }
888
889  case Stmt::ArraySubscriptExprClass: {
890    // Array subscripts are potential references to data on the stack.  We
891    // retrieve the DeclRefExpr* for the array variable if it indeed
892    // has local storage.
893    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
894  }
895
896  case Stmt::ConditionalOperatorClass: {
897    // For conditional operators we need to see if either the LHS or RHS are
898    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
899    ConditionalOperator *C = cast<ConditionalOperator>(E);
900
901    // Handle the GNU extension for missing LHS.
902    if (Expr *lhsExpr = C->getLHS())
903      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
904        return LHS;
905
906    return EvalVal(C->getRHS());
907  }
908
909  // Accesses to members are potential references to data on the stack.
910  case Stmt::MemberExprClass: {
911    MemberExpr *M = cast<MemberExpr>(E);
912
913    // Check for indirect access.  We only want direct field accesses.
914    if (!M->isArrow())
915      return EvalVal(M->getBase());
916    else
917      return NULL;
918  }
919
920  // Everything else: we simply don't reason about them.
921  default:
922    return NULL;
923  }
924}
925
926//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
927
928/// Check for comparisons of floating point operands using != and ==.
929/// Issue a warning if these are no self-comparisons, as they are not likely
930/// to do what the programmer intended.
931void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
932  bool EmitWarning = true;
933
934  Expr* LeftExprSansParen = lex->IgnoreParens();
935  Expr* RightExprSansParen = rex->IgnoreParens();
936
937  // Special case: check for x == x (which is OK).
938  // Do not emit warnings for such cases.
939  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
940    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
941      if (DRL->getDecl() == DRR->getDecl())
942        EmitWarning = false;
943
944
945  // Special case: check for comparisons against literals that can be exactly
946  //  represented by APFloat.  In such cases, do not emit a warning.  This
947  //  is a heuristic: often comparison against such literals are used to
948  //  detect if a value in a variable has not changed.  This clearly can
949  //  lead to false negatives.
950  if (EmitWarning) {
951    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
952      if (FLL->isExact())
953        EmitWarning = false;
954    }
955    else
956      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
957        if (FLR->isExact())
958          EmitWarning = false;
959    }
960  }
961
962  // Check for comparisons with builtin types.
963  if (EmitWarning)
964    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
965      if (isCallBuiltin(CL))
966        EmitWarning = false;
967
968  if (EmitWarning)
969    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
970      if (isCallBuiltin(CR))
971        EmitWarning = false;
972
973  // Emit the diagnostic.
974  if (EmitWarning)
975    Diag(loc, diag::warn_floatingpoint_eq,
976         lex->getSourceRange(),rex->getSourceRange());
977}
978