SemaChecking.cpp revision 4cd5791f4aa6deb572979bb38c1deedbc155efe0
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Analysis/Analyses/FormatString.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/StmtObjC.h"
30#include "clang/Lex/Preprocessor.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "clang/Basic/TargetBuiltins.h"
35#include "clang/Basic/TargetInfo.h"
36#include "clang/Basic/ConvertUTF.h"
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
42                                                    unsigned ByteNo) const {
43  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
44                               PP.getLangOptions(), PP.getTargetInfo());
45}
46
47
48/// CheckablePrintfAttr - does a function call have a "printf" attribute
49/// and arguments that merit checking?
50bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
51  if (Format->getType() == "printf") return true;
52  if (Format->getType() == "printf0") {
53    // printf0 allows null "format" string; if so don't check format/args
54    unsigned format_idx = Format->getFormatIdx() - 1;
55    // Does the index refer to the implicit object argument?
56    if (isa<CXXMemberCallExpr>(TheCall)) {
57      if (format_idx == 0)
58        return false;
59      --format_idx;
60    }
61    if (format_idx < TheCall->getNumArgs()) {
62      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
63      if (!Format->isNullPointerConstant(Context,
64                                         Expr::NPC_ValueDependentIsNull))
65        return true;
66    }
67  }
68  return false;
69}
70
71/// Checks that a call expression's argument count is the desired number.
72/// This is useful when doing custom type-checking.  Returns true on error.
73static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
74  unsigned argCount = call->getNumArgs();
75  if (argCount == desiredArgCount) return false;
76
77  if (argCount < desiredArgCount)
78    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
79        << 0 /*function call*/ << desiredArgCount << argCount
80        << call->getSourceRange();
81
82  // Highlight all the excess arguments.
83  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
84                    call->getArg(argCount - 1)->getLocEnd());
85
86  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
87    << 0 /*function call*/ << desiredArgCount << argCount
88    << call->getArg(1)->getSourceRange();
89}
90
91/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
92/// annotation is a non wide string literal.
93static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
94  Arg = Arg->IgnoreParenCasts();
95  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
96  if (!Literal || !Literal->isAscii()) {
97    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
98      << Arg->getSourceRange();
99    return true;
100  }
101  return false;
102}
103
104ExprResult
105Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
106  ExprResult TheCallResult(Owned(TheCall));
107
108  // Find out if any arguments are required to be integer constant expressions.
109  unsigned ICEArguments = 0;
110  ASTContext::GetBuiltinTypeError Error;
111  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
112  if (Error != ASTContext::GE_None)
113    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
114
115  // If any arguments are required to be ICE's, check and diagnose.
116  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
117    // Skip arguments not required to be ICE's.
118    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
119
120    llvm::APSInt Result;
121    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
122      return true;
123    ICEArguments &= ~(1 << ArgNo);
124  }
125
126  switch (BuiltinID) {
127  case Builtin::BI__builtin___CFStringMakeConstantString:
128    assert(TheCall->getNumArgs() == 1 &&
129           "Wrong # arguments to builtin CFStringMakeConstantString");
130    if (CheckObjCString(TheCall->getArg(0)))
131      return ExprError();
132    break;
133  case Builtin::BI__builtin_stdarg_start:
134  case Builtin::BI__builtin_va_start:
135    if (SemaBuiltinVAStart(TheCall))
136      return ExprError();
137    break;
138  case Builtin::BI__builtin_isgreater:
139  case Builtin::BI__builtin_isgreaterequal:
140  case Builtin::BI__builtin_isless:
141  case Builtin::BI__builtin_islessequal:
142  case Builtin::BI__builtin_islessgreater:
143  case Builtin::BI__builtin_isunordered:
144    if (SemaBuiltinUnorderedCompare(TheCall))
145      return ExprError();
146    break;
147  case Builtin::BI__builtin_fpclassify:
148    if (SemaBuiltinFPClassification(TheCall, 6))
149      return ExprError();
150    break;
151  case Builtin::BI__builtin_isfinite:
152  case Builtin::BI__builtin_isinf:
153  case Builtin::BI__builtin_isinf_sign:
154  case Builtin::BI__builtin_isnan:
155  case Builtin::BI__builtin_isnormal:
156    if (SemaBuiltinFPClassification(TheCall, 1))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_shufflevector:
160    return SemaBuiltinShuffleVector(TheCall);
161    // TheCall will be freed by the smart pointer here, but that's fine, since
162    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
163  case Builtin::BI__builtin_prefetch:
164    if (SemaBuiltinPrefetch(TheCall))
165      return ExprError();
166    break;
167  case Builtin::BI__builtin_object_size:
168    if (SemaBuiltinObjectSize(TheCall))
169      return ExprError();
170    break;
171  case Builtin::BI__builtin_longjmp:
172    if (SemaBuiltinLongjmp(TheCall))
173      return ExprError();
174    break;
175
176  case Builtin::BI__builtin_classify_type:
177    if (checkArgCount(*this, TheCall, 1)) return true;
178    TheCall->setType(Context.IntTy);
179    break;
180  case Builtin::BI__builtin_constant_p:
181    if (checkArgCount(*this, TheCall, 1)) return true;
182    TheCall->setType(Context.IntTy);
183    break;
184  case Builtin::BI__sync_fetch_and_add:
185  case Builtin::BI__sync_fetch_and_sub:
186  case Builtin::BI__sync_fetch_and_or:
187  case Builtin::BI__sync_fetch_and_and:
188  case Builtin::BI__sync_fetch_and_xor:
189  case Builtin::BI__sync_add_and_fetch:
190  case Builtin::BI__sync_sub_and_fetch:
191  case Builtin::BI__sync_and_and_fetch:
192  case Builtin::BI__sync_or_and_fetch:
193  case Builtin::BI__sync_xor_and_fetch:
194  case Builtin::BI__sync_val_compare_and_swap:
195  case Builtin::BI__sync_bool_compare_and_swap:
196  case Builtin::BI__sync_lock_test_and_set:
197  case Builtin::BI__sync_lock_release:
198  case Builtin::BI__sync_swap:
199    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
200  case Builtin::BI__builtin_annotation:
201    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
202      return ExprError();
203    break;
204  }
205
206  // Since the target specific builtins for each arch overlap, only check those
207  // of the arch we are compiling for.
208  if (BuiltinID >= Builtin::FirstTSBuiltin) {
209    switch (Context.getTargetInfo().getTriple().getArch()) {
210      case llvm::Triple::arm:
211      case llvm::Triple::thumb:
212        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
213          return ExprError();
214        break;
215      default:
216        break;
217    }
218  }
219
220  return move(TheCallResult);
221}
222
223// Get the valid immediate range for the specified NEON type code.
224static unsigned RFT(unsigned t, bool shift = false) {
225  bool quad = t & 0x10;
226
227  switch (t & 0x7) {
228    case 0: // i8
229      return shift ? 7 : (8 << (int)quad) - 1;
230    case 1: // i16
231      return shift ? 15 : (4 << (int)quad) - 1;
232    case 2: // i32
233      return shift ? 31 : (2 << (int)quad) - 1;
234    case 3: // i64
235      return shift ? 63 : (1 << (int)quad) - 1;
236    case 4: // f32
237      assert(!shift && "cannot shift float types!");
238      return (2 << (int)quad) - 1;
239    case 5: // poly8
240      return shift ? 7 : (8 << (int)quad) - 1;
241    case 6: // poly16
242      return shift ? 15 : (4 << (int)quad) - 1;
243    case 7: // float16
244      assert(!shift && "cannot shift float types!");
245      return (4 << (int)quad) - 1;
246  }
247  return 0;
248}
249
250bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
251  llvm::APSInt Result;
252
253  unsigned mask = 0;
254  unsigned TV = 0;
255  switch (BuiltinID) {
256#define GET_NEON_OVERLOAD_CHECK
257#include "clang/Basic/arm_neon.inc"
258#undef GET_NEON_OVERLOAD_CHECK
259  }
260
261  // For NEON intrinsics which are overloaded on vector element type, validate
262  // the immediate which specifies which variant to emit.
263  if (mask) {
264    unsigned ArgNo = TheCall->getNumArgs()-1;
265    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
266      return true;
267
268    TV = Result.getLimitedValue(32);
269    if ((TV > 31) || (mask & (1 << TV)) == 0)
270      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
271        << TheCall->getArg(ArgNo)->getSourceRange();
272  }
273
274  // For NEON intrinsics which take an immediate value as part of the
275  // instruction, range check them here.
276  unsigned i = 0, l = 0, u = 0;
277  switch (BuiltinID) {
278  default: return false;
279  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
280  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
281  case ARM::BI__builtin_arm_vcvtr_f:
282  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
283#define GET_NEON_IMMEDIATE_CHECK
284#include "clang/Basic/arm_neon.inc"
285#undef GET_NEON_IMMEDIATE_CHECK
286  };
287
288  // Check that the immediate argument is actually a constant.
289  if (SemaBuiltinConstantArg(TheCall, i, Result))
290    return true;
291
292  // Range check against the upper/lower values for this isntruction.
293  unsigned Val = Result.getZExtValue();
294  if (Val < l || Val > (u + l))
295    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
296      << l << u+l << TheCall->getArg(i)->getSourceRange();
297
298  // FIXME: VFP Intrinsics should error if VFP not present.
299  return false;
300}
301
302/// CheckFunctionCall - Check a direct function call for various correctness
303/// and safety properties not strictly enforced by the C type system.
304bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
305  // Get the IdentifierInfo* for the called function.
306  IdentifierInfo *FnInfo = FDecl->getIdentifier();
307
308  // None of the checks below are needed for functions that don't have
309  // simple names (e.g., C++ conversion functions).
310  if (!FnInfo)
311    return false;
312
313  // FIXME: This mechanism should be abstracted to be less fragile and
314  // more efficient. For example, just map function ids to custom
315  // handlers.
316
317  // Printf and scanf checking.
318  for (specific_attr_iterator<FormatAttr>
319         i = FDecl->specific_attr_begin<FormatAttr>(),
320         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
321
322    const FormatAttr *Format = *i;
323    const bool b = Format->getType() == "scanf";
324    if (b || CheckablePrintfAttr(Format, TheCall)) {
325      bool HasVAListArg = Format->getFirstArg() == 0;
326      CheckPrintfScanfArguments(TheCall, HasVAListArg,
327                                Format->getFormatIdx() - 1,
328                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
329                                !b);
330    }
331  }
332
333  for (specific_attr_iterator<NonNullAttr>
334         i = FDecl->specific_attr_begin<NonNullAttr>(),
335         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
336    CheckNonNullArguments(*i, TheCall->getArgs(),
337                          TheCall->getCallee()->getLocStart());
338  }
339
340  // Builtin handling
341  int CMF = -1;
342  switch (FDecl->getBuiltinID()) {
343  case Builtin::BI__builtin_memset:
344  case Builtin::BI__builtin___memset_chk:
345  case Builtin::BImemset:
346    CMF = CMF_Memset;
347    break;
348
349  case Builtin::BI__builtin_memcpy:
350  case Builtin::BI__builtin___memcpy_chk:
351  case Builtin::BImemcpy:
352    CMF = CMF_Memcpy;
353    break;
354
355  case Builtin::BI__builtin_memmove:
356  case Builtin::BI__builtin___memmove_chk:
357  case Builtin::BImemmove:
358    CMF = CMF_Memmove;
359    break;
360
361  case Builtin::BIstrlcpy:
362  case Builtin::BIstrlcat:
363    CheckStrlcpycatArguments(TheCall, FnInfo);
364    break;
365
366  case Builtin::BI__builtin_memcmp:
367    CMF = CMF_Memcmp;
368    break;
369
370  default:
371    if (FDecl->getLinkage() == ExternalLinkage &&
372        (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
373      if (FnInfo->isStr("memset"))
374        CMF = CMF_Memset;
375      else if (FnInfo->isStr("memcpy"))
376        CMF = CMF_Memcpy;
377      else if (FnInfo->isStr("memmove"))
378        CMF = CMF_Memmove;
379      else if (FnInfo->isStr("memcmp"))
380        CMF = CMF_Memcmp;
381    }
382    break;
383  }
384
385  // Memset/memcpy/memmove handling
386  if (CMF != -1)
387    CheckMemaccessArguments(TheCall, CheckedMemoryFunction(CMF), FnInfo);
388
389  return false;
390}
391
392bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
393  // Printf checking.
394  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
395  if (!Format)
396    return false;
397
398  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
399  if (!V)
400    return false;
401
402  QualType Ty = V->getType();
403  if (!Ty->isBlockPointerType())
404    return false;
405
406  const bool b = Format->getType() == "scanf";
407  if (!b && !CheckablePrintfAttr(Format, TheCall))
408    return false;
409
410  bool HasVAListArg = Format->getFirstArg() == 0;
411  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
412                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
413
414  return false;
415}
416
417/// checkBuiltinArgument - Given a call to a builtin function, perform
418/// normal type-checking on the given argument, updating the call in
419/// place.  This is useful when a builtin function requires custom
420/// type-checking for some of its arguments but not necessarily all of
421/// them.
422///
423/// Returns true on error.
424static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
425  FunctionDecl *Fn = E->getDirectCallee();
426  assert(Fn && "builtin call without direct callee!");
427
428  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
429  InitializedEntity Entity =
430    InitializedEntity::InitializeParameter(S.Context, Param);
431
432  ExprResult Arg = E->getArg(0);
433  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
434  if (Arg.isInvalid())
435    return true;
436
437  E->setArg(ArgIndex, Arg.take());
438  return false;
439}
440
441/// SemaBuiltinAtomicOverloaded - We have a call to a function like
442/// __sync_fetch_and_add, which is an overloaded function based on the pointer
443/// type of its first argument.  The main ActOnCallExpr routines have already
444/// promoted the types of arguments because all of these calls are prototyped as
445/// void(...).
446///
447/// This function goes through and does final semantic checking for these
448/// builtins,
449ExprResult
450Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
451  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
452  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
453  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
454
455  // Ensure that we have at least one argument to do type inference from.
456  if (TheCall->getNumArgs() < 1) {
457    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
458      << 0 << 1 << TheCall->getNumArgs()
459      << TheCall->getCallee()->getSourceRange();
460    return ExprError();
461  }
462
463  // Inspect the first argument of the atomic builtin.  This should always be
464  // a pointer type, whose element is an integral scalar or pointer type.
465  // Because it is a pointer type, we don't have to worry about any implicit
466  // casts here.
467  // FIXME: We don't allow floating point scalars as input.
468  Expr *FirstArg = TheCall->getArg(0);
469  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
470  if (!pointerType) {
471    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
472      << FirstArg->getType() << FirstArg->getSourceRange();
473    return ExprError();
474  }
475
476  QualType ValType = pointerType->getPointeeType();
477  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
478      !ValType->isBlockPointerType()) {
479    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
480      << FirstArg->getType() << FirstArg->getSourceRange();
481    return ExprError();
482  }
483
484  switch (ValType.getObjCLifetime()) {
485  case Qualifiers::OCL_None:
486  case Qualifiers::OCL_ExplicitNone:
487    // okay
488    break;
489
490  case Qualifiers::OCL_Weak:
491  case Qualifiers::OCL_Strong:
492  case Qualifiers::OCL_Autoreleasing:
493    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
494      << ValType << FirstArg->getSourceRange();
495    return ExprError();
496  }
497
498  // The majority of builtins return a value, but a few have special return
499  // types, so allow them to override appropriately below.
500  QualType ResultType = ValType;
501
502  // We need to figure out which concrete builtin this maps onto.  For example,
503  // __sync_fetch_and_add with a 2 byte object turns into
504  // __sync_fetch_and_add_2.
505#define BUILTIN_ROW(x) \
506  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
507    Builtin::BI##x##_8, Builtin::BI##x##_16 }
508
509  static const unsigned BuiltinIndices[][5] = {
510    BUILTIN_ROW(__sync_fetch_and_add),
511    BUILTIN_ROW(__sync_fetch_and_sub),
512    BUILTIN_ROW(__sync_fetch_and_or),
513    BUILTIN_ROW(__sync_fetch_and_and),
514    BUILTIN_ROW(__sync_fetch_and_xor),
515
516    BUILTIN_ROW(__sync_add_and_fetch),
517    BUILTIN_ROW(__sync_sub_and_fetch),
518    BUILTIN_ROW(__sync_and_and_fetch),
519    BUILTIN_ROW(__sync_or_and_fetch),
520    BUILTIN_ROW(__sync_xor_and_fetch),
521
522    BUILTIN_ROW(__sync_val_compare_and_swap),
523    BUILTIN_ROW(__sync_bool_compare_and_swap),
524    BUILTIN_ROW(__sync_lock_test_and_set),
525    BUILTIN_ROW(__sync_lock_release),
526    BUILTIN_ROW(__sync_swap)
527  };
528#undef BUILTIN_ROW
529
530  // Determine the index of the size.
531  unsigned SizeIndex;
532  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
533  case 1: SizeIndex = 0; break;
534  case 2: SizeIndex = 1; break;
535  case 4: SizeIndex = 2; break;
536  case 8: SizeIndex = 3; break;
537  case 16: SizeIndex = 4; break;
538  default:
539    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
540      << FirstArg->getType() << FirstArg->getSourceRange();
541    return ExprError();
542  }
543
544  // Each of these builtins has one pointer argument, followed by some number of
545  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
546  // that we ignore.  Find out which row of BuiltinIndices to read from as well
547  // as the number of fixed args.
548  unsigned BuiltinID = FDecl->getBuiltinID();
549  unsigned BuiltinIndex, NumFixed = 1;
550  switch (BuiltinID) {
551  default: llvm_unreachable("Unknown overloaded atomic builtin!");
552  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
553  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
554  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
555  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
556  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
557
558  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
559  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
560  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
561  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
562  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
563
564  case Builtin::BI__sync_val_compare_and_swap:
565    BuiltinIndex = 10;
566    NumFixed = 2;
567    break;
568  case Builtin::BI__sync_bool_compare_and_swap:
569    BuiltinIndex = 11;
570    NumFixed = 2;
571    ResultType = Context.BoolTy;
572    break;
573  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
574  case Builtin::BI__sync_lock_release:
575    BuiltinIndex = 13;
576    NumFixed = 0;
577    ResultType = Context.VoidTy;
578    break;
579  case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
580  }
581
582  // Now that we know how many fixed arguments we expect, first check that we
583  // have at least that many.
584  if (TheCall->getNumArgs() < 1+NumFixed) {
585    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
586      << 0 << 1+NumFixed << TheCall->getNumArgs()
587      << TheCall->getCallee()->getSourceRange();
588    return ExprError();
589  }
590
591  // Get the decl for the concrete builtin from this, we can tell what the
592  // concrete integer type we should convert to is.
593  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
594  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
595  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
596  FunctionDecl *NewBuiltinDecl =
597    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
598                                           TUScope, false, DRE->getLocStart()));
599
600  // The first argument --- the pointer --- has a fixed type; we
601  // deduce the types of the rest of the arguments accordingly.  Walk
602  // the remaining arguments, converting them to the deduced value type.
603  for (unsigned i = 0; i != NumFixed; ++i) {
604    ExprResult Arg = TheCall->getArg(i+1);
605
606    // If the argument is an implicit cast, then there was a promotion due to
607    // "...", just remove it now.
608    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
609      Arg = ICE->getSubExpr();
610      ICE->setSubExpr(0);
611      TheCall->setArg(i+1, Arg.get());
612    }
613
614    // GCC does an implicit conversion to the pointer or integer ValType.  This
615    // can fail in some cases (1i -> int**), check for this error case now.
616    CastKind Kind = CK_Invalid;
617    ExprValueKind VK = VK_RValue;
618    CXXCastPath BasePath;
619    Arg = CheckCastTypes(Arg.get()->getLocStart(), Arg.get()->getSourceRange(),
620                         ValType, Arg.take(), Kind, VK, BasePath);
621    if (Arg.isInvalid())
622      return ExprError();
623
624    // Okay, we have something that *can* be converted to the right type.  Check
625    // to see if there is a potentially weird extension going on here.  This can
626    // happen when you do an atomic operation on something like an char* and
627    // pass in 42.  The 42 gets converted to char.  This is even more strange
628    // for things like 45.123 -> char, etc.
629    // FIXME: Do this check.
630    Arg = ImpCastExprToType(Arg.take(), ValType, Kind, VK, &BasePath);
631    TheCall->setArg(i+1, Arg.get());
632  }
633
634  ASTContext& Context = this->getASTContext();
635
636  // Create a new DeclRefExpr to refer to the new decl.
637  DeclRefExpr* NewDRE = DeclRefExpr::Create(
638      Context,
639      DRE->getQualifierLoc(),
640      NewBuiltinDecl,
641      DRE->getLocation(),
642      NewBuiltinDecl->getType(),
643      DRE->getValueKind());
644
645  // Set the callee in the CallExpr.
646  // FIXME: This leaks the original parens and implicit casts.
647  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
648  if (PromotedCall.isInvalid())
649    return ExprError();
650  TheCall->setCallee(PromotedCall.take());
651
652  // Change the result type of the call to match the original value type. This
653  // is arbitrary, but the codegen for these builtins ins design to handle it
654  // gracefully.
655  TheCall->setType(ResultType);
656
657  return move(TheCallResult);
658}
659
660/// CheckObjCString - Checks that the argument to the builtin
661/// CFString constructor is correct
662/// Note: It might also make sense to do the UTF-16 conversion here (would
663/// simplify the backend).
664bool Sema::CheckObjCString(Expr *Arg) {
665  Arg = Arg->IgnoreParenCasts();
666  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
667
668  if (!Literal || !Literal->isAscii()) {
669    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
670      << Arg->getSourceRange();
671    return true;
672  }
673
674  if (Literal->containsNonAsciiOrNull()) {
675    StringRef String = Literal->getString();
676    unsigned NumBytes = String.size();
677    SmallVector<UTF16, 128> ToBuf(NumBytes);
678    const UTF8 *FromPtr = (UTF8 *)String.data();
679    UTF16 *ToPtr = &ToBuf[0];
680
681    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
682                                                 &ToPtr, ToPtr + NumBytes,
683                                                 strictConversion);
684    // Check for conversion failure.
685    if (Result != conversionOK)
686      Diag(Arg->getLocStart(),
687           diag::warn_cfstring_truncated) << Arg->getSourceRange();
688  }
689  return false;
690}
691
692/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
693/// Emit an error and return true on failure, return false on success.
694bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
695  Expr *Fn = TheCall->getCallee();
696  if (TheCall->getNumArgs() > 2) {
697    Diag(TheCall->getArg(2)->getLocStart(),
698         diag::err_typecheck_call_too_many_args)
699      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
700      << Fn->getSourceRange()
701      << SourceRange(TheCall->getArg(2)->getLocStart(),
702                     (*(TheCall->arg_end()-1))->getLocEnd());
703    return true;
704  }
705
706  if (TheCall->getNumArgs() < 2) {
707    return Diag(TheCall->getLocEnd(),
708      diag::err_typecheck_call_too_few_args_at_least)
709      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
710  }
711
712  // Type-check the first argument normally.
713  if (checkBuiltinArgument(*this, TheCall, 0))
714    return true;
715
716  // Determine whether the current function is variadic or not.
717  BlockScopeInfo *CurBlock = getCurBlock();
718  bool isVariadic;
719  if (CurBlock)
720    isVariadic = CurBlock->TheDecl->isVariadic();
721  else if (FunctionDecl *FD = getCurFunctionDecl())
722    isVariadic = FD->isVariadic();
723  else
724    isVariadic = getCurMethodDecl()->isVariadic();
725
726  if (!isVariadic) {
727    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
728    return true;
729  }
730
731  // Verify that the second argument to the builtin is the last argument of the
732  // current function or method.
733  bool SecondArgIsLastNamedArgument = false;
734  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
735
736  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
737    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
738      // FIXME: This isn't correct for methods (results in bogus warning).
739      // Get the last formal in the current function.
740      const ParmVarDecl *LastArg;
741      if (CurBlock)
742        LastArg = *(CurBlock->TheDecl->param_end()-1);
743      else if (FunctionDecl *FD = getCurFunctionDecl())
744        LastArg = *(FD->param_end()-1);
745      else
746        LastArg = *(getCurMethodDecl()->param_end()-1);
747      SecondArgIsLastNamedArgument = PV == LastArg;
748    }
749  }
750
751  if (!SecondArgIsLastNamedArgument)
752    Diag(TheCall->getArg(1)->getLocStart(),
753         diag::warn_second_parameter_of_va_start_not_last_named_argument);
754  return false;
755}
756
757/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
758/// friends.  This is declared to take (...), so we have to check everything.
759bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
760  if (TheCall->getNumArgs() < 2)
761    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
762      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
763  if (TheCall->getNumArgs() > 2)
764    return Diag(TheCall->getArg(2)->getLocStart(),
765                diag::err_typecheck_call_too_many_args)
766      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
767      << SourceRange(TheCall->getArg(2)->getLocStart(),
768                     (*(TheCall->arg_end()-1))->getLocEnd());
769
770  ExprResult OrigArg0 = TheCall->getArg(0);
771  ExprResult OrigArg1 = TheCall->getArg(1);
772
773  // Do standard promotions between the two arguments, returning their common
774  // type.
775  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
776  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
777    return true;
778
779  // Make sure any conversions are pushed back into the call; this is
780  // type safe since unordered compare builtins are declared as "_Bool
781  // foo(...)".
782  TheCall->setArg(0, OrigArg0.get());
783  TheCall->setArg(1, OrigArg1.get());
784
785  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
786    return false;
787
788  // If the common type isn't a real floating type, then the arguments were
789  // invalid for this operation.
790  if (!Res->isRealFloatingType())
791    return Diag(OrigArg0.get()->getLocStart(),
792                diag::err_typecheck_call_invalid_ordered_compare)
793      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
794      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
795
796  return false;
797}
798
799/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
800/// __builtin_isnan and friends.  This is declared to take (...), so we have
801/// to check everything. We expect the last argument to be a floating point
802/// value.
803bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
804  if (TheCall->getNumArgs() < NumArgs)
805    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
806      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
807  if (TheCall->getNumArgs() > NumArgs)
808    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
809                diag::err_typecheck_call_too_many_args)
810      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
811      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
812                     (*(TheCall->arg_end()-1))->getLocEnd());
813
814  Expr *OrigArg = TheCall->getArg(NumArgs-1);
815
816  if (OrigArg->isTypeDependent())
817    return false;
818
819  // This operation requires a non-_Complex floating-point number.
820  if (!OrigArg->getType()->isRealFloatingType())
821    return Diag(OrigArg->getLocStart(),
822                diag::err_typecheck_call_invalid_unary_fp)
823      << OrigArg->getType() << OrigArg->getSourceRange();
824
825  // If this is an implicit conversion from float -> double, remove it.
826  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
827    Expr *CastArg = Cast->getSubExpr();
828    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
829      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
830             "promotion from float to double is the only expected cast here");
831      Cast->setSubExpr(0);
832      TheCall->setArg(NumArgs-1, CastArg);
833      OrigArg = CastArg;
834    }
835  }
836
837  return false;
838}
839
840/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
841// This is declared to take (...), so we have to check everything.
842ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
843  if (TheCall->getNumArgs() < 2)
844    return ExprError(Diag(TheCall->getLocEnd(),
845                          diag::err_typecheck_call_too_few_args_at_least)
846      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
847      << TheCall->getSourceRange());
848
849  // Determine which of the following types of shufflevector we're checking:
850  // 1) unary, vector mask: (lhs, mask)
851  // 2) binary, vector mask: (lhs, rhs, mask)
852  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
853  QualType resType = TheCall->getArg(0)->getType();
854  unsigned numElements = 0;
855
856  if (!TheCall->getArg(0)->isTypeDependent() &&
857      !TheCall->getArg(1)->isTypeDependent()) {
858    QualType LHSType = TheCall->getArg(0)->getType();
859    QualType RHSType = TheCall->getArg(1)->getType();
860
861    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
862      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
863        << SourceRange(TheCall->getArg(0)->getLocStart(),
864                       TheCall->getArg(1)->getLocEnd());
865      return ExprError();
866    }
867
868    numElements = LHSType->getAs<VectorType>()->getNumElements();
869    unsigned numResElements = TheCall->getNumArgs() - 2;
870
871    // Check to see if we have a call with 2 vector arguments, the unary shuffle
872    // with mask.  If so, verify that RHS is an integer vector type with the
873    // same number of elts as lhs.
874    if (TheCall->getNumArgs() == 2) {
875      if (!RHSType->hasIntegerRepresentation() ||
876          RHSType->getAs<VectorType>()->getNumElements() != numElements)
877        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
878          << SourceRange(TheCall->getArg(1)->getLocStart(),
879                         TheCall->getArg(1)->getLocEnd());
880      numResElements = numElements;
881    }
882    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
883      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
884        << SourceRange(TheCall->getArg(0)->getLocStart(),
885                       TheCall->getArg(1)->getLocEnd());
886      return ExprError();
887    } else if (numElements != numResElements) {
888      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
889      resType = Context.getVectorType(eltType, numResElements,
890                                      VectorType::GenericVector);
891    }
892  }
893
894  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
895    if (TheCall->getArg(i)->isTypeDependent() ||
896        TheCall->getArg(i)->isValueDependent())
897      continue;
898
899    llvm::APSInt Result(32);
900    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
901      return ExprError(Diag(TheCall->getLocStart(),
902                  diag::err_shufflevector_nonconstant_argument)
903                << TheCall->getArg(i)->getSourceRange());
904
905    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
906      return ExprError(Diag(TheCall->getLocStart(),
907                  diag::err_shufflevector_argument_too_large)
908               << TheCall->getArg(i)->getSourceRange());
909  }
910
911  SmallVector<Expr*, 32> exprs;
912
913  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
914    exprs.push_back(TheCall->getArg(i));
915    TheCall->setArg(i, 0);
916  }
917
918  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
919                                            exprs.size(), resType,
920                                            TheCall->getCallee()->getLocStart(),
921                                            TheCall->getRParenLoc()));
922}
923
924/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
925// This is declared to take (const void*, ...) and can take two
926// optional constant int args.
927bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
928  unsigned NumArgs = TheCall->getNumArgs();
929
930  if (NumArgs > 3)
931    return Diag(TheCall->getLocEnd(),
932             diag::err_typecheck_call_too_many_args_at_most)
933             << 0 /*function call*/ << 3 << NumArgs
934             << TheCall->getSourceRange();
935
936  // Argument 0 is checked for us and the remaining arguments must be
937  // constant integers.
938  for (unsigned i = 1; i != NumArgs; ++i) {
939    Expr *Arg = TheCall->getArg(i);
940
941    llvm::APSInt Result;
942    if (SemaBuiltinConstantArg(TheCall, i, Result))
943      return true;
944
945    // FIXME: gcc issues a warning and rewrites these to 0. These
946    // seems especially odd for the third argument since the default
947    // is 3.
948    if (i == 1) {
949      if (Result.getLimitedValue() > 1)
950        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
951             << "0" << "1" << Arg->getSourceRange();
952    } else {
953      if (Result.getLimitedValue() > 3)
954        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
955            << "0" << "3" << Arg->getSourceRange();
956    }
957  }
958
959  return false;
960}
961
962/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
963/// TheCall is a constant expression.
964bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
965                                  llvm::APSInt &Result) {
966  Expr *Arg = TheCall->getArg(ArgNum);
967  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
968  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
969
970  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
971
972  if (!Arg->isIntegerConstantExpr(Result, Context))
973    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
974                << FDecl->getDeclName() <<  Arg->getSourceRange();
975
976  return false;
977}
978
979/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
980/// int type). This simply type checks that type is one of the defined
981/// constants (0-3).
982// For compatibility check 0-3, llvm only handles 0 and 2.
983bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
984  llvm::APSInt Result;
985
986  // Check constant-ness first.
987  if (SemaBuiltinConstantArg(TheCall, 1, Result))
988    return true;
989
990  Expr *Arg = TheCall->getArg(1);
991  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
992    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
993             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
994  }
995
996  return false;
997}
998
999/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1000/// This checks that val is a constant 1.
1001bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1002  Expr *Arg = TheCall->getArg(1);
1003  llvm::APSInt Result;
1004
1005  // TODO: This is less than ideal. Overload this to take a value.
1006  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1007    return true;
1008
1009  if (Result != 1)
1010    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1011             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1012
1013  return false;
1014}
1015
1016// Handle i > 1 ? "x" : "y", recursively.
1017bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
1018                                  bool HasVAListArg,
1019                                  unsigned format_idx, unsigned firstDataArg,
1020                                  bool isPrintf) {
1021 tryAgain:
1022  if (E->isTypeDependent() || E->isValueDependent())
1023    return false;
1024
1025  E = E->IgnoreParens();
1026
1027  switch (E->getStmtClass()) {
1028  case Stmt::BinaryConditionalOperatorClass:
1029  case Stmt::ConditionalOperatorClass: {
1030    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1031    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
1032                                  format_idx, firstDataArg, isPrintf)
1033        && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
1034                                  format_idx, firstDataArg, isPrintf);
1035  }
1036
1037  case Stmt::IntegerLiteralClass:
1038    // Technically -Wformat-nonliteral does not warn about this case.
1039    // The behavior of printf and friends in this case is implementation
1040    // dependent.  Ideally if the format string cannot be null then
1041    // it should have a 'nonnull' attribute in the function prototype.
1042    return true;
1043
1044  case Stmt::ImplicitCastExprClass: {
1045    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1046    goto tryAgain;
1047  }
1048
1049  case Stmt::OpaqueValueExprClass:
1050    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1051      E = src;
1052      goto tryAgain;
1053    }
1054    return false;
1055
1056  case Stmt::PredefinedExprClass:
1057    // While __func__, etc., are technically not string literals, they
1058    // cannot contain format specifiers and thus are not a security
1059    // liability.
1060    return true;
1061
1062  case Stmt::DeclRefExprClass: {
1063    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1064
1065    // As an exception, do not flag errors for variables binding to
1066    // const string literals.
1067    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1068      bool isConstant = false;
1069      QualType T = DR->getType();
1070
1071      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1072        isConstant = AT->getElementType().isConstant(Context);
1073      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1074        isConstant = T.isConstant(Context) &&
1075                     PT->getPointeeType().isConstant(Context);
1076      }
1077
1078      if (isConstant) {
1079        if (const Expr *Init = VD->getAnyInitializer())
1080          return SemaCheckStringLiteral(Init, TheCall,
1081                                        HasVAListArg, format_idx, firstDataArg,
1082                                        isPrintf);
1083      }
1084
1085      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1086      // special check to see if the format string is a function parameter
1087      // of the function calling the printf function.  If the function
1088      // has an attribute indicating it is a printf-like function, then we
1089      // should suppress warnings concerning non-literals being used in a call
1090      // to a vprintf function.  For example:
1091      //
1092      // void
1093      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1094      //      va_list ap;
1095      //      va_start(ap, fmt);
1096      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1097      //      ...
1098      //
1099      //
1100      //  FIXME: We don't have full attribute support yet, so just check to see
1101      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1102      //    add proper support for checking the attribute later.
1103      if (HasVAListArg)
1104        if (isa<ParmVarDecl>(VD))
1105          return true;
1106    }
1107
1108    return false;
1109  }
1110
1111  case Stmt::CallExprClass: {
1112    const CallExpr *CE = cast<CallExpr>(E);
1113    if (const ImplicitCastExpr *ICE
1114          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1115      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1116        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1117          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1118            unsigned ArgIndex = FA->getFormatIdx();
1119            const Expr *Arg = CE->getArg(ArgIndex - 1);
1120
1121            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1122                                          format_idx, firstDataArg, isPrintf);
1123          }
1124        }
1125      }
1126    }
1127
1128    return false;
1129  }
1130  case Stmt::ObjCStringLiteralClass:
1131  case Stmt::StringLiteralClass: {
1132    const StringLiteral *StrE = NULL;
1133
1134    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1135      StrE = ObjCFExpr->getString();
1136    else
1137      StrE = cast<StringLiteral>(E);
1138
1139    if (StrE) {
1140      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1141                        firstDataArg, isPrintf);
1142      return true;
1143    }
1144
1145    return false;
1146  }
1147
1148  default:
1149    return false;
1150  }
1151}
1152
1153void
1154Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1155                            const Expr * const *ExprArgs,
1156                            SourceLocation CallSiteLoc) {
1157  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1158                                  e = NonNull->args_end();
1159       i != e; ++i) {
1160    const Expr *ArgExpr = ExprArgs[*i];
1161    if (ArgExpr->isNullPointerConstant(Context,
1162                                       Expr::NPC_ValueDependentIsNotNull))
1163      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1164  }
1165}
1166
1167/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1168/// functions) for correct use of format strings.
1169void
1170Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1171                                unsigned format_idx, unsigned firstDataArg,
1172                                bool isPrintf) {
1173
1174  const Expr *Fn = TheCall->getCallee();
1175
1176  // The way the format attribute works in GCC, the implicit this argument
1177  // of member functions is counted. However, it doesn't appear in our own
1178  // lists, so decrement format_idx in that case.
1179  if (isa<CXXMemberCallExpr>(TheCall)) {
1180    const CXXMethodDecl *method_decl =
1181      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1182    if (method_decl && method_decl->isInstance()) {
1183      // Catch a format attribute mistakenly referring to the object argument.
1184      if (format_idx == 0)
1185        return;
1186      --format_idx;
1187      if(firstDataArg != 0)
1188        --firstDataArg;
1189    }
1190  }
1191
1192  // CHECK: printf/scanf-like function is called with no format string.
1193  if (format_idx >= TheCall->getNumArgs()) {
1194    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1195      << Fn->getSourceRange();
1196    return;
1197  }
1198
1199  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1200
1201  // CHECK: format string is not a string literal.
1202  //
1203  // Dynamically generated format strings are difficult to
1204  // automatically vet at compile time.  Requiring that format strings
1205  // are string literals: (1) permits the checking of format strings by
1206  // the compiler and thereby (2) can practically remove the source of
1207  // many format string exploits.
1208
1209  // Format string can be either ObjC string (e.g. @"%d") or
1210  // C string (e.g. "%d")
1211  // ObjC string uses the same format specifiers as C string, so we can use
1212  // the same format string checking logic for both ObjC and C strings.
1213  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1214                             firstDataArg, isPrintf))
1215    return;  // Literal format string found, check done!
1216
1217  // If there are no arguments specified, warn with -Wformat-security, otherwise
1218  // warn only with -Wformat-nonliteral.
1219  if (TheCall->getNumArgs() == format_idx+1)
1220    Diag(TheCall->getArg(format_idx)->getLocStart(),
1221         diag::warn_format_nonliteral_noargs)
1222      << OrigFormatExpr->getSourceRange();
1223  else
1224    Diag(TheCall->getArg(format_idx)->getLocStart(),
1225         diag::warn_format_nonliteral)
1226           << OrigFormatExpr->getSourceRange();
1227}
1228
1229namespace {
1230class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1231protected:
1232  Sema &S;
1233  const StringLiteral *FExpr;
1234  const Expr *OrigFormatExpr;
1235  const unsigned FirstDataArg;
1236  const unsigned NumDataArgs;
1237  const bool IsObjCLiteral;
1238  const char *Beg; // Start of format string.
1239  const bool HasVAListArg;
1240  const CallExpr *TheCall;
1241  unsigned FormatIdx;
1242  llvm::BitVector CoveredArgs;
1243  bool usesPositionalArgs;
1244  bool atFirstArg;
1245public:
1246  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1247                     const Expr *origFormatExpr, unsigned firstDataArg,
1248                     unsigned numDataArgs, bool isObjCLiteral,
1249                     const char *beg, bool hasVAListArg,
1250                     const CallExpr *theCall, unsigned formatIdx)
1251    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1252      FirstDataArg(firstDataArg),
1253      NumDataArgs(numDataArgs),
1254      IsObjCLiteral(isObjCLiteral), Beg(beg),
1255      HasVAListArg(hasVAListArg),
1256      TheCall(theCall), FormatIdx(formatIdx),
1257      usesPositionalArgs(false), atFirstArg(true) {
1258        CoveredArgs.resize(numDataArgs);
1259        CoveredArgs.reset();
1260      }
1261
1262  void DoneProcessing();
1263
1264  void HandleIncompleteSpecifier(const char *startSpecifier,
1265                                 unsigned specifierLen);
1266
1267  virtual void HandleInvalidPosition(const char *startSpecifier,
1268                                     unsigned specifierLen,
1269                                     analyze_format_string::PositionContext p);
1270
1271  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1272
1273  void HandleNullChar(const char *nullCharacter);
1274
1275protected:
1276  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1277                                        const char *startSpec,
1278                                        unsigned specifierLen,
1279                                        const char *csStart, unsigned csLen);
1280
1281  SourceRange getFormatStringRange();
1282  CharSourceRange getSpecifierRange(const char *startSpecifier,
1283                                    unsigned specifierLen);
1284  SourceLocation getLocationOfByte(const char *x);
1285
1286  const Expr *getDataArg(unsigned i) const;
1287
1288  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1289                    const analyze_format_string::ConversionSpecifier &CS,
1290                    const char *startSpecifier, unsigned specifierLen,
1291                    unsigned argIndex);
1292};
1293}
1294
1295SourceRange CheckFormatHandler::getFormatStringRange() {
1296  return OrigFormatExpr->getSourceRange();
1297}
1298
1299CharSourceRange CheckFormatHandler::
1300getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1301  SourceLocation Start = getLocationOfByte(startSpecifier);
1302  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1303
1304  // Advance the end SourceLocation by one due to half-open ranges.
1305  End = End.getLocWithOffset(1);
1306
1307  return CharSourceRange::getCharRange(Start, End);
1308}
1309
1310SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1311  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1312}
1313
1314void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1315                                                   unsigned specifierLen){
1316  SourceLocation Loc = getLocationOfByte(startSpecifier);
1317  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1318    << getSpecifierRange(startSpecifier, specifierLen);
1319}
1320
1321void
1322CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1323                                     analyze_format_string::PositionContext p) {
1324  SourceLocation Loc = getLocationOfByte(startPos);
1325  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1326    << (unsigned) p << getSpecifierRange(startPos, posLen);
1327}
1328
1329void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1330                                            unsigned posLen) {
1331  SourceLocation Loc = getLocationOfByte(startPos);
1332  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1333    << getSpecifierRange(startPos, posLen);
1334}
1335
1336void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1337  if (!IsObjCLiteral) {
1338    // The presence of a null character is likely an error.
1339    S.Diag(getLocationOfByte(nullCharacter),
1340           diag::warn_printf_format_string_contains_null_char)
1341      << getFormatStringRange();
1342  }
1343}
1344
1345const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1346  return TheCall->getArg(FirstDataArg + i);
1347}
1348
1349void CheckFormatHandler::DoneProcessing() {
1350    // Does the number of data arguments exceed the number of
1351    // format conversions in the format string?
1352  if (!HasVAListArg) {
1353      // Find any arguments that weren't covered.
1354    CoveredArgs.flip();
1355    signed notCoveredArg = CoveredArgs.find_first();
1356    if (notCoveredArg >= 0) {
1357      assert((unsigned)notCoveredArg < NumDataArgs);
1358      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1359             diag::warn_printf_data_arg_not_used)
1360      << getFormatStringRange();
1361    }
1362  }
1363}
1364
1365bool
1366CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1367                                                     SourceLocation Loc,
1368                                                     const char *startSpec,
1369                                                     unsigned specifierLen,
1370                                                     const char *csStart,
1371                                                     unsigned csLen) {
1372
1373  bool keepGoing = true;
1374  if (argIndex < NumDataArgs) {
1375    // Consider the argument coverered, even though the specifier doesn't
1376    // make sense.
1377    CoveredArgs.set(argIndex);
1378  }
1379  else {
1380    // If argIndex exceeds the number of data arguments we
1381    // don't issue a warning because that is just a cascade of warnings (and
1382    // they may have intended '%%' anyway). We don't want to continue processing
1383    // the format string after this point, however, as we will like just get
1384    // gibberish when trying to match arguments.
1385    keepGoing = false;
1386  }
1387
1388  S.Diag(Loc, diag::warn_format_invalid_conversion)
1389    << StringRef(csStart, csLen)
1390    << getSpecifierRange(startSpec, specifierLen);
1391
1392  return keepGoing;
1393}
1394
1395bool
1396CheckFormatHandler::CheckNumArgs(
1397  const analyze_format_string::FormatSpecifier &FS,
1398  const analyze_format_string::ConversionSpecifier &CS,
1399  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1400
1401  if (argIndex >= NumDataArgs) {
1402    if (FS.usesPositionalArg())  {
1403      S.Diag(getLocationOfByte(CS.getStart()),
1404             diag::warn_printf_positional_arg_exceeds_data_args)
1405      << (argIndex+1) << NumDataArgs
1406      << getSpecifierRange(startSpecifier, specifierLen);
1407    }
1408    else {
1409      S.Diag(getLocationOfByte(CS.getStart()),
1410             diag::warn_printf_insufficient_data_args)
1411      << getSpecifierRange(startSpecifier, specifierLen);
1412    }
1413
1414    return false;
1415  }
1416  return true;
1417}
1418
1419//===--- CHECK: Printf format string checking ------------------------------===//
1420
1421namespace {
1422class CheckPrintfHandler : public CheckFormatHandler {
1423public:
1424  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1425                     const Expr *origFormatExpr, unsigned firstDataArg,
1426                     unsigned numDataArgs, bool isObjCLiteral,
1427                     const char *beg, bool hasVAListArg,
1428                     const CallExpr *theCall, unsigned formatIdx)
1429  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1430                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1431                       theCall, formatIdx) {}
1432
1433
1434  bool HandleInvalidPrintfConversionSpecifier(
1435                                      const analyze_printf::PrintfSpecifier &FS,
1436                                      const char *startSpecifier,
1437                                      unsigned specifierLen);
1438
1439  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1440                             const char *startSpecifier,
1441                             unsigned specifierLen);
1442
1443  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1444                    const char *startSpecifier, unsigned specifierLen);
1445  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1446                           const analyze_printf::OptionalAmount &Amt,
1447                           unsigned type,
1448                           const char *startSpecifier, unsigned specifierLen);
1449  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1450                  const analyze_printf::OptionalFlag &flag,
1451                  const char *startSpecifier, unsigned specifierLen);
1452  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1453                         const analyze_printf::OptionalFlag &ignoredFlag,
1454                         const analyze_printf::OptionalFlag &flag,
1455                         const char *startSpecifier, unsigned specifierLen);
1456};
1457}
1458
1459bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1460                                      const analyze_printf::PrintfSpecifier &FS,
1461                                      const char *startSpecifier,
1462                                      unsigned specifierLen) {
1463  const analyze_printf::PrintfConversionSpecifier &CS =
1464    FS.getConversionSpecifier();
1465
1466  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1467                                          getLocationOfByte(CS.getStart()),
1468                                          startSpecifier, specifierLen,
1469                                          CS.getStart(), CS.getLength());
1470}
1471
1472bool CheckPrintfHandler::HandleAmount(
1473                               const analyze_format_string::OptionalAmount &Amt,
1474                               unsigned k, const char *startSpecifier,
1475                               unsigned specifierLen) {
1476
1477  if (Amt.hasDataArgument()) {
1478    if (!HasVAListArg) {
1479      unsigned argIndex = Amt.getArgIndex();
1480      if (argIndex >= NumDataArgs) {
1481        S.Diag(getLocationOfByte(Amt.getStart()),
1482               diag::warn_printf_asterisk_missing_arg)
1483          << k << getSpecifierRange(startSpecifier, specifierLen);
1484        // Don't do any more checking.  We will just emit
1485        // spurious errors.
1486        return false;
1487      }
1488
1489      // Type check the data argument.  It should be an 'int'.
1490      // Although not in conformance with C99, we also allow the argument to be
1491      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1492      // doesn't emit a warning for that case.
1493      CoveredArgs.set(argIndex);
1494      const Expr *Arg = getDataArg(argIndex);
1495      QualType T = Arg->getType();
1496
1497      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1498      assert(ATR.isValid());
1499
1500      if (!ATR.matchesType(S.Context, T)) {
1501        S.Diag(getLocationOfByte(Amt.getStart()),
1502               diag::warn_printf_asterisk_wrong_type)
1503          << k
1504          << ATR.getRepresentativeType(S.Context) << T
1505          << getSpecifierRange(startSpecifier, specifierLen)
1506          << Arg->getSourceRange();
1507        // Don't do any more checking.  We will just emit
1508        // spurious errors.
1509        return false;
1510      }
1511    }
1512  }
1513  return true;
1514}
1515
1516void CheckPrintfHandler::HandleInvalidAmount(
1517                                      const analyze_printf::PrintfSpecifier &FS,
1518                                      const analyze_printf::OptionalAmount &Amt,
1519                                      unsigned type,
1520                                      const char *startSpecifier,
1521                                      unsigned specifierLen) {
1522  const analyze_printf::PrintfConversionSpecifier &CS =
1523    FS.getConversionSpecifier();
1524  switch (Amt.getHowSpecified()) {
1525  case analyze_printf::OptionalAmount::Constant:
1526    S.Diag(getLocationOfByte(Amt.getStart()),
1527        diag::warn_printf_nonsensical_optional_amount)
1528      << type
1529      << CS.toString()
1530      << getSpecifierRange(startSpecifier, specifierLen)
1531      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1532          Amt.getConstantLength()));
1533    break;
1534
1535  default:
1536    S.Diag(getLocationOfByte(Amt.getStart()),
1537        diag::warn_printf_nonsensical_optional_amount)
1538      << type
1539      << CS.toString()
1540      << getSpecifierRange(startSpecifier, specifierLen);
1541    break;
1542  }
1543}
1544
1545void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1546                                    const analyze_printf::OptionalFlag &flag,
1547                                    const char *startSpecifier,
1548                                    unsigned specifierLen) {
1549  // Warn about pointless flag with a fixit removal.
1550  const analyze_printf::PrintfConversionSpecifier &CS =
1551    FS.getConversionSpecifier();
1552  S.Diag(getLocationOfByte(flag.getPosition()),
1553      diag::warn_printf_nonsensical_flag)
1554    << flag.toString() << CS.toString()
1555    << getSpecifierRange(startSpecifier, specifierLen)
1556    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1557}
1558
1559void CheckPrintfHandler::HandleIgnoredFlag(
1560                                const analyze_printf::PrintfSpecifier &FS,
1561                                const analyze_printf::OptionalFlag &ignoredFlag,
1562                                const analyze_printf::OptionalFlag &flag,
1563                                const char *startSpecifier,
1564                                unsigned specifierLen) {
1565  // Warn about ignored flag with a fixit removal.
1566  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1567      diag::warn_printf_ignored_flag)
1568    << ignoredFlag.toString() << flag.toString()
1569    << getSpecifierRange(startSpecifier, specifierLen)
1570    << FixItHint::CreateRemoval(getSpecifierRange(
1571        ignoredFlag.getPosition(), 1));
1572}
1573
1574bool
1575CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1576                                            &FS,
1577                                          const char *startSpecifier,
1578                                          unsigned specifierLen) {
1579
1580  using namespace analyze_format_string;
1581  using namespace analyze_printf;
1582  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1583
1584  if (FS.consumesDataArgument()) {
1585    if (atFirstArg) {
1586        atFirstArg = false;
1587        usesPositionalArgs = FS.usesPositionalArg();
1588    }
1589    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1590      // Cannot mix-and-match positional and non-positional arguments.
1591      S.Diag(getLocationOfByte(CS.getStart()),
1592             diag::warn_format_mix_positional_nonpositional_args)
1593        << getSpecifierRange(startSpecifier, specifierLen);
1594      return false;
1595    }
1596  }
1597
1598  // First check if the field width, precision, and conversion specifier
1599  // have matching data arguments.
1600  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1601                    startSpecifier, specifierLen)) {
1602    return false;
1603  }
1604
1605  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1606                    startSpecifier, specifierLen)) {
1607    return false;
1608  }
1609
1610  if (!CS.consumesDataArgument()) {
1611    // FIXME: Technically specifying a precision or field width here
1612    // makes no sense.  Worth issuing a warning at some point.
1613    return true;
1614  }
1615
1616  // Consume the argument.
1617  unsigned argIndex = FS.getArgIndex();
1618  if (argIndex < NumDataArgs) {
1619    // The check to see if the argIndex is valid will come later.
1620    // We set the bit here because we may exit early from this
1621    // function if we encounter some other error.
1622    CoveredArgs.set(argIndex);
1623  }
1624
1625  // Check for using an Objective-C specific conversion specifier
1626  // in a non-ObjC literal.
1627  if (!IsObjCLiteral && CS.isObjCArg()) {
1628    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1629                                                  specifierLen);
1630  }
1631
1632  // Check for invalid use of field width
1633  if (!FS.hasValidFieldWidth()) {
1634    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1635        startSpecifier, specifierLen);
1636  }
1637
1638  // Check for invalid use of precision
1639  if (!FS.hasValidPrecision()) {
1640    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1641        startSpecifier, specifierLen);
1642  }
1643
1644  // Check each flag does not conflict with any other component.
1645  if (!FS.hasValidThousandsGroupingPrefix())
1646    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
1647  if (!FS.hasValidLeadingZeros())
1648    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1649  if (!FS.hasValidPlusPrefix())
1650    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1651  if (!FS.hasValidSpacePrefix())
1652    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1653  if (!FS.hasValidAlternativeForm())
1654    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1655  if (!FS.hasValidLeftJustified())
1656    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1657
1658  // Check that flags are not ignored by another flag
1659  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1660    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1661        startSpecifier, specifierLen);
1662  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1663    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1664            startSpecifier, specifierLen);
1665
1666  // Check the length modifier is valid with the given conversion specifier.
1667  const LengthModifier &LM = FS.getLengthModifier();
1668  if (!FS.hasValidLengthModifier())
1669    S.Diag(getLocationOfByte(LM.getStart()),
1670        diag::warn_format_nonsensical_length)
1671      << LM.toString() << CS.toString()
1672      << getSpecifierRange(startSpecifier, specifierLen)
1673      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1674          LM.getLength()));
1675
1676  // Are we using '%n'?
1677  if (CS.getKind() == ConversionSpecifier::nArg) {
1678    // Issue a warning about this being a possible security issue.
1679    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1680      << getSpecifierRange(startSpecifier, specifierLen);
1681    // Continue checking the other format specifiers.
1682    return true;
1683  }
1684
1685  // The remaining checks depend on the data arguments.
1686  if (HasVAListArg)
1687    return true;
1688
1689  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1690    return false;
1691
1692  // Now type check the data expression that matches the
1693  // format specifier.
1694  const Expr *Ex = getDataArg(argIndex);
1695  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1696  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1697    // Check if we didn't match because of an implicit cast from a 'char'
1698    // or 'short' to an 'int'.  This is done because printf is a varargs
1699    // function.
1700    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1701      if (ICE->getType() == S.Context.IntTy) {
1702        // All further checking is done on the subexpression.
1703        Ex = ICE->getSubExpr();
1704        if (ATR.matchesType(S.Context, Ex->getType()))
1705          return true;
1706      }
1707
1708    // We may be able to offer a FixItHint if it is a supported type.
1709    PrintfSpecifier fixedFS = FS;
1710    bool success = fixedFS.fixType(Ex->getType());
1711
1712    if (success) {
1713      // Get the fix string from the fixed format specifier
1714      llvm::SmallString<128> buf;
1715      llvm::raw_svector_ostream os(buf);
1716      fixedFS.toString(os);
1717
1718      // FIXME: getRepresentativeType() perhaps should return a string
1719      // instead of a QualType to better handle when the representative
1720      // type is 'wint_t' (which is defined in the system headers).
1721      S.Diag(getLocationOfByte(CS.getStart()),
1722          diag::warn_printf_conversion_argument_type_mismatch)
1723        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1724        << getSpecifierRange(startSpecifier, specifierLen)
1725        << Ex->getSourceRange()
1726        << FixItHint::CreateReplacement(
1727            getSpecifierRange(startSpecifier, specifierLen),
1728            os.str());
1729    }
1730    else {
1731      S.Diag(getLocationOfByte(CS.getStart()),
1732             diag::warn_printf_conversion_argument_type_mismatch)
1733        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1734        << getSpecifierRange(startSpecifier, specifierLen)
1735        << Ex->getSourceRange();
1736    }
1737  }
1738
1739  return true;
1740}
1741
1742//===--- CHECK: Scanf format string checking ------------------------------===//
1743
1744namespace {
1745class CheckScanfHandler : public CheckFormatHandler {
1746public:
1747  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1748                    const Expr *origFormatExpr, unsigned firstDataArg,
1749                    unsigned numDataArgs, bool isObjCLiteral,
1750                    const char *beg, bool hasVAListArg,
1751                    const CallExpr *theCall, unsigned formatIdx)
1752  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1753                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1754                       theCall, formatIdx) {}
1755
1756  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1757                            const char *startSpecifier,
1758                            unsigned specifierLen);
1759
1760  bool HandleInvalidScanfConversionSpecifier(
1761          const analyze_scanf::ScanfSpecifier &FS,
1762          const char *startSpecifier,
1763          unsigned specifierLen);
1764
1765  void HandleIncompleteScanList(const char *start, const char *end);
1766};
1767}
1768
1769void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1770                                                 const char *end) {
1771  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1772    << getSpecifierRange(start, end - start);
1773}
1774
1775bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1776                                        const analyze_scanf::ScanfSpecifier &FS,
1777                                        const char *startSpecifier,
1778                                        unsigned specifierLen) {
1779
1780  const analyze_scanf::ScanfConversionSpecifier &CS =
1781    FS.getConversionSpecifier();
1782
1783  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1784                                          getLocationOfByte(CS.getStart()),
1785                                          startSpecifier, specifierLen,
1786                                          CS.getStart(), CS.getLength());
1787}
1788
1789bool CheckScanfHandler::HandleScanfSpecifier(
1790                                       const analyze_scanf::ScanfSpecifier &FS,
1791                                       const char *startSpecifier,
1792                                       unsigned specifierLen) {
1793
1794  using namespace analyze_scanf;
1795  using namespace analyze_format_string;
1796
1797  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1798
1799  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1800  // be used to decide if we are using positional arguments consistently.
1801  if (FS.consumesDataArgument()) {
1802    if (atFirstArg) {
1803      atFirstArg = false;
1804      usesPositionalArgs = FS.usesPositionalArg();
1805    }
1806    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1807      // Cannot mix-and-match positional and non-positional arguments.
1808      S.Diag(getLocationOfByte(CS.getStart()),
1809             diag::warn_format_mix_positional_nonpositional_args)
1810        << getSpecifierRange(startSpecifier, specifierLen);
1811      return false;
1812    }
1813  }
1814
1815  // Check if the field with is non-zero.
1816  const OptionalAmount &Amt = FS.getFieldWidth();
1817  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1818    if (Amt.getConstantAmount() == 0) {
1819      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1820                                                   Amt.getConstantLength());
1821      S.Diag(getLocationOfByte(Amt.getStart()),
1822             diag::warn_scanf_nonzero_width)
1823        << R << FixItHint::CreateRemoval(R);
1824    }
1825  }
1826
1827  if (!FS.consumesDataArgument()) {
1828    // FIXME: Technically specifying a precision or field width here
1829    // makes no sense.  Worth issuing a warning at some point.
1830    return true;
1831  }
1832
1833  // Consume the argument.
1834  unsigned argIndex = FS.getArgIndex();
1835  if (argIndex < NumDataArgs) {
1836      // The check to see if the argIndex is valid will come later.
1837      // We set the bit here because we may exit early from this
1838      // function if we encounter some other error.
1839    CoveredArgs.set(argIndex);
1840  }
1841
1842  // Check the length modifier is valid with the given conversion specifier.
1843  const LengthModifier &LM = FS.getLengthModifier();
1844  if (!FS.hasValidLengthModifier()) {
1845    S.Diag(getLocationOfByte(LM.getStart()),
1846           diag::warn_format_nonsensical_length)
1847      << LM.toString() << CS.toString()
1848      << getSpecifierRange(startSpecifier, specifierLen)
1849      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1850                                                    LM.getLength()));
1851  }
1852
1853  // The remaining checks depend on the data arguments.
1854  if (HasVAListArg)
1855    return true;
1856
1857  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1858    return false;
1859
1860  // FIXME: Check that the argument type matches the format specifier.
1861
1862  return true;
1863}
1864
1865void Sema::CheckFormatString(const StringLiteral *FExpr,
1866                             const Expr *OrigFormatExpr,
1867                             const CallExpr *TheCall, bool HasVAListArg,
1868                             unsigned format_idx, unsigned firstDataArg,
1869                             bool isPrintf) {
1870
1871  // CHECK: is the format string a wide literal?
1872  if (!FExpr->isAscii()) {
1873    Diag(FExpr->getLocStart(),
1874         diag::warn_format_string_is_wide_literal)
1875    << OrigFormatExpr->getSourceRange();
1876    return;
1877  }
1878
1879  // Str - The format string.  NOTE: this is NOT null-terminated!
1880  StringRef StrRef = FExpr->getString();
1881  const char *Str = StrRef.data();
1882  unsigned StrLen = StrRef.size();
1883  const unsigned numDataArgs = TheCall->getNumArgs() - firstDataArg;
1884
1885  // CHECK: empty format string?
1886  if (StrLen == 0 && numDataArgs > 0) {
1887    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1888    << OrigFormatExpr->getSourceRange();
1889    return;
1890  }
1891
1892  if (isPrintf) {
1893    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1894                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
1895                         Str, HasVAListArg, TheCall, format_idx);
1896
1897    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1898      H.DoneProcessing();
1899  }
1900  else {
1901    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1902                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
1903                        Str, HasVAListArg, TheCall, format_idx);
1904
1905    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1906      H.DoneProcessing();
1907  }
1908}
1909
1910//===--- CHECK: Standard memory functions ---------------------------------===//
1911
1912/// \brief Determine whether the given type is a dynamic class type (e.g.,
1913/// whether it has a vtable).
1914static bool isDynamicClassType(QualType T) {
1915  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
1916    if (CXXRecordDecl *Definition = Record->getDefinition())
1917      if (Definition->isDynamicClass())
1918        return true;
1919
1920  return false;
1921}
1922
1923/// \brief If E is a sizeof expression, returns its argument expression,
1924/// otherwise returns NULL.
1925static const Expr *getSizeOfExprArg(const Expr* E) {
1926  if (const UnaryExprOrTypeTraitExpr *SizeOf =
1927      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1928    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
1929      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
1930
1931  return 0;
1932}
1933
1934/// \brief If E is a sizeof expression, returns its argument type.
1935static QualType getSizeOfArgType(const Expr* E) {
1936  if (const UnaryExprOrTypeTraitExpr *SizeOf =
1937      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1938    if (SizeOf->getKind() == clang::UETT_SizeOf)
1939      return SizeOf->getTypeOfArgument();
1940
1941  return QualType();
1942}
1943
1944/// \brief Check for dangerous or invalid arguments to memset().
1945///
1946/// This issues warnings on known problematic, dangerous or unspecified
1947/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
1948/// function calls.
1949///
1950/// \param Call The call expression to diagnose.
1951void Sema::CheckMemaccessArguments(const CallExpr *Call,
1952                                   CheckedMemoryFunction CMF,
1953                                   IdentifierInfo *FnName) {
1954  // It is possible to have a non-standard definition of memset.  Validate
1955  // we have enough arguments, and if not, abort further checking.
1956  if (Call->getNumArgs() < 3)
1957    return;
1958
1959  unsigned LastArg = (CMF == CMF_Memset? 1 : 2);
1960  const Expr *LenExpr = Call->getArg(2)->IgnoreParenImpCasts();
1961
1962  // We have special checking when the length is a sizeof expression.
1963  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
1964  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
1965  llvm::FoldingSetNodeID SizeOfArgID;
1966
1967  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
1968    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
1969    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
1970
1971    QualType DestTy = Dest->getType();
1972    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
1973      QualType PointeeTy = DestPtrTy->getPointeeType();
1974
1975      // Never warn about void type pointers. This can be used to suppress
1976      // false positives.
1977      if (PointeeTy->isVoidType())
1978        continue;
1979
1980      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
1981      // actually comparing the expressions for equality. Because computing the
1982      // expression IDs can be expensive, we only do this if the diagnostic is
1983      // enabled.
1984      if (SizeOfArg &&
1985          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
1986                                   SizeOfArg->getExprLoc())) {
1987        // We only compute IDs for expressions if the warning is enabled, and
1988        // cache the sizeof arg's ID.
1989        if (SizeOfArgID == llvm::FoldingSetNodeID())
1990          SizeOfArg->Profile(SizeOfArgID, Context, true);
1991        llvm::FoldingSetNodeID DestID;
1992        Dest->Profile(DestID, Context, true);
1993        if (DestID == SizeOfArgID) {
1994          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
1995          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
1996            if (UnaryOp->getOpcode() == UO_AddrOf)
1997              ActionIdx = 1; // If its an address-of operator, just remove it.
1998          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
1999            ActionIdx = 2; // If the pointee's size is sizeof(char),
2000                           // suggest an explicit length.
2001          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2002                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2003                                << FnName << ArgIdx << ActionIdx
2004                                << Dest->getSourceRange()
2005                                << SizeOfArg->getSourceRange());
2006          break;
2007        }
2008      }
2009
2010      // Also check for cases where the sizeof argument is the exact same
2011      // type as the memory argument, and where it points to a user-defined
2012      // record type.
2013      if (SizeOfArgTy != QualType()) {
2014        if (PointeeTy->isRecordType() &&
2015            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2016          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2017                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2018                                << FnName << SizeOfArgTy << ArgIdx
2019                                << PointeeTy << Dest->getSourceRange()
2020                                << LenExpr->getSourceRange());
2021          break;
2022        }
2023      }
2024
2025      // Always complain about dynamic classes.
2026      if (isDynamicClassType(PointeeTy))
2027        DiagRuntimeBehavior(
2028          Dest->getExprLoc(), Dest,
2029          PDiag(diag::warn_dyn_class_memaccess)
2030            << (CMF == CMF_Memcmp ? ArgIdx + 2 : ArgIdx) << FnName << PointeeTy
2031            // "overwritten" if we're warning about the destination for any call
2032            // but memcmp; otherwise a verb appropriate to the call.
2033            << (ArgIdx == 0 && CMF != CMF_Memcmp ? 0 : (unsigned)CMF)
2034            << Call->getCallee()->getSourceRange());
2035      else if (PointeeTy.hasNonTrivialObjCLifetime() && CMF != CMF_Memset)
2036        DiagRuntimeBehavior(
2037          Dest->getExprLoc(), Dest,
2038          PDiag(diag::warn_arc_object_memaccess)
2039            << ArgIdx << FnName << PointeeTy
2040            << Call->getCallee()->getSourceRange());
2041      else
2042        continue;
2043
2044      DiagRuntimeBehavior(
2045        Dest->getExprLoc(), Dest,
2046        PDiag(diag::note_bad_memaccess_silence)
2047          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2048      break;
2049    }
2050  }
2051}
2052
2053// A little helper routine: ignore addition and subtraction of integer literals.
2054// This intentionally does not ignore all integer constant expressions because
2055// we don't want to remove sizeof().
2056static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2057  Ex = Ex->IgnoreParenCasts();
2058
2059  for (;;) {
2060    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2061    if (!BO || !BO->isAdditiveOp())
2062      break;
2063
2064    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2065    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2066
2067    if (isa<IntegerLiteral>(RHS))
2068      Ex = LHS;
2069    else if (isa<IntegerLiteral>(LHS))
2070      Ex = RHS;
2071    else
2072      break;
2073  }
2074
2075  return Ex;
2076}
2077
2078// Warn if the user has made the 'size' argument to strlcpy or strlcat
2079// be the size of the source, instead of the destination.
2080void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2081                                    IdentifierInfo *FnName) {
2082
2083  // Don't crash if the user has the wrong number of arguments
2084  if (Call->getNumArgs() != 3)
2085    return;
2086
2087  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2088  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2089  const Expr *CompareWithSrc = NULL;
2090
2091  // Look for 'strlcpy(dst, x, sizeof(x))'
2092  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2093    CompareWithSrc = Ex;
2094  else {
2095    // Look for 'strlcpy(dst, x, strlen(x))'
2096    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2097      if (SizeCall->isBuiltinCall(Context) == Builtin::BIstrlen
2098          && SizeCall->getNumArgs() == 1)
2099        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2100    }
2101  }
2102
2103  if (!CompareWithSrc)
2104    return;
2105
2106  // Determine if the argument to sizeof/strlen is equal to the source
2107  // argument.  In principle there's all kinds of things you could do
2108  // here, for instance creating an == expression and evaluating it with
2109  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2110  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2111  if (!SrcArgDRE)
2112    return;
2113
2114  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2115  if (!CompareWithSrcDRE ||
2116      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2117    return;
2118
2119  const Expr *OriginalSizeArg = Call->getArg(2);
2120  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2121    << OriginalSizeArg->getSourceRange() << FnName;
2122
2123  // Output a FIXIT hint if the destination is an array (rather than a
2124  // pointer to an array).  This could be enhanced to handle some
2125  // pointers if we know the actual size, like if DstArg is 'array+2'
2126  // we could say 'sizeof(array)-2'.
2127  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2128  QualType DstArgTy = DstArg->getType();
2129
2130  // Only handle constant-sized or VLAs, but not flexible members.
2131  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2132    // Only issue the FIXIT for arrays of size > 1.
2133    if (CAT->getSize().getSExtValue() <= 1)
2134      return;
2135  } else if (!DstArgTy->isVariableArrayType()) {
2136    return;
2137  }
2138
2139  llvm::SmallString<128> sizeString;
2140  llvm::raw_svector_ostream OS(sizeString);
2141  OS << "sizeof(";
2142  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2143  OS << ")";
2144
2145  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2146    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2147                                    OS.str());
2148}
2149
2150//===--- CHECK: Return Address of Stack Variable --------------------------===//
2151
2152static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2153static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2154
2155/// CheckReturnStackAddr - Check if a return statement returns the address
2156///   of a stack variable.
2157void
2158Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2159                           SourceLocation ReturnLoc) {
2160
2161  Expr *stackE = 0;
2162  SmallVector<DeclRefExpr *, 8> refVars;
2163
2164  // Perform checking for returned stack addresses, local blocks,
2165  // label addresses or references to temporaries.
2166  if (lhsType->isPointerType() ||
2167      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2168    stackE = EvalAddr(RetValExp, refVars);
2169  } else if (lhsType->isReferenceType()) {
2170    stackE = EvalVal(RetValExp, refVars);
2171  }
2172
2173  if (stackE == 0)
2174    return; // Nothing suspicious was found.
2175
2176  SourceLocation diagLoc;
2177  SourceRange diagRange;
2178  if (refVars.empty()) {
2179    diagLoc = stackE->getLocStart();
2180    diagRange = stackE->getSourceRange();
2181  } else {
2182    // We followed through a reference variable. 'stackE' contains the
2183    // problematic expression but we will warn at the return statement pointing
2184    // at the reference variable. We will later display the "trail" of
2185    // reference variables using notes.
2186    diagLoc = refVars[0]->getLocStart();
2187    diagRange = refVars[0]->getSourceRange();
2188  }
2189
2190  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2191    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2192                                             : diag::warn_ret_stack_addr)
2193     << DR->getDecl()->getDeclName() << diagRange;
2194  } else if (isa<BlockExpr>(stackE)) { // local block.
2195    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2196  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2197    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2198  } else { // local temporary.
2199    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2200                                             : diag::warn_ret_local_temp_addr)
2201     << diagRange;
2202  }
2203
2204  // Display the "trail" of reference variables that we followed until we
2205  // found the problematic expression using notes.
2206  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2207    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2208    // If this var binds to another reference var, show the range of the next
2209    // var, otherwise the var binds to the problematic expression, in which case
2210    // show the range of the expression.
2211    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2212                                  : stackE->getSourceRange();
2213    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2214      << VD->getDeclName() << range;
2215  }
2216}
2217
2218/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2219///  check if the expression in a return statement evaluates to an address
2220///  to a location on the stack, a local block, an address of a label, or a
2221///  reference to local temporary. The recursion is used to traverse the
2222///  AST of the return expression, with recursion backtracking when we
2223///  encounter a subexpression that (1) clearly does not lead to one of the
2224///  above problematic expressions (2) is something we cannot determine leads to
2225///  a problematic expression based on such local checking.
2226///
2227///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2228///  the expression that they point to. Such variables are added to the
2229///  'refVars' vector so that we know what the reference variable "trail" was.
2230///
2231///  EvalAddr processes expressions that are pointers that are used as
2232///  references (and not L-values).  EvalVal handles all other values.
2233///  At the base case of the recursion is a check for the above problematic
2234///  expressions.
2235///
2236///  This implementation handles:
2237///
2238///   * pointer-to-pointer casts
2239///   * implicit conversions from array references to pointers
2240///   * taking the address of fields
2241///   * arbitrary interplay between "&" and "*" operators
2242///   * pointer arithmetic from an address of a stack variable
2243///   * taking the address of an array element where the array is on the stack
2244static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2245  if (E->isTypeDependent())
2246      return NULL;
2247
2248  // We should only be called for evaluating pointer expressions.
2249  assert((E->getType()->isAnyPointerType() ||
2250          E->getType()->isBlockPointerType() ||
2251          E->getType()->isObjCQualifiedIdType()) &&
2252         "EvalAddr only works on pointers");
2253
2254  E = E->IgnoreParens();
2255
2256  // Our "symbolic interpreter" is just a dispatch off the currently
2257  // viewed AST node.  We then recursively traverse the AST by calling
2258  // EvalAddr and EvalVal appropriately.
2259  switch (E->getStmtClass()) {
2260  case Stmt::DeclRefExprClass: {
2261    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2262
2263    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2264      // If this is a reference variable, follow through to the expression that
2265      // it points to.
2266      if (V->hasLocalStorage() &&
2267          V->getType()->isReferenceType() && V->hasInit()) {
2268        // Add the reference variable to the "trail".
2269        refVars.push_back(DR);
2270        return EvalAddr(V->getInit(), refVars);
2271      }
2272
2273    return NULL;
2274  }
2275
2276  case Stmt::UnaryOperatorClass: {
2277    // The only unary operator that make sense to handle here
2278    // is AddrOf.  All others don't make sense as pointers.
2279    UnaryOperator *U = cast<UnaryOperator>(E);
2280
2281    if (U->getOpcode() == UO_AddrOf)
2282      return EvalVal(U->getSubExpr(), refVars);
2283    else
2284      return NULL;
2285  }
2286
2287  case Stmt::BinaryOperatorClass: {
2288    // Handle pointer arithmetic.  All other binary operators are not valid
2289    // in this context.
2290    BinaryOperator *B = cast<BinaryOperator>(E);
2291    BinaryOperatorKind op = B->getOpcode();
2292
2293    if (op != BO_Add && op != BO_Sub)
2294      return NULL;
2295
2296    Expr *Base = B->getLHS();
2297
2298    // Determine which argument is the real pointer base.  It could be
2299    // the RHS argument instead of the LHS.
2300    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2301
2302    assert (Base->getType()->isPointerType());
2303    return EvalAddr(Base, refVars);
2304  }
2305
2306  // For conditional operators we need to see if either the LHS or RHS are
2307  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2308  case Stmt::ConditionalOperatorClass: {
2309    ConditionalOperator *C = cast<ConditionalOperator>(E);
2310
2311    // Handle the GNU extension for missing LHS.
2312    if (Expr *lhsExpr = C->getLHS()) {
2313    // In C++, we can have a throw-expression, which has 'void' type.
2314      if (!lhsExpr->getType()->isVoidType())
2315        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2316          return LHS;
2317    }
2318
2319    // In C++, we can have a throw-expression, which has 'void' type.
2320    if (C->getRHS()->getType()->isVoidType())
2321      return NULL;
2322
2323    return EvalAddr(C->getRHS(), refVars);
2324  }
2325
2326  case Stmt::BlockExprClass:
2327    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2328      return E; // local block.
2329    return NULL;
2330
2331  case Stmt::AddrLabelExprClass:
2332    return E; // address of label.
2333
2334  // For casts, we need to handle conversions from arrays to
2335  // pointer values, and pointer-to-pointer conversions.
2336  case Stmt::ImplicitCastExprClass:
2337  case Stmt::CStyleCastExprClass:
2338  case Stmt::CXXFunctionalCastExprClass:
2339  case Stmt::ObjCBridgedCastExprClass: {
2340    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2341    QualType T = SubExpr->getType();
2342
2343    if (SubExpr->getType()->isPointerType() ||
2344        SubExpr->getType()->isBlockPointerType() ||
2345        SubExpr->getType()->isObjCQualifiedIdType())
2346      return EvalAddr(SubExpr, refVars);
2347    else if (T->isArrayType())
2348      return EvalVal(SubExpr, refVars);
2349    else
2350      return 0;
2351  }
2352
2353  // C++ casts.  For dynamic casts, static casts, and const casts, we
2354  // are always converting from a pointer-to-pointer, so we just blow
2355  // through the cast.  In the case the dynamic cast doesn't fail (and
2356  // return NULL), we take the conservative route and report cases
2357  // where we return the address of a stack variable.  For Reinterpre
2358  // FIXME: The comment about is wrong; we're not always converting
2359  // from pointer to pointer. I'm guessing that this code should also
2360  // handle references to objects.
2361  case Stmt::CXXStaticCastExprClass:
2362  case Stmt::CXXDynamicCastExprClass:
2363  case Stmt::CXXConstCastExprClass:
2364  case Stmt::CXXReinterpretCastExprClass: {
2365      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2366      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2367        return EvalAddr(S, refVars);
2368      else
2369        return NULL;
2370  }
2371
2372  case Stmt::MaterializeTemporaryExprClass:
2373    if (Expr *Result = EvalAddr(
2374                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2375                                refVars))
2376      return Result;
2377
2378    return E;
2379
2380  // Everything else: we simply don't reason about them.
2381  default:
2382    return NULL;
2383  }
2384}
2385
2386
2387///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2388///   See the comments for EvalAddr for more details.
2389static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2390do {
2391  // We should only be called for evaluating non-pointer expressions, or
2392  // expressions with a pointer type that are not used as references but instead
2393  // are l-values (e.g., DeclRefExpr with a pointer type).
2394
2395  // Our "symbolic interpreter" is just a dispatch off the currently
2396  // viewed AST node.  We then recursively traverse the AST by calling
2397  // EvalAddr and EvalVal appropriately.
2398
2399  E = E->IgnoreParens();
2400  switch (E->getStmtClass()) {
2401  case Stmt::ImplicitCastExprClass: {
2402    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2403    if (IE->getValueKind() == VK_LValue) {
2404      E = IE->getSubExpr();
2405      continue;
2406    }
2407    return NULL;
2408  }
2409
2410  case Stmt::DeclRefExprClass: {
2411    // When we hit a DeclRefExpr we are looking at code that refers to a
2412    // variable's name. If it's not a reference variable we check if it has
2413    // local storage within the function, and if so, return the expression.
2414    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2415
2416    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2417      if (V->hasLocalStorage()) {
2418        if (!V->getType()->isReferenceType())
2419          return DR;
2420
2421        // Reference variable, follow through to the expression that
2422        // it points to.
2423        if (V->hasInit()) {
2424          // Add the reference variable to the "trail".
2425          refVars.push_back(DR);
2426          return EvalVal(V->getInit(), refVars);
2427        }
2428      }
2429
2430    return NULL;
2431  }
2432
2433  case Stmt::UnaryOperatorClass: {
2434    // The only unary operator that make sense to handle here
2435    // is Deref.  All others don't resolve to a "name."  This includes
2436    // handling all sorts of rvalues passed to a unary operator.
2437    UnaryOperator *U = cast<UnaryOperator>(E);
2438
2439    if (U->getOpcode() == UO_Deref)
2440      return EvalAddr(U->getSubExpr(), refVars);
2441
2442    return NULL;
2443  }
2444
2445  case Stmt::ArraySubscriptExprClass: {
2446    // Array subscripts are potential references to data on the stack.  We
2447    // retrieve the DeclRefExpr* for the array variable if it indeed
2448    // has local storage.
2449    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2450  }
2451
2452  case Stmt::ConditionalOperatorClass: {
2453    // For conditional operators we need to see if either the LHS or RHS are
2454    // non-NULL Expr's.  If one is non-NULL, we return it.
2455    ConditionalOperator *C = cast<ConditionalOperator>(E);
2456
2457    // Handle the GNU extension for missing LHS.
2458    if (Expr *lhsExpr = C->getLHS())
2459      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2460        return LHS;
2461
2462    return EvalVal(C->getRHS(), refVars);
2463  }
2464
2465  // Accesses to members are potential references to data on the stack.
2466  case Stmt::MemberExprClass: {
2467    MemberExpr *M = cast<MemberExpr>(E);
2468
2469    // Check for indirect access.  We only want direct field accesses.
2470    if (M->isArrow())
2471      return NULL;
2472
2473    // Check whether the member type is itself a reference, in which case
2474    // we're not going to refer to the member, but to what the member refers to.
2475    if (M->getMemberDecl()->getType()->isReferenceType())
2476      return NULL;
2477
2478    return EvalVal(M->getBase(), refVars);
2479  }
2480
2481  case Stmt::MaterializeTemporaryExprClass:
2482    if (Expr *Result = EvalVal(
2483                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2484                               refVars))
2485      return Result;
2486
2487    return E;
2488
2489  default:
2490    // Check that we don't return or take the address of a reference to a
2491    // temporary. This is only useful in C++.
2492    if (!E->isTypeDependent() && E->isRValue())
2493      return E;
2494
2495    // Everything else: we simply don't reason about them.
2496    return NULL;
2497  }
2498} while (true);
2499}
2500
2501//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2502
2503/// Check for comparisons of floating point operands using != and ==.
2504/// Issue a warning if these are no self-comparisons, as they are not likely
2505/// to do what the programmer intended.
2506void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
2507  bool EmitWarning = true;
2508
2509  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
2510  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
2511
2512  // Special case: check for x == x (which is OK).
2513  // Do not emit warnings for such cases.
2514  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2515    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2516      if (DRL->getDecl() == DRR->getDecl())
2517        EmitWarning = false;
2518
2519
2520  // Special case: check for comparisons against literals that can be exactly
2521  //  represented by APFloat.  In such cases, do not emit a warning.  This
2522  //  is a heuristic: often comparison against such literals are used to
2523  //  detect if a value in a variable has not changed.  This clearly can
2524  //  lead to false negatives.
2525  if (EmitWarning) {
2526    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2527      if (FLL->isExact())
2528        EmitWarning = false;
2529    } else
2530      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2531        if (FLR->isExact())
2532          EmitWarning = false;
2533    }
2534  }
2535
2536  // Check for comparisons with builtin types.
2537  if (EmitWarning)
2538    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2539      if (CL->isBuiltinCall(Context))
2540        EmitWarning = false;
2541
2542  if (EmitWarning)
2543    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2544      if (CR->isBuiltinCall(Context))
2545        EmitWarning = false;
2546
2547  // Emit the diagnostic.
2548  if (EmitWarning)
2549    Diag(Loc, diag::warn_floatingpoint_eq)
2550      << LHS->getSourceRange() << RHS->getSourceRange();
2551}
2552
2553//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2554//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2555
2556namespace {
2557
2558/// Structure recording the 'active' range of an integer-valued
2559/// expression.
2560struct IntRange {
2561  /// The number of bits active in the int.
2562  unsigned Width;
2563
2564  /// True if the int is known not to have negative values.
2565  bool NonNegative;
2566
2567  IntRange(unsigned Width, bool NonNegative)
2568    : Width(Width), NonNegative(NonNegative)
2569  {}
2570
2571  /// Returns the range of the bool type.
2572  static IntRange forBoolType() {
2573    return IntRange(1, true);
2574  }
2575
2576  /// Returns the range of an opaque value of the given integral type.
2577  static IntRange forValueOfType(ASTContext &C, QualType T) {
2578    return forValueOfCanonicalType(C,
2579                          T->getCanonicalTypeInternal().getTypePtr());
2580  }
2581
2582  /// Returns the range of an opaque value of a canonical integral type.
2583  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2584    assert(T->isCanonicalUnqualified());
2585
2586    if (const VectorType *VT = dyn_cast<VectorType>(T))
2587      T = VT->getElementType().getTypePtr();
2588    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2589      T = CT->getElementType().getTypePtr();
2590
2591    // For enum types, use the known bit width of the enumerators.
2592    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2593      EnumDecl *Enum = ET->getDecl();
2594      if (!Enum->isDefinition())
2595        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2596
2597      unsigned NumPositive = Enum->getNumPositiveBits();
2598      unsigned NumNegative = Enum->getNumNegativeBits();
2599
2600      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2601    }
2602
2603    const BuiltinType *BT = cast<BuiltinType>(T);
2604    assert(BT->isInteger());
2605
2606    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2607  }
2608
2609  /// Returns the "target" range of a canonical integral type, i.e.
2610  /// the range of values expressible in the type.
2611  ///
2612  /// This matches forValueOfCanonicalType except that enums have the
2613  /// full range of their type, not the range of their enumerators.
2614  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2615    assert(T->isCanonicalUnqualified());
2616
2617    if (const VectorType *VT = dyn_cast<VectorType>(T))
2618      T = VT->getElementType().getTypePtr();
2619    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2620      T = CT->getElementType().getTypePtr();
2621    if (const EnumType *ET = dyn_cast<EnumType>(T))
2622      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
2623
2624    const BuiltinType *BT = cast<BuiltinType>(T);
2625    assert(BT->isInteger());
2626
2627    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2628  }
2629
2630  /// Returns the supremum of two ranges: i.e. their conservative merge.
2631  static IntRange join(IntRange L, IntRange R) {
2632    return IntRange(std::max(L.Width, R.Width),
2633                    L.NonNegative && R.NonNegative);
2634  }
2635
2636  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2637  static IntRange meet(IntRange L, IntRange R) {
2638    return IntRange(std::min(L.Width, R.Width),
2639                    L.NonNegative || R.NonNegative);
2640  }
2641};
2642
2643IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2644  if (value.isSigned() && value.isNegative())
2645    return IntRange(value.getMinSignedBits(), false);
2646
2647  if (value.getBitWidth() > MaxWidth)
2648    value = value.trunc(MaxWidth);
2649
2650  // isNonNegative() just checks the sign bit without considering
2651  // signedness.
2652  return IntRange(value.getActiveBits(), true);
2653}
2654
2655IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2656                       unsigned MaxWidth) {
2657  if (result.isInt())
2658    return GetValueRange(C, result.getInt(), MaxWidth);
2659
2660  if (result.isVector()) {
2661    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2662    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2663      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2664      R = IntRange::join(R, El);
2665    }
2666    return R;
2667  }
2668
2669  if (result.isComplexInt()) {
2670    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2671    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2672    return IntRange::join(R, I);
2673  }
2674
2675  // This can happen with lossless casts to intptr_t of "based" lvalues.
2676  // Assume it might use arbitrary bits.
2677  // FIXME: The only reason we need to pass the type in here is to get
2678  // the sign right on this one case.  It would be nice if APValue
2679  // preserved this.
2680  assert(result.isLValue());
2681  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
2682}
2683
2684/// Pseudo-evaluate the given integer expression, estimating the
2685/// range of values it might take.
2686///
2687/// \param MaxWidth - the width to which the value will be truncated
2688IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2689  E = E->IgnoreParens();
2690
2691  // Try a full evaluation first.
2692  Expr::EvalResult result;
2693  if (E->Evaluate(result, C))
2694    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2695
2696  // I think we only want to look through implicit casts here; if the
2697  // user has an explicit widening cast, we should treat the value as
2698  // being of the new, wider type.
2699  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2700    if (CE->getCastKind() == CK_NoOp)
2701      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2702
2703    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2704
2705    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2706
2707    // Assume that non-integer casts can span the full range of the type.
2708    if (!isIntegerCast)
2709      return OutputTypeRange;
2710
2711    IntRange SubRange
2712      = GetExprRange(C, CE->getSubExpr(),
2713                     std::min(MaxWidth, OutputTypeRange.Width));
2714
2715    // Bail out if the subexpr's range is as wide as the cast type.
2716    if (SubRange.Width >= OutputTypeRange.Width)
2717      return OutputTypeRange;
2718
2719    // Otherwise, we take the smaller width, and we're non-negative if
2720    // either the output type or the subexpr is.
2721    return IntRange(SubRange.Width,
2722                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2723  }
2724
2725  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2726    // If we can fold the condition, just take that operand.
2727    bool CondResult;
2728    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2729      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2730                                        : CO->getFalseExpr(),
2731                          MaxWidth);
2732
2733    // Otherwise, conservatively merge.
2734    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2735    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2736    return IntRange::join(L, R);
2737  }
2738
2739  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2740    switch (BO->getOpcode()) {
2741
2742    // Boolean-valued operations are single-bit and positive.
2743    case BO_LAnd:
2744    case BO_LOr:
2745    case BO_LT:
2746    case BO_GT:
2747    case BO_LE:
2748    case BO_GE:
2749    case BO_EQ:
2750    case BO_NE:
2751      return IntRange::forBoolType();
2752
2753    // The type of the assignments is the type of the LHS, so the RHS
2754    // is not necessarily the same type.
2755    case BO_MulAssign:
2756    case BO_DivAssign:
2757    case BO_RemAssign:
2758    case BO_AddAssign:
2759    case BO_SubAssign:
2760    case BO_XorAssign:
2761    case BO_OrAssign:
2762      // TODO: bitfields?
2763      return IntRange::forValueOfType(C, E->getType());
2764
2765    // Simple assignments just pass through the RHS, which will have
2766    // been coerced to the LHS type.
2767    case BO_Assign:
2768      // TODO: bitfields?
2769      return GetExprRange(C, BO->getRHS(), MaxWidth);
2770
2771    // Operations with opaque sources are black-listed.
2772    case BO_PtrMemD:
2773    case BO_PtrMemI:
2774      return IntRange::forValueOfType(C, E->getType());
2775
2776    // Bitwise-and uses the *infinum* of the two source ranges.
2777    case BO_And:
2778    case BO_AndAssign:
2779      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2780                            GetExprRange(C, BO->getRHS(), MaxWidth));
2781
2782    // Left shift gets black-listed based on a judgement call.
2783    case BO_Shl:
2784      // ...except that we want to treat '1 << (blah)' as logically
2785      // positive.  It's an important idiom.
2786      if (IntegerLiteral *I
2787            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2788        if (I->getValue() == 1) {
2789          IntRange R = IntRange::forValueOfType(C, E->getType());
2790          return IntRange(R.Width, /*NonNegative*/ true);
2791        }
2792      }
2793      // fallthrough
2794
2795    case BO_ShlAssign:
2796      return IntRange::forValueOfType(C, E->getType());
2797
2798    // Right shift by a constant can narrow its left argument.
2799    case BO_Shr:
2800    case BO_ShrAssign: {
2801      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2802
2803      // If the shift amount is a positive constant, drop the width by
2804      // that much.
2805      llvm::APSInt shift;
2806      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2807          shift.isNonNegative()) {
2808        unsigned zext = shift.getZExtValue();
2809        if (zext >= L.Width)
2810          L.Width = (L.NonNegative ? 0 : 1);
2811        else
2812          L.Width -= zext;
2813      }
2814
2815      return L;
2816    }
2817
2818    // Comma acts as its right operand.
2819    case BO_Comma:
2820      return GetExprRange(C, BO->getRHS(), MaxWidth);
2821
2822    // Black-list pointer subtractions.
2823    case BO_Sub:
2824      if (BO->getLHS()->getType()->isPointerType())
2825        return IntRange::forValueOfType(C, E->getType());
2826      break;
2827
2828    // The width of a division result is mostly determined by the size
2829    // of the LHS.
2830    case BO_Div: {
2831      // Don't 'pre-truncate' the operands.
2832      unsigned opWidth = C.getIntWidth(E->getType());
2833      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
2834
2835      // If the divisor is constant, use that.
2836      llvm::APSInt divisor;
2837      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
2838        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
2839        if (log2 >= L.Width)
2840          L.Width = (L.NonNegative ? 0 : 1);
2841        else
2842          L.Width = std::min(L.Width - log2, MaxWidth);
2843        return L;
2844      }
2845
2846      // Otherwise, just use the LHS's width.
2847      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
2848      return IntRange(L.Width, L.NonNegative && R.NonNegative);
2849    }
2850
2851    // The result of a remainder can't be larger than the result of
2852    // either side.
2853    case BO_Rem: {
2854      // Don't 'pre-truncate' the operands.
2855      unsigned opWidth = C.getIntWidth(E->getType());
2856      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
2857      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
2858
2859      IntRange meet = IntRange::meet(L, R);
2860      meet.Width = std::min(meet.Width, MaxWidth);
2861      return meet;
2862    }
2863
2864    // The default behavior is okay for these.
2865    case BO_Mul:
2866    case BO_Add:
2867    case BO_Xor:
2868    case BO_Or:
2869      break;
2870    }
2871
2872    // The default case is to treat the operation as if it were closed
2873    // on the narrowest type that encompasses both operands.
2874    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2875    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2876    return IntRange::join(L, R);
2877  }
2878
2879  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2880    switch (UO->getOpcode()) {
2881    // Boolean-valued operations are white-listed.
2882    case UO_LNot:
2883      return IntRange::forBoolType();
2884
2885    // Operations with opaque sources are black-listed.
2886    case UO_Deref:
2887    case UO_AddrOf: // should be impossible
2888      return IntRange::forValueOfType(C, E->getType());
2889
2890    default:
2891      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2892    }
2893  }
2894
2895  if (dyn_cast<OffsetOfExpr>(E)) {
2896    IntRange::forValueOfType(C, E->getType());
2897  }
2898
2899  FieldDecl *BitField = E->getBitField();
2900  if (BitField) {
2901    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2902    unsigned BitWidth = BitWidthAP.getZExtValue();
2903
2904    return IntRange(BitWidth,
2905                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
2906  }
2907
2908  return IntRange::forValueOfType(C, E->getType());
2909}
2910
2911IntRange GetExprRange(ASTContext &C, Expr *E) {
2912  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2913}
2914
2915/// Checks whether the given value, which currently has the given
2916/// source semantics, has the same value when coerced through the
2917/// target semantics.
2918bool IsSameFloatAfterCast(const llvm::APFloat &value,
2919                          const llvm::fltSemantics &Src,
2920                          const llvm::fltSemantics &Tgt) {
2921  llvm::APFloat truncated = value;
2922
2923  bool ignored;
2924  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2925  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2926
2927  return truncated.bitwiseIsEqual(value);
2928}
2929
2930/// Checks whether the given value, which currently has the given
2931/// source semantics, has the same value when coerced through the
2932/// target semantics.
2933///
2934/// The value might be a vector of floats (or a complex number).
2935bool IsSameFloatAfterCast(const APValue &value,
2936                          const llvm::fltSemantics &Src,
2937                          const llvm::fltSemantics &Tgt) {
2938  if (value.isFloat())
2939    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2940
2941  if (value.isVector()) {
2942    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2943      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2944        return false;
2945    return true;
2946  }
2947
2948  assert(value.isComplexFloat());
2949  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2950          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2951}
2952
2953void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2954
2955static bool IsZero(Sema &S, Expr *E) {
2956  // Suppress cases where we are comparing against an enum constant.
2957  if (const DeclRefExpr *DR =
2958      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2959    if (isa<EnumConstantDecl>(DR->getDecl()))
2960      return false;
2961
2962  // Suppress cases where the '0' value is expanded from a macro.
2963  if (E->getLocStart().isMacroID())
2964    return false;
2965
2966  llvm::APSInt Value;
2967  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2968}
2969
2970static bool HasEnumType(Expr *E) {
2971  // Strip off implicit integral promotions.
2972  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2973    if (ICE->getCastKind() != CK_IntegralCast &&
2974        ICE->getCastKind() != CK_NoOp)
2975      break;
2976    E = ICE->getSubExpr();
2977  }
2978
2979  return E->getType()->isEnumeralType();
2980}
2981
2982void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2983  BinaryOperatorKind op = E->getOpcode();
2984  if (E->isValueDependent())
2985    return;
2986
2987  if (op == BO_LT && IsZero(S, E->getRHS())) {
2988    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2989      << "< 0" << "false" << HasEnumType(E->getLHS())
2990      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2991  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2992    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2993      << ">= 0" << "true" << HasEnumType(E->getLHS())
2994      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2995  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2996    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2997      << "0 >" << "false" << HasEnumType(E->getRHS())
2998      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2999  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3000    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3001      << "0 <=" << "true" << HasEnumType(E->getRHS())
3002      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3003  }
3004}
3005
3006/// Analyze the operands of the given comparison.  Implements the
3007/// fallback case from AnalyzeComparison.
3008void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3009  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3010  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3011}
3012
3013/// \brief Implements -Wsign-compare.
3014///
3015/// \param E the binary operator to check for warnings
3016void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3017  // The type the comparison is being performed in.
3018  QualType T = E->getLHS()->getType();
3019  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3020         && "comparison with mismatched types");
3021
3022  // We don't do anything special if this isn't an unsigned integral
3023  // comparison:  we're only interested in integral comparisons, and
3024  // signed comparisons only happen in cases we don't care to warn about.
3025  //
3026  // We also don't care about value-dependent expressions or expressions
3027  // whose result is a constant.
3028  if (!T->hasUnsignedIntegerRepresentation()
3029      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3030    return AnalyzeImpConvsInComparison(S, E);
3031
3032  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3033  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3034
3035  // Check to see if one of the (unmodified) operands is of different
3036  // signedness.
3037  Expr *signedOperand, *unsignedOperand;
3038  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3039    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3040           "unsigned comparison between two signed integer expressions?");
3041    signedOperand = LHS;
3042    unsignedOperand = RHS;
3043  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3044    signedOperand = RHS;
3045    unsignedOperand = LHS;
3046  } else {
3047    CheckTrivialUnsignedComparison(S, E);
3048    return AnalyzeImpConvsInComparison(S, E);
3049  }
3050
3051  // Otherwise, calculate the effective range of the signed operand.
3052  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3053
3054  // Go ahead and analyze implicit conversions in the operands.  Note
3055  // that we skip the implicit conversions on both sides.
3056  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3057  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3058
3059  // If the signed range is non-negative, -Wsign-compare won't fire,
3060  // but we should still check for comparisons which are always true
3061  // or false.
3062  if (signedRange.NonNegative)
3063    return CheckTrivialUnsignedComparison(S, E);
3064
3065  // For (in)equality comparisons, if the unsigned operand is a
3066  // constant which cannot collide with a overflowed signed operand,
3067  // then reinterpreting the signed operand as unsigned will not
3068  // change the result of the comparison.
3069  if (E->isEqualityOp()) {
3070    unsigned comparisonWidth = S.Context.getIntWidth(T);
3071    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3072
3073    // We should never be unable to prove that the unsigned operand is
3074    // non-negative.
3075    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3076
3077    if (unsignedRange.Width < comparisonWidth)
3078      return;
3079  }
3080
3081  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3082    << LHS->getType() << RHS->getType()
3083    << LHS->getSourceRange() << RHS->getSourceRange();
3084}
3085
3086/// Analyzes an attempt to assign the given value to a bitfield.
3087///
3088/// Returns true if there was something fishy about the attempt.
3089bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3090                               SourceLocation InitLoc) {
3091  assert(Bitfield->isBitField());
3092  if (Bitfield->isInvalidDecl())
3093    return false;
3094
3095  // White-list bool bitfields.
3096  if (Bitfield->getType()->isBooleanType())
3097    return false;
3098
3099  // Ignore value- or type-dependent expressions.
3100  if (Bitfield->getBitWidth()->isValueDependent() ||
3101      Bitfield->getBitWidth()->isTypeDependent() ||
3102      Init->isValueDependent() ||
3103      Init->isTypeDependent())
3104    return false;
3105
3106  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3107
3108  llvm::APSInt Width(32);
3109  Expr::EvalResult InitValue;
3110  if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
3111      !OriginalInit->Evaluate(InitValue, S.Context) ||
3112      !InitValue.Val.isInt())
3113    return false;
3114
3115  const llvm::APSInt &Value = InitValue.Val.getInt();
3116  unsigned OriginalWidth = Value.getBitWidth();
3117  unsigned FieldWidth = Width.getZExtValue();
3118
3119  if (OriginalWidth <= FieldWidth)
3120    return false;
3121
3122  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3123
3124  // It's fairly common to write values into signed bitfields
3125  // that, if sign-extended, would end up becoming a different
3126  // value.  We don't want to warn about that.
3127  if (Value.isSigned() && Value.isNegative())
3128    TruncatedValue = TruncatedValue.sext(OriginalWidth);
3129  else
3130    TruncatedValue = TruncatedValue.zext(OriginalWidth);
3131
3132  if (Value == TruncatedValue)
3133    return false;
3134
3135  std::string PrettyValue = Value.toString(10);
3136  std::string PrettyTrunc = TruncatedValue.toString(10);
3137
3138  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3139    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3140    << Init->getSourceRange();
3141
3142  return true;
3143}
3144
3145/// Analyze the given simple or compound assignment for warning-worthy
3146/// operations.
3147void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3148  // Just recurse on the LHS.
3149  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3150
3151  // We want to recurse on the RHS as normal unless we're assigning to
3152  // a bitfield.
3153  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3154    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3155                                  E->getOperatorLoc())) {
3156      // Recurse, ignoring any implicit conversions on the RHS.
3157      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3158                                        E->getOperatorLoc());
3159    }
3160  }
3161
3162  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3163}
3164
3165/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3166void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3167                     SourceLocation CContext, unsigned diag) {
3168  S.Diag(E->getExprLoc(), diag)
3169    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3170}
3171
3172/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3173void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3174                     unsigned diag) {
3175  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3176}
3177
3178/// Diagnose an implicit cast from a literal expression. Also attemps to supply
3179/// fixit hints when the cast wouldn't lose information to simply write the
3180/// expression with the expected type.
3181void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3182                                    SourceLocation CContext) {
3183  // Emit the primary warning first, then try to emit a fixit hint note if
3184  // reasonable.
3185  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3186    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3187
3188  const llvm::APFloat &Value = FL->getValue();
3189
3190  // Don't attempt to fix PPC double double literals.
3191  if (&Value.getSemantics() == &llvm::APFloat::PPCDoubleDouble)
3192    return;
3193
3194  // Try to convert this exactly to an integer.
3195  bool isExact = false;
3196  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3197                            T->hasUnsignedIntegerRepresentation());
3198  if (Value.convertToInteger(IntegerValue,
3199                             llvm::APFloat::rmTowardZero, &isExact)
3200      != llvm::APFloat::opOK || !isExact)
3201    return;
3202
3203  std::string LiteralValue = IntegerValue.toString(10);
3204  S.Diag(FL->getExprLoc(), diag::note_fix_integral_float_as_integer)
3205    << FixItHint::CreateReplacement(FL->getSourceRange(), LiteralValue);
3206}
3207
3208std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3209  if (!Range.Width) return "0";
3210
3211  llvm::APSInt ValueInRange = Value;
3212  ValueInRange.setIsSigned(!Range.NonNegative);
3213  ValueInRange = ValueInRange.trunc(Range.Width);
3214  return ValueInRange.toString(10);
3215}
3216
3217static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
3218  SourceManager &smgr = S.Context.getSourceManager();
3219  return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
3220}
3221
3222void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3223                             SourceLocation CC, bool *ICContext = 0) {
3224  if (E->isTypeDependent() || E->isValueDependent()) return;
3225
3226  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3227  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3228  if (Source == Target) return;
3229  if (Target->isDependentType()) return;
3230
3231  // If the conversion context location is invalid don't complain. We also
3232  // don't want to emit a warning if the issue occurs from the expansion of
3233  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3234  // delay this check as long as possible. Once we detect we are in that
3235  // scenario, we just return.
3236  if (CC.isInvalid())
3237    return;
3238
3239  // Diagnose implicit casts to bool.
3240  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
3241    if (isa<StringLiteral>(E))
3242      // Warn on string literal to bool.  Checks for string literals in logical
3243      // expressions, for instances, assert(0 && "error here"), is prevented
3244      // by a check in AnalyzeImplicitConversions().
3245      return DiagnoseImpCast(S, E, T, CC,
3246                             diag::warn_impcast_string_literal_to_bool);
3247    return; // Other casts to bool are not checked.
3248  }
3249
3250  // Strip vector types.
3251  if (isa<VectorType>(Source)) {
3252    if (!isa<VectorType>(Target)) {
3253      if (isFromSystemMacro(S, CC))
3254        return;
3255      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3256    }
3257
3258    // If the vector cast is cast between two vectors of the same size, it is
3259    // a bitcast, not a conversion.
3260    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3261      return;
3262
3263    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3264    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3265  }
3266
3267  // Strip complex types.
3268  if (isa<ComplexType>(Source)) {
3269    if (!isa<ComplexType>(Target)) {
3270      if (isFromSystemMacro(S, CC))
3271        return;
3272
3273      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3274    }
3275
3276    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3277    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3278  }
3279
3280  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3281  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3282
3283  // If the source is floating point...
3284  if (SourceBT && SourceBT->isFloatingPoint()) {
3285    // ...and the target is floating point...
3286    if (TargetBT && TargetBT->isFloatingPoint()) {
3287      // ...then warn if we're dropping FP rank.
3288
3289      // Builtin FP kinds are ordered by increasing FP rank.
3290      if (SourceBT->getKind() > TargetBT->getKind()) {
3291        // Don't warn about float constants that are precisely
3292        // representable in the target type.
3293        Expr::EvalResult result;
3294        if (E->Evaluate(result, S.Context)) {
3295          // Value might be a float, a float vector, or a float complex.
3296          if (IsSameFloatAfterCast(result.Val,
3297                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3298                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3299            return;
3300        }
3301
3302        if (isFromSystemMacro(S, CC))
3303          return;
3304
3305        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3306      }
3307      return;
3308    }
3309
3310    // If the target is integral, always warn.
3311    if ((TargetBT && TargetBT->isInteger())) {
3312      if (isFromSystemMacro(S, CC))
3313        return;
3314
3315      Expr *InnerE = E->IgnoreParenImpCasts();
3316      // We also want to warn on, e.g., "int i = -1.234"
3317      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
3318        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
3319          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
3320
3321      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3322        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3323      } else {
3324        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3325      }
3326    }
3327
3328    return;
3329  }
3330
3331  if (!Source->isIntegerType() || !Target->isIntegerType())
3332    return;
3333
3334  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3335           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3336    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3337        << E->getSourceRange() << clang::SourceRange(CC);
3338    return;
3339  }
3340
3341  IntRange SourceRange = GetExprRange(S.Context, E);
3342  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3343
3344  if (SourceRange.Width > TargetRange.Width) {
3345    // If the source is a constant, use a default-on diagnostic.
3346    // TODO: this should happen for bitfield stores, too.
3347    llvm::APSInt Value(32);
3348    if (E->isIntegerConstantExpr(Value, S.Context)) {
3349      if (isFromSystemMacro(S, CC))
3350        return;
3351
3352      std::string PrettySourceValue = Value.toString(10);
3353      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3354
3355      S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
3356        << PrettySourceValue << PrettyTargetValue
3357        << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
3358      return;
3359    }
3360
3361    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3362    if (isFromSystemMacro(S, CC))
3363      return;
3364
3365    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3366      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3367    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3368  }
3369
3370  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3371      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3372       SourceRange.Width == TargetRange.Width)) {
3373
3374    if (isFromSystemMacro(S, CC))
3375      return;
3376
3377    unsigned DiagID = diag::warn_impcast_integer_sign;
3378
3379    // Traditionally, gcc has warned about this under -Wsign-compare.
3380    // We also want to warn about it in -Wconversion.
3381    // So if -Wconversion is off, use a completely identical diagnostic
3382    // in the sign-compare group.
3383    // The conditional-checking code will
3384    if (ICContext) {
3385      DiagID = diag::warn_impcast_integer_sign_conditional;
3386      *ICContext = true;
3387    }
3388
3389    return DiagnoseImpCast(S, E, T, CC, DiagID);
3390  }
3391
3392  // Diagnose conversions between different enumeration types.
3393  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3394  // type, to give us better diagnostics.
3395  QualType SourceType = E->getType();
3396  if (!S.getLangOptions().CPlusPlus) {
3397    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3398      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3399        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3400        SourceType = S.Context.getTypeDeclType(Enum);
3401        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3402      }
3403  }
3404
3405  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3406    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3407      if ((SourceEnum->getDecl()->getIdentifier() ||
3408           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3409          (TargetEnum->getDecl()->getIdentifier() ||
3410           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3411          SourceEnum != TargetEnum) {
3412        if (isFromSystemMacro(S, CC))
3413          return;
3414
3415        return DiagnoseImpCast(S, E, SourceType, T, CC,
3416                               diag::warn_impcast_different_enum_types);
3417      }
3418
3419  return;
3420}
3421
3422void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3423
3424void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3425                             SourceLocation CC, bool &ICContext) {
3426  E = E->IgnoreParenImpCasts();
3427
3428  if (isa<ConditionalOperator>(E))
3429    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3430
3431  AnalyzeImplicitConversions(S, E, CC);
3432  if (E->getType() != T)
3433    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3434  return;
3435}
3436
3437void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3438  SourceLocation CC = E->getQuestionLoc();
3439
3440  AnalyzeImplicitConversions(S, E->getCond(), CC);
3441
3442  bool Suspicious = false;
3443  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3444  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3445
3446  // If -Wconversion would have warned about either of the candidates
3447  // for a signedness conversion to the context type...
3448  if (!Suspicious) return;
3449
3450  // ...but it's currently ignored...
3451  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3452                                 CC))
3453    return;
3454
3455  // ...then check whether it would have warned about either of the
3456  // candidates for a signedness conversion to the condition type.
3457  if (E->getType() == T) return;
3458
3459  Suspicious = false;
3460  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
3461                          E->getType(), CC, &Suspicious);
3462  if (!Suspicious)
3463    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
3464                            E->getType(), CC, &Suspicious);
3465}
3466
3467/// AnalyzeImplicitConversions - Find and report any interesting
3468/// implicit conversions in the given expression.  There are a couple
3469/// of competing diagnostics here, -Wconversion and -Wsign-compare.
3470void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
3471  QualType T = OrigE->getType();
3472  Expr *E = OrigE->IgnoreParenImpCasts();
3473
3474  // For conditional operators, we analyze the arguments as if they
3475  // were being fed directly into the output.
3476  if (isa<ConditionalOperator>(E)) {
3477    ConditionalOperator *CO = cast<ConditionalOperator>(E);
3478    CheckConditionalOperator(S, CO, T);
3479    return;
3480  }
3481
3482  // Go ahead and check any implicit conversions we might have skipped.
3483  // The non-canonical typecheck is just an optimization;
3484  // CheckImplicitConversion will filter out dead implicit conversions.
3485  if (E->getType() != T)
3486    CheckImplicitConversion(S, E, T, CC);
3487
3488  // Now continue drilling into this expression.
3489
3490  // Skip past explicit casts.
3491  if (isa<ExplicitCastExpr>(E)) {
3492    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
3493    return AnalyzeImplicitConversions(S, E, CC);
3494  }
3495
3496  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3497    // Do a somewhat different check with comparison operators.
3498    if (BO->isComparisonOp())
3499      return AnalyzeComparison(S, BO);
3500
3501    // And with assignments and compound assignments.
3502    if (BO->isAssignmentOp())
3503      return AnalyzeAssignment(S, BO);
3504  }
3505
3506  // These break the otherwise-useful invariant below.  Fortunately,
3507  // we don't really need to recurse into them, because any internal
3508  // expressions should have been analyzed already when they were
3509  // built into statements.
3510  if (isa<StmtExpr>(E)) return;
3511
3512  // Don't descend into unevaluated contexts.
3513  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
3514
3515  // Now just recurse over the expression's children.
3516  CC = E->getExprLoc();
3517  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
3518  bool IsLogicalOperator = BO && BO->isLogicalOp();
3519  for (Stmt::child_range I = E->children(); I; ++I) {
3520    Expr *ChildExpr = cast<Expr>(*I);
3521    if (IsLogicalOperator &&
3522        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
3523      // Ignore checking string literals that are in logical operators.
3524      continue;
3525    AnalyzeImplicitConversions(S, ChildExpr, CC);
3526  }
3527}
3528
3529} // end anonymous namespace
3530
3531/// Diagnoses "dangerous" implicit conversions within the given
3532/// expression (which is a full expression).  Implements -Wconversion
3533/// and -Wsign-compare.
3534///
3535/// \param CC the "context" location of the implicit conversion, i.e.
3536///   the most location of the syntactic entity requiring the implicit
3537///   conversion
3538void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
3539  // Don't diagnose in unevaluated contexts.
3540  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
3541    return;
3542
3543  // Don't diagnose for value- or type-dependent expressions.
3544  if (E->isTypeDependent() || E->isValueDependent())
3545    return;
3546
3547  // Check for array bounds violations in cases where the check isn't triggered
3548  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
3549  // ArraySubscriptExpr is on the RHS of a variable initialization.
3550  CheckArrayAccess(E);
3551
3552  // This is not the right CC for (e.g.) a variable initialization.
3553  AnalyzeImplicitConversions(*this, E, CC);
3554}
3555
3556void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
3557                                       FieldDecl *BitField,
3558                                       Expr *Init) {
3559  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
3560}
3561
3562/// CheckParmsForFunctionDef - Check that the parameters of the given
3563/// function are appropriate for the definition of a function. This
3564/// takes care of any checks that cannot be performed on the
3565/// declaration itself, e.g., that the types of each of the function
3566/// parameters are complete.
3567bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
3568                                    bool CheckParameterNames) {
3569  bool HasInvalidParm = false;
3570  for (; P != PEnd; ++P) {
3571    ParmVarDecl *Param = *P;
3572
3573    // C99 6.7.5.3p4: the parameters in a parameter type list in a
3574    // function declarator that is part of a function definition of
3575    // that function shall not have incomplete type.
3576    //
3577    // This is also C++ [dcl.fct]p6.
3578    if (!Param->isInvalidDecl() &&
3579        RequireCompleteType(Param->getLocation(), Param->getType(),
3580                               diag::err_typecheck_decl_incomplete_type)) {
3581      Param->setInvalidDecl();
3582      HasInvalidParm = true;
3583    }
3584
3585    // C99 6.9.1p5: If the declarator includes a parameter type list, the
3586    // declaration of each parameter shall include an identifier.
3587    if (CheckParameterNames &&
3588        Param->getIdentifier() == 0 &&
3589        !Param->isImplicit() &&
3590        !getLangOptions().CPlusPlus)
3591      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3592
3593    // C99 6.7.5.3p12:
3594    //   If the function declarator is not part of a definition of that
3595    //   function, parameters may have incomplete type and may use the [*]
3596    //   notation in their sequences of declarator specifiers to specify
3597    //   variable length array types.
3598    QualType PType = Param->getOriginalType();
3599    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3600      if (AT->getSizeModifier() == ArrayType::Star) {
3601        // FIXME: This diagnosic should point the the '[*]' if source-location
3602        // information is added for it.
3603        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3604      }
3605    }
3606  }
3607
3608  return HasInvalidParm;
3609}
3610
3611/// CheckCastAlign - Implements -Wcast-align, which warns when a
3612/// pointer cast increases the alignment requirements.
3613void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3614  // This is actually a lot of work to potentially be doing on every
3615  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3616  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
3617                                          TRange.getBegin())
3618        == DiagnosticsEngine::Ignored)
3619    return;
3620
3621  // Ignore dependent types.
3622  if (T->isDependentType() || Op->getType()->isDependentType())
3623    return;
3624
3625  // Require that the destination be a pointer type.
3626  const PointerType *DestPtr = T->getAs<PointerType>();
3627  if (!DestPtr) return;
3628
3629  // If the destination has alignment 1, we're done.
3630  QualType DestPointee = DestPtr->getPointeeType();
3631  if (DestPointee->isIncompleteType()) return;
3632  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3633  if (DestAlign.isOne()) return;
3634
3635  // Require that the source be a pointer type.
3636  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3637  if (!SrcPtr) return;
3638  QualType SrcPointee = SrcPtr->getPointeeType();
3639
3640  // Whitelist casts from cv void*.  We already implicitly
3641  // whitelisted casts to cv void*, since they have alignment 1.
3642  // Also whitelist casts involving incomplete types, which implicitly
3643  // includes 'void'.
3644  if (SrcPointee->isIncompleteType()) return;
3645
3646  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3647  if (SrcAlign >= DestAlign) return;
3648
3649  Diag(TRange.getBegin(), diag::warn_cast_align)
3650    << Op->getType() << T
3651    << static_cast<unsigned>(SrcAlign.getQuantity())
3652    << static_cast<unsigned>(DestAlign.getQuantity())
3653    << TRange << Op->getSourceRange();
3654}
3655
3656static const Type* getElementType(const Expr *BaseExpr) {
3657  const Type* EltType = BaseExpr->getType().getTypePtr();
3658  if (EltType->isAnyPointerType())
3659    return EltType->getPointeeType().getTypePtr();
3660  else if (EltType->isArrayType())
3661    return EltType->getBaseElementTypeUnsafe();
3662  return EltType;
3663}
3664
3665/// \brief Check whether this array fits the idiom of a size-one tail padded
3666/// array member of a struct.
3667///
3668/// We avoid emitting out-of-bounds access warnings for such arrays as they are
3669/// commonly used to emulate flexible arrays in C89 code.
3670static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
3671                                    const NamedDecl *ND) {
3672  if (Size != 1 || !ND) return false;
3673
3674  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
3675  if (!FD) return false;
3676
3677  // Don't consider sizes resulting from macro expansions or template argument
3678  // substitution to form C89 tail-padded arrays.
3679  ConstantArrayTypeLoc TL =
3680    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
3681  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
3682  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
3683    return false;
3684
3685  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
3686  if (!RD || !RD->isStruct())
3687    return false;
3688
3689  // See if this is the last field decl in the record.
3690  const Decl *D = FD;
3691  while ((D = D->getNextDeclInContext()))
3692    if (isa<FieldDecl>(D))
3693      return false;
3694  return true;
3695}
3696
3697void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
3698                            bool isSubscript, bool AllowOnePastEnd) {
3699  const Type* EffectiveType = getElementType(BaseExpr);
3700  BaseExpr = BaseExpr->IgnoreParenCasts();
3701  IndexExpr = IndexExpr->IgnoreParenCasts();
3702
3703  const ConstantArrayType *ArrayTy =
3704    Context.getAsConstantArrayType(BaseExpr->getType());
3705  if (!ArrayTy)
3706    return;
3707
3708  if (IndexExpr->isValueDependent())
3709    return;
3710  llvm::APSInt index;
3711  if (!IndexExpr->isIntegerConstantExpr(index, Context))
3712    return;
3713
3714  const NamedDecl *ND = NULL;
3715  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
3716    ND = dyn_cast<NamedDecl>(DRE->getDecl());
3717  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
3718    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
3719
3720  if (index.isUnsigned() || !index.isNegative()) {
3721    llvm::APInt size = ArrayTy->getSize();
3722    if (!size.isStrictlyPositive())
3723      return;
3724
3725    const Type* BaseType = getElementType(BaseExpr);
3726    if (BaseType != EffectiveType) {
3727      // Make sure we're comparing apples to apples when comparing index to size
3728      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
3729      uint64_t array_typesize = Context.getTypeSize(BaseType);
3730      // Handle ptrarith_typesize being zero, such as when casting to void*
3731      if (!ptrarith_typesize) ptrarith_typesize = 1;
3732      if (ptrarith_typesize != array_typesize) {
3733        // There's a cast to a different size type involved
3734        uint64_t ratio = array_typesize / ptrarith_typesize;
3735        // TODO: Be smarter about handling cases where array_typesize is not a
3736        // multiple of ptrarith_typesize
3737        if (ptrarith_typesize * ratio == array_typesize)
3738          size *= llvm::APInt(size.getBitWidth(), ratio);
3739      }
3740    }
3741
3742    if (size.getBitWidth() > index.getBitWidth())
3743      index = index.sext(size.getBitWidth());
3744    else if (size.getBitWidth() < index.getBitWidth())
3745      size = size.sext(index.getBitWidth());
3746
3747    // For array subscripting the index must be less than size, but for pointer
3748    // arithmetic also allow the index (offset) to be equal to size since
3749    // computing the next address after the end of the array is legal and
3750    // commonly done e.g. in C++ iterators and range-based for loops.
3751    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
3752      return;
3753
3754    // Also don't warn for arrays of size 1 which are members of some
3755    // structure. These are often used to approximate flexible arrays in C89
3756    // code.
3757    if (IsTailPaddedMemberArray(*this, size, ND))
3758      return;
3759
3760    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
3761    if (isSubscript)
3762      DiagID = diag::warn_array_index_exceeds_bounds;
3763
3764    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
3765                        PDiag(DiagID) << index.toString(10, true)
3766                          << size.toString(10, true)
3767                          << (unsigned)size.getLimitedValue(~0U)
3768                          << IndexExpr->getSourceRange());
3769  } else {
3770    unsigned DiagID = diag::warn_array_index_precedes_bounds;
3771    if (!isSubscript) {
3772      DiagID = diag::warn_ptr_arith_precedes_bounds;
3773      if (index.isNegative()) index = -index;
3774    }
3775
3776    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
3777                        PDiag(DiagID) << index.toString(10, true)
3778                          << IndexExpr->getSourceRange());
3779  }
3780
3781  if (ND)
3782    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
3783                        PDiag(diag::note_array_index_out_of_bounds)
3784                          << ND->getDeclName());
3785}
3786
3787void Sema::CheckArrayAccess(const Expr *expr) {
3788  int AllowOnePastEnd = 0;
3789  while (expr) {
3790    expr = expr->IgnoreParenImpCasts();
3791    switch (expr->getStmtClass()) {
3792      case Stmt::ArraySubscriptExprClass: {
3793        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
3794        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), true,
3795                         AllowOnePastEnd > 0);
3796        return;
3797      }
3798      case Stmt::UnaryOperatorClass: {
3799        // Only unwrap the * and & unary operators
3800        const UnaryOperator *UO = cast<UnaryOperator>(expr);
3801        expr = UO->getSubExpr();
3802        switch (UO->getOpcode()) {
3803          case UO_AddrOf:
3804            AllowOnePastEnd++;
3805            break;
3806          case UO_Deref:
3807            AllowOnePastEnd--;
3808            break;
3809          default:
3810            return;
3811        }
3812        break;
3813      }
3814      case Stmt::ConditionalOperatorClass: {
3815        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
3816        if (const Expr *lhs = cond->getLHS())
3817          CheckArrayAccess(lhs);
3818        if (const Expr *rhs = cond->getRHS())
3819          CheckArrayAccess(rhs);
3820        return;
3821      }
3822      default:
3823        return;
3824    }
3825  }
3826}
3827
3828//===--- CHECK: Objective-C retain cycles ----------------------------------//
3829
3830namespace {
3831  struct RetainCycleOwner {
3832    RetainCycleOwner() : Variable(0), Indirect(false) {}
3833    VarDecl *Variable;
3834    SourceRange Range;
3835    SourceLocation Loc;
3836    bool Indirect;
3837
3838    void setLocsFrom(Expr *e) {
3839      Loc = e->getExprLoc();
3840      Range = e->getSourceRange();
3841    }
3842  };
3843}
3844
3845/// Consider whether capturing the given variable can possibly lead to
3846/// a retain cycle.
3847static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
3848  // In ARC, it's captured strongly iff the variable has __strong
3849  // lifetime.  In MRR, it's captured strongly if the variable is
3850  // __block and has an appropriate type.
3851  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3852    return false;
3853
3854  owner.Variable = var;
3855  owner.setLocsFrom(ref);
3856  return true;
3857}
3858
3859static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
3860  while (true) {
3861    e = e->IgnoreParens();
3862    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
3863      switch (cast->getCastKind()) {
3864      case CK_BitCast:
3865      case CK_LValueBitCast:
3866      case CK_LValueToRValue:
3867      case CK_ARCReclaimReturnedObject:
3868        e = cast->getSubExpr();
3869        continue;
3870
3871      case CK_GetObjCProperty: {
3872        // Bail out if this isn't a strong explicit property.
3873        const ObjCPropertyRefExpr *pre = cast->getSubExpr()->getObjCProperty();
3874        if (pre->isImplicitProperty()) return false;
3875        ObjCPropertyDecl *property = pre->getExplicitProperty();
3876        if (!property->isRetaining() &&
3877            !(property->getPropertyIvarDecl() &&
3878              property->getPropertyIvarDecl()->getType()
3879                .getObjCLifetime() == Qualifiers::OCL_Strong))
3880          return false;
3881
3882        owner.Indirect = true;
3883        e = const_cast<Expr*>(pre->getBase());
3884        continue;
3885      }
3886
3887      default:
3888        return false;
3889      }
3890    }
3891
3892    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
3893      ObjCIvarDecl *ivar = ref->getDecl();
3894      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3895        return false;
3896
3897      // Try to find a retain cycle in the base.
3898      if (!findRetainCycleOwner(ref->getBase(), owner))
3899        return false;
3900
3901      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
3902      owner.Indirect = true;
3903      return true;
3904    }
3905
3906    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
3907      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
3908      if (!var) return false;
3909      return considerVariable(var, ref, owner);
3910    }
3911
3912    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
3913      owner.Variable = ref->getDecl();
3914      owner.setLocsFrom(ref);
3915      return true;
3916    }
3917
3918    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
3919      if (member->isArrow()) return false;
3920
3921      // Don't count this as an indirect ownership.
3922      e = member->getBase();
3923      continue;
3924    }
3925
3926    // Array ivars?
3927
3928    return false;
3929  }
3930}
3931
3932namespace {
3933  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
3934    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
3935      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
3936        Variable(variable), Capturer(0) {}
3937
3938    VarDecl *Variable;
3939    Expr *Capturer;
3940
3941    void VisitDeclRefExpr(DeclRefExpr *ref) {
3942      if (ref->getDecl() == Variable && !Capturer)
3943        Capturer = ref;
3944    }
3945
3946    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
3947      if (ref->getDecl() == Variable && !Capturer)
3948        Capturer = ref;
3949    }
3950
3951    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
3952      if (Capturer) return;
3953      Visit(ref->getBase());
3954      if (Capturer && ref->isFreeIvar())
3955        Capturer = ref;
3956    }
3957
3958    void VisitBlockExpr(BlockExpr *block) {
3959      // Look inside nested blocks
3960      if (block->getBlockDecl()->capturesVariable(Variable))
3961        Visit(block->getBlockDecl()->getBody());
3962    }
3963  };
3964}
3965
3966/// Check whether the given argument is a block which captures a
3967/// variable.
3968static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
3969  assert(owner.Variable && owner.Loc.isValid());
3970
3971  e = e->IgnoreParenCasts();
3972  BlockExpr *block = dyn_cast<BlockExpr>(e);
3973  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
3974    return 0;
3975
3976  FindCaptureVisitor visitor(S.Context, owner.Variable);
3977  visitor.Visit(block->getBlockDecl()->getBody());
3978  return visitor.Capturer;
3979}
3980
3981static void diagnoseRetainCycle(Sema &S, Expr *capturer,
3982                                RetainCycleOwner &owner) {
3983  assert(capturer);
3984  assert(owner.Variable && owner.Loc.isValid());
3985
3986  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
3987    << owner.Variable << capturer->getSourceRange();
3988  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
3989    << owner.Indirect << owner.Range;
3990}
3991
3992/// Check for a keyword selector that starts with the word 'add' or
3993/// 'set'.
3994static bool isSetterLikeSelector(Selector sel) {
3995  if (sel.isUnarySelector()) return false;
3996
3997  StringRef str = sel.getNameForSlot(0);
3998  while (!str.empty() && str.front() == '_') str = str.substr(1);
3999  if (str.startswith("set") || str.startswith("add"))
4000    str = str.substr(3);
4001  else
4002    return false;
4003
4004  if (str.empty()) return true;
4005  return !islower(str.front());
4006}
4007
4008/// Check a message send to see if it's likely to cause a retain cycle.
4009void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4010  // Only check instance methods whose selector looks like a setter.
4011  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4012    return;
4013
4014  // Try to find a variable that the receiver is strongly owned by.
4015  RetainCycleOwner owner;
4016  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4017    if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
4018      return;
4019  } else {
4020    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4021    owner.Variable = getCurMethodDecl()->getSelfDecl();
4022    owner.Loc = msg->getSuperLoc();
4023    owner.Range = msg->getSuperLoc();
4024  }
4025
4026  // Check whether the receiver is captured by any of the arguments.
4027  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4028    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4029      return diagnoseRetainCycle(*this, capturer, owner);
4030}
4031
4032/// Check a property assign to see if it's likely to cause a retain cycle.
4033void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4034  RetainCycleOwner owner;
4035  if (!findRetainCycleOwner(receiver, owner))
4036    return;
4037
4038  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4039    diagnoseRetainCycle(*this, capturer, owner);
4040}
4041
4042bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4043                              QualType LHS, Expr *RHS) {
4044  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4045  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4046    return false;
4047  // strip off any implicit cast added to get to the one arc-specific
4048  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4049    if (cast->getCastKind() == CK_ARCConsumeObject) {
4050      Diag(Loc, diag::warn_arc_retained_assign)
4051        << (LT == Qualifiers::OCL_ExplicitNone)
4052        << RHS->getSourceRange();
4053      return true;
4054    }
4055    RHS = cast->getSubExpr();
4056  }
4057  return false;
4058}
4059
4060void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4061                              Expr *LHS, Expr *RHS) {
4062  QualType LHSType = LHS->getType();
4063  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4064    return;
4065  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4066  // FIXME. Check for other life times.
4067  if (LT != Qualifiers::OCL_None)
4068    return;
4069
4070  if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(LHS)) {
4071    if (PRE->isImplicitProperty())
4072      return;
4073    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4074    if (!PD)
4075      return;
4076
4077    unsigned Attributes = PD->getPropertyAttributes();
4078    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign)
4079      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4080        if (cast->getCastKind() == CK_ARCConsumeObject) {
4081          Diag(Loc, diag::warn_arc_retained_property_assign)
4082          << RHS->getSourceRange();
4083          return;
4084        }
4085        RHS = cast->getSubExpr();
4086      }
4087  }
4088}
4089