SemaChecking.cpp revision 49badde06e066d058d6c7fcf4e628a72999b65a9
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "SemaUtil.h"
23using namespace clang;
24
25/// CheckFunctionCall - Check a direct function call for various correctness
26/// and safety properties not strictly enforced by the C type system.
27Action::ExprResult
28Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
29  llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
30  // Get the IdentifierInfo* for the called function.
31  IdentifierInfo *FnInfo = FDecl->getIdentifier();
32
33  switch (FnInfo->getBuiltinID()) {
34  case Builtin::BI__builtin___CFStringMakeConstantString:
35    assert(TheCall->getNumArgs() == 1 &&
36           "Wrong # arguments to builtin CFStringMakeConstantString");
37    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
38      return true;
39    return TheCall.take();
40  case Builtin::BI__builtin_stdarg_start:
41  case Builtin::BI__builtin_va_start:
42    if (SemaBuiltinVAStart(TheCall.get()))
43      return true;
44    return TheCall.take();
45  case Builtin::BI__builtin_isgreater:
46  case Builtin::BI__builtin_isgreaterequal:
47  case Builtin::BI__builtin_isless:
48  case Builtin::BI__builtin_islessequal:
49  case Builtin::BI__builtin_islessgreater:
50  case Builtin::BI__builtin_isunordered:
51    if (SemaBuiltinUnorderedCompare(TheCall.get()))
52      return true;
53    return TheCall.take();
54  case Builtin::BI__builtin_return_address:
55  case Builtin::BI__builtin_frame_address:
56    if (SemaBuiltinStackAddress(TheCall.get()))
57      return true;
58    return TheCall.take();
59  case Builtin::BI__builtin_shufflevector:
60    return SemaBuiltinShuffleVector(TheCall.get());
61  case Builtin::BI__builtin_prefetch:
62    if (SemaBuiltinPrefetch(TheCall.get()))
63      return true;
64    return TheCall.take();
65  case Builtin::BI__builtin_object_size:
66    if (SemaBuiltinObjectSize(TheCall.get()))
67      return true;
68  }
69
70  // FIXME: This mechanism should be abstracted to be less fragile and
71  // more efficient. For example, just map function ids to custom
72  // handlers.
73
74  // Search the KnownFunctionIDs for the identifier.
75  unsigned i = 0, e = id_num_known_functions;
76  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
77  if (i == e) return TheCall.take();
78
79  // Printf checking.
80  if (i <= id_vprintf) {
81    // Retrieve the index of the format string parameter and determine
82    // if the function is passed a va_arg argument.
83    unsigned format_idx = 0;
84    bool HasVAListArg = false;
85
86    switch (i) {
87    default: assert(false && "No format string argument index.");
88    case id_NSLog:         format_idx = 0; break;
89    case id_asprintf:      format_idx = 1; break;
90    case id_fprintf:       format_idx = 1; break;
91    case id_printf:        format_idx = 0; break;
92    case id_snprintf:      format_idx = 2; break;
93    case id_snprintf_chk:  format_idx = 4; break;
94    case id_sprintf:       format_idx = 1; break;
95    case id_sprintf_chk:   format_idx = 3; break;
96    case id_vasprintf:     format_idx = 1; HasVAListArg = true; break;
97    case id_vfprintf:      format_idx = 1; HasVAListArg = true; break;
98    case id_vsnprintf:     format_idx = 2; HasVAListArg = true; break;
99    case id_vsnprintf_chk: format_idx = 4; HasVAListArg = true; break;
100    case id_vsprintf:      format_idx = 1; HasVAListArg = true; break;
101    case id_vsprintf_chk:  format_idx = 3; HasVAListArg = true; break;
102    case id_vprintf:       format_idx = 0; HasVAListArg = true; break;
103    }
104
105    CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
106  }
107
108  return TheCall.take();
109}
110
111/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
112/// CFString constructor is correct
113bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
114  Arg = Arg->IgnoreParenCasts();
115
116  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
117
118  if (!Literal || Literal->isWide()) {
119    Diag(Arg->getLocStart(),
120         diag::err_cfstring_literal_not_string_constant,
121         Arg->getSourceRange());
122    return true;
123  }
124
125  const char *Data = Literal->getStrData();
126  unsigned Length = Literal->getByteLength();
127
128  for (unsigned i = 0; i < Length; ++i) {
129    if (!isascii(Data[i])) {
130      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
131           diag::warn_cfstring_literal_contains_non_ascii_character,
132           Arg->getSourceRange());
133      break;
134    }
135
136    if (!Data[i]) {
137      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
138           diag::warn_cfstring_literal_contains_nul_character,
139           Arg->getSourceRange());
140      break;
141    }
142  }
143
144  return false;
145}
146
147/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
148/// Emit an error and return true on failure, return false on success.
149bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
150  Expr *Fn = TheCall->getCallee();
151  if (TheCall->getNumArgs() > 2) {
152    Diag(TheCall->getArg(2)->getLocStart(),
153         diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
154         SourceRange(TheCall->getArg(2)->getLocStart(),
155                     (*(TheCall->arg_end()-1))->getLocEnd()));
156    return true;
157  }
158
159  // Determine whether the current function is variadic or not.
160  bool isVariadic;
161  if (getCurFunctionDecl())
162    isVariadic =
163      cast<FunctionTypeProto>(getCurFunctionDecl()->getType())->isVariadic();
164  else
165    isVariadic = getCurMethodDecl()->isVariadic();
166
167  if (!isVariadic) {
168    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
169    return true;
170  }
171
172  // Verify that the second argument to the builtin is the last argument of the
173  // current function or method.
174  bool SecondArgIsLastNamedArgument = false;
175  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
176
177  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
178    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
179      // FIXME: This isn't correct for methods (results in bogus warning).
180      // Get the last formal in the current function.
181      const ParmVarDecl *LastArg;
182      if (getCurFunctionDecl())
183        LastArg = *(getCurFunctionDecl()->param_end()-1);
184      else
185        LastArg = *(getCurMethodDecl()->param_end()-1);
186      SecondArgIsLastNamedArgument = PV == LastArg;
187    }
188  }
189
190  if (!SecondArgIsLastNamedArgument)
191    Diag(TheCall->getArg(1)->getLocStart(),
192         diag::warn_second_parameter_of_va_start_not_last_named_argument);
193  return false;
194}
195
196/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
197/// friends.  This is declared to take (...), so we have to check everything.
198bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
199  if (TheCall->getNumArgs() < 2)
200    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args);
201  if (TheCall->getNumArgs() > 2)
202    return Diag(TheCall->getArg(2)->getLocStart(),
203                diag::err_typecheck_call_too_many_args,
204                SourceRange(TheCall->getArg(2)->getLocStart(),
205                            (*(TheCall->arg_end()-1))->getLocEnd()));
206
207  Expr *OrigArg0 = TheCall->getArg(0);
208  Expr *OrigArg1 = TheCall->getArg(1);
209
210  // Do standard promotions between the two arguments, returning their common
211  // type.
212  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
213
214  // If the common type isn't a real floating type, then the arguments were
215  // invalid for this operation.
216  if (!Res->isRealFloatingType())
217    return Diag(OrigArg0->getLocStart(),
218                diag::err_typecheck_call_invalid_ordered_compare,
219                OrigArg0->getType().getAsString(),
220                OrigArg1->getType().getAsString(),
221                SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd()));
222
223  return false;
224}
225
226bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
227  // The signature for these builtins is exact; the only thing we need
228  // to check is that the argument is a constant.
229  SourceLocation Loc;
230  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
231    return Diag(Loc, diag::err_stack_const_level, TheCall->getSourceRange());
232
233  return false;
234}
235
236/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
237// This is declared to take (...), so we have to check everything.
238Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
239  if (TheCall->getNumArgs() < 3)
240    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
241                TheCall->getSourceRange());
242
243  QualType FAType = TheCall->getArg(0)->getType();
244  QualType SAType = TheCall->getArg(1)->getType();
245
246  if (!FAType->isVectorType() || !SAType->isVectorType()) {
247    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector,
248         SourceRange(TheCall->getArg(0)->getLocStart(),
249                     TheCall->getArg(1)->getLocEnd()));
250    return true;
251  }
252
253  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
254      Context.getCanonicalType(SAType).getUnqualifiedType()) {
255    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector,
256         SourceRange(TheCall->getArg(0)->getLocStart(),
257                     TheCall->getArg(1)->getLocEnd()));
258    return true;
259  }
260
261  unsigned numElements = FAType->getAsVectorType()->getNumElements();
262  if (TheCall->getNumArgs() != numElements+2) {
263    if (TheCall->getNumArgs() < numElements+2)
264      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
265                  TheCall->getSourceRange());
266    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
267                TheCall->getSourceRange());
268  }
269
270  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
271    llvm::APSInt Result(32);
272    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
273      return Diag(TheCall->getLocStart(),
274                  diag::err_shufflevector_nonconstant_argument,
275                  TheCall->getArg(i)->getSourceRange());
276
277    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
278      return Diag(TheCall->getLocStart(),
279                  diag::err_shufflevector_argument_too_large,
280                  TheCall->getArg(i)->getSourceRange());
281  }
282
283  llvm::SmallVector<Expr*, 32> exprs;
284
285  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
286    exprs.push_back(TheCall->getArg(i));
287    TheCall->setArg(i, 0);
288  }
289
290  return new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
291                               TheCall->getCallee()->getLocStart(),
292                               TheCall->getRParenLoc());
293}
294
295/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
296// This is declared to take (const void*, ...) and can take two
297// optional constant int args.
298bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
299  unsigned numArgs = TheCall->getNumArgs();
300  bool res = false;
301
302  if (numArgs > 3) {
303    res |= Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
304                TheCall->getSourceRange());
305  }
306
307  // Argument 0 is checked for us and the remaining arguments must be
308  // constant integers.
309  for (unsigned i=1; i<numArgs; ++i) {
310    Expr *Arg = TheCall->getArg(i);
311    QualType RWType = Arg->getType();
312
313    const BuiltinType *BT = RWType->getAsBuiltinType();
314    llvm::APSInt Result;
315    if (!BT || BT->getKind() != BuiltinType::Int ||
316        !Arg->isIntegerConstantExpr(Result, Context)) {
317      if (Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument,
318               SourceRange(Arg->getLocStart(), Arg->getLocEnd()))) {
319        res = true;
320        continue;
321      }
322    }
323
324    // FIXME: gcc issues a warning and rewrites these to 0. These
325    // seems especially odd for the third argument since the default
326    // is 3.
327    if (i==1) {
328      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
329        res |= Diag(TheCall->getLocStart(), diag::err_argument_invalid_range,
330                    "0", "1",
331                    SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
332    } else {
333      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
334        res |= Diag(TheCall->getLocStart(), diag::err_argument_invalid_range,
335                    "0", "3",
336                    SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
337    }
338  }
339
340  return res;
341}
342
343/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
344/// int type). This simply type checks that type is one of the defined
345/// constants (0-3).
346bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
347  Expr *Arg = TheCall->getArg(1);
348  QualType ArgType = Arg->getType();
349  const BuiltinType *BT = ArgType->getAsBuiltinType();
350  llvm::APSInt Result(32);
351  if (!BT || BT->getKind() != BuiltinType::Int ||
352      !Arg->isIntegerConstantExpr(Result, Context)) {
353    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument,
354                SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
355  }
356
357  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
358    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range,
359                "0", "3",
360                SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
361  }
362
363  return false;
364}
365
366/// CheckPrintfArguments - Check calls to printf (and similar functions) for
367/// correct use of format strings.
368///
369///  HasVAListArg - A predicate indicating whether the printf-like
370///    function is passed an explicit va_arg argument (e.g., vprintf)
371///
372///  format_idx - The index into Args for the format string.
373///
374/// Improper format strings to functions in the printf family can be
375/// the source of bizarre bugs and very serious security holes.  A
376/// good source of information is available in the following paper
377/// (which includes additional references):
378///
379///  FormatGuard: Automatic Protection From printf Format String
380///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
381///
382/// Functionality implemented:
383///
384///  We can statically check the following properties for string
385///  literal format strings for non v.*printf functions (where the
386///  arguments are passed directly):
387//
388///  (1) Are the number of format conversions equal to the number of
389///      data arguments?
390///
391///  (2) Does each format conversion correctly match the type of the
392///      corresponding data argument?  (TODO)
393///
394/// Moreover, for all printf functions we can:
395///
396///  (3) Check for a missing format string (when not caught by type checking).
397///
398///  (4) Check for no-operation flags; e.g. using "#" with format
399///      conversion 'c'  (TODO)
400///
401///  (5) Check the use of '%n', a major source of security holes.
402///
403///  (6) Check for malformed format conversions that don't specify anything.
404///
405///  (7) Check for empty format strings.  e.g: printf("");
406///
407///  (8) Check that the format string is a wide literal.
408///
409///  (9) Also check the arguments of functions with the __format__ attribute.
410///      (TODO).
411///
412/// All of these checks can be done by parsing the format string.
413///
414/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
415void
416Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
417                           unsigned format_idx) {
418  Expr *Fn = TheCall->getCallee();
419
420  // CHECK: printf-like function is called with no format string.
421  if (format_idx >= TheCall->getNumArgs()) {
422    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string,
423         Fn->getSourceRange());
424    return;
425  }
426
427  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
428
429  // CHECK: format string is not a string literal.
430  //
431  // Dynamically generated format strings are difficult to
432  // automatically vet at compile time.  Requiring that format strings
433  // are string literals: (1) permits the checking of format strings by
434  // the compiler and thereby (2) can practically remove the source of
435  // many format string exploits.
436
437  // Format string can be either ObjC string (e.g. @"%d") or
438  // C string (e.g. "%d")
439  // ObjC string uses the same format specifiers as C string, so we can use
440  // the same format string checking logic for both ObjC and C strings.
441  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
442  StringLiteral *FExpr = NULL;
443
444  if(ObjCFExpr != NULL)
445    FExpr = ObjCFExpr->getString();
446  else
447    FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
448
449  if (FExpr == NULL) {
450    // For vprintf* functions (i.e., HasVAListArg==true), we add a
451    // special check to see if the format string is a function parameter
452    // of the function calling the printf function.  If the function
453    // has an attribute indicating it is a printf-like function, then we
454    // should suppress warnings concerning non-literals being used in a call
455    // to a vprintf function.  For example:
456    //
457    // void
458    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
459    //      va_list ap;
460    //      va_start(ap, fmt);
461    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
462    //      ...
463    //
464    //
465    //  FIXME: We don't have full attribute support yet, so just check to see
466    //    if the argument is a DeclRefExpr that references a parameter.  We'll
467    //    add proper support for checking the attribute later.
468    if (HasVAListArg)
469      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
470        if (isa<ParmVarDecl>(DR->getDecl()))
471          return;
472
473    Diag(TheCall->getArg(format_idx)->getLocStart(),
474         diag::warn_printf_not_string_constant,
475         OrigFormatExpr->getSourceRange());
476    return;
477  }
478
479  // CHECK: is the format string a wide literal?
480  if (FExpr->isWide()) {
481    Diag(FExpr->getLocStart(),
482         diag::warn_printf_format_string_is_wide_literal,
483         OrigFormatExpr->getSourceRange());
484    return;
485  }
486
487  // Str - The format string.  NOTE: this is NOT null-terminated!
488  const char * const Str = FExpr->getStrData();
489
490  // CHECK: empty format string?
491  const unsigned StrLen = FExpr->getByteLength();
492
493  if (StrLen == 0) {
494    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string,
495         OrigFormatExpr->getSourceRange());
496    return;
497  }
498
499  // We process the format string using a binary state machine.  The
500  // current state is stored in CurrentState.
501  enum {
502    state_OrdChr,
503    state_Conversion
504  } CurrentState = state_OrdChr;
505
506  // numConversions - The number of conversions seen so far.  This is
507  //  incremented as we traverse the format string.
508  unsigned numConversions = 0;
509
510  // numDataArgs - The number of data arguments after the format
511  //  string.  This can only be determined for non vprintf-like
512  //  functions.  For those functions, this value is 1 (the sole
513  //  va_arg argument).
514  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
515
516  // Inspect the format string.
517  unsigned StrIdx = 0;
518
519  // LastConversionIdx - Index within the format string where we last saw
520  //  a '%' character that starts a new format conversion.
521  unsigned LastConversionIdx = 0;
522
523  for (; StrIdx < StrLen; ++StrIdx) {
524
525    // Is the number of detected conversion conversions greater than
526    // the number of matching data arguments?  If so, stop.
527    if (!HasVAListArg && numConversions > numDataArgs) break;
528
529    // Handle "\0"
530    if (Str[StrIdx] == '\0') {
531      // The string returned by getStrData() is not null-terminated,
532      // so the presence of a null character is likely an error.
533      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
534           diag::warn_printf_format_string_contains_null_char,
535           OrigFormatExpr->getSourceRange());
536      return;
537    }
538
539    // Ordinary characters (not processing a format conversion).
540    if (CurrentState == state_OrdChr) {
541      if (Str[StrIdx] == '%') {
542        CurrentState = state_Conversion;
543        LastConversionIdx = StrIdx;
544      }
545      continue;
546    }
547
548    // Seen '%'.  Now processing a format conversion.
549    switch (Str[StrIdx]) {
550    // Handle dynamic precision or width specifier.
551    case '*': {
552      ++numConversions;
553
554      if (!HasVAListArg && numConversions > numDataArgs) {
555        SourceLocation Loc = FExpr->getLocStart();
556        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
557
558        if (Str[StrIdx-1] == '.')
559          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg,
560               OrigFormatExpr->getSourceRange());
561        else
562          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg,
563               OrigFormatExpr->getSourceRange());
564
565        // Don't do any more checking.  We'll just emit spurious errors.
566        return;
567      }
568
569      // Perform type checking on width/precision specifier.
570      Expr *E = TheCall->getArg(format_idx+numConversions);
571      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
572        if (BT->getKind() == BuiltinType::Int)
573          break;
574
575      SourceLocation Loc =
576        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
577
578      if (Str[StrIdx-1] == '.')
579        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type,
580             E->getType().getAsString(), E->getSourceRange());
581      else
582        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type,
583             E->getType().getAsString(), E->getSourceRange());
584
585      break;
586    }
587
588    // Characters which can terminate a format conversion
589    // (e.g. "%d").  Characters that specify length modifiers or
590    // other flags are handled by the default case below.
591    //
592    // FIXME: additional checks will go into the following cases.
593    case 'i':
594    case 'd':
595    case 'o':
596    case 'u':
597    case 'x':
598    case 'X':
599    case 'D':
600    case 'O':
601    case 'U':
602    case 'e':
603    case 'E':
604    case 'f':
605    case 'F':
606    case 'g':
607    case 'G':
608    case 'a':
609    case 'A':
610    case 'c':
611    case 'C':
612    case 'S':
613    case 's':
614    case 'p':
615      ++numConversions;
616      CurrentState = state_OrdChr;
617      break;
618
619    // CHECK: Are we using "%n"?  Issue a warning.
620    case 'n': {
621      ++numConversions;
622      CurrentState = state_OrdChr;
623      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
624                                                      LastConversionIdx+1);
625
626      Diag(Loc, diag::warn_printf_write_back, OrigFormatExpr->getSourceRange());
627      break;
628    }
629
630    // Handle "%@"
631    case '@':
632      // %@ is allowed in ObjC format strings only.
633      if(ObjCFExpr != NULL)
634        CurrentState = state_OrdChr;
635      else {
636        // Issue a warning: invalid format conversion.
637        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
638                                                    LastConversionIdx+1);
639
640        Diag(Loc, diag::warn_printf_invalid_conversion,
641          std::string(Str+LastConversionIdx,
642          Str+std::min(LastConversionIdx+2, StrLen)),
643          OrigFormatExpr->getSourceRange());
644      }
645      ++numConversions;
646      break;
647
648    // Handle "%%"
649    case '%':
650      // Sanity check: Was the first "%" character the previous one?
651      // If not, we will assume that we have a malformed format
652      // conversion, and that the current "%" character is the start
653      // of a new conversion.
654      if (StrIdx - LastConversionIdx == 1)
655        CurrentState = state_OrdChr;
656      else {
657        // Issue a warning: invalid format conversion.
658        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
659                                                        LastConversionIdx+1);
660
661        Diag(Loc, diag::warn_printf_invalid_conversion,
662             std::string(Str+LastConversionIdx, Str+StrIdx),
663             OrigFormatExpr->getSourceRange());
664
665        // This conversion is broken.  Advance to the next format
666        // conversion.
667        LastConversionIdx = StrIdx;
668        ++numConversions;
669      }
670      break;
671
672    default:
673      // This case catches all other characters: flags, widths, etc.
674      // We should eventually process those as well.
675      break;
676    }
677  }
678
679  if (CurrentState == state_Conversion) {
680    // Issue a warning: invalid format conversion.
681    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
682                                                    LastConversionIdx+1);
683
684    Diag(Loc, diag::warn_printf_invalid_conversion,
685         std::string(Str+LastConversionIdx,
686                     Str+std::min(LastConversionIdx+2, StrLen)),
687         OrigFormatExpr->getSourceRange());
688    return;
689  }
690
691  if (!HasVAListArg) {
692    // CHECK: Does the number of format conversions exceed the number
693    //        of data arguments?
694    if (numConversions > numDataArgs) {
695      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
696                                                      LastConversionIdx);
697
698      Diag(Loc, diag::warn_printf_insufficient_data_args,
699           OrigFormatExpr->getSourceRange());
700    }
701    // CHECK: Does the number of data arguments exceed the number of
702    //        format conversions in the format string?
703    else if (numConversions < numDataArgs)
704      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
705           diag::warn_printf_too_many_data_args,
706           OrigFormatExpr->getSourceRange());
707  }
708}
709
710//===--- CHECK: Return Address of Stack Variable --------------------------===//
711
712static DeclRefExpr* EvalVal(Expr *E);
713static DeclRefExpr* EvalAddr(Expr* E);
714
715/// CheckReturnStackAddr - Check if a return statement returns the address
716///   of a stack variable.
717void
718Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
719                           SourceLocation ReturnLoc) {
720
721  // Perform checking for returned stack addresses.
722  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
723    if (DeclRefExpr *DR = EvalAddr(RetValExp))
724      Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
725           DR->getDecl()->getIdentifier()->getName(),
726           RetValExp->getSourceRange());
727
728    // Skip over implicit cast expressions when checking for block expressions.
729    if (ImplicitCastExpr *IcExpr =
730          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
731      RetValExp = IcExpr->getSubExpr();
732
733    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
734      Diag(C->getLocStart(), diag::err_ret_local_block,
735           C->getSourceRange());
736  }
737  // Perform checking for stack values returned by reference.
738  else if (lhsType->isReferenceType()) {
739    // Check for a reference to the stack
740    if (DeclRefExpr *DR = EvalVal(RetValExp))
741      Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
742           DR->getDecl()->getIdentifier()->getName(),
743           RetValExp->getSourceRange());
744  }
745}
746
747/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
748///  check if the expression in a return statement evaluates to an address
749///  to a location on the stack.  The recursion is used to traverse the
750///  AST of the return expression, with recursion backtracking when we
751///  encounter a subexpression that (1) clearly does not lead to the address
752///  of a stack variable or (2) is something we cannot determine leads to
753///  the address of a stack variable based on such local checking.
754///
755///  EvalAddr processes expressions that are pointers that are used as
756///  references (and not L-values).  EvalVal handles all other values.
757///  At the base case of the recursion is a check for a DeclRefExpr* in
758///  the refers to a stack variable.
759///
760///  This implementation handles:
761///
762///   * pointer-to-pointer casts
763///   * implicit conversions from array references to pointers
764///   * taking the address of fields
765///   * arbitrary interplay between "&" and "*" operators
766///   * pointer arithmetic from an address of a stack variable
767///   * taking the address of an array element where the array is on the stack
768static DeclRefExpr* EvalAddr(Expr *E) {
769  // We should only be called for evaluating pointer expressions.
770  assert((E->getType()->isPointerType() ||
771          E->getType()->isBlockPointerType() ||
772          E->getType()->isObjCQualifiedIdType()) &&
773         "EvalAddr only works on pointers");
774
775  // Our "symbolic interpreter" is just a dispatch off the currently
776  // viewed AST node.  We then recursively traverse the AST by calling
777  // EvalAddr and EvalVal appropriately.
778  switch (E->getStmtClass()) {
779  case Stmt::ParenExprClass:
780    // Ignore parentheses.
781    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
782
783  case Stmt::UnaryOperatorClass: {
784    // The only unary operator that make sense to handle here
785    // is AddrOf.  All others don't make sense as pointers.
786    UnaryOperator *U = cast<UnaryOperator>(E);
787
788    if (U->getOpcode() == UnaryOperator::AddrOf)
789      return EvalVal(U->getSubExpr());
790    else
791      return NULL;
792  }
793
794  case Stmt::BinaryOperatorClass: {
795    // Handle pointer arithmetic.  All other binary operators are not valid
796    // in this context.
797    BinaryOperator *B = cast<BinaryOperator>(E);
798    BinaryOperator::Opcode op = B->getOpcode();
799
800    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
801      return NULL;
802
803    Expr *Base = B->getLHS();
804
805    // Determine which argument is the real pointer base.  It could be
806    // the RHS argument instead of the LHS.
807    if (!Base->getType()->isPointerType()) Base = B->getRHS();
808
809    assert (Base->getType()->isPointerType());
810    return EvalAddr(Base);
811  }
812
813  // For conditional operators we need to see if either the LHS or RHS are
814  // valid DeclRefExpr*s.  If one of them is valid, we return it.
815  case Stmt::ConditionalOperatorClass: {
816    ConditionalOperator *C = cast<ConditionalOperator>(E);
817
818    // Handle the GNU extension for missing LHS.
819    if (Expr *lhsExpr = C->getLHS())
820      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
821        return LHS;
822
823     return EvalAddr(C->getRHS());
824  }
825
826  // For casts, we need to handle conversions from arrays to
827  // pointer values, and pointer-to-pointer conversions.
828  case Stmt::ImplicitCastExprClass:
829  case Stmt::ExplicitCCastExprClass:
830  case Stmt::CXXFunctionalCastExprClass: {
831    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
832    QualType T = SubExpr->getType();
833
834    if (SubExpr->getType()->isPointerType() ||
835        SubExpr->getType()->isBlockPointerType() ||
836        SubExpr->getType()->isObjCQualifiedIdType())
837      return EvalAddr(SubExpr);
838    else if (T->isArrayType())
839      return EvalVal(SubExpr);
840    else
841      return 0;
842  }
843
844  // C++ casts.  For dynamic casts, static casts, and const casts, we
845  // are always converting from a pointer-to-pointer, so we just blow
846  // through the cast.  In the case the dynamic cast doesn't fail (and
847  // return NULL), we take the conservative route and report cases
848  // where we return the address of a stack variable.  For Reinterpre
849  // FIXME: The comment about is wrong; we're not always converting
850  // from pointer to pointer. I'm guessing that this code should also
851  // handle references to objects.
852  case Stmt::CXXStaticCastExprClass:
853  case Stmt::CXXDynamicCastExprClass:
854  case Stmt::CXXConstCastExprClass:
855  case Stmt::CXXReinterpretCastExprClass: {
856      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
857      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
858        return EvalAddr(S);
859      else
860        return NULL;
861  }
862
863  // Everything else: we simply don't reason about them.
864  default:
865    return NULL;
866  }
867}
868
869
870///  EvalVal - This function is complements EvalAddr in the mutual recursion.
871///   See the comments for EvalAddr for more details.
872static DeclRefExpr* EvalVal(Expr *E) {
873
874  // We should only be called for evaluating non-pointer expressions, or
875  // expressions with a pointer type that are not used as references but instead
876  // are l-values (e.g., DeclRefExpr with a pointer type).
877
878  // Our "symbolic interpreter" is just a dispatch off the currently
879  // viewed AST node.  We then recursively traverse the AST by calling
880  // EvalAddr and EvalVal appropriately.
881  switch (E->getStmtClass()) {
882  case Stmt::DeclRefExprClass: {
883    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
884    //  at code that refers to a variable's name.  We check if it has local
885    //  storage within the function, and if so, return the expression.
886    DeclRefExpr *DR = cast<DeclRefExpr>(E);
887
888    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
889      if(V->hasLocalStorage()) return DR;
890
891    return NULL;
892  }
893
894  case Stmt::ParenExprClass:
895    // Ignore parentheses.
896    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
897
898  case Stmt::UnaryOperatorClass: {
899    // The only unary operator that make sense to handle here
900    // is Deref.  All others don't resolve to a "name."  This includes
901    // handling all sorts of rvalues passed to a unary operator.
902    UnaryOperator *U = cast<UnaryOperator>(E);
903
904    if (U->getOpcode() == UnaryOperator::Deref)
905      return EvalAddr(U->getSubExpr());
906
907    return NULL;
908  }
909
910  case Stmt::ArraySubscriptExprClass: {
911    // Array subscripts are potential references to data on the stack.  We
912    // retrieve the DeclRefExpr* for the array variable if it indeed
913    // has local storage.
914    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
915  }
916
917  case Stmt::ConditionalOperatorClass: {
918    // For conditional operators we need to see if either the LHS or RHS are
919    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
920    ConditionalOperator *C = cast<ConditionalOperator>(E);
921
922    // Handle the GNU extension for missing LHS.
923    if (Expr *lhsExpr = C->getLHS())
924      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
925        return LHS;
926
927    return EvalVal(C->getRHS());
928  }
929
930  // Accesses to members are potential references to data on the stack.
931  case Stmt::MemberExprClass: {
932    MemberExpr *M = cast<MemberExpr>(E);
933
934    // Check for indirect access.  We only want direct field accesses.
935    if (!M->isArrow())
936      return EvalVal(M->getBase());
937    else
938      return NULL;
939  }
940
941  // Everything else: we simply don't reason about them.
942  default:
943    return NULL;
944  }
945}
946
947//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
948
949/// Check for comparisons of floating point operands using != and ==.
950/// Issue a warning if these are no self-comparisons, as they are not likely
951/// to do what the programmer intended.
952void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
953  bool EmitWarning = true;
954
955  Expr* LeftExprSansParen = lex->IgnoreParens();
956  Expr* RightExprSansParen = rex->IgnoreParens();
957
958  // Special case: check for x == x (which is OK).
959  // Do not emit warnings for such cases.
960  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
961    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
962      if (DRL->getDecl() == DRR->getDecl())
963        EmitWarning = false;
964
965
966  // Special case: check for comparisons against literals that can be exactly
967  //  represented by APFloat.  In such cases, do not emit a warning.  This
968  //  is a heuristic: often comparison against such literals are used to
969  //  detect if a value in a variable has not changed.  This clearly can
970  //  lead to false negatives.
971  if (EmitWarning) {
972    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
973      if (FLL->isExact())
974        EmitWarning = false;
975    }
976    else
977      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
978        if (FLR->isExact())
979          EmitWarning = false;
980    }
981  }
982
983  // Check for comparisons with builtin types.
984  if (EmitWarning)
985    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
986      if (isCallBuiltin(CL))
987        EmitWarning = false;
988
989  if (EmitWarning)
990    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
991      if (isCallBuiltin(CR))
992        EmitWarning = false;
993
994  // Emit the diagnostic.
995  if (EmitWarning)
996    Diag(loc, diag::warn_floatingpoint_eq,
997         lex->getSourceRange(),rex->getSourceRange());
998}
999