SemaChecking.cpp revision 47abb25dda5cb9d5cd340809549dffdc41ca74bf
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/SmallBitVector.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98/// Check that the argument to __builtin_addressof is a glvalue, and set the
99/// result type to the corresponding pointer type.
100static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101  if (checkArgCount(S, TheCall, 1))
102    return true;
103
104  ExprResult Arg(S.Owned(TheCall->getArg(0)));
105  QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106  if (ResultType.isNull())
107    return true;
108
109  TheCall->setArg(0, Arg.take());
110  TheCall->setType(ResultType);
111  return false;
112}
113
114ExprResult
115Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
116  ExprResult TheCallResult(Owned(TheCall));
117
118  // Find out if any arguments are required to be integer constant expressions.
119  unsigned ICEArguments = 0;
120  ASTContext::GetBuiltinTypeError Error;
121  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
122  if (Error != ASTContext::GE_None)
123    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
124
125  // If any arguments are required to be ICE's, check and diagnose.
126  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
127    // Skip arguments not required to be ICE's.
128    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
129
130    llvm::APSInt Result;
131    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
132      return true;
133    ICEArguments &= ~(1 << ArgNo);
134  }
135
136  switch (BuiltinID) {
137  case Builtin::BI__builtin___CFStringMakeConstantString:
138    assert(TheCall->getNumArgs() == 1 &&
139           "Wrong # arguments to builtin CFStringMakeConstantString");
140    if (CheckObjCString(TheCall->getArg(0)))
141      return ExprError();
142    break;
143  case Builtin::BI__builtin_stdarg_start:
144  case Builtin::BI__builtin_va_start:
145    if (SemaBuiltinVAStart(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_isgreater:
149  case Builtin::BI__builtin_isgreaterequal:
150  case Builtin::BI__builtin_isless:
151  case Builtin::BI__builtin_islessequal:
152  case Builtin::BI__builtin_islessgreater:
153  case Builtin::BI__builtin_isunordered:
154    if (SemaBuiltinUnorderedCompare(TheCall))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_fpclassify:
158    if (SemaBuiltinFPClassification(TheCall, 6))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_isfinite:
162  case Builtin::BI__builtin_isinf:
163  case Builtin::BI__builtin_isinf_sign:
164  case Builtin::BI__builtin_isnan:
165  case Builtin::BI__builtin_isnormal:
166    if (SemaBuiltinFPClassification(TheCall, 1))
167      return ExprError();
168    break;
169  case Builtin::BI__builtin_shufflevector:
170    return SemaBuiltinShuffleVector(TheCall);
171    // TheCall will be freed by the smart pointer here, but that's fine, since
172    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
173  case Builtin::BI__builtin_prefetch:
174    if (SemaBuiltinPrefetch(TheCall))
175      return ExprError();
176    break;
177  case Builtin::BI__builtin_object_size:
178    if (SemaBuiltinObjectSize(TheCall))
179      return ExprError();
180    break;
181  case Builtin::BI__builtin_longjmp:
182    if (SemaBuiltinLongjmp(TheCall))
183      return ExprError();
184    break;
185
186  case Builtin::BI__builtin_classify_type:
187    if (checkArgCount(*this, TheCall, 1)) return true;
188    TheCall->setType(Context.IntTy);
189    break;
190  case Builtin::BI__builtin_constant_p:
191    if (checkArgCount(*this, TheCall, 1)) return true;
192    TheCall->setType(Context.IntTy);
193    break;
194  case Builtin::BI__sync_fetch_and_add:
195  case Builtin::BI__sync_fetch_and_add_1:
196  case Builtin::BI__sync_fetch_and_add_2:
197  case Builtin::BI__sync_fetch_and_add_4:
198  case Builtin::BI__sync_fetch_and_add_8:
199  case Builtin::BI__sync_fetch_and_add_16:
200  case Builtin::BI__sync_fetch_and_sub:
201  case Builtin::BI__sync_fetch_and_sub_1:
202  case Builtin::BI__sync_fetch_and_sub_2:
203  case Builtin::BI__sync_fetch_and_sub_4:
204  case Builtin::BI__sync_fetch_and_sub_8:
205  case Builtin::BI__sync_fetch_and_sub_16:
206  case Builtin::BI__sync_fetch_and_or:
207  case Builtin::BI__sync_fetch_and_or_1:
208  case Builtin::BI__sync_fetch_and_or_2:
209  case Builtin::BI__sync_fetch_and_or_4:
210  case Builtin::BI__sync_fetch_and_or_8:
211  case Builtin::BI__sync_fetch_and_or_16:
212  case Builtin::BI__sync_fetch_and_and:
213  case Builtin::BI__sync_fetch_and_and_1:
214  case Builtin::BI__sync_fetch_and_and_2:
215  case Builtin::BI__sync_fetch_and_and_4:
216  case Builtin::BI__sync_fetch_and_and_8:
217  case Builtin::BI__sync_fetch_and_and_16:
218  case Builtin::BI__sync_fetch_and_xor:
219  case Builtin::BI__sync_fetch_and_xor_1:
220  case Builtin::BI__sync_fetch_and_xor_2:
221  case Builtin::BI__sync_fetch_and_xor_4:
222  case Builtin::BI__sync_fetch_and_xor_8:
223  case Builtin::BI__sync_fetch_and_xor_16:
224  case Builtin::BI__sync_add_and_fetch:
225  case Builtin::BI__sync_add_and_fetch_1:
226  case Builtin::BI__sync_add_and_fetch_2:
227  case Builtin::BI__sync_add_and_fetch_4:
228  case Builtin::BI__sync_add_and_fetch_8:
229  case Builtin::BI__sync_add_and_fetch_16:
230  case Builtin::BI__sync_sub_and_fetch:
231  case Builtin::BI__sync_sub_and_fetch_1:
232  case Builtin::BI__sync_sub_and_fetch_2:
233  case Builtin::BI__sync_sub_and_fetch_4:
234  case Builtin::BI__sync_sub_and_fetch_8:
235  case Builtin::BI__sync_sub_and_fetch_16:
236  case Builtin::BI__sync_and_and_fetch:
237  case Builtin::BI__sync_and_and_fetch_1:
238  case Builtin::BI__sync_and_and_fetch_2:
239  case Builtin::BI__sync_and_and_fetch_4:
240  case Builtin::BI__sync_and_and_fetch_8:
241  case Builtin::BI__sync_and_and_fetch_16:
242  case Builtin::BI__sync_or_and_fetch:
243  case Builtin::BI__sync_or_and_fetch_1:
244  case Builtin::BI__sync_or_and_fetch_2:
245  case Builtin::BI__sync_or_and_fetch_4:
246  case Builtin::BI__sync_or_and_fetch_8:
247  case Builtin::BI__sync_or_and_fetch_16:
248  case Builtin::BI__sync_xor_and_fetch:
249  case Builtin::BI__sync_xor_and_fetch_1:
250  case Builtin::BI__sync_xor_and_fetch_2:
251  case Builtin::BI__sync_xor_and_fetch_4:
252  case Builtin::BI__sync_xor_and_fetch_8:
253  case Builtin::BI__sync_xor_and_fetch_16:
254  case Builtin::BI__sync_val_compare_and_swap:
255  case Builtin::BI__sync_val_compare_and_swap_1:
256  case Builtin::BI__sync_val_compare_and_swap_2:
257  case Builtin::BI__sync_val_compare_and_swap_4:
258  case Builtin::BI__sync_val_compare_and_swap_8:
259  case Builtin::BI__sync_val_compare_and_swap_16:
260  case Builtin::BI__sync_bool_compare_and_swap:
261  case Builtin::BI__sync_bool_compare_and_swap_1:
262  case Builtin::BI__sync_bool_compare_and_swap_2:
263  case Builtin::BI__sync_bool_compare_and_swap_4:
264  case Builtin::BI__sync_bool_compare_and_swap_8:
265  case Builtin::BI__sync_bool_compare_and_swap_16:
266  case Builtin::BI__sync_lock_test_and_set:
267  case Builtin::BI__sync_lock_test_and_set_1:
268  case Builtin::BI__sync_lock_test_and_set_2:
269  case Builtin::BI__sync_lock_test_and_set_4:
270  case Builtin::BI__sync_lock_test_and_set_8:
271  case Builtin::BI__sync_lock_test_and_set_16:
272  case Builtin::BI__sync_lock_release:
273  case Builtin::BI__sync_lock_release_1:
274  case Builtin::BI__sync_lock_release_2:
275  case Builtin::BI__sync_lock_release_4:
276  case Builtin::BI__sync_lock_release_8:
277  case Builtin::BI__sync_lock_release_16:
278  case Builtin::BI__sync_swap:
279  case Builtin::BI__sync_swap_1:
280  case Builtin::BI__sync_swap_2:
281  case Builtin::BI__sync_swap_4:
282  case Builtin::BI__sync_swap_8:
283  case Builtin::BI__sync_swap_16:
284    return SemaBuiltinAtomicOverloaded(TheCallResult);
285#define BUILTIN(ID, TYPE, ATTRS)
286#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
287  case Builtin::BI##ID: \
288    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
289#include "clang/Basic/Builtins.def"
290  case Builtin::BI__builtin_annotation:
291    if (SemaBuiltinAnnotation(*this, TheCall))
292      return ExprError();
293    break;
294  case Builtin::BI__builtin_addressof:
295    if (SemaBuiltinAddressof(*this, TheCall))
296      return ExprError();
297    break;
298  }
299
300  // Since the target specific builtins for each arch overlap, only check those
301  // of the arch we are compiling for.
302  if (BuiltinID >= Builtin::FirstTSBuiltin) {
303    switch (Context.getTargetInfo().getTriple().getArch()) {
304      case llvm::Triple::arm:
305      case llvm::Triple::thumb:
306        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
307          return ExprError();
308        break;
309      case llvm::Triple::aarch64:
310        if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
311          return ExprError();
312        break;
313      case llvm::Triple::mips:
314      case llvm::Triple::mipsel:
315      case llvm::Triple::mips64:
316      case llvm::Triple::mips64el:
317        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
318          return ExprError();
319        break;
320      default:
321        break;
322    }
323  }
324
325  return TheCallResult;
326}
327
328// Get the valid immediate range for the specified NEON type code.
329static unsigned RFT(unsigned t, bool shift = false) {
330  NeonTypeFlags Type(t);
331  int IsQuad = Type.isQuad();
332  switch (Type.getEltType()) {
333  case NeonTypeFlags::Int8:
334  case NeonTypeFlags::Poly8:
335    return shift ? 7 : (8 << IsQuad) - 1;
336  case NeonTypeFlags::Int16:
337  case NeonTypeFlags::Poly16:
338    return shift ? 15 : (4 << IsQuad) - 1;
339  case NeonTypeFlags::Int32:
340    return shift ? 31 : (2 << IsQuad) - 1;
341  case NeonTypeFlags::Int64:
342    return shift ? 63 : (1 << IsQuad) - 1;
343  case NeonTypeFlags::Float16:
344    assert(!shift && "cannot shift float types!");
345    return (4 << IsQuad) - 1;
346  case NeonTypeFlags::Float32:
347    assert(!shift && "cannot shift float types!");
348    return (2 << IsQuad) - 1;
349  case NeonTypeFlags::Float64:
350    assert(!shift && "cannot shift float types!");
351    return (1 << IsQuad) - 1;
352  }
353  llvm_unreachable("Invalid NeonTypeFlag!");
354}
355
356/// getNeonEltType - Return the QualType corresponding to the elements of
357/// the vector type specified by the NeonTypeFlags.  This is used to check
358/// the pointer arguments for Neon load/store intrinsics.
359static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
360  switch (Flags.getEltType()) {
361  case NeonTypeFlags::Int8:
362    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
363  case NeonTypeFlags::Int16:
364    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
365  case NeonTypeFlags::Int32:
366    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
367  case NeonTypeFlags::Int64:
368    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
369  case NeonTypeFlags::Poly8:
370    return Context.SignedCharTy;
371  case NeonTypeFlags::Poly16:
372    return Context.ShortTy;
373  case NeonTypeFlags::Float16:
374    return Context.UnsignedShortTy;
375  case NeonTypeFlags::Float32:
376    return Context.FloatTy;
377  case NeonTypeFlags::Float64:
378    return Context.DoubleTy;
379  }
380  llvm_unreachable("Invalid NeonTypeFlag!");
381}
382
383bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
384                                           CallExpr *TheCall) {
385
386  llvm::APSInt Result;
387
388  uint64_t mask = 0;
389  unsigned TV = 0;
390  int PtrArgNum = -1;
391  bool HasConstPtr = false;
392  switch (BuiltinID) {
393#define GET_NEON_AARCH64_OVERLOAD_CHECK
394#include "clang/Basic/arm_neon.inc"
395#undef GET_NEON_AARCH64_OVERLOAD_CHECK
396  }
397
398  // For NEON intrinsics which are overloaded on vector element type, validate
399  // the immediate which specifies which variant to emit.
400  unsigned ImmArg = TheCall->getNumArgs() - 1;
401  if (mask) {
402    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
403      return true;
404
405    TV = Result.getLimitedValue(64);
406    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
407      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
408             << TheCall->getArg(ImmArg)->getSourceRange();
409  }
410
411  if (PtrArgNum >= 0) {
412    // Check that pointer arguments have the specified type.
413    Expr *Arg = TheCall->getArg(PtrArgNum);
414    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
415      Arg = ICE->getSubExpr();
416    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
417    QualType RHSTy = RHS.get()->getType();
418    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
419    if (HasConstPtr)
420      EltTy = EltTy.withConst();
421    QualType LHSTy = Context.getPointerType(EltTy);
422    AssignConvertType ConvTy;
423    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
424    if (RHS.isInvalid())
425      return true;
426    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
427                                 RHS.get(), AA_Assigning))
428      return true;
429  }
430
431  // For NEON intrinsics which take an immediate value as part of the
432  // instruction, range check them here.
433  unsigned i = 0, l = 0, u = 0;
434  switch (BuiltinID) {
435  default:
436    return false;
437#define GET_NEON_AARCH64_IMMEDIATE_CHECK
438#include "clang/Basic/arm_neon.inc"
439#undef GET_NEON_AARCH64_IMMEDIATE_CHECK
440  }
441  ;
442
443  // We can't check the value of a dependent argument.
444  if (TheCall->getArg(i)->isTypeDependent() ||
445      TheCall->getArg(i)->isValueDependent())
446    return false;
447
448  // Check that the immediate argument is actually a constant.
449  if (SemaBuiltinConstantArg(TheCall, i, Result))
450    return true;
451
452  // Range check against the upper/lower values for this isntruction.
453  unsigned Val = Result.getZExtValue();
454  if (Val < l || Val > (u + l))
455    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
456           << l << u + l << TheCall->getArg(i)->getSourceRange();
457
458  return false;
459}
460
461bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall) {
462  assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
463          BuiltinID == ARM::BI__builtin_arm_strex) &&
464         "unexpected ARM builtin");
465  bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex;
466
467  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
468
469  // Ensure that we have the proper number of arguments.
470  if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
471    return true;
472
473  // Inspect the pointer argument of the atomic builtin.  This should always be
474  // a pointer type, whose element is an integral scalar or pointer type.
475  // Because it is a pointer type, we don't have to worry about any implicit
476  // casts here.
477  Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
478  ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
479  if (PointerArgRes.isInvalid())
480    return true;
481  PointerArg = PointerArgRes.take();
482
483  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
484  if (!pointerType) {
485    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
486      << PointerArg->getType() << PointerArg->getSourceRange();
487    return true;
488  }
489
490  // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
491  // task is to insert the appropriate casts into the AST. First work out just
492  // what the appropriate type is.
493  QualType ValType = pointerType->getPointeeType();
494  QualType AddrType = ValType.getUnqualifiedType().withVolatile();
495  if (IsLdrex)
496    AddrType.addConst();
497
498  // Issue a warning if the cast is dodgy.
499  CastKind CastNeeded = CK_NoOp;
500  if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
501    CastNeeded = CK_BitCast;
502    Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
503      << PointerArg->getType()
504      << Context.getPointerType(AddrType)
505      << AA_Passing << PointerArg->getSourceRange();
506  }
507
508  // Finally, do the cast and replace the argument with the corrected version.
509  AddrType = Context.getPointerType(AddrType);
510  PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
511  if (PointerArgRes.isInvalid())
512    return true;
513  PointerArg = PointerArgRes.take();
514
515  TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
516
517  // In general, we allow ints, floats and pointers to be loaded and stored.
518  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
519      !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
520    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
521      << PointerArg->getType() << PointerArg->getSourceRange();
522    return true;
523  }
524
525  // But ARM doesn't have instructions to deal with 128-bit versions.
526  if (Context.getTypeSize(ValType) > 64) {
527    Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
528      << PointerArg->getType() << PointerArg->getSourceRange();
529    return true;
530  }
531
532  switch (ValType.getObjCLifetime()) {
533  case Qualifiers::OCL_None:
534  case Qualifiers::OCL_ExplicitNone:
535    // okay
536    break;
537
538  case Qualifiers::OCL_Weak:
539  case Qualifiers::OCL_Strong:
540  case Qualifiers::OCL_Autoreleasing:
541    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
542      << ValType << PointerArg->getSourceRange();
543    return true;
544  }
545
546
547  if (IsLdrex) {
548    TheCall->setType(ValType);
549    return false;
550  }
551
552  // Initialize the argument to be stored.
553  ExprResult ValArg = TheCall->getArg(0);
554  InitializedEntity Entity = InitializedEntity::InitializeParameter(
555      Context, ValType, /*consume*/ false);
556  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
557  if (ValArg.isInvalid())
558    return true;
559
560  TheCall->setArg(0, ValArg.get());
561  return false;
562}
563
564bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
565  llvm::APSInt Result;
566
567  if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
568      BuiltinID == ARM::BI__builtin_arm_strex) {
569    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall);
570  }
571
572  uint64_t mask = 0;
573  unsigned TV = 0;
574  int PtrArgNum = -1;
575  bool HasConstPtr = false;
576  switch (BuiltinID) {
577#define GET_NEON_OVERLOAD_CHECK
578#include "clang/Basic/arm_neon.inc"
579#undef GET_NEON_OVERLOAD_CHECK
580  }
581
582  // For NEON intrinsics which are overloaded on vector element type, validate
583  // the immediate which specifies which variant to emit.
584  unsigned ImmArg = TheCall->getNumArgs()-1;
585  if (mask) {
586    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
587      return true;
588
589    TV = Result.getLimitedValue(64);
590    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
591      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
592        << TheCall->getArg(ImmArg)->getSourceRange();
593  }
594
595  if (PtrArgNum >= 0) {
596    // Check that pointer arguments have the specified type.
597    Expr *Arg = TheCall->getArg(PtrArgNum);
598    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
599      Arg = ICE->getSubExpr();
600    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
601    QualType RHSTy = RHS.get()->getType();
602    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
603    if (HasConstPtr)
604      EltTy = EltTy.withConst();
605    QualType LHSTy = Context.getPointerType(EltTy);
606    AssignConvertType ConvTy;
607    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
608    if (RHS.isInvalid())
609      return true;
610    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
611                                 RHS.get(), AA_Assigning))
612      return true;
613  }
614
615  // For NEON intrinsics which take an immediate value as part of the
616  // instruction, range check them here.
617  unsigned i = 0, l = 0, u = 0;
618  switch (BuiltinID) {
619  default: return false;
620  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
621  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
622  case ARM::BI__builtin_arm_vcvtr_f:
623  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
624#define GET_NEON_IMMEDIATE_CHECK
625#include "clang/Basic/arm_neon.inc"
626#undef GET_NEON_IMMEDIATE_CHECK
627  };
628
629  // We can't check the value of a dependent argument.
630  if (TheCall->getArg(i)->isTypeDependent() ||
631      TheCall->getArg(i)->isValueDependent())
632    return false;
633
634  // Check that the immediate argument is actually a constant.
635  if (SemaBuiltinConstantArg(TheCall, i, Result))
636    return true;
637
638  // Range check against the upper/lower values for this isntruction.
639  unsigned Val = Result.getZExtValue();
640  if (Val < l || Val > (u + l))
641    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
642      << l << u+l << TheCall->getArg(i)->getSourceRange();
643
644  // FIXME: VFP Intrinsics should error if VFP not present.
645  return false;
646}
647
648bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
649  unsigned i = 0, l = 0, u = 0;
650  switch (BuiltinID) {
651  default: return false;
652  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
653  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
654  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
655  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
656  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
657  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
658  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
659  };
660
661  // We can't check the value of a dependent argument.
662  if (TheCall->getArg(i)->isTypeDependent() ||
663      TheCall->getArg(i)->isValueDependent())
664    return false;
665
666  // Check that the immediate argument is actually a constant.
667  llvm::APSInt Result;
668  if (SemaBuiltinConstantArg(TheCall, i, Result))
669    return true;
670
671  // Range check against the upper/lower values for this instruction.
672  unsigned Val = Result.getZExtValue();
673  if (Val < l || Val > u)
674    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
675      << l << u << TheCall->getArg(i)->getSourceRange();
676
677  return false;
678}
679
680/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
681/// parameter with the FormatAttr's correct format_idx and firstDataArg.
682/// Returns true when the format fits the function and the FormatStringInfo has
683/// been populated.
684bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
685                               FormatStringInfo *FSI) {
686  FSI->HasVAListArg = Format->getFirstArg() == 0;
687  FSI->FormatIdx = Format->getFormatIdx() - 1;
688  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
689
690  // The way the format attribute works in GCC, the implicit this argument
691  // of member functions is counted. However, it doesn't appear in our own
692  // lists, so decrement format_idx in that case.
693  if (IsCXXMember) {
694    if(FSI->FormatIdx == 0)
695      return false;
696    --FSI->FormatIdx;
697    if (FSI->FirstDataArg != 0)
698      --FSI->FirstDataArg;
699  }
700  return true;
701}
702
703/// Handles the checks for format strings, non-POD arguments to vararg
704/// functions, and NULL arguments passed to non-NULL parameters.
705void Sema::checkCall(NamedDecl *FDecl,
706                     ArrayRef<const Expr *> Args,
707                     unsigned NumProtoArgs,
708                     bool IsMemberFunction,
709                     SourceLocation Loc,
710                     SourceRange Range,
711                     VariadicCallType CallType) {
712  // FIXME: We should check as much as we can in the template definition.
713  if (CurContext->isDependentContext())
714    return;
715
716  // Printf and scanf checking.
717  llvm::SmallBitVector CheckedVarArgs;
718  if (FDecl) {
719    CheckedVarArgs.resize(Args.size());
720    for (specific_attr_iterator<FormatAttr>
721             I = FDecl->specific_attr_begin<FormatAttr>(),
722             E = FDecl->specific_attr_end<FormatAttr>();
723         I != E; ++I)
724      CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range,
725                           CheckedVarArgs);
726  }
727
728  // Refuse POD arguments that weren't caught by the format string
729  // checks above.
730  if (CallType != VariadicDoesNotApply) {
731    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
732      // Args[ArgIdx] can be null in malformed code.
733      if (const Expr *Arg = Args[ArgIdx]) {
734        if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
735          checkVariadicArgument(Arg, CallType);
736      }
737    }
738  }
739
740  if (FDecl) {
741    for (specific_attr_iterator<NonNullAttr>
742           I = FDecl->specific_attr_begin<NonNullAttr>(),
743           E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
744      CheckNonNullArguments(*I, Args.data(), Loc);
745
746    // Type safety checking.
747    for (specific_attr_iterator<ArgumentWithTypeTagAttr>
748           i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
749           e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>();
750         i != e; ++i) {
751      CheckArgumentWithTypeTag(*i, Args.data());
752    }
753  }
754}
755
756/// CheckConstructorCall - Check a constructor call for correctness and safety
757/// properties not enforced by the C type system.
758void Sema::CheckConstructorCall(FunctionDecl *FDecl,
759                                ArrayRef<const Expr *> Args,
760                                const FunctionProtoType *Proto,
761                                SourceLocation Loc) {
762  VariadicCallType CallType =
763    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
764  checkCall(FDecl, Args, Proto->getNumArgs(),
765            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
766}
767
768/// CheckFunctionCall - Check a direct function call for various correctness
769/// and safety properties not strictly enforced by the C type system.
770bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
771                             const FunctionProtoType *Proto) {
772  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
773                              isa<CXXMethodDecl>(FDecl);
774  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
775                          IsMemberOperatorCall;
776  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
777                                                  TheCall->getCallee());
778  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
779  Expr** Args = TheCall->getArgs();
780  unsigned NumArgs = TheCall->getNumArgs();
781  if (IsMemberOperatorCall) {
782    // If this is a call to a member operator, hide the first argument
783    // from checkCall.
784    // FIXME: Our choice of AST representation here is less than ideal.
785    ++Args;
786    --NumArgs;
787  }
788  checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
789            NumProtoArgs,
790            IsMemberFunction, TheCall->getRParenLoc(),
791            TheCall->getCallee()->getSourceRange(), CallType);
792
793  IdentifierInfo *FnInfo = FDecl->getIdentifier();
794  // None of the checks below are needed for functions that don't have
795  // simple names (e.g., C++ conversion functions).
796  if (!FnInfo)
797    return false;
798
799  unsigned CMId = FDecl->getMemoryFunctionKind();
800  if (CMId == 0)
801    return false;
802
803  // Handle memory setting and copying functions.
804  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
805    CheckStrlcpycatArguments(TheCall, FnInfo);
806  else if (CMId == Builtin::BIstrncat)
807    CheckStrncatArguments(TheCall, FnInfo);
808  else
809    CheckMemaccessArguments(TheCall, CMId, FnInfo);
810
811  return false;
812}
813
814bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
815                               ArrayRef<const Expr *> Args) {
816  VariadicCallType CallType =
817      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
818
819  checkCall(Method, Args, Method->param_size(),
820            /*IsMemberFunction=*/false,
821            lbrac, Method->getSourceRange(), CallType);
822
823  return false;
824}
825
826bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
827                            const FunctionProtoType *Proto) {
828  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
829  if (!V)
830    return false;
831
832  QualType Ty = V->getType();
833  if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
834    return false;
835
836  VariadicCallType CallType;
837  if (!Proto || !Proto->isVariadic()) {
838    CallType = VariadicDoesNotApply;
839  } else if (Ty->isBlockPointerType()) {
840    CallType = VariadicBlock;
841  } else { // Ty->isFunctionPointerType()
842    CallType = VariadicFunction;
843  }
844  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
845
846  checkCall(NDecl,
847            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
848                                             TheCall->getNumArgs()),
849            NumProtoArgs, /*IsMemberFunction=*/false,
850            TheCall->getRParenLoc(),
851            TheCall->getCallee()->getSourceRange(), CallType);
852
853  return false;
854}
855
856/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
857/// such as function pointers returned from functions.
858bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
859  VariadicCallType CallType = getVariadicCallType(/*FDecl=*/0, Proto,
860                                                  TheCall->getCallee());
861  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
862
863  checkCall(/*FDecl=*/0,
864            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
865                                             TheCall->getNumArgs()),
866            NumProtoArgs, /*IsMemberFunction=*/false,
867            TheCall->getRParenLoc(),
868            TheCall->getCallee()->getSourceRange(), CallType);
869
870  return false;
871}
872
873ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
874                                         AtomicExpr::AtomicOp Op) {
875  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
876  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
877
878  // All these operations take one of the following forms:
879  enum {
880    // C    __c11_atomic_init(A *, C)
881    Init,
882    // C    __c11_atomic_load(A *, int)
883    Load,
884    // void __atomic_load(A *, CP, int)
885    Copy,
886    // C    __c11_atomic_add(A *, M, int)
887    Arithmetic,
888    // C    __atomic_exchange_n(A *, CP, int)
889    Xchg,
890    // void __atomic_exchange(A *, C *, CP, int)
891    GNUXchg,
892    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
893    C11CmpXchg,
894    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
895    GNUCmpXchg
896  } Form = Init;
897  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
898  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
899  // where:
900  //   C is an appropriate type,
901  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
902  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
903  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
904  //   the int parameters are for orderings.
905
906  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
907         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
908         && "need to update code for modified C11 atomics");
909  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
910               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
911  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
912             Op == AtomicExpr::AO__atomic_store_n ||
913             Op == AtomicExpr::AO__atomic_exchange_n ||
914             Op == AtomicExpr::AO__atomic_compare_exchange_n;
915  bool IsAddSub = false;
916
917  switch (Op) {
918  case AtomicExpr::AO__c11_atomic_init:
919    Form = Init;
920    break;
921
922  case AtomicExpr::AO__c11_atomic_load:
923  case AtomicExpr::AO__atomic_load_n:
924    Form = Load;
925    break;
926
927  case AtomicExpr::AO__c11_atomic_store:
928  case AtomicExpr::AO__atomic_load:
929  case AtomicExpr::AO__atomic_store:
930  case AtomicExpr::AO__atomic_store_n:
931    Form = Copy;
932    break;
933
934  case AtomicExpr::AO__c11_atomic_fetch_add:
935  case AtomicExpr::AO__c11_atomic_fetch_sub:
936  case AtomicExpr::AO__atomic_fetch_add:
937  case AtomicExpr::AO__atomic_fetch_sub:
938  case AtomicExpr::AO__atomic_add_fetch:
939  case AtomicExpr::AO__atomic_sub_fetch:
940    IsAddSub = true;
941    // Fall through.
942  case AtomicExpr::AO__c11_atomic_fetch_and:
943  case AtomicExpr::AO__c11_atomic_fetch_or:
944  case AtomicExpr::AO__c11_atomic_fetch_xor:
945  case AtomicExpr::AO__atomic_fetch_and:
946  case AtomicExpr::AO__atomic_fetch_or:
947  case AtomicExpr::AO__atomic_fetch_xor:
948  case AtomicExpr::AO__atomic_fetch_nand:
949  case AtomicExpr::AO__atomic_and_fetch:
950  case AtomicExpr::AO__atomic_or_fetch:
951  case AtomicExpr::AO__atomic_xor_fetch:
952  case AtomicExpr::AO__atomic_nand_fetch:
953    Form = Arithmetic;
954    break;
955
956  case AtomicExpr::AO__c11_atomic_exchange:
957  case AtomicExpr::AO__atomic_exchange_n:
958    Form = Xchg;
959    break;
960
961  case AtomicExpr::AO__atomic_exchange:
962    Form = GNUXchg;
963    break;
964
965  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
966  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
967    Form = C11CmpXchg;
968    break;
969
970  case AtomicExpr::AO__atomic_compare_exchange:
971  case AtomicExpr::AO__atomic_compare_exchange_n:
972    Form = GNUCmpXchg;
973    break;
974  }
975
976  // Check we have the right number of arguments.
977  if (TheCall->getNumArgs() < NumArgs[Form]) {
978    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
979      << 0 << NumArgs[Form] << TheCall->getNumArgs()
980      << TheCall->getCallee()->getSourceRange();
981    return ExprError();
982  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
983    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
984         diag::err_typecheck_call_too_many_args)
985      << 0 << NumArgs[Form] << TheCall->getNumArgs()
986      << TheCall->getCallee()->getSourceRange();
987    return ExprError();
988  }
989
990  // Inspect the first argument of the atomic operation.
991  Expr *Ptr = TheCall->getArg(0);
992  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
993  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
994  if (!pointerType) {
995    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
996      << Ptr->getType() << Ptr->getSourceRange();
997    return ExprError();
998  }
999
1000  // For a __c11 builtin, this should be a pointer to an _Atomic type.
1001  QualType AtomTy = pointerType->getPointeeType(); // 'A'
1002  QualType ValType = AtomTy; // 'C'
1003  if (IsC11) {
1004    if (!AtomTy->isAtomicType()) {
1005      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1006        << Ptr->getType() << Ptr->getSourceRange();
1007      return ExprError();
1008    }
1009    if (AtomTy.isConstQualified()) {
1010      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1011        << Ptr->getType() << Ptr->getSourceRange();
1012      return ExprError();
1013    }
1014    ValType = AtomTy->getAs<AtomicType>()->getValueType();
1015  }
1016
1017  // For an arithmetic operation, the implied arithmetic must be well-formed.
1018  if (Form == Arithmetic) {
1019    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1020    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1021      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1022        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1023      return ExprError();
1024    }
1025    if (!IsAddSub && !ValType->isIntegerType()) {
1026      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1027        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1028      return ExprError();
1029    }
1030  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1031    // For __atomic_*_n operations, the value type must be a scalar integral or
1032    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1033    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1034      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1035    return ExprError();
1036  }
1037
1038  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
1039    // For GNU atomics, require a trivially-copyable type. This is not part of
1040    // the GNU atomics specification, but we enforce it for sanity.
1041    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1042      << Ptr->getType() << Ptr->getSourceRange();
1043    return ExprError();
1044  }
1045
1046  // FIXME: For any builtin other than a load, the ValType must not be
1047  // const-qualified.
1048
1049  switch (ValType.getObjCLifetime()) {
1050  case Qualifiers::OCL_None:
1051  case Qualifiers::OCL_ExplicitNone:
1052    // okay
1053    break;
1054
1055  case Qualifiers::OCL_Weak:
1056  case Qualifiers::OCL_Strong:
1057  case Qualifiers::OCL_Autoreleasing:
1058    // FIXME: Can this happen? By this point, ValType should be known
1059    // to be trivially copyable.
1060    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1061      << ValType << Ptr->getSourceRange();
1062    return ExprError();
1063  }
1064
1065  QualType ResultType = ValType;
1066  if (Form == Copy || Form == GNUXchg || Form == Init)
1067    ResultType = Context.VoidTy;
1068  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1069    ResultType = Context.BoolTy;
1070
1071  // The type of a parameter passed 'by value'. In the GNU atomics, such
1072  // arguments are actually passed as pointers.
1073  QualType ByValType = ValType; // 'CP'
1074  if (!IsC11 && !IsN)
1075    ByValType = Ptr->getType();
1076
1077  // The first argument --- the pointer --- has a fixed type; we
1078  // deduce the types of the rest of the arguments accordingly.  Walk
1079  // the remaining arguments, converting them to the deduced value type.
1080  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1081    QualType Ty;
1082    if (i < NumVals[Form] + 1) {
1083      switch (i) {
1084      case 1:
1085        // The second argument is the non-atomic operand. For arithmetic, this
1086        // is always passed by value, and for a compare_exchange it is always
1087        // passed by address. For the rest, GNU uses by-address and C11 uses
1088        // by-value.
1089        assert(Form != Load);
1090        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1091          Ty = ValType;
1092        else if (Form == Copy || Form == Xchg)
1093          Ty = ByValType;
1094        else if (Form == Arithmetic)
1095          Ty = Context.getPointerDiffType();
1096        else
1097          Ty = Context.getPointerType(ValType.getUnqualifiedType());
1098        break;
1099      case 2:
1100        // The third argument to compare_exchange / GNU exchange is a
1101        // (pointer to a) desired value.
1102        Ty = ByValType;
1103        break;
1104      case 3:
1105        // The fourth argument to GNU compare_exchange is a 'weak' flag.
1106        Ty = Context.BoolTy;
1107        break;
1108      }
1109    } else {
1110      // The order(s) are always converted to int.
1111      Ty = Context.IntTy;
1112    }
1113
1114    InitializedEntity Entity =
1115        InitializedEntity::InitializeParameter(Context, Ty, false);
1116    ExprResult Arg = TheCall->getArg(i);
1117    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1118    if (Arg.isInvalid())
1119      return true;
1120    TheCall->setArg(i, Arg.get());
1121  }
1122
1123  // Permute the arguments into a 'consistent' order.
1124  SmallVector<Expr*, 5> SubExprs;
1125  SubExprs.push_back(Ptr);
1126  switch (Form) {
1127  case Init:
1128    // Note, AtomicExpr::getVal1() has a special case for this atomic.
1129    SubExprs.push_back(TheCall->getArg(1)); // Val1
1130    break;
1131  case Load:
1132    SubExprs.push_back(TheCall->getArg(1)); // Order
1133    break;
1134  case Copy:
1135  case Arithmetic:
1136  case Xchg:
1137    SubExprs.push_back(TheCall->getArg(2)); // Order
1138    SubExprs.push_back(TheCall->getArg(1)); // Val1
1139    break;
1140  case GNUXchg:
1141    // Note, AtomicExpr::getVal2() has a special case for this atomic.
1142    SubExprs.push_back(TheCall->getArg(3)); // Order
1143    SubExprs.push_back(TheCall->getArg(1)); // Val1
1144    SubExprs.push_back(TheCall->getArg(2)); // Val2
1145    break;
1146  case C11CmpXchg:
1147    SubExprs.push_back(TheCall->getArg(3)); // Order
1148    SubExprs.push_back(TheCall->getArg(1)); // Val1
1149    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1150    SubExprs.push_back(TheCall->getArg(2)); // Val2
1151    break;
1152  case GNUCmpXchg:
1153    SubExprs.push_back(TheCall->getArg(4)); // Order
1154    SubExprs.push_back(TheCall->getArg(1)); // Val1
1155    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1156    SubExprs.push_back(TheCall->getArg(2)); // Val2
1157    SubExprs.push_back(TheCall->getArg(3)); // Weak
1158    break;
1159  }
1160
1161  AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1162                                            SubExprs, ResultType, Op,
1163                                            TheCall->getRParenLoc());
1164
1165  if ((Op == AtomicExpr::AO__c11_atomic_load ||
1166       (Op == AtomicExpr::AO__c11_atomic_store)) &&
1167      Context.AtomicUsesUnsupportedLibcall(AE))
1168    Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1169    ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1170
1171  return Owned(AE);
1172}
1173
1174
1175/// checkBuiltinArgument - Given a call to a builtin function, perform
1176/// normal type-checking on the given argument, updating the call in
1177/// place.  This is useful when a builtin function requires custom
1178/// type-checking for some of its arguments but not necessarily all of
1179/// them.
1180///
1181/// Returns true on error.
1182static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1183  FunctionDecl *Fn = E->getDirectCallee();
1184  assert(Fn && "builtin call without direct callee!");
1185
1186  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1187  InitializedEntity Entity =
1188    InitializedEntity::InitializeParameter(S.Context, Param);
1189
1190  ExprResult Arg = E->getArg(0);
1191  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1192  if (Arg.isInvalid())
1193    return true;
1194
1195  E->setArg(ArgIndex, Arg.take());
1196  return false;
1197}
1198
1199/// SemaBuiltinAtomicOverloaded - We have a call to a function like
1200/// __sync_fetch_and_add, which is an overloaded function based on the pointer
1201/// type of its first argument.  The main ActOnCallExpr routines have already
1202/// promoted the types of arguments because all of these calls are prototyped as
1203/// void(...).
1204///
1205/// This function goes through and does final semantic checking for these
1206/// builtins,
1207ExprResult
1208Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1209  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1210  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1211  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1212
1213  // Ensure that we have at least one argument to do type inference from.
1214  if (TheCall->getNumArgs() < 1) {
1215    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1216      << 0 << 1 << TheCall->getNumArgs()
1217      << TheCall->getCallee()->getSourceRange();
1218    return ExprError();
1219  }
1220
1221  // Inspect the first argument of the atomic builtin.  This should always be
1222  // a pointer type, whose element is an integral scalar or pointer type.
1223  // Because it is a pointer type, we don't have to worry about any implicit
1224  // casts here.
1225  // FIXME: We don't allow floating point scalars as input.
1226  Expr *FirstArg = TheCall->getArg(0);
1227  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1228  if (FirstArgResult.isInvalid())
1229    return ExprError();
1230  FirstArg = FirstArgResult.take();
1231  TheCall->setArg(0, FirstArg);
1232
1233  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1234  if (!pointerType) {
1235    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1236      << FirstArg->getType() << FirstArg->getSourceRange();
1237    return ExprError();
1238  }
1239
1240  QualType ValType = pointerType->getPointeeType();
1241  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1242      !ValType->isBlockPointerType()) {
1243    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1244      << FirstArg->getType() << FirstArg->getSourceRange();
1245    return ExprError();
1246  }
1247
1248  switch (ValType.getObjCLifetime()) {
1249  case Qualifiers::OCL_None:
1250  case Qualifiers::OCL_ExplicitNone:
1251    // okay
1252    break;
1253
1254  case Qualifiers::OCL_Weak:
1255  case Qualifiers::OCL_Strong:
1256  case Qualifiers::OCL_Autoreleasing:
1257    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1258      << ValType << FirstArg->getSourceRange();
1259    return ExprError();
1260  }
1261
1262  // Strip any qualifiers off ValType.
1263  ValType = ValType.getUnqualifiedType();
1264
1265  // The majority of builtins return a value, but a few have special return
1266  // types, so allow them to override appropriately below.
1267  QualType ResultType = ValType;
1268
1269  // We need to figure out which concrete builtin this maps onto.  For example,
1270  // __sync_fetch_and_add with a 2 byte object turns into
1271  // __sync_fetch_and_add_2.
1272#define BUILTIN_ROW(x) \
1273  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1274    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1275
1276  static const unsigned BuiltinIndices[][5] = {
1277    BUILTIN_ROW(__sync_fetch_and_add),
1278    BUILTIN_ROW(__sync_fetch_and_sub),
1279    BUILTIN_ROW(__sync_fetch_and_or),
1280    BUILTIN_ROW(__sync_fetch_and_and),
1281    BUILTIN_ROW(__sync_fetch_and_xor),
1282
1283    BUILTIN_ROW(__sync_add_and_fetch),
1284    BUILTIN_ROW(__sync_sub_and_fetch),
1285    BUILTIN_ROW(__sync_and_and_fetch),
1286    BUILTIN_ROW(__sync_or_and_fetch),
1287    BUILTIN_ROW(__sync_xor_and_fetch),
1288
1289    BUILTIN_ROW(__sync_val_compare_and_swap),
1290    BUILTIN_ROW(__sync_bool_compare_and_swap),
1291    BUILTIN_ROW(__sync_lock_test_and_set),
1292    BUILTIN_ROW(__sync_lock_release),
1293    BUILTIN_ROW(__sync_swap)
1294  };
1295#undef BUILTIN_ROW
1296
1297  // Determine the index of the size.
1298  unsigned SizeIndex;
1299  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1300  case 1: SizeIndex = 0; break;
1301  case 2: SizeIndex = 1; break;
1302  case 4: SizeIndex = 2; break;
1303  case 8: SizeIndex = 3; break;
1304  case 16: SizeIndex = 4; break;
1305  default:
1306    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1307      << FirstArg->getType() << FirstArg->getSourceRange();
1308    return ExprError();
1309  }
1310
1311  // Each of these builtins has one pointer argument, followed by some number of
1312  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1313  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1314  // as the number of fixed args.
1315  unsigned BuiltinID = FDecl->getBuiltinID();
1316  unsigned BuiltinIndex, NumFixed = 1;
1317  switch (BuiltinID) {
1318  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1319  case Builtin::BI__sync_fetch_and_add:
1320  case Builtin::BI__sync_fetch_and_add_1:
1321  case Builtin::BI__sync_fetch_and_add_2:
1322  case Builtin::BI__sync_fetch_and_add_4:
1323  case Builtin::BI__sync_fetch_and_add_8:
1324  case Builtin::BI__sync_fetch_and_add_16:
1325    BuiltinIndex = 0;
1326    break;
1327
1328  case Builtin::BI__sync_fetch_and_sub:
1329  case Builtin::BI__sync_fetch_and_sub_1:
1330  case Builtin::BI__sync_fetch_and_sub_2:
1331  case Builtin::BI__sync_fetch_and_sub_4:
1332  case Builtin::BI__sync_fetch_and_sub_8:
1333  case Builtin::BI__sync_fetch_and_sub_16:
1334    BuiltinIndex = 1;
1335    break;
1336
1337  case Builtin::BI__sync_fetch_and_or:
1338  case Builtin::BI__sync_fetch_and_or_1:
1339  case Builtin::BI__sync_fetch_and_or_2:
1340  case Builtin::BI__sync_fetch_and_or_4:
1341  case Builtin::BI__sync_fetch_and_or_8:
1342  case Builtin::BI__sync_fetch_and_or_16:
1343    BuiltinIndex = 2;
1344    break;
1345
1346  case Builtin::BI__sync_fetch_and_and:
1347  case Builtin::BI__sync_fetch_and_and_1:
1348  case Builtin::BI__sync_fetch_and_and_2:
1349  case Builtin::BI__sync_fetch_and_and_4:
1350  case Builtin::BI__sync_fetch_and_and_8:
1351  case Builtin::BI__sync_fetch_and_and_16:
1352    BuiltinIndex = 3;
1353    break;
1354
1355  case Builtin::BI__sync_fetch_and_xor:
1356  case Builtin::BI__sync_fetch_and_xor_1:
1357  case Builtin::BI__sync_fetch_and_xor_2:
1358  case Builtin::BI__sync_fetch_and_xor_4:
1359  case Builtin::BI__sync_fetch_and_xor_8:
1360  case Builtin::BI__sync_fetch_and_xor_16:
1361    BuiltinIndex = 4;
1362    break;
1363
1364  case Builtin::BI__sync_add_and_fetch:
1365  case Builtin::BI__sync_add_and_fetch_1:
1366  case Builtin::BI__sync_add_and_fetch_2:
1367  case Builtin::BI__sync_add_and_fetch_4:
1368  case Builtin::BI__sync_add_and_fetch_8:
1369  case Builtin::BI__sync_add_and_fetch_16:
1370    BuiltinIndex = 5;
1371    break;
1372
1373  case Builtin::BI__sync_sub_and_fetch:
1374  case Builtin::BI__sync_sub_and_fetch_1:
1375  case Builtin::BI__sync_sub_and_fetch_2:
1376  case Builtin::BI__sync_sub_and_fetch_4:
1377  case Builtin::BI__sync_sub_and_fetch_8:
1378  case Builtin::BI__sync_sub_and_fetch_16:
1379    BuiltinIndex = 6;
1380    break;
1381
1382  case Builtin::BI__sync_and_and_fetch:
1383  case Builtin::BI__sync_and_and_fetch_1:
1384  case Builtin::BI__sync_and_and_fetch_2:
1385  case Builtin::BI__sync_and_and_fetch_4:
1386  case Builtin::BI__sync_and_and_fetch_8:
1387  case Builtin::BI__sync_and_and_fetch_16:
1388    BuiltinIndex = 7;
1389    break;
1390
1391  case Builtin::BI__sync_or_and_fetch:
1392  case Builtin::BI__sync_or_and_fetch_1:
1393  case Builtin::BI__sync_or_and_fetch_2:
1394  case Builtin::BI__sync_or_and_fetch_4:
1395  case Builtin::BI__sync_or_and_fetch_8:
1396  case Builtin::BI__sync_or_and_fetch_16:
1397    BuiltinIndex = 8;
1398    break;
1399
1400  case Builtin::BI__sync_xor_and_fetch:
1401  case Builtin::BI__sync_xor_and_fetch_1:
1402  case Builtin::BI__sync_xor_and_fetch_2:
1403  case Builtin::BI__sync_xor_and_fetch_4:
1404  case Builtin::BI__sync_xor_and_fetch_8:
1405  case Builtin::BI__sync_xor_and_fetch_16:
1406    BuiltinIndex = 9;
1407    break;
1408
1409  case Builtin::BI__sync_val_compare_and_swap:
1410  case Builtin::BI__sync_val_compare_and_swap_1:
1411  case Builtin::BI__sync_val_compare_and_swap_2:
1412  case Builtin::BI__sync_val_compare_and_swap_4:
1413  case Builtin::BI__sync_val_compare_and_swap_8:
1414  case Builtin::BI__sync_val_compare_and_swap_16:
1415    BuiltinIndex = 10;
1416    NumFixed = 2;
1417    break;
1418
1419  case Builtin::BI__sync_bool_compare_and_swap:
1420  case Builtin::BI__sync_bool_compare_and_swap_1:
1421  case Builtin::BI__sync_bool_compare_and_swap_2:
1422  case Builtin::BI__sync_bool_compare_and_swap_4:
1423  case Builtin::BI__sync_bool_compare_and_swap_8:
1424  case Builtin::BI__sync_bool_compare_and_swap_16:
1425    BuiltinIndex = 11;
1426    NumFixed = 2;
1427    ResultType = Context.BoolTy;
1428    break;
1429
1430  case Builtin::BI__sync_lock_test_and_set:
1431  case Builtin::BI__sync_lock_test_and_set_1:
1432  case Builtin::BI__sync_lock_test_and_set_2:
1433  case Builtin::BI__sync_lock_test_and_set_4:
1434  case Builtin::BI__sync_lock_test_and_set_8:
1435  case Builtin::BI__sync_lock_test_and_set_16:
1436    BuiltinIndex = 12;
1437    break;
1438
1439  case Builtin::BI__sync_lock_release:
1440  case Builtin::BI__sync_lock_release_1:
1441  case Builtin::BI__sync_lock_release_2:
1442  case Builtin::BI__sync_lock_release_4:
1443  case Builtin::BI__sync_lock_release_8:
1444  case Builtin::BI__sync_lock_release_16:
1445    BuiltinIndex = 13;
1446    NumFixed = 0;
1447    ResultType = Context.VoidTy;
1448    break;
1449
1450  case Builtin::BI__sync_swap:
1451  case Builtin::BI__sync_swap_1:
1452  case Builtin::BI__sync_swap_2:
1453  case Builtin::BI__sync_swap_4:
1454  case Builtin::BI__sync_swap_8:
1455  case Builtin::BI__sync_swap_16:
1456    BuiltinIndex = 14;
1457    break;
1458  }
1459
1460  // Now that we know how many fixed arguments we expect, first check that we
1461  // have at least that many.
1462  if (TheCall->getNumArgs() < 1+NumFixed) {
1463    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1464      << 0 << 1+NumFixed << TheCall->getNumArgs()
1465      << TheCall->getCallee()->getSourceRange();
1466    return ExprError();
1467  }
1468
1469  // Get the decl for the concrete builtin from this, we can tell what the
1470  // concrete integer type we should convert to is.
1471  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1472  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1473  FunctionDecl *NewBuiltinDecl;
1474  if (NewBuiltinID == BuiltinID)
1475    NewBuiltinDecl = FDecl;
1476  else {
1477    // Perform builtin lookup to avoid redeclaring it.
1478    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1479    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1480    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1481    assert(Res.getFoundDecl());
1482    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1483    if (NewBuiltinDecl == 0)
1484      return ExprError();
1485  }
1486
1487  // The first argument --- the pointer --- has a fixed type; we
1488  // deduce the types of the rest of the arguments accordingly.  Walk
1489  // the remaining arguments, converting them to the deduced value type.
1490  for (unsigned i = 0; i != NumFixed; ++i) {
1491    ExprResult Arg = TheCall->getArg(i+1);
1492
1493    // GCC does an implicit conversion to the pointer or integer ValType.  This
1494    // can fail in some cases (1i -> int**), check for this error case now.
1495    // Initialize the argument.
1496    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1497                                                   ValType, /*consume*/ false);
1498    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1499    if (Arg.isInvalid())
1500      return ExprError();
1501
1502    // Okay, we have something that *can* be converted to the right type.  Check
1503    // to see if there is a potentially weird extension going on here.  This can
1504    // happen when you do an atomic operation on something like an char* and
1505    // pass in 42.  The 42 gets converted to char.  This is even more strange
1506    // for things like 45.123 -> char, etc.
1507    // FIXME: Do this check.
1508    TheCall->setArg(i+1, Arg.take());
1509  }
1510
1511  ASTContext& Context = this->getASTContext();
1512
1513  // Create a new DeclRefExpr to refer to the new decl.
1514  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1515      Context,
1516      DRE->getQualifierLoc(),
1517      SourceLocation(),
1518      NewBuiltinDecl,
1519      /*enclosing*/ false,
1520      DRE->getLocation(),
1521      Context.BuiltinFnTy,
1522      DRE->getValueKind());
1523
1524  // Set the callee in the CallExpr.
1525  // FIXME: This loses syntactic information.
1526  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1527  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1528                                              CK_BuiltinFnToFnPtr);
1529  TheCall->setCallee(PromotedCall.take());
1530
1531  // Change the result type of the call to match the original value type. This
1532  // is arbitrary, but the codegen for these builtins ins design to handle it
1533  // gracefully.
1534  TheCall->setType(ResultType);
1535
1536  return TheCallResult;
1537}
1538
1539/// CheckObjCString - Checks that the argument to the builtin
1540/// CFString constructor is correct
1541/// Note: It might also make sense to do the UTF-16 conversion here (would
1542/// simplify the backend).
1543bool Sema::CheckObjCString(Expr *Arg) {
1544  Arg = Arg->IgnoreParenCasts();
1545  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1546
1547  if (!Literal || !Literal->isAscii()) {
1548    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1549      << Arg->getSourceRange();
1550    return true;
1551  }
1552
1553  if (Literal->containsNonAsciiOrNull()) {
1554    StringRef String = Literal->getString();
1555    unsigned NumBytes = String.size();
1556    SmallVector<UTF16, 128> ToBuf(NumBytes);
1557    const UTF8 *FromPtr = (const UTF8 *)String.data();
1558    UTF16 *ToPtr = &ToBuf[0];
1559
1560    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1561                                                 &ToPtr, ToPtr + NumBytes,
1562                                                 strictConversion);
1563    // Check for conversion failure.
1564    if (Result != conversionOK)
1565      Diag(Arg->getLocStart(),
1566           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1567  }
1568  return false;
1569}
1570
1571/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1572/// Emit an error and return true on failure, return false on success.
1573bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1574  Expr *Fn = TheCall->getCallee();
1575  if (TheCall->getNumArgs() > 2) {
1576    Diag(TheCall->getArg(2)->getLocStart(),
1577         diag::err_typecheck_call_too_many_args)
1578      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1579      << Fn->getSourceRange()
1580      << SourceRange(TheCall->getArg(2)->getLocStart(),
1581                     (*(TheCall->arg_end()-1))->getLocEnd());
1582    return true;
1583  }
1584
1585  if (TheCall->getNumArgs() < 2) {
1586    return Diag(TheCall->getLocEnd(),
1587      diag::err_typecheck_call_too_few_args_at_least)
1588      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1589  }
1590
1591  // Type-check the first argument normally.
1592  if (checkBuiltinArgument(*this, TheCall, 0))
1593    return true;
1594
1595  // Determine whether the current function is variadic or not.
1596  BlockScopeInfo *CurBlock = getCurBlock();
1597  bool isVariadic;
1598  if (CurBlock)
1599    isVariadic = CurBlock->TheDecl->isVariadic();
1600  else if (FunctionDecl *FD = getCurFunctionDecl())
1601    isVariadic = FD->isVariadic();
1602  else
1603    isVariadic = getCurMethodDecl()->isVariadic();
1604
1605  if (!isVariadic) {
1606    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1607    return true;
1608  }
1609
1610  // Verify that the second argument to the builtin is the last argument of the
1611  // current function or method.
1612  bool SecondArgIsLastNamedArgument = false;
1613  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1614
1615  // These are valid if SecondArgIsLastNamedArgument is false after the next
1616  // block.
1617  QualType Type;
1618  SourceLocation ParamLoc;
1619
1620  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1621    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1622      // FIXME: This isn't correct for methods (results in bogus warning).
1623      // Get the last formal in the current function.
1624      const ParmVarDecl *LastArg;
1625      if (CurBlock)
1626        LastArg = *(CurBlock->TheDecl->param_end()-1);
1627      else if (FunctionDecl *FD = getCurFunctionDecl())
1628        LastArg = *(FD->param_end()-1);
1629      else
1630        LastArg = *(getCurMethodDecl()->param_end()-1);
1631      SecondArgIsLastNamedArgument = PV == LastArg;
1632
1633      Type = PV->getType();
1634      ParamLoc = PV->getLocation();
1635    }
1636  }
1637
1638  if (!SecondArgIsLastNamedArgument)
1639    Diag(TheCall->getArg(1)->getLocStart(),
1640         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1641  else if (Type->isReferenceType()) {
1642    Diag(Arg->getLocStart(),
1643         diag::warn_va_start_of_reference_type_is_undefined);
1644    Diag(ParamLoc, diag::note_parameter_type) << Type;
1645  }
1646
1647  return false;
1648}
1649
1650/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1651/// friends.  This is declared to take (...), so we have to check everything.
1652bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1653  if (TheCall->getNumArgs() < 2)
1654    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1655      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1656  if (TheCall->getNumArgs() > 2)
1657    return Diag(TheCall->getArg(2)->getLocStart(),
1658                diag::err_typecheck_call_too_many_args)
1659      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1660      << SourceRange(TheCall->getArg(2)->getLocStart(),
1661                     (*(TheCall->arg_end()-1))->getLocEnd());
1662
1663  ExprResult OrigArg0 = TheCall->getArg(0);
1664  ExprResult OrigArg1 = TheCall->getArg(1);
1665
1666  // Do standard promotions between the two arguments, returning their common
1667  // type.
1668  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1669  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1670    return true;
1671
1672  // Make sure any conversions are pushed back into the call; this is
1673  // type safe since unordered compare builtins are declared as "_Bool
1674  // foo(...)".
1675  TheCall->setArg(0, OrigArg0.get());
1676  TheCall->setArg(1, OrigArg1.get());
1677
1678  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1679    return false;
1680
1681  // If the common type isn't a real floating type, then the arguments were
1682  // invalid for this operation.
1683  if (Res.isNull() || !Res->isRealFloatingType())
1684    return Diag(OrigArg0.get()->getLocStart(),
1685                diag::err_typecheck_call_invalid_ordered_compare)
1686      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1687      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1688
1689  return false;
1690}
1691
1692/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1693/// __builtin_isnan and friends.  This is declared to take (...), so we have
1694/// to check everything. We expect the last argument to be a floating point
1695/// value.
1696bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1697  if (TheCall->getNumArgs() < NumArgs)
1698    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1699      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1700  if (TheCall->getNumArgs() > NumArgs)
1701    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1702                diag::err_typecheck_call_too_many_args)
1703      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1704      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1705                     (*(TheCall->arg_end()-1))->getLocEnd());
1706
1707  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1708
1709  if (OrigArg->isTypeDependent())
1710    return false;
1711
1712  // This operation requires a non-_Complex floating-point number.
1713  if (!OrigArg->getType()->isRealFloatingType())
1714    return Diag(OrigArg->getLocStart(),
1715                diag::err_typecheck_call_invalid_unary_fp)
1716      << OrigArg->getType() << OrigArg->getSourceRange();
1717
1718  // If this is an implicit conversion from float -> double, remove it.
1719  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1720    Expr *CastArg = Cast->getSubExpr();
1721    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1722      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1723             "promotion from float to double is the only expected cast here");
1724      Cast->setSubExpr(0);
1725      TheCall->setArg(NumArgs-1, CastArg);
1726    }
1727  }
1728
1729  return false;
1730}
1731
1732/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1733// This is declared to take (...), so we have to check everything.
1734ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1735  if (TheCall->getNumArgs() < 2)
1736    return ExprError(Diag(TheCall->getLocEnd(),
1737                          diag::err_typecheck_call_too_few_args_at_least)
1738                     << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1739                     << TheCall->getSourceRange());
1740
1741  // Determine which of the following types of shufflevector we're checking:
1742  // 1) unary, vector mask: (lhs, mask)
1743  // 2) binary, vector mask: (lhs, rhs, mask)
1744  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1745  QualType resType = TheCall->getArg(0)->getType();
1746  unsigned numElements = 0;
1747
1748  if (!TheCall->getArg(0)->isTypeDependent() &&
1749      !TheCall->getArg(1)->isTypeDependent()) {
1750    QualType LHSType = TheCall->getArg(0)->getType();
1751    QualType RHSType = TheCall->getArg(1)->getType();
1752
1753    if (!LHSType->isVectorType() || !RHSType->isVectorType())
1754      return ExprError(Diag(TheCall->getLocStart(),
1755                            diag::err_shufflevector_non_vector)
1756                       << SourceRange(TheCall->getArg(0)->getLocStart(),
1757                                      TheCall->getArg(1)->getLocEnd()));
1758
1759    numElements = LHSType->getAs<VectorType>()->getNumElements();
1760    unsigned numResElements = TheCall->getNumArgs() - 2;
1761
1762    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1763    // with mask.  If so, verify that RHS is an integer vector type with the
1764    // same number of elts as lhs.
1765    if (TheCall->getNumArgs() == 2) {
1766      if (!RHSType->hasIntegerRepresentation() ||
1767          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1768        return ExprError(Diag(TheCall->getLocStart(),
1769                              diag::err_shufflevector_incompatible_vector)
1770                         << SourceRange(TheCall->getArg(1)->getLocStart(),
1771                                        TheCall->getArg(1)->getLocEnd()));
1772    } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1773      return ExprError(Diag(TheCall->getLocStart(),
1774                            diag::err_shufflevector_incompatible_vector)
1775                       << SourceRange(TheCall->getArg(0)->getLocStart(),
1776                                      TheCall->getArg(1)->getLocEnd()));
1777    } else if (numElements != numResElements) {
1778      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1779      resType = Context.getVectorType(eltType, numResElements,
1780                                      VectorType::GenericVector);
1781    }
1782  }
1783
1784  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1785    if (TheCall->getArg(i)->isTypeDependent() ||
1786        TheCall->getArg(i)->isValueDependent())
1787      continue;
1788
1789    llvm::APSInt Result(32);
1790    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1791      return ExprError(Diag(TheCall->getLocStart(),
1792                            diag::err_shufflevector_nonconstant_argument)
1793                       << TheCall->getArg(i)->getSourceRange());
1794
1795    // Allow -1 which will be translated to undef in the IR.
1796    if (Result.isSigned() && Result.isAllOnesValue())
1797      continue;
1798
1799    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1800      return ExprError(Diag(TheCall->getLocStart(),
1801                            diag::err_shufflevector_argument_too_large)
1802                       << TheCall->getArg(i)->getSourceRange());
1803  }
1804
1805  SmallVector<Expr*, 32> exprs;
1806
1807  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1808    exprs.push_back(TheCall->getArg(i));
1809    TheCall->setArg(i, 0);
1810  }
1811
1812  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1813                                            TheCall->getCallee()->getLocStart(),
1814                                            TheCall->getRParenLoc()));
1815}
1816
1817/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1818// This is declared to take (const void*, ...) and can take two
1819// optional constant int args.
1820bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1821  unsigned NumArgs = TheCall->getNumArgs();
1822
1823  if (NumArgs > 3)
1824    return Diag(TheCall->getLocEnd(),
1825             diag::err_typecheck_call_too_many_args_at_most)
1826             << 0 /*function call*/ << 3 << NumArgs
1827             << TheCall->getSourceRange();
1828
1829  // Argument 0 is checked for us and the remaining arguments must be
1830  // constant integers.
1831  for (unsigned i = 1; i != NumArgs; ++i) {
1832    Expr *Arg = TheCall->getArg(i);
1833
1834    // We can't check the value of a dependent argument.
1835    if (Arg->isTypeDependent() || Arg->isValueDependent())
1836      continue;
1837
1838    llvm::APSInt Result;
1839    if (SemaBuiltinConstantArg(TheCall, i, Result))
1840      return true;
1841
1842    // FIXME: gcc issues a warning and rewrites these to 0. These
1843    // seems especially odd for the third argument since the default
1844    // is 3.
1845    if (i == 1) {
1846      if (Result.getLimitedValue() > 1)
1847        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1848             << "0" << "1" << Arg->getSourceRange();
1849    } else {
1850      if (Result.getLimitedValue() > 3)
1851        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1852            << "0" << "3" << Arg->getSourceRange();
1853    }
1854  }
1855
1856  return false;
1857}
1858
1859/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1860/// TheCall is a constant expression.
1861bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1862                                  llvm::APSInt &Result) {
1863  Expr *Arg = TheCall->getArg(ArgNum);
1864  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1865  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1866
1867  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1868
1869  if (!Arg->isIntegerConstantExpr(Result, Context))
1870    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1871                << FDecl->getDeclName() <<  Arg->getSourceRange();
1872
1873  return false;
1874}
1875
1876/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1877/// int type). This simply type checks that type is one of the defined
1878/// constants (0-3).
1879// For compatibility check 0-3, llvm only handles 0 and 2.
1880bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1881  llvm::APSInt Result;
1882
1883  // We can't check the value of a dependent argument.
1884  if (TheCall->getArg(1)->isTypeDependent() ||
1885      TheCall->getArg(1)->isValueDependent())
1886    return false;
1887
1888  // Check constant-ness first.
1889  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1890    return true;
1891
1892  Expr *Arg = TheCall->getArg(1);
1893  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1894    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1895             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1896  }
1897
1898  return false;
1899}
1900
1901/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1902/// This checks that val is a constant 1.
1903bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1904  Expr *Arg = TheCall->getArg(1);
1905  llvm::APSInt Result;
1906
1907  // TODO: This is less than ideal. Overload this to take a value.
1908  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1909    return true;
1910
1911  if (Result != 1)
1912    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1913             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1914
1915  return false;
1916}
1917
1918namespace {
1919enum StringLiteralCheckType {
1920  SLCT_NotALiteral,
1921  SLCT_UncheckedLiteral,
1922  SLCT_CheckedLiteral
1923};
1924}
1925
1926// Determine if an expression is a string literal or constant string.
1927// If this function returns false on the arguments to a function expecting a
1928// format string, we will usually need to emit a warning.
1929// True string literals are then checked by CheckFormatString.
1930static StringLiteralCheckType
1931checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
1932                      bool HasVAListArg, unsigned format_idx,
1933                      unsigned firstDataArg, Sema::FormatStringType Type,
1934                      Sema::VariadicCallType CallType, bool InFunctionCall,
1935                      llvm::SmallBitVector &CheckedVarArgs) {
1936 tryAgain:
1937  if (E->isTypeDependent() || E->isValueDependent())
1938    return SLCT_NotALiteral;
1939
1940  E = E->IgnoreParenCasts();
1941
1942  if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
1943    // Technically -Wformat-nonliteral does not warn about this case.
1944    // The behavior of printf and friends in this case is implementation
1945    // dependent.  Ideally if the format string cannot be null then
1946    // it should have a 'nonnull' attribute in the function prototype.
1947    return SLCT_UncheckedLiteral;
1948
1949  switch (E->getStmtClass()) {
1950  case Stmt::BinaryConditionalOperatorClass:
1951  case Stmt::ConditionalOperatorClass: {
1952    // The expression is a literal if both sub-expressions were, and it was
1953    // completely checked only if both sub-expressions were checked.
1954    const AbstractConditionalOperator *C =
1955        cast<AbstractConditionalOperator>(E);
1956    StringLiteralCheckType Left =
1957        checkFormatStringExpr(S, C->getTrueExpr(), Args,
1958                              HasVAListArg, format_idx, firstDataArg,
1959                              Type, CallType, InFunctionCall, CheckedVarArgs);
1960    if (Left == SLCT_NotALiteral)
1961      return SLCT_NotALiteral;
1962    StringLiteralCheckType Right =
1963        checkFormatStringExpr(S, C->getFalseExpr(), Args,
1964                              HasVAListArg, format_idx, firstDataArg,
1965                              Type, CallType, InFunctionCall, CheckedVarArgs);
1966    return Left < Right ? Left : Right;
1967  }
1968
1969  case Stmt::ImplicitCastExprClass: {
1970    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1971    goto tryAgain;
1972  }
1973
1974  case Stmt::OpaqueValueExprClass:
1975    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1976      E = src;
1977      goto tryAgain;
1978    }
1979    return SLCT_NotALiteral;
1980
1981  case Stmt::PredefinedExprClass:
1982    // While __func__, etc., are technically not string literals, they
1983    // cannot contain format specifiers and thus are not a security
1984    // liability.
1985    return SLCT_UncheckedLiteral;
1986
1987  case Stmt::DeclRefExprClass: {
1988    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1989
1990    // As an exception, do not flag errors for variables binding to
1991    // const string literals.
1992    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1993      bool isConstant = false;
1994      QualType T = DR->getType();
1995
1996      if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
1997        isConstant = AT->getElementType().isConstant(S.Context);
1998      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1999        isConstant = T.isConstant(S.Context) &&
2000                     PT->getPointeeType().isConstant(S.Context);
2001      } else if (T->isObjCObjectPointerType()) {
2002        // In ObjC, there is usually no "const ObjectPointer" type,
2003        // so don't check if the pointee type is constant.
2004        isConstant = T.isConstant(S.Context);
2005      }
2006
2007      if (isConstant) {
2008        if (const Expr *Init = VD->getAnyInitializer()) {
2009          // Look through initializers like const char c[] = { "foo" }
2010          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2011            if (InitList->isStringLiteralInit())
2012              Init = InitList->getInit(0)->IgnoreParenImpCasts();
2013          }
2014          return checkFormatStringExpr(S, Init, Args,
2015                                       HasVAListArg, format_idx,
2016                                       firstDataArg, Type, CallType,
2017                                       /*InFunctionCall*/false, CheckedVarArgs);
2018        }
2019      }
2020
2021      // For vprintf* functions (i.e., HasVAListArg==true), we add a
2022      // special check to see if the format string is a function parameter
2023      // of the function calling the printf function.  If the function
2024      // has an attribute indicating it is a printf-like function, then we
2025      // should suppress warnings concerning non-literals being used in a call
2026      // to a vprintf function.  For example:
2027      //
2028      // void
2029      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2030      //      va_list ap;
2031      //      va_start(ap, fmt);
2032      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
2033      //      ...
2034      // }
2035      if (HasVAListArg) {
2036        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2037          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2038            int PVIndex = PV->getFunctionScopeIndex() + 1;
2039            for (specific_attr_iterator<FormatAttr>
2040                 i = ND->specific_attr_begin<FormatAttr>(),
2041                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
2042              FormatAttr *PVFormat = *i;
2043              // adjust for implicit parameter
2044              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2045                if (MD->isInstance())
2046                  ++PVIndex;
2047              // We also check if the formats are compatible.
2048              // We can't pass a 'scanf' string to a 'printf' function.
2049              if (PVIndex == PVFormat->getFormatIdx() &&
2050                  Type == S.GetFormatStringType(PVFormat))
2051                return SLCT_UncheckedLiteral;
2052            }
2053          }
2054        }
2055      }
2056    }
2057
2058    return SLCT_NotALiteral;
2059  }
2060
2061  case Stmt::CallExprClass:
2062  case Stmt::CXXMemberCallExprClass: {
2063    const CallExpr *CE = cast<CallExpr>(E);
2064    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2065      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2066        unsigned ArgIndex = FA->getFormatIdx();
2067        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2068          if (MD->isInstance())
2069            --ArgIndex;
2070        const Expr *Arg = CE->getArg(ArgIndex - 1);
2071
2072        return checkFormatStringExpr(S, Arg, Args,
2073                                     HasVAListArg, format_idx, firstDataArg,
2074                                     Type, CallType, InFunctionCall,
2075                                     CheckedVarArgs);
2076      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2077        unsigned BuiltinID = FD->getBuiltinID();
2078        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2079            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2080          const Expr *Arg = CE->getArg(0);
2081          return checkFormatStringExpr(S, Arg, Args,
2082                                       HasVAListArg, format_idx,
2083                                       firstDataArg, Type, CallType,
2084                                       InFunctionCall, CheckedVarArgs);
2085        }
2086      }
2087    }
2088
2089    return SLCT_NotALiteral;
2090  }
2091  case Stmt::ObjCStringLiteralClass:
2092  case Stmt::StringLiteralClass: {
2093    const StringLiteral *StrE = NULL;
2094
2095    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2096      StrE = ObjCFExpr->getString();
2097    else
2098      StrE = cast<StringLiteral>(E);
2099
2100    if (StrE) {
2101      S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
2102                          Type, InFunctionCall, CallType, CheckedVarArgs);
2103      return SLCT_CheckedLiteral;
2104    }
2105
2106    return SLCT_NotALiteral;
2107  }
2108
2109  default:
2110    return SLCT_NotALiteral;
2111  }
2112}
2113
2114void
2115Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
2116                            const Expr * const *ExprArgs,
2117                            SourceLocation CallSiteLoc) {
2118  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
2119                                  e = NonNull->args_end();
2120       i != e; ++i) {
2121    const Expr *ArgExpr = ExprArgs[*i];
2122
2123    // As a special case, transparent unions initialized with zero are
2124    // considered null for the purposes of the nonnull attribute.
2125    if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
2126      if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
2127        if (const CompoundLiteralExpr *CLE =
2128            dyn_cast<CompoundLiteralExpr>(ArgExpr))
2129          if (const InitListExpr *ILE =
2130              dyn_cast<InitListExpr>(CLE->getInitializer()))
2131            ArgExpr = ILE->getInit(0);
2132    }
2133
2134    bool Result;
2135    if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
2136      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
2137  }
2138}
2139
2140Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2141  return llvm::StringSwitch<FormatStringType>(Format->getType())
2142  .Case("scanf", FST_Scanf)
2143  .Cases("printf", "printf0", FST_Printf)
2144  .Cases("NSString", "CFString", FST_NSString)
2145  .Case("strftime", FST_Strftime)
2146  .Case("strfmon", FST_Strfmon)
2147  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2148  .Default(FST_Unknown);
2149}
2150
2151/// CheckFormatArguments - Check calls to printf and scanf (and similar
2152/// functions) for correct use of format strings.
2153/// Returns true if a format string has been fully checked.
2154bool Sema::CheckFormatArguments(const FormatAttr *Format,
2155                                ArrayRef<const Expr *> Args,
2156                                bool IsCXXMember,
2157                                VariadicCallType CallType,
2158                                SourceLocation Loc, SourceRange Range,
2159                                llvm::SmallBitVector &CheckedVarArgs) {
2160  FormatStringInfo FSI;
2161  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2162    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2163                                FSI.FirstDataArg, GetFormatStringType(Format),
2164                                CallType, Loc, Range, CheckedVarArgs);
2165  return false;
2166}
2167
2168bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2169                                bool HasVAListArg, unsigned format_idx,
2170                                unsigned firstDataArg, FormatStringType Type,
2171                                VariadicCallType CallType,
2172                                SourceLocation Loc, SourceRange Range,
2173                                llvm::SmallBitVector &CheckedVarArgs) {
2174  // CHECK: printf/scanf-like function is called with no format string.
2175  if (format_idx >= Args.size()) {
2176    Diag(Loc, diag::warn_missing_format_string) << Range;
2177    return false;
2178  }
2179
2180  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2181
2182  // CHECK: format string is not a string literal.
2183  //
2184  // Dynamically generated format strings are difficult to
2185  // automatically vet at compile time.  Requiring that format strings
2186  // are string literals: (1) permits the checking of format strings by
2187  // the compiler and thereby (2) can practically remove the source of
2188  // many format string exploits.
2189
2190  // Format string can be either ObjC string (e.g. @"%d") or
2191  // C string (e.g. "%d")
2192  // ObjC string uses the same format specifiers as C string, so we can use
2193  // the same format string checking logic for both ObjC and C strings.
2194  StringLiteralCheckType CT =
2195      checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
2196                            format_idx, firstDataArg, Type, CallType,
2197                            /*IsFunctionCall*/true, CheckedVarArgs);
2198  if (CT != SLCT_NotALiteral)
2199    // Literal format string found, check done!
2200    return CT == SLCT_CheckedLiteral;
2201
2202  // Strftime is particular as it always uses a single 'time' argument,
2203  // so it is safe to pass a non-literal string.
2204  if (Type == FST_Strftime)
2205    return false;
2206
2207  // Do not emit diag when the string param is a macro expansion and the
2208  // format is either NSString or CFString. This is a hack to prevent
2209  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2210  // which are usually used in place of NS and CF string literals.
2211  if (Type == FST_NSString &&
2212      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2213    return false;
2214
2215  // If there are no arguments specified, warn with -Wformat-security, otherwise
2216  // warn only with -Wformat-nonliteral.
2217  if (Args.size() == firstDataArg)
2218    Diag(Args[format_idx]->getLocStart(),
2219         diag::warn_format_nonliteral_noargs)
2220      << OrigFormatExpr->getSourceRange();
2221  else
2222    Diag(Args[format_idx]->getLocStart(),
2223         diag::warn_format_nonliteral)
2224           << OrigFormatExpr->getSourceRange();
2225  return false;
2226}
2227
2228namespace {
2229class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2230protected:
2231  Sema &S;
2232  const StringLiteral *FExpr;
2233  const Expr *OrigFormatExpr;
2234  const unsigned FirstDataArg;
2235  const unsigned NumDataArgs;
2236  const char *Beg; // Start of format string.
2237  const bool HasVAListArg;
2238  ArrayRef<const Expr *> Args;
2239  unsigned FormatIdx;
2240  llvm::SmallBitVector CoveredArgs;
2241  bool usesPositionalArgs;
2242  bool atFirstArg;
2243  bool inFunctionCall;
2244  Sema::VariadicCallType CallType;
2245  llvm::SmallBitVector &CheckedVarArgs;
2246public:
2247  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2248                     const Expr *origFormatExpr, unsigned firstDataArg,
2249                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
2250                     ArrayRef<const Expr *> Args,
2251                     unsigned formatIdx, bool inFunctionCall,
2252                     Sema::VariadicCallType callType,
2253                     llvm::SmallBitVector &CheckedVarArgs)
2254    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2255      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2256      Beg(beg), HasVAListArg(hasVAListArg),
2257      Args(Args), FormatIdx(formatIdx),
2258      usesPositionalArgs(false), atFirstArg(true),
2259      inFunctionCall(inFunctionCall), CallType(callType),
2260      CheckedVarArgs(CheckedVarArgs) {
2261    CoveredArgs.resize(numDataArgs);
2262    CoveredArgs.reset();
2263  }
2264
2265  void DoneProcessing();
2266
2267  void HandleIncompleteSpecifier(const char *startSpecifier,
2268                                 unsigned specifierLen);
2269
2270  void HandleInvalidLengthModifier(
2271      const analyze_format_string::FormatSpecifier &FS,
2272      const analyze_format_string::ConversionSpecifier &CS,
2273      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
2274
2275  void HandleNonStandardLengthModifier(
2276      const analyze_format_string::FormatSpecifier &FS,
2277      const char *startSpecifier, unsigned specifierLen);
2278
2279  void HandleNonStandardConversionSpecifier(
2280      const analyze_format_string::ConversionSpecifier &CS,
2281      const char *startSpecifier, unsigned specifierLen);
2282
2283  virtual void HandlePosition(const char *startPos, unsigned posLen);
2284
2285  virtual void HandleInvalidPosition(const char *startSpecifier,
2286                                     unsigned specifierLen,
2287                                     analyze_format_string::PositionContext p);
2288
2289  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2290
2291  void HandleNullChar(const char *nullCharacter);
2292
2293  template <typename Range>
2294  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2295                                   const Expr *ArgumentExpr,
2296                                   PartialDiagnostic PDiag,
2297                                   SourceLocation StringLoc,
2298                                   bool IsStringLocation, Range StringRange,
2299                                   ArrayRef<FixItHint> Fixit = None);
2300
2301protected:
2302  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2303                                        const char *startSpec,
2304                                        unsigned specifierLen,
2305                                        const char *csStart, unsigned csLen);
2306
2307  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2308                                         const char *startSpec,
2309                                         unsigned specifierLen);
2310
2311  SourceRange getFormatStringRange();
2312  CharSourceRange getSpecifierRange(const char *startSpecifier,
2313                                    unsigned specifierLen);
2314  SourceLocation getLocationOfByte(const char *x);
2315
2316  const Expr *getDataArg(unsigned i) const;
2317
2318  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2319                    const analyze_format_string::ConversionSpecifier &CS,
2320                    const char *startSpecifier, unsigned specifierLen,
2321                    unsigned argIndex);
2322
2323  template <typename Range>
2324  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2325                            bool IsStringLocation, Range StringRange,
2326                            ArrayRef<FixItHint> Fixit = None);
2327
2328  void CheckPositionalAndNonpositionalArgs(
2329      const analyze_format_string::FormatSpecifier *FS);
2330};
2331}
2332
2333SourceRange CheckFormatHandler::getFormatStringRange() {
2334  return OrigFormatExpr->getSourceRange();
2335}
2336
2337CharSourceRange CheckFormatHandler::
2338getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2339  SourceLocation Start = getLocationOfByte(startSpecifier);
2340  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2341
2342  // Advance the end SourceLocation by one due to half-open ranges.
2343  End = End.getLocWithOffset(1);
2344
2345  return CharSourceRange::getCharRange(Start, End);
2346}
2347
2348SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2349  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2350}
2351
2352void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2353                                                   unsigned specifierLen){
2354  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2355                       getLocationOfByte(startSpecifier),
2356                       /*IsStringLocation*/true,
2357                       getSpecifierRange(startSpecifier, specifierLen));
2358}
2359
2360void CheckFormatHandler::HandleInvalidLengthModifier(
2361    const analyze_format_string::FormatSpecifier &FS,
2362    const analyze_format_string::ConversionSpecifier &CS,
2363    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2364  using namespace analyze_format_string;
2365
2366  const LengthModifier &LM = FS.getLengthModifier();
2367  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2368
2369  // See if we know how to fix this length modifier.
2370  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2371  if (FixedLM) {
2372    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2373                         getLocationOfByte(LM.getStart()),
2374                         /*IsStringLocation*/true,
2375                         getSpecifierRange(startSpecifier, specifierLen));
2376
2377    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2378      << FixedLM->toString()
2379      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2380
2381  } else {
2382    FixItHint Hint;
2383    if (DiagID == diag::warn_format_nonsensical_length)
2384      Hint = FixItHint::CreateRemoval(LMRange);
2385
2386    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2387                         getLocationOfByte(LM.getStart()),
2388                         /*IsStringLocation*/true,
2389                         getSpecifierRange(startSpecifier, specifierLen),
2390                         Hint);
2391  }
2392}
2393
2394void CheckFormatHandler::HandleNonStandardLengthModifier(
2395    const analyze_format_string::FormatSpecifier &FS,
2396    const char *startSpecifier, unsigned specifierLen) {
2397  using namespace analyze_format_string;
2398
2399  const LengthModifier &LM = FS.getLengthModifier();
2400  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2401
2402  // See if we know how to fix this length modifier.
2403  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2404  if (FixedLM) {
2405    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2406                           << LM.toString() << 0,
2407                         getLocationOfByte(LM.getStart()),
2408                         /*IsStringLocation*/true,
2409                         getSpecifierRange(startSpecifier, specifierLen));
2410
2411    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2412      << FixedLM->toString()
2413      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2414
2415  } else {
2416    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2417                           << LM.toString() << 0,
2418                         getLocationOfByte(LM.getStart()),
2419                         /*IsStringLocation*/true,
2420                         getSpecifierRange(startSpecifier, specifierLen));
2421  }
2422}
2423
2424void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2425    const analyze_format_string::ConversionSpecifier &CS,
2426    const char *startSpecifier, unsigned specifierLen) {
2427  using namespace analyze_format_string;
2428
2429  // See if we know how to fix this conversion specifier.
2430  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2431  if (FixedCS) {
2432    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2433                          << CS.toString() << /*conversion specifier*/1,
2434                         getLocationOfByte(CS.getStart()),
2435                         /*IsStringLocation*/true,
2436                         getSpecifierRange(startSpecifier, specifierLen));
2437
2438    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2439    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2440      << FixedCS->toString()
2441      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2442  } else {
2443    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2444                          << CS.toString() << /*conversion specifier*/1,
2445                         getLocationOfByte(CS.getStart()),
2446                         /*IsStringLocation*/true,
2447                         getSpecifierRange(startSpecifier, specifierLen));
2448  }
2449}
2450
2451void CheckFormatHandler::HandlePosition(const char *startPos,
2452                                        unsigned posLen) {
2453  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2454                               getLocationOfByte(startPos),
2455                               /*IsStringLocation*/true,
2456                               getSpecifierRange(startPos, posLen));
2457}
2458
2459void
2460CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2461                                     analyze_format_string::PositionContext p) {
2462  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2463                         << (unsigned) p,
2464                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2465                       getSpecifierRange(startPos, posLen));
2466}
2467
2468void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2469                                            unsigned posLen) {
2470  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2471                               getLocationOfByte(startPos),
2472                               /*IsStringLocation*/true,
2473                               getSpecifierRange(startPos, posLen));
2474}
2475
2476void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2477  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2478    // The presence of a null character is likely an error.
2479    EmitFormatDiagnostic(
2480      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2481      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2482      getFormatStringRange());
2483  }
2484}
2485
2486// Note that this may return NULL if there was an error parsing or building
2487// one of the argument expressions.
2488const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2489  return Args[FirstDataArg + i];
2490}
2491
2492void CheckFormatHandler::DoneProcessing() {
2493    // Does the number of data arguments exceed the number of
2494    // format conversions in the format string?
2495  if (!HasVAListArg) {
2496      // Find any arguments that weren't covered.
2497    CoveredArgs.flip();
2498    signed notCoveredArg = CoveredArgs.find_first();
2499    if (notCoveredArg >= 0) {
2500      assert((unsigned)notCoveredArg < NumDataArgs);
2501      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2502        SourceLocation Loc = E->getLocStart();
2503        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2504          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2505                               Loc, /*IsStringLocation*/false,
2506                               getFormatStringRange());
2507        }
2508      }
2509    }
2510  }
2511}
2512
2513bool
2514CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2515                                                     SourceLocation Loc,
2516                                                     const char *startSpec,
2517                                                     unsigned specifierLen,
2518                                                     const char *csStart,
2519                                                     unsigned csLen) {
2520
2521  bool keepGoing = true;
2522  if (argIndex < NumDataArgs) {
2523    // Consider the argument coverered, even though the specifier doesn't
2524    // make sense.
2525    CoveredArgs.set(argIndex);
2526  }
2527  else {
2528    // If argIndex exceeds the number of data arguments we
2529    // don't issue a warning because that is just a cascade of warnings (and
2530    // they may have intended '%%' anyway). We don't want to continue processing
2531    // the format string after this point, however, as we will like just get
2532    // gibberish when trying to match arguments.
2533    keepGoing = false;
2534  }
2535
2536  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2537                         << StringRef(csStart, csLen),
2538                       Loc, /*IsStringLocation*/true,
2539                       getSpecifierRange(startSpec, specifierLen));
2540
2541  return keepGoing;
2542}
2543
2544void
2545CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2546                                                      const char *startSpec,
2547                                                      unsigned specifierLen) {
2548  EmitFormatDiagnostic(
2549    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2550    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2551}
2552
2553bool
2554CheckFormatHandler::CheckNumArgs(
2555  const analyze_format_string::FormatSpecifier &FS,
2556  const analyze_format_string::ConversionSpecifier &CS,
2557  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2558
2559  if (argIndex >= NumDataArgs) {
2560    PartialDiagnostic PDiag = FS.usesPositionalArg()
2561      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2562           << (argIndex+1) << NumDataArgs)
2563      : S.PDiag(diag::warn_printf_insufficient_data_args);
2564    EmitFormatDiagnostic(
2565      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2566      getSpecifierRange(startSpecifier, specifierLen));
2567    return false;
2568  }
2569  return true;
2570}
2571
2572template<typename Range>
2573void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2574                                              SourceLocation Loc,
2575                                              bool IsStringLocation,
2576                                              Range StringRange,
2577                                              ArrayRef<FixItHint> FixIt) {
2578  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2579                       Loc, IsStringLocation, StringRange, FixIt);
2580}
2581
2582/// \brief If the format string is not within the funcion call, emit a note
2583/// so that the function call and string are in diagnostic messages.
2584///
2585/// \param InFunctionCall if true, the format string is within the function
2586/// call and only one diagnostic message will be produced.  Otherwise, an
2587/// extra note will be emitted pointing to location of the format string.
2588///
2589/// \param ArgumentExpr the expression that is passed as the format string
2590/// argument in the function call.  Used for getting locations when two
2591/// diagnostics are emitted.
2592///
2593/// \param PDiag the callee should already have provided any strings for the
2594/// diagnostic message.  This function only adds locations and fixits
2595/// to diagnostics.
2596///
2597/// \param Loc primary location for diagnostic.  If two diagnostics are
2598/// required, one will be at Loc and a new SourceLocation will be created for
2599/// the other one.
2600///
2601/// \param IsStringLocation if true, Loc points to the format string should be
2602/// used for the note.  Otherwise, Loc points to the argument list and will
2603/// be used with PDiag.
2604///
2605/// \param StringRange some or all of the string to highlight.  This is
2606/// templated so it can accept either a CharSourceRange or a SourceRange.
2607///
2608/// \param FixIt optional fix it hint for the format string.
2609template<typename Range>
2610void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2611                                              const Expr *ArgumentExpr,
2612                                              PartialDiagnostic PDiag,
2613                                              SourceLocation Loc,
2614                                              bool IsStringLocation,
2615                                              Range StringRange,
2616                                              ArrayRef<FixItHint> FixIt) {
2617  if (InFunctionCall) {
2618    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2619    D << StringRange;
2620    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2621         I != E; ++I) {
2622      D << *I;
2623    }
2624  } else {
2625    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2626      << ArgumentExpr->getSourceRange();
2627
2628    const Sema::SemaDiagnosticBuilder &Note =
2629      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2630             diag::note_format_string_defined);
2631
2632    Note << StringRange;
2633    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2634         I != E; ++I) {
2635      Note << *I;
2636    }
2637  }
2638}
2639
2640//===--- CHECK: Printf format string checking ------------------------------===//
2641
2642namespace {
2643class CheckPrintfHandler : public CheckFormatHandler {
2644  bool ObjCContext;
2645public:
2646  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2647                     const Expr *origFormatExpr, unsigned firstDataArg,
2648                     unsigned numDataArgs, bool isObjC,
2649                     const char *beg, bool hasVAListArg,
2650                     ArrayRef<const Expr *> Args,
2651                     unsigned formatIdx, bool inFunctionCall,
2652                     Sema::VariadicCallType CallType,
2653                     llvm::SmallBitVector &CheckedVarArgs)
2654    : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2655                         numDataArgs, beg, hasVAListArg, Args,
2656                         formatIdx, inFunctionCall, CallType, CheckedVarArgs),
2657      ObjCContext(isObjC)
2658  {}
2659
2660
2661  bool HandleInvalidPrintfConversionSpecifier(
2662                                      const analyze_printf::PrintfSpecifier &FS,
2663                                      const char *startSpecifier,
2664                                      unsigned specifierLen);
2665
2666  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2667                             const char *startSpecifier,
2668                             unsigned specifierLen);
2669  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2670                       const char *StartSpecifier,
2671                       unsigned SpecifierLen,
2672                       const Expr *E);
2673
2674  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2675                    const char *startSpecifier, unsigned specifierLen);
2676  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2677                           const analyze_printf::OptionalAmount &Amt,
2678                           unsigned type,
2679                           const char *startSpecifier, unsigned specifierLen);
2680  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2681                  const analyze_printf::OptionalFlag &flag,
2682                  const char *startSpecifier, unsigned specifierLen);
2683  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2684                         const analyze_printf::OptionalFlag &ignoredFlag,
2685                         const analyze_printf::OptionalFlag &flag,
2686                         const char *startSpecifier, unsigned specifierLen);
2687  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2688                           const Expr *E, const CharSourceRange &CSR);
2689
2690};
2691}
2692
2693bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2694                                      const analyze_printf::PrintfSpecifier &FS,
2695                                      const char *startSpecifier,
2696                                      unsigned specifierLen) {
2697  const analyze_printf::PrintfConversionSpecifier &CS =
2698    FS.getConversionSpecifier();
2699
2700  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2701                                          getLocationOfByte(CS.getStart()),
2702                                          startSpecifier, specifierLen,
2703                                          CS.getStart(), CS.getLength());
2704}
2705
2706bool CheckPrintfHandler::HandleAmount(
2707                               const analyze_format_string::OptionalAmount &Amt,
2708                               unsigned k, const char *startSpecifier,
2709                               unsigned specifierLen) {
2710
2711  if (Amt.hasDataArgument()) {
2712    if (!HasVAListArg) {
2713      unsigned argIndex = Amt.getArgIndex();
2714      if (argIndex >= NumDataArgs) {
2715        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2716                               << k,
2717                             getLocationOfByte(Amt.getStart()),
2718                             /*IsStringLocation*/true,
2719                             getSpecifierRange(startSpecifier, specifierLen));
2720        // Don't do any more checking.  We will just emit
2721        // spurious errors.
2722        return false;
2723      }
2724
2725      // Type check the data argument.  It should be an 'int'.
2726      // Although not in conformance with C99, we also allow the argument to be
2727      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2728      // doesn't emit a warning for that case.
2729      CoveredArgs.set(argIndex);
2730      const Expr *Arg = getDataArg(argIndex);
2731      if (!Arg)
2732        return false;
2733
2734      QualType T = Arg->getType();
2735
2736      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2737      assert(AT.isValid());
2738
2739      if (!AT.matchesType(S.Context, T)) {
2740        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2741                               << k << AT.getRepresentativeTypeName(S.Context)
2742                               << T << Arg->getSourceRange(),
2743                             getLocationOfByte(Amt.getStart()),
2744                             /*IsStringLocation*/true,
2745                             getSpecifierRange(startSpecifier, specifierLen));
2746        // Don't do any more checking.  We will just emit
2747        // spurious errors.
2748        return false;
2749      }
2750    }
2751  }
2752  return true;
2753}
2754
2755void CheckPrintfHandler::HandleInvalidAmount(
2756                                      const analyze_printf::PrintfSpecifier &FS,
2757                                      const analyze_printf::OptionalAmount &Amt,
2758                                      unsigned type,
2759                                      const char *startSpecifier,
2760                                      unsigned specifierLen) {
2761  const analyze_printf::PrintfConversionSpecifier &CS =
2762    FS.getConversionSpecifier();
2763
2764  FixItHint fixit =
2765    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2766      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2767                                 Amt.getConstantLength()))
2768      : FixItHint();
2769
2770  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2771                         << type << CS.toString(),
2772                       getLocationOfByte(Amt.getStart()),
2773                       /*IsStringLocation*/true,
2774                       getSpecifierRange(startSpecifier, specifierLen),
2775                       fixit);
2776}
2777
2778void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2779                                    const analyze_printf::OptionalFlag &flag,
2780                                    const char *startSpecifier,
2781                                    unsigned specifierLen) {
2782  // Warn about pointless flag with a fixit removal.
2783  const analyze_printf::PrintfConversionSpecifier &CS =
2784    FS.getConversionSpecifier();
2785  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2786                         << flag.toString() << CS.toString(),
2787                       getLocationOfByte(flag.getPosition()),
2788                       /*IsStringLocation*/true,
2789                       getSpecifierRange(startSpecifier, specifierLen),
2790                       FixItHint::CreateRemoval(
2791                         getSpecifierRange(flag.getPosition(), 1)));
2792}
2793
2794void CheckPrintfHandler::HandleIgnoredFlag(
2795                                const analyze_printf::PrintfSpecifier &FS,
2796                                const analyze_printf::OptionalFlag &ignoredFlag,
2797                                const analyze_printf::OptionalFlag &flag,
2798                                const char *startSpecifier,
2799                                unsigned specifierLen) {
2800  // Warn about ignored flag with a fixit removal.
2801  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2802                         << ignoredFlag.toString() << flag.toString(),
2803                       getLocationOfByte(ignoredFlag.getPosition()),
2804                       /*IsStringLocation*/true,
2805                       getSpecifierRange(startSpecifier, specifierLen),
2806                       FixItHint::CreateRemoval(
2807                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2808}
2809
2810// Determines if the specified is a C++ class or struct containing
2811// a member with the specified name and kind (e.g. a CXXMethodDecl named
2812// "c_str()").
2813template<typename MemberKind>
2814static llvm::SmallPtrSet<MemberKind*, 1>
2815CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2816  const RecordType *RT = Ty->getAs<RecordType>();
2817  llvm::SmallPtrSet<MemberKind*, 1> Results;
2818
2819  if (!RT)
2820    return Results;
2821  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2822  if (!RD)
2823    return Results;
2824
2825  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2826                 Sema::LookupMemberName);
2827
2828  // We just need to include all members of the right kind turned up by the
2829  // filter, at this point.
2830  if (S.LookupQualifiedName(R, RT->getDecl()))
2831    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2832      NamedDecl *decl = (*I)->getUnderlyingDecl();
2833      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2834        Results.insert(FK);
2835    }
2836  return Results;
2837}
2838
2839// Check if a (w)string was passed when a (w)char* was needed, and offer a
2840// better diagnostic if so. AT is assumed to be valid.
2841// Returns true when a c_str() conversion method is found.
2842bool CheckPrintfHandler::checkForCStrMembers(
2843    const analyze_printf::ArgType &AT, const Expr *E,
2844    const CharSourceRange &CSR) {
2845  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2846
2847  MethodSet Results =
2848      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2849
2850  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2851       MI != ME; ++MI) {
2852    const CXXMethodDecl *Method = *MI;
2853    if (Method->getNumParams() == 0 &&
2854          AT.matchesType(S.Context, Method->getResultType())) {
2855      // FIXME: Suggest parens if the expression needs them.
2856      SourceLocation EndLoc =
2857          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2858      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2859          << "c_str()"
2860          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2861      return true;
2862    }
2863  }
2864
2865  return false;
2866}
2867
2868bool
2869CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2870                                            &FS,
2871                                          const char *startSpecifier,
2872                                          unsigned specifierLen) {
2873
2874  using namespace analyze_format_string;
2875  using namespace analyze_printf;
2876  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2877
2878  if (FS.consumesDataArgument()) {
2879    if (atFirstArg) {
2880        atFirstArg = false;
2881        usesPositionalArgs = FS.usesPositionalArg();
2882    }
2883    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2884      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2885                                        startSpecifier, specifierLen);
2886      return false;
2887    }
2888  }
2889
2890  // First check if the field width, precision, and conversion specifier
2891  // have matching data arguments.
2892  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2893                    startSpecifier, specifierLen)) {
2894    return false;
2895  }
2896
2897  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2898                    startSpecifier, specifierLen)) {
2899    return false;
2900  }
2901
2902  if (!CS.consumesDataArgument()) {
2903    // FIXME: Technically specifying a precision or field width here
2904    // makes no sense.  Worth issuing a warning at some point.
2905    return true;
2906  }
2907
2908  // Consume the argument.
2909  unsigned argIndex = FS.getArgIndex();
2910  if (argIndex < NumDataArgs) {
2911    // The check to see if the argIndex is valid will come later.
2912    // We set the bit here because we may exit early from this
2913    // function if we encounter some other error.
2914    CoveredArgs.set(argIndex);
2915  }
2916
2917  // Check for using an Objective-C specific conversion specifier
2918  // in a non-ObjC literal.
2919  if (!ObjCContext && CS.isObjCArg()) {
2920    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2921                                                  specifierLen);
2922  }
2923
2924  // Check for invalid use of field width
2925  if (!FS.hasValidFieldWidth()) {
2926    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2927        startSpecifier, specifierLen);
2928  }
2929
2930  // Check for invalid use of precision
2931  if (!FS.hasValidPrecision()) {
2932    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2933        startSpecifier, specifierLen);
2934  }
2935
2936  // Check each flag does not conflict with any other component.
2937  if (!FS.hasValidThousandsGroupingPrefix())
2938    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2939  if (!FS.hasValidLeadingZeros())
2940    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2941  if (!FS.hasValidPlusPrefix())
2942    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2943  if (!FS.hasValidSpacePrefix())
2944    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2945  if (!FS.hasValidAlternativeForm())
2946    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2947  if (!FS.hasValidLeftJustified())
2948    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2949
2950  // Check that flags are not ignored by another flag
2951  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2952    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2953        startSpecifier, specifierLen);
2954  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2955    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2956            startSpecifier, specifierLen);
2957
2958  // Check the length modifier is valid with the given conversion specifier.
2959  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2960    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2961                                diag::warn_format_nonsensical_length);
2962  else if (!FS.hasStandardLengthModifier())
2963    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2964  else if (!FS.hasStandardLengthConversionCombination())
2965    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2966                                diag::warn_format_non_standard_conversion_spec);
2967
2968  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2969    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2970
2971  // The remaining checks depend on the data arguments.
2972  if (HasVAListArg)
2973    return true;
2974
2975  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2976    return false;
2977
2978  const Expr *Arg = getDataArg(argIndex);
2979  if (!Arg)
2980    return true;
2981
2982  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2983}
2984
2985static bool requiresParensToAddCast(const Expr *E) {
2986  // FIXME: We should have a general way to reason about operator
2987  // precedence and whether parens are actually needed here.
2988  // Take care of a few common cases where they aren't.
2989  const Expr *Inside = E->IgnoreImpCasts();
2990  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2991    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2992
2993  switch (Inside->getStmtClass()) {
2994  case Stmt::ArraySubscriptExprClass:
2995  case Stmt::CallExprClass:
2996  case Stmt::CharacterLiteralClass:
2997  case Stmt::CXXBoolLiteralExprClass:
2998  case Stmt::DeclRefExprClass:
2999  case Stmt::FloatingLiteralClass:
3000  case Stmt::IntegerLiteralClass:
3001  case Stmt::MemberExprClass:
3002  case Stmt::ObjCArrayLiteralClass:
3003  case Stmt::ObjCBoolLiteralExprClass:
3004  case Stmt::ObjCBoxedExprClass:
3005  case Stmt::ObjCDictionaryLiteralClass:
3006  case Stmt::ObjCEncodeExprClass:
3007  case Stmt::ObjCIvarRefExprClass:
3008  case Stmt::ObjCMessageExprClass:
3009  case Stmt::ObjCPropertyRefExprClass:
3010  case Stmt::ObjCStringLiteralClass:
3011  case Stmt::ObjCSubscriptRefExprClass:
3012  case Stmt::ParenExprClass:
3013  case Stmt::StringLiteralClass:
3014  case Stmt::UnaryOperatorClass:
3015    return false;
3016  default:
3017    return true;
3018  }
3019}
3020
3021bool
3022CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3023                                    const char *StartSpecifier,
3024                                    unsigned SpecifierLen,
3025                                    const Expr *E) {
3026  using namespace analyze_format_string;
3027  using namespace analyze_printf;
3028  // Now type check the data expression that matches the
3029  // format specifier.
3030  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3031                                                    ObjCContext);
3032  if (!AT.isValid())
3033    return true;
3034
3035  QualType ExprTy = E->getType();
3036  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3037    ExprTy = TET->getUnderlyingExpr()->getType();
3038  }
3039
3040  if (AT.matchesType(S.Context, ExprTy))
3041    return true;
3042
3043  // Look through argument promotions for our error message's reported type.
3044  // This includes the integral and floating promotions, but excludes array
3045  // and function pointer decay; seeing that an argument intended to be a
3046  // string has type 'char [6]' is probably more confusing than 'char *'.
3047  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3048    if (ICE->getCastKind() == CK_IntegralCast ||
3049        ICE->getCastKind() == CK_FloatingCast) {
3050      E = ICE->getSubExpr();
3051      ExprTy = E->getType();
3052
3053      // Check if we didn't match because of an implicit cast from a 'char'
3054      // or 'short' to an 'int'.  This is done because printf is a varargs
3055      // function.
3056      if (ICE->getType() == S.Context.IntTy ||
3057          ICE->getType() == S.Context.UnsignedIntTy) {
3058        // All further checking is done on the subexpression.
3059        if (AT.matchesType(S.Context, ExprTy))
3060          return true;
3061      }
3062    }
3063  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3064    // Special case for 'a', which has type 'int' in C.
3065    // Note, however, that we do /not/ want to treat multibyte constants like
3066    // 'MooV' as characters! This form is deprecated but still exists.
3067    if (ExprTy == S.Context.IntTy)
3068      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3069        ExprTy = S.Context.CharTy;
3070  }
3071
3072  // %C in an Objective-C context prints a unichar, not a wchar_t.
3073  // If the argument is an integer of some kind, believe the %C and suggest
3074  // a cast instead of changing the conversion specifier.
3075  QualType IntendedTy = ExprTy;
3076  if (ObjCContext &&
3077      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3078    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3079        !ExprTy->isCharType()) {
3080      // 'unichar' is defined as a typedef of unsigned short, but we should
3081      // prefer using the typedef if it is visible.
3082      IntendedTy = S.Context.UnsignedShortTy;
3083
3084      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3085                          Sema::LookupOrdinaryName);
3086      if (S.LookupName(Result, S.getCurScope())) {
3087        NamedDecl *ND = Result.getFoundDecl();
3088        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3089          if (TD->getUnderlyingType() == IntendedTy)
3090            IntendedTy = S.Context.getTypedefType(TD);
3091      }
3092    }
3093  }
3094
3095  // Special-case some of Darwin's platform-independence types by suggesting
3096  // casts to primitive types that are known to be large enough.
3097  bool ShouldNotPrintDirectly = false;
3098  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3099    // Use a 'while' to peel off layers of typedefs.
3100    QualType TyTy = IntendedTy;
3101    while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3102      StringRef Name = UserTy->getDecl()->getName();
3103      QualType CastTy = llvm::StringSwitch<QualType>(Name)
3104        .Case("NSInteger", S.Context.LongTy)
3105        .Case("NSUInteger", S.Context.UnsignedLongTy)
3106        .Case("SInt32", S.Context.IntTy)
3107        .Case("UInt32", S.Context.UnsignedIntTy)
3108        .Default(QualType());
3109
3110      if (!CastTy.isNull()) {
3111        ShouldNotPrintDirectly = true;
3112        IntendedTy = CastTy;
3113        break;
3114      }
3115      TyTy = UserTy->desugar();
3116    }
3117  }
3118
3119  // We may be able to offer a FixItHint if it is a supported type.
3120  PrintfSpecifier fixedFS = FS;
3121  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3122                                 S.Context, ObjCContext);
3123
3124  if (success) {
3125    // Get the fix string from the fixed format specifier
3126    SmallString<16> buf;
3127    llvm::raw_svector_ostream os(buf);
3128    fixedFS.toString(os);
3129
3130    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3131
3132    if (IntendedTy == ExprTy) {
3133      // In this case, the specifier is wrong and should be changed to match
3134      // the argument.
3135      EmitFormatDiagnostic(
3136        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3137          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
3138          << E->getSourceRange(),
3139        E->getLocStart(),
3140        /*IsStringLocation*/false,
3141        SpecRange,
3142        FixItHint::CreateReplacement(SpecRange, os.str()));
3143
3144    } else {
3145      // The canonical type for formatting this value is different from the
3146      // actual type of the expression. (This occurs, for example, with Darwin's
3147      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3148      // should be printed as 'long' for 64-bit compatibility.)
3149      // Rather than emitting a normal format/argument mismatch, we want to
3150      // add a cast to the recommended type (and correct the format string
3151      // if necessary).
3152      SmallString<16> CastBuf;
3153      llvm::raw_svector_ostream CastFix(CastBuf);
3154      CastFix << "(";
3155      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3156      CastFix << ")";
3157
3158      SmallVector<FixItHint,4> Hints;
3159      if (!AT.matchesType(S.Context, IntendedTy))
3160        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3161
3162      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3163        // If there's already a cast present, just replace it.
3164        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3165        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3166
3167      } else if (!requiresParensToAddCast(E)) {
3168        // If the expression has high enough precedence,
3169        // just write the C-style cast.
3170        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3171                                                   CastFix.str()));
3172      } else {
3173        // Otherwise, add parens around the expression as well as the cast.
3174        CastFix << "(";
3175        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3176                                                   CastFix.str()));
3177
3178        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
3179        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3180      }
3181
3182      if (ShouldNotPrintDirectly) {
3183        // The expression has a type that should not be printed directly.
3184        // We extract the name from the typedef because we don't want to show
3185        // the underlying type in the diagnostic.
3186        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
3187
3188        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3189                               << Name << IntendedTy
3190                               << E->getSourceRange(),
3191                             E->getLocStart(), /*IsStringLocation=*/false,
3192                             SpecRange, Hints);
3193      } else {
3194        // In this case, the expression could be printed using a different
3195        // specifier, but we've decided that the specifier is probably correct
3196        // and we should cast instead. Just use the normal warning message.
3197        EmitFormatDiagnostic(
3198          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3199            << AT.getRepresentativeTypeName(S.Context) << ExprTy
3200            << E->getSourceRange(),
3201          E->getLocStart(), /*IsStringLocation*/false,
3202          SpecRange, Hints);
3203      }
3204    }
3205  } else {
3206    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3207                                                   SpecifierLen);
3208    // Since the warning for passing non-POD types to variadic functions
3209    // was deferred until now, we emit a warning for non-POD
3210    // arguments here.
3211    switch (S.isValidVarArgType(ExprTy)) {
3212    case Sema::VAK_Valid:
3213    case Sema::VAK_ValidInCXX11:
3214      EmitFormatDiagnostic(
3215        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3216          << AT.getRepresentativeTypeName(S.Context) << ExprTy
3217          << CSR
3218          << E->getSourceRange(),
3219        E->getLocStart(), /*IsStringLocation*/false, CSR);
3220      break;
3221
3222    case Sema::VAK_Undefined:
3223      EmitFormatDiagnostic(
3224        S.PDiag(diag::warn_non_pod_vararg_with_format_string)
3225          << S.getLangOpts().CPlusPlus11
3226          << ExprTy
3227          << CallType
3228          << AT.getRepresentativeTypeName(S.Context)
3229          << CSR
3230          << E->getSourceRange(),
3231        E->getLocStart(), /*IsStringLocation*/false, CSR);
3232      checkForCStrMembers(AT, E, CSR);
3233      break;
3234
3235    case Sema::VAK_Invalid:
3236      if (ExprTy->isObjCObjectType())
3237        EmitFormatDiagnostic(
3238          S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
3239            << S.getLangOpts().CPlusPlus11
3240            << ExprTy
3241            << CallType
3242            << AT.getRepresentativeTypeName(S.Context)
3243            << CSR
3244            << E->getSourceRange(),
3245          E->getLocStart(), /*IsStringLocation*/false, CSR);
3246      else
3247        // FIXME: If this is an initializer list, suggest removing the braces
3248        // or inserting a cast to the target type.
3249        S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
3250          << isa<InitListExpr>(E) << ExprTy << CallType
3251          << AT.getRepresentativeTypeName(S.Context)
3252          << E->getSourceRange();
3253      break;
3254    }
3255
3256    assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
3257           "format string specifier index out of range");
3258    CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
3259  }
3260
3261  return true;
3262}
3263
3264//===--- CHECK: Scanf format string checking ------------------------------===//
3265
3266namespace {
3267class CheckScanfHandler : public CheckFormatHandler {
3268public:
3269  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
3270                    const Expr *origFormatExpr, unsigned firstDataArg,
3271                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
3272                    ArrayRef<const Expr *> Args,
3273                    unsigned formatIdx, bool inFunctionCall,
3274                    Sema::VariadicCallType CallType,
3275                    llvm::SmallBitVector &CheckedVarArgs)
3276    : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3277                         numDataArgs, beg, hasVAListArg,
3278                         Args, formatIdx, inFunctionCall, CallType,
3279                         CheckedVarArgs)
3280  {}
3281
3282  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
3283                            const char *startSpecifier,
3284                            unsigned specifierLen);
3285
3286  bool HandleInvalidScanfConversionSpecifier(
3287          const analyze_scanf::ScanfSpecifier &FS,
3288          const char *startSpecifier,
3289          unsigned specifierLen);
3290
3291  void HandleIncompleteScanList(const char *start, const char *end);
3292};
3293}
3294
3295void CheckScanfHandler::HandleIncompleteScanList(const char *start,
3296                                                 const char *end) {
3297  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
3298                       getLocationOfByte(end), /*IsStringLocation*/true,
3299                       getSpecifierRange(start, end - start));
3300}
3301
3302bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3303                                        const analyze_scanf::ScanfSpecifier &FS,
3304                                        const char *startSpecifier,
3305                                        unsigned specifierLen) {
3306
3307  const analyze_scanf::ScanfConversionSpecifier &CS =
3308    FS.getConversionSpecifier();
3309
3310  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3311                                          getLocationOfByte(CS.getStart()),
3312                                          startSpecifier, specifierLen,
3313                                          CS.getStart(), CS.getLength());
3314}
3315
3316bool CheckScanfHandler::HandleScanfSpecifier(
3317                                       const analyze_scanf::ScanfSpecifier &FS,
3318                                       const char *startSpecifier,
3319                                       unsigned specifierLen) {
3320
3321  using namespace analyze_scanf;
3322  using namespace analyze_format_string;
3323
3324  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3325
3326  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3327  // be used to decide if we are using positional arguments consistently.
3328  if (FS.consumesDataArgument()) {
3329    if (atFirstArg) {
3330      atFirstArg = false;
3331      usesPositionalArgs = FS.usesPositionalArg();
3332    }
3333    else if (usesPositionalArgs != FS.usesPositionalArg()) {
3334      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3335                                        startSpecifier, specifierLen);
3336      return false;
3337    }
3338  }
3339
3340  // Check if the field with is non-zero.
3341  const OptionalAmount &Amt = FS.getFieldWidth();
3342  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3343    if (Amt.getConstantAmount() == 0) {
3344      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3345                                                   Amt.getConstantLength());
3346      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3347                           getLocationOfByte(Amt.getStart()),
3348                           /*IsStringLocation*/true, R,
3349                           FixItHint::CreateRemoval(R));
3350    }
3351  }
3352
3353  if (!FS.consumesDataArgument()) {
3354    // FIXME: Technically specifying a precision or field width here
3355    // makes no sense.  Worth issuing a warning at some point.
3356    return true;
3357  }
3358
3359  // Consume the argument.
3360  unsigned argIndex = FS.getArgIndex();
3361  if (argIndex < NumDataArgs) {
3362      // The check to see if the argIndex is valid will come later.
3363      // We set the bit here because we may exit early from this
3364      // function if we encounter some other error.
3365    CoveredArgs.set(argIndex);
3366  }
3367
3368  // Check the length modifier is valid with the given conversion specifier.
3369  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3370    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3371                                diag::warn_format_nonsensical_length);
3372  else if (!FS.hasStandardLengthModifier())
3373    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3374  else if (!FS.hasStandardLengthConversionCombination())
3375    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3376                                diag::warn_format_non_standard_conversion_spec);
3377
3378  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3379    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3380
3381  // The remaining checks depend on the data arguments.
3382  if (HasVAListArg)
3383    return true;
3384
3385  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3386    return false;
3387
3388  // Check that the argument type matches the format specifier.
3389  const Expr *Ex = getDataArg(argIndex);
3390  if (!Ex)
3391    return true;
3392
3393  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3394  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3395    ScanfSpecifier fixedFS = FS;
3396    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3397                                   S.Context);
3398
3399    if (success) {
3400      // Get the fix string from the fixed format specifier.
3401      SmallString<128> buf;
3402      llvm::raw_svector_ostream os(buf);
3403      fixedFS.toString(os);
3404
3405      EmitFormatDiagnostic(
3406        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3407          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3408          << Ex->getSourceRange(),
3409        Ex->getLocStart(),
3410        /*IsStringLocation*/false,
3411        getSpecifierRange(startSpecifier, specifierLen),
3412        FixItHint::CreateReplacement(
3413          getSpecifierRange(startSpecifier, specifierLen),
3414          os.str()));
3415    } else {
3416      EmitFormatDiagnostic(
3417        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3418          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3419          << Ex->getSourceRange(),
3420        Ex->getLocStart(),
3421        /*IsStringLocation*/false,
3422        getSpecifierRange(startSpecifier, specifierLen));
3423    }
3424  }
3425
3426  return true;
3427}
3428
3429void Sema::CheckFormatString(const StringLiteral *FExpr,
3430                             const Expr *OrigFormatExpr,
3431                             ArrayRef<const Expr *> Args,
3432                             bool HasVAListArg, unsigned format_idx,
3433                             unsigned firstDataArg, FormatStringType Type,
3434                             bool inFunctionCall, VariadicCallType CallType,
3435                             llvm::SmallBitVector &CheckedVarArgs) {
3436
3437  // CHECK: is the format string a wide literal?
3438  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3439    CheckFormatHandler::EmitFormatDiagnostic(
3440      *this, inFunctionCall, Args[format_idx],
3441      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3442      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3443    return;
3444  }
3445
3446  // Str - The format string.  NOTE: this is NOT null-terminated!
3447  StringRef StrRef = FExpr->getString();
3448  const char *Str = StrRef.data();
3449  unsigned StrLen = StrRef.size();
3450  const unsigned numDataArgs = Args.size() - firstDataArg;
3451
3452  // CHECK: empty format string?
3453  if (StrLen == 0 && numDataArgs > 0) {
3454    CheckFormatHandler::EmitFormatDiagnostic(
3455      *this, inFunctionCall, Args[format_idx],
3456      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3457      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3458    return;
3459  }
3460
3461  if (Type == FST_Printf || Type == FST_NSString) {
3462    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3463                         numDataArgs, (Type == FST_NSString),
3464                         Str, HasVAListArg, Args, format_idx,
3465                         inFunctionCall, CallType, CheckedVarArgs);
3466
3467    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3468                                                  getLangOpts(),
3469                                                  Context.getTargetInfo()))
3470      H.DoneProcessing();
3471  } else if (Type == FST_Scanf) {
3472    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3473                        Str, HasVAListArg, Args, format_idx,
3474                        inFunctionCall, CallType, CheckedVarArgs);
3475
3476    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3477                                                 getLangOpts(),
3478                                                 Context.getTargetInfo()))
3479      H.DoneProcessing();
3480  } // TODO: handle other formats
3481}
3482
3483//===--- CHECK: Standard memory functions ---------------------------------===//
3484
3485/// \brief Determine whether the given type is a dynamic class type (e.g.,
3486/// whether it has a vtable).
3487static bool isDynamicClassType(QualType T) {
3488  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3489    if (CXXRecordDecl *Definition = Record->getDefinition())
3490      if (Definition->isDynamicClass())
3491        return true;
3492
3493  return false;
3494}
3495
3496/// \brief If E is a sizeof expression, returns its argument expression,
3497/// otherwise returns NULL.
3498static const Expr *getSizeOfExprArg(const Expr* E) {
3499  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3500      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3501    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3502      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3503
3504  return 0;
3505}
3506
3507/// \brief If E is a sizeof expression, returns its argument type.
3508static QualType getSizeOfArgType(const Expr* E) {
3509  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3510      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3511    if (SizeOf->getKind() == clang::UETT_SizeOf)
3512      return SizeOf->getTypeOfArgument();
3513
3514  return QualType();
3515}
3516
3517/// \brief Check for dangerous or invalid arguments to memset().
3518///
3519/// This issues warnings on known problematic, dangerous or unspecified
3520/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3521/// function calls.
3522///
3523/// \param Call The call expression to diagnose.
3524void Sema::CheckMemaccessArguments(const CallExpr *Call,
3525                                   unsigned BId,
3526                                   IdentifierInfo *FnName) {
3527  assert(BId != 0);
3528
3529  // It is possible to have a non-standard definition of memset.  Validate
3530  // we have enough arguments, and if not, abort further checking.
3531  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3532  if (Call->getNumArgs() < ExpectedNumArgs)
3533    return;
3534
3535  unsigned LastArg = (BId == Builtin::BImemset ||
3536                      BId == Builtin::BIstrndup ? 1 : 2);
3537  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3538  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3539
3540  // We have special checking when the length is a sizeof expression.
3541  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3542  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3543  llvm::FoldingSetNodeID SizeOfArgID;
3544
3545  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3546    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3547    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3548
3549    QualType DestTy = Dest->getType();
3550    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3551      QualType PointeeTy = DestPtrTy->getPointeeType();
3552
3553      // Never warn about void type pointers. This can be used to suppress
3554      // false positives.
3555      if (PointeeTy->isVoidType())
3556        continue;
3557
3558      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3559      // actually comparing the expressions for equality. Because computing the
3560      // expression IDs can be expensive, we only do this if the diagnostic is
3561      // enabled.
3562      if (SizeOfArg &&
3563          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3564                                   SizeOfArg->getExprLoc())) {
3565        // We only compute IDs for expressions if the warning is enabled, and
3566        // cache the sizeof arg's ID.
3567        if (SizeOfArgID == llvm::FoldingSetNodeID())
3568          SizeOfArg->Profile(SizeOfArgID, Context, true);
3569        llvm::FoldingSetNodeID DestID;
3570        Dest->Profile(DestID, Context, true);
3571        if (DestID == SizeOfArgID) {
3572          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3573          //       over sizeof(src) as well.
3574          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3575          StringRef ReadableName = FnName->getName();
3576
3577          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3578            if (UnaryOp->getOpcode() == UO_AddrOf)
3579              ActionIdx = 1; // If its an address-of operator, just remove it.
3580          if (!PointeeTy->isIncompleteType() &&
3581              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3582            ActionIdx = 2; // If the pointee's size is sizeof(char),
3583                           // suggest an explicit length.
3584
3585          // If the function is defined as a builtin macro, do not show macro
3586          // expansion.
3587          SourceLocation SL = SizeOfArg->getExprLoc();
3588          SourceRange DSR = Dest->getSourceRange();
3589          SourceRange SSR = SizeOfArg->getSourceRange();
3590          SourceManager &SM  = PP.getSourceManager();
3591
3592          if (SM.isMacroArgExpansion(SL)) {
3593            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3594            SL = SM.getSpellingLoc(SL);
3595            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3596                             SM.getSpellingLoc(DSR.getEnd()));
3597            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3598                             SM.getSpellingLoc(SSR.getEnd()));
3599          }
3600
3601          DiagRuntimeBehavior(SL, SizeOfArg,
3602                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3603                                << ReadableName
3604                                << PointeeTy
3605                                << DestTy
3606                                << DSR
3607                                << SSR);
3608          DiagRuntimeBehavior(SL, SizeOfArg,
3609                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3610                                << ActionIdx
3611                                << SSR);
3612
3613          break;
3614        }
3615      }
3616
3617      // Also check for cases where the sizeof argument is the exact same
3618      // type as the memory argument, and where it points to a user-defined
3619      // record type.
3620      if (SizeOfArgTy != QualType()) {
3621        if (PointeeTy->isRecordType() &&
3622            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3623          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3624                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3625                                << FnName << SizeOfArgTy << ArgIdx
3626                                << PointeeTy << Dest->getSourceRange()
3627                                << LenExpr->getSourceRange());
3628          break;
3629        }
3630      }
3631
3632      // Always complain about dynamic classes.
3633      if (isDynamicClassType(PointeeTy)) {
3634
3635        unsigned OperationType = 0;
3636        // "overwritten" if we're warning about the destination for any call
3637        // but memcmp; otherwise a verb appropriate to the call.
3638        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3639          if (BId == Builtin::BImemcpy)
3640            OperationType = 1;
3641          else if(BId == Builtin::BImemmove)
3642            OperationType = 2;
3643          else if (BId == Builtin::BImemcmp)
3644            OperationType = 3;
3645        }
3646
3647        DiagRuntimeBehavior(
3648          Dest->getExprLoc(), Dest,
3649          PDiag(diag::warn_dyn_class_memaccess)
3650            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3651            << FnName << PointeeTy
3652            << OperationType
3653            << Call->getCallee()->getSourceRange());
3654      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3655               BId != Builtin::BImemset)
3656        DiagRuntimeBehavior(
3657          Dest->getExprLoc(), Dest,
3658          PDiag(diag::warn_arc_object_memaccess)
3659            << ArgIdx << FnName << PointeeTy
3660            << Call->getCallee()->getSourceRange());
3661      else
3662        continue;
3663
3664      DiagRuntimeBehavior(
3665        Dest->getExprLoc(), Dest,
3666        PDiag(diag::note_bad_memaccess_silence)
3667          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3668      break;
3669    }
3670  }
3671}
3672
3673// A little helper routine: ignore addition and subtraction of integer literals.
3674// This intentionally does not ignore all integer constant expressions because
3675// we don't want to remove sizeof().
3676static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3677  Ex = Ex->IgnoreParenCasts();
3678
3679  for (;;) {
3680    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3681    if (!BO || !BO->isAdditiveOp())
3682      break;
3683
3684    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3685    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3686
3687    if (isa<IntegerLiteral>(RHS))
3688      Ex = LHS;
3689    else if (isa<IntegerLiteral>(LHS))
3690      Ex = RHS;
3691    else
3692      break;
3693  }
3694
3695  return Ex;
3696}
3697
3698static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3699                                                      ASTContext &Context) {
3700  // Only handle constant-sized or VLAs, but not flexible members.
3701  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3702    // Only issue the FIXIT for arrays of size > 1.
3703    if (CAT->getSize().getSExtValue() <= 1)
3704      return false;
3705  } else if (!Ty->isVariableArrayType()) {
3706    return false;
3707  }
3708  return true;
3709}
3710
3711// Warn if the user has made the 'size' argument to strlcpy or strlcat
3712// be the size of the source, instead of the destination.
3713void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3714                                    IdentifierInfo *FnName) {
3715
3716  // Don't crash if the user has the wrong number of arguments
3717  if (Call->getNumArgs() != 3)
3718    return;
3719
3720  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3721  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3722  const Expr *CompareWithSrc = NULL;
3723
3724  // Look for 'strlcpy(dst, x, sizeof(x))'
3725  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3726    CompareWithSrc = Ex;
3727  else {
3728    // Look for 'strlcpy(dst, x, strlen(x))'
3729    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3730      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3731          && SizeCall->getNumArgs() == 1)
3732        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3733    }
3734  }
3735
3736  if (!CompareWithSrc)
3737    return;
3738
3739  // Determine if the argument to sizeof/strlen is equal to the source
3740  // argument.  In principle there's all kinds of things you could do
3741  // here, for instance creating an == expression and evaluating it with
3742  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3743  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3744  if (!SrcArgDRE)
3745    return;
3746
3747  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3748  if (!CompareWithSrcDRE ||
3749      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3750    return;
3751
3752  const Expr *OriginalSizeArg = Call->getArg(2);
3753  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3754    << OriginalSizeArg->getSourceRange() << FnName;
3755
3756  // Output a FIXIT hint if the destination is an array (rather than a
3757  // pointer to an array).  This could be enhanced to handle some
3758  // pointers if we know the actual size, like if DstArg is 'array+2'
3759  // we could say 'sizeof(array)-2'.
3760  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3761  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3762    return;
3763
3764  SmallString<128> sizeString;
3765  llvm::raw_svector_ostream OS(sizeString);
3766  OS << "sizeof(";
3767  DstArg->printPretty(OS, 0, getPrintingPolicy());
3768  OS << ")";
3769
3770  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3771    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3772                                    OS.str());
3773}
3774
3775/// Check if two expressions refer to the same declaration.
3776static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3777  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3778    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3779      return D1->getDecl() == D2->getDecl();
3780  return false;
3781}
3782
3783static const Expr *getStrlenExprArg(const Expr *E) {
3784  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3785    const FunctionDecl *FD = CE->getDirectCallee();
3786    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3787      return 0;
3788    return CE->getArg(0)->IgnoreParenCasts();
3789  }
3790  return 0;
3791}
3792
3793// Warn on anti-patterns as the 'size' argument to strncat.
3794// The correct size argument should look like following:
3795//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3796void Sema::CheckStrncatArguments(const CallExpr *CE,
3797                                 IdentifierInfo *FnName) {
3798  // Don't crash if the user has the wrong number of arguments.
3799  if (CE->getNumArgs() < 3)
3800    return;
3801  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3802  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3803  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3804
3805  // Identify common expressions, which are wrongly used as the size argument
3806  // to strncat and may lead to buffer overflows.
3807  unsigned PatternType = 0;
3808  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3809    // - sizeof(dst)
3810    if (referToTheSameDecl(SizeOfArg, DstArg))
3811      PatternType = 1;
3812    // - sizeof(src)
3813    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3814      PatternType = 2;
3815  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3816    if (BE->getOpcode() == BO_Sub) {
3817      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3818      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3819      // - sizeof(dst) - strlen(dst)
3820      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3821          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3822        PatternType = 1;
3823      // - sizeof(src) - (anything)
3824      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3825        PatternType = 2;
3826    }
3827  }
3828
3829  if (PatternType == 0)
3830    return;
3831
3832  // Generate the diagnostic.
3833  SourceLocation SL = LenArg->getLocStart();
3834  SourceRange SR = LenArg->getSourceRange();
3835  SourceManager &SM  = PP.getSourceManager();
3836
3837  // If the function is defined as a builtin macro, do not show macro expansion.
3838  if (SM.isMacroArgExpansion(SL)) {
3839    SL = SM.getSpellingLoc(SL);
3840    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3841                     SM.getSpellingLoc(SR.getEnd()));
3842  }
3843
3844  // Check if the destination is an array (rather than a pointer to an array).
3845  QualType DstTy = DstArg->getType();
3846  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3847                                                                    Context);
3848  if (!isKnownSizeArray) {
3849    if (PatternType == 1)
3850      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3851    else
3852      Diag(SL, diag::warn_strncat_src_size) << SR;
3853    return;
3854  }
3855
3856  if (PatternType == 1)
3857    Diag(SL, diag::warn_strncat_large_size) << SR;
3858  else
3859    Diag(SL, diag::warn_strncat_src_size) << SR;
3860
3861  SmallString<128> sizeString;
3862  llvm::raw_svector_ostream OS(sizeString);
3863  OS << "sizeof(";
3864  DstArg->printPretty(OS, 0, getPrintingPolicy());
3865  OS << ") - ";
3866  OS << "strlen(";
3867  DstArg->printPretty(OS, 0, getPrintingPolicy());
3868  OS << ") - 1";
3869
3870  Diag(SL, diag::note_strncat_wrong_size)
3871    << FixItHint::CreateReplacement(SR, OS.str());
3872}
3873
3874//===--- CHECK: Return Address of Stack Variable --------------------------===//
3875
3876static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3877                     Decl *ParentDecl);
3878static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3879                      Decl *ParentDecl);
3880
3881/// CheckReturnStackAddr - Check if a return statement returns the address
3882///   of a stack variable.
3883void
3884Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3885                           SourceLocation ReturnLoc) {
3886
3887  Expr *stackE = 0;
3888  SmallVector<DeclRefExpr *, 8> refVars;
3889
3890  // Perform checking for returned stack addresses, local blocks,
3891  // label addresses or references to temporaries.
3892  if (lhsType->isPointerType() ||
3893      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3894    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3895  } else if (lhsType->isReferenceType()) {
3896    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3897  }
3898
3899  if (stackE == 0)
3900    return; // Nothing suspicious was found.
3901
3902  SourceLocation diagLoc;
3903  SourceRange diagRange;
3904  if (refVars.empty()) {
3905    diagLoc = stackE->getLocStart();
3906    diagRange = stackE->getSourceRange();
3907  } else {
3908    // We followed through a reference variable. 'stackE' contains the
3909    // problematic expression but we will warn at the return statement pointing
3910    // at the reference variable. We will later display the "trail" of
3911    // reference variables using notes.
3912    diagLoc = refVars[0]->getLocStart();
3913    diagRange = refVars[0]->getSourceRange();
3914  }
3915
3916  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3917    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3918                                             : diag::warn_ret_stack_addr)
3919     << DR->getDecl()->getDeclName() << diagRange;
3920  } else if (isa<BlockExpr>(stackE)) { // local block.
3921    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3922  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3923    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3924  } else { // local temporary.
3925    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3926                                             : diag::warn_ret_local_temp_addr)
3927     << diagRange;
3928  }
3929
3930  // Display the "trail" of reference variables that we followed until we
3931  // found the problematic expression using notes.
3932  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3933    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3934    // If this var binds to another reference var, show the range of the next
3935    // var, otherwise the var binds to the problematic expression, in which case
3936    // show the range of the expression.
3937    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3938                                  : stackE->getSourceRange();
3939    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3940      << VD->getDeclName() << range;
3941  }
3942}
3943
3944/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3945///  check if the expression in a return statement evaluates to an address
3946///  to a location on the stack, a local block, an address of a label, or a
3947///  reference to local temporary. The recursion is used to traverse the
3948///  AST of the return expression, with recursion backtracking when we
3949///  encounter a subexpression that (1) clearly does not lead to one of the
3950///  above problematic expressions (2) is something we cannot determine leads to
3951///  a problematic expression based on such local checking.
3952///
3953///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3954///  the expression that they point to. Such variables are added to the
3955///  'refVars' vector so that we know what the reference variable "trail" was.
3956///
3957///  EvalAddr processes expressions that are pointers that are used as
3958///  references (and not L-values).  EvalVal handles all other values.
3959///  At the base case of the recursion is a check for the above problematic
3960///  expressions.
3961///
3962///  This implementation handles:
3963///
3964///   * pointer-to-pointer casts
3965///   * implicit conversions from array references to pointers
3966///   * taking the address of fields
3967///   * arbitrary interplay between "&" and "*" operators
3968///   * pointer arithmetic from an address of a stack variable
3969///   * taking the address of an array element where the array is on the stack
3970static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3971                      Decl *ParentDecl) {
3972  if (E->isTypeDependent())
3973    return NULL;
3974
3975  // We should only be called for evaluating pointer expressions.
3976  assert((E->getType()->isAnyPointerType() ||
3977          E->getType()->isBlockPointerType() ||
3978          E->getType()->isObjCQualifiedIdType()) &&
3979         "EvalAddr only works on pointers");
3980
3981  E = E->IgnoreParens();
3982
3983  // Our "symbolic interpreter" is just a dispatch off the currently
3984  // viewed AST node.  We then recursively traverse the AST by calling
3985  // EvalAddr and EvalVal appropriately.
3986  switch (E->getStmtClass()) {
3987  case Stmt::DeclRefExprClass: {
3988    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3989
3990    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3991      // If this is a reference variable, follow through to the expression that
3992      // it points to.
3993      if (V->hasLocalStorage() &&
3994          V->getType()->isReferenceType() && V->hasInit()) {
3995        // Add the reference variable to the "trail".
3996        refVars.push_back(DR);
3997        return EvalAddr(V->getInit(), refVars, ParentDecl);
3998      }
3999
4000    return NULL;
4001  }
4002
4003  case Stmt::UnaryOperatorClass: {
4004    // The only unary operator that make sense to handle here
4005    // is AddrOf.  All others don't make sense as pointers.
4006    UnaryOperator *U = cast<UnaryOperator>(E);
4007
4008    if (U->getOpcode() == UO_AddrOf)
4009      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
4010    else
4011      return NULL;
4012  }
4013
4014  case Stmt::BinaryOperatorClass: {
4015    // Handle pointer arithmetic.  All other binary operators are not valid
4016    // in this context.
4017    BinaryOperator *B = cast<BinaryOperator>(E);
4018    BinaryOperatorKind op = B->getOpcode();
4019
4020    if (op != BO_Add && op != BO_Sub)
4021      return NULL;
4022
4023    Expr *Base = B->getLHS();
4024
4025    // Determine which argument is the real pointer base.  It could be
4026    // the RHS argument instead of the LHS.
4027    if (!Base->getType()->isPointerType()) Base = B->getRHS();
4028
4029    assert (Base->getType()->isPointerType());
4030    return EvalAddr(Base, refVars, ParentDecl);
4031  }
4032
4033  // For conditional operators we need to see if either the LHS or RHS are
4034  // valid DeclRefExpr*s.  If one of them is valid, we return it.
4035  case Stmt::ConditionalOperatorClass: {
4036    ConditionalOperator *C = cast<ConditionalOperator>(E);
4037
4038    // Handle the GNU extension for missing LHS.
4039    if (Expr *lhsExpr = C->getLHS()) {
4040    // In C++, we can have a throw-expression, which has 'void' type.
4041      if (!lhsExpr->getType()->isVoidType())
4042        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
4043          return LHS;
4044    }
4045
4046    // In C++, we can have a throw-expression, which has 'void' type.
4047    if (C->getRHS()->getType()->isVoidType())
4048      return NULL;
4049
4050    return EvalAddr(C->getRHS(), refVars, ParentDecl);
4051  }
4052
4053  case Stmt::BlockExprClass:
4054    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
4055      return E; // local block.
4056    return NULL;
4057
4058  case Stmt::AddrLabelExprClass:
4059    return E; // address of label.
4060
4061  case Stmt::ExprWithCleanupsClass:
4062    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
4063                    ParentDecl);
4064
4065  // For casts, we need to handle conversions from arrays to
4066  // pointer values, and pointer-to-pointer conversions.
4067  case Stmt::ImplicitCastExprClass:
4068  case Stmt::CStyleCastExprClass:
4069  case Stmt::CXXFunctionalCastExprClass:
4070  case Stmt::ObjCBridgedCastExprClass:
4071  case Stmt::CXXStaticCastExprClass:
4072  case Stmt::CXXDynamicCastExprClass:
4073  case Stmt::CXXConstCastExprClass:
4074  case Stmt::CXXReinterpretCastExprClass: {
4075    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
4076    switch (cast<CastExpr>(E)->getCastKind()) {
4077    case CK_BitCast:
4078    case CK_LValueToRValue:
4079    case CK_NoOp:
4080    case CK_BaseToDerived:
4081    case CK_DerivedToBase:
4082    case CK_UncheckedDerivedToBase:
4083    case CK_Dynamic:
4084    case CK_CPointerToObjCPointerCast:
4085    case CK_BlockPointerToObjCPointerCast:
4086    case CK_AnyPointerToBlockPointerCast:
4087      return EvalAddr(SubExpr, refVars, ParentDecl);
4088
4089    case CK_ArrayToPointerDecay:
4090      return EvalVal(SubExpr, refVars, ParentDecl);
4091
4092    default:
4093      return 0;
4094    }
4095  }
4096
4097  case Stmt::MaterializeTemporaryExprClass:
4098    if (Expr *Result = EvalAddr(
4099                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4100                                refVars, ParentDecl))
4101      return Result;
4102
4103    return E;
4104
4105  // Everything else: we simply don't reason about them.
4106  default:
4107    return NULL;
4108  }
4109}
4110
4111
4112///  EvalVal - This function is complements EvalAddr in the mutual recursion.
4113///   See the comments for EvalAddr for more details.
4114static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4115                     Decl *ParentDecl) {
4116do {
4117  // We should only be called for evaluating non-pointer expressions, or
4118  // expressions with a pointer type that are not used as references but instead
4119  // are l-values (e.g., DeclRefExpr with a pointer type).
4120
4121  // Our "symbolic interpreter" is just a dispatch off the currently
4122  // viewed AST node.  We then recursively traverse the AST by calling
4123  // EvalAddr and EvalVal appropriately.
4124
4125  E = E->IgnoreParens();
4126  switch (E->getStmtClass()) {
4127  case Stmt::ImplicitCastExprClass: {
4128    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
4129    if (IE->getValueKind() == VK_LValue) {
4130      E = IE->getSubExpr();
4131      continue;
4132    }
4133    return NULL;
4134  }
4135
4136  case Stmt::ExprWithCleanupsClass:
4137    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
4138
4139  case Stmt::DeclRefExprClass: {
4140    // When we hit a DeclRefExpr we are looking at code that refers to a
4141    // variable's name. If it's not a reference variable we check if it has
4142    // local storage within the function, and if so, return the expression.
4143    DeclRefExpr *DR = cast<DeclRefExpr>(E);
4144
4145    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
4146      // Check if it refers to itself, e.g. "int& i = i;".
4147      if (V == ParentDecl)
4148        return DR;
4149
4150      if (V->hasLocalStorage()) {
4151        if (!V->getType()->isReferenceType())
4152          return DR;
4153
4154        // Reference variable, follow through to the expression that
4155        // it points to.
4156        if (V->hasInit()) {
4157          // Add the reference variable to the "trail".
4158          refVars.push_back(DR);
4159          return EvalVal(V->getInit(), refVars, V);
4160        }
4161      }
4162    }
4163
4164    return NULL;
4165  }
4166
4167  case Stmt::UnaryOperatorClass: {
4168    // The only unary operator that make sense to handle here
4169    // is Deref.  All others don't resolve to a "name."  This includes
4170    // handling all sorts of rvalues passed to a unary operator.
4171    UnaryOperator *U = cast<UnaryOperator>(E);
4172
4173    if (U->getOpcode() == UO_Deref)
4174      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
4175
4176    return NULL;
4177  }
4178
4179  case Stmt::ArraySubscriptExprClass: {
4180    // Array subscripts are potential references to data on the stack.  We
4181    // retrieve the DeclRefExpr* for the array variable if it indeed
4182    // has local storage.
4183    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
4184  }
4185
4186  case Stmt::ConditionalOperatorClass: {
4187    // For conditional operators we need to see if either the LHS or RHS are
4188    // non-NULL Expr's.  If one is non-NULL, we return it.
4189    ConditionalOperator *C = cast<ConditionalOperator>(E);
4190
4191    // Handle the GNU extension for missing LHS.
4192    if (Expr *lhsExpr = C->getLHS())
4193      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
4194        return LHS;
4195
4196    return EvalVal(C->getRHS(), refVars, ParentDecl);
4197  }
4198
4199  // Accesses to members are potential references to data on the stack.
4200  case Stmt::MemberExprClass: {
4201    MemberExpr *M = cast<MemberExpr>(E);
4202
4203    // Check for indirect access.  We only want direct field accesses.
4204    if (M->isArrow())
4205      return NULL;
4206
4207    // Check whether the member type is itself a reference, in which case
4208    // we're not going to refer to the member, but to what the member refers to.
4209    if (M->getMemberDecl()->getType()->isReferenceType())
4210      return NULL;
4211
4212    return EvalVal(M->getBase(), refVars, ParentDecl);
4213  }
4214
4215  case Stmt::MaterializeTemporaryExprClass:
4216    if (Expr *Result = EvalVal(
4217                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4218                               refVars, ParentDecl))
4219      return Result;
4220
4221    return E;
4222
4223  default:
4224    // Check that we don't return or take the address of a reference to a
4225    // temporary. This is only useful in C++.
4226    if (!E->isTypeDependent() && E->isRValue())
4227      return E;
4228
4229    // Everything else: we simply don't reason about them.
4230    return NULL;
4231  }
4232} while (true);
4233}
4234
4235//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
4236
4237/// Check for comparisons of floating point operands using != and ==.
4238/// Issue a warning if these are no self-comparisons, as they are not likely
4239/// to do what the programmer intended.
4240void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
4241  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
4242  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
4243
4244  // Special case: check for x == x (which is OK).
4245  // Do not emit warnings for such cases.
4246  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
4247    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
4248      if (DRL->getDecl() == DRR->getDecl())
4249        return;
4250
4251
4252  // Special case: check for comparisons against literals that can be exactly
4253  //  represented by APFloat.  In such cases, do not emit a warning.  This
4254  //  is a heuristic: often comparison against such literals are used to
4255  //  detect if a value in a variable has not changed.  This clearly can
4256  //  lead to false negatives.
4257  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
4258    if (FLL->isExact())
4259      return;
4260  } else
4261    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
4262      if (FLR->isExact())
4263        return;
4264
4265  // Check for comparisons with builtin types.
4266  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
4267    if (CL->isBuiltinCall())
4268      return;
4269
4270  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
4271    if (CR->isBuiltinCall())
4272      return;
4273
4274  // Emit the diagnostic.
4275  Diag(Loc, diag::warn_floatingpoint_eq)
4276    << LHS->getSourceRange() << RHS->getSourceRange();
4277}
4278
4279//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
4280//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
4281
4282namespace {
4283
4284/// Structure recording the 'active' range of an integer-valued
4285/// expression.
4286struct IntRange {
4287  /// The number of bits active in the int.
4288  unsigned Width;
4289
4290  /// True if the int is known not to have negative values.
4291  bool NonNegative;
4292
4293  IntRange(unsigned Width, bool NonNegative)
4294    : Width(Width), NonNegative(NonNegative)
4295  {}
4296
4297  /// Returns the range of the bool type.
4298  static IntRange forBoolType() {
4299    return IntRange(1, true);
4300  }
4301
4302  /// Returns the range of an opaque value of the given integral type.
4303  static IntRange forValueOfType(ASTContext &C, QualType T) {
4304    return forValueOfCanonicalType(C,
4305                          T->getCanonicalTypeInternal().getTypePtr());
4306  }
4307
4308  /// Returns the range of an opaque value of a canonical integral type.
4309  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
4310    assert(T->isCanonicalUnqualified());
4311
4312    if (const VectorType *VT = dyn_cast<VectorType>(T))
4313      T = VT->getElementType().getTypePtr();
4314    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4315      T = CT->getElementType().getTypePtr();
4316
4317    // For enum types, use the known bit width of the enumerators.
4318    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4319      EnumDecl *Enum = ET->getDecl();
4320      if (!Enum->isCompleteDefinition())
4321        return IntRange(C.getIntWidth(QualType(T, 0)), false);
4322
4323      unsigned NumPositive = Enum->getNumPositiveBits();
4324      unsigned NumNegative = Enum->getNumNegativeBits();
4325
4326      if (NumNegative == 0)
4327        return IntRange(NumPositive, true/*NonNegative*/);
4328      else
4329        return IntRange(std::max(NumPositive + 1, NumNegative),
4330                        false/*NonNegative*/);
4331    }
4332
4333    const BuiltinType *BT = cast<BuiltinType>(T);
4334    assert(BT->isInteger());
4335
4336    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4337  }
4338
4339  /// Returns the "target" range of a canonical integral type, i.e.
4340  /// the range of values expressible in the type.
4341  ///
4342  /// This matches forValueOfCanonicalType except that enums have the
4343  /// full range of their type, not the range of their enumerators.
4344  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4345    assert(T->isCanonicalUnqualified());
4346
4347    if (const VectorType *VT = dyn_cast<VectorType>(T))
4348      T = VT->getElementType().getTypePtr();
4349    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4350      T = CT->getElementType().getTypePtr();
4351    if (const EnumType *ET = dyn_cast<EnumType>(T))
4352      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4353
4354    const BuiltinType *BT = cast<BuiltinType>(T);
4355    assert(BT->isInteger());
4356
4357    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4358  }
4359
4360  /// Returns the supremum of two ranges: i.e. their conservative merge.
4361  static IntRange join(IntRange L, IntRange R) {
4362    return IntRange(std::max(L.Width, R.Width),
4363                    L.NonNegative && R.NonNegative);
4364  }
4365
4366  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4367  static IntRange meet(IntRange L, IntRange R) {
4368    return IntRange(std::min(L.Width, R.Width),
4369                    L.NonNegative || R.NonNegative);
4370  }
4371};
4372
4373static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4374                              unsigned MaxWidth) {
4375  if (value.isSigned() && value.isNegative())
4376    return IntRange(value.getMinSignedBits(), false);
4377
4378  if (value.getBitWidth() > MaxWidth)
4379    value = value.trunc(MaxWidth);
4380
4381  // isNonNegative() just checks the sign bit without considering
4382  // signedness.
4383  return IntRange(value.getActiveBits(), true);
4384}
4385
4386static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4387                              unsigned MaxWidth) {
4388  if (result.isInt())
4389    return GetValueRange(C, result.getInt(), MaxWidth);
4390
4391  if (result.isVector()) {
4392    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4393    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4394      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4395      R = IntRange::join(R, El);
4396    }
4397    return R;
4398  }
4399
4400  if (result.isComplexInt()) {
4401    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4402    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4403    return IntRange::join(R, I);
4404  }
4405
4406  // This can happen with lossless casts to intptr_t of "based" lvalues.
4407  // Assume it might use arbitrary bits.
4408  // FIXME: The only reason we need to pass the type in here is to get
4409  // the sign right on this one case.  It would be nice if APValue
4410  // preserved this.
4411  assert(result.isLValue() || result.isAddrLabelDiff());
4412  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4413}
4414
4415static QualType GetExprType(Expr *E) {
4416  QualType Ty = E->getType();
4417  if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
4418    Ty = AtomicRHS->getValueType();
4419  return Ty;
4420}
4421
4422/// Pseudo-evaluate the given integer expression, estimating the
4423/// range of values it might take.
4424///
4425/// \param MaxWidth - the width to which the value will be truncated
4426static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4427  E = E->IgnoreParens();
4428
4429  // Try a full evaluation first.
4430  Expr::EvalResult result;
4431  if (E->EvaluateAsRValue(result, C))
4432    return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
4433
4434  // I think we only want to look through implicit casts here; if the
4435  // user has an explicit widening cast, we should treat the value as
4436  // being of the new, wider type.
4437  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4438    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4439      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4440
4441    IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
4442
4443    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4444
4445    // Assume that non-integer casts can span the full range of the type.
4446    if (!isIntegerCast)
4447      return OutputTypeRange;
4448
4449    IntRange SubRange
4450      = GetExprRange(C, CE->getSubExpr(),
4451                     std::min(MaxWidth, OutputTypeRange.Width));
4452
4453    // Bail out if the subexpr's range is as wide as the cast type.
4454    if (SubRange.Width >= OutputTypeRange.Width)
4455      return OutputTypeRange;
4456
4457    // Otherwise, we take the smaller width, and we're non-negative if
4458    // either the output type or the subexpr is.
4459    return IntRange(SubRange.Width,
4460                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4461  }
4462
4463  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4464    // If we can fold the condition, just take that operand.
4465    bool CondResult;
4466    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4467      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4468                                        : CO->getFalseExpr(),
4469                          MaxWidth);
4470
4471    // Otherwise, conservatively merge.
4472    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4473    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4474    return IntRange::join(L, R);
4475  }
4476
4477  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4478    switch (BO->getOpcode()) {
4479
4480    // Boolean-valued operations are single-bit and positive.
4481    case BO_LAnd:
4482    case BO_LOr:
4483    case BO_LT:
4484    case BO_GT:
4485    case BO_LE:
4486    case BO_GE:
4487    case BO_EQ:
4488    case BO_NE:
4489      return IntRange::forBoolType();
4490
4491    // The type of the assignments is the type of the LHS, so the RHS
4492    // is not necessarily the same type.
4493    case BO_MulAssign:
4494    case BO_DivAssign:
4495    case BO_RemAssign:
4496    case BO_AddAssign:
4497    case BO_SubAssign:
4498    case BO_XorAssign:
4499    case BO_OrAssign:
4500      // TODO: bitfields?
4501      return IntRange::forValueOfType(C, GetExprType(E));
4502
4503    // Simple assignments just pass through the RHS, which will have
4504    // been coerced to the LHS type.
4505    case BO_Assign:
4506      // TODO: bitfields?
4507      return GetExprRange(C, BO->getRHS(), MaxWidth);
4508
4509    // Operations with opaque sources are black-listed.
4510    case BO_PtrMemD:
4511    case BO_PtrMemI:
4512      return IntRange::forValueOfType(C, GetExprType(E));
4513
4514    // Bitwise-and uses the *infinum* of the two source ranges.
4515    case BO_And:
4516    case BO_AndAssign:
4517      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4518                            GetExprRange(C, BO->getRHS(), MaxWidth));
4519
4520    // Left shift gets black-listed based on a judgement call.
4521    case BO_Shl:
4522      // ...except that we want to treat '1 << (blah)' as logically
4523      // positive.  It's an important idiom.
4524      if (IntegerLiteral *I
4525            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4526        if (I->getValue() == 1) {
4527          IntRange R = IntRange::forValueOfType(C, GetExprType(E));
4528          return IntRange(R.Width, /*NonNegative*/ true);
4529        }
4530      }
4531      // fallthrough
4532
4533    case BO_ShlAssign:
4534      return IntRange::forValueOfType(C, GetExprType(E));
4535
4536    // Right shift by a constant can narrow its left argument.
4537    case BO_Shr:
4538    case BO_ShrAssign: {
4539      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4540
4541      // If the shift amount is a positive constant, drop the width by
4542      // that much.
4543      llvm::APSInt shift;
4544      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4545          shift.isNonNegative()) {
4546        unsigned zext = shift.getZExtValue();
4547        if (zext >= L.Width)
4548          L.Width = (L.NonNegative ? 0 : 1);
4549        else
4550          L.Width -= zext;
4551      }
4552
4553      return L;
4554    }
4555
4556    // Comma acts as its right operand.
4557    case BO_Comma:
4558      return GetExprRange(C, BO->getRHS(), MaxWidth);
4559
4560    // Black-list pointer subtractions.
4561    case BO_Sub:
4562      if (BO->getLHS()->getType()->isPointerType())
4563        return IntRange::forValueOfType(C, GetExprType(E));
4564      break;
4565
4566    // The width of a division result is mostly determined by the size
4567    // of the LHS.
4568    case BO_Div: {
4569      // Don't 'pre-truncate' the operands.
4570      unsigned opWidth = C.getIntWidth(GetExprType(E));
4571      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4572
4573      // If the divisor is constant, use that.
4574      llvm::APSInt divisor;
4575      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4576        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4577        if (log2 >= L.Width)
4578          L.Width = (L.NonNegative ? 0 : 1);
4579        else
4580          L.Width = std::min(L.Width - log2, MaxWidth);
4581        return L;
4582      }
4583
4584      // Otherwise, just use the LHS's width.
4585      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4586      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4587    }
4588
4589    // The result of a remainder can't be larger than the result of
4590    // either side.
4591    case BO_Rem: {
4592      // Don't 'pre-truncate' the operands.
4593      unsigned opWidth = C.getIntWidth(GetExprType(E));
4594      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4595      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4596
4597      IntRange meet = IntRange::meet(L, R);
4598      meet.Width = std::min(meet.Width, MaxWidth);
4599      return meet;
4600    }
4601
4602    // The default behavior is okay for these.
4603    case BO_Mul:
4604    case BO_Add:
4605    case BO_Xor:
4606    case BO_Or:
4607      break;
4608    }
4609
4610    // The default case is to treat the operation as if it were closed
4611    // on the narrowest type that encompasses both operands.
4612    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4613    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4614    return IntRange::join(L, R);
4615  }
4616
4617  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4618    switch (UO->getOpcode()) {
4619    // Boolean-valued operations are white-listed.
4620    case UO_LNot:
4621      return IntRange::forBoolType();
4622
4623    // Operations with opaque sources are black-listed.
4624    case UO_Deref:
4625    case UO_AddrOf: // should be impossible
4626      return IntRange::forValueOfType(C, GetExprType(E));
4627
4628    default:
4629      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4630    }
4631  }
4632
4633  if (FieldDecl *BitField = E->getSourceBitField())
4634    return IntRange(BitField->getBitWidthValue(C),
4635                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4636
4637  return IntRange::forValueOfType(C, GetExprType(E));
4638}
4639
4640static IntRange GetExprRange(ASTContext &C, Expr *E) {
4641  return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
4642}
4643
4644/// Checks whether the given value, which currently has the given
4645/// source semantics, has the same value when coerced through the
4646/// target semantics.
4647static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4648                                 const llvm::fltSemantics &Src,
4649                                 const llvm::fltSemantics &Tgt) {
4650  llvm::APFloat truncated = value;
4651
4652  bool ignored;
4653  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4654  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4655
4656  return truncated.bitwiseIsEqual(value);
4657}
4658
4659/// Checks whether the given value, which currently has the given
4660/// source semantics, has the same value when coerced through the
4661/// target semantics.
4662///
4663/// The value might be a vector of floats (or a complex number).
4664static bool IsSameFloatAfterCast(const APValue &value,
4665                                 const llvm::fltSemantics &Src,
4666                                 const llvm::fltSemantics &Tgt) {
4667  if (value.isFloat())
4668    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4669
4670  if (value.isVector()) {
4671    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4672      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4673        return false;
4674    return true;
4675  }
4676
4677  assert(value.isComplexFloat());
4678  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4679          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4680}
4681
4682static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4683
4684static bool IsZero(Sema &S, Expr *E) {
4685  // Suppress cases where we are comparing against an enum constant.
4686  if (const DeclRefExpr *DR =
4687      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4688    if (isa<EnumConstantDecl>(DR->getDecl()))
4689      return false;
4690
4691  // Suppress cases where the '0' value is expanded from a macro.
4692  if (E->getLocStart().isMacroID())
4693    return false;
4694
4695  llvm::APSInt Value;
4696  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4697}
4698
4699static bool HasEnumType(Expr *E) {
4700  // Strip off implicit integral promotions.
4701  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4702    if (ICE->getCastKind() != CK_IntegralCast &&
4703        ICE->getCastKind() != CK_NoOp)
4704      break;
4705    E = ICE->getSubExpr();
4706  }
4707
4708  return E->getType()->isEnumeralType();
4709}
4710
4711static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4712  BinaryOperatorKind op = E->getOpcode();
4713  if (E->isValueDependent())
4714    return;
4715
4716  if (op == BO_LT && IsZero(S, E->getRHS())) {
4717    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4718      << "< 0" << "false" << HasEnumType(E->getLHS())
4719      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4720  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4721    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4722      << ">= 0" << "true" << HasEnumType(E->getLHS())
4723      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4724  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4725    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4726      << "0 >" << "false" << HasEnumType(E->getRHS())
4727      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4728  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4729    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4730      << "0 <=" << "true" << HasEnumType(E->getRHS())
4731      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4732  }
4733}
4734
4735static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4736                                         Expr *Constant, Expr *Other,
4737                                         llvm::APSInt Value,
4738                                         bool RhsConstant) {
4739  // 0 values are handled later by CheckTrivialUnsignedComparison().
4740  if (Value == 0)
4741    return;
4742
4743  BinaryOperatorKind op = E->getOpcode();
4744  QualType OtherT = Other->getType();
4745  QualType ConstantT = Constant->getType();
4746  QualType CommonT = E->getLHS()->getType();
4747  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4748    return;
4749  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4750         && "comparison with non-integer type");
4751
4752  bool ConstantSigned = ConstantT->isSignedIntegerType();
4753  bool CommonSigned = CommonT->isSignedIntegerType();
4754
4755  bool EqualityOnly = false;
4756
4757  // TODO: Investigate using GetExprRange() to get tighter bounds on
4758  // on the bit ranges.
4759  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4760  unsigned OtherWidth = OtherRange.Width;
4761
4762  if (CommonSigned) {
4763    // The common type is signed, therefore no signed to unsigned conversion.
4764    if (!OtherRange.NonNegative) {
4765      // Check that the constant is representable in type OtherT.
4766      if (ConstantSigned) {
4767        if (OtherWidth >= Value.getMinSignedBits())
4768          return;
4769      } else { // !ConstantSigned
4770        if (OtherWidth >= Value.getActiveBits() + 1)
4771          return;
4772      }
4773    } else { // !OtherSigned
4774      // Check that the constant is representable in type OtherT.
4775      // Negative values are out of range.
4776      if (ConstantSigned) {
4777        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4778          return;
4779      } else { // !ConstantSigned
4780        if (OtherWidth >= Value.getActiveBits())
4781          return;
4782      }
4783    }
4784  } else {  // !CommonSigned
4785    if (OtherRange.NonNegative) {
4786      if (OtherWidth >= Value.getActiveBits())
4787        return;
4788    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4789      // Check to see if the constant is representable in OtherT.
4790      if (OtherWidth > Value.getActiveBits())
4791        return;
4792      // Check to see if the constant is equivalent to a negative value
4793      // cast to CommonT.
4794      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4795          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4796        return;
4797      // The constant value rests between values that OtherT can represent after
4798      // conversion.  Relational comparison still works, but equality
4799      // comparisons will be tautological.
4800      EqualityOnly = true;
4801    } else { // OtherSigned && ConstantSigned
4802      assert(0 && "Two signed types converted to unsigned types.");
4803    }
4804  }
4805
4806  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4807
4808  bool IsTrue = true;
4809  if (op == BO_EQ || op == BO_NE) {
4810    IsTrue = op == BO_NE;
4811  } else if (EqualityOnly) {
4812    return;
4813  } else if (RhsConstant) {
4814    if (op == BO_GT || op == BO_GE)
4815      IsTrue = !PositiveConstant;
4816    else // op == BO_LT || op == BO_LE
4817      IsTrue = PositiveConstant;
4818  } else {
4819    if (op == BO_LT || op == BO_LE)
4820      IsTrue = !PositiveConstant;
4821    else // op == BO_GT || op == BO_GE
4822      IsTrue = PositiveConstant;
4823  }
4824
4825  // If this is a comparison to an enum constant, include that
4826  // constant in the diagnostic.
4827  const EnumConstantDecl *ED = 0;
4828  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4829    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4830
4831  SmallString<64> PrettySourceValue;
4832  llvm::raw_svector_ostream OS(PrettySourceValue);
4833  if (ED)
4834    OS << '\'' << *ED << "' (" << Value << ")";
4835  else
4836    OS << Value;
4837
4838  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4839      << OS.str() << OtherT << IsTrue
4840      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4841}
4842
4843/// Analyze the operands of the given comparison.  Implements the
4844/// fallback case from AnalyzeComparison.
4845static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4846  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4847  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4848}
4849
4850/// \brief Implements -Wsign-compare.
4851///
4852/// \param E the binary operator to check for warnings
4853static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4854  // The type the comparison is being performed in.
4855  QualType T = E->getLHS()->getType();
4856  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4857         && "comparison with mismatched types");
4858  if (E->isValueDependent())
4859    return AnalyzeImpConvsInComparison(S, E);
4860
4861  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4862  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4863
4864  bool IsComparisonConstant = false;
4865
4866  // Check whether an integer constant comparison results in a value
4867  // of 'true' or 'false'.
4868  if (T->isIntegralType(S.Context)) {
4869    llvm::APSInt RHSValue;
4870    bool IsRHSIntegralLiteral =
4871      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4872    llvm::APSInt LHSValue;
4873    bool IsLHSIntegralLiteral =
4874      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4875    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4876        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4877    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4878      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4879    else
4880      IsComparisonConstant =
4881        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4882  } else if (!T->hasUnsignedIntegerRepresentation())
4883      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4884
4885  // We don't do anything special if this isn't an unsigned integral
4886  // comparison:  we're only interested in integral comparisons, and
4887  // signed comparisons only happen in cases we don't care to warn about.
4888  //
4889  // We also don't care about value-dependent expressions or expressions
4890  // whose result is a constant.
4891  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4892    return AnalyzeImpConvsInComparison(S, E);
4893
4894  // Check to see if one of the (unmodified) operands is of different
4895  // signedness.
4896  Expr *signedOperand, *unsignedOperand;
4897  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4898    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4899           "unsigned comparison between two signed integer expressions?");
4900    signedOperand = LHS;
4901    unsignedOperand = RHS;
4902  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4903    signedOperand = RHS;
4904    unsignedOperand = LHS;
4905  } else {
4906    CheckTrivialUnsignedComparison(S, E);
4907    return AnalyzeImpConvsInComparison(S, E);
4908  }
4909
4910  // Otherwise, calculate the effective range of the signed operand.
4911  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4912
4913  // Go ahead and analyze implicit conversions in the operands.  Note
4914  // that we skip the implicit conversions on both sides.
4915  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4916  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4917
4918  // If the signed range is non-negative, -Wsign-compare won't fire,
4919  // but we should still check for comparisons which are always true
4920  // or false.
4921  if (signedRange.NonNegative)
4922    return CheckTrivialUnsignedComparison(S, E);
4923
4924  // For (in)equality comparisons, if the unsigned operand is a
4925  // constant which cannot collide with a overflowed signed operand,
4926  // then reinterpreting the signed operand as unsigned will not
4927  // change the result of the comparison.
4928  if (E->isEqualityOp()) {
4929    unsigned comparisonWidth = S.Context.getIntWidth(T);
4930    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4931
4932    // We should never be unable to prove that the unsigned operand is
4933    // non-negative.
4934    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4935
4936    if (unsignedRange.Width < comparisonWidth)
4937      return;
4938  }
4939
4940  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4941    S.PDiag(diag::warn_mixed_sign_comparison)
4942      << LHS->getType() << RHS->getType()
4943      << LHS->getSourceRange() << RHS->getSourceRange());
4944}
4945
4946/// Analyzes an attempt to assign the given value to a bitfield.
4947///
4948/// Returns true if there was something fishy about the attempt.
4949static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4950                                      SourceLocation InitLoc) {
4951  assert(Bitfield->isBitField());
4952  if (Bitfield->isInvalidDecl())
4953    return false;
4954
4955  // White-list bool bitfields.
4956  if (Bitfield->getType()->isBooleanType())
4957    return false;
4958
4959  // Ignore value- or type-dependent expressions.
4960  if (Bitfield->getBitWidth()->isValueDependent() ||
4961      Bitfield->getBitWidth()->isTypeDependent() ||
4962      Init->isValueDependent() ||
4963      Init->isTypeDependent())
4964    return false;
4965
4966  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4967
4968  llvm::APSInt Value;
4969  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4970    return false;
4971
4972  unsigned OriginalWidth = Value.getBitWidth();
4973  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4974
4975  if (OriginalWidth <= FieldWidth)
4976    return false;
4977
4978  // Compute the value which the bitfield will contain.
4979  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4980  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4981
4982  // Check whether the stored value is equal to the original value.
4983  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4984  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4985    return false;
4986
4987  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4988  // therefore don't strictly fit into a signed bitfield of width 1.
4989  if (FieldWidth == 1 && Value == 1)
4990    return false;
4991
4992  std::string PrettyValue = Value.toString(10);
4993  std::string PrettyTrunc = TruncatedValue.toString(10);
4994
4995  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4996    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4997    << Init->getSourceRange();
4998
4999  return true;
5000}
5001
5002/// Analyze the given simple or compound assignment for warning-worthy
5003/// operations.
5004static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
5005  // Just recurse on the LHS.
5006  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
5007
5008  // We want to recurse on the RHS as normal unless we're assigning to
5009  // a bitfield.
5010  if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
5011    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
5012                                  E->getOperatorLoc())) {
5013      // Recurse, ignoring any implicit conversions on the RHS.
5014      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
5015                                        E->getOperatorLoc());
5016    }
5017  }
5018
5019  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
5020}
5021
5022/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
5023static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
5024                            SourceLocation CContext, unsigned diag,
5025                            bool pruneControlFlow = false) {
5026  if (pruneControlFlow) {
5027    S.DiagRuntimeBehavior(E->getExprLoc(), E,
5028                          S.PDiag(diag)
5029                            << SourceType << T << E->getSourceRange()
5030                            << SourceRange(CContext));
5031    return;
5032  }
5033  S.Diag(E->getExprLoc(), diag)
5034    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
5035}
5036
5037/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
5038static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
5039                            SourceLocation CContext, unsigned diag,
5040                            bool pruneControlFlow = false) {
5041  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
5042}
5043
5044/// Diagnose an implicit cast from a literal expression. Does not warn when the
5045/// cast wouldn't lose information.
5046void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
5047                                    SourceLocation CContext) {
5048  // Try to convert the literal exactly to an integer. If we can, don't warn.
5049  bool isExact = false;
5050  const llvm::APFloat &Value = FL->getValue();
5051  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
5052                            T->hasUnsignedIntegerRepresentation());
5053  if (Value.convertToInteger(IntegerValue,
5054                             llvm::APFloat::rmTowardZero, &isExact)
5055      == llvm::APFloat::opOK && isExact)
5056    return;
5057
5058  SmallString<16> PrettySourceValue;
5059  Value.toString(PrettySourceValue);
5060  SmallString<16> PrettyTargetValue;
5061  if (T->isSpecificBuiltinType(BuiltinType::Bool))
5062    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
5063  else
5064    IntegerValue.toString(PrettyTargetValue);
5065
5066  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
5067    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
5068    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
5069}
5070
5071std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
5072  if (!Range.Width) return "0";
5073
5074  llvm::APSInt ValueInRange = Value;
5075  ValueInRange.setIsSigned(!Range.NonNegative);
5076  ValueInRange = ValueInRange.trunc(Range.Width);
5077  return ValueInRange.toString(10);
5078}
5079
5080static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
5081  if (!isa<ImplicitCastExpr>(Ex))
5082    return false;
5083
5084  Expr *InnerE = Ex->IgnoreParenImpCasts();
5085  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
5086  const Type *Source =
5087    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5088  if (Target->isDependentType())
5089    return false;
5090
5091  const BuiltinType *FloatCandidateBT =
5092    dyn_cast<BuiltinType>(ToBool ? Source : Target);
5093  const Type *BoolCandidateType = ToBool ? Target : Source;
5094
5095  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
5096          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
5097}
5098
5099void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
5100                                      SourceLocation CC) {
5101  unsigned NumArgs = TheCall->getNumArgs();
5102  for (unsigned i = 0; i < NumArgs; ++i) {
5103    Expr *CurrA = TheCall->getArg(i);
5104    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
5105      continue;
5106
5107    bool IsSwapped = ((i > 0) &&
5108        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
5109    IsSwapped |= ((i < (NumArgs - 1)) &&
5110        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
5111    if (IsSwapped) {
5112      // Warn on this floating-point to bool conversion.
5113      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
5114                      CurrA->getType(), CC,
5115                      diag::warn_impcast_floating_point_to_bool);
5116    }
5117  }
5118}
5119
5120void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
5121                             SourceLocation CC, bool *ICContext = 0) {
5122  if (E->isTypeDependent() || E->isValueDependent()) return;
5123
5124  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
5125  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
5126  if (Source == Target) return;
5127  if (Target->isDependentType()) return;
5128
5129  // If the conversion context location is invalid don't complain. We also
5130  // don't want to emit a warning if the issue occurs from the expansion of
5131  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
5132  // delay this check as long as possible. Once we detect we are in that
5133  // scenario, we just return.
5134  if (CC.isInvalid())
5135    return;
5136
5137  // Diagnose implicit casts to bool.
5138  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
5139    if (isa<StringLiteral>(E))
5140      // Warn on string literal to bool.  Checks for string literals in logical
5141      // expressions, for instances, assert(0 && "error here"), is prevented
5142      // by a check in AnalyzeImplicitConversions().
5143      return DiagnoseImpCast(S, E, T, CC,
5144                             diag::warn_impcast_string_literal_to_bool);
5145    if (Source->isFunctionType()) {
5146      // Warn on function to bool. Checks free functions and static member
5147      // functions. Weakly imported functions are excluded from the check,
5148      // since it's common to test their value to check whether the linker
5149      // found a definition for them.
5150      ValueDecl *D = 0;
5151      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
5152        D = R->getDecl();
5153      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
5154        D = M->getMemberDecl();
5155      }
5156
5157      if (D && !D->isWeak()) {
5158        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
5159          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
5160            << F << E->getSourceRange() << SourceRange(CC);
5161          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
5162            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
5163          QualType ReturnType;
5164          UnresolvedSet<4> NonTemplateOverloads;
5165          S.tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
5166          if (!ReturnType.isNull()
5167              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
5168            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
5169              << FixItHint::CreateInsertion(
5170                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
5171          return;
5172        }
5173      }
5174    }
5175  }
5176
5177  // Strip vector types.
5178  if (isa<VectorType>(Source)) {
5179    if (!isa<VectorType>(Target)) {
5180      if (S.SourceMgr.isInSystemMacro(CC))
5181        return;
5182      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
5183    }
5184
5185    // If the vector cast is cast between two vectors of the same size, it is
5186    // a bitcast, not a conversion.
5187    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
5188      return;
5189
5190    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
5191    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
5192  }
5193
5194  // Strip complex types.
5195  if (isa<ComplexType>(Source)) {
5196    if (!isa<ComplexType>(Target)) {
5197      if (S.SourceMgr.isInSystemMacro(CC))
5198        return;
5199
5200      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
5201    }
5202
5203    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
5204    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
5205  }
5206
5207  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
5208  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
5209
5210  // If the source is floating point...
5211  if (SourceBT && SourceBT->isFloatingPoint()) {
5212    // ...and the target is floating point...
5213    if (TargetBT && TargetBT->isFloatingPoint()) {
5214      // ...then warn if we're dropping FP rank.
5215
5216      // Builtin FP kinds are ordered by increasing FP rank.
5217      if (SourceBT->getKind() > TargetBT->getKind()) {
5218        // Don't warn about float constants that are precisely
5219        // representable in the target type.
5220        Expr::EvalResult result;
5221        if (E->EvaluateAsRValue(result, S.Context)) {
5222          // Value might be a float, a float vector, or a float complex.
5223          if (IsSameFloatAfterCast(result.Val,
5224                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
5225                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
5226            return;
5227        }
5228
5229        if (S.SourceMgr.isInSystemMacro(CC))
5230          return;
5231
5232        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
5233      }
5234      return;
5235    }
5236
5237    // If the target is integral, always warn.
5238    if (TargetBT && TargetBT->isInteger()) {
5239      if (S.SourceMgr.isInSystemMacro(CC))
5240        return;
5241
5242      Expr *InnerE = E->IgnoreParenImpCasts();
5243      // We also want to warn on, e.g., "int i = -1.234"
5244      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
5245        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
5246          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
5247
5248      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
5249        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
5250      } else {
5251        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
5252      }
5253    }
5254
5255    // If the target is bool, warn if expr is a function or method call.
5256    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
5257        isa<CallExpr>(E)) {
5258      // Check last argument of function call to see if it is an
5259      // implicit cast from a type matching the type the result
5260      // is being cast to.
5261      CallExpr *CEx = cast<CallExpr>(E);
5262      unsigned NumArgs = CEx->getNumArgs();
5263      if (NumArgs > 0) {
5264        Expr *LastA = CEx->getArg(NumArgs - 1);
5265        Expr *InnerE = LastA->IgnoreParenImpCasts();
5266        const Type *InnerType =
5267          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5268        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
5269          // Warn on this floating-point to bool conversion
5270          DiagnoseImpCast(S, E, T, CC,
5271                          diag::warn_impcast_floating_point_to_bool);
5272        }
5273      }
5274    }
5275    return;
5276  }
5277
5278  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
5279           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
5280      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
5281      && Target->isScalarType() && !Target->isNullPtrType()) {
5282    SourceLocation Loc = E->getSourceRange().getBegin();
5283    if (Loc.isMacroID())
5284      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
5285    if (!Loc.isMacroID() || CC.isMacroID())
5286      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
5287          << T << clang::SourceRange(CC)
5288          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
5289  }
5290
5291  if (!Source->isIntegerType() || !Target->isIntegerType())
5292    return;
5293
5294  // TODO: remove this early return once the false positives for constant->bool
5295  // in templates, macros, etc, are reduced or removed.
5296  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
5297    return;
5298
5299  IntRange SourceRange = GetExprRange(S.Context, E);
5300  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
5301
5302  if (SourceRange.Width > TargetRange.Width) {
5303    // If the source is a constant, use a default-on diagnostic.
5304    // TODO: this should happen for bitfield stores, too.
5305    llvm::APSInt Value(32);
5306    if (E->isIntegerConstantExpr(Value, S.Context)) {
5307      if (S.SourceMgr.isInSystemMacro(CC))
5308        return;
5309
5310      std::string PrettySourceValue = Value.toString(10);
5311      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
5312
5313      S.DiagRuntimeBehavior(E->getExprLoc(), E,
5314        S.PDiag(diag::warn_impcast_integer_precision_constant)
5315            << PrettySourceValue << PrettyTargetValue
5316            << E->getType() << T << E->getSourceRange()
5317            << clang::SourceRange(CC));
5318      return;
5319    }
5320
5321    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5322    if (S.SourceMgr.isInSystemMacro(CC))
5323      return;
5324
5325    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5326      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5327                             /* pruneControlFlow */ true);
5328    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5329  }
5330
5331  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5332      (!TargetRange.NonNegative && SourceRange.NonNegative &&
5333       SourceRange.Width == TargetRange.Width)) {
5334
5335    if (S.SourceMgr.isInSystemMacro(CC))
5336      return;
5337
5338    unsigned DiagID = diag::warn_impcast_integer_sign;
5339
5340    // Traditionally, gcc has warned about this under -Wsign-compare.
5341    // We also want to warn about it in -Wconversion.
5342    // So if -Wconversion is off, use a completely identical diagnostic
5343    // in the sign-compare group.
5344    // The conditional-checking code will
5345    if (ICContext) {
5346      DiagID = diag::warn_impcast_integer_sign_conditional;
5347      *ICContext = true;
5348    }
5349
5350    return DiagnoseImpCast(S, E, T, CC, DiagID);
5351  }
5352
5353  // Diagnose conversions between different enumeration types.
5354  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5355  // type, to give us better diagnostics.
5356  QualType SourceType = E->getType();
5357  if (!S.getLangOpts().CPlusPlus) {
5358    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5359      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5360        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5361        SourceType = S.Context.getTypeDeclType(Enum);
5362        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5363      }
5364  }
5365
5366  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5367    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5368      if (SourceEnum->getDecl()->hasNameForLinkage() &&
5369          TargetEnum->getDecl()->hasNameForLinkage() &&
5370          SourceEnum != TargetEnum) {
5371        if (S.SourceMgr.isInSystemMacro(CC))
5372          return;
5373
5374        return DiagnoseImpCast(S, E, SourceType, T, CC,
5375                               diag::warn_impcast_different_enum_types);
5376      }
5377
5378  return;
5379}
5380
5381void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5382                              SourceLocation CC, QualType T);
5383
5384void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5385                             SourceLocation CC, bool &ICContext) {
5386  E = E->IgnoreParenImpCasts();
5387
5388  if (isa<ConditionalOperator>(E))
5389    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5390
5391  AnalyzeImplicitConversions(S, E, CC);
5392  if (E->getType() != T)
5393    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5394  return;
5395}
5396
5397void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5398                              SourceLocation CC, QualType T) {
5399  AnalyzeImplicitConversions(S, E->getCond(), CC);
5400
5401  bool Suspicious = false;
5402  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5403  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5404
5405  // If -Wconversion would have warned about either of the candidates
5406  // for a signedness conversion to the context type...
5407  if (!Suspicious) return;
5408
5409  // ...but it's currently ignored...
5410  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5411                                 CC))
5412    return;
5413
5414  // ...then check whether it would have warned about either of the
5415  // candidates for a signedness conversion to the condition type.
5416  if (E->getType() == T) return;
5417
5418  Suspicious = false;
5419  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5420                          E->getType(), CC, &Suspicious);
5421  if (!Suspicious)
5422    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5423                            E->getType(), CC, &Suspicious);
5424}
5425
5426/// AnalyzeImplicitConversions - Find and report any interesting
5427/// implicit conversions in the given expression.  There are a couple
5428/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5429void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5430  QualType T = OrigE->getType();
5431  Expr *E = OrigE->IgnoreParenImpCasts();
5432
5433  if (E->isTypeDependent() || E->isValueDependent())
5434    return;
5435
5436  // For conditional operators, we analyze the arguments as if they
5437  // were being fed directly into the output.
5438  if (isa<ConditionalOperator>(E)) {
5439    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5440    CheckConditionalOperator(S, CO, CC, T);
5441    return;
5442  }
5443
5444  // Check implicit argument conversions for function calls.
5445  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5446    CheckImplicitArgumentConversions(S, Call, CC);
5447
5448  // Go ahead and check any implicit conversions we might have skipped.
5449  // The non-canonical typecheck is just an optimization;
5450  // CheckImplicitConversion will filter out dead implicit conversions.
5451  if (E->getType() != T)
5452    CheckImplicitConversion(S, E, T, CC);
5453
5454  // Now continue drilling into this expression.
5455
5456  if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
5457    if (POE->getResultExpr())
5458      E = POE->getResultExpr();
5459  }
5460
5461  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5462    return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
5463
5464  // Skip past explicit casts.
5465  if (isa<ExplicitCastExpr>(E)) {
5466    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5467    return AnalyzeImplicitConversions(S, E, CC);
5468  }
5469
5470  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5471    // Do a somewhat different check with comparison operators.
5472    if (BO->isComparisonOp())
5473      return AnalyzeComparison(S, BO);
5474
5475    // And with simple assignments.
5476    if (BO->getOpcode() == BO_Assign)
5477      return AnalyzeAssignment(S, BO);
5478  }
5479
5480  // These break the otherwise-useful invariant below.  Fortunately,
5481  // we don't really need to recurse into them, because any internal
5482  // expressions should have been analyzed already when they were
5483  // built into statements.
5484  if (isa<StmtExpr>(E)) return;
5485
5486  // Don't descend into unevaluated contexts.
5487  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5488
5489  // Now just recurse over the expression's children.
5490  CC = E->getExprLoc();
5491  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5492  bool IsLogicalOperator = BO && BO->isLogicalOp();
5493  for (Stmt::child_range I = E->children(); I; ++I) {
5494    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5495    if (!ChildExpr)
5496      continue;
5497
5498    if (IsLogicalOperator &&
5499        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5500      // Ignore checking string literals that are in logical operators.
5501      continue;
5502    AnalyzeImplicitConversions(S, ChildExpr, CC);
5503  }
5504}
5505
5506} // end anonymous namespace
5507
5508/// Diagnoses "dangerous" implicit conversions within the given
5509/// expression (which is a full expression).  Implements -Wconversion
5510/// and -Wsign-compare.
5511///
5512/// \param CC the "context" location of the implicit conversion, i.e.
5513///   the most location of the syntactic entity requiring the implicit
5514///   conversion
5515void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5516  // Don't diagnose in unevaluated contexts.
5517  if (isUnevaluatedContext())
5518    return;
5519
5520  // Don't diagnose for value- or type-dependent expressions.
5521  if (E->isTypeDependent() || E->isValueDependent())
5522    return;
5523
5524  // Check for array bounds violations in cases where the check isn't triggered
5525  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5526  // ArraySubscriptExpr is on the RHS of a variable initialization.
5527  CheckArrayAccess(E);
5528
5529  // This is not the right CC for (e.g.) a variable initialization.
5530  AnalyzeImplicitConversions(*this, E, CC);
5531}
5532
5533/// Diagnose when expression is an integer constant expression and its evaluation
5534/// results in integer overflow
5535void Sema::CheckForIntOverflow (Expr *E) {
5536  if (isa<BinaryOperator>(E->IgnoreParens())) {
5537    llvm::SmallVector<PartialDiagnosticAt, 4> Diags;
5538    E->EvaluateForOverflow(Context, &Diags);
5539  }
5540}
5541
5542namespace {
5543/// \brief Visitor for expressions which looks for unsequenced operations on the
5544/// same object.
5545class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5546  typedef EvaluatedExprVisitor<SequenceChecker> Base;
5547
5548  /// \brief A tree of sequenced regions within an expression. Two regions are
5549  /// unsequenced if one is an ancestor or a descendent of the other. When we
5550  /// finish processing an expression with sequencing, such as a comma
5551  /// expression, we fold its tree nodes into its parent, since they are
5552  /// unsequenced with respect to nodes we will visit later.
5553  class SequenceTree {
5554    struct Value {
5555      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5556      unsigned Parent : 31;
5557      bool Merged : 1;
5558    };
5559    llvm::SmallVector<Value, 8> Values;
5560
5561  public:
5562    /// \brief A region within an expression which may be sequenced with respect
5563    /// to some other region.
5564    class Seq {
5565      explicit Seq(unsigned N) : Index(N) {}
5566      unsigned Index;
5567      friend class SequenceTree;
5568    public:
5569      Seq() : Index(0) {}
5570    };
5571
5572    SequenceTree() { Values.push_back(Value(0)); }
5573    Seq root() const { return Seq(0); }
5574
5575    /// \brief Create a new sequence of operations, which is an unsequenced
5576    /// subset of \p Parent. This sequence of operations is sequenced with
5577    /// respect to other children of \p Parent.
5578    Seq allocate(Seq Parent) {
5579      Values.push_back(Value(Parent.Index));
5580      return Seq(Values.size() - 1);
5581    }
5582
5583    /// \brief Merge a sequence of operations into its parent.
5584    void merge(Seq S) {
5585      Values[S.Index].Merged = true;
5586    }
5587
5588    /// \brief Determine whether two operations are unsequenced. This operation
5589    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5590    /// should have been merged into its parent as appropriate.
5591    bool isUnsequenced(Seq Cur, Seq Old) {
5592      unsigned C = representative(Cur.Index);
5593      unsigned Target = representative(Old.Index);
5594      while (C >= Target) {
5595        if (C == Target)
5596          return true;
5597        C = Values[C].Parent;
5598      }
5599      return false;
5600    }
5601
5602  private:
5603    /// \brief Pick a representative for a sequence.
5604    unsigned representative(unsigned K) {
5605      if (Values[K].Merged)
5606        // Perform path compression as we go.
5607        return Values[K].Parent = representative(Values[K].Parent);
5608      return K;
5609    }
5610  };
5611
5612  /// An object for which we can track unsequenced uses.
5613  typedef NamedDecl *Object;
5614
5615  /// Different flavors of object usage which we track. We only track the
5616  /// least-sequenced usage of each kind.
5617  enum UsageKind {
5618    /// A read of an object. Multiple unsequenced reads are OK.
5619    UK_Use,
5620    /// A modification of an object which is sequenced before the value
5621    /// computation of the expression, such as ++n in C++.
5622    UK_ModAsValue,
5623    /// A modification of an object which is not sequenced before the value
5624    /// computation of the expression, such as n++.
5625    UK_ModAsSideEffect,
5626
5627    UK_Count = UK_ModAsSideEffect + 1
5628  };
5629
5630  struct Usage {
5631    Usage() : Use(0), Seq() {}
5632    Expr *Use;
5633    SequenceTree::Seq Seq;
5634  };
5635
5636  struct UsageInfo {
5637    UsageInfo() : Diagnosed(false) {}
5638    Usage Uses[UK_Count];
5639    /// Have we issued a diagnostic for this variable already?
5640    bool Diagnosed;
5641  };
5642  typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5643
5644  Sema &SemaRef;
5645  /// Sequenced regions within the expression.
5646  SequenceTree Tree;
5647  /// Declaration modifications and references which we have seen.
5648  UsageInfoMap UsageMap;
5649  /// The region we are currently within.
5650  SequenceTree::Seq Region;
5651  /// Filled in with declarations which were modified as a side-effect
5652  /// (that is, post-increment operations).
5653  llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5654  /// Expressions to check later. We defer checking these to reduce
5655  /// stack usage.
5656  llvm::SmallVectorImpl<Expr*> &WorkList;
5657
5658  /// RAII object wrapping the visitation of a sequenced subexpression of an
5659  /// expression. At the end of this process, the side-effects of the evaluation
5660  /// become sequenced with respect to the value computation of the result, so
5661  /// we downgrade any UK_ModAsSideEffect within the evaluation to
5662  /// UK_ModAsValue.
5663  struct SequencedSubexpression {
5664    SequencedSubexpression(SequenceChecker &Self)
5665      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5666      Self.ModAsSideEffect = &ModAsSideEffect;
5667    }
5668    ~SequencedSubexpression() {
5669      for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5670        UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5671        U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5672        Self.addUsage(U, ModAsSideEffect[I].first,
5673                      ModAsSideEffect[I].second.Use, UK_ModAsValue);
5674      }
5675      Self.ModAsSideEffect = OldModAsSideEffect;
5676    }
5677
5678    SequenceChecker &Self;
5679    llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5680    llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5681  };
5682
5683  /// RAII object wrapping the visitation of a subexpression which we might
5684  /// choose to evaluate as a constant. If any subexpression is evaluated and
5685  /// found to be non-constant, this allows us to suppress the evaluation of
5686  /// the outer expression.
5687  class EvaluationTracker {
5688  public:
5689    EvaluationTracker(SequenceChecker &Self)
5690        : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
5691      Self.EvalTracker = this;
5692    }
5693    ~EvaluationTracker() {
5694      Self.EvalTracker = Prev;
5695      if (Prev)
5696        Prev->EvalOK &= EvalOK;
5697    }
5698
5699    bool evaluate(const Expr *E, bool &Result) {
5700      if (!EvalOK || E->isValueDependent())
5701        return false;
5702      EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
5703      return EvalOK;
5704    }
5705
5706  private:
5707    SequenceChecker &Self;
5708    EvaluationTracker *Prev;
5709    bool EvalOK;
5710  } *EvalTracker;
5711
5712  /// \brief Find the object which is produced by the specified expression,
5713  /// if any.
5714  Object getObject(Expr *E, bool Mod) const {
5715    E = E->IgnoreParenCasts();
5716    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5717      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5718        return getObject(UO->getSubExpr(), Mod);
5719    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5720      if (BO->getOpcode() == BO_Comma)
5721        return getObject(BO->getRHS(), Mod);
5722      if (Mod && BO->isAssignmentOp())
5723        return getObject(BO->getLHS(), Mod);
5724    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5725      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5726      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5727        return ME->getMemberDecl();
5728    } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5729      // FIXME: If this is a reference, map through to its value.
5730      return DRE->getDecl();
5731    return 0;
5732  }
5733
5734  /// \brief Note that an object was modified or used by an expression.
5735  void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5736    Usage &U = UI.Uses[UK];
5737    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5738      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5739        ModAsSideEffect->push_back(std::make_pair(O, U));
5740      U.Use = Ref;
5741      U.Seq = Region;
5742    }
5743  }
5744  /// \brief Check whether a modification or use conflicts with a prior usage.
5745  void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5746                  bool IsModMod) {
5747    if (UI.Diagnosed)
5748      return;
5749
5750    const Usage &U = UI.Uses[OtherKind];
5751    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5752      return;
5753
5754    Expr *Mod = U.Use;
5755    Expr *ModOrUse = Ref;
5756    if (OtherKind == UK_Use)
5757      std::swap(Mod, ModOrUse);
5758
5759    SemaRef.Diag(Mod->getExprLoc(),
5760                 IsModMod ? diag::warn_unsequenced_mod_mod
5761                          : diag::warn_unsequenced_mod_use)
5762      << O << SourceRange(ModOrUse->getExprLoc());
5763    UI.Diagnosed = true;
5764  }
5765
5766  void notePreUse(Object O, Expr *Use) {
5767    UsageInfo &U = UsageMap[O];
5768    // Uses conflict with other modifications.
5769    checkUsage(O, U, Use, UK_ModAsValue, false);
5770  }
5771  void notePostUse(Object O, Expr *Use) {
5772    UsageInfo &U = UsageMap[O];
5773    checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5774    addUsage(U, O, Use, UK_Use);
5775  }
5776
5777  void notePreMod(Object O, Expr *Mod) {
5778    UsageInfo &U = UsageMap[O];
5779    // Modifications conflict with other modifications and with uses.
5780    checkUsage(O, U, Mod, UK_ModAsValue, true);
5781    checkUsage(O, U, Mod, UK_Use, false);
5782  }
5783  void notePostMod(Object O, Expr *Use, UsageKind UK) {
5784    UsageInfo &U = UsageMap[O];
5785    checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5786    addUsage(U, O, Use, UK);
5787  }
5788
5789public:
5790  SequenceChecker(Sema &S, Expr *E,
5791                  llvm::SmallVectorImpl<Expr*> &WorkList)
5792    : Base(S.Context), SemaRef(S), Region(Tree.root()),
5793      ModAsSideEffect(0), WorkList(WorkList), EvalTracker(0) {
5794    Visit(E);
5795  }
5796
5797  void VisitStmt(Stmt *S) {
5798    // Skip all statements which aren't expressions for now.
5799  }
5800
5801  void VisitExpr(Expr *E) {
5802    // By default, just recurse to evaluated subexpressions.
5803    Base::VisitStmt(E);
5804  }
5805
5806  void VisitCastExpr(CastExpr *E) {
5807    Object O = Object();
5808    if (E->getCastKind() == CK_LValueToRValue)
5809      O = getObject(E->getSubExpr(), false);
5810
5811    if (O)
5812      notePreUse(O, E);
5813    VisitExpr(E);
5814    if (O)
5815      notePostUse(O, E);
5816  }
5817
5818  void VisitBinComma(BinaryOperator *BO) {
5819    // C++11 [expr.comma]p1:
5820    //   Every value computation and side effect associated with the left
5821    //   expression is sequenced before every value computation and side
5822    //   effect associated with the right expression.
5823    SequenceTree::Seq LHS = Tree.allocate(Region);
5824    SequenceTree::Seq RHS = Tree.allocate(Region);
5825    SequenceTree::Seq OldRegion = Region;
5826
5827    {
5828      SequencedSubexpression SeqLHS(*this);
5829      Region = LHS;
5830      Visit(BO->getLHS());
5831    }
5832
5833    Region = RHS;
5834    Visit(BO->getRHS());
5835
5836    Region = OldRegion;
5837
5838    // Forget that LHS and RHS are sequenced. They are both unsequenced
5839    // with respect to other stuff.
5840    Tree.merge(LHS);
5841    Tree.merge(RHS);
5842  }
5843
5844  void VisitBinAssign(BinaryOperator *BO) {
5845    // The modification is sequenced after the value computation of the LHS
5846    // and RHS, so check it before inspecting the operands and update the
5847    // map afterwards.
5848    Object O = getObject(BO->getLHS(), true);
5849    if (!O)
5850      return VisitExpr(BO);
5851
5852    notePreMod(O, BO);
5853
5854    // C++11 [expr.ass]p7:
5855    //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5856    //   only once.
5857    //
5858    // Therefore, for a compound assignment operator, O is considered used
5859    // everywhere except within the evaluation of E1 itself.
5860    if (isa<CompoundAssignOperator>(BO))
5861      notePreUse(O, BO);
5862
5863    Visit(BO->getLHS());
5864
5865    if (isa<CompoundAssignOperator>(BO))
5866      notePostUse(O, BO);
5867
5868    Visit(BO->getRHS());
5869
5870    // C++11 [expr.ass]p1:
5871    //   the assignment is sequenced [...] before the value computation of the
5872    //   assignment expression.
5873    // C11 6.5.16/3 has no such rule.
5874    notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5875                                                       : UK_ModAsSideEffect);
5876  }
5877  void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5878    VisitBinAssign(CAO);
5879  }
5880
5881  void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5882  void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5883  void VisitUnaryPreIncDec(UnaryOperator *UO) {
5884    Object O = getObject(UO->getSubExpr(), true);
5885    if (!O)
5886      return VisitExpr(UO);
5887
5888    notePreMod(O, UO);
5889    Visit(UO->getSubExpr());
5890    // C++11 [expr.pre.incr]p1:
5891    //   the expression ++x is equivalent to x+=1
5892    notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5893                                                       : UK_ModAsSideEffect);
5894  }
5895
5896  void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5897  void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5898  void VisitUnaryPostIncDec(UnaryOperator *UO) {
5899    Object O = getObject(UO->getSubExpr(), true);
5900    if (!O)
5901      return VisitExpr(UO);
5902
5903    notePreMod(O, UO);
5904    Visit(UO->getSubExpr());
5905    notePostMod(O, UO, UK_ModAsSideEffect);
5906  }
5907
5908  /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
5909  void VisitBinLOr(BinaryOperator *BO) {
5910    // The side-effects of the LHS of an '&&' are sequenced before the
5911    // value computation of the RHS, and hence before the value computation
5912    // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5913    // as if they were unconditionally sequenced.
5914    EvaluationTracker Eval(*this);
5915    {
5916      SequencedSubexpression Sequenced(*this);
5917      Visit(BO->getLHS());
5918    }
5919
5920    bool Result;
5921    if (Eval.evaluate(BO->getLHS(), Result)) {
5922      if (!Result)
5923        Visit(BO->getRHS());
5924    } else {
5925      // Check for unsequenced operations in the RHS, treating it as an
5926      // entirely separate evaluation.
5927      //
5928      // FIXME: If there are operations in the RHS which are unsequenced
5929      // with respect to operations outside the RHS, and those operations
5930      // are unconditionally evaluated, diagnose them.
5931      WorkList.push_back(BO->getRHS());
5932    }
5933  }
5934  void VisitBinLAnd(BinaryOperator *BO) {
5935    EvaluationTracker Eval(*this);
5936    {
5937      SequencedSubexpression Sequenced(*this);
5938      Visit(BO->getLHS());
5939    }
5940
5941    bool Result;
5942    if (Eval.evaluate(BO->getLHS(), Result)) {
5943      if (Result)
5944        Visit(BO->getRHS());
5945    } else {
5946      WorkList.push_back(BO->getRHS());
5947    }
5948  }
5949
5950  // Only visit the condition, unless we can be sure which subexpression will
5951  // be chosen.
5952  void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5953    EvaluationTracker Eval(*this);
5954    {
5955      SequencedSubexpression Sequenced(*this);
5956      Visit(CO->getCond());
5957    }
5958
5959    bool Result;
5960    if (Eval.evaluate(CO->getCond(), Result))
5961      Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5962    else {
5963      WorkList.push_back(CO->getTrueExpr());
5964      WorkList.push_back(CO->getFalseExpr());
5965    }
5966  }
5967
5968  void VisitCallExpr(CallExpr *CE) {
5969    // C++11 [intro.execution]p15:
5970    //   When calling a function [...], every value computation and side effect
5971    //   associated with any argument expression, or with the postfix expression
5972    //   designating the called function, is sequenced before execution of every
5973    //   expression or statement in the body of the function [and thus before
5974    //   the value computation of its result].
5975    SequencedSubexpression Sequenced(*this);
5976    Base::VisitCallExpr(CE);
5977
5978    // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
5979  }
5980
5981  void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5982    // This is a call, so all subexpressions are sequenced before the result.
5983    SequencedSubexpression Sequenced(*this);
5984
5985    if (!CCE->isListInitialization())
5986      return VisitExpr(CCE);
5987
5988    // In C++11, list initializations are sequenced.
5989    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5990    SequenceTree::Seq Parent = Region;
5991    for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
5992                                        E = CCE->arg_end();
5993         I != E; ++I) {
5994      Region = Tree.allocate(Parent);
5995      Elts.push_back(Region);
5996      Visit(*I);
5997    }
5998
5999    // Forget that the initializers are sequenced.
6000    Region = Parent;
6001    for (unsigned I = 0; I < Elts.size(); ++I)
6002      Tree.merge(Elts[I]);
6003  }
6004
6005  void VisitInitListExpr(InitListExpr *ILE) {
6006    if (!SemaRef.getLangOpts().CPlusPlus11)
6007      return VisitExpr(ILE);
6008
6009    // In C++11, list initializations are sequenced.
6010    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
6011    SequenceTree::Seq Parent = Region;
6012    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
6013      Expr *E = ILE->getInit(I);
6014      if (!E) continue;
6015      Region = Tree.allocate(Parent);
6016      Elts.push_back(Region);
6017      Visit(E);
6018    }
6019
6020    // Forget that the initializers are sequenced.
6021    Region = Parent;
6022    for (unsigned I = 0; I < Elts.size(); ++I)
6023      Tree.merge(Elts[I]);
6024  }
6025};
6026}
6027
6028void Sema::CheckUnsequencedOperations(Expr *E) {
6029  llvm::SmallVector<Expr*, 8> WorkList;
6030  WorkList.push_back(E);
6031  while (!WorkList.empty()) {
6032    Expr *Item = WorkList.back();
6033    WorkList.pop_back();
6034    SequenceChecker(*this, Item, WorkList);
6035  }
6036}
6037
6038void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
6039                              bool IsConstexpr) {
6040  CheckImplicitConversions(E, CheckLoc);
6041  CheckUnsequencedOperations(E);
6042  if (!IsConstexpr && !E->isValueDependent())
6043    CheckForIntOverflow(E);
6044}
6045
6046void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
6047                                       FieldDecl *BitField,
6048                                       Expr *Init) {
6049  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
6050}
6051
6052/// CheckParmsForFunctionDef - Check that the parameters of the given
6053/// function are appropriate for the definition of a function. This
6054/// takes care of any checks that cannot be performed on the
6055/// declaration itself, e.g., that the types of each of the function
6056/// parameters are complete.
6057bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
6058                                    ParmVarDecl *const *PEnd,
6059                                    bool CheckParameterNames) {
6060  bool HasInvalidParm = false;
6061  for (; P != PEnd; ++P) {
6062    ParmVarDecl *Param = *P;
6063
6064    // C99 6.7.5.3p4: the parameters in a parameter type list in a
6065    // function declarator that is part of a function definition of
6066    // that function shall not have incomplete type.
6067    //
6068    // This is also C++ [dcl.fct]p6.
6069    if (!Param->isInvalidDecl() &&
6070        RequireCompleteType(Param->getLocation(), Param->getType(),
6071                            diag::err_typecheck_decl_incomplete_type)) {
6072      Param->setInvalidDecl();
6073      HasInvalidParm = true;
6074    }
6075
6076    // C99 6.9.1p5: If the declarator includes a parameter type list, the
6077    // declaration of each parameter shall include an identifier.
6078    if (CheckParameterNames &&
6079        Param->getIdentifier() == 0 &&
6080        !Param->isImplicit() &&
6081        !getLangOpts().CPlusPlus)
6082      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6083
6084    // C99 6.7.5.3p12:
6085    //   If the function declarator is not part of a definition of that
6086    //   function, parameters may have incomplete type and may use the [*]
6087    //   notation in their sequences of declarator specifiers to specify
6088    //   variable length array types.
6089    QualType PType = Param->getOriginalType();
6090    while (const ArrayType *AT = Context.getAsArrayType(PType)) {
6091      if (AT->getSizeModifier() == ArrayType::Star) {
6092        // FIXME: This diagnostic should point the '[*]' if source-location
6093        // information is added for it.
6094        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
6095        break;
6096      }
6097      PType= AT->getElementType();
6098    }
6099
6100    // MSVC destroys objects passed by value in the callee.  Therefore a
6101    // function definition which takes such a parameter must be able to call the
6102    // object's destructor.
6103    if (getLangOpts().CPlusPlus &&
6104        Context.getTargetInfo().getCXXABI().isArgumentDestroyedByCallee()) {
6105      if (const RecordType *RT = Param->getType()->getAs<RecordType>())
6106        FinalizeVarWithDestructor(Param, RT);
6107    }
6108  }
6109
6110  return HasInvalidParm;
6111}
6112
6113/// CheckCastAlign - Implements -Wcast-align, which warns when a
6114/// pointer cast increases the alignment requirements.
6115void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
6116  // This is actually a lot of work to potentially be doing on every
6117  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
6118  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
6119                                          TRange.getBegin())
6120        == DiagnosticsEngine::Ignored)
6121    return;
6122
6123  // Ignore dependent types.
6124  if (T->isDependentType() || Op->getType()->isDependentType())
6125    return;
6126
6127  // Require that the destination be a pointer type.
6128  const PointerType *DestPtr = T->getAs<PointerType>();
6129  if (!DestPtr) return;
6130
6131  // If the destination has alignment 1, we're done.
6132  QualType DestPointee = DestPtr->getPointeeType();
6133  if (DestPointee->isIncompleteType()) return;
6134  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
6135  if (DestAlign.isOne()) return;
6136
6137  // Require that the source be a pointer type.
6138  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
6139  if (!SrcPtr) return;
6140  QualType SrcPointee = SrcPtr->getPointeeType();
6141
6142  // Whitelist casts from cv void*.  We already implicitly
6143  // whitelisted casts to cv void*, since they have alignment 1.
6144  // Also whitelist casts involving incomplete types, which implicitly
6145  // includes 'void'.
6146  if (SrcPointee->isIncompleteType()) return;
6147
6148  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
6149  if (SrcAlign >= DestAlign) return;
6150
6151  Diag(TRange.getBegin(), diag::warn_cast_align)
6152    << Op->getType() << T
6153    << static_cast<unsigned>(SrcAlign.getQuantity())
6154    << static_cast<unsigned>(DestAlign.getQuantity())
6155    << TRange << Op->getSourceRange();
6156}
6157
6158static const Type* getElementType(const Expr *BaseExpr) {
6159  const Type* EltType = BaseExpr->getType().getTypePtr();
6160  if (EltType->isAnyPointerType())
6161    return EltType->getPointeeType().getTypePtr();
6162  else if (EltType->isArrayType())
6163    return EltType->getBaseElementTypeUnsafe();
6164  return EltType;
6165}
6166
6167/// \brief Check whether this array fits the idiom of a size-one tail padded
6168/// array member of a struct.
6169///
6170/// We avoid emitting out-of-bounds access warnings for such arrays as they are
6171/// commonly used to emulate flexible arrays in C89 code.
6172static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
6173                                    const NamedDecl *ND) {
6174  if (Size != 1 || !ND) return false;
6175
6176  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
6177  if (!FD) return false;
6178
6179  // Don't consider sizes resulting from macro expansions or template argument
6180  // substitution to form C89 tail-padded arrays.
6181
6182  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
6183  while (TInfo) {
6184    TypeLoc TL = TInfo->getTypeLoc();
6185    // Look through typedefs.
6186    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
6187      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
6188      TInfo = TDL->getTypeSourceInfo();
6189      continue;
6190    }
6191    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
6192      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
6193      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
6194        return false;
6195    }
6196    break;
6197  }
6198
6199  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
6200  if (!RD) return false;
6201  if (RD->isUnion()) return false;
6202  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6203    if (!CRD->isStandardLayout()) return false;
6204  }
6205
6206  // See if this is the last field decl in the record.
6207  const Decl *D = FD;
6208  while ((D = D->getNextDeclInContext()))
6209    if (isa<FieldDecl>(D))
6210      return false;
6211  return true;
6212}
6213
6214void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
6215                            const ArraySubscriptExpr *ASE,
6216                            bool AllowOnePastEnd, bool IndexNegated) {
6217  IndexExpr = IndexExpr->IgnoreParenImpCasts();
6218  if (IndexExpr->isValueDependent())
6219    return;
6220
6221  const Type *EffectiveType = getElementType(BaseExpr);
6222  BaseExpr = BaseExpr->IgnoreParenCasts();
6223  const ConstantArrayType *ArrayTy =
6224    Context.getAsConstantArrayType(BaseExpr->getType());
6225  if (!ArrayTy)
6226    return;
6227
6228  llvm::APSInt index;
6229  if (!IndexExpr->EvaluateAsInt(index, Context))
6230    return;
6231  if (IndexNegated)
6232    index = -index;
6233
6234  const NamedDecl *ND = NULL;
6235  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6236    ND = dyn_cast<NamedDecl>(DRE->getDecl());
6237  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6238    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6239
6240  if (index.isUnsigned() || !index.isNegative()) {
6241    llvm::APInt size = ArrayTy->getSize();
6242    if (!size.isStrictlyPositive())
6243      return;
6244
6245    const Type* BaseType = getElementType(BaseExpr);
6246    if (BaseType != EffectiveType) {
6247      // Make sure we're comparing apples to apples when comparing index to size
6248      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
6249      uint64_t array_typesize = Context.getTypeSize(BaseType);
6250      // Handle ptrarith_typesize being zero, such as when casting to void*
6251      if (!ptrarith_typesize) ptrarith_typesize = 1;
6252      if (ptrarith_typesize != array_typesize) {
6253        // There's a cast to a different size type involved
6254        uint64_t ratio = array_typesize / ptrarith_typesize;
6255        // TODO: Be smarter about handling cases where array_typesize is not a
6256        // multiple of ptrarith_typesize
6257        if (ptrarith_typesize * ratio == array_typesize)
6258          size *= llvm::APInt(size.getBitWidth(), ratio);
6259      }
6260    }
6261
6262    if (size.getBitWidth() > index.getBitWidth())
6263      index = index.zext(size.getBitWidth());
6264    else if (size.getBitWidth() < index.getBitWidth())
6265      size = size.zext(index.getBitWidth());
6266
6267    // For array subscripting the index must be less than size, but for pointer
6268    // arithmetic also allow the index (offset) to be equal to size since
6269    // computing the next address after the end of the array is legal and
6270    // commonly done e.g. in C++ iterators and range-based for loops.
6271    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
6272      return;
6273
6274    // Also don't warn for arrays of size 1 which are members of some
6275    // structure. These are often used to approximate flexible arrays in C89
6276    // code.
6277    if (IsTailPaddedMemberArray(*this, size, ND))
6278      return;
6279
6280    // Suppress the warning if the subscript expression (as identified by the
6281    // ']' location) and the index expression are both from macro expansions
6282    // within a system header.
6283    if (ASE) {
6284      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
6285          ASE->getRBracketLoc());
6286      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
6287        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
6288            IndexExpr->getLocStart());
6289        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
6290          return;
6291      }
6292    }
6293
6294    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
6295    if (ASE)
6296      DiagID = diag::warn_array_index_exceeds_bounds;
6297
6298    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6299                        PDiag(DiagID) << index.toString(10, true)
6300                          << size.toString(10, true)
6301                          << (unsigned)size.getLimitedValue(~0U)
6302                          << IndexExpr->getSourceRange());
6303  } else {
6304    unsigned DiagID = diag::warn_array_index_precedes_bounds;
6305    if (!ASE) {
6306      DiagID = diag::warn_ptr_arith_precedes_bounds;
6307      if (index.isNegative()) index = -index;
6308    }
6309
6310    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6311                        PDiag(DiagID) << index.toString(10, true)
6312                          << IndexExpr->getSourceRange());
6313  }
6314
6315  if (!ND) {
6316    // Try harder to find a NamedDecl to point at in the note.
6317    while (const ArraySubscriptExpr *ASE =
6318           dyn_cast<ArraySubscriptExpr>(BaseExpr))
6319      BaseExpr = ASE->getBase()->IgnoreParenCasts();
6320    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6321      ND = dyn_cast<NamedDecl>(DRE->getDecl());
6322    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6323      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6324  }
6325
6326  if (ND)
6327    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
6328                        PDiag(diag::note_array_index_out_of_bounds)
6329                          << ND->getDeclName());
6330}
6331
6332void Sema::CheckArrayAccess(const Expr *expr) {
6333  int AllowOnePastEnd = 0;
6334  while (expr) {
6335    expr = expr->IgnoreParenImpCasts();
6336    switch (expr->getStmtClass()) {
6337      case Stmt::ArraySubscriptExprClass: {
6338        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
6339        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
6340                         AllowOnePastEnd > 0);
6341        return;
6342      }
6343      case Stmt::UnaryOperatorClass: {
6344        // Only unwrap the * and & unary operators
6345        const UnaryOperator *UO = cast<UnaryOperator>(expr);
6346        expr = UO->getSubExpr();
6347        switch (UO->getOpcode()) {
6348          case UO_AddrOf:
6349            AllowOnePastEnd++;
6350            break;
6351          case UO_Deref:
6352            AllowOnePastEnd--;
6353            break;
6354          default:
6355            return;
6356        }
6357        break;
6358      }
6359      case Stmt::ConditionalOperatorClass: {
6360        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
6361        if (const Expr *lhs = cond->getLHS())
6362          CheckArrayAccess(lhs);
6363        if (const Expr *rhs = cond->getRHS())
6364          CheckArrayAccess(rhs);
6365        return;
6366      }
6367      default:
6368        return;
6369    }
6370  }
6371}
6372
6373//===--- CHECK: Objective-C retain cycles ----------------------------------//
6374
6375namespace {
6376  struct RetainCycleOwner {
6377    RetainCycleOwner() : Variable(0), Indirect(false) {}
6378    VarDecl *Variable;
6379    SourceRange Range;
6380    SourceLocation Loc;
6381    bool Indirect;
6382
6383    void setLocsFrom(Expr *e) {
6384      Loc = e->getExprLoc();
6385      Range = e->getSourceRange();
6386    }
6387  };
6388}
6389
6390/// Consider whether capturing the given variable can possibly lead to
6391/// a retain cycle.
6392static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
6393  // In ARC, it's captured strongly iff the variable has __strong
6394  // lifetime.  In MRR, it's captured strongly if the variable is
6395  // __block and has an appropriate type.
6396  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6397    return false;
6398
6399  owner.Variable = var;
6400  if (ref)
6401    owner.setLocsFrom(ref);
6402  return true;
6403}
6404
6405static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6406  while (true) {
6407    e = e->IgnoreParens();
6408    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6409      switch (cast->getCastKind()) {
6410      case CK_BitCast:
6411      case CK_LValueBitCast:
6412      case CK_LValueToRValue:
6413      case CK_ARCReclaimReturnedObject:
6414        e = cast->getSubExpr();
6415        continue;
6416
6417      default:
6418        return false;
6419      }
6420    }
6421
6422    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6423      ObjCIvarDecl *ivar = ref->getDecl();
6424      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6425        return false;
6426
6427      // Try to find a retain cycle in the base.
6428      if (!findRetainCycleOwner(S, ref->getBase(), owner))
6429        return false;
6430
6431      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6432      owner.Indirect = true;
6433      return true;
6434    }
6435
6436    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6437      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6438      if (!var) return false;
6439      return considerVariable(var, ref, owner);
6440    }
6441
6442    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6443      if (member->isArrow()) return false;
6444
6445      // Don't count this as an indirect ownership.
6446      e = member->getBase();
6447      continue;
6448    }
6449
6450    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6451      // Only pay attention to pseudo-objects on property references.
6452      ObjCPropertyRefExpr *pre
6453        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6454                                              ->IgnoreParens());
6455      if (!pre) return false;
6456      if (pre->isImplicitProperty()) return false;
6457      ObjCPropertyDecl *property = pre->getExplicitProperty();
6458      if (!property->isRetaining() &&
6459          !(property->getPropertyIvarDecl() &&
6460            property->getPropertyIvarDecl()->getType()
6461              .getObjCLifetime() == Qualifiers::OCL_Strong))
6462          return false;
6463
6464      owner.Indirect = true;
6465      if (pre->isSuperReceiver()) {
6466        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6467        if (!owner.Variable)
6468          return false;
6469        owner.Loc = pre->getLocation();
6470        owner.Range = pre->getSourceRange();
6471        return true;
6472      }
6473      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6474                              ->getSourceExpr());
6475      continue;
6476    }
6477
6478    // Array ivars?
6479
6480    return false;
6481  }
6482}
6483
6484namespace {
6485  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6486    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6487      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6488        Variable(variable), Capturer(0) {}
6489
6490    VarDecl *Variable;
6491    Expr *Capturer;
6492
6493    void VisitDeclRefExpr(DeclRefExpr *ref) {
6494      if (ref->getDecl() == Variable && !Capturer)
6495        Capturer = ref;
6496    }
6497
6498    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6499      if (Capturer) return;
6500      Visit(ref->getBase());
6501      if (Capturer && ref->isFreeIvar())
6502        Capturer = ref;
6503    }
6504
6505    void VisitBlockExpr(BlockExpr *block) {
6506      // Look inside nested blocks
6507      if (block->getBlockDecl()->capturesVariable(Variable))
6508        Visit(block->getBlockDecl()->getBody());
6509    }
6510
6511    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6512      if (Capturer) return;
6513      if (OVE->getSourceExpr())
6514        Visit(OVE->getSourceExpr());
6515    }
6516  };
6517}
6518
6519/// Check whether the given argument is a block which captures a
6520/// variable.
6521static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6522  assert(owner.Variable && owner.Loc.isValid());
6523
6524  e = e->IgnoreParenCasts();
6525
6526  // Look through [^{...} copy] and Block_copy(^{...}).
6527  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6528    Selector Cmd = ME->getSelector();
6529    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6530      e = ME->getInstanceReceiver();
6531      if (!e)
6532        return 0;
6533      e = e->IgnoreParenCasts();
6534    }
6535  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6536    if (CE->getNumArgs() == 1) {
6537      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6538      if (Fn) {
6539        const IdentifierInfo *FnI = Fn->getIdentifier();
6540        if (FnI && FnI->isStr("_Block_copy")) {
6541          e = CE->getArg(0)->IgnoreParenCasts();
6542        }
6543      }
6544    }
6545  }
6546
6547  BlockExpr *block = dyn_cast<BlockExpr>(e);
6548  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6549    return 0;
6550
6551  FindCaptureVisitor visitor(S.Context, owner.Variable);
6552  visitor.Visit(block->getBlockDecl()->getBody());
6553  return visitor.Capturer;
6554}
6555
6556static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6557                                RetainCycleOwner &owner) {
6558  assert(capturer);
6559  assert(owner.Variable && owner.Loc.isValid());
6560
6561  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6562    << owner.Variable << capturer->getSourceRange();
6563  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6564    << owner.Indirect << owner.Range;
6565}
6566
6567/// Check for a keyword selector that starts with the word 'add' or
6568/// 'set'.
6569static bool isSetterLikeSelector(Selector sel) {
6570  if (sel.isUnarySelector()) return false;
6571
6572  StringRef str = sel.getNameForSlot(0);
6573  while (!str.empty() && str.front() == '_') str = str.substr(1);
6574  if (str.startswith("set"))
6575    str = str.substr(3);
6576  else if (str.startswith("add")) {
6577    // Specially whitelist 'addOperationWithBlock:'.
6578    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6579      return false;
6580    str = str.substr(3);
6581  }
6582  else
6583    return false;
6584
6585  if (str.empty()) return true;
6586  return !isLowercase(str.front());
6587}
6588
6589/// Check a message send to see if it's likely to cause a retain cycle.
6590void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6591  // Only check instance methods whose selector looks like a setter.
6592  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6593    return;
6594
6595  // Try to find a variable that the receiver is strongly owned by.
6596  RetainCycleOwner owner;
6597  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6598    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6599      return;
6600  } else {
6601    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6602    owner.Variable = getCurMethodDecl()->getSelfDecl();
6603    owner.Loc = msg->getSuperLoc();
6604    owner.Range = msg->getSuperLoc();
6605  }
6606
6607  // Check whether the receiver is captured by any of the arguments.
6608  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6609    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6610      return diagnoseRetainCycle(*this, capturer, owner);
6611}
6612
6613/// Check a property assign to see if it's likely to cause a retain cycle.
6614void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6615  RetainCycleOwner owner;
6616  if (!findRetainCycleOwner(*this, receiver, owner))
6617    return;
6618
6619  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6620    diagnoseRetainCycle(*this, capturer, owner);
6621}
6622
6623void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6624  RetainCycleOwner Owner;
6625  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6626    return;
6627
6628  // Because we don't have an expression for the variable, we have to set the
6629  // location explicitly here.
6630  Owner.Loc = Var->getLocation();
6631  Owner.Range = Var->getSourceRange();
6632
6633  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6634    diagnoseRetainCycle(*this, Capturer, Owner);
6635}
6636
6637static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6638                                     Expr *RHS, bool isProperty) {
6639  // Check if RHS is an Objective-C object literal, which also can get
6640  // immediately zapped in a weak reference.  Note that we explicitly
6641  // allow ObjCStringLiterals, since those are designed to never really die.
6642  RHS = RHS->IgnoreParenImpCasts();
6643
6644  // This enum needs to match with the 'select' in
6645  // warn_objc_arc_literal_assign (off-by-1).
6646  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6647  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6648    return false;
6649
6650  S.Diag(Loc, diag::warn_arc_literal_assign)
6651    << (unsigned) Kind
6652    << (isProperty ? 0 : 1)
6653    << RHS->getSourceRange();
6654
6655  return true;
6656}
6657
6658static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6659                                    Qualifiers::ObjCLifetime LT,
6660                                    Expr *RHS, bool isProperty) {
6661  // Strip off any implicit cast added to get to the one ARC-specific.
6662  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6663    if (cast->getCastKind() == CK_ARCConsumeObject) {
6664      S.Diag(Loc, diag::warn_arc_retained_assign)
6665        << (LT == Qualifiers::OCL_ExplicitNone)
6666        << (isProperty ? 0 : 1)
6667        << RHS->getSourceRange();
6668      return true;
6669    }
6670    RHS = cast->getSubExpr();
6671  }
6672
6673  if (LT == Qualifiers::OCL_Weak &&
6674      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6675    return true;
6676
6677  return false;
6678}
6679
6680bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6681                              QualType LHS, Expr *RHS) {
6682  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6683
6684  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6685    return false;
6686
6687  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6688    return true;
6689
6690  return false;
6691}
6692
6693void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6694                              Expr *LHS, Expr *RHS) {
6695  QualType LHSType;
6696  // PropertyRef on LHS type need be directly obtained from
6697  // its declaration as it has a PsuedoType.
6698  ObjCPropertyRefExpr *PRE
6699    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6700  if (PRE && !PRE->isImplicitProperty()) {
6701    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6702    if (PD)
6703      LHSType = PD->getType();
6704  }
6705
6706  if (LHSType.isNull())
6707    LHSType = LHS->getType();
6708
6709  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6710
6711  if (LT == Qualifiers::OCL_Weak) {
6712    DiagnosticsEngine::Level Level =
6713      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6714    if (Level != DiagnosticsEngine::Ignored)
6715      getCurFunction()->markSafeWeakUse(LHS);
6716  }
6717
6718  if (checkUnsafeAssigns(Loc, LHSType, RHS))
6719    return;
6720
6721  // FIXME. Check for other life times.
6722  if (LT != Qualifiers::OCL_None)
6723    return;
6724
6725  if (PRE) {
6726    if (PRE->isImplicitProperty())
6727      return;
6728    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6729    if (!PD)
6730      return;
6731
6732    unsigned Attributes = PD->getPropertyAttributes();
6733    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6734      // when 'assign' attribute was not explicitly specified
6735      // by user, ignore it and rely on property type itself
6736      // for lifetime info.
6737      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6738      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6739          LHSType->isObjCRetainableType())
6740        return;
6741
6742      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6743        if (cast->getCastKind() == CK_ARCConsumeObject) {
6744          Diag(Loc, diag::warn_arc_retained_property_assign)
6745          << RHS->getSourceRange();
6746          return;
6747        }
6748        RHS = cast->getSubExpr();
6749      }
6750    }
6751    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6752      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6753        return;
6754    }
6755  }
6756}
6757
6758//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6759
6760namespace {
6761bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6762                                 SourceLocation StmtLoc,
6763                                 const NullStmt *Body) {
6764  // Do not warn if the body is a macro that expands to nothing, e.g:
6765  //
6766  // #define CALL(x)
6767  // if (condition)
6768  //   CALL(0);
6769  //
6770  if (Body->hasLeadingEmptyMacro())
6771    return false;
6772
6773  // Get line numbers of statement and body.
6774  bool StmtLineInvalid;
6775  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6776                                                      &StmtLineInvalid);
6777  if (StmtLineInvalid)
6778    return false;
6779
6780  bool BodyLineInvalid;
6781  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6782                                                      &BodyLineInvalid);
6783  if (BodyLineInvalid)
6784    return false;
6785
6786  // Warn if null statement and body are on the same line.
6787  if (StmtLine != BodyLine)
6788    return false;
6789
6790  return true;
6791}
6792} // Unnamed namespace
6793
6794void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6795                                 const Stmt *Body,
6796                                 unsigned DiagID) {
6797  // Since this is a syntactic check, don't emit diagnostic for template
6798  // instantiations, this just adds noise.
6799  if (CurrentInstantiationScope)
6800    return;
6801
6802  // The body should be a null statement.
6803  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6804  if (!NBody)
6805    return;
6806
6807  // Do the usual checks.
6808  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6809    return;
6810
6811  Diag(NBody->getSemiLoc(), DiagID);
6812  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6813}
6814
6815void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6816                                 const Stmt *PossibleBody) {
6817  assert(!CurrentInstantiationScope); // Ensured by caller
6818
6819  SourceLocation StmtLoc;
6820  const Stmt *Body;
6821  unsigned DiagID;
6822  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6823    StmtLoc = FS->getRParenLoc();
6824    Body = FS->getBody();
6825    DiagID = diag::warn_empty_for_body;
6826  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6827    StmtLoc = WS->getCond()->getSourceRange().getEnd();
6828    Body = WS->getBody();
6829    DiagID = diag::warn_empty_while_body;
6830  } else
6831    return; // Neither `for' nor `while'.
6832
6833  // The body should be a null statement.
6834  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6835  if (!NBody)
6836    return;
6837
6838  // Skip expensive checks if diagnostic is disabled.
6839  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6840          DiagnosticsEngine::Ignored)
6841    return;
6842
6843  // Do the usual checks.
6844  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6845    return;
6846
6847  // `for(...);' and `while(...);' are popular idioms, so in order to keep
6848  // noise level low, emit diagnostics only if for/while is followed by a
6849  // CompoundStmt, e.g.:
6850  //    for (int i = 0; i < n; i++);
6851  //    {
6852  //      a(i);
6853  //    }
6854  // or if for/while is followed by a statement with more indentation
6855  // than for/while itself:
6856  //    for (int i = 0; i < n; i++);
6857  //      a(i);
6858  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6859  if (!ProbableTypo) {
6860    bool BodyColInvalid;
6861    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6862                             PossibleBody->getLocStart(),
6863                             &BodyColInvalid);
6864    if (BodyColInvalid)
6865      return;
6866
6867    bool StmtColInvalid;
6868    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6869                             S->getLocStart(),
6870                             &StmtColInvalid);
6871    if (StmtColInvalid)
6872      return;
6873
6874    if (BodyCol > StmtCol)
6875      ProbableTypo = true;
6876  }
6877
6878  if (ProbableTypo) {
6879    Diag(NBody->getSemiLoc(), DiagID);
6880    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6881  }
6882}
6883
6884//===--- Layout compatibility ----------------------------------------------//
6885
6886namespace {
6887
6888bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6889
6890/// \brief Check if two enumeration types are layout-compatible.
6891bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6892  // C++11 [dcl.enum] p8:
6893  // Two enumeration types are layout-compatible if they have the same
6894  // underlying type.
6895  return ED1->isComplete() && ED2->isComplete() &&
6896         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6897}
6898
6899/// \brief Check if two fields are layout-compatible.
6900bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6901  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6902    return false;
6903
6904  if (Field1->isBitField() != Field2->isBitField())
6905    return false;
6906
6907  if (Field1->isBitField()) {
6908    // Make sure that the bit-fields are the same length.
6909    unsigned Bits1 = Field1->getBitWidthValue(C);
6910    unsigned Bits2 = Field2->getBitWidthValue(C);
6911
6912    if (Bits1 != Bits2)
6913      return false;
6914  }
6915
6916  return true;
6917}
6918
6919/// \brief Check if two standard-layout structs are layout-compatible.
6920/// (C++11 [class.mem] p17)
6921bool isLayoutCompatibleStruct(ASTContext &C,
6922                              RecordDecl *RD1,
6923                              RecordDecl *RD2) {
6924  // If both records are C++ classes, check that base classes match.
6925  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6926    // If one of records is a CXXRecordDecl we are in C++ mode,
6927    // thus the other one is a CXXRecordDecl, too.
6928    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6929    // Check number of base classes.
6930    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6931      return false;
6932
6933    // Check the base classes.
6934    for (CXXRecordDecl::base_class_const_iterator
6935               Base1 = D1CXX->bases_begin(),
6936           BaseEnd1 = D1CXX->bases_end(),
6937              Base2 = D2CXX->bases_begin();
6938         Base1 != BaseEnd1;
6939         ++Base1, ++Base2) {
6940      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6941        return false;
6942    }
6943  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6944    // If only RD2 is a C++ class, it should have zero base classes.
6945    if (D2CXX->getNumBases() > 0)
6946      return false;
6947  }
6948
6949  // Check the fields.
6950  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6951                             Field2End = RD2->field_end(),
6952                             Field1 = RD1->field_begin(),
6953                             Field1End = RD1->field_end();
6954  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6955    if (!isLayoutCompatible(C, *Field1, *Field2))
6956      return false;
6957  }
6958  if (Field1 != Field1End || Field2 != Field2End)
6959    return false;
6960
6961  return true;
6962}
6963
6964/// \brief Check if two standard-layout unions are layout-compatible.
6965/// (C++11 [class.mem] p18)
6966bool isLayoutCompatibleUnion(ASTContext &C,
6967                             RecordDecl *RD1,
6968                             RecordDecl *RD2) {
6969  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6970  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6971                                  Field2End = RD2->field_end();
6972       Field2 != Field2End; ++Field2) {
6973    UnmatchedFields.insert(*Field2);
6974  }
6975
6976  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6977                                  Field1End = RD1->field_end();
6978       Field1 != Field1End; ++Field1) {
6979    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6980        I = UnmatchedFields.begin(),
6981        E = UnmatchedFields.end();
6982
6983    for ( ; I != E; ++I) {
6984      if (isLayoutCompatible(C, *Field1, *I)) {
6985        bool Result = UnmatchedFields.erase(*I);
6986        (void) Result;
6987        assert(Result);
6988        break;
6989      }
6990    }
6991    if (I == E)
6992      return false;
6993  }
6994
6995  return UnmatchedFields.empty();
6996}
6997
6998bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
6999  if (RD1->isUnion() != RD2->isUnion())
7000    return false;
7001
7002  if (RD1->isUnion())
7003    return isLayoutCompatibleUnion(C, RD1, RD2);
7004  else
7005    return isLayoutCompatibleStruct(C, RD1, RD2);
7006}
7007
7008/// \brief Check if two types are layout-compatible in C++11 sense.
7009bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
7010  if (T1.isNull() || T2.isNull())
7011    return false;
7012
7013  // C++11 [basic.types] p11:
7014  // If two types T1 and T2 are the same type, then T1 and T2 are
7015  // layout-compatible types.
7016  if (C.hasSameType(T1, T2))
7017    return true;
7018
7019  T1 = T1.getCanonicalType().getUnqualifiedType();
7020  T2 = T2.getCanonicalType().getUnqualifiedType();
7021
7022  const Type::TypeClass TC1 = T1->getTypeClass();
7023  const Type::TypeClass TC2 = T2->getTypeClass();
7024
7025  if (TC1 != TC2)
7026    return false;
7027
7028  if (TC1 == Type::Enum) {
7029    return isLayoutCompatible(C,
7030                              cast<EnumType>(T1)->getDecl(),
7031                              cast<EnumType>(T2)->getDecl());
7032  } else if (TC1 == Type::Record) {
7033    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
7034      return false;
7035
7036    return isLayoutCompatible(C,
7037                              cast<RecordType>(T1)->getDecl(),
7038                              cast<RecordType>(T2)->getDecl());
7039  }
7040
7041  return false;
7042}
7043}
7044
7045//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
7046
7047namespace {
7048/// \brief Given a type tag expression find the type tag itself.
7049///
7050/// \param TypeExpr Type tag expression, as it appears in user's code.
7051///
7052/// \param VD Declaration of an identifier that appears in a type tag.
7053///
7054/// \param MagicValue Type tag magic value.
7055bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
7056                     const ValueDecl **VD, uint64_t *MagicValue) {
7057  while(true) {
7058    if (!TypeExpr)
7059      return false;
7060
7061    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
7062
7063    switch (TypeExpr->getStmtClass()) {
7064    case Stmt::UnaryOperatorClass: {
7065      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
7066      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
7067        TypeExpr = UO->getSubExpr();
7068        continue;
7069      }
7070      return false;
7071    }
7072
7073    case Stmt::DeclRefExprClass: {
7074      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
7075      *VD = DRE->getDecl();
7076      return true;
7077    }
7078
7079    case Stmt::IntegerLiteralClass: {
7080      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
7081      llvm::APInt MagicValueAPInt = IL->getValue();
7082      if (MagicValueAPInt.getActiveBits() <= 64) {
7083        *MagicValue = MagicValueAPInt.getZExtValue();
7084        return true;
7085      } else
7086        return false;
7087    }
7088
7089    case Stmt::BinaryConditionalOperatorClass:
7090    case Stmt::ConditionalOperatorClass: {
7091      const AbstractConditionalOperator *ACO =
7092          cast<AbstractConditionalOperator>(TypeExpr);
7093      bool Result;
7094      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
7095        if (Result)
7096          TypeExpr = ACO->getTrueExpr();
7097        else
7098          TypeExpr = ACO->getFalseExpr();
7099        continue;
7100      }
7101      return false;
7102    }
7103
7104    case Stmt::BinaryOperatorClass: {
7105      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
7106      if (BO->getOpcode() == BO_Comma) {
7107        TypeExpr = BO->getRHS();
7108        continue;
7109      }
7110      return false;
7111    }
7112
7113    default:
7114      return false;
7115    }
7116  }
7117}
7118
7119/// \brief Retrieve the C type corresponding to type tag TypeExpr.
7120///
7121/// \param TypeExpr Expression that specifies a type tag.
7122///
7123/// \param MagicValues Registered magic values.
7124///
7125/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
7126///        kind.
7127///
7128/// \param TypeInfo Information about the corresponding C type.
7129///
7130/// \returns true if the corresponding C type was found.
7131bool GetMatchingCType(
7132        const IdentifierInfo *ArgumentKind,
7133        const Expr *TypeExpr, const ASTContext &Ctx,
7134        const llvm::DenseMap<Sema::TypeTagMagicValue,
7135                             Sema::TypeTagData> *MagicValues,
7136        bool &FoundWrongKind,
7137        Sema::TypeTagData &TypeInfo) {
7138  FoundWrongKind = false;
7139
7140  // Variable declaration that has type_tag_for_datatype attribute.
7141  const ValueDecl *VD = NULL;
7142
7143  uint64_t MagicValue;
7144
7145  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
7146    return false;
7147
7148  if (VD) {
7149    for (specific_attr_iterator<TypeTagForDatatypeAttr>
7150             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
7151             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
7152         I != E; ++I) {
7153      if (I->getArgumentKind() != ArgumentKind) {
7154        FoundWrongKind = true;
7155        return false;
7156      }
7157      TypeInfo.Type = I->getMatchingCType();
7158      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
7159      TypeInfo.MustBeNull = I->getMustBeNull();
7160      return true;
7161    }
7162    return false;
7163  }
7164
7165  if (!MagicValues)
7166    return false;
7167
7168  llvm::DenseMap<Sema::TypeTagMagicValue,
7169                 Sema::TypeTagData>::const_iterator I =
7170      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
7171  if (I == MagicValues->end())
7172    return false;
7173
7174  TypeInfo = I->second;
7175  return true;
7176}
7177} // unnamed namespace
7178
7179void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
7180                                      uint64_t MagicValue, QualType Type,
7181                                      bool LayoutCompatible,
7182                                      bool MustBeNull) {
7183  if (!TypeTagForDatatypeMagicValues)
7184    TypeTagForDatatypeMagicValues.reset(
7185        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
7186
7187  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
7188  (*TypeTagForDatatypeMagicValues)[Magic] =
7189      TypeTagData(Type, LayoutCompatible, MustBeNull);
7190}
7191
7192namespace {
7193bool IsSameCharType(QualType T1, QualType T2) {
7194  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
7195  if (!BT1)
7196    return false;
7197
7198  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
7199  if (!BT2)
7200    return false;
7201
7202  BuiltinType::Kind T1Kind = BT1->getKind();
7203  BuiltinType::Kind T2Kind = BT2->getKind();
7204
7205  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
7206         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
7207         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
7208         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
7209}
7210} // unnamed namespace
7211
7212void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
7213                                    const Expr * const *ExprArgs) {
7214  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
7215  bool IsPointerAttr = Attr->getIsPointer();
7216
7217  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
7218  bool FoundWrongKind;
7219  TypeTagData TypeInfo;
7220  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
7221                        TypeTagForDatatypeMagicValues.get(),
7222                        FoundWrongKind, TypeInfo)) {
7223    if (FoundWrongKind)
7224      Diag(TypeTagExpr->getExprLoc(),
7225           diag::warn_type_tag_for_datatype_wrong_kind)
7226        << TypeTagExpr->getSourceRange();
7227    return;
7228  }
7229
7230  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
7231  if (IsPointerAttr) {
7232    // Skip implicit cast of pointer to `void *' (as a function argument).
7233    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
7234      if (ICE->getType()->isVoidPointerType() &&
7235          ICE->getCastKind() == CK_BitCast)
7236        ArgumentExpr = ICE->getSubExpr();
7237  }
7238  QualType ArgumentType = ArgumentExpr->getType();
7239
7240  // Passing a `void*' pointer shouldn't trigger a warning.
7241  if (IsPointerAttr && ArgumentType->isVoidPointerType())
7242    return;
7243
7244  if (TypeInfo.MustBeNull) {
7245    // Type tag with matching void type requires a null pointer.
7246    if (!ArgumentExpr->isNullPointerConstant(Context,
7247                                             Expr::NPC_ValueDependentIsNotNull)) {
7248      Diag(ArgumentExpr->getExprLoc(),
7249           diag::warn_type_safety_null_pointer_required)
7250          << ArgumentKind->getName()
7251          << ArgumentExpr->getSourceRange()
7252          << TypeTagExpr->getSourceRange();
7253    }
7254    return;
7255  }
7256
7257  QualType RequiredType = TypeInfo.Type;
7258  if (IsPointerAttr)
7259    RequiredType = Context.getPointerType(RequiredType);
7260
7261  bool mismatch = false;
7262  if (!TypeInfo.LayoutCompatible) {
7263    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
7264
7265    // C++11 [basic.fundamental] p1:
7266    // Plain char, signed char, and unsigned char are three distinct types.
7267    //
7268    // But we treat plain `char' as equivalent to `signed char' or `unsigned
7269    // char' depending on the current char signedness mode.
7270    if (mismatch)
7271      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
7272                                           RequiredType->getPointeeType())) ||
7273          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
7274        mismatch = false;
7275  } else
7276    if (IsPointerAttr)
7277      mismatch = !isLayoutCompatible(Context,
7278                                     ArgumentType->getPointeeType(),
7279                                     RequiredType->getPointeeType());
7280    else
7281      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
7282
7283  if (mismatch)
7284    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
7285        << ArgumentType << ArgumentKind->getName()
7286        << TypeInfo.LayoutCompatible << RequiredType
7287        << ArgumentExpr->getSourceRange()
7288        << TypeTagExpr->getSourceRange();
7289}
7290