SemaChecking.cpp revision 4e1a82c14cba135ebd86bcc914fcbbc524d70a61
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/SmallBitVector.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98/// Check that the argument to __builtin_addressof is a glvalue, and set the
99/// result type to the corresponding pointer type.
100static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101  if (checkArgCount(S, TheCall, 1))
102    return true;
103
104  ExprResult Arg(S.Owned(TheCall->getArg(0)));
105  QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106  if (ResultType.isNull())
107    return true;
108
109  TheCall->setArg(0, Arg.take());
110  TheCall->setType(ResultType);
111  return false;
112}
113
114ExprResult
115Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
116  ExprResult TheCallResult(Owned(TheCall));
117
118  // Find out if any arguments are required to be integer constant expressions.
119  unsigned ICEArguments = 0;
120  ASTContext::GetBuiltinTypeError Error;
121  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
122  if (Error != ASTContext::GE_None)
123    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
124
125  // If any arguments are required to be ICE's, check and diagnose.
126  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
127    // Skip arguments not required to be ICE's.
128    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
129
130    llvm::APSInt Result;
131    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
132      return true;
133    ICEArguments &= ~(1 << ArgNo);
134  }
135
136  switch (BuiltinID) {
137  case Builtin::BI__builtin___CFStringMakeConstantString:
138    assert(TheCall->getNumArgs() == 1 &&
139           "Wrong # arguments to builtin CFStringMakeConstantString");
140    if (CheckObjCString(TheCall->getArg(0)))
141      return ExprError();
142    break;
143  case Builtin::BI__builtin_stdarg_start:
144  case Builtin::BI__builtin_va_start:
145    if (SemaBuiltinVAStart(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_isgreater:
149  case Builtin::BI__builtin_isgreaterequal:
150  case Builtin::BI__builtin_isless:
151  case Builtin::BI__builtin_islessequal:
152  case Builtin::BI__builtin_islessgreater:
153  case Builtin::BI__builtin_isunordered:
154    if (SemaBuiltinUnorderedCompare(TheCall))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_fpclassify:
158    if (SemaBuiltinFPClassification(TheCall, 6))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_isfinite:
162  case Builtin::BI__builtin_isinf:
163  case Builtin::BI__builtin_isinf_sign:
164  case Builtin::BI__builtin_isnan:
165  case Builtin::BI__builtin_isnormal:
166    if (SemaBuiltinFPClassification(TheCall, 1))
167      return ExprError();
168    break;
169  case Builtin::BI__builtin_shufflevector:
170    return SemaBuiltinShuffleVector(TheCall);
171    // TheCall will be freed by the smart pointer here, but that's fine, since
172    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
173  case Builtin::BI__builtin_prefetch:
174    if (SemaBuiltinPrefetch(TheCall))
175      return ExprError();
176    break;
177  case Builtin::BI__builtin_object_size:
178    if (SemaBuiltinObjectSize(TheCall))
179      return ExprError();
180    break;
181  case Builtin::BI__builtin_longjmp:
182    if (SemaBuiltinLongjmp(TheCall))
183      return ExprError();
184    break;
185
186  case Builtin::BI__builtin_classify_type:
187    if (checkArgCount(*this, TheCall, 1)) return true;
188    TheCall->setType(Context.IntTy);
189    break;
190  case Builtin::BI__builtin_constant_p:
191    if (checkArgCount(*this, TheCall, 1)) return true;
192    TheCall->setType(Context.IntTy);
193    break;
194  case Builtin::BI__sync_fetch_and_add:
195  case Builtin::BI__sync_fetch_and_add_1:
196  case Builtin::BI__sync_fetch_and_add_2:
197  case Builtin::BI__sync_fetch_and_add_4:
198  case Builtin::BI__sync_fetch_and_add_8:
199  case Builtin::BI__sync_fetch_and_add_16:
200  case Builtin::BI__sync_fetch_and_sub:
201  case Builtin::BI__sync_fetch_and_sub_1:
202  case Builtin::BI__sync_fetch_and_sub_2:
203  case Builtin::BI__sync_fetch_and_sub_4:
204  case Builtin::BI__sync_fetch_and_sub_8:
205  case Builtin::BI__sync_fetch_and_sub_16:
206  case Builtin::BI__sync_fetch_and_or:
207  case Builtin::BI__sync_fetch_and_or_1:
208  case Builtin::BI__sync_fetch_and_or_2:
209  case Builtin::BI__sync_fetch_and_or_4:
210  case Builtin::BI__sync_fetch_and_or_8:
211  case Builtin::BI__sync_fetch_and_or_16:
212  case Builtin::BI__sync_fetch_and_and:
213  case Builtin::BI__sync_fetch_and_and_1:
214  case Builtin::BI__sync_fetch_and_and_2:
215  case Builtin::BI__sync_fetch_and_and_4:
216  case Builtin::BI__sync_fetch_and_and_8:
217  case Builtin::BI__sync_fetch_and_and_16:
218  case Builtin::BI__sync_fetch_and_xor:
219  case Builtin::BI__sync_fetch_and_xor_1:
220  case Builtin::BI__sync_fetch_and_xor_2:
221  case Builtin::BI__sync_fetch_and_xor_4:
222  case Builtin::BI__sync_fetch_and_xor_8:
223  case Builtin::BI__sync_fetch_and_xor_16:
224  case Builtin::BI__sync_add_and_fetch:
225  case Builtin::BI__sync_add_and_fetch_1:
226  case Builtin::BI__sync_add_and_fetch_2:
227  case Builtin::BI__sync_add_and_fetch_4:
228  case Builtin::BI__sync_add_and_fetch_8:
229  case Builtin::BI__sync_add_and_fetch_16:
230  case Builtin::BI__sync_sub_and_fetch:
231  case Builtin::BI__sync_sub_and_fetch_1:
232  case Builtin::BI__sync_sub_and_fetch_2:
233  case Builtin::BI__sync_sub_and_fetch_4:
234  case Builtin::BI__sync_sub_and_fetch_8:
235  case Builtin::BI__sync_sub_and_fetch_16:
236  case Builtin::BI__sync_and_and_fetch:
237  case Builtin::BI__sync_and_and_fetch_1:
238  case Builtin::BI__sync_and_and_fetch_2:
239  case Builtin::BI__sync_and_and_fetch_4:
240  case Builtin::BI__sync_and_and_fetch_8:
241  case Builtin::BI__sync_and_and_fetch_16:
242  case Builtin::BI__sync_or_and_fetch:
243  case Builtin::BI__sync_or_and_fetch_1:
244  case Builtin::BI__sync_or_and_fetch_2:
245  case Builtin::BI__sync_or_and_fetch_4:
246  case Builtin::BI__sync_or_and_fetch_8:
247  case Builtin::BI__sync_or_and_fetch_16:
248  case Builtin::BI__sync_xor_and_fetch:
249  case Builtin::BI__sync_xor_and_fetch_1:
250  case Builtin::BI__sync_xor_and_fetch_2:
251  case Builtin::BI__sync_xor_and_fetch_4:
252  case Builtin::BI__sync_xor_and_fetch_8:
253  case Builtin::BI__sync_xor_and_fetch_16:
254  case Builtin::BI__sync_val_compare_and_swap:
255  case Builtin::BI__sync_val_compare_and_swap_1:
256  case Builtin::BI__sync_val_compare_and_swap_2:
257  case Builtin::BI__sync_val_compare_and_swap_4:
258  case Builtin::BI__sync_val_compare_and_swap_8:
259  case Builtin::BI__sync_val_compare_and_swap_16:
260  case Builtin::BI__sync_bool_compare_and_swap:
261  case Builtin::BI__sync_bool_compare_and_swap_1:
262  case Builtin::BI__sync_bool_compare_and_swap_2:
263  case Builtin::BI__sync_bool_compare_and_swap_4:
264  case Builtin::BI__sync_bool_compare_and_swap_8:
265  case Builtin::BI__sync_bool_compare_and_swap_16:
266  case Builtin::BI__sync_lock_test_and_set:
267  case Builtin::BI__sync_lock_test_and_set_1:
268  case Builtin::BI__sync_lock_test_and_set_2:
269  case Builtin::BI__sync_lock_test_and_set_4:
270  case Builtin::BI__sync_lock_test_and_set_8:
271  case Builtin::BI__sync_lock_test_and_set_16:
272  case Builtin::BI__sync_lock_release:
273  case Builtin::BI__sync_lock_release_1:
274  case Builtin::BI__sync_lock_release_2:
275  case Builtin::BI__sync_lock_release_4:
276  case Builtin::BI__sync_lock_release_8:
277  case Builtin::BI__sync_lock_release_16:
278  case Builtin::BI__sync_swap:
279  case Builtin::BI__sync_swap_1:
280  case Builtin::BI__sync_swap_2:
281  case Builtin::BI__sync_swap_4:
282  case Builtin::BI__sync_swap_8:
283  case Builtin::BI__sync_swap_16:
284    return SemaBuiltinAtomicOverloaded(TheCallResult);
285#define BUILTIN(ID, TYPE, ATTRS)
286#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
287  case Builtin::BI##ID: \
288    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
289#include "clang/Basic/Builtins.def"
290  case Builtin::BI__builtin_annotation:
291    if (SemaBuiltinAnnotation(*this, TheCall))
292      return ExprError();
293    break;
294  case Builtin::BI__builtin_addressof:
295    if (SemaBuiltinAddressof(*this, TheCall))
296      return ExprError();
297    break;
298  }
299
300  // Since the target specific builtins for each arch overlap, only check those
301  // of the arch we are compiling for.
302  if (BuiltinID >= Builtin::FirstTSBuiltin) {
303    switch (Context.getTargetInfo().getTriple().getArch()) {
304      case llvm::Triple::arm:
305      case llvm::Triple::thumb:
306        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
307          return ExprError();
308        break;
309      case llvm::Triple::aarch64:
310        if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
311          return ExprError();
312        break;
313      case llvm::Triple::mips:
314      case llvm::Triple::mipsel:
315      case llvm::Triple::mips64:
316      case llvm::Triple::mips64el:
317        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
318          return ExprError();
319        break;
320      default:
321        break;
322    }
323  }
324
325  return TheCallResult;
326}
327
328// Get the valid immediate range for the specified NEON type code.
329static unsigned RFT(unsigned t, bool shift = false) {
330  NeonTypeFlags Type(t);
331  int IsQuad = Type.isQuad();
332  switch (Type.getEltType()) {
333  case NeonTypeFlags::Int8:
334  case NeonTypeFlags::Poly8:
335    return shift ? 7 : (8 << IsQuad) - 1;
336  case NeonTypeFlags::Int16:
337  case NeonTypeFlags::Poly16:
338    return shift ? 15 : (4 << IsQuad) - 1;
339  case NeonTypeFlags::Int32:
340    return shift ? 31 : (2 << IsQuad) - 1;
341  case NeonTypeFlags::Int64:
342    return shift ? 63 : (1 << IsQuad) - 1;
343  case NeonTypeFlags::Float16:
344    assert(!shift && "cannot shift float types!");
345    return (4 << IsQuad) - 1;
346  case NeonTypeFlags::Float32:
347    assert(!shift && "cannot shift float types!");
348    return (2 << IsQuad) - 1;
349  case NeonTypeFlags::Float64:
350    assert(!shift && "cannot shift float types!");
351    return (1 << IsQuad) - 1;
352  }
353  llvm_unreachable("Invalid NeonTypeFlag!");
354}
355
356/// getNeonEltType - Return the QualType corresponding to the elements of
357/// the vector type specified by the NeonTypeFlags.  This is used to check
358/// the pointer arguments for Neon load/store intrinsics.
359static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
360  switch (Flags.getEltType()) {
361  case NeonTypeFlags::Int8:
362    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
363  case NeonTypeFlags::Int16:
364    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
365  case NeonTypeFlags::Int32:
366    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
367  case NeonTypeFlags::Int64:
368    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
369  case NeonTypeFlags::Poly8:
370    return Context.SignedCharTy;
371  case NeonTypeFlags::Poly16:
372    return Context.ShortTy;
373  case NeonTypeFlags::Float16:
374    return Context.UnsignedShortTy;
375  case NeonTypeFlags::Float32:
376    return Context.FloatTy;
377  case NeonTypeFlags::Float64:
378    return Context.DoubleTy;
379  }
380  llvm_unreachable("Invalid NeonTypeFlag!");
381}
382
383bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
384                                           CallExpr *TheCall) {
385
386  llvm::APSInt Result;
387
388  uint64_t mask = 0;
389  unsigned TV = 0;
390  int PtrArgNum = -1;
391  bool HasConstPtr = false;
392  switch (BuiltinID) {
393#define GET_NEON_AARCH64_OVERLOAD_CHECK
394#include "clang/Basic/arm_neon.inc"
395#undef GET_NEON_AARCH64_OVERLOAD_CHECK
396  }
397
398  // For NEON intrinsics which are overloaded on vector element type, validate
399  // the immediate which specifies which variant to emit.
400  unsigned ImmArg = TheCall->getNumArgs() - 1;
401  if (mask) {
402    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
403      return true;
404
405    TV = Result.getLimitedValue(64);
406    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
407      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
408             << TheCall->getArg(ImmArg)->getSourceRange();
409  }
410
411  if (PtrArgNum >= 0) {
412    // Check that pointer arguments have the specified type.
413    Expr *Arg = TheCall->getArg(PtrArgNum);
414    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
415      Arg = ICE->getSubExpr();
416    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
417    QualType RHSTy = RHS.get()->getType();
418    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
419    if (HasConstPtr)
420      EltTy = EltTy.withConst();
421    QualType LHSTy = Context.getPointerType(EltTy);
422    AssignConvertType ConvTy;
423    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
424    if (RHS.isInvalid())
425      return true;
426    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
427                                 RHS.get(), AA_Assigning))
428      return true;
429  }
430
431  // For NEON intrinsics which take an immediate value as part of the
432  // instruction, range check them here.
433  unsigned i = 0, l = 0, u = 0;
434  switch (BuiltinID) {
435  default:
436    return false;
437#define GET_NEON_AARCH64_IMMEDIATE_CHECK
438#include "clang/Basic/arm_neon.inc"
439#undef GET_NEON_AARCH64_IMMEDIATE_CHECK
440  }
441  ;
442
443  // We can't check the value of a dependent argument.
444  if (TheCall->getArg(i)->isTypeDependent() ||
445      TheCall->getArg(i)->isValueDependent())
446    return false;
447
448  // Check that the immediate argument is actually a constant.
449  if (SemaBuiltinConstantArg(TheCall, i, Result))
450    return true;
451
452  // Range check against the upper/lower values for this isntruction.
453  unsigned Val = Result.getZExtValue();
454  if (Val < l || Val > (u + l))
455    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
456           << l << u + l << TheCall->getArg(i)->getSourceRange();
457
458  return false;
459}
460
461bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall) {
462  assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
463          BuiltinID == ARM::BI__builtin_arm_strex) &&
464         "unexpected ARM builtin");
465  bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex;
466
467  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
468
469  // Ensure that we have the proper number of arguments.
470  if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
471    return true;
472
473  // Inspect the pointer argument of the atomic builtin.  This should always be
474  // a pointer type, whose element is an integral scalar or pointer type.
475  // Because it is a pointer type, we don't have to worry about any implicit
476  // casts here.
477  Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
478  ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
479  if (PointerArgRes.isInvalid())
480    return true;
481  PointerArg = PointerArgRes.take();
482
483  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
484  if (!pointerType) {
485    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
486      << PointerArg->getType() << PointerArg->getSourceRange();
487    return true;
488  }
489
490  // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
491  // task is to insert the appropriate casts into the AST. First work out just
492  // what the appropriate type is.
493  QualType ValType = pointerType->getPointeeType();
494  QualType AddrType = ValType.getUnqualifiedType().withVolatile();
495  if (IsLdrex)
496    AddrType.addConst();
497
498  // Issue a warning if the cast is dodgy.
499  CastKind CastNeeded = CK_NoOp;
500  if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
501    CastNeeded = CK_BitCast;
502    Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
503      << PointerArg->getType()
504      << Context.getPointerType(AddrType)
505      << AA_Passing << PointerArg->getSourceRange();
506  }
507
508  // Finally, do the cast and replace the argument with the corrected version.
509  AddrType = Context.getPointerType(AddrType);
510  PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
511  if (PointerArgRes.isInvalid())
512    return true;
513  PointerArg = PointerArgRes.take();
514
515  TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
516
517  // In general, we allow ints, floats and pointers to be loaded and stored.
518  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
519      !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
520    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
521      << PointerArg->getType() << PointerArg->getSourceRange();
522    return true;
523  }
524
525  // But ARM doesn't have instructions to deal with 128-bit versions.
526  if (Context.getTypeSize(ValType) > 64) {
527    Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
528      << PointerArg->getType() << PointerArg->getSourceRange();
529    return true;
530  }
531
532  switch (ValType.getObjCLifetime()) {
533  case Qualifiers::OCL_None:
534  case Qualifiers::OCL_ExplicitNone:
535    // okay
536    break;
537
538  case Qualifiers::OCL_Weak:
539  case Qualifiers::OCL_Strong:
540  case Qualifiers::OCL_Autoreleasing:
541    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
542      << ValType << PointerArg->getSourceRange();
543    return true;
544  }
545
546
547  if (IsLdrex) {
548    TheCall->setType(ValType);
549    return false;
550  }
551
552  // Initialize the argument to be stored.
553  ExprResult ValArg = TheCall->getArg(0);
554  InitializedEntity Entity = InitializedEntity::InitializeParameter(
555      Context, ValType, /*consume*/ false);
556  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
557  if (ValArg.isInvalid())
558    return true;
559
560  TheCall->setArg(0, ValArg.get());
561  return false;
562}
563
564bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
565  llvm::APSInt Result;
566
567  if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
568      BuiltinID == ARM::BI__builtin_arm_strex) {
569    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall);
570  }
571
572  uint64_t mask = 0;
573  unsigned TV = 0;
574  int PtrArgNum = -1;
575  bool HasConstPtr = false;
576  switch (BuiltinID) {
577#define GET_NEON_OVERLOAD_CHECK
578#include "clang/Basic/arm_neon.inc"
579#undef GET_NEON_OVERLOAD_CHECK
580  }
581
582  // For NEON intrinsics which are overloaded on vector element type, validate
583  // the immediate which specifies which variant to emit.
584  unsigned ImmArg = TheCall->getNumArgs()-1;
585  if (mask) {
586    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
587      return true;
588
589    TV = Result.getLimitedValue(64);
590    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
591      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
592        << TheCall->getArg(ImmArg)->getSourceRange();
593  }
594
595  if (PtrArgNum >= 0) {
596    // Check that pointer arguments have the specified type.
597    Expr *Arg = TheCall->getArg(PtrArgNum);
598    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
599      Arg = ICE->getSubExpr();
600    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
601    QualType RHSTy = RHS.get()->getType();
602    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
603    if (HasConstPtr)
604      EltTy = EltTy.withConst();
605    QualType LHSTy = Context.getPointerType(EltTy);
606    AssignConvertType ConvTy;
607    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
608    if (RHS.isInvalid())
609      return true;
610    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
611                                 RHS.get(), AA_Assigning))
612      return true;
613  }
614
615  // For NEON intrinsics which take an immediate value as part of the
616  // instruction, range check them here.
617  unsigned i = 0, l = 0, u = 0;
618  switch (BuiltinID) {
619  default: return false;
620  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
621  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
622  case ARM::BI__builtin_arm_vcvtr_f:
623  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
624#define GET_NEON_IMMEDIATE_CHECK
625#include "clang/Basic/arm_neon.inc"
626#undef GET_NEON_IMMEDIATE_CHECK
627  };
628
629  // We can't check the value of a dependent argument.
630  if (TheCall->getArg(i)->isTypeDependent() ||
631      TheCall->getArg(i)->isValueDependent())
632    return false;
633
634  // Check that the immediate argument is actually a constant.
635  if (SemaBuiltinConstantArg(TheCall, i, Result))
636    return true;
637
638  // Range check against the upper/lower values for this isntruction.
639  unsigned Val = Result.getZExtValue();
640  if (Val < l || Val > (u + l))
641    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
642      << l << u+l << TheCall->getArg(i)->getSourceRange();
643
644  // FIXME: VFP Intrinsics should error if VFP not present.
645  return false;
646}
647
648bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
649  unsigned i = 0, l = 0, u = 0;
650  switch (BuiltinID) {
651  default: return false;
652  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
653  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
654  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
655  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
656  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
657  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
658  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
659  };
660
661  // We can't check the value of a dependent argument.
662  if (TheCall->getArg(i)->isTypeDependent() ||
663      TheCall->getArg(i)->isValueDependent())
664    return false;
665
666  // Check that the immediate argument is actually a constant.
667  llvm::APSInt Result;
668  if (SemaBuiltinConstantArg(TheCall, i, Result))
669    return true;
670
671  // Range check against the upper/lower values for this instruction.
672  unsigned Val = Result.getZExtValue();
673  if (Val < l || Val > u)
674    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
675      << l << u << TheCall->getArg(i)->getSourceRange();
676
677  return false;
678}
679
680/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
681/// parameter with the FormatAttr's correct format_idx and firstDataArg.
682/// Returns true when the format fits the function and the FormatStringInfo has
683/// been populated.
684bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
685                               FormatStringInfo *FSI) {
686  FSI->HasVAListArg = Format->getFirstArg() == 0;
687  FSI->FormatIdx = Format->getFormatIdx() - 1;
688  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
689
690  // The way the format attribute works in GCC, the implicit this argument
691  // of member functions is counted. However, it doesn't appear in our own
692  // lists, so decrement format_idx in that case.
693  if (IsCXXMember) {
694    if(FSI->FormatIdx == 0)
695      return false;
696    --FSI->FormatIdx;
697    if (FSI->FirstDataArg != 0)
698      --FSI->FirstDataArg;
699  }
700  return true;
701}
702
703/// Handles the checks for format strings, non-POD arguments to vararg
704/// functions, and NULL arguments passed to non-NULL parameters.
705void Sema::checkCall(NamedDecl *FDecl,
706                     ArrayRef<const Expr *> Args,
707                     unsigned NumProtoArgs,
708                     bool IsMemberFunction,
709                     SourceLocation Loc,
710                     SourceRange Range,
711                     VariadicCallType CallType) {
712  // FIXME: We should check as much as we can in the template definition.
713  if (CurContext->isDependentContext())
714    return;
715
716  // Printf and scanf checking.
717  llvm::SmallBitVector CheckedVarArgs;
718  if (FDecl) {
719    for (specific_attr_iterator<FormatAttr>
720             I = FDecl->specific_attr_begin<FormatAttr>(),
721             E = FDecl->specific_attr_end<FormatAttr>();
722         I != E; ++I) {
723      // Only create vector if there are format attributes.
724      CheckedVarArgs.resize(Args.size());
725
726      CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range,
727                           CheckedVarArgs);
728    }
729  }
730
731  // Refuse POD arguments that weren't caught by the format string
732  // checks above.
733  if (CallType != VariadicDoesNotApply) {
734    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
735      // Args[ArgIdx] can be null in malformed code.
736      if (const Expr *Arg = Args[ArgIdx]) {
737        if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
738          checkVariadicArgument(Arg, CallType);
739      }
740    }
741  }
742
743  if (FDecl) {
744    for (specific_attr_iterator<NonNullAttr>
745           I = FDecl->specific_attr_begin<NonNullAttr>(),
746           E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
747      CheckNonNullArguments(*I, Args.data(), Loc);
748
749    // Type safety checking.
750    for (specific_attr_iterator<ArgumentWithTypeTagAttr>
751           i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
752           e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>();
753         i != e; ++i) {
754      CheckArgumentWithTypeTag(*i, Args.data());
755    }
756  }
757}
758
759/// CheckConstructorCall - Check a constructor call for correctness and safety
760/// properties not enforced by the C type system.
761void Sema::CheckConstructorCall(FunctionDecl *FDecl,
762                                ArrayRef<const Expr *> Args,
763                                const FunctionProtoType *Proto,
764                                SourceLocation Loc) {
765  VariadicCallType CallType =
766    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
767  checkCall(FDecl, Args, Proto->getNumArgs(),
768            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
769}
770
771/// CheckFunctionCall - Check a direct function call for various correctness
772/// and safety properties not strictly enforced by the C type system.
773bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
774                             const FunctionProtoType *Proto) {
775  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
776                              isa<CXXMethodDecl>(FDecl);
777  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
778                          IsMemberOperatorCall;
779  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
780                                                  TheCall->getCallee());
781  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
782  Expr** Args = TheCall->getArgs();
783  unsigned NumArgs = TheCall->getNumArgs();
784  if (IsMemberOperatorCall) {
785    // If this is a call to a member operator, hide the first argument
786    // from checkCall.
787    // FIXME: Our choice of AST representation here is less than ideal.
788    ++Args;
789    --NumArgs;
790  }
791  checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
792            NumProtoArgs,
793            IsMemberFunction, TheCall->getRParenLoc(),
794            TheCall->getCallee()->getSourceRange(), CallType);
795
796  IdentifierInfo *FnInfo = FDecl->getIdentifier();
797  // None of the checks below are needed for functions that don't have
798  // simple names (e.g., C++ conversion functions).
799  if (!FnInfo)
800    return false;
801
802  unsigned CMId = FDecl->getMemoryFunctionKind();
803  if (CMId == 0)
804    return false;
805
806  // Handle memory setting and copying functions.
807  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
808    CheckStrlcpycatArguments(TheCall, FnInfo);
809  else if (CMId == Builtin::BIstrncat)
810    CheckStrncatArguments(TheCall, FnInfo);
811  else
812    CheckMemaccessArguments(TheCall, CMId, FnInfo);
813
814  return false;
815}
816
817bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
818                               ArrayRef<const Expr *> Args) {
819  VariadicCallType CallType =
820      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
821
822  checkCall(Method, Args, Method->param_size(),
823            /*IsMemberFunction=*/false,
824            lbrac, Method->getSourceRange(), CallType);
825
826  return false;
827}
828
829bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
830                            const FunctionProtoType *Proto) {
831  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
832  if (!V)
833    return false;
834
835  QualType Ty = V->getType();
836  if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
837    return false;
838
839  VariadicCallType CallType;
840  if (!Proto || !Proto->isVariadic()) {
841    CallType = VariadicDoesNotApply;
842  } else if (Ty->isBlockPointerType()) {
843    CallType = VariadicBlock;
844  } else { // Ty->isFunctionPointerType()
845    CallType = VariadicFunction;
846  }
847  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
848
849  checkCall(NDecl,
850            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
851                                             TheCall->getNumArgs()),
852            NumProtoArgs, /*IsMemberFunction=*/false,
853            TheCall->getRParenLoc(),
854            TheCall->getCallee()->getSourceRange(), CallType);
855
856  return false;
857}
858
859/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
860/// such as function pointers returned from functions.
861bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
862  VariadicCallType CallType = getVariadicCallType(/*FDecl=*/0, Proto,
863                                                  TheCall->getCallee());
864  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
865
866  checkCall(/*FDecl=*/0,
867            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
868                                             TheCall->getNumArgs()),
869            NumProtoArgs, /*IsMemberFunction=*/false,
870            TheCall->getRParenLoc(),
871            TheCall->getCallee()->getSourceRange(), CallType);
872
873  return false;
874}
875
876ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
877                                         AtomicExpr::AtomicOp Op) {
878  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
879  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
880
881  // All these operations take one of the following forms:
882  enum {
883    // C    __c11_atomic_init(A *, C)
884    Init,
885    // C    __c11_atomic_load(A *, int)
886    Load,
887    // void __atomic_load(A *, CP, int)
888    Copy,
889    // C    __c11_atomic_add(A *, M, int)
890    Arithmetic,
891    // C    __atomic_exchange_n(A *, CP, int)
892    Xchg,
893    // void __atomic_exchange(A *, C *, CP, int)
894    GNUXchg,
895    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
896    C11CmpXchg,
897    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
898    GNUCmpXchg
899  } Form = Init;
900  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
901  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
902  // where:
903  //   C is an appropriate type,
904  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
905  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
906  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
907  //   the int parameters are for orderings.
908
909  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
910         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
911         && "need to update code for modified C11 atomics");
912  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
913               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
914  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
915             Op == AtomicExpr::AO__atomic_store_n ||
916             Op == AtomicExpr::AO__atomic_exchange_n ||
917             Op == AtomicExpr::AO__atomic_compare_exchange_n;
918  bool IsAddSub = false;
919
920  switch (Op) {
921  case AtomicExpr::AO__c11_atomic_init:
922    Form = Init;
923    break;
924
925  case AtomicExpr::AO__c11_atomic_load:
926  case AtomicExpr::AO__atomic_load_n:
927    Form = Load;
928    break;
929
930  case AtomicExpr::AO__c11_atomic_store:
931  case AtomicExpr::AO__atomic_load:
932  case AtomicExpr::AO__atomic_store:
933  case AtomicExpr::AO__atomic_store_n:
934    Form = Copy;
935    break;
936
937  case AtomicExpr::AO__c11_atomic_fetch_add:
938  case AtomicExpr::AO__c11_atomic_fetch_sub:
939  case AtomicExpr::AO__atomic_fetch_add:
940  case AtomicExpr::AO__atomic_fetch_sub:
941  case AtomicExpr::AO__atomic_add_fetch:
942  case AtomicExpr::AO__atomic_sub_fetch:
943    IsAddSub = true;
944    // Fall through.
945  case AtomicExpr::AO__c11_atomic_fetch_and:
946  case AtomicExpr::AO__c11_atomic_fetch_or:
947  case AtomicExpr::AO__c11_atomic_fetch_xor:
948  case AtomicExpr::AO__atomic_fetch_and:
949  case AtomicExpr::AO__atomic_fetch_or:
950  case AtomicExpr::AO__atomic_fetch_xor:
951  case AtomicExpr::AO__atomic_fetch_nand:
952  case AtomicExpr::AO__atomic_and_fetch:
953  case AtomicExpr::AO__atomic_or_fetch:
954  case AtomicExpr::AO__atomic_xor_fetch:
955  case AtomicExpr::AO__atomic_nand_fetch:
956    Form = Arithmetic;
957    break;
958
959  case AtomicExpr::AO__c11_atomic_exchange:
960  case AtomicExpr::AO__atomic_exchange_n:
961    Form = Xchg;
962    break;
963
964  case AtomicExpr::AO__atomic_exchange:
965    Form = GNUXchg;
966    break;
967
968  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
969  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
970    Form = C11CmpXchg;
971    break;
972
973  case AtomicExpr::AO__atomic_compare_exchange:
974  case AtomicExpr::AO__atomic_compare_exchange_n:
975    Form = GNUCmpXchg;
976    break;
977  }
978
979  // Check we have the right number of arguments.
980  if (TheCall->getNumArgs() < NumArgs[Form]) {
981    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
982      << 0 << NumArgs[Form] << TheCall->getNumArgs()
983      << TheCall->getCallee()->getSourceRange();
984    return ExprError();
985  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
986    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
987         diag::err_typecheck_call_too_many_args)
988      << 0 << NumArgs[Form] << TheCall->getNumArgs()
989      << TheCall->getCallee()->getSourceRange();
990    return ExprError();
991  }
992
993  // Inspect the first argument of the atomic operation.
994  Expr *Ptr = TheCall->getArg(0);
995  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
996  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
997  if (!pointerType) {
998    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
999      << Ptr->getType() << Ptr->getSourceRange();
1000    return ExprError();
1001  }
1002
1003  // For a __c11 builtin, this should be a pointer to an _Atomic type.
1004  QualType AtomTy = pointerType->getPointeeType(); // 'A'
1005  QualType ValType = AtomTy; // 'C'
1006  if (IsC11) {
1007    if (!AtomTy->isAtomicType()) {
1008      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1009        << Ptr->getType() << Ptr->getSourceRange();
1010      return ExprError();
1011    }
1012    if (AtomTy.isConstQualified()) {
1013      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1014        << Ptr->getType() << Ptr->getSourceRange();
1015      return ExprError();
1016    }
1017    ValType = AtomTy->getAs<AtomicType>()->getValueType();
1018  }
1019
1020  // For an arithmetic operation, the implied arithmetic must be well-formed.
1021  if (Form == Arithmetic) {
1022    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1023    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1024      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1025        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1026      return ExprError();
1027    }
1028    if (!IsAddSub && !ValType->isIntegerType()) {
1029      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1030        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1031      return ExprError();
1032    }
1033  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1034    // For __atomic_*_n operations, the value type must be a scalar integral or
1035    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1036    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1037      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1038    return ExprError();
1039  }
1040
1041  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
1042    // For GNU atomics, require a trivially-copyable type. This is not part of
1043    // the GNU atomics specification, but we enforce it for sanity.
1044    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1045      << Ptr->getType() << Ptr->getSourceRange();
1046    return ExprError();
1047  }
1048
1049  // FIXME: For any builtin other than a load, the ValType must not be
1050  // const-qualified.
1051
1052  switch (ValType.getObjCLifetime()) {
1053  case Qualifiers::OCL_None:
1054  case Qualifiers::OCL_ExplicitNone:
1055    // okay
1056    break;
1057
1058  case Qualifiers::OCL_Weak:
1059  case Qualifiers::OCL_Strong:
1060  case Qualifiers::OCL_Autoreleasing:
1061    // FIXME: Can this happen? By this point, ValType should be known
1062    // to be trivially copyable.
1063    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1064      << ValType << Ptr->getSourceRange();
1065    return ExprError();
1066  }
1067
1068  QualType ResultType = ValType;
1069  if (Form == Copy || Form == GNUXchg || Form == Init)
1070    ResultType = Context.VoidTy;
1071  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1072    ResultType = Context.BoolTy;
1073
1074  // The type of a parameter passed 'by value'. In the GNU atomics, such
1075  // arguments are actually passed as pointers.
1076  QualType ByValType = ValType; // 'CP'
1077  if (!IsC11 && !IsN)
1078    ByValType = Ptr->getType();
1079
1080  // The first argument --- the pointer --- has a fixed type; we
1081  // deduce the types of the rest of the arguments accordingly.  Walk
1082  // the remaining arguments, converting them to the deduced value type.
1083  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1084    QualType Ty;
1085    if (i < NumVals[Form] + 1) {
1086      switch (i) {
1087      case 1:
1088        // The second argument is the non-atomic operand. For arithmetic, this
1089        // is always passed by value, and for a compare_exchange it is always
1090        // passed by address. For the rest, GNU uses by-address and C11 uses
1091        // by-value.
1092        assert(Form != Load);
1093        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1094          Ty = ValType;
1095        else if (Form == Copy || Form == Xchg)
1096          Ty = ByValType;
1097        else if (Form == Arithmetic)
1098          Ty = Context.getPointerDiffType();
1099        else
1100          Ty = Context.getPointerType(ValType.getUnqualifiedType());
1101        break;
1102      case 2:
1103        // The third argument to compare_exchange / GNU exchange is a
1104        // (pointer to a) desired value.
1105        Ty = ByValType;
1106        break;
1107      case 3:
1108        // The fourth argument to GNU compare_exchange is a 'weak' flag.
1109        Ty = Context.BoolTy;
1110        break;
1111      }
1112    } else {
1113      // The order(s) are always converted to int.
1114      Ty = Context.IntTy;
1115    }
1116
1117    InitializedEntity Entity =
1118        InitializedEntity::InitializeParameter(Context, Ty, false);
1119    ExprResult Arg = TheCall->getArg(i);
1120    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1121    if (Arg.isInvalid())
1122      return true;
1123    TheCall->setArg(i, Arg.get());
1124  }
1125
1126  // Permute the arguments into a 'consistent' order.
1127  SmallVector<Expr*, 5> SubExprs;
1128  SubExprs.push_back(Ptr);
1129  switch (Form) {
1130  case Init:
1131    // Note, AtomicExpr::getVal1() has a special case for this atomic.
1132    SubExprs.push_back(TheCall->getArg(1)); // Val1
1133    break;
1134  case Load:
1135    SubExprs.push_back(TheCall->getArg(1)); // Order
1136    break;
1137  case Copy:
1138  case Arithmetic:
1139  case Xchg:
1140    SubExprs.push_back(TheCall->getArg(2)); // Order
1141    SubExprs.push_back(TheCall->getArg(1)); // Val1
1142    break;
1143  case GNUXchg:
1144    // Note, AtomicExpr::getVal2() has a special case for this atomic.
1145    SubExprs.push_back(TheCall->getArg(3)); // Order
1146    SubExprs.push_back(TheCall->getArg(1)); // Val1
1147    SubExprs.push_back(TheCall->getArg(2)); // Val2
1148    break;
1149  case C11CmpXchg:
1150    SubExprs.push_back(TheCall->getArg(3)); // Order
1151    SubExprs.push_back(TheCall->getArg(1)); // Val1
1152    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1153    SubExprs.push_back(TheCall->getArg(2)); // Val2
1154    break;
1155  case GNUCmpXchg:
1156    SubExprs.push_back(TheCall->getArg(4)); // Order
1157    SubExprs.push_back(TheCall->getArg(1)); // Val1
1158    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1159    SubExprs.push_back(TheCall->getArg(2)); // Val2
1160    SubExprs.push_back(TheCall->getArg(3)); // Weak
1161    break;
1162  }
1163
1164  AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1165                                            SubExprs, ResultType, Op,
1166                                            TheCall->getRParenLoc());
1167
1168  if ((Op == AtomicExpr::AO__c11_atomic_load ||
1169       (Op == AtomicExpr::AO__c11_atomic_store)) &&
1170      Context.AtomicUsesUnsupportedLibcall(AE))
1171    Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1172    ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1173
1174  return Owned(AE);
1175}
1176
1177
1178/// checkBuiltinArgument - Given a call to a builtin function, perform
1179/// normal type-checking on the given argument, updating the call in
1180/// place.  This is useful when a builtin function requires custom
1181/// type-checking for some of its arguments but not necessarily all of
1182/// them.
1183///
1184/// Returns true on error.
1185static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1186  FunctionDecl *Fn = E->getDirectCallee();
1187  assert(Fn && "builtin call without direct callee!");
1188
1189  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1190  InitializedEntity Entity =
1191    InitializedEntity::InitializeParameter(S.Context, Param);
1192
1193  ExprResult Arg = E->getArg(0);
1194  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1195  if (Arg.isInvalid())
1196    return true;
1197
1198  E->setArg(ArgIndex, Arg.take());
1199  return false;
1200}
1201
1202/// SemaBuiltinAtomicOverloaded - We have a call to a function like
1203/// __sync_fetch_and_add, which is an overloaded function based on the pointer
1204/// type of its first argument.  The main ActOnCallExpr routines have already
1205/// promoted the types of arguments because all of these calls are prototyped as
1206/// void(...).
1207///
1208/// This function goes through and does final semantic checking for these
1209/// builtins,
1210ExprResult
1211Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1212  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1213  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1214  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1215
1216  // Ensure that we have at least one argument to do type inference from.
1217  if (TheCall->getNumArgs() < 1) {
1218    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1219      << 0 << 1 << TheCall->getNumArgs()
1220      << TheCall->getCallee()->getSourceRange();
1221    return ExprError();
1222  }
1223
1224  // Inspect the first argument of the atomic builtin.  This should always be
1225  // a pointer type, whose element is an integral scalar or pointer type.
1226  // Because it is a pointer type, we don't have to worry about any implicit
1227  // casts here.
1228  // FIXME: We don't allow floating point scalars as input.
1229  Expr *FirstArg = TheCall->getArg(0);
1230  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1231  if (FirstArgResult.isInvalid())
1232    return ExprError();
1233  FirstArg = FirstArgResult.take();
1234  TheCall->setArg(0, FirstArg);
1235
1236  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1237  if (!pointerType) {
1238    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1239      << FirstArg->getType() << FirstArg->getSourceRange();
1240    return ExprError();
1241  }
1242
1243  QualType ValType = pointerType->getPointeeType();
1244  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1245      !ValType->isBlockPointerType()) {
1246    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1247      << FirstArg->getType() << FirstArg->getSourceRange();
1248    return ExprError();
1249  }
1250
1251  switch (ValType.getObjCLifetime()) {
1252  case Qualifiers::OCL_None:
1253  case Qualifiers::OCL_ExplicitNone:
1254    // okay
1255    break;
1256
1257  case Qualifiers::OCL_Weak:
1258  case Qualifiers::OCL_Strong:
1259  case Qualifiers::OCL_Autoreleasing:
1260    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1261      << ValType << FirstArg->getSourceRange();
1262    return ExprError();
1263  }
1264
1265  // Strip any qualifiers off ValType.
1266  ValType = ValType.getUnqualifiedType();
1267
1268  // The majority of builtins return a value, but a few have special return
1269  // types, so allow them to override appropriately below.
1270  QualType ResultType = ValType;
1271
1272  // We need to figure out which concrete builtin this maps onto.  For example,
1273  // __sync_fetch_and_add with a 2 byte object turns into
1274  // __sync_fetch_and_add_2.
1275#define BUILTIN_ROW(x) \
1276  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1277    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1278
1279  static const unsigned BuiltinIndices[][5] = {
1280    BUILTIN_ROW(__sync_fetch_and_add),
1281    BUILTIN_ROW(__sync_fetch_and_sub),
1282    BUILTIN_ROW(__sync_fetch_and_or),
1283    BUILTIN_ROW(__sync_fetch_and_and),
1284    BUILTIN_ROW(__sync_fetch_and_xor),
1285
1286    BUILTIN_ROW(__sync_add_and_fetch),
1287    BUILTIN_ROW(__sync_sub_and_fetch),
1288    BUILTIN_ROW(__sync_and_and_fetch),
1289    BUILTIN_ROW(__sync_or_and_fetch),
1290    BUILTIN_ROW(__sync_xor_and_fetch),
1291
1292    BUILTIN_ROW(__sync_val_compare_and_swap),
1293    BUILTIN_ROW(__sync_bool_compare_and_swap),
1294    BUILTIN_ROW(__sync_lock_test_and_set),
1295    BUILTIN_ROW(__sync_lock_release),
1296    BUILTIN_ROW(__sync_swap)
1297  };
1298#undef BUILTIN_ROW
1299
1300  // Determine the index of the size.
1301  unsigned SizeIndex;
1302  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1303  case 1: SizeIndex = 0; break;
1304  case 2: SizeIndex = 1; break;
1305  case 4: SizeIndex = 2; break;
1306  case 8: SizeIndex = 3; break;
1307  case 16: SizeIndex = 4; break;
1308  default:
1309    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1310      << FirstArg->getType() << FirstArg->getSourceRange();
1311    return ExprError();
1312  }
1313
1314  // Each of these builtins has one pointer argument, followed by some number of
1315  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1316  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1317  // as the number of fixed args.
1318  unsigned BuiltinID = FDecl->getBuiltinID();
1319  unsigned BuiltinIndex, NumFixed = 1;
1320  switch (BuiltinID) {
1321  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1322  case Builtin::BI__sync_fetch_and_add:
1323  case Builtin::BI__sync_fetch_and_add_1:
1324  case Builtin::BI__sync_fetch_and_add_2:
1325  case Builtin::BI__sync_fetch_and_add_4:
1326  case Builtin::BI__sync_fetch_and_add_8:
1327  case Builtin::BI__sync_fetch_and_add_16:
1328    BuiltinIndex = 0;
1329    break;
1330
1331  case Builtin::BI__sync_fetch_and_sub:
1332  case Builtin::BI__sync_fetch_and_sub_1:
1333  case Builtin::BI__sync_fetch_and_sub_2:
1334  case Builtin::BI__sync_fetch_and_sub_4:
1335  case Builtin::BI__sync_fetch_and_sub_8:
1336  case Builtin::BI__sync_fetch_and_sub_16:
1337    BuiltinIndex = 1;
1338    break;
1339
1340  case Builtin::BI__sync_fetch_and_or:
1341  case Builtin::BI__sync_fetch_and_or_1:
1342  case Builtin::BI__sync_fetch_and_or_2:
1343  case Builtin::BI__sync_fetch_and_or_4:
1344  case Builtin::BI__sync_fetch_and_or_8:
1345  case Builtin::BI__sync_fetch_and_or_16:
1346    BuiltinIndex = 2;
1347    break;
1348
1349  case Builtin::BI__sync_fetch_and_and:
1350  case Builtin::BI__sync_fetch_and_and_1:
1351  case Builtin::BI__sync_fetch_and_and_2:
1352  case Builtin::BI__sync_fetch_and_and_4:
1353  case Builtin::BI__sync_fetch_and_and_8:
1354  case Builtin::BI__sync_fetch_and_and_16:
1355    BuiltinIndex = 3;
1356    break;
1357
1358  case Builtin::BI__sync_fetch_and_xor:
1359  case Builtin::BI__sync_fetch_and_xor_1:
1360  case Builtin::BI__sync_fetch_and_xor_2:
1361  case Builtin::BI__sync_fetch_and_xor_4:
1362  case Builtin::BI__sync_fetch_and_xor_8:
1363  case Builtin::BI__sync_fetch_and_xor_16:
1364    BuiltinIndex = 4;
1365    break;
1366
1367  case Builtin::BI__sync_add_and_fetch:
1368  case Builtin::BI__sync_add_and_fetch_1:
1369  case Builtin::BI__sync_add_and_fetch_2:
1370  case Builtin::BI__sync_add_and_fetch_4:
1371  case Builtin::BI__sync_add_and_fetch_8:
1372  case Builtin::BI__sync_add_and_fetch_16:
1373    BuiltinIndex = 5;
1374    break;
1375
1376  case Builtin::BI__sync_sub_and_fetch:
1377  case Builtin::BI__sync_sub_and_fetch_1:
1378  case Builtin::BI__sync_sub_and_fetch_2:
1379  case Builtin::BI__sync_sub_and_fetch_4:
1380  case Builtin::BI__sync_sub_and_fetch_8:
1381  case Builtin::BI__sync_sub_and_fetch_16:
1382    BuiltinIndex = 6;
1383    break;
1384
1385  case Builtin::BI__sync_and_and_fetch:
1386  case Builtin::BI__sync_and_and_fetch_1:
1387  case Builtin::BI__sync_and_and_fetch_2:
1388  case Builtin::BI__sync_and_and_fetch_4:
1389  case Builtin::BI__sync_and_and_fetch_8:
1390  case Builtin::BI__sync_and_and_fetch_16:
1391    BuiltinIndex = 7;
1392    break;
1393
1394  case Builtin::BI__sync_or_and_fetch:
1395  case Builtin::BI__sync_or_and_fetch_1:
1396  case Builtin::BI__sync_or_and_fetch_2:
1397  case Builtin::BI__sync_or_and_fetch_4:
1398  case Builtin::BI__sync_or_and_fetch_8:
1399  case Builtin::BI__sync_or_and_fetch_16:
1400    BuiltinIndex = 8;
1401    break;
1402
1403  case Builtin::BI__sync_xor_and_fetch:
1404  case Builtin::BI__sync_xor_and_fetch_1:
1405  case Builtin::BI__sync_xor_and_fetch_2:
1406  case Builtin::BI__sync_xor_and_fetch_4:
1407  case Builtin::BI__sync_xor_and_fetch_8:
1408  case Builtin::BI__sync_xor_and_fetch_16:
1409    BuiltinIndex = 9;
1410    break;
1411
1412  case Builtin::BI__sync_val_compare_and_swap:
1413  case Builtin::BI__sync_val_compare_and_swap_1:
1414  case Builtin::BI__sync_val_compare_and_swap_2:
1415  case Builtin::BI__sync_val_compare_and_swap_4:
1416  case Builtin::BI__sync_val_compare_and_swap_8:
1417  case Builtin::BI__sync_val_compare_and_swap_16:
1418    BuiltinIndex = 10;
1419    NumFixed = 2;
1420    break;
1421
1422  case Builtin::BI__sync_bool_compare_and_swap:
1423  case Builtin::BI__sync_bool_compare_and_swap_1:
1424  case Builtin::BI__sync_bool_compare_and_swap_2:
1425  case Builtin::BI__sync_bool_compare_and_swap_4:
1426  case Builtin::BI__sync_bool_compare_and_swap_8:
1427  case Builtin::BI__sync_bool_compare_and_swap_16:
1428    BuiltinIndex = 11;
1429    NumFixed = 2;
1430    ResultType = Context.BoolTy;
1431    break;
1432
1433  case Builtin::BI__sync_lock_test_and_set:
1434  case Builtin::BI__sync_lock_test_and_set_1:
1435  case Builtin::BI__sync_lock_test_and_set_2:
1436  case Builtin::BI__sync_lock_test_and_set_4:
1437  case Builtin::BI__sync_lock_test_and_set_8:
1438  case Builtin::BI__sync_lock_test_and_set_16:
1439    BuiltinIndex = 12;
1440    break;
1441
1442  case Builtin::BI__sync_lock_release:
1443  case Builtin::BI__sync_lock_release_1:
1444  case Builtin::BI__sync_lock_release_2:
1445  case Builtin::BI__sync_lock_release_4:
1446  case Builtin::BI__sync_lock_release_8:
1447  case Builtin::BI__sync_lock_release_16:
1448    BuiltinIndex = 13;
1449    NumFixed = 0;
1450    ResultType = Context.VoidTy;
1451    break;
1452
1453  case Builtin::BI__sync_swap:
1454  case Builtin::BI__sync_swap_1:
1455  case Builtin::BI__sync_swap_2:
1456  case Builtin::BI__sync_swap_4:
1457  case Builtin::BI__sync_swap_8:
1458  case Builtin::BI__sync_swap_16:
1459    BuiltinIndex = 14;
1460    break;
1461  }
1462
1463  // Now that we know how many fixed arguments we expect, first check that we
1464  // have at least that many.
1465  if (TheCall->getNumArgs() < 1+NumFixed) {
1466    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1467      << 0 << 1+NumFixed << TheCall->getNumArgs()
1468      << TheCall->getCallee()->getSourceRange();
1469    return ExprError();
1470  }
1471
1472  // Get the decl for the concrete builtin from this, we can tell what the
1473  // concrete integer type we should convert to is.
1474  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1475  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1476  FunctionDecl *NewBuiltinDecl;
1477  if (NewBuiltinID == BuiltinID)
1478    NewBuiltinDecl = FDecl;
1479  else {
1480    // Perform builtin lookup to avoid redeclaring it.
1481    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1482    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1483    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1484    assert(Res.getFoundDecl());
1485    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1486    if (NewBuiltinDecl == 0)
1487      return ExprError();
1488  }
1489
1490  // The first argument --- the pointer --- has a fixed type; we
1491  // deduce the types of the rest of the arguments accordingly.  Walk
1492  // the remaining arguments, converting them to the deduced value type.
1493  for (unsigned i = 0; i != NumFixed; ++i) {
1494    ExprResult Arg = TheCall->getArg(i+1);
1495
1496    // GCC does an implicit conversion to the pointer or integer ValType.  This
1497    // can fail in some cases (1i -> int**), check for this error case now.
1498    // Initialize the argument.
1499    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1500                                                   ValType, /*consume*/ false);
1501    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1502    if (Arg.isInvalid())
1503      return ExprError();
1504
1505    // Okay, we have something that *can* be converted to the right type.  Check
1506    // to see if there is a potentially weird extension going on here.  This can
1507    // happen when you do an atomic operation on something like an char* and
1508    // pass in 42.  The 42 gets converted to char.  This is even more strange
1509    // for things like 45.123 -> char, etc.
1510    // FIXME: Do this check.
1511    TheCall->setArg(i+1, Arg.take());
1512  }
1513
1514  ASTContext& Context = this->getASTContext();
1515
1516  // Create a new DeclRefExpr to refer to the new decl.
1517  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1518      Context,
1519      DRE->getQualifierLoc(),
1520      SourceLocation(),
1521      NewBuiltinDecl,
1522      /*enclosing*/ false,
1523      DRE->getLocation(),
1524      Context.BuiltinFnTy,
1525      DRE->getValueKind());
1526
1527  // Set the callee in the CallExpr.
1528  // FIXME: This loses syntactic information.
1529  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1530  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1531                                              CK_BuiltinFnToFnPtr);
1532  TheCall->setCallee(PromotedCall.take());
1533
1534  // Change the result type of the call to match the original value type. This
1535  // is arbitrary, but the codegen for these builtins ins design to handle it
1536  // gracefully.
1537  TheCall->setType(ResultType);
1538
1539  return TheCallResult;
1540}
1541
1542/// CheckObjCString - Checks that the argument to the builtin
1543/// CFString constructor is correct
1544/// Note: It might also make sense to do the UTF-16 conversion here (would
1545/// simplify the backend).
1546bool Sema::CheckObjCString(Expr *Arg) {
1547  Arg = Arg->IgnoreParenCasts();
1548  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1549
1550  if (!Literal || !Literal->isAscii()) {
1551    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1552      << Arg->getSourceRange();
1553    return true;
1554  }
1555
1556  if (Literal->containsNonAsciiOrNull()) {
1557    StringRef String = Literal->getString();
1558    unsigned NumBytes = String.size();
1559    SmallVector<UTF16, 128> ToBuf(NumBytes);
1560    const UTF8 *FromPtr = (const UTF8 *)String.data();
1561    UTF16 *ToPtr = &ToBuf[0];
1562
1563    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1564                                                 &ToPtr, ToPtr + NumBytes,
1565                                                 strictConversion);
1566    // Check for conversion failure.
1567    if (Result != conversionOK)
1568      Diag(Arg->getLocStart(),
1569           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1570  }
1571  return false;
1572}
1573
1574/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1575/// Emit an error and return true on failure, return false on success.
1576bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1577  Expr *Fn = TheCall->getCallee();
1578  if (TheCall->getNumArgs() > 2) {
1579    Diag(TheCall->getArg(2)->getLocStart(),
1580         diag::err_typecheck_call_too_many_args)
1581      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1582      << Fn->getSourceRange()
1583      << SourceRange(TheCall->getArg(2)->getLocStart(),
1584                     (*(TheCall->arg_end()-1))->getLocEnd());
1585    return true;
1586  }
1587
1588  if (TheCall->getNumArgs() < 2) {
1589    return Diag(TheCall->getLocEnd(),
1590      diag::err_typecheck_call_too_few_args_at_least)
1591      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1592  }
1593
1594  // Type-check the first argument normally.
1595  if (checkBuiltinArgument(*this, TheCall, 0))
1596    return true;
1597
1598  // Determine whether the current function is variadic or not.
1599  BlockScopeInfo *CurBlock = getCurBlock();
1600  bool isVariadic;
1601  if (CurBlock)
1602    isVariadic = CurBlock->TheDecl->isVariadic();
1603  else if (FunctionDecl *FD = getCurFunctionDecl())
1604    isVariadic = FD->isVariadic();
1605  else
1606    isVariadic = getCurMethodDecl()->isVariadic();
1607
1608  if (!isVariadic) {
1609    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1610    return true;
1611  }
1612
1613  // Verify that the second argument to the builtin is the last argument of the
1614  // current function or method.
1615  bool SecondArgIsLastNamedArgument = false;
1616  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1617
1618  // These are valid if SecondArgIsLastNamedArgument is false after the next
1619  // block.
1620  QualType Type;
1621  SourceLocation ParamLoc;
1622
1623  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1624    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1625      // FIXME: This isn't correct for methods (results in bogus warning).
1626      // Get the last formal in the current function.
1627      const ParmVarDecl *LastArg;
1628      if (CurBlock)
1629        LastArg = *(CurBlock->TheDecl->param_end()-1);
1630      else if (FunctionDecl *FD = getCurFunctionDecl())
1631        LastArg = *(FD->param_end()-1);
1632      else
1633        LastArg = *(getCurMethodDecl()->param_end()-1);
1634      SecondArgIsLastNamedArgument = PV == LastArg;
1635
1636      Type = PV->getType();
1637      ParamLoc = PV->getLocation();
1638    }
1639  }
1640
1641  if (!SecondArgIsLastNamedArgument)
1642    Diag(TheCall->getArg(1)->getLocStart(),
1643         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1644  else if (Type->isReferenceType()) {
1645    Diag(Arg->getLocStart(),
1646         diag::warn_va_start_of_reference_type_is_undefined);
1647    Diag(ParamLoc, diag::note_parameter_type) << Type;
1648  }
1649
1650  return false;
1651}
1652
1653/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1654/// friends.  This is declared to take (...), so we have to check everything.
1655bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1656  if (TheCall->getNumArgs() < 2)
1657    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1658      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1659  if (TheCall->getNumArgs() > 2)
1660    return Diag(TheCall->getArg(2)->getLocStart(),
1661                diag::err_typecheck_call_too_many_args)
1662      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1663      << SourceRange(TheCall->getArg(2)->getLocStart(),
1664                     (*(TheCall->arg_end()-1))->getLocEnd());
1665
1666  ExprResult OrigArg0 = TheCall->getArg(0);
1667  ExprResult OrigArg1 = TheCall->getArg(1);
1668
1669  // Do standard promotions between the two arguments, returning their common
1670  // type.
1671  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1672  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1673    return true;
1674
1675  // Make sure any conversions are pushed back into the call; this is
1676  // type safe since unordered compare builtins are declared as "_Bool
1677  // foo(...)".
1678  TheCall->setArg(0, OrigArg0.get());
1679  TheCall->setArg(1, OrigArg1.get());
1680
1681  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1682    return false;
1683
1684  // If the common type isn't a real floating type, then the arguments were
1685  // invalid for this operation.
1686  if (Res.isNull() || !Res->isRealFloatingType())
1687    return Diag(OrigArg0.get()->getLocStart(),
1688                diag::err_typecheck_call_invalid_ordered_compare)
1689      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1690      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1691
1692  return false;
1693}
1694
1695/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1696/// __builtin_isnan and friends.  This is declared to take (...), so we have
1697/// to check everything. We expect the last argument to be a floating point
1698/// value.
1699bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1700  if (TheCall->getNumArgs() < NumArgs)
1701    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1702      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1703  if (TheCall->getNumArgs() > NumArgs)
1704    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1705                diag::err_typecheck_call_too_many_args)
1706      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1707      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1708                     (*(TheCall->arg_end()-1))->getLocEnd());
1709
1710  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1711
1712  if (OrigArg->isTypeDependent())
1713    return false;
1714
1715  // This operation requires a non-_Complex floating-point number.
1716  if (!OrigArg->getType()->isRealFloatingType())
1717    return Diag(OrigArg->getLocStart(),
1718                diag::err_typecheck_call_invalid_unary_fp)
1719      << OrigArg->getType() << OrigArg->getSourceRange();
1720
1721  // If this is an implicit conversion from float -> double, remove it.
1722  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1723    Expr *CastArg = Cast->getSubExpr();
1724    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1725      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1726             "promotion from float to double is the only expected cast here");
1727      Cast->setSubExpr(0);
1728      TheCall->setArg(NumArgs-1, CastArg);
1729    }
1730  }
1731
1732  return false;
1733}
1734
1735/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1736// This is declared to take (...), so we have to check everything.
1737ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1738  if (TheCall->getNumArgs() < 2)
1739    return ExprError(Diag(TheCall->getLocEnd(),
1740                          diag::err_typecheck_call_too_few_args_at_least)
1741                     << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1742                     << TheCall->getSourceRange());
1743
1744  // Determine which of the following types of shufflevector we're checking:
1745  // 1) unary, vector mask: (lhs, mask)
1746  // 2) binary, vector mask: (lhs, rhs, mask)
1747  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1748  QualType resType = TheCall->getArg(0)->getType();
1749  unsigned numElements = 0;
1750
1751  if (!TheCall->getArg(0)->isTypeDependent() &&
1752      !TheCall->getArg(1)->isTypeDependent()) {
1753    QualType LHSType = TheCall->getArg(0)->getType();
1754    QualType RHSType = TheCall->getArg(1)->getType();
1755
1756    if (!LHSType->isVectorType() || !RHSType->isVectorType())
1757      return ExprError(Diag(TheCall->getLocStart(),
1758                            diag::err_shufflevector_non_vector)
1759                       << SourceRange(TheCall->getArg(0)->getLocStart(),
1760                                      TheCall->getArg(1)->getLocEnd()));
1761
1762    numElements = LHSType->getAs<VectorType>()->getNumElements();
1763    unsigned numResElements = TheCall->getNumArgs() - 2;
1764
1765    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1766    // with mask.  If so, verify that RHS is an integer vector type with the
1767    // same number of elts as lhs.
1768    if (TheCall->getNumArgs() == 2) {
1769      if (!RHSType->hasIntegerRepresentation() ||
1770          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1771        return ExprError(Diag(TheCall->getLocStart(),
1772                              diag::err_shufflevector_incompatible_vector)
1773                         << SourceRange(TheCall->getArg(1)->getLocStart(),
1774                                        TheCall->getArg(1)->getLocEnd()));
1775    } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1776      return ExprError(Diag(TheCall->getLocStart(),
1777                            diag::err_shufflevector_incompatible_vector)
1778                       << SourceRange(TheCall->getArg(0)->getLocStart(),
1779                                      TheCall->getArg(1)->getLocEnd()));
1780    } else if (numElements != numResElements) {
1781      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1782      resType = Context.getVectorType(eltType, numResElements,
1783                                      VectorType::GenericVector);
1784    }
1785  }
1786
1787  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1788    if (TheCall->getArg(i)->isTypeDependent() ||
1789        TheCall->getArg(i)->isValueDependent())
1790      continue;
1791
1792    llvm::APSInt Result(32);
1793    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1794      return ExprError(Diag(TheCall->getLocStart(),
1795                            diag::err_shufflevector_nonconstant_argument)
1796                       << TheCall->getArg(i)->getSourceRange());
1797
1798    // Allow -1 which will be translated to undef in the IR.
1799    if (Result.isSigned() && Result.isAllOnesValue())
1800      continue;
1801
1802    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1803      return ExprError(Diag(TheCall->getLocStart(),
1804                            diag::err_shufflevector_argument_too_large)
1805                       << TheCall->getArg(i)->getSourceRange());
1806  }
1807
1808  SmallVector<Expr*, 32> exprs;
1809
1810  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1811    exprs.push_back(TheCall->getArg(i));
1812    TheCall->setArg(i, 0);
1813  }
1814
1815  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1816                                            TheCall->getCallee()->getLocStart(),
1817                                            TheCall->getRParenLoc()));
1818}
1819
1820/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1821// This is declared to take (const void*, ...) and can take two
1822// optional constant int args.
1823bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1824  unsigned NumArgs = TheCall->getNumArgs();
1825
1826  if (NumArgs > 3)
1827    return Diag(TheCall->getLocEnd(),
1828             diag::err_typecheck_call_too_many_args_at_most)
1829             << 0 /*function call*/ << 3 << NumArgs
1830             << TheCall->getSourceRange();
1831
1832  // Argument 0 is checked for us and the remaining arguments must be
1833  // constant integers.
1834  for (unsigned i = 1; i != NumArgs; ++i) {
1835    Expr *Arg = TheCall->getArg(i);
1836
1837    // We can't check the value of a dependent argument.
1838    if (Arg->isTypeDependent() || Arg->isValueDependent())
1839      continue;
1840
1841    llvm::APSInt Result;
1842    if (SemaBuiltinConstantArg(TheCall, i, Result))
1843      return true;
1844
1845    // FIXME: gcc issues a warning and rewrites these to 0. These
1846    // seems especially odd for the third argument since the default
1847    // is 3.
1848    if (i == 1) {
1849      if (Result.getLimitedValue() > 1)
1850        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1851             << "0" << "1" << Arg->getSourceRange();
1852    } else {
1853      if (Result.getLimitedValue() > 3)
1854        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1855            << "0" << "3" << Arg->getSourceRange();
1856    }
1857  }
1858
1859  return false;
1860}
1861
1862/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1863/// TheCall is a constant expression.
1864bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1865                                  llvm::APSInt &Result) {
1866  Expr *Arg = TheCall->getArg(ArgNum);
1867  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1868  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1869
1870  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1871
1872  if (!Arg->isIntegerConstantExpr(Result, Context))
1873    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1874                << FDecl->getDeclName() <<  Arg->getSourceRange();
1875
1876  return false;
1877}
1878
1879/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1880/// int type). This simply type checks that type is one of the defined
1881/// constants (0-3).
1882// For compatibility check 0-3, llvm only handles 0 and 2.
1883bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1884  llvm::APSInt Result;
1885
1886  // We can't check the value of a dependent argument.
1887  if (TheCall->getArg(1)->isTypeDependent() ||
1888      TheCall->getArg(1)->isValueDependent())
1889    return false;
1890
1891  // Check constant-ness first.
1892  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1893    return true;
1894
1895  Expr *Arg = TheCall->getArg(1);
1896  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1897    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1898             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1899  }
1900
1901  return false;
1902}
1903
1904/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1905/// This checks that val is a constant 1.
1906bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1907  Expr *Arg = TheCall->getArg(1);
1908  llvm::APSInt Result;
1909
1910  // TODO: This is less than ideal. Overload this to take a value.
1911  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1912    return true;
1913
1914  if (Result != 1)
1915    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1916             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1917
1918  return false;
1919}
1920
1921namespace {
1922enum StringLiteralCheckType {
1923  SLCT_NotALiteral,
1924  SLCT_UncheckedLiteral,
1925  SLCT_CheckedLiteral
1926};
1927}
1928
1929// Determine if an expression is a string literal or constant string.
1930// If this function returns false on the arguments to a function expecting a
1931// format string, we will usually need to emit a warning.
1932// True string literals are then checked by CheckFormatString.
1933static StringLiteralCheckType
1934checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
1935                      bool HasVAListArg, unsigned format_idx,
1936                      unsigned firstDataArg, Sema::FormatStringType Type,
1937                      Sema::VariadicCallType CallType, bool InFunctionCall,
1938                      llvm::SmallBitVector &CheckedVarArgs) {
1939 tryAgain:
1940  if (E->isTypeDependent() || E->isValueDependent())
1941    return SLCT_NotALiteral;
1942
1943  E = E->IgnoreParenCasts();
1944
1945  if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
1946    // Technically -Wformat-nonliteral does not warn about this case.
1947    // The behavior of printf and friends in this case is implementation
1948    // dependent.  Ideally if the format string cannot be null then
1949    // it should have a 'nonnull' attribute in the function prototype.
1950    return SLCT_UncheckedLiteral;
1951
1952  switch (E->getStmtClass()) {
1953  case Stmt::BinaryConditionalOperatorClass:
1954  case Stmt::ConditionalOperatorClass: {
1955    // The expression is a literal if both sub-expressions were, and it was
1956    // completely checked only if both sub-expressions were checked.
1957    const AbstractConditionalOperator *C =
1958        cast<AbstractConditionalOperator>(E);
1959    StringLiteralCheckType Left =
1960        checkFormatStringExpr(S, C->getTrueExpr(), Args,
1961                              HasVAListArg, format_idx, firstDataArg,
1962                              Type, CallType, InFunctionCall, CheckedVarArgs);
1963    if (Left == SLCT_NotALiteral)
1964      return SLCT_NotALiteral;
1965    StringLiteralCheckType Right =
1966        checkFormatStringExpr(S, C->getFalseExpr(), Args,
1967                              HasVAListArg, format_idx, firstDataArg,
1968                              Type, CallType, InFunctionCall, CheckedVarArgs);
1969    return Left < Right ? Left : Right;
1970  }
1971
1972  case Stmt::ImplicitCastExprClass: {
1973    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1974    goto tryAgain;
1975  }
1976
1977  case Stmt::OpaqueValueExprClass:
1978    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1979      E = src;
1980      goto tryAgain;
1981    }
1982    return SLCT_NotALiteral;
1983
1984  case Stmt::PredefinedExprClass:
1985    // While __func__, etc., are technically not string literals, they
1986    // cannot contain format specifiers and thus are not a security
1987    // liability.
1988    return SLCT_UncheckedLiteral;
1989
1990  case Stmt::DeclRefExprClass: {
1991    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1992
1993    // As an exception, do not flag errors for variables binding to
1994    // const string literals.
1995    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1996      bool isConstant = false;
1997      QualType T = DR->getType();
1998
1999      if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
2000        isConstant = AT->getElementType().isConstant(S.Context);
2001      } else if (const PointerType *PT = T->getAs<PointerType>()) {
2002        isConstant = T.isConstant(S.Context) &&
2003                     PT->getPointeeType().isConstant(S.Context);
2004      } else if (T->isObjCObjectPointerType()) {
2005        // In ObjC, there is usually no "const ObjectPointer" type,
2006        // so don't check if the pointee type is constant.
2007        isConstant = T.isConstant(S.Context);
2008      }
2009
2010      if (isConstant) {
2011        if (const Expr *Init = VD->getAnyInitializer()) {
2012          // Look through initializers like const char c[] = { "foo" }
2013          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2014            if (InitList->isStringLiteralInit())
2015              Init = InitList->getInit(0)->IgnoreParenImpCasts();
2016          }
2017          return checkFormatStringExpr(S, Init, Args,
2018                                       HasVAListArg, format_idx,
2019                                       firstDataArg, Type, CallType,
2020                                       /*InFunctionCall*/false, CheckedVarArgs);
2021        }
2022      }
2023
2024      // For vprintf* functions (i.e., HasVAListArg==true), we add a
2025      // special check to see if the format string is a function parameter
2026      // of the function calling the printf function.  If the function
2027      // has an attribute indicating it is a printf-like function, then we
2028      // should suppress warnings concerning non-literals being used in a call
2029      // to a vprintf function.  For example:
2030      //
2031      // void
2032      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2033      //      va_list ap;
2034      //      va_start(ap, fmt);
2035      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
2036      //      ...
2037      // }
2038      if (HasVAListArg) {
2039        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2040          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2041            int PVIndex = PV->getFunctionScopeIndex() + 1;
2042            for (specific_attr_iterator<FormatAttr>
2043                 i = ND->specific_attr_begin<FormatAttr>(),
2044                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
2045              FormatAttr *PVFormat = *i;
2046              // adjust for implicit parameter
2047              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2048                if (MD->isInstance())
2049                  ++PVIndex;
2050              // We also check if the formats are compatible.
2051              // We can't pass a 'scanf' string to a 'printf' function.
2052              if (PVIndex == PVFormat->getFormatIdx() &&
2053                  Type == S.GetFormatStringType(PVFormat))
2054                return SLCT_UncheckedLiteral;
2055            }
2056          }
2057        }
2058      }
2059    }
2060
2061    return SLCT_NotALiteral;
2062  }
2063
2064  case Stmt::CallExprClass:
2065  case Stmt::CXXMemberCallExprClass: {
2066    const CallExpr *CE = cast<CallExpr>(E);
2067    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2068      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2069        unsigned ArgIndex = FA->getFormatIdx();
2070        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2071          if (MD->isInstance())
2072            --ArgIndex;
2073        const Expr *Arg = CE->getArg(ArgIndex - 1);
2074
2075        return checkFormatStringExpr(S, Arg, Args,
2076                                     HasVAListArg, format_idx, firstDataArg,
2077                                     Type, CallType, InFunctionCall,
2078                                     CheckedVarArgs);
2079      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2080        unsigned BuiltinID = FD->getBuiltinID();
2081        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2082            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2083          const Expr *Arg = CE->getArg(0);
2084          return checkFormatStringExpr(S, Arg, Args,
2085                                       HasVAListArg, format_idx,
2086                                       firstDataArg, Type, CallType,
2087                                       InFunctionCall, CheckedVarArgs);
2088        }
2089      }
2090    }
2091
2092    return SLCT_NotALiteral;
2093  }
2094  case Stmt::ObjCStringLiteralClass:
2095  case Stmt::StringLiteralClass: {
2096    const StringLiteral *StrE = NULL;
2097
2098    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2099      StrE = ObjCFExpr->getString();
2100    else
2101      StrE = cast<StringLiteral>(E);
2102
2103    if (StrE) {
2104      S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
2105                          Type, InFunctionCall, CallType, CheckedVarArgs);
2106      return SLCT_CheckedLiteral;
2107    }
2108
2109    return SLCT_NotALiteral;
2110  }
2111
2112  default:
2113    return SLCT_NotALiteral;
2114  }
2115}
2116
2117void
2118Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
2119                            const Expr * const *ExprArgs,
2120                            SourceLocation CallSiteLoc) {
2121  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
2122                                  e = NonNull->args_end();
2123       i != e; ++i) {
2124    const Expr *ArgExpr = ExprArgs[*i];
2125
2126    // As a special case, transparent unions initialized with zero are
2127    // considered null for the purposes of the nonnull attribute.
2128    if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
2129      if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
2130        if (const CompoundLiteralExpr *CLE =
2131            dyn_cast<CompoundLiteralExpr>(ArgExpr))
2132          if (const InitListExpr *ILE =
2133              dyn_cast<InitListExpr>(CLE->getInitializer()))
2134            ArgExpr = ILE->getInit(0);
2135    }
2136
2137    bool Result;
2138    if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
2139      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
2140  }
2141}
2142
2143Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2144  return llvm::StringSwitch<FormatStringType>(Format->getType())
2145  .Case("scanf", FST_Scanf)
2146  .Cases("printf", "printf0", FST_Printf)
2147  .Cases("NSString", "CFString", FST_NSString)
2148  .Case("strftime", FST_Strftime)
2149  .Case("strfmon", FST_Strfmon)
2150  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2151  .Default(FST_Unknown);
2152}
2153
2154/// CheckFormatArguments - Check calls to printf and scanf (and similar
2155/// functions) for correct use of format strings.
2156/// Returns true if a format string has been fully checked.
2157bool Sema::CheckFormatArguments(const FormatAttr *Format,
2158                                ArrayRef<const Expr *> Args,
2159                                bool IsCXXMember,
2160                                VariadicCallType CallType,
2161                                SourceLocation Loc, SourceRange Range,
2162                                llvm::SmallBitVector &CheckedVarArgs) {
2163  FormatStringInfo FSI;
2164  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2165    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2166                                FSI.FirstDataArg, GetFormatStringType(Format),
2167                                CallType, Loc, Range, CheckedVarArgs);
2168  return false;
2169}
2170
2171bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2172                                bool HasVAListArg, unsigned format_idx,
2173                                unsigned firstDataArg, FormatStringType Type,
2174                                VariadicCallType CallType,
2175                                SourceLocation Loc, SourceRange Range,
2176                                llvm::SmallBitVector &CheckedVarArgs) {
2177  // CHECK: printf/scanf-like function is called with no format string.
2178  if (format_idx >= Args.size()) {
2179    Diag(Loc, diag::warn_missing_format_string) << Range;
2180    return false;
2181  }
2182
2183  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2184
2185  // CHECK: format string is not a string literal.
2186  //
2187  // Dynamically generated format strings are difficult to
2188  // automatically vet at compile time.  Requiring that format strings
2189  // are string literals: (1) permits the checking of format strings by
2190  // the compiler and thereby (2) can practically remove the source of
2191  // many format string exploits.
2192
2193  // Format string can be either ObjC string (e.g. @"%d") or
2194  // C string (e.g. "%d")
2195  // ObjC string uses the same format specifiers as C string, so we can use
2196  // the same format string checking logic for both ObjC and C strings.
2197  StringLiteralCheckType CT =
2198      checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
2199                            format_idx, firstDataArg, Type, CallType,
2200                            /*IsFunctionCall*/true, CheckedVarArgs);
2201  if (CT != SLCT_NotALiteral)
2202    // Literal format string found, check done!
2203    return CT == SLCT_CheckedLiteral;
2204
2205  // Strftime is particular as it always uses a single 'time' argument,
2206  // so it is safe to pass a non-literal string.
2207  if (Type == FST_Strftime)
2208    return false;
2209
2210  // Do not emit diag when the string param is a macro expansion and the
2211  // format is either NSString or CFString. This is a hack to prevent
2212  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2213  // which are usually used in place of NS and CF string literals.
2214  if (Type == FST_NSString &&
2215      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2216    return false;
2217
2218  // If there are no arguments specified, warn with -Wformat-security, otherwise
2219  // warn only with -Wformat-nonliteral.
2220  if (Args.size() == firstDataArg)
2221    Diag(Args[format_idx]->getLocStart(),
2222         diag::warn_format_nonliteral_noargs)
2223      << OrigFormatExpr->getSourceRange();
2224  else
2225    Diag(Args[format_idx]->getLocStart(),
2226         diag::warn_format_nonliteral)
2227           << OrigFormatExpr->getSourceRange();
2228  return false;
2229}
2230
2231namespace {
2232class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2233protected:
2234  Sema &S;
2235  const StringLiteral *FExpr;
2236  const Expr *OrigFormatExpr;
2237  const unsigned FirstDataArg;
2238  const unsigned NumDataArgs;
2239  const char *Beg; // Start of format string.
2240  const bool HasVAListArg;
2241  ArrayRef<const Expr *> Args;
2242  unsigned FormatIdx;
2243  llvm::SmallBitVector CoveredArgs;
2244  bool usesPositionalArgs;
2245  bool atFirstArg;
2246  bool inFunctionCall;
2247  Sema::VariadicCallType CallType;
2248  llvm::SmallBitVector &CheckedVarArgs;
2249public:
2250  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2251                     const Expr *origFormatExpr, unsigned firstDataArg,
2252                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
2253                     ArrayRef<const Expr *> Args,
2254                     unsigned formatIdx, bool inFunctionCall,
2255                     Sema::VariadicCallType callType,
2256                     llvm::SmallBitVector &CheckedVarArgs)
2257    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2258      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2259      Beg(beg), HasVAListArg(hasVAListArg),
2260      Args(Args), FormatIdx(formatIdx),
2261      usesPositionalArgs(false), atFirstArg(true),
2262      inFunctionCall(inFunctionCall), CallType(callType),
2263      CheckedVarArgs(CheckedVarArgs) {
2264    CoveredArgs.resize(numDataArgs);
2265    CoveredArgs.reset();
2266  }
2267
2268  void DoneProcessing();
2269
2270  void HandleIncompleteSpecifier(const char *startSpecifier,
2271                                 unsigned specifierLen);
2272
2273  void HandleInvalidLengthModifier(
2274      const analyze_format_string::FormatSpecifier &FS,
2275      const analyze_format_string::ConversionSpecifier &CS,
2276      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
2277
2278  void HandleNonStandardLengthModifier(
2279      const analyze_format_string::FormatSpecifier &FS,
2280      const char *startSpecifier, unsigned specifierLen);
2281
2282  void HandleNonStandardConversionSpecifier(
2283      const analyze_format_string::ConversionSpecifier &CS,
2284      const char *startSpecifier, unsigned specifierLen);
2285
2286  virtual void HandlePosition(const char *startPos, unsigned posLen);
2287
2288  virtual void HandleInvalidPosition(const char *startSpecifier,
2289                                     unsigned specifierLen,
2290                                     analyze_format_string::PositionContext p);
2291
2292  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2293
2294  void HandleNullChar(const char *nullCharacter);
2295
2296  template <typename Range>
2297  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2298                                   const Expr *ArgumentExpr,
2299                                   PartialDiagnostic PDiag,
2300                                   SourceLocation StringLoc,
2301                                   bool IsStringLocation, Range StringRange,
2302                                   ArrayRef<FixItHint> Fixit = None);
2303
2304protected:
2305  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2306                                        const char *startSpec,
2307                                        unsigned specifierLen,
2308                                        const char *csStart, unsigned csLen);
2309
2310  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2311                                         const char *startSpec,
2312                                         unsigned specifierLen);
2313
2314  SourceRange getFormatStringRange();
2315  CharSourceRange getSpecifierRange(const char *startSpecifier,
2316                                    unsigned specifierLen);
2317  SourceLocation getLocationOfByte(const char *x);
2318
2319  const Expr *getDataArg(unsigned i) const;
2320
2321  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2322                    const analyze_format_string::ConversionSpecifier &CS,
2323                    const char *startSpecifier, unsigned specifierLen,
2324                    unsigned argIndex);
2325
2326  template <typename Range>
2327  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2328                            bool IsStringLocation, Range StringRange,
2329                            ArrayRef<FixItHint> Fixit = None);
2330
2331  void CheckPositionalAndNonpositionalArgs(
2332      const analyze_format_string::FormatSpecifier *FS);
2333};
2334}
2335
2336SourceRange CheckFormatHandler::getFormatStringRange() {
2337  return OrigFormatExpr->getSourceRange();
2338}
2339
2340CharSourceRange CheckFormatHandler::
2341getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2342  SourceLocation Start = getLocationOfByte(startSpecifier);
2343  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2344
2345  // Advance the end SourceLocation by one due to half-open ranges.
2346  End = End.getLocWithOffset(1);
2347
2348  return CharSourceRange::getCharRange(Start, End);
2349}
2350
2351SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2352  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2353}
2354
2355void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2356                                                   unsigned specifierLen){
2357  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2358                       getLocationOfByte(startSpecifier),
2359                       /*IsStringLocation*/true,
2360                       getSpecifierRange(startSpecifier, specifierLen));
2361}
2362
2363void CheckFormatHandler::HandleInvalidLengthModifier(
2364    const analyze_format_string::FormatSpecifier &FS,
2365    const analyze_format_string::ConversionSpecifier &CS,
2366    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2367  using namespace analyze_format_string;
2368
2369  const LengthModifier &LM = FS.getLengthModifier();
2370  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2371
2372  // See if we know how to fix this length modifier.
2373  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2374  if (FixedLM) {
2375    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2376                         getLocationOfByte(LM.getStart()),
2377                         /*IsStringLocation*/true,
2378                         getSpecifierRange(startSpecifier, specifierLen));
2379
2380    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2381      << FixedLM->toString()
2382      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2383
2384  } else {
2385    FixItHint Hint;
2386    if (DiagID == diag::warn_format_nonsensical_length)
2387      Hint = FixItHint::CreateRemoval(LMRange);
2388
2389    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2390                         getLocationOfByte(LM.getStart()),
2391                         /*IsStringLocation*/true,
2392                         getSpecifierRange(startSpecifier, specifierLen),
2393                         Hint);
2394  }
2395}
2396
2397void CheckFormatHandler::HandleNonStandardLengthModifier(
2398    const analyze_format_string::FormatSpecifier &FS,
2399    const char *startSpecifier, unsigned specifierLen) {
2400  using namespace analyze_format_string;
2401
2402  const LengthModifier &LM = FS.getLengthModifier();
2403  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2404
2405  // See if we know how to fix this length modifier.
2406  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2407  if (FixedLM) {
2408    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2409                           << LM.toString() << 0,
2410                         getLocationOfByte(LM.getStart()),
2411                         /*IsStringLocation*/true,
2412                         getSpecifierRange(startSpecifier, specifierLen));
2413
2414    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2415      << FixedLM->toString()
2416      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2417
2418  } else {
2419    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2420                           << LM.toString() << 0,
2421                         getLocationOfByte(LM.getStart()),
2422                         /*IsStringLocation*/true,
2423                         getSpecifierRange(startSpecifier, specifierLen));
2424  }
2425}
2426
2427void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2428    const analyze_format_string::ConversionSpecifier &CS,
2429    const char *startSpecifier, unsigned specifierLen) {
2430  using namespace analyze_format_string;
2431
2432  // See if we know how to fix this conversion specifier.
2433  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2434  if (FixedCS) {
2435    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2436                          << CS.toString() << /*conversion specifier*/1,
2437                         getLocationOfByte(CS.getStart()),
2438                         /*IsStringLocation*/true,
2439                         getSpecifierRange(startSpecifier, specifierLen));
2440
2441    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2442    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2443      << FixedCS->toString()
2444      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2445  } else {
2446    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2447                          << CS.toString() << /*conversion specifier*/1,
2448                         getLocationOfByte(CS.getStart()),
2449                         /*IsStringLocation*/true,
2450                         getSpecifierRange(startSpecifier, specifierLen));
2451  }
2452}
2453
2454void CheckFormatHandler::HandlePosition(const char *startPos,
2455                                        unsigned posLen) {
2456  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2457                               getLocationOfByte(startPos),
2458                               /*IsStringLocation*/true,
2459                               getSpecifierRange(startPos, posLen));
2460}
2461
2462void
2463CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2464                                     analyze_format_string::PositionContext p) {
2465  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2466                         << (unsigned) p,
2467                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2468                       getSpecifierRange(startPos, posLen));
2469}
2470
2471void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2472                                            unsigned posLen) {
2473  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2474                               getLocationOfByte(startPos),
2475                               /*IsStringLocation*/true,
2476                               getSpecifierRange(startPos, posLen));
2477}
2478
2479void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2480  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2481    // The presence of a null character is likely an error.
2482    EmitFormatDiagnostic(
2483      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2484      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2485      getFormatStringRange());
2486  }
2487}
2488
2489// Note that this may return NULL if there was an error parsing or building
2490// one of the argument expressions.
2491const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2492  return Args[FirstDataArg + i];
2493}
2494
2495void CheckFormatHandler::DoneProcessing() {
2496    // Does the number of data arguments exceed the number of
2497    // format conversions in the format string?
2498  if (!HasVAListArg) {
2499      // Find any arguments that weren't covered.
2500    CoveredArgs.flip();
2501    signed notCoveredArg = CoveredArgs.find_first();
2502    if (notCoveredArg >= 0) {
2503      assert((unsigned)notCoveredArg < NumDataArgs);
2504      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2505        SourceLocation Loc = E->getLocStart();
2506        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2507          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2508                               Loc, /*IsStringLocation*/false,
2509                               getFormatStringRange());
2510        }
2511      }
2512    }
2513  }
2514}
2515
2516bool
2517CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2518                                                     SourceLocation Loc,
2519                                                     const char *startSpec,
2520                                                     unsigned specifierLen,
2521                                                     const char *csStart,
2522                                                     unsigned csLen) {
2523
2524  bool keepGoing = true;
2525  if (argIndex < NumDataArgs) {
2526    // Consider the argument coverered, even though the specifier doesn't
2527    // make sense.
2528    CoveredArgs.set(argIndex);
2529  }
2530  else {
2531    // If argIndex exceeds the number of data arguments we
2532    // don't issue a warning because that is just a cascade of warnings (and
2533    // they may have intended '%%' anyway). We don't want to continue processing
2534    // the format string after this point, however, as we will like just get
2535    // gibberish when trying to match arguments.
2536    keepGoing = false;
2537  }
2538
2539  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2540                         << StringRef(csStart, csLen),
2541                       Loc, /*IsStringLocation*/true,
2542                       getSpecifierRange(startSpec, specifierLen));
2543
2544  return keepGoing;
2545}
2546
2547void
2548CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2549                                                      const char *startSpec,
2550                                                      unsigned specifierLen) {
2551  EmitFormatDiagnostic(
2552    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2553    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2554}
2555
2556bool
2557CheckFormatHandler::CheckNumArgs(
2558  const analyze_format_string::FormatSpecifier &FS,
2559  const analyze_format_string::ConversionSpecifier &CS,
2560  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2561
2562  if (argIndex >= NumDataArgs) {
2563    PartialDiagnostic PDiag = FS.usesPositionalArg()
2564      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2565           << (argIndex+1) << NumDataArgs)
2566      : S.PDiag(diag::warn_printf_insufficient_data_args);
2567    EmitFormatDiagnostic(
2568      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2569      getSpecifierRange(startSpecifier, specifierLen));
2570    return false;
2571  }
2572  return true;
2573}
2574
2575template<typename Range>
2576void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2577                                              SourceLocation Loc,
2578                                              bool IsStringLocation,
2579                                              Range StringRange,
2580                                              ArrayRef<FixItHint> FixIt) {
2581  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2582                       Loc, IsStringLocation, StringRange, FixIt);
2583}
2584
2585/// \brief If the format string is not within the funcion call, emit a note
2586/// so that the function call and string are in diagnostic messages.
2587///
2588/// \param InFunctionCall if true, the format string is within the function
2589/// call and only one diagnostic message will be produced.  Otherwise, an
2590/// extra note will be emitted pointing to location of the format string.
2591///
2592/// \param ArgumentExpr the expression that is passed as the format string
2593/// argument in the function call.  Used for getting locations when two
2594/// diagnostics are emitted.
2595///
2596/// \param PDiag the callee should already have provided any strings for the
2597/// diagnostic message.  This function only adds locations and fixits
2598/// to diagnostics.
2599///
2600/// \param Loc primary location for diagnostic.  If two diagnostics are
2601/// required, one will be at Loc and a new SourceLocation will be created for
2602/// the other one.
2603///
2604/// \param IsStringLocation if true, Loc points to the format string should be
2605/// used for the note.  Otherwise, Loc points to the argument list and will
2606/// be used with PDiag.
2607///
2608/// \param StringRange some or all of the string to highlight.  This is
2609/// templated so it can accept either a CharSourceRange or a SourceRange.
2610///
2611/// \param FixIt optional fix it hint for the format string.
2612template<typename Range>
2613void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2614                                              const Expr *ArgumentExpr,
2615                                              PartialDiagnostic PDiag,
2616                                              SourceLocation Loc,
2617                                              bool IsStringLocation,
2618                                              Range StringRange,
2619                                              ArrayRef<FixItHint> FixIt) {
2620  if (InFunctionCall) {
2621    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2622    D << StringRange;
2623    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2624         I != E; ++I) {
2625      D << *I;
2626    }
2627  } else {
2628    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2629      << ArgumentExpr->getSourceRange();
2630
2631    const Sema::SemaDiagnosticBuilder &Note =
2632      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2633             diag::note_format_string_defined);
2634
2635    Note << StringRange;
2636    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2637         I != E; ++I) {
2638      Note << *I;
2639    }
2640  }
2641}
2642
2643//===--- CHECK: Printf format string checking ------------------------------===//
2644
2645namespace {
2646class CheckPrintfHandler : public CheckFormatHandler {
2647  bool ObjCContext;
2648public:
2649  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2650                     const Expr *origFormatExpr, unsigned firstDataArg,
2651                     unsigned numDataArgs, bool isObjC,
2652                     const char *beg, bool hasVAListArg,
2653                     ArrayRef<const Expr *> Args,
2654                     unsigned formatIdx, bool inFunctionCall,
2655                     Sema::VariadicCallType CallType,
2656                     llvm::SmallBitVector &CheckedVarArgs)
2657    : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2658                         numDataArgs, beg, hasVAListArg, Args,
2659                         formatIdx, inFunctionCall, CallType, CheckedVarArgs),
2660      ObjCContext(isObjC)
2661  {}
2662
2663
2664  bool HandleInvalidPrintfConversionSpecifier(
2665                                      const analyze_printf::PrintfSpecifier &FS,
2666                                      const char *startSpecifier,
2667                                      unsigned specifierLen);
2668
2669  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2670                             const char *startSpecifier,
2671                             unsigned specifierLen);
2672  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2673                       const char *StartSpecifier,
2674                       unsigned SpecifierLen,
2675                       const Expr *E);
2676
2677  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2678                    const char *startSpecifier, unsigned specifierLen);
2679  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2680                           const analyze_printf::OptionalAmount &Amt,
2681                           unsigned type,
2682                           const char *startSpecifier, unsigned specifierLen);
2683  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2684                  const analyze_printf::OptionalFlag &flag,
2685                  const char *startSpecifier, unsigned specifierLen);
2686  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2687                         const analyze_printf::OptionalFlag &ignoredFlag,
2688                         const analyze_printf::OptionalFlag &flag,
2689                         const char *startSpecifier, unsigned specifierLen);
2690  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2691                           const Expr *E, const CharSourceRange &CSR);
2692
2693};
2694}
2695
2696bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2697                                      const analyze_printf::PrintfSpecifier &FS,
2698                                      const char *startSpecifier,
2699                                      unsigned specifierLen) {
2700  const analyze_printf::PrintfConversionSpecifier &CS =
2701    FS.getConversionSpecifier();
2702
2703  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2704                                          getLocationOfByte(CS.getStart()),
2705                                          startSpecifier, specifierLen,
2706                                          CS.getStart(), CS.getLength());
2707}
2708
2709bool CheckPrintfHandler::HandleAmount(
2710                               const analyze_format_string::OptionalAmount &Amt,
2711                               unsigned k, const char *startSpecifier,
2712                               unsigned specifierLen) {
2713
2714  if (Amt.hasDataArgument()) {
2715    if (!HasVAListArg) {
2716      unsigned argIndex = Amt.getArgIndex();
2717      if (argIndex >= NumDataArgs) {
2718        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2719                               << k,
2720                             getLocationOfByte(Amt.getStart()),
2721                             /*IsStringLocation*/true,
2722                             getSpecifierRange(startSpecifier, specifierLen));
2723        // Don't do any more checking.  We will just emit
2724        // spurious errors.
2725        return false;
2726      }
2727
2728      // Type check the data argument.  It should be an 'int'.
2729      // Although not in conformance with C99, we also allow the argument to be
2730      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2731      // doesn't emit a warning for that case.
2732      CoveredArgs.set(argIndex);
2733      const Expr *Arg = getDataArg(argIndex);
2734      if (!Arg)
2735        return false;
2736
2737      QualType T = Arg->getType();
2738
2739      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2740      assert(AT.isValid());
2741
2742      if (!AT.matchesType(S.Context, T)) {
2743        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2744                               << k << AT.getRepresentativeTypeName(S.Context)
2745                               << T << Arg->getSourceRange(),
2746                             getLocationOfByte(Amt.getStart()),
2747                             /*IsStringLocation*/true,
2748                             getSpecifierRange(startSpecifier, specifierLen));
2749        // Don't do any more checking.  We will just emit
2750        // spurious errors.
2751        return false;
2752      }
2753    }
2754  }
2755  return true;
2756}
2757
2758void CheckPrintfHandler::HandleInvalidAmount(
2759                                      const analyze_printf::PrintfSpecifier &FS,
2760                                      const analyze_printf::OptionalAmount &Amt,
2761                                      unsigned type,
2762                                      const char *startSpecifier,
2763                                      unsigned specifierLen) {
2764  const analyze_printf::PrintfConversionSpecifier &CS =
2765    FS.getConversionSpecifier();
2766
2767  FixItHint fixit =
2768    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2769      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2770                                 Amt.getConstantLength()))
2771      : FixItHint();
2772
2773  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2774                         << type << CS.toString(),
2775                       getLocationOfByte(Amt.getStart()),
2776                       /*IsStringLocation*/true,
2777                       getSpecifierRange(startSpecifier, specifierLen),
2778                       fixit);
2779}
2780
2781void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2782                                    const analyze_printf::OptionalFlag &flag,
2783                                    const char *startSpecifier,
2784                                    unsigned specifierLen) {
2785  // Warn about pointless flag with a fixit removal.
2786  const analyze_printf::PrintfConversionSpecifier &CS =
2787    FS.getConversionSpecifier();
2788  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2789                         << flag.toString() << CS.toString(),
2790                       getLocationOfByte(flag.getPosition()),
2791                       /*IsStringLocation*/true,
2792                       getSpecifierRange(startSpecifier, specifierLen),
2793                       FixItHint::CreateRemoval(
2794                         getSpecifierRange(flag.getPosition(), 1)));
2795}
2796
2797void CheckPrintfHandler::HandleIgnoredFlag(
2798                                const analyze_printf::PrintfSpecifier &FS,
2799                                const analyze_printf::OptionalFlag &ignoredFlag,
2800                                const analyze_printf::OptionalFlag &flag,
2801                                const char *startSpecifier,
2802                                unsigned specifierLen) {
2803  // Warn about ignored flag with a fixit removal.
2804  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2805                         << ignoredFlag.toString() << flag.toString(),
2806                       getLocationOfByte(ignoredFlag.getPosition()),
2807                       /*IsStringLocation*/true,
2808                       getSpecifierRange(startSpecifier, specifierLen),
2809                       FixItHint::CreateRemoval(
2810                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2811}
2812
2813// Determines if the specified is a C++ class or struct containing
2814// a member with the specified name and kind (e.g. a CXXMethodDecl named
2815// "c_str()").
2816template<typename MemberKind>
2817static llvm::SmallPtrSet<MemberKind*, 1>
2818CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2819  const RecordType *RT = Ty->getAs<RecordType>();
2820  llvm::SmallPtrSet<MemberKind*, 1> Results;
2821
2822  if (!RT)
2823    return Results;
2824  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2825  if (!RD)
2826    return Results;
2827
2828  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2829                 Sema::LookupMemberName);
2830
2831  // We just need to include all members of the right kind turned up by the
2832  // filter, at this point.
2833  if (S.LookupQualifiedName(R, RT->getDecl()))
2834    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2835      NamedDecl *decl = (*I)->getUnderlyingDecl();
2836      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2837        Results.insert(FK);
2838    }
2839  return Results;
2840}
2841
2842// Check if a (w)string was passed when a (w)char* was needed, and offer a
2843// better diagnostic if so. AT is assumed to be valid.
2844// Returns true when a c_str() conversion method is found.
2845bool CheckPrintfHandler::checkForCStrMembers(
2846    const analyze_printf::ArgType &AT, const Expr *E,
2847    const CharSourceRange &CSR) {
2848  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2849
2850  MethodSet Results =
2851      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2852
2853  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2854       MI != ME; ++MI) {
2855    const CXXMethodDecl *Method = *MI;
2856    if (Method->getNumParams() == 0 &&
2857          AT.matchesType(S.Context, Method->getResultType())) {
2858      // FIXME: Suggest parens if the expression needs them.
2859      SourceLocation EndLoc =
2860          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2861      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2862          << "c_str()"
2863          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2864      return true;
2865    }
2866  }
2867
2868  return false;
2869}
2870
2871bool
2872CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2873                                            &FS,
2874                                          const char *startSpecifier,
2875                                          unsigned specifierLen) {
2876
2877  using namespace analyze_format_string;
2878  using namespace analyze_printf;
2879  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2880
2881  if (FS.consumesDataArgument()) {
2882    if (atFirstArg) {
2883        atFirstArg = false;
2884        usesPositionalArgs = FS.usesPositionalArg();
2885    }
2886    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2887      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2888                                        startSpecifier, specifierLen);
2889      return false;
2890    }
2891  }
2892
2893  // First check if the field width, precision, and conversion specifier
2894  // have matching data arguments.
2895  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2896                    startSpecifier, specifierLen)) {
2897    return false;
2898  }
2899
2900  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2901                    startSpecifier, specifierLen)) {
2902    return false;
2903  }
2904
2905  if (!CS.consumesDataArgument()) {
2906    // FIXME: Technically specifying a precision or field width here
2907    // makes no sense.  Worth issuing a warning at some point.
2908    return true;
2909  }
2910
2911  // Consume the argument.
2912  unsigned argIndex = FS.getArgIndex();
2913  if (argIndex < NumDataArgs) {
2914    // The check to see if the argIndex is valid will come later.
2915    // We set the bit here because we may exit early from this
2916    // function if we encounter some other error.
2917    CoveredArgs.set(argIndex);
2918  }
2919
2920  // Check for using an Objective-C specific conversion specifier
2921  // in a non-ObjC literal.
2922  if (!ObjCContext && CS.isObjCArg()) {
2923    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2924                                                  specifierLen);
2925  }
2926
2927  // Check for invalid use of field width
2928  if (!FS.hasValidFieldWidth()) {
2929    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2930        startSpecifier, specifierLen);
2931  }
2932
2933  // Check for invalid use of precision
2934  if (!FS.hasValidPrecision()) {
2935    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2936        startSpecifier, specifierLen);
2937  }
2938
2939  // Check each flag does not conflict with any other component.
2940  if (!FS.hasValidThousandsGroupingPrefix())
2941    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2942  if (!FS.hasValidLeadingZeros())
2943    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2944  if (!FS.hasValidPlusPrefix())
2945    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2946  if (!FS.hasValidSpacePrefix())
2947    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2948  if (!FS.hasValidAlternativeForm())
2949    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2950  if (!FS.hasValidLeftJustified())
2951    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2952
2953  // Check that flags are not ignored by another flag
2954  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2955    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2956        startSpecifier, specifierLen);
2957  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2958    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2959            startSpecifier, specifierLen);
2960
2961  // Check the length modifier is valid with the given conversion specifier.
2962  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2963    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2964                                diag::warn_format_nonsensical_length);
2965  else if (!FS.hasStandardLengthModifier())
2966    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2967  else if (!FS.hasStandardLengthConversionCombination())
2968    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2969                                diag::warn_format_non_standard_conversion_spec);
2970
2971  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2972    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2973
2974  // The remaining checks depend on the data arguments.
2975  if (HasVAListArg)
2976    return true;
2977
2978  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2979    return false;
2980
2981  const Expr *Arg = getDataArg(argIndex);
2982  if (!Arg)
2983    return true;
2984
2985  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2986}
2987
2988static bool requiresParensToAddCast(const Expr *E) {
2989  // FIXME: We should have a general way to reason about operator
2990  // precedence and whether parens are actually needed here.
2991  // Take care of a few common cases where they aren't.
2992  const Expr *Inside = E->IgnoreImpCasts();
2993  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2994    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2995
2996  switch (Inside->getStmtClass()) {
2997  case Stmt::ArraySubscriptExprClass:
2998  case Stmt::CallExprClass:
2999  case Stmt::CharacterLiteralClass:
3000  case Stmt::CXXBoolLiteralExprClass:
3001  case Stmt::DeclRefExprClass:
3002  case Stmt::FloatingLiteralClass:
3003  case Stmt::IntegerLiteralClass:
3004  case Stmt::MemberExprClass:
3005  case Stmt::ObjCArrayLiteralClass:
3006  case Stmt::ObjCBoolLiteralExprClass:
3007  case Stmt::ObjCBoxedExprClass:
3008  case Stmt::ObjCDictionaryLiteralClass:
3009  case Stmt::ObjCEncodeExprClass:
3010  case Stmt::ObjCIvarRefExprClass:
3011  case Stmt::ObjCMessageExprClass:
3012  case Stmt::ObjCPropertyRefExprClass:
3013  case Stmt::ObjCStringLiteralClass:
3014  case Stmt::ObjCSubscriptRefExprClass:
3015  case Stmt::ParenExprClass:
3016  case Stmt::StringLiteralClass:
3017  case Stmt::UnaryOperatorClass:
3018    return false;
3019  default:
3020    return true;
3021  }
3022}
3023
3024bool
3025CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3026                                    const char *StartSpecifier,
3027                                    unsigned SpecifierLen,
3028                                    const Expr *E) {
3029  using namespace analyze_format_string;
3030  using namespace analyze_printf;
3031  // Now type check the data expression that matches the
3032  // format specifier.
3033  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3034                                                    ObjCContext);
3035  if (!AT.isValid())
3036    return true;
3037
3038  QualType ExprTy = E->getType();
3039  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3040    ExprTy = TET->getUnderlyingExpr()->getType();
3041  }
3042
3043  if (AT.matchesType(S.Context, ExprTy))
3044    return true;
3045
3046  // Look through argument promotions for our error message's reported type.
3047  // This includes the integral and floating promotions, but excludes array
3048  // and function pointer decay; seeing that an argument intended to be a
3049  // string has type 'char [6]' is probably more confusing than 'char *'.
3050  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3051    if (ICE->getCastKind() == CK_IntegralCast ||
3052        ICE->getCastKind() == CK_FloatingCast) {
3053      E = ICE->getSubExpr();
3054      ExprTy = E->getType();
3055
3056      // Check if we didn't match because of an implicit cast from a 'char'
3057      // or 'short' to an 'int'.  This is done because printf is a varargs
3058      // function.
3059      if (ICE->getType() == S.Context.IntTy ||
3060          ICE->getType() == S.Context.UnsignedIntTy) {
3061        // All further checking is done on the subexpression.
3062        if (AT.matchesType(S.Context, ExprTy))
3063          return true;
3064      }
3065    }
3066  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3067    // Special case for 'a', which has type 'int' in C.
3068    // Note, however, that we do /not/ want to treat multibyte constants like
3069    // 'MooV' as characters! This form is deprecated but still exists.
3070    if (ExprTy == S.Context.IntTy)
3071      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3072        ExprTy = S.Context.CharTy;
3073  }
3074
3075  // %C in an Objective-C context prints a unichar, not a wchar_t.
3076  // If the argument is an integer of some kind, believe the %C and suggest
3077  // a cast instead of changing the conversion specifier.
3078  QualType IntendedTy = ExprTy;
3079  if (ObjCContext &&
3080      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3081    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3082        !ExprTy->isCharType()) {
3083      // 'unichar' is defined as a typedef of unsigned short, but we should
3084      // prefer using the typedef if it is visible.
3085      IntendedTy = S.Context.UnsignedShortTy;
3086
3087      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3088                          Sema::LookupOrdinaryName);
3089      if (S.LookupName(Result, S.getCurScope())) {
3090        NamedDecl *ND = Result.getFoundDecl();
3091        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3092          if (TD->getUnderlyingType() == IntendedTy)
3093            IntendedTy = S.Context.getTypedefType(TD);
3094      }
3095    }
3096  }
3097
3098  // Special-case some of Darwin's platform-independence types by suggesting
3099  // casts to primitive types that are known to be large enough.
3100  bool ShouldNotPrintDirectly = false;
3101  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3102    // Use a 'while' to peel off layers of typedefs.
3103    QualType TyTy = IntendedTy;
3104    while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3105      StringRef Name = UserTy->getDecl()->getName();
3106      QualType CastTy = llvm::StringSwitch<QualType>(Name)
3107        .Case("NSInteger", S.Context.LongTy)
3108        .Case("NSUInteger", S.Context.UnsignedLongTy)
3109        .Case("SInt32", S.Context.IntTy)
3110        .Case("UInt32", S.Context.UnsignedIntTy)
3111        .Default(QualType());
3112
3113      if (!CastTy.isNull()) {
3114        ShouldNotPrintDirectly = true;
3115        IntendedTy = CastTy;
3116        break;
3117      }
3118      TyTy = UserTy->desugar();
3119    }
3120  }
3121
3122  // We may be able to offer a FixItHint if it is a supported type.
3123  PrintfSpecifier fixedFS = FS;
3124  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3125                                 S.Context, ObjCContext);
3126
3127  if (success) {
3128    // Get the fix string from the fixed format specifier
3129    SmallString<16> buf;
3130    llvm::raw_svector_ostream os(buf);
3131    fixedFS.toString(os);
3132
3133    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3134
3135    if (IntendedTy == ExprTy) {
3136      // In this case, the specifier is wrong and should be changed to match
3137      // the argument.
3138      EmitFormatDiagnostic(
3139        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3140          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
3141          << E->getSourceRange(),
3142        E->getLocStart(),
3143        /*IsStringLocation*/false,
3144        SpecRange,
3145        FixItHint::CreateReplacement(SpecRange, os.str()));
3146
3147    } else {
3148      // The canonical type for formatting this value is different from the
3149      // actual type of the expression. (This occurs, for example, with Darwin's
3150      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3151      // should be printed as 'long' for 64-bit compatibility.)
3152      // Rather than emitting a normal format/argument mismatch, we want to
3153      // add a cast to the recommended type (and correct the format string
3154      // if necessary).
3155      SmallString<16> CastBuf;
3156      llvm::raw_svector_ostream CastFix(CastBuf);
3157      CastFix << "(";
3158      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3159      CastFix << ")";
3160
3161      SmallVector<FixItHint,4> Hints;
3162      if (!AT.matchesType(S.Context, IntendedTy))
3163        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3164
3165      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3166        // If there's already a cast present, just replace it.
3167        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3168        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3169
3170      } else if (!requiresParensToAddCast(E)) {
3171        // If the expression has high enough precedence,
3172        // just write the C-style cast.
3173        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3174                                                   CastFix.str()));
3175      } else {
3176        // Otherwise, add parens around the expression as well as the cast.
3177        CastFix << "(";
3178        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3179                                                   CastFix.str()));
3180
3181        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
3182        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3183      }
3184
3185      if (ShouldNotPrintDirectly) {
3186        // The expression has a type that should not be printed directly.
3187        // We extract the name from the typedef because we don't want to show
3188        // the underlying type in the diagnostic.
3189        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
3190
3191        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3192                               << Name << IntendedTy
3193                               << E->getSourceRange(),
3194                             E->getLocStart(), /*IsStringLocation=*/false,
3195                             SpecRange, Hints);
3196      } else {
3197        // In this case, the expression could be printed using a different
3198        // specifier, but we've decided that the specifier is probably correct
3199        // and we should cast instead. Just use the normal warning message.
3200        EmitFormatDiagnostic(
3201          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3202            << AT.getRepresentativeTypeName(S.Context) << ExprTy
3203            << E->getSourceRange(),
3204          E->getLocStart(), /*IsStringLocation*/false,
3205          SpecRange, Hints);
3206      }
3207    }
3208  } else {
3209    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3210                                                   SpecifierLen);
3211    // Since the warning for passing non-POD types to variadic functions
3212    // was deferred until now, we emit a warning for non-POD
3213    // arguments here.
3214    switch (S.isValidVarArgType(ExprTy)) {
3215    case Sema::VAK_Valid:
3216    case Sema::VAK_ValidInCXX11:
3217      EmitFormatDiagnostic(
3218        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3219          << AT.getRepresentativeTypeName(S.Context) << ExprTy
3220          << CSR
3221          << E->getSourceRange(),
3222        E->getLocStart(), /*IsStringLocation*/false, CSR);
3223      break;
3224
3225    case Sema::VAK_Undefined:
3226      EmitFormatDiagnostic(
3227        S.PDiag(diag::warn_non_pod_vararg_with_format_string)
3228          << S.getLangOpts().CPlusPlus11
3229          << ExprTy
3230          << CallType
3231          << AT.getRepresentativeTypeName(S.Context)
3232          << CSR
3233          << E->getSourceRange(),
3234        E->getLocStart(), /*IsStringLocation*/false, CSR);
3235      checkForCStrMembers(AT, E, CSR);
3236      break;
3237
3238    case Sema::VAK_Invalid:
3239      if (ExprTy->isObjCObjectType())
3240        EmitFormatDiagnostic(
3241          S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
3242            << S.getLangOpts().CPlusPlus11
3243            << ExprTy
3244            << CallType
3245            << AT.getRepresentativeTypeName(S.Context)
3246            << CSR
3247            << E->getSourceRange(),
3248          E->getLocStart(), /*IsStringLocation*/false, CSR);
3249      else
3250        // FIXME: If this is an initializer list, suggest removing the braces
3251        // or inserting a cast to the target type.
3252        S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
3253          << isa<InitListExpr>(E) << ExprTy << CallType
3254          << AT.getRepresentativeTypeName(S.Context)
3255          << E->getSourceRange();
3256      break;
3257    }
3258
3259    assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
3260           "format string specifier index out of range");
3261    CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
3262  }
3263
3264  return true;
3265}
3266
3267//===--- CHECK: Scanf format string checking ------------------------------===//
3268
3269namespace {
3270class CheckScanfHandler : public CheckFormatHandler {
3271public:
3272  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
3273                    const Expr *origFormatExpr, unsigned firstDataArg,
3274                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
3275                    ArrayRef<const Expr *> Args,
3276                    unsigned formatIdx, bool inFunctionCall,
3277                    Sema::VariadicCallType CallType,
3278                    llvm::SmallBitVector &CheckedVarArgs)
3279    : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3280                         numDataArgs, beg, hasVAListArg,
3281                         Args, formatIdx, inFunctionCall, CallType,
3282                         CheckedVarArgs)
3283  {}
3284
3285  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
3286                            const char *startSpecifier,
3287                            unsigned specifierLen);
3288
3289  bool HandleInvalidScanfConversionSpecifier(
3290          const analyze_scanf::ScanfSpecifier &FS,
3291          const char *startSpecifier,
3292          unsigned specifierLen);
3293
3294  void HandleIncompleteScanList(const char *start, const char *end);
3295};
3296}
3297
3298void CheckScanfHandler::HandleIncompleteScanList(const char *start,
3299                                                 const char *end) {
3300  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
3301                       getLocationOfByte(end), /*IsStringLocation*/true,
3302                       getSpecifierRange(start, end - start));
3303}
3304
3305bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3306                                        const analyze_scanf::ScanfSpecifier &FS,
3307                                        const char *startSpecifier,
3308                                        unsigned specifierLen) {
3309
3310  const analyze_scanf::ScanfConversionSpecifier &CS =
3311    FS.getConversionSpecifier();
3312
3313  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3314                                          getLocationOfByte(CS.getStart()),
3315                                          startSpecifier, specifierLen,
3316                                          CS.getStart(), CS.getLength());
3317}
3318
3319bool CheckScanfHandler::HandleScanfSpecifier(
3320                                       const analyze_scanf::ScanfSpecifier &FS,
3321                                       const char *startSpecifier,
3322                                       unsigned specifierLen) {
3323
3324  using namespace analyze_scanf;
3325  using namespace analyze_format_string;
3326
3327  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3328
3329  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3330  // be used to decide if we are using positional arguments consistently.
3331  if (FS.consumesDataArgument()) {
3332    if (atFirstArg) {
3333      atFirstArg = false;
3334      usesPositionalArgs = FS.usesPositionalArg();
3335    }
3336    else if (usesPositionalArgs != FS.usesPositionalArg()) {
3337      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3338                                        startSpecifier, specifierLen);
3339      return false;
3340    }
3341  }
3342
3343  // Check if the field with is non-zero.
3344  const OptionalAmount &Amt = FS.getFieldWidth();
3345  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3346    if (Amt.getConstantAmount() == 0) {
3347      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3348                                                   Amt.getConstantLength());
3349      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3350                           getLocationOfByte(Amt.getStart()),
3351                           /*IsStringLocation*/true, R,
3352                           FixItHint::CreateRemoval(R));
3353    }
3354  }
3355
3356  if (!FS.consumesDataArgument()) {
3357    // FIXME: Technically specifying a precision or field width here
3358    // makes no sense.  Worth issuing a warning at some point.
3359    return true;
3360  }
3361
3362  // Consume the argument.
3363  unsigned argIndex = FS.getArgIndex();
3364  if (argIndex < NumDataArgs) {
3365      // The check to see if the argIndex is valid will come later.
3366      // We set the bit here because we may exit early from this
3367      // function if we encounter some other error.
3368    CoveredArgs.set(argIndex);
3369  }
3370
3371  // Check the length modifier is valid with the given conversion specifier.
3372  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3373    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3374                                diag::warn_format_nonsensical_length);
3375  else if (!FS.hasStandardLengthModifier())
3376    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3377  else if (!FS.hasStandardLengthConversionCombination())
3378    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3379                                diag::warn_format_non_standard_conversion_spec);
3380
3381  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3382    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3383
3384  // The remaining checks depend on the data arguments.
3385  if (HasVAListArg)
3386    return true;
3387
3388  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3389    return false;
3390
3391  // Check that the argument type matches the format specifier.
3392  const Expr *Ex = getDataArg(argIndex);
3393  if (!Ex)
3394    return true;
3395
3396  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3397  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3398    ScanfSpecifier fixedFS = FS;
3399    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3400                                   S.Context);
3401
3402    if (success) {
3403      // Get the fix string from the fixed format specifier.
3404      SmallString<128> buf;
3405      llvm::raw_svector_ostream os(buf);
3406      fixedFS.toString(os);
3407
3408      EmitFormatDiagnostic(
3409        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3410          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3411          << Ex->getSourceRange(),
3412        Ex->getLocStart(),
3413        /*IsStringLocation*/false,
3414        getSpecifierRange(startSpecifier, specifierLen),
3415        FixItHint::CreateReplacement(
3416          getSpecifierRange(startSpecifier, specifierLen),
3417          os.str()));
3418    } else {
3419      EmitFormatDiagnostic(
3420        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3421          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3422          << Ex->getSourceRange(),
3423        Ex->getLocStart(),
3424        /*IsStringLocation*/false,
3425        getSpecifierRange(startSpecifier, specifierLen));
3426    }
3427  }
3428
3429  return true;
3430}
3431
3432void Sema::CheckFormatString(const StringLiteral *FExpr,
3433                             const Expr *OrigFormatExpr,
3434                             ArrayRef<const Expr *> Args,
3435                             bool HasVAListArg, unsigned format_idx,
3436                             unsigned firstDataArg, FormatStringType Type,
3437                             bool inFunctionCall, VariadicCallType CallType,
3438                             llvm::SmallBitVector &CheckedVarArgs) {
3439
3440  // CHECK: is the format string a wide literal?
3441  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3442    CheckFormatHandler::EmitFormatDiagnostic(
3443      *this, inFunctionCall, Args[format_idx],
3444      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3445      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3446    return;
3447  }
3448
3449  // Str - The format string.  NOTE: this is NOT null-terminated!
3450  StringRef StrRef = FExpr->getString();
3451  const char *Str = StrRef.data();
3452  unsigned StrLen = StrRef.size();
3453  const unsigned numDataArgs = Args.size() - firstDataArg;
3454
3455  // CHECK: empty format string?
3456  if (StrLen == 0 && numDataArgs > 0) {
3457    CheckFormatHandler::EmitFormatDiagnostic(
3458      *this, inFunctionCall, Args[format_idx],
3459      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3460      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3461    return;
3462  }
3463
3464  if (Type == FST_Printf || Type == FST_NSString) {
3465    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3466                         numDataArgs, (Type == FST_NSString),
3467                         Str, HasVAListArg, Args, format_idx,
3468                         inFunctionCall, CallType, CheckedVarArgs);
3469
3470    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3471                                                  getLangOpts(),
3472                                                  Context.getTargetInfo()))
3473      H.DoneProcessing();
3474  } else if (Type == FST_Scanf) {
3475    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3476                        Str, HasVAListArg, Args, format_idx,
3477                        inFunctionCall, CallType, CheckedVarArgs);
3478
3479    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3480                                                 getLangOpts(),
3481                                                 Context.getTargetInfo()))
3482      H.DoneProcessing();
3483  } // TODO: handle other formats
3484}
3485
3486//===--- CHECK: Standard memory functions ---------------------------------===//
3487
3488/// \brief Determine whether the given type is a dynamic class type (e.g.,
3489/// whether it has a vtable).
3490static bool isDynamicClassType(QualType T) {
3491  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3492    if (CXXRecordDecl *Definition = Record->getDefinition())
3493      if (Definition->isDynamicClass())
3494        return true;
3495
3496  return false;
3497}
3498
3499/// \brief If E is a sizeof expression, returns its argument expression,
3500/// otherwise returns NULL.
3501static const Expr *getSizeOfExprArg(const Expr* E) {
3502  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3503      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3504    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3505      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3506
3507  return 0;
3508}
3509
3510/// \brief If E is a sizeof expression, returns its argument type.
3511static QualType getSizeOfArgType(const Expr* E) {
3512  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3513      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3514    if (SizeOf->getKind() == clang::UETT_SizeOf)
3515      return SizeOf->getTypeOfArgument();
3516
3517  return QualType();
3518}
3519
3520/// \brief Check for dangerous or invalid arguments to memset().
3521///
3522/// This issues warnings on known problematic, dangerous or unspecified
3523/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3524/// function calls.
3525///
3526/// \param Call The call expression to diagnose.
3527void Sema::CheckMemaccessArguments(const CallExpr *Call,
3528                                   unsigned BId,
3529                                   IdentifierInfo *FnName) {
3530  assert(BId != 0);
3531
3532  // It is possible to have a non-standard definition of memset.  Validate
3533  // we have enough arguments, and if not, abort further checking.
3534  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3535  if (Call->getNumArgs() < ExpectedNumArgs)
3536    return;
3537
3538  unsigned LastArg = (BId == Builtin::BImemset ||
3539                      BId == Builtin::BIstrndup ? 1 : 2);
3540  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3541  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3542
3543  // We have special checking when the length is a sizeof expression.
3544  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3545  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3546  llvm::FoldingSetNodeID SizeOfArgID;
3547
3548  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3549    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3550    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3551
3552    QualType DestTy = Dest->getType();
3553    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3554      QualType PointeeTy = DestPtrTy->getPointeeType();
3555
3556      // Never warn about void type pointers. This can be used to suppress
3557      // false positives.
3558      if (PointeeTy->isVoidType())
3559        continue;
3560
3561      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3562      // actually comparing the expressions for equality. Because computing the
3563      // expression IDs can be expensive, we only do this if the diagnostic is
3564      // enabled.
3565      if (SizeOfArg &&
3566          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3567                                   SizeOfArg->getExprLoc())) {
3568        // We only compute IDs for expressions if the warning is enabled, and
3569        // cache the sizeof arg's ID.
3570        if (SizeOfArgID == llvm::FoldingSetNodeID())
3571          SizeOfArg->Profile(SizeOfArgID, Context, true);
3572        llvm::FoldingSetNodeID DestID;
3573        Dest->Profile(DestID, Context, true);
3574        if (DestID == SizeOfArgID) {
3575          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3576          //       over sizeof(src) as well.
3577          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3578          StringRef ReadableName = FnName->getName();
3579
3580          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3581            if (UnaryOp->getOpcode() == UO_AddrOf)
3582              ActionIdx = 1; // If its an address-of operator, just remove it.
3583          if (!PointeeTy->isIncompleteType() &&
3584              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3585            ActionIdx = 2; // If the pointee's size is sizeof(char),
3586                           // suggest an explicit length.
3587
3588          // If the function is defined as a builtin macro, do not show macro
3589          // expansion.
3590          SourceLocation SL = SizeOfArg->getExprLoc();
3591          SourceRange DSR = Dest->getSourceRange();
3592          SourceRange SSR = SizeOfArg->getSourceRange();
3593          SourceManager &SM  = PP.getSourceManager();
3594
3595          if (SM.isMacroArgExpansion(SL)) {
3596            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3597            SL = SM.getSpellingLoc(SL);
3598            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3599                             SM.getSpellingLoc(DSR.getEnd()));
3600            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3601                             SM.getSpellingLoc(SSR.getEnd()));
3602          }
3603
3604          DiagRuntimeBehavior(SL, SizeOfArg,
3605                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3606                                << ReadableName
3607                                << PointeeTy
3608                                << DestTy
3609                                << DSR
3610                                << SSR);
3611          DiagRuntimeBehavior(SL, SizeOfArg,
3612                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3613                                << ActionIdx
3614                                << SSR);
3615
3616          break;
3617        }
3618      }
3619
3620      // Also check for cases where the sizeof argument is the exact same
3621      // type as the memory argument, and where it points to a user-defined
3622      // record type.
3623      if (SizeOfArgTy != QualType()) {
3624        if (PointeeTy->isRecordType() &&
3625            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3626          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3627                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3628                                << FnName << SizeOfArgTy << ArgIdx
3629                                << PointeeTy << Dest->getSourceRange()
3630                                << LenExpr->getSourceRange());
3631          break;
3632        }
3633      }
3634
3635      // Always complain about dynamic classes.
3636      if (isDynamicClassType(PointeeTy)) {
3637
3638        unsigned OperationType = 0;
3639        // "overwritten" if we're warning about the destination for any call
3640        // but memcmp; otherwise a verb appropriate to the call.
3641        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3642          if (BId == Builtin::BImemcpy)
3643            OperationType = 1;
3644          else if(BId == Builtin::BImemmove)
3645            OperationType = 2;
3646          else if (BId == Builtin::BImemcmp)
3647            OperationType = 3;
3648        }
3649
3650        DiagRuntimeBehavior(
3651          Dest->getExprLoc(), Dest,
3652          PDiag(diag::warn_dyn_class_memaccess)
3653            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3654            << FnName << PointeeTy
3655            << OperationType
3656            << Call->getCallee()->getSourceRange());
3657      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3658               BId != Builtin::BImemset)
3659        DiagRuntimeBehavior(
3660          Dest->getExprLoc(), Dest,
3661          PDiag(diag::warn_arc_object_memaccess)
3662            << ArgIdx << FnName << PointeeTy
3663            << Call->getCallee()->getSourceRange());
3664      else
3665        continue;
3666
3667      DiagRuntimeBehavior(
3668        Dest->getExprLoc(), Dest,
3669        PDiag(diag::note_bad_memaccess_silence)
3670          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3671      break;
3672    }
3673  }
3674}
3675
3676// A little helper routine: ignore addition and subtraction of integer literals.
3677// This intentionally does not ignore all integer constant expressions because
3678// we don't want to remove sizeof().
3679static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3680  Ex = Ex->IgnoreParenCasts();
3681
3682  for (;;) {
3683    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3684    if (!BO || !BO->isAdditiveOp())
3685      break;
3686
3687    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3688    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3689
3690    if (isa<IntegerLiteral>(RHS))
3691      Ex = LHS;
3692    else if (isa<IntegerLiteral>(LHS))
3693      Ex = RHS;
3694    else
3695      break;
3696  }
3697
3698  return Ex;
3699}
3700
3701static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3702                                                      ASTContext &Context) {
3703  // Only handle constant-sized or VLAs, but not flexible members.
3704  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3705    // Only issue the FIXIT for arrays of size > 1.
3706    if (CAT->getSize().getSExtValue() <= 1)
3707      return false;
3708  } else if (!Ty->isVariableArrayType()) {
3709    return false;
3710  }
3711  return true;
3712}
3713
3714// Warn if the user has made the 'size' argument to strlcpy or strlcat
3715// be the size of the source, instead of the destination.
3716void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3717                                    IdentifierInfo *FnName) {
3718
3719  // Don't crash if the user has the wrong number of arguments
3720  if (Call->getNumArgs() != 3)
3721    return;
3722
3723  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3724  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3725  const Expr *CompareWithSrc = NULL;
3726
3727  // Look for 'strlcpy(dst, x, sizeof(x))'
3728  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3729    CompareWithSrc = Ex;
3730  else {
3731    // Look for 'strlcpy(dst, x, strlen(x))'
3732    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3733      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3734          && SizeCall->getNumArgs() == 1)
3735        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3736    }
3737  }
3738
3739  if (!CompareWithSrc)
3740    return;
3741
3742  // Determine if the argument to sizeof/strlen is equal to the source
3743  // argument.  In principle there's all kinds of things you could do
3744  // here, for instance creating an == expression and evaluating it with
3745  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3746  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3747  if (!SrcArgDRE)
3748    return;
3749
3750  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3751  if (!CompareWithSrcDRE ||
3752      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3753    return;
3754
3755  const Expr *OriginalSizeArg = Call->getArg(2);
3756  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3757    << OriginalSizeArg->getSourceRange() << FnName;
3758
3759  // Output a FIXIT hint if the destination is an array (rather than a
3760  // pointer to an array).  This could be enhanced to handle some
3761  // pointers if we know the actual size, like if DstArg is 'array+2'
3762  // we could say 'sizeof(array)-2'.
3763  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3764  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3765    return;
3766
3767  SmallString<128> sizeString;
3768  llvm::raw_svector_ostream OS(sizeString);
3769  OS << "sizeof(";
3770  DstArg->printPretty(OS, 0, getPrintingPolicy());
3771  OS << ")";
3772
3773  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3774    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3775                                    OS.str());
3776}
3777
3778/// Check if two expressions refer to the same declaration.
3779static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3780  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3781    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3782      return D1->getDecl() == D2->getDecl();
3783  return false;
3784}
3785
3786static const Expr *getStrlenExprArg(const Expr *E) {
3787  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3788    const FunctionDecl *FD = CE->getDirectCallee();
3789    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3790      return 0;
3791    return CE->getArg(0)->IgnoreParenCasts();
3792  }
3793  return 0;
3794}
3795
3796// Warn on anti-patterns as the 'size' argument to strncat.
3797// The correct size argument should look like following:
3798//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3799void Sema::CheckStrncatArguments(const CallExpr *CE,
3800                                 IdentifierInfo *FnName) {
3801  // Don't crash if the user has the wrong number of arguments.
3802  if (CE->getNumArgs() < 3)
3803    return;
3804  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3805  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3806  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3807
3808  // Identify common expressions, which are wrongly used as the size argument
3809  // to strncat and may lead to buffer overflows.
3810  unsigned PatternType = 0;
3811  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3812    // - sizeof(dst)
3813    if (referToTheSameDecl(SizeOfArg, DstArg))
3814      PatternType = 1;
3815    // - sizeof(src)
3816    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3817      PatternType = 2;
3818  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3819    if (BE->getOpcode() == BO_Sub) {
3820      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3821      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3822      // - sizeof(dst) - strlen(dst)
3823      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3824          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3825        PatternType = 1;
3826      // - sizeof(src) - (anything)
3827      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3828        PatternType = 2;
3829    }
3830  }
3831
3832  if (PatternType == 0)
3833    return;
3834
3835  // Generate the diagnostic.
3836  SourceLocation SL = LenArg->getLocStart();
3837  SourceRange SR = LenArg->getSourceRange();
3838  SourceManager &SM  = PP.getSourceManager();
3839
3840  // If the function is defined as a builtin macro, do not show macro expansion.
3841  if (SM.isMacroArgExpansion(SL)) {
3842    SL = SM.getSpellingLoc(SL);
3843    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3844                     SM.getSpellingLoc(SR.getEnd()));
3845  }
3846
3847  // Check if the destination is an array (rather than a pointer to an array).
3848  QualType DstTy = DstArg->getType();
3849  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3850                                                                    Context);
3851  if (!isKnownSizeArray) {
3852    if (PatternType == 1)
3853      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3854    else
3855      Diag(SL, diag::warn_strncat_src_size) << SR;
3856    return;
3857  }
3858
3859  if (PatternType == 1)
3860    Diag(SL, diag::warn_strncat_large_size) << SR;
3861  else
3862    Diag(SL, diag::warn_strncat_src_size) << SR;
3863
3864  SmallString<128> sizeString;
3865  llvm::raw_svector_ostream OS(sizeString);
3866  OS << "sizeof(";
3867  DstArg->printPretty(OS, 0, getPrintingPolicy());
3868  OS << ") - ";
3869  OS << "strlen(";
3870  DstArg->printPretty(OS, 0, getPrintingPolicy());
3871  OS << ") - 1";
3872
3873  Diag(SL, diag::note_strncat_wrong_size)
3874    << FixItHint::CreateReplacement(SR, OS.str());
3875}
3876
3877//===--- CHECK: Return Address of Stack Variable --------------------------===//
3878
3879static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3880                     Decl *ParentDecl);
3881static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3882                      Decl *ParentDecl);
3883
3884/// CheckReturnStackAddr - Check if a return statement returns the address
3885///   of a stack variable.
3886void
3887Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3888                           SourceLocation ReturnLoc) {
3889
3890  Expr *stackE = 0;
3891  SmallVector<DeclRefExpr *, 8> refVars;
3892
3893  // Perform checking for returned stack addresses, local blocks,
3894  // label addresses or references to temporaries.
3895  if (lhsType->isPointerType() ||
3896      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3897    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3898  } else if (lhsType->isReferenceType()) {
3899    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3900  }
3901
3902  if (stackE == 0)
3903    return; // Nothing suspicious was found.
3904
3905  SourceLocation diagLoc;
3906  SourceRange diagRange;
3907  if (refVars.empty()) {
3908    diagLoc = stackE->getLocStart();
3909    diagRange = stackE->getSourceRange();
3910  } else {
3911    // We followed through a reference variable. 'stackE' contains the
3912    // problematic expression but we will warn at the return statement pointing
3913    // at the reference variable. We will later display the "trail" of
3914    // reference variables using notes.
3915    diagLoc = refVars[0]->getLocStart();
3916    diagRange = refVars[0]->getSourceRange();
3917  }
3918
3919  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3920    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3921                                             : diag::warn_ret_stack_addr)
3922     << DR->getDecl()->getDeclName() << diagRange;
3923  } else if (isa<BlockExpr>(stackE)) { // local block.
3924    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3925  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3926    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3927  } else { // local temporary.
3928    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3929                                             : diag::warn_ret_local_temp_addr)
3930     << diagRange;
3931  }
3932
3933  // Display the "trail" of reference variables that we followed until we
3934  // found the problematic expression using notes.
3935  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3936    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3937    // If this var binds to another reference var, show the range of the next
3938    // var, otherwise the var binds to the problematic expression, in which case
3939    // show the range of the expression.
3940    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3941                                  : stackE->getSourceRange();
3942    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3943      << VD->getDeclName() << range;
3944  }
3945}
3946
3947/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3948///  check if the expression in a return statement evaluates to an address
3949///  to a location on the stack, a local block, an address of a label, or a
3950///  reference to local temporary. The recursion is used to traverse the
3951///  AST of the return expression, with recursion backtracking when we
3952///  encounter a subexpression that (1) clearly does not lead to one of the
3953///  above problematic expressions (2) is something we cannot determine leads to
3954///  a problematic expression based on such local checking.
3955///
3956///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3957///  the expression that they point to. Such variables are added to the
3958///  'refVars' vector so that we know what the reference variable "trail" was.
3959///
3960///  EvalAddr processes expressions that are pointers that are used as
3961///  references (and not L-values).  EvalVal handles all other values.
3962///  At the base case of the recursion is a check for the above problematic
3963///  expressions.
3964///
3965///  This implementation handles:
3966///
3967///   * pointer-to-pointer casts
3968///   * implicit conversions from array references to pointers
3969///   * taking the address of fields
3970///   * arbitrary interplay between "&" and "*" operators
3971///   * pointer arithmetic from an address of a stack variable
3972///   * taking the address of an array element where the array is on the stack
3973static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3974                      Decl *ParentDecl) {
3975  if (E->isTypeDependent())
3976    return NULL;
3977
3978  // We should only be called for evaluating pointer expressions.
3979  assert((E->getType()->isAnyPointerType() ||
3980          E->getType()->isBlockPointerType() ||
3981          E->getType()->isObjCQualifiedIdType()) &&
3982         "EvalAddr only works on pointers");
3983
3984  E = E->IgnoreParens();
3985
3986  // Our "symbolic interpreter" is just a dispatch off the currently
3987  // viewed AST node.  We then recursively traverse the AST by calling
3988  // EvalAddr and EvalVal appropriately.
3989  switch (E->getStmtClass()) {
3990  case Stmt::DeclRefExprClass: {
3991    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3992
3993    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3994      // If this is a reference variable, follow through to the expression that
3995      // it points to.
3996      if (V->hasLocalStorage() &&
3997          V->getType()->isReferenceType() && V->hasInit()) {
3998        // Add the reference variable to the "trail".
3999        refVars.push_back(DR);
4000        return EvalAddr(V->getInit(), refVars, ParentDecl);
4001      }
4002
4003    return NULL;
4004  }
4005
4006  case Stmt::UnaryOperatorClass: {
4007    // The only unary operator that make sense to handle here
4008    // is AddrOf.  All others don't make sense as pointers.
4009    UnaryOperator *U = cast<UnaryOperator>(E);
4010
4011    if (U->getOpcode() == UO_AddrOf)
4012      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
4013    else
4014      return NULL;
4015  }
4016
4017  case Stmt::BinaryOperatorClass: {
4018    // Handle pointer arithmetic.  All other binary operators are not valid
4019    // in this context.
4020    BinaryOperator *B = cast<BinaryOperator>(E);
4021    BinaryOperatorKind op = B->getOpcode();
4022
4023    if (op != BO_Add && op != BO_Sub)
4024      return NULL;
4025
4026    Expr *Base = B->getLHS();
4027
4028    // Determine which argument is the real pointer base.  It could be
4029    // the RHS argument instead of the LHS.
4030    if (!Base->getType()->isPointerType()) Base = B->getRHS();
4031
4032    assert (Base->getType()->isPointerType());
4033    return EvalAddr(Base, refVars, ParentDecl);
4034  }
4035
4036  // For conditional operators we need to see if either the LHS or RHS are
4037  // valid DeclRefExpr*s.  If one of them is valid, we return it.
4038  case Stmt::ConditionalOperatorClass: {
4039    ConditionalOperator *C = cast<ConditionalOperator>(E);
4040
4041    // Handle the GNU extension for missing LHS.
4042    if (Expr *lhsExpr = C->getLHS()) {
4043    // In C++, we can have a throw-expression, which has 'void' type.
4044      if (!lhsExpr->getType()->isVoidType())
4045        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
4046          return LHS;
4047    }
4048
4049    // In C++, we can have a throw-expression, which has 'void' type.
4050    if (C->getRHS()->getType()->isVoidType())
4051      return NULL;
4052
4053    return EvalAddr(C->getRHS(), refVars, ParentDecl);
4054  }
4055
4056  case Stmt::BlockExprClass:
4057    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
4058      return E; // local block.
4059    return NULL;
4060
4061  case Stmt::AddrLabelExprClass:
4062    return E; // address of label.
4063
4064  case Stmt::ExprWithCleanupsClass:
4065    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
4066                    ParentDecl);
4067
4068  // For casts, we need to handle conversions from arrays to
4069  // pointer values, and pointer-to-pointer conversions.
4070  case Stmt::ImplicitCastExprClass:
4071  case Stmt::CStyleCastExprClass:
4072  case Stmt::CXXFunctionalCastExprClass:
4073  case Stmt::ObjCBridgedCastExprClass:
4074  case Stmt::CXXStaticCastExprClass:
4075  case Stmt::CXXDynamicCastExprClass:
4076  case Stmt::CXXConstCastExprClass:
4077  case Stmt::CXXReinterpretCastExprClass: {
4078    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
4079    switch (cast<CastExpr>(E)->getCastKind()) {
4080    case CK_BitCast:
4081    case CK_LValueToRValue:
4082    case CK_NoOp:
4083    case CK_BaseToDerived:
4084    case CK_DerivedToBase:
4085    case CK_UncheckedDerivedToBase:
4086    case CK_Dynamic:
4087    case CK_CPointerToObjCPointerCast:
4088    case CK_BlockPointerToObjCPointerCast:
4089    case CK_AnyPointerToBlockPointerCast:
4090      return EvalAddr(SubExpr, refVars, ParentDecl);
4091
4092    case CK_ArrayToPointerDecay:
4093      return EvalVal(SubExpr, refVars, ParentDecl);
4094
4095    default:
4096      return 0;
4097    }
4098  }
4099
4100  case Stmt::MaterializeTemporaryExprClass:
4101    if (Expr *Result = EvalAddr(
4102                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4103                                refVars, ParentDecl))
4104      return Result;
4105
4106    return E;
4107
4108  // Everything else: we simply don't reason about them.
4109  default:
4110    return NULL;
4111  }
4112}
4113
4114
4115///  EvalVal - This function is complements EvalAddr in the mutual recursion.
4116///   See the comments for EvalAddr for more details.
4117static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4118                     Decl *ParentDecl) {
4119do {
4120  // We should only be called for evaluating non-pointer expressions, or
4121  // expressions with a pointer type that are not used as references but instead
4122  // are l-values (e.g., DeclRefExpr with a pointer type).
4123
4124  // Our "symbolic interpreter" is just a dispatch off the currently
4125  // viewed AST node.  We then recursively traverse the AST by calling
4126  // EvalAddr and EvalVal appropriately.
4127
4128  E = E->IgnoreParens();
4129  switch (E->getStmtClass()) {
4130  case Stmt::ImplicitCastExprClass: {
4131    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
4132    if (IE->getValueKind() == VK_LValue) {
4133      E = IE->getSubExpr();
4134      continue;
4135    }
4136    return NULL;
4137  }
4138
4139  case Stmt::ExprWithCleanupsClass:
4140    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
4141
4142  case Stmt::DeclRefExprClass: {
4143    // When we hit a DeclRefExpr we are looking at code that refers to a
4144    // variable's name. If it's not a reference variable we check if it has
4145    // local storage within the function, and if so, return the expression.
4146    DeclRefExpr *DR = cast<DeclRefExpr>(E);
4147
4148    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
4149      // Check if it refers to itself, e.g. "int& i = i;".
4150      if (V == ParentDecl)
4151        return DR;
4152
4153      if (V->hasLocalStorage()) {
4154        if (!V->getType()->isReferenceType())
4155          return DR;
4156
4157        // Reference variable, follow through to the expression that
4158        // it points to.
4159        if (V->hasInit()) {
4160          // Add the reference variable to the "trail".
4161          refVars.push_back(DR);
4162          return EvalVal(V->getInit(), refVars, V);
4163        }
4164      }
4165    }
4166
4167    return NULL;
4168  }
4169
4170  case Stmt::UnaryOperatorClass: {
4171    // The only unary operator that make sense to handle here
4172    // is Deref.  All others don't resolve to a "name."  This includes
4173    // handling all sorts of rvalues passed to a unary operator.
4174    UnaryOperator *U = cast<UnaryOperator>(E);
4175
4176    if (U->getOpcode() == UO_Deref)
4177      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
4178
4179    return NULL;
4180  }
4181
4182  case Stmt::ArraySubscriptExprClass: {
4183    // Array subscripts are potential references to data on the stack.  We
4184    // retrieve the DeclRefExpr* for the array variable if it indeed
4185    // has local storage.
4186    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
4187  }
4188
4189  case Stmt::ConditionalOperatorClass: {
4190    // For conditional operators we need to see if either the LHS or RHS are
4191    // non-NULL Expr's.  If one is non-NULL, we return it.
4192    ConditionalOperator *C = cast<ConditionalOperator>(E);
4193
4194    // Handle the GNU extension for missing LHS.
4195    if (Expr *lhsExpr = C->getLHS())
4196      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
4197        return LHS;
4198
4199    return EvalVal(C->getRHS(), refVars, ParentDecl);
4200  }
4201
4202  // Accesses to members are potential references to data on the stack.
4203  case Stmt::MemberExprClass: {
4204    MemberExpr *M = cast<MemberExpr>(E);
4205
4206    // Check for indirect access.  We only want direct field accesses.
4207    if (M->isArrow())
4208      return NULL;
4209
4210    // Check whether the member type is itself a reference, in which case
4211    // we're not going to refer to the member, but to what the member refers to.
4212    if (M->getMemberDecl()->getType()->isReferenceType())
4213      return NULL;
4214
4215    return EvalVal(M->getBase(), refVars, ParentDecl);
4216  }
4217
4218  case Stmt::MaterializeTemporaryExprClass:
4219    if (Expr *Result = EvalVal(
4220                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4221                               refVars, ParentDecl))
4222      return Result;
4223
4224    return E;
4225
4226  default:
4227    // Check that we don't return or take the address of a reference to a
4228    // temporary. This is only useful in C++.
4229    if (!E->isTypeDependent() && E->isRValue())
4230      return E;
4231
4232    // Everything else: we simply don't reason about them.
4233    return NULL;
4234  }
4235} while (true);
4236}
4237
4238//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
4239
4240/// Check for comparisons of floating point operands using != and ==.
4241/// Issue a warning if these are no self-comparisons, as they are not likely
4242/// to do what the programmer intended.
4243void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
4244  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
4245  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
4246
4247  // Special case: check for x == x (which is OK).
4248  // Do not emit warnings for such cases.
4249  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
4250    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
4251      if (DRL->getDecl() == DRR->getDecl())
4252        return;
4253
4254
4255  // Special case: check for comparisons against literals that can be exactly
4256  //  represented by APFloat.  In such cases, do not emit a warning.  This
4257  //  is a heuristic: often comparison against such literals are used to
4258  //  detect if a value in a variable has not changed.  This clearly can
4259  //  lead to false negatives.
4260  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
4261    if (FLL->isExact())
4262      return;
4263  } else
4264    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
4265      if (FLR->isExact())
4266        return;
4267
4268  // Check for comparisons with builtin types.
4269  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
4270    if (CL->isBuiltinCall())
4271      return;
4272
4273  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
4274    if (CR->isBuiltinCall())
4275      return;
4276
4277  // Emit the diagnostic.
4278  Diag(Loc, diag::warn_floatingpoint_eq)
4279    << LHS->getSourceRange() << RHS->getSourceRange();
4280}
4281
4282//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
4283//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
4284
4285namespace {
4286
4287/// Structure recording the 'active' range of an integer-valued
4288/// expression.
4289struct IntRange {
4290  /// The number of bits active in the int.
4291  unsigned Width;
4292
4293  /// True if the int is known not to have negative values.
4294  bool NonNegative;
4295
4296  IntRange(unsigned Width, bool NonNegative)
4297    : Width(Width), NonNegative(NonNegative)
4298  {}
4299
4300  /// Returns the range of the bool type.
4301  static IntRange forBoolType() {
4302    return IntRange(1, true);
4303  }
4304
4305  /// Returns the range of an opaque value of the given integral type.
4306  static IntRange forValueOfType(ASTContext &C, QualType T) {
4307    return forValueOfCanonicalType(C,
4308                          T->getCanonicalTypeInternal().getTypePtr());
4309  }
4310
4311  /// Returns the range of an opaque value of a canonical integral type.
4312  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
4313    assert(T->isCanonicalUnqualified());
4314
4315    if (const VectorType *VT = dyn_cast<VectorType>(T))
4316      T = VT->getElementType().getTypePtr();
4317    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4318      T = CT->getElementType().getTypePtr();
4319
4320    // For enum types, use the known bit width of the enumerators.
4321    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4322      EnumDecl *Enum = ET->getDecl();
4323      if (!Enum->isCompleteDefinition())
4324        return IntRange(C.getIntWidth(QualType(T, 0)), false);
4325
4326      unsigned NumPositive = Enum->getNumPositiveBits();
4327      unsigned NumNegative = Enum->getNumNegativeBits();
4328
4329      if (NumNegative == 0)
4330        return IntRange(NumPositive, true/*NonNegative*/);
4331      else
4332        return IntRange(std::max(NumPositive + 1, NumNegative),
4333                        false/*NonNegative*/);
4334    }
4335
4336    const BuiltinType *BT = cast<BuiltinType>(T);
4337    assert(BT->isInteger());
4338
4339    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4340  }
4341
4342  /// Returns the "target" range of a canonical integral type, i.e.
4343  /// the range of values expressible in the type.
4344  ///
4345  /// This matches forValueOfCanonicalType except that enums have the
4346  /// full range of their type, not the range of their enumerators.
4347  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4348    assert(T->isCanonicalUnqualified());
4349
4350    if (const VectorType *VT = dyn_cast<VectorType>(T))
4351      T = VT->getElementType().getTypePtr();
4352    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4353      T = CT->getElementType().getTypePtr();
4354    if (const EnumType *ET = dyn_cast<EnumType>(T))
4355      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4356
4357    const BuiltinType *BT = cast<BuiltinType>(T);
4358    assert(BT->isInteger());
4359
4360    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4361  }
4362
4363  /// Returns the supremum of two ranges: i.e. their conservative merge.
4364  static IntRange join(IntRange L, IntRange R) {
4365    return IntRange(std::max(L.Width, R.Width),
4366                    L.NonNegative && R.NonNegative);
4367  }
4368
4369  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4370  static IntRange meet(IntRange L, IntRange R) {
4371    return IntRange(std::min(L.Width, R.Width),
4372                    L.NonNegative || R.NonNegative);
4373  }
4374};
4375
4376static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4377                              unsigned MaxWidth) {
4378  if (value.isSigned() && value.isNegative())
4379    return IntRange(value.getMinSignedBits(), false);
4380
4381  if (value.getBitWidth() > MaxWidth)
4382    value = value.trunc(MaxWidth);
4383
4384  // isNonNegative() just checks the sign bit without considering
4385  // signedness.
4386  return IntRange(value.getActiveBits(), true);
4387}
4388
4389static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4390                              unsigned MaxWidth) {
4391  if (result.isInt())
4392    return GetValueRange(C, result.getInt(), MaxWidth);
4393
4394  if (result.isVector()) {
4395    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4396    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4397      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4398      R = IntRange::join(R, El);
4399    }
4400    return R;
4401  }
4402
4403  if (result.isComplexInt()) {
4404    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4405    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4406    return IntRange::join(R, I);
4407  }
4408
4409  // This can happen with lossless casts to intptr_t of "based" lvalues.
4410  // Assume it might use arbitrary bits.
4411  // FIXME: The only reason we need to pass the type in here is to get
4412  // the sign right on this one case.  It would be nice if APValue
4413  // preserved this.
4414  assert(result.isLValue() || result.isAddrLabelDiff());
4415  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4416}
4417
4418static QualType GetExprType(Expr *E) {
4419  QualType Ty = E->getType();
4420  if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
4421    Ty = AtomicRHS->getValueType();
4422  return Ty;
4423}
4424
4425/// Pseudo-evaluate the given integer expression, estimating the
4426/// range of values it might take.
4427///
4428/// \param MaxWidth - the width to which the value will be truncated
4429static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4430  E = E->IgnoreParens();
4431
4432  // Try a full evaluation first.
4433  Expr::EvalResult result;
4434  if (E->EvaluateAsRValue(result, C))
4435    return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
4436
4437  // I think we only want to look through implicit casts here; if the
4438  // user has an explicit widening cast, we should treat the value as
4439  // being of the new, wider type.
4440  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4441    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4442      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4443
4444    IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
4445
4446    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4447
4448    // Assume that non-integer casts can span the full range of the type.
4449    if (!isIntegerCast)
4450      return OutputTypeRange;
4451
4452    IntRange SubRange
4453      = GetExprRange(C, CE->getSubExpr(),
4454                     std::min(MaxWidth, OutputTypeRange.Width));
4455
4456    // Bail out if the subexpr's range is as wide as the cast type.
4457    if (SubRange.Width >= OutputTypeRange.Width)
4458      return OutputTypeRange;
4459
4460    // Otherwise, we take the smaller width, and we're non-negative if
4461    // either the output type or the subexpr is.
4462    return IntRange(SubRange.Width,
4463                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4464  }
4465
4466  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4467    // If we can fold the condition, just take that operand.
4468    bool CondResult;
4469    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4470      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4471                                        : CO->getFalseExpr(),
4472                          MaxWidth);
4473
4474    // Otherwise, conservatively merge.
4475    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4476    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4477    return IntRange::join(L, R);
4478  }
4479
4480  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4481    switch (BO->getOpcode()) {
4482
4483    // Boolean-valued operations are single-bit and positive.
4484    case BO_LAnd:
4485    case BO_LOr:
4486    case BO_LT:
4487    case BO_GT:
4488    case BO_LE:
4489    case BO_GE:
4490    case BO_EQ:
4491    case BO_NE:
4492      return IntRange::forBoolType();
4493
4494    // The type of the assignments is the type of the LHS, so the RHS
4495    // is not necessarily the same type.
4496    case BO_MulAssign:
4497    case BO_DivAssign:
4498    case BO_RemAssign:
4499    case BO_AddAssign:
4500    case BO_SubAssign:
4501    case BO_XorAssign:
4502    case BO_OrAssign:
4503      // TODO: bitfields?
4504      return IntRange::forValueOfType(C, GetExprType(E));
4505
4506    // Simple assignments just pass through the RHS, which will have
4507    // been coerced to the LHS type.
4508    case BO_Assign:
4509      // TODO: bitfields?
4510      return GetExprRange(C, BO->getRHS(), MaxWidth);
4511
4512    // Operations with opaque sources are black-listed.
4513    case BO_PtrMemD:
4514    case BO_PtrMemI:
4515      return IntRange::forValueOfType(C, GetExprType(E));
4516
4517    // Bitwise-and uses the *infinum* of the two source ranges.
4518    case BO_And:
4519    case BO_AndAssign:
4520      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4521                            GetExprRange(C, BO->getRHS(), MaxWidth));
4522
4523    // Left shift gets black-listed based on a judgement call.
4524    case BO_Shl:
4525      // ...except that we want to treat '1 << (blah)' as logically
4526      // positive.  It's an important idiom.
4527      if (IntegerLiteral *I
4528            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4529        if (I->getValue() == 1) {
4530          IntRange R = IntRange::forValueOfType(C, GetExprType(E));
4531          return IntRange(R.Width, /*NonNegative*/ true);
4532        }
4533      }
4534      // fallthrough
4535
4536    case BO_ShlAssign:
4537      return IntRange::forValueOfType(C, GetExprType(E));
4538
4539    // Right shift by a constant can narrow its left argument.
4540    case BO_Shr:
4541    case BO_ShrAssign: {
4542      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4543
4544      // If the shift amount is a positive constant, drop the width by
4545      // that much.
4546      llvm::APSInt shift;
4547      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4548          shift.isNonNegative()) {
4549        unsigned zext = shift.getZExtValue();
4550        if (zext >= L.Width)
4551          L.Width = (L.NonNegative ? 0 : 1);
4552        else
4553          L.Width -= zext;
4554      }
4555
4556      return L;
4557    }
4558
4559    // Comma acts as its right operand.
4560    case BO_Comma:
4561      return GetExprRange(C, BO->getRHS(), MaxWidth);
4562
4563    // Black-list pointer subtractions.
4564    case BO_Sub:
4565      if (BO->getLHS()->getType()->isPointerType())
4566        return IntRange::forValueOfType(C, GetExprType(E));
4567      break;
4568
4569    // The width of a division result is mostly determined by the size
4570    // of the LHS.
4571    case BO_Div: {
4572      // Don't 'pre-truncate' the operands.
4573      unsigned opWidth = C.getIntWidth(GetExprType(E));
4574      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4575
4576      // If the divisor is constant, use that.
4577      llvm::APSInt divisor;
4578      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4579        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4580        if (log2 >= L.Width)
4581          L.Width = (L.NonNegative ? 0 : 1);
4582        else
4583          L.Width = std::min(L.Width - log2, MaxWidth);
4584        return L;
4585      }
4586
4587      // Otherwise, just use the LHS's width.
4588      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4589      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4590    }
4591
4592    // The result of a remainder can't be larger than the result of
4593    // either side.
4594    case BO_Rem: {
4595      // Don't 'pre-truncate' the operands.
4596      unsigned opWidth = C.getIntWidth(GetExprType(E));
4597      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4598      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4599
4600      IntRange meet = IntRange::meet(L, R);
4601      meet.Width = std::min(meet.Width, MaxWidth);
4602      return meet;
4603    }
4604
4605    // The default behavior is okay for these.
4606    case BO_Mul:
4607    case BO_Add:
4608    case BO_Xor:
4609    case BO_Or:
4610      break;
4611    }
4612
4613    // The default case is to treat the operation as if it were closed
4614    // on the narrowest type that encompasses both operands.
4615    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4616    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4617    return IntRange::join(L, R);
4618  }
4619
4620  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4621    switch (UO->getOpcode()) {
4622    // Boolean-valued operations are white-listed.
4623    case UO_LNot:
4624      return IntRange::forBoolType();
4625
4626    // Operations with opaque sources are black-listed.
4627    case UO_Deref:
4628    case UO_AddrOf: // should be impossible
4629      return IntRange::forValueOfType(C, GetExprType(E));
4630
4631    default:
4632      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4633    }
4634  }
4635
4636  if (FieldDecl *BitField = E->getSourceBitField())
4637    return IntRange(BitField->getBitWidthValue(C),
4638                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4639
4640  return IntRange::forValueOfType(C, GetExprType(E));
4641}
4642
4643static IntRange GetExprRange(ASTContext &C, Expr *E) {
4644  return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
4645}
4646
4647/// Checks whether the given value, which currently has the given
4648/// source semantics, has the same value when coerced through the
4649/// target semantics.
4650static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4651                                 const llvm::fltSemantics &Src,
4652                                 const llvm::fltSemantics &Tgt) {
4653  llvm::APFloat truncated = value;
4654
4655  bool ignored;
4656  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4657  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4658
4659  return truncated.bitwiseIsEqual(value);
4660}
4661
4662/// Checks whether the given value, which currently has the given
4663/// source semantics, has the same value when coerced through the
4664/// target semantics.
4665///
4666/// The value might be a vector of floats (or a complex number).
4667static bool IsSameFloatAfterCast(const APValue &value,
4668                                 const llvm::fltSemantics &Src,
4669                                 const llvm::fltSemantics &Tgt) {
4670  if (value.isFloat())
4671    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4672
4673  if (value.isVector()) {
4674    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4675      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4676        return false;
4677    return true;
4678  }
4679
4680  assert(value.isComplexFloat());
4681  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4682          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4683}
4684
4685static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4686
4687static bool IsZero(Sema &S, Expr *E) {
4688  // Suppress cases where we are comparing against an enum constant.
4689  if (const DeclRefExpr *DR =
4690      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4691    if (isa<EnumConstantDecl>(DR->getDecl()))
4692      return false;
4693
4694  // Suppress cases where the '0' value is expanded from a macro.
4695  if (E->getLocStart().isMacroID())
4696    return false;
4697
4698  llvm::APSInt Value;
4699  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4700}
4701
4702static bool HasEnumType(Expr *E) {
4703  // Strip off implicit integral promotions.
4704  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4705    if (ICE->getCastKind() != CK_IntegralCast &&
4706        ICE->getCastKind() != CK_NoOp)
4707      break;
4708    E = ICE->getSubExpr();
4709  }
4710
4711  return E->getType()->isEnumeralType();
4712}
4713
4714static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4715  BinaryOperatorKind op = E->getOpcode();
4716  if (E->isValueDependent())
4717    return;
4718
4719  if (op == BO_LT && IsZero(S, E->getRHS())) {
4720    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4721      << "< 0" << "false" << HasEnumType(E->getLHS())
4722      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4723  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4724    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4725      << ">= 0" << "true" << HasEnumType(E->getLHS())
4726      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4727  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4728    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4729      << "0 >" << "false" << HasEnumType(E->getRHS())
4730      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4731  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4732    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4733      << "0 <=" << "true" << HasEnumType(E->getRHS())
4734      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4735  }
4736}
4737
4738static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4739                                         Expr *Constant, Expr *Other,
4740                                         llvm::APSInt Value,
4741                                         bool RhsConstant) {
4742  // 0 values are handled later by CheckTrivialUnsignedComparison().
4743  if (Value == 0)
4744    return;
4745
4746  BinaryOperatorKind op = E->getOpcode();
4747  QualType OtherT = Other->getType();
4748  QualType ConstantT = Constant->getType();
4749  QualType CommonT = E->getLHS()->getType();
4750  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4751    return;
4752  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4753         && "comparison with non-integer type");
4754
4755  bool ConstantSigned = ConstantT->isSignedIntegerType();
4756  bool CommonSigned = CommonT->isSignedIntegerType();
4757
4758  bool EqualityOnly = false;
4759
4760  // TODO: Investigate using GetExprRange() to get tighter bounds on
4761  // on the bit ranges.
4762  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4763  unsigned OtherWidth = OtherRange.Width;
4764
4765  if (CommonSigned) {
4766    // The common type is signed, therefore no signed to unsigned conversion.
4767    if (!OtherRange.NonNegative) {
4768      // Check that the constant is representable in type OtherT.
4769      if (ConstantSigned) {
4770        if (OtherWidth >= Value.getMinSignedBits())
4771          return;
4772      } else { // !ConstantSigned
4773        if (OtherWidth >= Value.getActiveBits() + 1)
4774          return;
4775      }
4776    } else { // !OtherSigned
4777      // Check that the constant is representable in type OtherT.
4778      // Negative values are out of range.
4779      if (ConstantSigned) {
4780        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4781          return;
4782      } else { // !ConstantSigned
4783        if (OtherWidth >= Value.getActiveBits())
4784          return;
4785      }
4786    }
4787  } else {  // !CommonSigned
4788    if (OtherRange.NonNegative) {
4789      if (OtherWidth >= Value.getActiveBits())
4790        return;
4791    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4792      // Check to see if the constant is representable in OtherT.
4793      if (OtherWidth > Value.getActiveBits())
4794        return;
4795      // Check to see if the constant is equivalent to a negative value
4796      // cast to CommonT.
4797      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4798          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4799        return;
4800      // The constant value rests between values that OtherT can represent after
4801      // conversion.  Relational comparison still works, but equality
4802      // comparisons will be tautological.
4803      EqualityOnly = true;
4804    } else { // OtherSigned && ConstantSigned
4805      assert(0 && "Two signed types converted to unsigned types.");
4806    }
4807  }
4808
4809  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4810
4811  bool IsTrue = true;
4812  if (op == BO_EQ || op == BO_NE) {
4813    IsTrue = op == BO_NE;
4814  } else if (EqualityOnly) {
4815    return;
4816  } else if (RhsConstant) {
4817    if (op == BO_GT || op == BO_GE)
4818      IsTrue = !PositiveConstant;
4819    else // op == BO_LT || op == BO_LE
4820      IsTrue = PositiveConstant;
4821  } else {
4822    if (op == BO_LT || op == BO_LE)
4823      IsTrue = !PositiveConstant;
4824    else // op == BO_GT || op == BO_GE
4825      IsTrue = PositiveConstant;
4826  }
4827
4828  // If this is a comparison to an enum constant, include that
4829  // constant in the diagnostic.
4830  const EnumConstantDecl *ED = 0;
4831  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4832    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4833
4834  SmallString<64> PrettySourceValue;
4835  llvm::raw_svector_ostream OS(PrettySourceValue);
4836  if (ED)
4837    OS << '\'' << *ED << "' (" << Value << ")";
4838  else
4839    OS << Value;
4840
4841  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4842      << OS.str() << OtherT << IsTrue
4843      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4844}
4845
4846/// Analyze the operands of the given comparison.  Implements the
4847/// fallback case from AnalyzeComparison.
4848static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4849  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4850  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4851}
4852
4853/// \brief Implements -Wsign-compare.
4854///
4855/// \param E the binary operator to check for warnings
4856static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4857  // The type the comparison is being performed in.
4858  QualType T = E->getLHS()->getType();
4859  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4860         && "comparison with mismatched types");
4861  if (E->isValueDependent())
4862    return AnalyzeImpConvsInComparison(S, E);
4863
4864  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4865  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4866
4867  bool IsComparisonConstant = false;
4868
4869  // Check whether an integer constant comparison results in a value
4870  // of 'true' or 'false'.
4871  if (T->isIntegralType(S.Context)) {
4872    llvm::APSInt RHSValue;
4873    bool IsRHSIntegralLiteral =
4874      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4875    llvm::APSInt LHSValue;
4876    bool IsLHSIntegralLiteral =
4877      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4878    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4879        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4880    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4881      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4882    else
4883      IsComparisonConstant =
4884        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4885  } else if (!T->hasUnsignedIntegerRepresentation())
4886      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4887
4888  // We don't do anything special if this isn't an unsigned integral
4889  // comparison:  we're only interested in integral comparisons, and
4890  // signed comparisons only happen in cases we don't care to warn about.
4891  //
4892  // We also don't care about value-dependent expressions or expressions
4893  // whose result is a constant.
4894  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4895    return AnalyzeImpConvsInComparison(S, E);
4896
4897  // Check to see if one of the (unmodified) operands is of different
4898  // signedness.
4899  Expr *signedOperand, *unsignedOperand;
4900  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4901    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4902           "unsigned comparison between two signed integer expressions?");
4903    signedOperand = LHS;
4904    unsignedOperand = RHS;
4905  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4906    signedOperand = RHS;
4907    unsignedOperand = LHS;
4908  } else {
4909    CheckTrivialUnsignedComparison(S, E);
4910    return AnalyzeImpConvsInComparison(S, E);
4911  }
4912
4913  // Otherwise, calculate the effective range of the signed operand.
4914  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4915
4916  // Go ahead and analyze implicit conversions in the operands.  Note
4917  // that we skip the implicit conversions on both sides.
4918  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4919  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4920
4921  // If the signed range is non-negative, -Wsign-compare won't fire,
4922  // but we should still check for comparisons which are always true
4923  // or false.
4924  if (signedRange.NonNegative)
4925    return CheckTrivialUnsignedComparison(S, E);
4926
4927  // For (in)equality comparisons, if the unsigned operand is a
4928  // constant which cannot collide with a overflowed signed operand,
4929  // then reinterpreting the signed operand as unsigned will not
4930  // change the result of the comparison.
4931  if (E->isEqualityOp()) {
4932    unsigned comparisonWidth = S.Context.getIntWidth(T);
4933    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4934
4935    // We should never be unable to prove that the unsigned operand is
4936    // non-negative.
4937    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4938
4939    if (unsignedRange.Width < comparisonWidth)
4940      return;
4941  }
4942
4943  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4944    S.PDiag(diag::warn_mixed_sign_comparison)
4945      << LHS->getType() << RHS->getType()
4946      << LHS->getSourceRange() << RHS->getSourceRange());
4947}
4948
4949/// Analyzes an attempt to assign the given value to a bitfield.
4950///
4951/// Returns true if there was something fishy about the attempt.
4952static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4953                                      SourceLocation InitLoc) {
4954  assert(Bitfield->isBitField());
4955  if (Bitfield->isInvalidDecl())
4956    return false;
4957
4958  // White-list bool bitfields.
4959  if (Bitfield->getType()->isBooleanType())
4960    return false;
4961
4962  // Ignore value- or type-dependent expressions.
4963  if (Bitfield->getBitWidth()->isValueDependent() ||
4964      Bitfield->getBitWidth()->isTypeDependent() ||
4965      Init->isValueDependent() ||
4966      Init->isTypeDependent())
4967    return false;
4968
4969  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4970
4971  llvm::APSInt Value;
4972  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4973    return false;
4974
4975  unsigned OriginalWidth = Value.getBitWidth();
4976  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4977
4978  if (OriginalWidth <= FieldWidth)
4979    return false;
4980
4981  // Compute the value which the bitfield will contain.
4982  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4983  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4984
4985  // Check whether the stored value is equal to the original value.
4986  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4987  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4988    return false;
4989
4990  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4991  // therefore don't strictly fit into a signed bitfield of width 1.
4992  if (FieldWidth == 1 && Value == 1)
4993    return false;
4994
4995  std::string PrettyValue = Value.toString(10);
4996  std::string PrettyTrunc = TruncatedValue.toString(10);
4997
4998  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4999    << PrettyValue << PrettyTrunc << OriginalInit->getType()
5000    << Init->getSourceRange();
5001
5002  return true;
5003}
5004
5005/// Analyze the given simple or compound assignment for warning-worthy
5006/// operations.
5007static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
5008  // Just recurse on the LHS.
5009  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
5010
5011  // We want to recurse on the RHS as normal unless we're assigning to
5012  // a bitfield.
5013  if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
5014    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
5015                                  E->getOperatorLoc())) {
5016      // Recurse, ignoring any implicit conversions on the RHS.
5017      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
5018                                        E->getOperatorLoc());
5019    }
5020  }
5021
5022  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
5023}
5024
5025/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
5026static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
5027                            SourceLocation CContext, unsigned diag,
5028                            bool pruneControlFlow = false) {
5029  if (pruneControlFlow) {
5030    S.DiagRuntimeBehavior(E->getExprLoc(), E,
5031                          S.PDiag(diag)
5032                            << SourceType << T << E->getSourceRange()
5033                            << SourceRange(CContext));
5034    return;
5035  }
5036  S.Diag(E->getExprLoc(), diag)
5037    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
5038}
5039
5040/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
5041static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
5042                            SourceLocation CContext, unsigned diag,
5043                            bool pruneControlFlow = false) {
5044  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
5045}
5046
5047/// Diagnose an implicit cast from a literal expression. Does not warn when the
5048/// cast wouldn't lose information.
5049void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
5050                                    SourceLocation CContext) {
5051  // Try to convert the literal exactly to an integer. If we can, don't warn.
5052  bool isExact = false;
5053  const llvm::APFloat &Value = FL->getValue();
5054  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
5055                            T->hasUnsignedIntegerRepresentation());
5056  if (Value.convertToInteger(IntegerValue,
5057                             llvm::APFloat::rmTowardZero, &isExact)
5058      == llvm::APFloat::opOK && isExact)
5059    return;
5060
5061  // FIXME: Force the precision of the source value down so we don't print
5062  // digits which are usually useless (we don't really care here if we
5063  // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
5064  // would automatically print the shortest representation, but it's a bit
5065  // tricky to implement.
5066  SmallString<16> PrettySourceValue;
5067  unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
5068  precision = (precision * 59 + 195) / 196;
5069  Value.toString(PrettySourceValue, precision);
5070
5071  SmallString<16> PrettyTargetValue;
5072  if (T->isSpecificBuiltinType(BuiltinType::Bool))
5073    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
5074  else
5075    IntegerValue.toString(PrettyTargetValue);
5076
5077  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
5078    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
5079    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
5080}
5081
5082std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
5083  if (!Range.Width) return "0";
5084
5085  llvm::APSInt ValueInRange = Value;
5086  ValueInRange.setIsSigned(!Range.NonNegative);
5087  ValueInRange = ValueInRange.trunc(Range.Width);
5088  return ValueInRange.toString(10);
5089}
5090
5091static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
5092  if (!isa<ImplicitCastExpr>(Ex))
5093    return false;
5094
5095  Expr *InnerE = Ex->IgnoreParenImpCasts();
5096  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
5097  const Type *Source =
5098    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5099  if (Target->isDependentType())
5100    return false;
5101
5102  const BuiltinType *FloatCandidateBT =
5103    dyn_cast<BuiltinType>(ToBool ? Source : Target);
5104  const Type *BoolCandidateType = ToBool ? Target : Source;
5105
5106  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
5107          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
5108}
5109
5110void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
5111                                      SourceLocation CC) {
5112  unsigned NumArgs = TheCall->getNumArgs();
5113  for (unsigned i = 0; i < NumArgs; ++i) {
5114    Expr *CurrA = TheCall->getArg(i);
5115    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
5116      continue;
5117
5118    bool IsSwapped = ((i > 0) &&
5119        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
5120    IsSwapped |= ((i < (NumArgs - 1)) &&
5121        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
5122    if (IsSwapped) {
5123      // Warn on this floating-point to bool conversion.
5124      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
5125                      CurrA->getType(), CC,
5126                      diag::warn_impcast_floating_point_to_bool);
5127    }
5128  }
5129}
5130
5131void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
5132                             SourceLocation CC, bool *ICContext = 0) {
5133  if (E->isTypeDependent() || E->isValueDependent()) return;
5134
5135  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
5136  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
5137  if (Source == Target) return;
5138  if (Target->isDependentType()) return;
5139
5140  // If the conversion context location is invalid don't complain. We also
5141  // don't want to emit a warning if the issue occurs from the expansion of
5142  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
5143  // delay this check as long as possible. Once we detect we are in that
5144  // scenario, we just return.
5145  if (CC.isInvalid())
5146    return;
5147
5148  // Diagnose implicit casts to bool.
5149  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
5150    if (isa<StringLiteral>(E))
5151      // Warn on string literal to bool.  Checks for string literals in logical
5152      // expressions, for instances, assert(0 && "error here"), is prevented
5153      // by a check in AnalyzeImplicitConversions().
5154      return DiagnoseImpCast(S, E, T, CC,
5155                             diag::warn_impcast_string_literal_to_bool);
5156    if (Source->isFunctionType()) {
5157      // Warn on function to bool. Checks free functions and static member
5158      // functions. Weakly imported functions are excluded from the check,
5159      // since it's common to test their value to check whether the linker
5160      // found a definition for them.
5161      ValueDecl *D = 0;
5162      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
5163        D = R->getDecl();
5164      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
5165        D = M->getMemberDecl();
5166      }
5167
5168      if (D && !D->isWeak()) {
5169        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
5170          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
5171            << F << E->getSourceRange() << SourceRange(CC);
5172          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
5173            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
5174          QualType ReturnType;
5175          UnresolvedSet<4> NonTemplateOverloads;
5176          S.tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
5177          if (!ReturnType.isNull()
5178              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
5179            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
5180              << FixItHint::CreateInsertion(
5181                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
5182          return;
5183        }
5184      }
5185    }
5186  }
5187
5188  // Strip vector types.
5189  if (isa<VectorType>(Source)) {
5190    if (!isa<VectorType>(Target)) {
5191      if (S.SourceMgr.isInSystemMacro(CC))
5192        return;
5193      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
5194    }
5195
5196    // If the vector cast is cast between two vectors of the same size, it is
5197    // a bitcast, not a conversion.
5198    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
5199      return;
5200
5201    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
5202    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
5203  }
5204
5205  // Strip complex types.
5206  if (isa<ComplexType>(Source)) {
5207    if (!isa<ComplexType>(Target)) {
5208      if (S.SourceMgr.isInSystemMacro(CC))
5209        return;
5210
5211      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
5212    }
5213
5214    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
5215    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
5216  }
5217
5218  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
5219  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
5220
5221  // If the source is floating point...
5222  if (SourceBT && SourceBT->isFloatingPoint()) {
5223    // ...and the target is floating point...
5224    if (TargetBT && TargetBT->isFloatingPoint()) {
5225      // ...then warn if we're dropping FP rank.
5226
5227      // Builtin FP kinds are ordered by increasing FP rank.
5228      if (SourceBT->getKind() > TargetBT->getKind()) {
5229        // Don't warn about float constants that are precisely
5230        // representable in the target type.
5231        Expr::EvalResult result;
5232        if (E->EvaluateAsRValue(result, S.Context)) {
5233          // Value might be a float, a float vector, or a float complex.
5234          if (IsSameFloatAfterCast(result.Val,
5235                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
5236                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
5237            return;
5238        }
5239
5240        if (S.SourceMgr.isInSystemMacro(CC))
5241          return;
5242
5243        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
5244      }
5245      return;
5246    }
5247
5248    // If the target is integral, always warn.
5249    if (TargetBT && TargetBT->isInteger()) {
5250      if (S.SourceMgr.isInSystemMacro(CC))
5251        return;
5252
5253      Expr *InnerE = E->IgnoreParenImpCasts();
5254      // We also want to warn on, e.g., "int i = -1.234"
5255      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
5256        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
5257          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
5258
5259      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
5260        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
5261      } else {
5262        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
5263      }
5264    }
5265
5266    // If the target is bool, warn if expr is a function or method call.
5267    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
5268        isa<CallExpr>(E)) {
5269      // Check last argument of function call to see if it is an
5270      // implicit cast from a type matching the type the result
5271      // is being cast to.
5272      CallExpr *CEx = cast<CallExpr>(E);
5273      unsigned NumArgs = CEx->getNumArgs();
5274      if (NumArgs > 0) {
5275        Expr *LastA = CEx->getArg(NumArgs - 1);
5276        Expr *InnerE = LastA->IgnoreParenImpCasts();
5277        const Type *InnerType =
5278          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5279        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
5280          // Warn on this floating-point to bool conversion
5281          DiagnoseImpCast(S, E, T, CC,
5282                          diag::warn_impcast_floating_point_to_bool);
5283        }
5284      }
5285    }
5286    return;
5287  }
5288
5289  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
5290           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
5291      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
5292      && Target->isScalarType() && !Target->isNullPtrType()) {
5293    SourceLocation Loc = E->getSourceRange().getBegin();
5294    if (Loc.isMacroID())
5295      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
5296    if (!Loc.isMacroID() || CC.isMacroID())
5297      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
5298          << T << clang::SourceRange(CC)
5299          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
5300  }
5301
5302  if (!Source->isIntegerType() || !Target->isIntegerType())
5303    return;
5304
5305  // TODO: remove this early return once the false positives for constant->bool
5306  // in templates, macros, etc, are reduced or removed.
5307  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
5308    return;
5309
5310  IntRange SourceRange = GetExprRange(S.Context, E);
5311  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
5312
5313  if (SourceRange.Width > TargetRange.Width) {
5314    // If the source is a constant, use a default-on diagnostic.
5315    // TODO: this should happen for bitfield stores, too.
5316    llvm::APSInt Value(32);
5317    if (E->isIntegerConstantExpr(Value, S.Context)) {
5318      if (S.SourceMgr.isInSystemMacro(CC))
5319        return;
5320
5321      std::string PrettySourceValue = Value.toString(10);
5322      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
5323
5324      S.DiagRuntimeBehavior(E->getExprLoc(), E,
5325        S.PDiag(diag::warn_impcast_integer_precision_constant)
5326            << PrettySourceValue << PrettyTargetValue
5327            << E->getType() << T << E->getSourceRange()
5328            << clang::SourceRange(CC));
5329      return;
5330    }
5331
5332    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5333    if (S.SourceMgr.isInSystemMacro(CC))
5334      return;
5335
5336    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5337      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5338                             /* pruneControlFlow */ true);
5339    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5340  }
5341
5342  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5343      (!TargetRange.NonNegative && SourceRange.NonNegative &&
5344       SourceRange.Width == TargetRange.Width)) {
5345
5346    if (S.SourceMgr.isInSystemMacro(CC))
5347      return;
5348
5349    unsigned DiagID = diag::warn_impcast_integer_sign;
5350
5351    // Traditionally, gcc has warned about this under -Wsign-compare.
5352    // We also want to warn about it in -Wconversion.
5353    // So if -Wconversion is off, use a completely identical diagnostic
5354    // in the sign-compare group.
5355    // The conditional-checking code will
5356    if (ICContext) {
5357      DiagID = diag::warn_impcast_integer_sign_conditional;
5358      *ICContext = true;
5359    }
5360
5361    return DiagnoseImpCast(S, E, T, CC, DiagID);
5362  }
5363
5364  // Diagnose conversions between different enumeration types.
5365  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5366  // type, to give us better diagnostics.
5367  QualType SourceType = E->getType();
5368  if (!S.getLangOpts().CPlusPlus) {
5369    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5370      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5371        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5372        SourceType = S.Context.getTypeDeclType(Enum);
5373        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5374      }
5375  }
5376
5377  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5378    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5379      if (SourceEnum->getDecl()->hasNameForLinkage() &&
5380          TargetEnum->getDecl()->hasNameForLinkage() &&
5381          SourceEnum != TargetEnum) {
5382        if (S.SourceMgr.isInSystemMacro(CC))
5383          return;
5384
5385        return DiagnoseImpCast(S, E, SourceType, T, CC,
5386                               diag::warn_impcast_different_enum_types);
5387      }
5388
5389  return;
5390}
5391
5392void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5393                              SourceLocation CC, QualType T);
5394
5395void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5396                             SourceLocation CC, bool &ICContext) {
5397  E = E->IgnoreParenImpCasts();
5398
5399  if (isa<ConditionalOperator>(E))
5400    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5401
5402  AnalyzeImplicitConversions(S, E, CC);
5403  if (E->getType() != T)
5404    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5405  return;
5406}
5407
5408void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5409                              SourceLocation CC, QualType T) {
5410  AnalyzeImplicitConversions(S, E->getCond(), CC);
5411
5412  bool Suspicious = false;
5413  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5414  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5415
5416  // If -Wconversion would have warned about either of the candidates
5417  // for a signedness conversion to the context type...
5418  if (!Suspicious) return;
5419
5420  // ...but it's currently ignored...
5421  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5422                                 CC))
5423    return;
5424
5425  // ...then check whether it would have warned about either of the
5426  // candidates for a signedness conversion to the condition type.
5427  if (E->getType() == T) return;
5428
5429  Suspicious = false;
5430  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5431                          E->getType(), CC, &Suspicious);
5432  if (!Suspicious)
5433    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5434                            E->getType(), CC, &Suspicious);
5435}
5436
5437/// AnalyzeImplicitConversions - Find and report any interesting
5438/// implicit conversions in the given expression.  There are a couple
5439/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5440void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5441  QualType T = OrigE->getType();
5442  Expr *E = OrigE->IgnoreParenImpCasts();
5443
5444  if (E->isTypeDependent() || E->isValueDependent())
5445    return;
5446
5447  // For conditional operators, we analyze the arguments as if they
5448  // were being fed directly into the output.
5449  if (isa<ConditionalOperator>(E)) {
5450    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5451    CheckConditionalOperator(S, CO, CC, T);
5452    return;
5453  }
5454
5455  // Check implicit argument conversions for function calls.
5456  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5457    CheckImplicitArgumentConversions(S, Call, CC);
5458
5459  // Go ahead and check any implicit conversions we might have skipped.
5460  // The non-canonical typecheck is just an optimization;
5461  // CheckImplicitConversion will filter out dead implicit conversions.
5462  if (E->getType() != T)
5463    CheckImplicitConversion(S, E, T, CC);
5464
5465  // Now continue drilling into this expression.
5466
5467  if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
5468    if (POE->getResultExpr())
5469      E = POE->getResultExpr();
5470  }
5471
5472  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5473    return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
5474
5475  // Skip past explicit casts.
5476  if (isa<ExplicitCastExpr>(E)) {
5477    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5478    return AnalyzeImplicitConversions(S, E, CC);
5479  }
5480
5481  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5482    // Do a somewhat different check with comparison operators.
5483    if (BO->isComparisonOp())
5484      return AnalyzeComparison(S, BO);
5485
5486    // And with simple assignments.
5487    if (BO->getOpcode() == BO_Assign)
5488      return AnalyzeAssignment(S, BO);
5489  }
5490
5491  // These break the otherwise-useful invariant below.  Fortunately,
5492  // we don't really need to recurse into them, because any internal
5493  // expressions should have been analyzed already when they were
5494  // built into statements.
5495  if (isa<StmtExpr>(E)) return;
5496
5497  // Don't descend into unevaluated contexts.
5498  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5499
5500  // Now just recurse over the expression's children.
5501  CC = E->getExprLoc();
5502  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5503  bool IsLogicalOperator = BO && BO->isLogicalOp();
5504  for (Stmt::child_range I = E->children(); I; ++I) {
5505    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5506    if (!ChildExpr)
5507      continue;
5508
5509    if (IsLogicalOperator &&
5510        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5511      // Ignore checking string literals that are in logical operators.
5512      continue;
5513    AnalyzeImplicitConversions(S, ChildExpr, CC);
5514  }
5515}
5516
5517} // end anonymous namespace
5518
5519/// Diagnoses "dangerous" implicit conversions within the given
5520/// expression (which is a full expression).  Implements -Wconversion
5521/// and -Wsign-compare.
5522///
5523/// \param CC the "context" location of the implicit conversion, i.e.
5524///   the most location of the syntactic entity requiring the implicit
5525///   conversion
5526void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5527  // Don't diagnose in unevaluated contexts.
5528  if (isUnevaluatedContext())
5529    return;
5530
5531  // Don't diagnose for value- or type-dependent expressions.
5532  if (E->isTypeDependent() || E->isValueDependent())
5533    return;
5534
5535  // Check for array bounds violations in cases where the check isn't triggered
5536  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5537  // ArraySubscriptExpr is on the RHS of a variable initialization.
5538  CheckArrayAccess(E);
5539
5540  // This is not the right CC for (e.g.) a variable initialization.
5541  AnalyzeImplicitConversions(*this, E, CC);
5542}
5543
5544/// Diagnose when expression is an integer constant expression and its evaluation
5545/// results in integer overflow
5546void Sema::CheckForIntOverflow (Expr *E) {
5547  if (isa<BinaryOperator>(E->IgnoreParens())) {
5548    SmallVector<PartialDiagnosticAt, 4> Diags;
5549    E->EvaluateForOverflow(Context, &Diags);
5550  }
5551}
5552
5553namespace {
5554/// \brief Visitor for expressions which looks for unsequenced operations on the
5555/// same object.
5556class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5557  typedef EvaluatedExprVisitor<SequenceChecker> Base;
5558
5559  /// \brief A tree of sequenced regions within an expression. Two regions are
5560  /// unsequenced if one is an ancestor or a descendent of the other. When we
5561  /// finish processing an expression with sequencing, such as a comma
5562  /// expression, we fold its tree nodes into its parent, since they are
5563  /// unsequenced with respect to nodes we will visit later.
5564  class SequenceTree {
5565    struct Value {
5566      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5567      unsigned Parent : 31;
5568      bool Merged : 1;
5569    };
5570    SmallVector<Value, 8> Values;
5571
5572  public:
5573    /// \brief A region within an expression which may be sequenced with respect
5574    /// to some other region.
5575    class Seq {
5576      explicit Seq(unsigned N) : Index(N) {}
5577      unsigned Index;
5578      friend class SequenceTree;
5579    public:
5580      Seq() : Index(0) {}
5581    };
5582
5583    SequenceTree() { Values.push_back(Value(0)); }
5584    Seq root() const { return Seq(0); }
5585
5586    /// \brief Create a new sequence of operations, which is an unsequenced
5587    /// subset of \p Parent. This sequence of operations is sequenced with
5588    /// respect to other children of \p Parent.
5589    Seq allocate(Seq Parent) {
5590      Values.push_back(Value(Parent.Index));
5591      return Seq(Values.size() - 1);
5592    }
5593
5594    /// \brief Merge a sequence of operations into its parent.
5595    void merge(Seq S) {
5596      Values[S.Index].Merged = true;
5597    }
5598
5599    /// \brief Determine whether two operations are unsequenced. This operation
5600    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5601    /// should have been merged into its parent as appropriate.
5602    bool isUnsequenced(Seq Cur, Seq Old) {
5603      unsigned C = representative(Cur.Index);
5604      unsigned Target = representative(Old.Index);
5605      while (C >= Target) {
5606        if (C == Target)
5607          return true;
5608        C = Values[C].Parent;
5609      }
5610      return false;
5611    }
5612
5613  private:
5614    /// \brief Pick a representative for a sequence.
5615    unsigned representative(unsigned K) {
5616      if (Values[K].Merged)
5617        // Perform path compression as we go.
5618        return Values[K].Parent = representative(Values[K].Parent);
5619      return K;
5620    }
5621  };
5622
5623  /// An object for which we can track unsequenced uses.
5624  typedef NamedDecl *Object;
5625
5626  /// Different flavors of object usage which we track. We only track the
5627  /// least-sequenced usage of each kind.
5628  enum UsageKind {
5629    /// A read of an object. Multiple unsequenced reads are OK.
5630    UK_Use,
5631    /// A modification of an object which is sequenced before the value
5632    /// computation of the expression, such as ++n in C++.
5633    UK_ModAsValue,
5634    /// A modification of an object which is not sequenced before the value
5635    /// computation of the expression, such as n++.
5636    UK_ModAsSideEffect,
5637
5638    UK_Count = UK_ModAsSideEffect + 1
5639  };
5640
5641  struct Usage {
5642    Usage() : Use(0), Seq() {}
5643    Expr *Use;
5644    SequenceTree::Seq Seq;
5645  };
5646
5647  struct UsageInfo {
5648    UsageInfo() : Diagnosed(false) {}
5649    Usage Uses[UK_Count];
5650    /// Have we issued a diagnostic for this variable already?
5651    bool Diagnosed;
5652  };
5653  typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5654
5655  Sema &SemaRef;
5656  /// Sequenced regions within the expression.
5657  SequenceTree Tree;
5658  /// Declaration modifications and references which we have seen.
5659  UsageInfoMap UsageMap;
5660  /// The region we are currently within.
5661  SequenceTree::Seq Region;
5662  /// Filled in with declarations which were modified as a side-effect
5663  /// (that is, post-increment operations).
5664  SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5665  /// Expressions to check later. We defer checking these to reduce
5666  /// stack usage.
5667  SmallVectorImpl<Expr *> &WorkList;
5668
5669  /// RAII object wrapping the visitation of a sequenced subexpression of an
5670  /// expression. At the end of this process, the side-effects of the evaluation
5671  /// become sequenced with respect to the value computation of the result, so
5672  /// we downgrade any UK_ModAsSideEffect within the evaluation to
5673  /// UK_ModAsValue.
5674  struct SequencedSubexpression {
5675    SequencedSubexpression(SequenceChecker &Self)
5676      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5677      Self.ModAsSideEffect = &ModAsSideEffect;
5678    }
5679    ~SequencedSubexpression() {
5680      for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5681        UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5682        U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5683        Self.addUsage(U, ModAsSideEffect[I].first,
5684                      ModAsSideEffect[I].second.Use, UK_ModAsValue);
5685      }
5686      Self.ModAsSideEffect = OldModAsSideEffect;
5687    }
5688
5689    SequenceChecker &Self;
5690    SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5691    SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5692  };
5693
5694  /// RAII object wrapping the visitation of a subexpression which we might
5695  /// choose to evaluate as a constant. If any subexpression is evaluated and
5696  /// found to be non-constant, this allows us to suppress the evaluation of
5697  /// the outer expression.
5698  class EvaluationTracker {
5699  public:
5700    EvaluationTracker(SequenceChecker &Self)
5701        : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
5702      Self.EvalTracker = this;
5703    }
5704    ~EvaluationTracker() {
5705      Self.EvalTracker = Prev;
5706      if (Prev)
5707        Prev->EvalOK &= EvalOK;
5708    }
5709
5710    bool evaluate(const Expr *E, bool &Result) {
5711      if (!EvalOK || E->isValueDependent())
5712        return false;
5713      EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
5714      return EvalOK;
5715    }
5716
5717  private:
5718    SequenceChecker &Self;
5719    EvaluationTracker *Prev;
5720    bool EvalOK;
5721  } *EvalTracker;
5722
5723  /// \brief Find the object which is produced by the specified expression,
5724  /// if any.
5725  Object getObject(Expr *E, bool Mod) const {
5726    E = E->IgnoreParenCasts();
5727    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5728      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5729        return getObject(UO->getSubExpr(), Mod);
5730    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5731      if (BO->getOpcode() == BO_Comma)
5732        return getObject(BO->getRHS(), Mod);
5733      if (Mod && BO->isAssignmentOp())
5734        return getObject(BO->getLHS(), Mod);
5735    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5736      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5737      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5738        return ME->getMemberDecl();
5739    } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5740      // FIXME: If this is a reference, map through to its value.
5741      return DRE->getDecl();
5742    return 0;
5743  }
5744
5745  /// \brief Note that an object was modified or used by an expression.
5746  void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5747    Usage &U = UI.Uses[UK];
5748    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5749      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5750        ModAsSideEffect->push_back(std::make_pair(O, U));
5751      U.Use = Ref;
5752      U.Seq = Region;
5753    }
5754  }
5755  /// \brief Check whether a modification or use conflicts with a prior usage.
5756  void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5757                  bool IsModMod) {
5758    if (UI.Diagnosed)
5759      return;
5760
5761    const Usage &U = UI.Uses[OtherKind];
5762    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5763      return;
5764
5765    Expr *Mod = U.Use;
5766    Expr *ModOrUse = Ref;
5767    if (OtherKind == UK_Use)
5768      std::swap(Mod, ModOrUse);
5769
5770    SemaRef.Diag(Mod->getExprLoc(),
5771                 IsModMod ? diag::warn_unsequenced_mod_mod
5772                          : diag::warn_unsequenced_mod_use)
5773      << O << SourceRange(ModOrUse->getExprLoc());
5774    UI.Diagnosed = true;
5775  }
5776
5777  void notePreUse(Object O, Expr *Use) {
5778    UsageInfo &U = UsageMap[O];
5779    // Uses conflict with other modifications.
5780    checkUsage(O, U, Use, UK_ModAsValue, false);
5781  }
5782  void notePostUse(Object O, Expr *Use) {
5783    UsageInfo &U = UsageMap[O];
5784    checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5785    addUsage(U, O, Use, UK_Use);
5786  }
5787
5788  void notePreMod(Object O, Expr *Mod) {
5789    UsageInfo &U = UsageMap[O];
5790    // Modifications conflict with other modifications and with uses.
5791    checkUsage(O, U, Mod, UK_ModAsValue, true);
5792    checkUsage(O, U, Mod, UK_Use, false);
5793  }
5794  void notePostMod(Object O, Expr *Use, UsageKind UK) {
5795    UsageInfo &U = UsageMap[O];
5796    checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5797    addUsage(U, O, Use, UK);
5798  }
5799
5800public:
5801  SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
5802      : Base(S.Context), SemaRef(S), Region(Tree.root()), ModAsSideEffect(0),
5803        WorkList(WorkList), EvalTracker(0) {
5804    Visit(E);
5805  }
5806
5807  void VisitStmt(Stmt *S) {
5808    // Skip all statements which aren't expressions for now.
5809  }
5810
5811  void VisitExpr(Expr *E) {
5812    // By default, just recurse to evaluated subexpressions.
5813    Base::VisitStmt(E);
5814  }
5815
5816  void VisitCastExpr(CastExpr *E) {
5817    Object O = Object();
5818    if (E->getCastKind() == CK_LValueToRValue)
5819      O = getObject(E->getSubExpr(), false);
5820
5821    if (O)
5822      notePreUse(O, E);
5823    VisitExpr(E);
5824    if (O)
5825      notePostUse(O, E);
5826  }
5827
5828  void VisitBinComma(BinaryOperator *BO) {
5829    // C++11 [expr.comma]p1:
5830    //   Every value computation and side effect associated with the left
5831    //   expression is sequenced before every value computation and side
5832    //   effect associated with the right expression.
5833    SequenceTree::Seq LHS = Tree.allocate(Region);
5834    SequenceTree::Seq RHS = Tree.allocate(Region);
5835    SequenceTree::Seq OldRegion = Region;
5836
5837    {
5838      SequencedSubexpression SeqLHS(*this);
5839      Region = LHS;
5840      Visit(BO->getLHS());
5841    }
5842
5843    Region = RHS;
5844    Visit(BO->getRHS());
5845
5846    Region = OldRegion;
5847
5848    // Forget that LHS and RHS are sequenced. They are both unsequenced
5849    // with respect to other stuff.
5850    Tree.merge(LHS);
5851    Tree.merge(RHS);
5852  }
5853
5854  void VisitBinAssign(BinaryOperator *BO) {
5855    // The modification is sequenced after the value computation of the LHS
5856    // and RHS, so check it before inspecting the operands and update the
5857    // map afterwards.
5858    Object O = getObject(BO->getLHS(), true);
5859    if (!O)
5860      return VisitExpr(BO);
5861
5862    notePreMod(O, BO);
5863
5864    // C++11 [expr.ass]p7:
5865    //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5866    //   only once.
5867    //
5868    // Therefore, for a compound assignment operator, O is considered used
5869    // everywhere except within the evaluation of E1 itself.
5870    if (isa<CompoundAssignOperator>(BO))
5871      notePreUse(O, BO);
5872
5873    Visit(BO->getLHS());
5874
5875    if (isa<CompoundAssignOperator>(BO))
5876      notePostUse(O, BO);
5877
5878    Visit(BO->getRHS());
5879
5880    // C++11 [expr.ass]p1:
5881    //   the assignment is sequenced [...] before the value computation of the
5882    //   assignment expression.
5883    // C11 6.5.16/3 has no such rule.
5884    notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5885                                                       : UK_ModAsSideEffect);
5886  }
5887  void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5888    VisitBinAssign(CAO);
5889  }
5890
5891  void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5892  void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5893  void VisitUnaryPreIncDec(UnaryOperator *UO) {
5894    Object O = getObject(UO->getSubExpr(), true);
5895    if (!O)
5896      return VisitExpr(UO);
5897
5898    notePreMod(O, UO);
5899    Visit(UO->getSubExpr());
5900    // C++11 [expr.pre.incr]p1:
5901    //   the expression ++x is equivalent to x+=1
5902    notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5903                                                       : UK_ModAsSideEffect);
5904  }
5905
5906  void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5907  void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5908  void VisitUnaryPostIncDec(UnaryOperator *UO) {
5909    Object O = getObject(UO->getSubExpr(), true);
5910    if (!O)
5911      return VisitExpr(UO);
5912
5913    notePreMod(O, UO);
5914    Visit(UO->getSubExpr());
5915    notePostMod(O, UO, UK_ModAsSideEffect);
5916  }
5917
5918  /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
5919  void VisitBinLOr(BinaryOperator *BO) {
5920    // The side-effects of the LHS of an '&&' are sequenced before the
5921    // value computation of the RHS, and hence before the value computation
5922    // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5923    // as if they were unconditionally sequenced.
5924    EvaluationTracker Eval(*this);
5925    {
5926      SequencedSubexpression Sequenced(*this);
5927      Visit(BO->getLHS());
5928    }
5929
5930    bool Result;
5931    if (Eval.evaluate(BO->getLHS(), Result)) {
5932      if (!Result)
5933        Visit(BO->getRHS());
5934    } else {
5935      // Check for unsequenced operations in the RHS, treating it as an
5936      // entirely separate evaluation.
5937      //
5938      // FIXME: If there are operations in the RHS which are unsequenced
5939      // with respect to operations outside the RHS, and those operations
5940      // are unconditionally evaluated, diagnose them.
5941      WorkList.push_back(BO->getRHS());
5942    }
5943  }
5944  void VisitBinLAnd(BinaryOperator *BO) {
5945    EvaluationTracker Eval(*this);
5946    {
5947      SequencedSubexpression Sequenced(*this);
5948      Visit(BO->getLHS());
5949    }
5950
5951    bool Result;
5952    if (Eval.evaluate(BO->getLHS(), Result)) {
5953      if (Result)
5954        Visit(BO->getRHS());
5955    } else {
5956      WorkList.push_back(BO->getRHS());
5957    }
5958  }
5959
5960  // Only visit the condition, unless we can be sure which subexpression will
5961  // be chosen.
5962  void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5963    EvaluationTracker Eval(*this);
5964    {
5965      SequencedSubexpression Sequenced(*this);
5966      Visit(CO->getCond());
5967    }
5968
5969    bool Result;
5970    if (Eval.evaluate(CO->getCond(), Result))
5971      Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5972    else {
5973      WorkList.push_back(CO->getTrueExpr());
5974      WorkList.push_back(CO->getFalseExpr());
5975    }
5976  }
5977
5978  void VisitCallExpr(CallExpr *CE) {
5979    // C++11 [intro.execution]p15:
5980    //   When calling a function [...], every value computation and side effect
5981    //   associated with any argument expression, or with the postfix expression
5982    //   designating the called function, is sequenced before execution of every
5983    //   expression or statement in the body of the function [and thus before
5984    //   the value computation of its result].
5985    SequencedSubexpression Sequenced(*this);
5986    Base::VisitCallExpr(CE);
5987
5988    // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
5989  }
5990
5991  void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5992    // This is a call, so all subexpressions are sequenced before the result.
5993    SequencedSubexpression Sequenced(*this);
5994
5995    if (!CCE->isListInitialization())
5996      return VisitExpr(CCE);
5997
5998    // In C++11, list initializations are sequenced.
5999    SmallVector<SequenceTree::Seq, 32> Elts;
6000    SequenceTree::Seq Parent = Region;
6001    for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
6002                                        E = CCE->arg_end();
6003         I != E; ++I) {
6004      Region = Tree.allocate(Parent);
6005      Elts.push_back(Region);
6006      Visit(*I);
6007    }
6008
6009    // Forget that the initializers are sequenced.
6010    Region = Parent;
6011    for (unsigned I = 0; I < Elts.size(); ++I)
6012      Tree.merge(Elts[I]);
6013  }
6014
6015  void VisitInitListExpr(InitListExpr *ILE) {
6016    if (!SemaRef.getLangOpts().CPlusPlus11)
6017      return VisitExpr(ILE);
6018
6019    // In C++11, list initializations are sequenced.
6020    SmallVector<SequenceTree::Seq, 32> Elts;
6021    SequenceTree::Seq Parent = Region;
6022    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
6023      Expr *E = ILE->getInit(I);
6024      if (!E) continue;
6025      Region = Tree.allocate(Parent);
6026      Elts.push_back(Region);
6027      Visit(E);
6028    }
6029
6030    // Forget that the initializers are sequenced.
6031    Region = Parent;
6032    for (unsigned I = 0; I < Elts.size(); ++I)
6033      Tree.merge(Elts[I]);
6034  }
6035};
6036}
6037
6038void Sema::CheckUnsequencedOperations(Expr *E) {
6039  SmallVector<Expr *, 8> WorkList;
6040  WorkList.push_back(E);
6041  while (!WorkList.empty()) {
6042    Expr *Item = WorkList.pop_back_val();
6043    SequenceChecker(*this, Item, WorkList);
6044  }
6045}
6046
6047void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
6048                              bool IsConstexpr) {
6049  CheckImplicitConversions(E, CheckLoc);
6050  CheckUnsequencedOperations(E);
6051  if (!IsConstexpr && !E->isValueDependent())
6052    CheckForIntOverflow(E);
6053}
6054
6055void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
6056                                       FieldDecl *BitField,
6057                                       Expr *Init) {
6058  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
6059}
6060
6061/// CheckParmsForFunctionDef - Check that the parameters of the given
6062/// function are appropriate for the definition of a function. This
6063/// takes care of any checks that cannot be performed on the
6064/// declaration itself, e.g., that the types of each of the function
6065/// parameters are complete.
6066bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
6067                                    ParmVarDecl *const *PEnd,
6068                                    bool CheckParameterNames) {
6069  bool HasInvalidParm = false;
6070  for (; P != PEnd; ++P) {
6071    ParmVarDecl *Param = *P;
6072
6073    // C99 6.7.5.3p4: the parameters in a parameter type list in a
6074    // function declarator that is part of a function definition of
6075    // that function shall not have incomplete type.
6076    //
6077    // This is also C++ [dcl.fct]p6.
6078    if (!Param->isInvalidDecl() &&
6079        RequireCompleteType(Param->getLocation(), Param->getType(),
6080                            diag::err_typecheck_decl_incomplete_type)) {
6081      Param->setInvalidDecl();
6082      HasInvalidParm = true;
6083    }
6084
6085    // C99 6.9.1p5: If the declarator includes a parameter type list, the
6086    // declaration of each parameter shall include an identifier.
6087    if (CheckParameterNames &&
6088        Param->getIdentifier() == 0 &&
6089        !Param->isImplicit() &&
6090        !getLangOpts().CPlusPlus)
6091      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6092
6093    // C99 6.7.5.3p12:
6094    //   If the function declarator is not part of a definition of that
6095    //   function, parameters may have incomplete type and may use the [*]
6096    //   notation in their sequences of declarator specifiers to specify
6097    //   variable length array types.
6098    QualType PType = Param->getOriginalType();
6099    while (const ArrayType *AT = Context.getAsArrayType(PType)) {
6100      if (AT->getSizeModifier() == ArrayType::Star) {
6101        // FIXME: This diagnostic should point the '[*]' if source-location
6102        // information is added for it.
6103        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
6104        break;
6105      }
6106      PType= AT->getElementType();
6107    }
6108
6109    // MSVC destroys objects passed by value in the callee.  Therefore a
6110    // function definition which takes such a parameter must be able to call the
6111    // object's destructor.
6112    if (getLangOpts().CPlusPlus &&
6113        Context.getTargetInfo().getCXXABI().isArgumentDestroyedByCallee()) {
6114      if (const RecordType *RT = Param->getType()->getAs<RecordType>())
6115        FinalizeVarWithDestructor(Param, RT);
6116    }
6117  }
6118
6119  return HasInvalidParm;
6120}
6121
6122/// CheckCastAlign - Implements -Wcast-align, which warns when a
6123/// pointer cast increases the alignment requirements.
6124void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
6125  // This is actually a lot of work to potentially be doing on every
6126  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
6127  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
6128                                          TRange.getBegin())
6129        == DiagnosticsEngine::Ignored)
6130    return;
6131
6132  // Ignore dependent types.
6133  if (T->isDependentType() || Op->getType()->isDependentType())
6134    return;
6135
6136  // Require that the destination be a pointer type.
6137  const PointerType *DestPtr = T->getAs<PointerType>();
6138  if (!DestPtr) return;
6139
6140  // If the destination has alignment 1, we're done.
6141  QualType DestPointee = DestPtr->getPointeeType();
6142  if (DestPointee->isIncompleteType()) return;
6143  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
6144  if (DestAlign.isOne()) return;
6145
6146  // Require that the source be a pointer type.
6147  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
6148  if (!SrcPtr) return;
6149  QualType SrcPointee = SrcPtr->getPointeeType();
6150
6151  // Whitelist casts from cv void*.  We already implicitly
6152  // whitelisted casts to cv void*, since they have alignment 1.
6153  // Also whitelist casts involving incomplete types, which implicitly
6154  // includes 'void'.
6155  if (SrcPointee->isIncompleteType()) return;
6156
6157  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
6158  if (SrcAlign >= DestAlign) return;
6159
6160  Diag(TRange.getBegin(), diag::warn_cast_align)
6161    << Op->getType() << T
6162    << static_cast<unsigned>(SrcAlign.getQuantity())
6163    << static_cast<unsigned>(DestAlign.getQuantity())
6164    << TRange << Op->getSourceRange();
6165}
6166
6167static const Type* getElementType(const Expr *BaseExpr) {
6168  const Type* EltType = BaseExpr->getType().getTypePtr();
6169  if (EltType->isAnyPointerType())
6170    return EltType->getPointeeType().getTypePtr();
6171  else if (EltType->isArrayType())
6172    return EltType->getBaseElementTypeUnsafe();
6173  return EltType;
6174}
6175
6176/// \brief Check whether this array fits the idiom of a size-one tail padded
6177/// array member of a struct.
6178///
6179/// We avoid emitting out-of-bounds access warnings for such arrays as they are
6180/// commonly used to emulate flexible arrays in C89 code.
6181static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
6182                                    const NamedDecl *ND) {
6183  if (Size != 1 || !ND) return false;
6184
6185  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
6186  if (!FD) return false;
6187
6188  // Don't consider sizes resulting from macro expansions or template argument
6189  // substitution to form C89 tail-padded arrays.
6190
6191  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
6192  while (TInfo) {
6193    TypeLoc TL = TInfo->getTypeLoc();
6194    // Look through typedefs.
6195    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
6196      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
6197      TInfo = TDL->getTypeSourceInfo();
6198      continue;
6199    }
6200    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
6201      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
6202      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
6203        return false;
6204    }
6205    break;
6206  }
6207
6208  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
6209  if (!RD) return false;
6210  if (RD->isUnion()) return false;
6211  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6212    if (!CRD->isStandardLayout()) return false;
6213  }
6214
6215  // See if this is the last field decl in the record.
6216  const Decl *D = FD;
6217  while ((D = D->getNextDeclInContext()))
6218    if (isa<FieldDecl>(D))
6219      return false;
6220  return true;
6221}
6222
6223void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
6224                            const ArraySubscriptExpr *ASE,
6225                            bool AllowOnePastEnd, bool IndexNegated) {
6226  IndexExpr = IndexExpr->IgnoreParenImpCasts();
6227  if (IndexExpr->isValueDependent())
6228    return;
6229
6230  const Type *EffectiveType = getElementType(BaseExpr);
6231  BaseExpr = BaseExpr->IgnoreParenCasts();
6232  const ConstantArrayType *ArrayTy =
6233    Context.getAsConstantArrayType(BaseExpr->getType());
6234  if (!ArrayTy)
6235    return;
6236
6237  llvm::APSInt index;
6238  if (!IndexExpr->EvaluateAsInt(index, Context))
6239    return;
6240  if (IndexNegated)
6241    index = -index;
6242
6243  const NamedDecl *ND = NULL;
6244  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6245    ND = dyn_cast<NamedDecl>(DRE->getDecl());
6246  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6247    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6248
6249  if (index.isUnsigned() || !index.isNegative()) {
6250    llvm::APInt size = ArrayTy->getSize();
6251    if (!size.isStrictlyPositive())
6252      return;
6253
6254    const Type* BaseType = getElementType(BaseExpr);
6255    if (BaseType != EffectiveType) {
6256      // Make sure we're comparing apples to apples when comparing index to size
6257      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
6258      uint64_t array_typesize = Context.getTypeSize(BaseType);
6259      // Handle ptrarith_typesize being zero, such as when casting to void*
6260      if (!ptrarith_typesize) ptrarith_typesize = 1;
6261      if (ptrarith_typesize != array_typesize) {
6262        // There's a cast to a different size type involved
6263        uint64_t ratio = array_typesize / ptrarith_typesize;
6264        // TODO: Be smarter about handling cases where array_typesize is not a
6265        // multiple of ptrarith_typesize
6266        if (ptrarith_typesize * ratio == array_typesize)
6267          size *= llvm::APInt(size.getBitWidth(), ratio);
6268      }
6269    }
6270
6271    if (size.getBitWidth() > index.getBitWidth())
6272      index = index.zext(size.getBitWidth());
6273    else if (size.getBitWidth() < index.getBitWidth())
6274      size = size.zext(index.getBitWidth());
6275
6276    // For array subscripting the index must be less than size, but for pointer
6277    // arithmetic also allow the index (offset) to be equal to size since
6278    // computing the next address after the end of the array is legal and
6279    // commonly done e.g. in C++ iterators and range-based for loops.
6280    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
6281      return;
6282
6283    // Also don't warn for arrays of size 1 which are members of some
6284    // structure. These are often used to approximate flexible arrays in C89
6285    // code.
6286    if (IsTailPaddedMemberArray(*this, size, ND))
6287      return;
6288
6289    // Suppress the warning if the subscript expression (as identified by the
6290    // ']' location) and the index expression are both from macro expansions
6291    // within a system header.
6292    if (ASE) {
6293      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
6294          ASE->getRBracketLoc());
6295      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
6296        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
6297            IndexExpr->getLocStart());
6298        if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
6299          return;
6300      }
6301    }
6302
6303    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
6304    if (ASE)
6305      DiagID = diag::warn_array_index_exceeds_bounds;
6306
6307    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6308                        PDiag(DiagID) << index.toString(10, true)
6309                          << size.toString(10, true)
6310                          << (unsigned)size.getLimitedValue(~0U)
6311                          << IndexExpr->getSourceRange());
6312  } else {
6313    unsigned DiagID = diag::warn_array_index_precedes_bounds;
6314    if (!ASE) {
6315      DiagID = diag::warn_ptr_arith_precedes_bounds;
6316      if (index.isNegative()) index = -index;
6317    }
6318
6319    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6320                        PDiag(DiagID) << index.toString(10, true)
6321                          << IndexExpr->getSourceRange());
6322  }
6323
6324  if (!ND) {
6325    // Try harder to find a NamedDecl to point at in the note.
6326    while (const ArraySubscriptExpr *ASE =
6327           dyn_cast<ArraySubscriptExpr>(BaseExpr))
6328      BaseExpr = ASE->getBase()->IgnoreParenCasts();
6329    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6330      ND = dyn_cast<NamedDecl>(DRE->getDecl());
6331    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6332      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6333  }
6334
6335  if (ND)
6336    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
6337                        PDiag(diag::note_array_index_out_of_bounds)
6338                          << ND->getDeclName());
6339}
6340
6341void Sema::CheckArrayAccess(const Expr *expr) {
6342  int AllowOnePastEnd = 0;
6343  while (expr) {
6344    expr = expr->IgnoreParenImpCasts();
6345    switch (expr->getStmtClass()) {
6346      case Stmt::ArraySubscriptExprClass: {
6347        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
6348        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
6349                         AllowOnePastEnd > 0);
6350        return;
6351      }
6352      case Stmt::UnaryOperatorClass: {
6353        // Only unwrap the * and & unary operators
6354        const UnaryOperator *UO = cast<UnaryOperator>(expr);
6355        expr = UO->getSubExpr();
6356        switch (UO->getOpcode()) {
6357          case UO_AddrOf:
6358            AllowOnePastEnd++;
6359            break;
6360          case UO_Deref:
6361            AllowOnePastEnd--;
6362            break;
6363          default:
6364            return;
6365        }
6366        break;
6367      }
6368      case Stmt::ConditionalOperatorClass: {
6369        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
6370        if (const Expr *lhs = cond->getLHS())
6371          CheckArrayAccess(lhs);
6372        if (const Expr *rhs = cond->getRHS())
6373          CheckArrayAccess(rhs);
6374        return;
6375      }
6376      default:
6377        return;
6378    }
6379  }
6380}
6381
6382//===--- CHECK: Objective-C retain cycles ----------------------------------//
6383
6384namespace {
6385  struct RetainCycleOwner {
6386    RetainCycleOwner() : Variable(0), Indirect(false) {}
6387    VarDecl *Variable;
6388    SourceRange Range;
6389    SourceLocation Loc;
6390    bool Indirect;
6391
6392    void setLocsFrom(Expr *e) {
6393      Loc = e->getExprLoc();
6394      Range = e->getSourceRange();
6395    }
6396  };
6397}
6398
6399/// Consider whether capturing the given variable can possibly lead to
6400/// a retain cycle.
6401static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
6402  // In ARC, it's captured strongly iff the variable has __strong
6403  // lifetime.  In MRR, it's captured strongly if the variable is
6404  // __block and has an appropriate type.
6405  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6406    return false;
6407
6408  owner.Variable = var;
6409  if (ref)
6410    owner.setLocsFrom(ref);
6411  return true;
6412}
6413
6414static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6415  while (true) {
6416    e = e->IgnoreParens();
6417    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6418      switch (cast->getCastKind()) {
6419      case CK_BitCast:
6420      case CK_LValueBitCast:
6421      case CK_LValueToRValue:
6422      case CK_ARCReclaimReturnedObject:
6423        e = cast->getSubExpr();
6424        continue;
6425
6426      default:
6427        return false;
6428      }
6429    }
6430
6431    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6432      ObjCIvarDecl *ivar = ref->getDecl();
6433      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6434        return false;
6435
6436      // Try to find a retain cycle in the base.
6437      if (!findRetainCycleOwner(S, ref->getBase(), owner))
6438        return false;
6439
6440      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6441      owner.Indirect = true;
6442      return true;
6443    }
6444
6445    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6446      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6447      if (!var) return false;
6448      return considerVariable(var, ref, owner);
6449    }
6450
6451    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6452      if (member->isArrow()) return false;
6453
6454      // Don't count this as an indirect ownership.
6455      e = member->getBase();
6456      continue;
6457    }
6458
6459    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6460      // Only pay attention to pseudo-objects on property references.
6461      ObjCPropertyRefExpr *pre
6462        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6463                                              ->IgnoreParens());
6464      if (!pre) return false;
6465      if (pre->isImplicitProperty()) return false;
6466      ObjCPropertyDecl *property = pre->getExplicitProperty();
6467      if (!property->isRetaining() &&
6468          !(property->getPropertyIvarDecl() &&
6469            property->getPropertyIvarDecl()->getType()
6470              .getObjCLifetime() == Qualifiers::OCL_Strong))
6471          return false;
6472
6473      owner.Indirect = true;
6474      if (pre->isSuperReceiver()) {
6475        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6476        if (!owner.Variable)
6477          return false;
6478        owner.Loc = pre->getLocation();
6479        owner.Range = pre->getSourceRange();
6480        return true;
6481      }
6482      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6483                              ->getSourceExpr());
6484      continue;
6485    }
6486
6487    // Array ivars?
6488
6489    return false;
6490  }
6491}
6492
6493namespace {
6494  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6495    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6496      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6497        Variable(variable), Capturer(0) {}
6498
6499    VarDecl *Variable;
6500    Expr *Capturer;
6501
6502    void VisitDeclRefExpr(DeclRefExpr *ref) {
6503      if (ref->getDecl() == Variable && !Capturer)
6504        Capturer = ref;
6505    }
6506
6507    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6508      if (Capturer) return;
6509      Visit(ref->getBase());
6510      if (Capturer && ref->isFreeIvar())
6511        Capturer = ref;
6512    }
6513
6514    void VisitBlockExpr(BlockExpr *block) {
6515      // Look inside nested blocks
6516      if (block->getBlockDecl()->capturesVariable(Variable))
6517        Visit(block->getBlockDecl()->getBody());
6518    }
6519
6520    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6521      if (Capturer) return;
6522      if (OVE->getSourceExpr())
6523        Visit(OVE->getSourceExpr());
6524    }
6525  };
6526}
6527
6528/// Check whether the given argument is a block which captures a
6529/// variable.
6530static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6531  assert(owner.Variable && owner.Loc.isValid());
6532
6533  e = e->IgnoreParenCasts();
6534
6535  // Look through [^{...} copy] and Block_copy(^{...}).
6536  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6537    Selector Cmd = ME->getSelector();
6538    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6539      e = ME->getInstanceReceiver();
6540      if (!e)
6541        return 0;
6542      e = e->IgnoreParenCasts();
6543    }
6544  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6545    if (CE->getNumArgs() == 1) {
6546      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6547      if (Fn) {
6548        const IdentifierInfo *FnI = Fn->getIdentifier();
6549        if (FnI && FnI->isStr("_Block_copy")) {
6550          e = CE->getArg(0)->IgnoreParenCasts();
6551        }
6552      }
6553    }
6554  }
6555
6556  BlockExpr *block = dyn_cast<BlockExpr>(e);
6557  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6558    return 0;
6559
6560  FindCaptureVisitor visitor(S.Context, owner.Variable);
6561  visitor.Visit(block->getBlockDecl()->getBody());
6562  return visitor.Capturer;
6563}
6564
6565static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6566                                RetainCycleOwner &owner) {
6567  assert(capturer);
6568  assert(owner.Variable && owner.Loc.isValid());
6569
6570  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6571    << owner.Variable << capturer->getSourceRange();
6572  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6573    << owner.Indirect << owner.Range;
6574}
6575
6576/// Check for a keyword selector that starts with the word 'add' or
6577/// 'set'.
6578static bool isSetterLikeSelector(Selector sel) {
6579  if (sel.isUnarySelector()) return false;
6580
6581  StringRef str = sel.getNameForSlot(0);
6582  while (!str.empty() && str.front() == '_') str = str.substr(1);
6583  if (str.startswith("set"))
6584    str = str.substr(3);
6585  else if (str.startswith("add")) {
6586    // Specially whitelist 'addOperationWithBlock:'.
6587    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6588      return false;
6589    str = str.substr(3);
6590  }
6591  else
6592    return false;
6593
6594  if (str.empty()) return true;
6595  return !isLowercase(str.front());
6596}
6597
6598/// Check a message send to see if it's likely to cause a retain cycle.
6599void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6600  // Only check instance methods whose selector looks like a setter.
6601  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6602    return;
6603
6604  // Try to find a variable that the receiver is strongly owned by.
6605  RetainCycleOwner owner;
6606  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6607    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6608      return;
6609  } else {
6610    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6611    owner.Variable = getCurMethodDecl()->getSelfDecl();
6612    owner.Loc = msg->getSuperLoc();
6613    owner.Range = msg->getSuperLoc();
6614  }
6615
6616  // Check whether the receiver is captured by any of the arguments.
6617  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6618    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6619      return diagnoseRetainCycle(*this, capturer, owner);
6620}
6621
6622/// Check a property assign to see if it's likely to cause a retain cycle.
6623void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6624  RetainCycleOwner owner;
6625  if (!findRetainCycleOwner(*this, receiver, owner))
6626    return;
6627
6628  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6629    diagnoseRetainCycle(*this, capturer, owner);
6630}
6631
6632void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6633  RetainCycleOwner Owner;
6634  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6635    return;
6636
6637  // Because we don't have an expression for the variable, we have to set the
6638  // location explicitly here.
6639  Owner.Loc = Var->getLocation();
6640  Owner.Range = Var->getSourceRange();
6641
6642  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6643    diagnoseRetainCycle(*this, Capturer, Owner);
6644}
6645
6646static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6647                                     Expr *RHS, bool isProperty) {
6648  // Check if RHS is an Objective-C object literal, which also can get
6649  // immediately zapped in a weak reference.  Note that we explicitly
6650  // allow ObjCStringLiterals, since those are designed to never really die.
6651  RHS = RHS->IgnoreParenImpCasts();
6652
6653  // This enum needs to match with the 'select' in
6654  // warn_objc_arc_literal_assign (off-by-1).
6655  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6656  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6657    return false;
6658
6659  S.Diag(Loc, diag::warn_arc_literal_assign)
6660    << (unsigned) Kind
6661    << (isProperty ? 0 : 1)
6662    << RHS->getSourceRange();
6663
6664  return true;
6665}
6666
6667static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6668                                    Qualifiers::ObjCLifetime LT,
6669                                    Expr *RHS, bool isProperty) {
6670  // Strip off any implicit cast added to get to the one ARC-specific.
6671  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6672    if (cast->getCastKind() == CK_ARCConsumeObject) {
6673      S.Diag(Loc, diag::warn_arc_retained_assign)
6674        << (LT == Qualifiers::OCL_ExplicitNone)
6675        << (isProperty ? 0 : 1)
6676        << RHS->getSourceRange();
6677      return true;
6678    }
6679    RHS = cast->getSubExpr();
6680  }
6681
6682  if (LT == Qualifiers::OCL_Weak &&
6683      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6684    return true;
6685
6686  return false;
6687}
6688
6689bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6690                              QualType LHS, Expr *RHS) {
6691  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6692
6693  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6694    return false;
6695
6696  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6697    return true;
6698
6699  return false;
6700}
6701
6702void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6703                              Expr *LHS, Expr *RHS) {
6704  QualType LHSType;
6705  // PropertyRef on LHS type need be directly obtained from
6706  // its declaration as it has a PsuedoType.
6707  ObjCPropertyRefExpr *PRE
6708    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6709  if (PRE && !PRE->isImplicitProperty()) {
6710    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6711    if (PD)
6712      LHSType = PD->getType();
6713  }
6714
6715  if (LHSType.isNull())
6716    LHSType = LHS->getType();
6717
6718  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6719
6720  if (LT == Qualifiers::OCL_Weak) {
6721    DiagnosticsEngine::Level Level =
6722      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6723    if (Level != DiagnosticsEngine::Ignored)
6724      getCurFunction()->markSafeWeakUse(LHS);
6725  }
6726
6727  if (checkUnsafeAssigns(Loc, LHSType, RHS))
6728    return;
6729
6730  // FIXME. Check for other life times.
6731  if (LT != Qualifiers::OCL_None)
6732    return;
6733
6734  if (PRE) {
6735    if (PRE->isImplicitProperty())
6736      return;
6737    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6738    if (!PD)
6739      return;
6740
6741    unsigned Attributes = PD->getPropertyAttributes();
6742    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6743      // when 'assign' attribute was not explicitly specified
6744      // by user, ignore it and rely on property type itself
6745      // for lifetime info.
6746      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6747      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6748          LHSType->isObjCRetainableType())
6749        return;
6750
6751      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6752        if (cast->getCastKind() == CK_ARCConsumeObject) {
6753          Diag(Loc, diag::warn_arc_retained_property_assign)
6754          << RHS->getSourceRange();
6755          return;
6756        }
6757        RHS = cast->getSubExpr();
6758      }
6759    }
6760    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6761      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6762        return;
6763    }
6764  }
6765}
6766
6767//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6768
6769namespace {
6770bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6771                                 SourceLocation StmtLoc,
6772                                 const NullStmt *Body) {
6773  // Do not warn if the body is a macro that expands to nothing, e.g:
6774  //
6775  // #define CALL(x)
6776  // if (condition)
6777  //   CALL(0);
6778  //
6779  if (Body->hasLeadingEmptyMacro())
6780    return false;
6781
6782  // Get line numbers of statement and body.
6783  bool StmtLineInvalid;
6784  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6785                                                      &StmtLineInvalid);
6786  if (StmtLineInvalid)
6787    return false;
6788
6789  bool BodyLineInvalid;
6790  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6791                                                      &BodyLineInvalid);
6792  if (BodyLineInvalid)
6793    return false;
6794
6795  // Warn if null statement and body are on the same line.
6796  if (StmtLine != BodyLine)
6797    return false;
6798
6799  return true;
6800}
6801} // Unnamed namespace
6802
6803void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6804                                 const Stmt *Body,
6805                                 unsigned DiagID) {
6806  // Since this is a syntactic check, don't emit diagnostic for template
6807  // instantiations, this just adds noise.
6808  if (CurrentInstantiationScope)
6809    return;
6810
6811  // The body should be a null statement.
6812  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6813  if (!NBody)
6814    return;
6815
6816  // Do the usual checks.
6817  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6818    return;
6819
6820  Diag(NBody->getSemiLoc(), DiagID);
6821  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6822}
6823
6824void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6825                                 const Stmt *PossibleBody) {
6826  assert(!CurrentInstantiationScope); // Ensured by caller
6827
6828  SourceLocation StmtLoc;
6829  const Stmt *Body;
6830  unsigned DiagID;
6831  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6832    StmtLoc = FS->getRParenLoc();
6833    Body = FS->getBody();
6834    DiagID = diag::warn_empty_for_body;
6835  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6836    StmtLoc = WS->getCond()->getSourceRange().getEnd();
6837    Body = WS->getBody();
6838    DiagID = diag::warn_empty_while_body;
6839  } else
6840    return; // Neither `for' nor `while'.
6841
6842  // The body should be a null statement.
6843  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6844  if (!NBody)
6845    return;
6846
6847  // Skip expensive checks if diagnostic is disabled.
6848  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6849          DiagnosticsEngine::Ignored)
6850    return;
6851
6852  // Do the usual checks.
6853  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6854    return;
6855
6856  // `for(...);' and `while(...);' are popular idioms, so in order to keep
6857  // noise level low, emit diagnostics only if for/while is followed by a
6858  // CompoundStmt, e.g.:
6859  //    for (int i = 0; i < n; i++);
6860  //    {
6861  //      a(i);
6862  //    }
6863  // or if for/while is followed by a statement with more indentation
6864  // than for/while itself:
6865  //    for (int i = 0; i < n; i++);
6866  //      a(i);
6867  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6868  if (!ProbableTypo) {
6869    bool BodyColInvalid;
6870    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6871                             PossibleBody->getLocStart(),
6872                             &BodyColInvalid);
6873    if (BodyColInvalid)
6874      return;
6875
6876    bool StmtColInvalid;
6877    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6878                             S->getLocStart(),
6879                             &StmtColInvalid);
6880    if (StmtColInvalid)
6881      return;
6882
6883    if (BodyCol > StmtCol)
6884      ProbableTypo = true;
6885  }
6886
6887  if (ProbableTypo) {
6888    Diag(NBody->getSemiLoc(), DiagID);
6889    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6890  }
6891}
6892
6893//===--- Layout compatibility ----------------------------------------------//
6894
6895namespace {
6896
6897bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6898
6899/// \brief Check if two enumeration types are layout-compatible.
6900bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6901  // C++11 [dcl.enum] p8:
6902  // Two enumeration types are layout-compatible if they have the same
6903  // underlying type.
6904  return ED1->isComplete() && ED2->isComplete() &&
6905         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6906}
6907
6908/// \brief Check if two fields are layout-compatible.
6909bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6910  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6911    return false;
6912
6913  if (Field1->isBitField() != Field2->isBitField())
6914    return false;
6915
6916  if (Field1->isBitField()) {
6917    // Make sure that the bit-fields are the same length.
6918    unsigned Bits1 = Field1->getBitWidthValue(C);
6919    unsigned Bits2 = Field2->getBitWidthValue(C);
6920
6921    if (Bits1 != Bits2)
6922      return false;
6923  }
6924
6925  return true;
6926}
6927
6928/// \brief Check if two standard-layout structs are layout-compatible.
6929/// (C++11 [class.mem] p17)
6930bool isLayoutCompatibleStruct(ASTContext &C,
6931                              RecordDecl *RD1,
6932                              RecordDecl *RD2) {
6933  // If both records are C++ classes, check that base classes match.
6934  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6935    // If one of records is a CXXRecordDecl we are in C++ mode,
6936    // thus the other one is a CXXRecordDecl, too.
6937    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6938    // Check number of base classes.
6939    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6940      return false;
6941
6942    // Check the base classes.
6943    for (CXXRecordDecl::base_class_const_iterator
6944               Base1 = D1CXX->bases_begin(),
6945           BaseEnd1 = D1CXX->bases_end(),
6946              Base2 = D2CXX->bases_begin();
6947         Base1 != BaseEnd1;
6948         ++Base1, ++Base2) {
6949      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6950        return false;
6951    }
6952  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6953    // If only RD2 is a C++ class, it should have zero base classes.
6954    if (D2CXX->getNumBases() > 0)
6955      return false;
6956  }
6957
6958  // Check the fields.
6959  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6960                             Field2End = RD2->field_end(),
6961                             Field1 = RD1->field_begin(),
6962                             Field1End = RD1->field_end();
6963  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6964    if (!isLayoutCompatible(C, *Field1, *Field2))
6965      return false;
6966  }
6967  if (Field1 != Field1End || Field2 != Field2End)
6968    return false;
6969
6970  return true;
6971}
6972
6973/// \brief Check if two standard-layout unions are layout-compatible.
6974/// (C++11 [class.mem] p18)
6975bool isLayoutCompatibleUnion(ASTContext &C,
6976                             RecordDecl *RD1,
6977                             RecordDecl *RD2) {
6978  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6979  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6980                                  Field2End = RD2->field_end();
6981       Field2 != Field2End; ++Field2) {
6982    UnmatchedFields.insert(*Field2);
6983  }
6984
6985  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6986                                  Field1End = RD1->field_end();
6987       Field1 != Field1End; ++Field1) {
6988    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6989        I = UnmatchedFields.begin(),
6990        E = UnmatchedFields.end();
6991
6992    for ( ; I != E; ++I) {
6993      if (isLayoutCompatible(C, *Field1, *I)) {
6994        bool Result = UnmatchedFields.erase(*I);
6995        (void) Result;
6996        assert(Result);
6997        break;
6998      }
6999    }
7000    if (I == E)
7001      return false;
7002  }
7003
7004  return UnmatchedFields.empty();
7005}
7006
7007bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
7008  if (RD1->isUnion() != RD2->isUnion())
7009    return false;
7010
7011  if (RD1->isUnion())
7012    return isLayoutCompatibleUnion(C, RD1, RD2);
7013  else
7014    return isLayoutCompatibleStruct(C, RD1, RD2);
7015}
7016
7017/// \brief Check if two types are layout-compatible in C++11 sense.
7018bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
7019  if (T1.isNull() || T2.isNull())
7020    return false;
7021
7022  // C++11 [basic.types] p11:
7023  // If two types T1 and T2 are the same type, then T1 and T2 are
7024  // layout-compatible types.
7025  if (C.hasSameType(T1, T2))
7026    return true;
7027
7028  T1 = T1.getCanonicalType().getUnqualifiedType();
7029  T2 = T2.getCanonicalType().getUnqualifiedType();
7030
7031  const Type::TypeClass TC1 = T1->getTypeClass();
7032  const Type::TypeClass TC2 = T2->getTypeClass();
7033
7034  if (TC1 != TC2)
7035    return false;
7036
7037  if (TC1 == Type::Enum) {
7038    return isLayoutCompatible(C,
7039                              cast<EnumType>(T1)->getDecl(),
7040                              cast<EnumType>(T2)->getDecl());
7041  } else if (TC1 == Type::Record) {
7042    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
7043      return false;
7044
7045    return isLayoutCompatible(C,
7046                              cast<RecordType>(T1)->getDecl(),
7047                              cast<RecordType>(T2)->getDecl());
7048  }
7049
7050  return false;
7051}
7052}
7053
7054//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
7055
7056namespace {
7057/// \brief Given a type tag expression find the type tag itself.
7058///
7059/// \param TypeExpr Type tag expression, as it appears in user's code.
7060///
7061/// \param VD Declaration of an identifier that appears in a type tag.
7062///
7063/// \param MagicValue Type tag magic value.
7064bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
7065                     const ValueDecl **VD, uint64_t *MagicValue) {
7066  while(true) {
7067    if (!TypeExpr)
7068      return false;
7069
7070    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
7071
7072    switch (TypeExpr->getStmtClass()) {
7073    case Stmt::UnaryOperatorClass: {
7074      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
7075      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
7076        TypeExpr = UO->getSubExpr();
7077        continue;
7078      }
7079      return false;
7080    }
7081
7082    case Stmt::DeclRefExprClass: {
7083      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
7084      *VD = DRE->getDecl();
7085      return true;
7086    }
7087
7088    case Stmt::IntegerLiteralClass: {
7089      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
7090      llvm::APInt MagicValueAPInt = IL->getValue();
7091      if (MagicValueAPInt.getActiveBits() <= 64) {
7092        *MagicValue = MagicValueAPInt.getZExtValue();
7093        return true;
7094      } else
7095        return false;
7096    }
7097
7098    case Stmt::BinaryConditionalOperatorClass:
7099    case Stmt::ConditionalOperatorClass: {
7100      const AbstractConditionalOperator *ACO =
7101          cast<AbstractConditionalOperator>(TypeExpr);
7102      bool Result;
7103      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
7104        if (Result)
7105          TypeExpr = ACO->getTrueExpr();
7106        else
7107          TypeExpr = ACO->getFalseExpr();
7108        continue;
7109      }
7110      return false;
7111    }
7112
7113    case Stmt::BinaryOperatorClass: {
7114      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
7115      if (BO->getOpcode() == BO_Comma) {
7116        TypeExpr = BO->getRHS();
7117        continue;
7118      }
7119      return false;
7120    }
7121
7122    default:
7123      return false;
7124    }
7125  }
7126}
7127
7128/// \brief Retrieve the C type corresponding to type tag TypeExpr.
7129///
7130/// \param TypeExpr Expression that specifies a type tag.
7131///
7132/// \param MagicValues Registered magic values.
7133///
7134/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
7135///        kind.
7136///
7137/// \param TypeInfo Information about the corresponding C type.
7138///
7139/// \returns true if the corresponding C type was found.
7140bool GetMatchingCType(
7141        const IdentifierInfo *ArgumentKind,
7142        const Expr *TypeExpr, const ASTContext &Ctx,
7143        const llvm::DenseMap<Sema::TypeTagMagicValue,
7144                             Sema::TypeTagData> *MagicValues,
7145        bool &FoundWrongKind,
7146        Sema::TypeTagData &TypeInfo) {
7147  FoundWrongKind = false;
7148
7149  // Variable declaration that has type_tag_for_datatype attribute.
7150  const ValueDecl *VD = NULL;
7151
7152  uint64_t MagicValue;
7153
7154  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
7155    return false;
7156
7157  if (VD) {
7158    for (specific_attr_iterator<TypeTagForDatatypeAttr>
7159             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
7160             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
7161         I != E; ++I) {
7162      if (I->getArgumentKind() != ArgumentKind) {
7163        FoundWrongKind = true;
7164        return false;
7165      }
7166      TypeInfo.Type = I->getMatchingCType();
7167      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
7168      TypeInfo.MustBeNull = I->getMustBeNull();
7169      return true;
7170    }
7171    return false;
7172  }
7173
7174  if (!MagicValues)
7175    return false;
7176
7177  llvm::DenseMap<Sema::TypeTagMagicValue,
7178                 Sema::TypeTagData>::const_iterator I =
7179      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
7180  if (I == MagicValues->end())
7181    return false;
7182
7183  TypeInfo = I->second;
7184  return true;
7185}
7186} // unnamed namespace
7187
7188void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
7189                                      uint64_t MagicValue, QualType Type,
7190                                      bool LayoutCompatible,
7191                                      bool MustBeNull) {
7192  if (!TypeTagForDatatypeMagicValues)
7193    TypeTagForDatatypeMagicValues.reset(
7194        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
7195
7196  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
7197  (*TypeTagForDatatypeMagicValues)[Magic] =
7198      TypeTagData(Type, LayoutCompatible, MustBeNull);
7199}
7200
7201namespace {
7202bool IsSameCharType(QualType T1, QualType T2) {
7203  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
7204  if (!BT1)
7205    return false;
7206
7207  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
7208  if (!BT2)
7209    return false;
7210
7211  BuiltinType::Kind T1Kind = BT1->getKind();
7212  BuiltinType::Kind T2Kind = BT2->getKind();
7213
7214  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
7215         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
7216         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
7217         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
7218}
7219} // unnamed namespace
7220
7221void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
7222                                    const Expr * const *ExprArgs) {
7223  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
7224  bool IsPointerAttr = Attr->getIsPointer();
7225
7226  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
7227  bool FoundWrongKind;
7228  TypeTagData TypeInfo;
7229  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
7230                        TypeTagForDatatypeMagicValues.get(),
7231                        FoundWrongKind, TypeInfo)) {
7232    if (FoundWrongKind)
7233      Diag(TypeTagExpr->getExprLoc(),
7234           diag::warn_type_tag_for_datatype_wrong_kind)
7235        << TypeTagExpr->getSourceRange();
7236    return;
7237  }
7238
7239  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
7240  if (IsPointerAttr) {
7241    // Skip implicit cast of pointer to `void *' (as a function argument).
7242    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
7243      if (ICE->getType()->isVoidPointerType() &&
7244          ICE->getCastKind() == CK_BitCast)
7245        ArgumentExpr = ICE->getSubExpr();
7246  }
7247  QualType ArgumentType = ArgumentExpr->getType();
7248
7249  // Passing a `void*' pointer shouldn't trigger a warning.
7250  if (IsPointerAttr && ArgumentType->isVoidPointerType())
7251    return;
7252
7253  if (TypeInfo.MustBeNull) {
7254    // Type tag with matching void type requires a null pointer.
7255    if (!ArgumentExpr->isNullPointerConstant(Context,
7256                                             Expr::NPC_ValueDependentIsNotNull)) {
7257      Diag(ArgumentExpr->getExprLoc(),
7258           diag::warn_type_safety_null_pointer_required)
7259          << ArgumentKind->getName()
7260          << ArgumentExpr->getSourceRange()
7261          << TypeTagExpr->getSourceRange();
7262    }
7263    return;
7264  }
7265
7266  QualType RequiredType = TypeInfo.Type;
7267  if (IsPointerAttr)
7268    RequiredType = Context.getPointerType(RequiredType);
7269
7270  bool mismatch = false;
7271  if (!TypeInfo.LayoutCompatible) {
7272    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
7273
7274    // C++11 [basic.fundamental] p1:
7275    // Plain char, signed char, and unsigned char are three distinct types.
7276    //
7277    // But we treat plain `char' as equivalent to `signed char' or `unsigned
7278    // char' depending on the current char signedness mode.
7279    if (mismatch)
7280      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
7281                                           RequiredType->getPointeeType())) ||
7282          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
7283        mismatch = false;
7284  } else
7285    if (IsPointerAttr)
7286      mismatch = !isLayoutCompatible(Context,
7287                                     ArgumentType->getPointeeType(),
7288                                     RequiredType->getPointeeType());
7289    else
7290      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
7291
7292  if (mismatch)
7293    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
7294        << ArgumentType << ArgumentKind->getName()
7295        << TypeInfo.LayoutCompatible << RequiredType
7296        << ArgumentExpr->getSourceRange()
7297        << TypeTagExpr->getSourceRange();
7298}
7299