SemaChecking.cpp revision 4fe6441a558e471f2ad3c6bddf07c77332539f6b
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "clang/Basic/TargetBuiltins.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Basic/ConvertUTF.h"
36
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41/// getLocationOfStringLiteralByte - Return a source location that points to the
42/// specified byte of the specified string literal.
43///
44/// Strings are amazingly complex.  They can be formed from multiple tokens and
45/// can have escape sequences in them in addition to the usual trigraph and
46/// escaped newline business.  This routine handles this complexity.
47///
48SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
49                                                    unsigned ByteNo) const {
50  assert(!SL->isWide() && "This doesn't work for wide strings yet");
51
52  // Loop over all of the tokens in this string until we find the one that
53  // contains the byte we're looking for.
54  unsigned TokNo = 0;
55  while (1) {
56    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
57    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
58
59    // Get the spelling of the string so that we can get the data that makes up
60    // the string literal, not the identifier for the macro it is potentially
61    // expanded through.
62    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
63
64    // Re-lex the token to get its length and original spelling.
65    std::pair<FileID, unsigned> LocInfo =
66      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
67    bool Invalid = false;
68    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
69    if (Invalid)
70      return StrTokSpellingLoc;
71
72    const char *StrData = Buffer.data()+LocInfo.second;
73
74    // Create a langops struct and enable trigraphs.  This is sufficient for
75    // relexing tokens.
76    LangOptions LangOpts;
77    LangOpts.Trigraphs = true;
78
79    // Create a lexer starting at the beginning of this token.
80    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
81                   Buffer.end());
82    Token TheTok;
83    TheLexer.LexFromRawLexer(TheTok);
84
85    // Use the StringLiteralParser to compute the length of the string in bytes.
86    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
87    unsigned TokNumBytes = SLP.GetStringLength();
88
89    // If the byte is in this token, return the location of the byte.
90    if (ByteNo < TokNumBytes ||
91        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
92      unsigned Offset =
93        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
94                                                   /*Complain=*/false);
95
96      // Now that we know the offset of the token in the spelling, use the
97      // preprocessor to get the offset in the original source.
98      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
99    }
100
101    // Move to the next string token.
102    ++TokNo;
103    ByteNo -= TokNumBytes;
104  }
105}
106
107/// CheckablePrintfAttr - does a function call have a "printf" attribute
108/// and arguments that merit checking?
109bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
110  if (Format->getType() == "printf") return true;
111  if (Format->getType() == "printf0") {
112    // printf0 allows null "format" string; if so don't check format/args
113    unsigned format_idx = Format->getFormatIdx() - 1;
114    // Does the index refer to the implicit object argument?
115    if (isa<CXXMemberCallExpr>(TheCall)) {
116      if (format_idx == 0)
117        return false;
118      --format_idx;
119    }
120    if (format_idx < TheCall->getNumArgs()) {
121      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
122      if (!Format->isNullPointerConstant(Context,
123                                         Expr::NPC_ValueDependentIsNull))
124        return true;
125    }
126  }
127  return false;
128}
129
130ExprResult
131Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
132  ExprResult TheCallResult(Owned(TheCall));
133
134  switch (BuiltinID) {
135  case Builtin::BI__builtin___CFStringMakeConstantString:
136    assert(TheCall->getNumArgs() == 1 &&
137           "Wrong # arguments to builtin CFStringMakeConstantString");
138    if (CheckObjCString(TheCall->getArg(0)))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_stdarg_start:
142  case Builtin::BI__builtin_va_start:
143    if (SemaBuiltinVAStart(TheCall))
144      return ExprError();
145    break;
146  case Builtin::BI__builtin_isgreater:
147  case Builtin::BI__builtin_isgreaterequal:
148  case Builtin::BI__builtin_isless:
149  case Builtin::BI__builtin_islessequal:
150  case Builtin::BI__builtin_islessgreater:
151  case Builtin::BI__builtin_isunordered:
152    if (SemaBuiltinUnorderedCompare(TheCall))
153      return ExprError();
154    break;
155  case Builtin::BI__builtin_fpclassify:
156    if (SemaBuiltinFPClassification(TheCall, 6))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_isfinite:
160  case Builtin::BI__builtin_isinf:
161  case Builtin::BI__builtin_isinf_sign:
162  case Builtin::BI__builtin_isnan:
163  case Builtin::BI__builtin_isnormal:
164    if (SemaBuiltinFPClassification(TheCall, 1))
165      return ExprError();
166    break;
167  case Builtin::BI__builtin_return_address:
168  case Builtin::BI__builtin_frame_address: {
169    llvm::APSInt Result;
170    if (SemaBuiltinConstantArg(TheCall, 0, Result))
171      return ExprError();
172    break;
173  }
174  case Builtin::BI__builtin_eh_return_data_regno: {
175    llvm::APSInt Result;
176    if (SemaBuiltinConstantArg(TheCall, 0, Result))
177      return ExprError();
178    break;
179  }
180  case Builtin::BI__builtin_shufflevector:
181    return SemaBuiltinShuffleVector(TheCall);
182    // TheCall will be freed by the smart pointer here, but that's fine, since
183    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
184  case Builtin::BI__builtin_prefetch:
185    if (SemaBuiltinPrefetch(TheCall))
186      return ExprError();
187    break;
188  case Builtin::BI__builtin_object_size:
189    if (SemaBuiltinObjectSize(TheCall))
190      return ExprError();
191    break;
192  case Builtin::BI__builtin_longjmp:
193    if (SemaBuiltinLongjmp(TheCall))
194      return ExprError();
195    break;
196  case Builtin::BI__sync_fetch_and_add:
197  case Builtin::BI__sync_fetch_and_sub:
198  case Builtin::BI__sync_fetch_and_or:
199  case Builtin::BI__sync_fetch_and_and:
200  case Builtin::BI__sync_fetch_and_xor:
201  case Builtin::BI__sync_add_and_fetch:
202  case Builtin::BI__sync_sub_and_fetch:
203  case Builtin::BI__sync_and_and_fetch:
204  case Builtin::BI__sync_or_and_fetch:
205  case Builtin::BI__sync_xor_and_fetch:
206  case Builtin::BI__sync_val_compare_and_swap:
207  case Builtin::BI__sync_bool_compare_and_swap:
208  case Builtin::BI__sync_lock_test_and_set:
209  case Builtin::BI__sync_lock_release:
210    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
211  }
212
213  // Since the target specific builtins for each arch overlap, only check those
214  // of the arch we are compiling for.
215  if (BuiltinID >= Builtin::FirstTSBuiltin) {
216    switch (Context.Target.getTriple().getArch()) {
217      case llvm::Triple::arm:
218      case llvm::Triple::thumb:
219        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
220          return ExprError();
221        break;
222      case llvm::Triple::x86:
223      case llvm::Triple::x86_64:
224        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
225          return ExprError();
226        break;
227      default:
228        break;
229    }
230  }
231
232  return move(TheCallResult);
233}
234
235bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
236  switch (BuiltinID) {
237  case X86::BI__builtin_ia32_palignr128:
238  case X86::BI__builtin_ia32_palignr: {
239    llvm::APSInt Result;
240    if (SemaBuiltinConstantArg(TheCall, 2, Result))
241      return true;
242    break;
243  }
244  }
245  return false;
246}
247
248// Get the valid immediate range for the specified NEON type code.
249static unsigned RFT(unsigned t, bool shift = false) {
250  bool quad = t & 0x10;
251
252  switch (t & 0x7) {
253    case 0: // i8
254      return shift ? 7 : (8 << (int)quad) - 1;
255    case 1: // i16
256      return shift ? 15 : (4 << (int)quad) - 1;
257    case 2: // i32
258      return shift ? 31 : (2 << (int)quad) - 1;
259    case 3: // i64
260      return shift ? 63 : (1 << (int)quad) - 1;
261    case 4: // f32
262      assert(!shift && "cannot shift float types!");
263      return (2 << (int)quad) - 1;
264    case 5: // poly8
265      assert(!shift && "cannot shift polynomial types!");
266      return (8 << (int)quad) - 1;
267    case 6: // poly16
268      assert(!shift && "cannot shift polynomial types!");
269      return (4 << (int)quad) - 1;
270    case 7: // float16
271      assert(!shift && "cannot shift float types!");
272      return (4 << (int)quad) - 1;
273  }
274  return 0;
275}
276
277bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
278  llvm::APSInt Result;
279
280  unsigned mask = 0;
281  unsigned TV = 0;
282  switch (BuiltinID) {
283#define GET_NEON_OVERLOAD_CHECK
284#include "clang/Basic/arm_neon.inc"
285#undef GET_NEON_OVERLOAD_CHECK
286  }
287
288  // For NEON intrinsics which are overloaded on vector element type, validate
289  // the immediate which specifies which variant to emit.
290  if (mask) {
291    unsigned ArgNo = TheCall->getNumArgs()-1;
292    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
293      return true;
294
295    TV = Result.getLimitedValue(32);
296    if ((TV > 31) || (mask & (1 << TV)) == 0)
297      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
298        << TheCall->getArg(ArgNo)->getSourceRange();
299  }
300
301  // For NEON intrinsics which take an immediate value as part of the
302  // instruction, range check them here.
303  unsigned i = 0, l = 0, u = 0;
304  switch (BuiltinID) {
305  default: return false;
306  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
307  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
308  case ARM::BI__builtin_arm_vcvtr_f:
309  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
310#define GET_NEON_IMMEDIATE_CHECK
311#include "clang/Basic/arm_neon.inc"
312#undef GET_NEON_IMMEDIATE_CHECK
313  };
314
315  // Check that the immediate argument is actually a constant.
316  if (SemaBuiltinConstantArg(TheCall, i, Result))
317    return true;
318
319  // Range check against the upper/lower values for this isntruction.
320  unsigned Val = Result.getZExtValue();
321  if (Val < l || Val > (u + l))
322    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
323      << l << u+l << TheCall->getArg(i)->getSourceRange();
324
325  // FIXME: VFP Intrinsics should error if VFP not present.
326  return false;
327}
328
329/// CheckFunctionCall - Check a direct function call for various correctness
330/// and safety properties not strictly enforced by the C type system.
331bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
332  // Get the IdentifierInfo* for the called function.
333  IdentifierInfo *FnInfo = FDecl->getIdentifier();
334
335  // None of the checks below are needed for functions that don't have
336  // simple names (e.g., C++ conversion functions).
337  if (!FnInfo)
338    return false;
339
340  // FIXME: This mechanism should be abstracted to be less fragile and
341  // more efficient. For example, just map function ids to custom
342  // handlers.
343
344  // Printf checking.
345  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
346    const bool b = Format->getType() == "scanf";
347    if (b || CheckablePrintfAttr(Format, TheCall)) {
348      bool HasVAListArg = Format->getFirstArg() == 0;
349      CheckPrintfScanfArguments(TheCall, HasVAListArg,
350                                Format->getFormatIdx() - 1,
351                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
352                                !b);
353    }
354  }
355
356  specific_attr_iterator<NonNullAttr>
357    i = FDecl->specific_attr_begin<NonNullAttr>(),
358    e = FDecl->specific_attr_end<NonNullAttr>();
359
360  for (; i != e; ++i)
361    CheckNonNullArguments(*i, TheCall);
362
363  return false;
364}
365
366bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
367  // Printf checking.
368  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
369  if (!Format)
370    return false;
371
372  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
373  if (!V)
374    return false;
375
376  QualType Ty = V->getType();
377  if (!Ty->isBlockPointerType())
378    return false;
379
380  const bool b = Format->getType() == "scanf";
381  if (!b && !CheckablePrintfAttr(Format, TheCall))
382    return false;
383
384  bool HasVAListArg = Format->getFirstArg() == 0;
385  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
386                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
387
388  return false;
389}
390
391/// SemaBuiltinAtomicOverloaded - We have a call to a function like
392/// __sync_fetch_and_add, which is an overloaded function based on the pointer
393/// type of its first argument.  The main ActOnCallExpr routines have already
394/// promoted the types of arguments because all of these calls are prototyped as
395/// void(...).
396///
397/// This function goes through and does final semantic checking for these
398/// builtins,
399ExprResult
400Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
401  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
402  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
403  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
404
405  // Ensure that we have at least one argument to do type inference from.
406  if (TheCall->getNumArgs() < 1) {
407    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
408      << 0 << 1 << TheCall->getNumArgs()
409      << TheCall->getCallee()->getSourceRange();
410    return ExprError();
411  }
412
413  // Inspect the first argument of the atomic builtin.  This should always be
414  // a pointer type, whose element is an integral scalar or pointer type.
415  // Because it is a pointer type, we don't have to worry about any implicit
416  // casts here.
417  // FIXME: We don't allow floating point scalars as input.
418  Expr *FirstArg = TheCall->getArg(0);
419  if (!FirstArg->getType()->isPointerType()) {
420    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
421      << FirstArg->getType() << FirstArg->getSourceRange();
422    return ExprError();
423  }
424
425  QualType ValType =
426    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
427  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
428      !ValType->isBlockPointerType()) {
429    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
430      << FirstArg->getType() << FirstArg->getSourceRange();
431    return ExprError();
432  }
433
434  // The majority of builtins return a value, but a few have special return
435  // types, so allow them to override appropriately below.
436  QualType ResultType = ValType;
437
438  // We need to figure out which concrete builtin this maps onto.  For example,
439  // __sync_fetch_and_add with a 2 byte object turns into
440  // __sync_fetch_and_add_2.
441#define BUILTIN_ROW(x) \
442  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
443    Builtin::BI##x##_8, Builtin::BI##x##_16 }
444
445  static const unsigned BuiltinIndices[][5] = {
446    BUILTIN_ROW(__sync_fetch_and_add),
447    BUILTIN_ROW(__sync_fetch_and_sub),
448    BUILTIN_ROW(__sync_fetch_and_or),
449    BUILTIN_ROW(__sync_fetch_and_and),
450    BUILTIN_ROW(__sync_fetch_and_xor),
451
452    BUILTIN_ROW(__sync_add_and_fetch),
453    BUILTIN_ROW(__sync_sub_and_fetch),
454    BUILTIN_ROW(__sync_and_and_fetch),
455    BUILTIN_ROW(__sync_or_and_fetch),
456    BUILTIN_ROW(__sync_xor_and_fetch),
457
458    BUILTIN_ROW(__sync_val_compare_and_swap),
459    BUILTIN_ROW(__sync_bool_compare_and_swap),
460    BUILTIN_ROW(__sync_lock_test_and_set),
461    BUILTIN_ROW(__sync_lock_release)
462  };
463#undef BUILTIN_ROW
464
465  // Determine the index of the size.
466  unsigned SizeIndex;
467  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
468  case 1: SizeIndex = 0; break;
469  case 2: SizeIndex = 1; break;
470  case 4: SizeIndex = 2; break;
471  case 8: SizeIndex = 3; break;
472  case 16: SizeIndex = 4; break;
473  default:
474    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
475      << FirstArg->getType() << FirstArg->getSourceRange();
476    return ExprError();
477  }
478
479  // Each of these builtins has one pointer argument, followed by some number of
480  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
481  // that we ignore.  Find out which row of BuiltinIndices to read from as well
482  // as the number of fixed args.
483  unsigned BuiltinID = FDecl->getBuiltinID();
484  unsigned BuiltinIndex, NumFixed = 1;
485  switch (BuiltinID) {
486  default: assert(0 && "Unknown overloaded atomic builtin!");
487  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
488  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
489  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
490  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
491  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
492
493  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
494  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
495  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
496  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
497  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
498
499  case Builtin::BI__sync_val_compare_and_swap:
500    BuiltinIndex = 10;
501    NumFixed = 2;
502    break;
503  case Builtin::BI__sync_bool_compare_and_swap:
504    BuiltinIndex = 11;
505    NumFixed = 2;
506    ResultType = Context.BoolTy;
507    break;
508  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
509  case Builtin::BI__sync_lock_release:
510    BuiltinIndex = 13;
511    NumFixed = 0;
512    ResultType = Context.VoidTy;
513    break;
514  }
515
516  // Now that we know how many fixed arguments we expect, first check that we
517  // have at least that many.
518  if (TheCall->getNumArgs() < 1+NumFixed) {
519    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
520      << 0 << 1+NumFixed << TheCall->getNumArgs()
521      << TheCall->getCallee()->getSourceRange();
522    return ExprError();
523  }
524
525  // Get the decl for the concrete builtin from this, we can tell what the
526  // concrete integer type we should convert to is.
527  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
528  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
529  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
530  FunctionDecl *NewBuiltinDecl =
531    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
532                                           TUScope, false, DRE->getLocStart()));
533
534  // The first argument --- the pointer --- has a fixed type; we
535  // deduce the types of the rest of the arguments accordingly.  Walk
536  // the remaining arguments, converting them to the deduced value type.
537  for (unsigned i = 0; i != NumFixed; ++i) {
538    Expr *Arg = TheCall->getArg(i+1);
539
540    // If the argument is an implicit cast, then there was a promotion due to
541    // "...", just remove it now.
542    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
543      Arg = ICE->getSubExpr();
544      ICE->setSubExpr(0);
545      TheCall->setArg(i+1, Arg);
546    }
547
548    // GCC does an implicit conversion to the pointer or integer ValType.  This
549    // can fail in some cases (1i -> int**), check for this error case now.
550    CastKind Kind = CK_Unknown;
551    CXXCastPath BasePath;
552    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
553      return ExprError();
554
555    // Okay, we have something that *can* be converted to the right type.  Check
556    // to see if there is a potentially weird extension going on here.  This can
557    // happen when you do an atomic operation on something like an char* and
558    // pass in 42.  The 42 gets converted to char.  This is even more strange
559    // for things like 45.123 -> char, etc.
560    // FIXME: Do this check.
561    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
562    TheCall->setArg(i+1, Arg);
563  }
564
565  // Switch the DeclRefExpr to refer to the new decl.
566  DRE->setDecl(NewBuiltinDecl);
567  DRE->setType(NewBuiltinDecl->getType());
568
569  // Set the callee in the CallExpr.
570  // FIXME: This leaks the original parens and implicit casts.
571  Expr *PromotedCall = DRE;
572  UsualUnaryConversions(PromotedCall);
573  TheCall->setCallee(PromotedCall);
574
575  // Change the result type of the call to match the original value type. This
576  // is arbitrary, but the codegen for these builtins ins design to handle it
577  // gracefully.
578  TheCall->setType(ResultType);
579
580  return move(TheCallResult);
581}
582
583
584/// CheckObjCString - Checks that the argument to the builtin
585/// CFString constructor is correct
586/// Note: It might also make sense to do the UTF-16 conversion here (would
587/// simplify the backend).
588bool Sema::CheckObjCString(Expr *Arg) {
589  Arg = Arg->IgnoreParenCasts();
590  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
591
592  if (!Literal || Literal->isWide()) {
593    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
594      << Arg->getSourceRange();
595    return true;
596  }
597
598  size_t NulPos = Literal->getString().find('\0');
599  if (NulPos != llvm::StringRef::npos) {
600    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
601         diag::warn_cfstring_literal_contains_nul_character)
602      << Arg->getSourceRange();
603  }
604  if (Literal->containsNonAsciiOrNull()) {
605    llvm::StringRef String = Literal->getString();
606    unsigned NumBytes = String.size();
607    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
608    const UTF8 *FromPtr = (UTF8 *)String.data();
609    UTF16 *ToPtr = &ToBuf[0];
610
611    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
612                                                 &ToPtr, ToPtr + NumBytes,
613                                                 strictConversion);
614    // Check for conversion failure.
615    if (Result != conversionOK)
616      Diag(Arg->getLocStart(),
617           diag::warn_cfstring_truncated) << Arg->getSourceRange();
618  }
619  return false;
620}
621
622/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
623/// Emit an error and return true on failure, return false on success.
624bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
625  Expr *Fn = TheCall->getCallee();
626  if (TheCall->getNumArgs() > 2) {
627    Diag(TheCall->getArg(2)->getLocStart(),
628         diag::err_typecheck_call_too_many_args)
629      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
630      << Fn->getSourceRange()
631      << SourceRange(TheCall->getArg(2)->getLocStart(),
632                     (*(TheCall->arg_end()-1))->getLocEnd());
633    return true;
634  }
635
636  if (TheCall->getNumArgs() < 2) {
637    return Diag(TheCall->getLocEnd(),
638      diag::err_typecheck_call_too_few_args_at_least)
639      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
640  }
641
642  // Determine whether the current function is variadic or not.
643  BlockScopeInfo *CurBlock = getCurBlock();
644  bool isVariadic;
645  if (CurBlock)
646    isVariadic = CurBlock->TheDecl->isVariadic();
647  else if (FunctionDecl *FD = getCurFunctionDecl())
648    isVariadic = FD->isVariadic();
649  else
650    isVariadic = getCurMethodDecl()->isVariadic();
651
652  if (!isVariadic) {
653    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
654    return true;
655  }
656
657  // Verify that the second argument to the builtin is the last argument of the
658  // current function or method.
659  bool SecondArgIsLastNamedArgument = false;
660  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
661
662  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
663    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
664      // FIXME: This isn't correct for methods (results in bogus warning).
665      // Get the last formal in the current function.
666      const ParmVarDecl *LastArg;
667      if (CurBlock)
668        LastArg = *(CurBlock->TheDecl->param_end()-1);
669      else if (FunctionDecl *FD = getCurFunctionDecl())
670        LastArg = *(FD->param_end()-1);
671      else
672        LastArg = *(getCurMethodDecl()->param_end()-1);
673      SecondArgIsLastNamedArgument = PV == LastArg;
674    }
675  }
676
677  if (!SecondArgIsLastNamedArgument)
678    Diag(TheCall->getArg(1)->getLocStart(),
679         diag::warn_second_parameter_of_va_start_not_last_named_argument);
680  return false;
681}
682
683/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
684/// friends.  This is declared to take (...), so we have to check everything.
685bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
686  if (TheCall->getNumArgs() < 2)
687    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
688      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
689  if (TheCall->getNumArgs() > 2)
690    return Diag(TheCall->getArg(2)->getLocStart(),
691                diag::err_typecheck_call_too_many_args)
692      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
693      << SourceRange(TheCall->getArg(2)->getLocStart(),
694                     (*(TheCall->arg_end()-1))->getLocEnd());
695
696  Expr *OrigArg0 = TheCall->getArg(0);
697  Expr *OrigArg1 = TheCall->getArg(1);
698
699  // Do standard promotions between the two arguments, returning their common
700  // type.
701  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
702
703  // Make sure any conversions are pushed back into the call; this is
704  // type safe since unordered compare builtins are declared as "_Bool
705  // foo(...)".
706  TheCall->setArg(0, OrigArg0);
707  TheCall->setArg(1, OrigArg1);
708
709  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
710    return false;
711
712  // If the common type isn't a real floating type, then the arguments were
713  // invalid for this operation.
714  if (!Res->isRealFloatingType())
715    return Diag(OrigArg0->getLocStart(),
716                diag::err_typecheck_call_invalid_ordered_compare)
717      << OrigArg0->getType() << OrigArg1->getType()
718      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
719
720  return false;
721}
722
723/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
724/// __builtin_isnan and friends.  This is declared to take (...), so we have
725/// to check everything. We expect the last argument to be a floating point
726/// value.
727bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
728  if (TheCall->getNumArgs() < NumArgs)
729    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
730      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
731  if (TheCall->getNumArgs() > NumArgs)
732    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
733                diag::err_typecheck_call_too_many_args)
734      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
735      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
736                     (*(TheCall->arg_end()-1))->getLocEnd());
737
738  Expr *OrigArg = TheCall->getArg(NumArgs-1);
739
740  if (OrigArg->isTypeDependent())
741    return false;
742
743  // This operation requires a non-_Complex floating-point number.
744  if (!OrigArg->getType()->isRealFloatingType())
745    return Diag(OrigArg->getLocStart(),
746                diag::err_typecheck_call_invalid_unary_fp)
747      << OrigArg->getType() << OrigArg->getSourceRange();
748
749  // If this is an implicit conversion from float -> double, remove it.
750  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
751    Expr *CastArg = Cast->getSubExpr();
752    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
753      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
754             "promotion from float to double is the only expected cast here");
755      Cast->setSubExpr(0);
756      TheCall->setArg(NumArgs-1, CastArg);
757      OrigArg = CastArg;
758    }
759  }
760
761  return false;
762}
763
764/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
765// This is declared to take (...), so we have to check everything.
766ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
767  if (TheCall->getNumArgs() < 2)
768    return ExprError(Diag(TheCall->getLocEnd(),
769                          diag::err_typecheck_call_too_few_args_at_least)
770      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
771      << TheCall->getSourceRange());
772
773  // Determine which of the following types of shufflevector we're checking:
774  // 1) unary, vector mask: (lhs, mask)
775  // 2) binary, vector mask: (lhs, rhs, mask)
776  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
777  QualType resType = TheCall->getArg(0)->getType();
778  unsigned numElements = 0;
779
780  if (!TheCall->getArg(0)->isTypeDependent() &&
781      !TheCall->getArg(1)->isTypeDependent()) {
782    QualType LHSType = TheCall->getArg(0)->getType();
783    QualType RHSType = TheCall->getArg(1)->getType();
784
785    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
786      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
787        << SourceRange(TheCall->getArg(0)->getLocStart(),
788                       TheCall->getArg(1)->getLocEnd());
789      return ExprError();
790    }
791
792    numElements = LHSType->getAs<VectorType>()->getNumElements();
793    unsigned numResElements = TheCall->getNumArgs() - 2;
794
795    // Check to see if we have a call with 2 vector arguments, the unary shuffle
796    // with mask.  If so, verify that RHS is an integer vector type with the
797    // same number of elts as lhs.
798    if (TheCall->getNumArgs() == 2) {
799      if (!RHSType->hasIntegerRepresentation() ||
800          RHSType->getAs<VectorType>()->getNumElements() != numElements)
801        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
802          << SourceRange(TheCall->getArg(1)->getLocStart(),
803                         TheCall->getArg(1)->getLocEnd());
804      numResElements = numElements;
805    }
806    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
807      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
808        << SourceRange(TheCall->getArg(0)->getLocStart(),
809                       TheCall->getArg(1)->getLocEnd());
810      return ExprError();
811    } else if (numElements != numResElements) {
812      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
813      resType = Context.getVectorType(eltType, numResElements,
814                                      VectorType::NotAltiVec);
815    }
816  }
817
818  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
819    if (TheCall->getArg(i)->isTypeDependent() ||
820        TheCall->getArg(i)->isValueDependent())
821      continue;
822
823    llvm::APSInt Result(32);
824    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
825      return ExprError(Diag(TheCall->getLocStart(),
826                  diag::err_shufflevector_nonconstant_argument)
827                << TheCall->getArg(i)->getSourceRange());
828
829    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
830      return ExprError(Diag(TheCall->getLocStart(),
831                  diag::err_shufflevector_argument_too_large)
832               << TheCall->getArg(i)->getSourceRange());
833  }
834
835  llvm::SmallVector<Expr*, 32> exprs;
836
837  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
838    exprs.push_back(TheCall->getArg(i));
839    TheCall->setArg(i, 0);
840  }
841
842  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
843                                            exprs.size(), resType,
844                                            TheCall->getCallee()->getLocStart(),
845                                            TheCall->getRParenLoc()));
846}
847
848/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
849// This is declared to take (const void*, ...) and can take two
850// optional constant int args.
851bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
852  unsigned NumArgs = TheCall->getNumArgs();
853
854  if (NumArgs > 3)
855    return Diag(TheCall->getLocEnd(),
856             diag::err_typecheck_call_too_many_args_at_most)
857             << 0 /*function call*/ << 3 << NumArgs
858             << TheCall->getSourceRange();
859
860  // Argument 0 is checked for us and the remaining arguments must be
861  // constant integers.
862  for (unsigned i = 1; i != NumArgs; ++i) {
863    Expr *Arg = TheCall->getArg(i);
864
865    llvm::APSInt Result;
866    if (SemaBuiltinConstantArg(TheCall, i, Result))
867      return true;
868
869    // FIXME: gcc issues a warning and rewrites these to 0. These
870    // seems especially odd for the third argument since the default
871    // is 3.
872    if (i == 1) {
873      if (Result.getLimitedValue() > 1)
874        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
875             << "0" << "1" << Arg->getSourceRange();
876    } else {
877      if (Result.getLimitedValue() > 3)
878        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
879            << "0" << "3" << Arg->getSourceRange();
880    }
881  }
882
883  return false;
884}
885
886/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
887/// TheCall is a constant expression.
888bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
889                                  llvm::APSInt &Result) {
890  Expr *Arg = TheCall->getArg(ArgNum);
891  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
892  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
893
894  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
895
896  if (!Arg->isIntegerConstantExpr(Result, Context))
897    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
898                << FDecl->getDeclName() <<  Arg->getSourceRange();
899
900  return false;
901}
902
903/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
904/// int type). This simply type checks that type is one of the defined
905/// constants (0-3).
906// For compatability check 0-3, llvm only handles 0 and 2.
907bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
908  llvm::APSInt Result;
909
910  // Check constant-ness first.
911  if (SemaBuiltinConstantArg(TheCall, 1, Result))
912    return true;
913
914  Expr *Arg = TheCall->getArg(1);
915  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
916    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
917             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
918  }
919
920  return false;
921}
922
923/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
924/// This checks that val is a constant 1.
925bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
926  Expr *Arg = TheCall->getArg(1);
927  llvm::APSInt Result;
928
929  // TODO: This is less than ideal. Overload this to take a value.
930  if (SemaBuiltinConstantArg(TheCall, 1, Result))
931    return true;
932
933  if (Result != 1)
934    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
935             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
936
937  return false;
938}
939
940// Handle i > 1 ? "x" : "y", recursivelly
941bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
942                                  bool HasVAListArg,
943                                  unsigned format_idx, unsigned firstDataArg,
944                                  bool isPrintf) {
945 tryAgain:
946  if (E->isTypeDependent() || E->isValueDependent())
947    return false;
948
949  switch (E->getStmtClass()) {
950  case Stmt::ConditionalOperatorClass: {
951    const ConditionalOperator *C = cast<ConditionalOperator>(E);
952    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
953                                  format_idx, firstDataArg, isPrintf)
954        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
955                                  format_idx, firstDataArg, isPrintf);
956  }
957
958  case Stmt::ImplicitCastExprClass: {
959    E = cast<ImplicitCastExpr>(E)->getSubExpr();
960    goto tryAgain;
961  }
962
963  case Stmt::ParenExprClass: {
964    E = cast<ParenExpr>(E)->getSubExpr();
965    goto tryAgain;
966  }
967
968  case Stmt::DeclRefExprClass: {
969    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
970
971    // As an exception, do not flag errors for variables binding to
972    // const string literals.
973    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
974      bool isConstant = false;
975      QualType T = DR->getType();
976
977      if (const ArrayType *AT = Context.getAsArrayType(T)) {
978        isConstant = AT->getElementType().isConstant(Context);
979      } else if (const PointerType *PT = T->getAs<PointerType>()) {
980        isConstant = T.isConstant(Context) &&
981                     PT->getPointeeType().isConstant(Context);
982      }
983
984      if (isConstant) {
985        if (const Expr *Init = VD->getAnyInitializer())
986          return SemaCheckStringLiteral(Init, TheCall,
987                                        HasVAListArg, format_idx, firstDataArg,
988                                        isPrintf);
989      }
990
991      // For vprintf* functions (i.e., HasVAListArg==true), we add a
992      // special check to see if the format string is a function parameter
993      // of the function calling the printf function.  If the function
994      // has an attribute indicating it is a printf-like function, then we
995      // should suppress warnings concerning non-literals being used in a call
996      // to a vprintf function.  For example:
997      //
998      // void
999      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1000      //      va_list ap;
1001      //      va_start(ap, fmt);
1002      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1003      //      ...
1004      //
1005      //
1006      //  FIXME: We don't have full attribute support yet, so just check to see
1007      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1008      //    add proper support for checking the attribute later.
1009      if (HasVAListArg)
1010        if (isa<ParmVarDecl>(VD))
1011          return true;
1012    }
1013
1014    return false;
1015  }
1016
1017  case Stmt::CallExprClass: {
1018    const CallExpr *CE = cast<CallExpr>(E);
1019    if (const ImplicitCastExpr *ICE
1020          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1021      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1022        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1023          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1024            unsigned ArgIndex = FA->getFormatIdx();
1025            const Expr *Arg = CE->getArg(ArgIndex - 1);
1026
1027            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1028                                          format_idx, firstDataArg, isPrintf);
1029          }
1030        }
1031      }
1032    }
1033
1034    return false;
1035  }
1036  case Stmt::ObjCStringLiteralClass:
1037  case Stmt::StringLiteralClass: {
1038    const StringLiteral *StrE = NULL;
1039
1040    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1041      StrE = ObjCFExpr->getString();
1042    else
1043      StrE = cast<StringLiteral>(E);
1044
1045    if (StrE) {
1046      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1047                        firstDataArg, isPrintf);
1048      return true;
1049    }
1050
1051    return false;
1052  }
1053
1054  default:
1055    return false;
1056  }
1057}
1058
1059void
1060Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1061                            const CallExpr *TheCall) {
1062  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1063                                  e = NonNull->args_end();
1064       i != e; ++i) {
1065    const Expr *ArgExpr = TheCall->getArg(*i);
1066    if (ArgExpr->isNullPointerConstant(Context,
1067                                       Expr::NPC_ValueDependentIsNotNull))
1068      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1069        << ArgExpr->getSourceRange();
1070  }
1071}
1072
1073/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1074/// functions) for correct use of format strings.
1075void
1076Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1077                                unsigned format_idx, unsigned firstDataArg,
1078                                bool isPrintf) {
1079
1080  const Expr *Fn = TheCall->getCallee();
1081
1082  // The way the format attribute works in GCC, the implicit this argument
1083  // of member functions is counted. However, it doesn't appear in our own
1084  // lists, so decrement format_idx in that case.
1085  if (isa<CXXMemberCallExpr>(TheCall)) {
1086    // Catch a format attribute mistakenly referring to the object argument.
1087    if (format_idx == 0)
1088      return;
1089    --format_idx;
1090    if(firstDataArg != 0)
1091      --firstDataArg;
1092  }
1093
1094  // CHECK: printf/scanf-like function is called with no format string.
1095  if (format_idx >= TheCall->getNumArgs()) {
1096    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1097      << Fn->getSourceRange();
1098    return;
1099  }
1100
1101  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1102
1103  // CHECK: format string is not a string literal.
1104  //
1105  // Dynamically generated format strings are difficult to
1106  // automatically vet at compile time.  Requiring that format strings
1107  // are string literals: (1) permits the checking of format strings by
1108  // the compiler and thereby (2) can practically remove the source of
1109  // many format string exploits.
1110
1111  // Format string can be either ObjC string (e.g. @"%d") or
1112  // C string (e.g. "%d")
1113  // ObjC string uses the same format specifiers as C string, so we can use
1114  // the same format string checking logic for both ObjC and C strings.
1115  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1116                             firstDataArg, isPrintf))
1117    return;  // Literal format string found, check done!
1118
1119  // If there are no arguments specified, warn with -Wformat-security, otherwise
1120  // warn only with -Wformat-nonliteral.
1121  if (TheCall->getNumArgs() == format_idx+1)
1122    Diag(TheCall->getArg(format_idx)->getLocStart(),
1123         diag::warn_format_nonliteral_noargs)
1124      << OrigFormatExpr->getSourceRange();
1125  else
1126    Diag(TheCall->getArg(format_idx)->getLocStart(),
1127         diag::warn_format_nonliteral)
1128           << OrigFormatExpr->getSourceRange();
1129}
1130
1131namespace {
1132class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1133protected:
1134  Sema &S;
1135  const StringLiteral *FExpr;
1136  const Expr *OrigFormatExpr;
1137  const unsigned FirstDataArg;
1138  const unsigned NumDataArgs;
1139  const bool IsObjCLiteral;
1140  const char *Beg; // Start of format string.
1141  const bool HasVAListArg;
1142  const CallExpr *TheCall;
1143  unsigned FormatIdx;
1144  llvm::BitVector CoveredArgs;
1145  bool usesPositionalArgs;
1146  bool atFirstArg;
1147public:
1148  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1149                     const Expr *origFormatExpr, unsigned firstDataArg,
1150                     unsigned numDataArgs, bool isObjCLiteral,
1151                     const char *beg, bool hasVAListArg,
1152                     const CallExpr *theCall, unsigned formatIdx)
1153    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1154      FirstDataArg(firstDataArg),
1155      NumDataArgs(numDataArgs),
1156      IsObjCLiteral(isObjCLiteral), Beg(beg),
1157      HasVAListArg(hasVAListArg),
1158      TheCall(theCall), FormatIdx(formatIdx),
1159      usesPositionalArgs(false), atFirstArg(true) {
1160        CoveredArgs.resize(numDataArgs);
1161        CoveredArgs.reset();
1162      }
1163
1164  void DoneProcessing();
1165
1166  void HandleIncompleteSpecifier(const char *startSpecifier,
1167                                 unsigned specifierLen);
1168
1169  virtual void HandleInvalidPosition(const char *startSpecifier,
1170                                     unsigned specifierLen,
1171                                     analyze_format_string::PositionContext p);
1172
1173  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1174
1175  void HandleNullChar(const char *nullCharacter);
1176
1177protected:
1178  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1179                                        const char *startSpec,
1180                                        unsigned specifierLen,
1181                                        const char *csStart, unsigned csLen);
1182
1183  SourceRange getFormatStringRange();
1184  CharSourceRange getSpecifierRange(const char *startSpecifier,
1185                                    unsigned specifierLen);
1186  SourceLocation getLocationOfByte(const char *x);
1187
1188  const Expr *getDataArg(unsigned i) const;
1189
1190  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1191                    const analyze_format_string::ConversionSpecifier &CS,
1192                    const char *startSpecifier, unsigned specifierLen,
1193                    unsigned argIndex);
1194};
1195}
1196
1197SourceRange CheckFormatHandler::getFormatStringRange() {
1198  return OrigFormatExpr->getSourceRange();
1199}
1200
1201CharSourceRange CheckFormatHandler::
1202getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1203  SourceLocation Start = getLocationOfByte(startSpecifier);
1204  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1205
1206  // Advance the end SourceLocation by one due to half-open ranges.
1207  End = End.getFileLocWithOffset(1);
1208
1209  return CharSourceRange::getCharRange(Start, End);
1210}
1211
1212SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1213  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1214}
1215
1216void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1217                                                   unsigned specifierLen){
1218  SourceLocation Loc = getLocationOfByte(startSpecifier);
1219  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1220    << getSpecifierRange(startSpecifier, specifierLen);
1221}
1222
1223void
1224CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1225                                     analyze_format_string::PositionContext p) {
1226  SourceLocation Loc = getLocationOfByte(startPos);
1227  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1228    << (unsigned) p << getSpecifierRange(startPos, posLen);
1229}
1230
1231void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1232                                            unsigned posLen) {
1233  SourceLocation Loc = getLocationOfByte(startPos);
1234  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1235    << getSpecifierRange(startPos, posLen);
1236}
1237
1238void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1239  // The presence of a null character is likely an error.
1240  S.Diag(getLocationOfByte(nullCharacter),
1241         diag::warn_printf_format_string_contains_null_char)
1242    << getFormatStringRange();
1243}
1244
1245const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1246  return TheCall->getArg(FirstDataArg + i);
1247}
1248
1249void CheckFormatHandler::DoneProcessing() {
1250    // Does the number of data arguments exceed the number of
1251    // format conversions in the format string?
1252  if (!HasVAListArg) {
1253      // Find any arguments that weren't covered.
1254    CoveredArgs.flip();
1255    signed notCoveredArg = CoveredArgs.find_first();
1256    if (notCoveredArg >= 0) {
1257      assert((unsigned)notCoveredArg < NumDataArgs);
1258      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1259             diag::warn_printf_data_arg_not_used)
1260      << getFormatStringRange();
1261    }
1262  }
1263}
1264
1265bool
1266CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1267                                                     SourceLocation Loc,
1268                                                     const char *startSpec,
1269                                                     unsigned specifierLen,
1270                                                     const char *csStart,
1271                                                     unsigned csLen) {
1272
1273  bool keepGoing = true;
1274  if (argIndex < NumDataArgs) {
1275    // Consider the argument coverered, even though the specifier doesn't
1276    // make sense.
1277    CoveredArgs.set(argIndex);
1278  }
1279  else {
1280    // If argIndex exceeds the number of data arguments we
1281    // don't issue a warning because that is just a cascade of warnings (and
1282    // they may have intended '%%' anyway). We don't want to continue processing
1283    // the format string after this point, however, as we will like just get
1284    // gibberish when trying to match arguments.
1285    keepGoing = false;
1286  }
1287
1288  S.Diag(Loc, diag::warn_format_invalid_conversion)
1289    << llvm::StringRef(csStart, csLen)
1290    << getSpecifierRange(startSpec, specifierLen);
1291
1292  return keepGoing;
1293}
1294
1295bool
1296CheckFormatHandler::CheckNumArgs(
1297  const analyze_format_string::FormatSpecifier &FS,
1298  const analyze_format_string::ConversionSpecifier &CS,
1299  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1300
1301  if (argIndex >= NumDataArgs) {
1302    if (FS.usesPositionalArg())  {
1303      S.Diag(getLocationOfByte(CS.getStart()),
1304             diag::warn_printf_positional_arg_exceeds_data_args)
1305      << (argIndex+1) << NumDataArgs
1306      << getSpecifierRange(startSpecifier, specifierLen);
1307    }
1308    else {
1309      S.Diag(getLocationOfByte(CS.getStart()),
1310             diag::warn_printf_insufficient_data_args)
1311      << getSpecifierRange(startSpecifier, specifierLen);
1312    }
1313
1314    return false;
1315  }
1316  return true;
1317}
1318
1319//===--- CHECK: Printf format string checking ------------------------------===//
1320
1321namespace {
1322class CheckPrintfHandler : public CheckFormatHandler {
1323public:
1324  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1325                     const Expr *origFormatExpr, unsigned firstDataArg,
1326                     unsigned numDataArgs, bool isObjCLiteral,
1327                     const char *beg, bool hasVAListArg,
1328                     const CallExpr *theCall, unsigned formatIdx)
1329  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1330                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1331                       theCall, formatIdx) {}
1332
1333
1334  bool HandleInvalidPrintfConversionSpecifier(
1335                                      const analyze_printf::PrintfSpecifier &FS,
1336                                      const char *startSpecifier,
1337                                      unsigned specifierLen);
1338
1339  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1340                             const char *startSpecifier,
1341                             unsigned specifierLen);
1342
1343  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1344                    const char *startSpecifier, unsigned specifierLen);
1345  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1346                           const analyze_printf::OptionalAmount &Amt,
1347                           unsigned type,
1348                           const char *startSpecifier, unsigned specifierLen);
1349  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1350                  const analyze_printf::OptionalFlag &flag,
1351                  const char *startSpecifier, unsigned specifierLen);
1352  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1353                         const analyze_printf::OptionalFlag &ignoredFlag,
1354                         const analyze_printf::OptionalFlag &flag,
1355                         const char *startSpecifier, unsigned specifierLen);
1356};
1357}
1358
1359bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1360                                      const analyze_printf::PrintfSpecifier &FS,
1361                                      const char *startSpecifier,
1362                                      unsigned specifierLen) {
1363  const analyze_printf::PrintfConversionSpecifier &CS =
1364    FS.getConversionSpecifier();
1365
1366  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1367                                          getLocationOfByte(CS.getStart()),
1368                                          startSpecifier, specifierLen,
1369                                          CS.getStart(), CS.getLength());
1370}
1371
1372bool CheckPrintfHandler::HandleAmount(
1373                               const analyze_format_string::OptionalAmount &Amt,
1374                               unsigned k, const char *startSpecifier,
1375                               unsigned specifierLen) {
1376
1377  if (Amt.hasDataArgument()) {
1378    if (!HasVAListArg) {
1379      unsigned argIndex = Amt.getArgIndex();
1380      if (argIndex >= NumDataArgs) {
1381        S.Diag(getLocationOfByte(Amt.getStart()),
1382               diag::warn_printf_asterisk_missing_arg)
1383          << k << getSpecifierRange(startSpecifier, specifierLen);
1384        // Don't do any more checking.  We will just emit
1385        // spurious errors.
1386        return false;
1387      }
1388
1389      // Type check the data argument.  It should be an 'int'.
1390      // Although not in conformance with C99, we also allow the argument to be
1391      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1392      // doesn't emit a warning for that case.
1393      CoveredArgs.set(argIndex);
1394      const Expr *Arg = getDataArg(argIndex);
1395      QualType T = Arg->getType();
1396
1397      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1398      assert(ATR.isValid());
1399
1400      if (!ATR.matchesType(S.Context, T)) {
1401        S.Diag(getLocationOfByte(Amt.getStart()),
1402               diag::warn_printf_asterisk_wrong_type)
1403          << k
1404          << ATR.getRepresentativeType(S.Context) << T
1405          << getSpecifierRange(startSpecifier, specifierLen)
1406          << Arg->getSourceRange();
1407        // Don't do any more checking.  We will just emit
1408        // spurious errors.
1409        return false;
1410      }
1411    }
1412  }
1413  return true;
1414}
1415
1416void CheckPrintfHandler::HandleInvalidAmount(
1417                                      const analyze_printf::PrintfSpecifier &FS,
1418                                      const analyze_printf::OptionalAmount &Amt,
1419                                      unsigned type,
1420                                      const char *startSpecifier,
1421                                      unsigned specifierLen) {
1422  const analyze_printf::PrintfConversionSpecifier &CS =
1423    FS.getConversionSpecifier();
1424  switch (Amt.getHowSpecified()) {
1425  case analyze_printf::OptionalAmount::Constant:
1426    S.Diag(getLocationOfByte(Amt.getStart()),
1427        diag::warn_printf_nonsensical_optional_amount)
1428      << type
1429      << CS.toString()
1430      << getSpecifierRange(startSpecifier, specifierLen)
1431      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1432          Amt.getConstantLength()));
1433    break;
1434
1435  default:
1436    S.Diag(getLocationOfByte(Amt.getStart()),
1437        diag::warn_printf_nonsensical_optional_amount)
1438      << type
1439      << CS.toString()
1440      << getSpecifierRange(startSpecifier, specifierLen);
1441    break;
1442  }
1443}
1444
1445void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1446                                    const analyze_printf::OptionalFlag &flag,
1447                                    const char *startSpecifier,
1448                                    unsigned specifierLen) {
1449  // Warn about pointless flag with a fixit removal.
1450  const analyze_printf::PrintfConversionSpecifier &CS =
1451    FS.getConversionSpecifier();
1452  S.Diag(getLocationOfByte(flag.getPosition()),
1453      diag::warn_printf_nonsensical_flag)
1454    << flag.toString() << CS.toString()
1455    << getSpecifierRange(startSpecifier, specifierLen)
1456    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1457}
1458
1459void CheckPrintfHandler::HandleIgnoredFlag(
1460                                const analyze_printf::PrintfSpecifier &FS,
1461                                const analyze_printf::OptionalFlag &ignoredFlag,
1462                                const analyze_printf::OptionalFlag &flag,
1463                                const char *startSpecifier,
1464                                unsigned specifierLen) {
1465  // Warn about ignored flag with a fixit removal.
1466  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1467      diag::warn_printf_ignored_flag)
1468    << ignoredFlag.toString() << flag.toString()
1469    << getSpecifierRange(startSpecifier, specifierLen)
1470    << FixItHint::CreateRemoval(getSpecifierRange(
1471        ignoredFlag.getPosition(), 1));
1472}
1473
1474bool
1475CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1476                                            &FS,
1477                                          const char *startSpecifier,
1478                                          unsigned specifierLen) {
1479
1480  using namespace analyze_format_string;
1481  using namespace analyze_printf;
1482  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1483
1484  if (FS.consumesDataArgument()) {
1485    if (atFirstArg) {
1486        atFirstArg = false;
1487        usesPositionalArgs = FS.usesPositionalArg();
1488    }
1489    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1490      // Cannot mix-and-match positional and non-positional arguments.
1491      S.Diag(getLocationOfByte(CS.getStart()),
1492             diag::warn_format_mix_positional_nonpositional_args)
1493        << getSpecifierRange(startSpecifier, specifierLen);
1494      return false;
1495    }
1496  }
1497
1498  // First check if the field width, precision, and conversion specifier
1499  // have matching data arguments.
1500  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1501                    startSpecifier, specifierLen)) {
1502    return false;
1503  }
1504
1505  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1506                    startSpecifier, specifierLen)) {
1507    return false;
1508  }
1509
1510  if (!CS.consumesDataArgument()) {
1511    // FIXME: Technically specifying a precision or field width here
1512    // makes no sense.  Worth issuing a warning at some point.
1513    return true;
1514  }
1515
1516  // Consume the argument.
1517  unsigned argIndex = FS.getArgIndex();
1518  if (argIndex < NumDataArgs) {
1519    // The check to see if the argIndex is valid will come later.
1520    // We set the bit here because we may exit early from this
1521    // function if we encounter some other error.
1522    CoveredArgs.set(argIndex);
1523  }
1524
1525  // Check for using an Objective-C specific conversion specifier
1526  // in a non-ObjC literal.
1527  if (!IsObjCLiteral && CS.isObjCArg()) {
1528    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1529                                                  specifierLen);
1530  }
1531
1532  // Check for invalid use of field width
1533  if (!FS.hasValidFieldWidth()) {
1534    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1535        startSpecifier, specifierLen);
1536  }
1537
1538  // Check for invalid use of precision
1539  if (!FS.hasValidPrecision()) {
1540    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1541        startSpecifier, specifierLen);
1542  }
1543
1544  // Check each flag does not conflict with any other component.
1545  if (!FS.hasValidLeadingZeros())
1546    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1547  if (!FS.hasValidPlusPrefix())
1548    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1549  if (!FS.hasValidSpacePrefix())
1550    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1551  if (!FS.hasValidAlternativeForm())
1552    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1553  if (!FS.hasValidLeftJustified())
1554    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1555
1556  // Check that flags are not ignored by another flag
1557  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1558    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1559        startSpecifier, specifierLen);
1560  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1561    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1562            startSpecifier, specifierLen);
1563
1564  // Check the length modifier is valid with the given conversion specifier.
1565  const LengthModifier &LM = FS.getLengthModifier();
1566  if (!FS.hasValidLengthModifier())
1567    S.Diag(getLocationOfByte(LM.getStart()),
1568        diag::warn_format_nonsensical_length)
1569      << LM.toString() << CS.toString()
1570      << getSpecifierRange(startSpecifier, specifierLen)
1571      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1572          LM.getLength()));
1573
1574  // Are we using '%n'?
1575  if (CS.getKind() == ConversionSpecifier::nArg) {
1576    // Issue a warning about this being a possible security issue.
1577    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1578      << getSpecifierRange(startSpecifier, specifierLen);
1579    // Continue checking the other format specifiers.
1580    return true;
1581  }
1582
1583  // The remaining checks depend on the data arguments.
1584  if (HasVAListArg)
1585    return true;
1586
1587  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1588    return false;
1589
1590  // Now type check the data expression that matches the
1591  // format specifier.
1592  const Expr *Ex = getDataArg(argIndex);
1593  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1594  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1595    // Check if we didn't match because of an implicit cast from a 'char'
1596    // or 'short' to an 'int'.  This is done because printf is a varargs
1597    // function.
1598    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1599      if (ICE->getType() == S.Context.IntTy)
1600        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1601          return true;
1602
1603    // We may be able to offer a FixItHint if it is a supported type.
1604    PrintfSpecifier fixedFS = FS;
1605    bool success = fixedFS.fixType(Ex->getType());
1606
1607    if (success) {
1608      // Get the fix string from the fixed format specifier
1609      llvm::SmallString<128> buf;
1610      llvm::raw_svector_ostream os(buf);
1611      fixedFS.toString(os);
1612
1613      // FIXME: getRepresentativeType() perhaps should return a string
1614      // instead of a QualType to better handle when the representative
1615      // type is 'wint_t' (which is defined in the system headers).
1616      S.Diag(getLocationOfByte(CS.getStart()),
1617          diag::warn_printf_conversion_argument_type_mismatch)
1618        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1619        << getSpecifierRange(startSpecifier, specifierLen)
1620        << Ex->getSourceRange()
1621        << FixItHint::CreateReplacement(
1622            getSpecifierRange(startSpecifier, specifierLen),
1623            os.str());
1624    }
1625    else {
1626      S.Diag(getLocationOfByte(CS.getStart()),
1627             diag::warn_printf_conversion_argument_type_mismatch)
1628        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1629        << getSpecifierRange(startSpecifier, specifierLen)
1630        << Ex->getSourceRange();
1631    }
1632  }
1633
1634  return true;
1635}
1636
1637//===--- CHECK: Scanf format string checking ------------------------------===//
1638
1639namespace {
1640class CheckScanfHandler : public CheckFormatHandler {
1641public:
1642  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1643                    const Expr *origFormatExpr, unsigned firstDataArg,
1644                    unsigned numDataArgs, bool isObjCLiteral,
1645                    const char *beg, bool hasVAListArg,
1646                    const CallExpr *theCall, unsigned formatIdx)
1647  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1648                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1649                       theCall, formatIdx) {}
1650
1651  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1652                            const char *startSpecifier,
1653                            unsigned specifierLen);
1654
1655  bool HandleInvalidScanfConversionSpecifier(
1656          const analyze_scanf::ScanfSpecifier &FS,
1657          const char *startSpecifier,
1658          unsigned specifierLen);
1659
1660  void HandleIncompleteScanList(const char *start, const char *end);
1661};
1662}
1663
1664void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1665                                                 const char *end) {
1666  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1667    << getSpecifierRange(start, end - start);
1668}
1669
1670bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1671                                        const analyze_scanf::ScanfSpecifier &FS,
1672                                        const char *startSpecifier,
1673                                        unsigned specifierLen) {
1674
1675  const analyze_scanf::ScanfConversionSpecifier &CS =
1676    FS.getConversionSpecifier();
1677
1678  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1679                                          getLocationOfByte(CS.getStart()),
1680                                          startSpecifier, specifierLen,
1681                                          CS.getStart(), CS.getLength());
1682}
1683
1684bool CheckScanfHandler::HandleScanfSpecifier(
1685                                       const analyze_scanf::ScanfSpecifier &FS,
1686                                       const char *startSpecifier,
1687                                       unsigned specifierLen) {
1688
1689  using namespace analyze_scanf;
1690  using namespace analyze_format_string;
1691
1692  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1693
1694  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1695  // be used to decide if we are using positional arguments consistently.
1696  if (FS.consumesDataArgument()) {
1697    if (atFirstArg) {
1698      atFirstArg = false;
1699      usesPositionalArgs = FS.usesPositionalArg();
1700    }
1701    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1702      // Cannot mix-and-match positional and non-positional arguments.
1703      S.Diag(getLocationOfByte(CS.getStart()),
1704             diag::warn_format_mix_positional_nonpositional_args)
1705        << getSpecifierRange(startSpecifier, specifierLen);
1706      return false;
1707    }
1708  }
1709
1710  // Check if the field with is non-zero.
1711  const OptionalAmount &Amt = FS.getFieldWidth();
1712  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1713    if (Amt.getConstantAmount() == 0) {
1714      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1715                                                   Amt.getConstantLength());
1716      S.Diag(getLocationOfByte(Amt.getStart()),
1717             diag::warn_scanf_nonzero_width)
1718        << R << FixItHint::CreateRemoval(R);
1719    }
1720  }
1721
1722  if (!FS.consumesDataArgument()) {
1723    // FIXME: Technically specifying a precision or field width here
1724    // makes no sense.  Worth issuing a warning at some point.
1725    return true;
1726  }
1727
1728  // Consume the argument.
1729  unsigned argIndex = FS.getArgIndex();
1730  if (argIndex < NumDataArgs) {
1731      // The check to see if the argIndex is valid will come later.
1732      // We set the bit here because we may exit early from this
1733      // function if we encounter some other error.
1734    CoveredArgs.set(argIndex);
1735  }
1736
1737  // Check the length modifier is valid with the given conversion specifier.
1738  const LengthModifier &LM = FS.getLengthModifier();
1739  if (!FS.hasValidLengthModifier()) {
1740    S.Diag(getLocationOfByte(LM.getStart()),
1741           diag::warn_format_nonsensical_length)
1742      << LM.toString() << CS.toString()
1743      << getSpecifierRange(startSpecifier, specifierLen)
1744      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1745                                                    LM.getLength()));
1746  }
1747
1748  // The remaining checks depend on the data arguments.
1749  if (HasVAListArg)
1750    return true;
1751
1752  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1753    return false;
1754
1755  // FIXME: Check that the argument type matches the format specifier.
1756
1757  return true;
1758}
1759
1760void Sema::CheckFormatString(const StringLiteral *FExpr,
1761                             const Expr *OrigFormatExpr,
1762                             const CallExpr *TheCall, bool HasVAListArg,
1763                             unsigned format_idx, unsigned firstDataArg,
1764                             bool isPrintf) {
1765
1766  // CHECK: is the format string a wide literal?
1767  if (FExpr->isWide()) {
1768    Diag(FExpr->getLocStart(),
1769         diag::warn_format_string_is_wide_literal)
1770    << OrigFormatExpr->getSourceRange();
1771    return;
1772  }
1773
1774  // Str - The format string.  NOTE: this is NOT null-terminated!
1775  llvm::StringRef StrRef = FExpr->getString();
1776  const char *Str = StrRef.data();
1777  unsigned StrLen = StrRef.size();
1778
1779  // CHECK: empty format string?
1780  if (StrLen == 0) {
1781    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1782    << OrigFormatExpr->getSourceRange();
1783    return;
1784  }
1785
1786  if (isPrintf) {
1787    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1788                         TheCall->getNumArgs() - firstDataArg,
1789                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1790                         HasVAListArg, TheCall, format_idx);
1791
1792    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1793      H.DoneProcessing();
1794  }
1795  else {
1796    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1797                        TheCall->getNumArgs() - firstDataArg,
1798                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1799                        HasVAListArg, TheCall, format_idx);
1800
1801    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1802      H.DoneProcessing();
1803  }
1804}
1805
1806//===--- CHECK: Return Address of Stack Variable --------------------------===//
1807
1808static DeclRefExpr* EvalVal(Expr *E);
1809static DeclRefExpr* EvalAddr(Expr* E);
1810
1811/// CheckReturnStackAddr - Check if a return statement returns the address
1812///   of a stack variable.
1813void
1814Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1815                           SourceLocation ReturnLoc) {
1816
1817  // Perform checking for returned stack addresses.
1818  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1819    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1820      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1821       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1822
1823    // Skip over implicit cast expressions when checking for block expressions.
1824    RetValExp = RetValExp->IgnoreParenCasts();
1825
1826    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1827      if (C->hasBlockDeclRefExprs())
1828        Diag(C->getLocStart(), diag::err_ret_local_block)
1829          << C->getSourceRange();
1830
1831    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1832      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1833        << ALE->getSourceRange();
1834
1835  } else if (lhsType->isReferenceType()) {
1836    // Perform checking for stack values returned by reference.
1837    // Check for a reference to the stack
1838    if (DeclRefExpr *DR = EvalVal(RetValExp))
1839      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1840        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1841  }
1842}
1843
1844/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1845///  check if the expression in a return statement evaluates to an address
1846///  to a location on the stack.  The recursion is used to traverse the
1847///  AST of the return expression, with recursion backtracking when we
1848///  encounter a subexpression that (1) clearly does not lead to the address
1849///  of a stack variable or (2) is something we cannot determine leads to
1850///  the address of a stack variable based on such local checking.
1851///
1852///  EvalAddr processes expressions that are pointers that are used as
1853///  references (and not L-values).  EvalVal handles all other values.
1854///  At the base case of the recursion is a check for a DeclRefExpr* in
1855///  the refers to a stack variable.
1856///
1857///  This implementation handles:
1858///
1859///   * pointer-to-pointer casts
1860///   * implicit conversions from array references to pointers
1861///   * taking the address of fields
1862///   * arbitrary interplay between "&" and "*" operators
1863///   * pointer arithmetic from an address of a stack variable
1864///   * taking the address of an array element where the array is on the stack
1865static DeclRefExpr* EvalAddr(Expr *E) {
1866  // We should only be called for evaluating pointer expressions.
1867  assert((E->getType()->isAnyPointerType() ||
1868          E->getType()->isBlockPointerType() ||
1869          E->getType()->isObjCQualifiedIdType()) &&
1870         "EvalAddr only works on pointers");
1871
1872  // Our "symbolic interpreter" is just a dispatch off the currently
1873  // viewed AST node.  We then recursively traverse the AST by calling
1874  // EvalAddr and EvalVal appropriately.
1875  switch (E->getStmtClass()) {
1876  case Stmt::ParenExprClass:
1877    // Ignore parentheses.
1878    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1879
1880  case Stmt::UnaryOperatorClass: {
1881    // The only unary operator that make sense to handle here
1882    // is AddrOf.  All others don't make sense as pointers.
1883    UnaryOperator *U = cast<UnaryOperator>(E);
1884
1885    if (U->getOpcode() == UO_AddrOf)
1886      return EvalVal(U->getSubExpr());
1887    else
1888      return NULL;
1889  }
1890
1891  case Stmt::BinaryOperatorClass: {
1892    // Handle pointer arithmetic.  All other binary operators are not valid
1893    // in this context.
1894    BinaryOperator *B = cast<BinaryOperator>(E);
1895    BinaryOperatorKind op = B->getOpcode();
1896
1897    if (op != BO_Add && op != BO_Sub)
1898      return NULL;
1899
1900    Expr *Base = B->getLHS();
1901
1902    // Determine which argument is the real pointer base.  It could be
1903    // the RHS argument instead of the LHS.
1904    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1905
1906    assert (Base->getType()->isPointerType());
1907    return EvalAddr(Base);
1908  }
1909
1910  // For conditional operators we need to see if either the LHS or RHS are
1911  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1912  case Stmt::ConditionalOperatorClass: {
1913    ConditionalOperator *C = cast<ConditionalOperator>(E);
1914
1915    // Handle the GNU extension for missing LHS.
1916    if (Expr *lhsExpr = C->getLHS())
1917      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1918        return LHS;
1919
1920     return EvalAddr(C->getRHS());
1921  }
1922
1923  // For casts, we need to handle conversions from arrays to
1924  // pointer values, and pointer-to-pointer conversions.
1925  case Stmt::ImplicitCastExprClass:
1926  case Stmt::CStyleCastExprClass:
1927  case Stmt::CXXFunctionalCastExprClass: {
1928    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1929    QualType T = SubExpr->getType();
1930
1931    if (SubExpr->getType()->isPointerType() ||
1932        SubExpr->getType()->isBlockPointerType() ||
1933        SubExpr->getType()->isObjCQualifiedIdType())
1934      return EvalAddr(SubExpr);
1935    else if (T->isArrayType())
1936      return EvalVal(SubExpr);
1937    else
1938      return 0;
1939  }
1940
1941  // C++ casts.  For dynamic casts, static casts, and const casts, we
1942  // are always converting from a pointer-to-pointer, so we just blow
1943  // through the cast.  In the case the dynamic cast doesn't fail (and
1944  // return NULL), we take the conservative route and report cases
1945  // where we return the address of a stack variable.  For Reinterpre
1946  // FIXME: The comment about is wrong; we're not always converting
1947  // from pointer to pointer. I'm guessing that this code should also
1948  // handle references to objects.
1949  case Stmt::CXXStaticCastExprClass:
1950  case Stmt::CXXDynamicCastExprClass:
1951  case Stmt::CXXConstCastExprClass:
1952  case Stmt::CXXReinterpretCastExprClass: {
1953      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1954      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1955        return EvalAddr(S);
1956      else
1957        return NULL;
1958  }
1959
1960  // Everything else: we simply don't reason about them.
1961  default:
1962    return NULL;
1963  }
1964}
1965
1966
1967///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1968///   See the comments for EvalAddr for more details.
1969static DeclRefExpr* EvalVal(Expr *E) {
1970do {
1971  // We should only be called for evaluating non-pointer expressions, or
1972  // expressions with a pointer type that are not used as references but instead
1973  // are l-values (e.g., DeclRefExpr with a pointer type).
1974
1975  // Our "symbolic interpreter" is just a dispatch off the currently
1976  // viewed AST node.  We then recursively traverse the AST by calling
1977  // EvalAddr and EvalVal appropriately.
1978  switch (E->getStmtClass()) {
1979  case Stmt::ImplicitCastExprClass: {
1980    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
1981    if (IE->getValueKind() == VK_LValue) {
1982      E = IE->getSubExpr();
1983      continue;
1984    }
1985    return NULL;
1986  }
1987
1988  case Stmt::DeclRefExprClass: {
1989    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1990    //  at code that refers to a variable's name.  We check if it has local
1991    //  storage within the function, and if so, return the expression.
1992    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1993
1994    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1995      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1996
1997    return NULL;
1998  }
1999
2000  case Stmt::ParenExprClass: {
2001    // Ignore parentheses.
2002    E = cast<ParenExpr>(E)->getSubExpr();
2003    continue;
2004  }
2005
2006  case Stmt::UnaryOperatorClass: {
2007    // The only unary operator that make sense to handle here
2008    // is Deref.  All others don't resolve to a "name."  This includes
2009    // handling all sorts of rvalues passed to a unary operator.
2010    UnaryOperator *U = cast<UnaryOperator>(E);
2011
2012    if (U->getOpcode() == UO_Deref)
2013      return EvalAddr(U->getSubExpr());
2014
2015    return NULL;
2016  }
2017
2018  case Stmt::ArraySubscriptExprClass: {
2019    // Array subscripts are potential references to data on the stack.  We
2020    // retrieve the DeclRefExpr* for the array variable if it indeed
2021    // has local storage.
2022    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2023  }
2024
2025  case Stmt::ConditionalOperatorClass: {
2026    // For conditional operators we need to see if either the LHS or RHS are
2027    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2028    ConditionalOperator *C = cast<ConditionalOperator>(E);
2029
2030    // Handle the GNU extension for missing LHS.
2031    if (Expr *lhsExpr = C->getLHS())
2032      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2033        return LHS;
2034
2035    return EvalVal(C->getRHS());
2036  }
2037
2038  // Accesses to members are potential references to data on the stack.
2039  case Stmt::MemberExprClass: {
2040    MemberExpr *M = cast<MemberExpr>(E);
2041
2042    // Check for indirect access.  We only want direct field accesses.
2043    if (M->isArrow())
2044      return NULL;
2045
2046    // Check whether the member type is itself a reference, in which case
2047    // we're not going to refer to the member, but to what the member refers to.
2048    if (M->getMemberDecl()->getType()->isReferenceType())
2049      return NULL;
2050
2051    return EvalVal(M->getBase());
2052  }
2053
2054  // Everything else: we simply don't reason about them.
2055  default:
2056    return NULL;
2057  }
2058} while (true);
2059}
2060
2061//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2062
2063/// Check for comparisons of floating point operands using != and ==.
2064/// Issue a warning if these are no self-comparisons, as they are not likely
2065/// to do what the programmer intended.
2066void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2067  bool EmitWarning = true;
2068
2069  Expr* LeftExprSansParen = lex->IgnoreParens();
2070  Expr* RightExprSansParen = rex->IgnoreParens();
2071
2072  // Special case: check for x == x (which is OK).
2073  // Do not emit warnings for such cases.
2074  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2075    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2076      if (DRL->getDecl() == DRR->getDecl())
2077        EmitWarning = false;
2078
2079
2080  // Special case: check for comparisons against literals that can be exactly
2081  //  represented by APFloat.  In such cases, do not emit a warning.  This
2082  //  is a heuristic: often comparison against such literals are used to
2083  //  detect if a value in a variable has not changed.  This clearly can
2084  //  lead to false negatives.
2085  if (EmitWarning) {
2086    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2087      if (FLL->isExact())
2088        EmitWarning = false;
2089    } else
2090      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2091        if (FLR->isExact())
2092          EmitWarning = false;
2093    }
2094  }
2095
2096  // Check for comparisons with builtin types.
2097  if (EmitWarning)
2098    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2099      if (CL->isBuiltinCall(Context))
2100        EmitWarning = false;
2101
2102  if (EmitWarning)
2103    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2104      if (CR->isBuiltinCall(Context))
2105        EmitWarning = false;
2106
2107  // Emit the diagnostic.
2108  if (EmitWarning)
2109    Diag(loc, diag::warn_floatingpoint_eq)
2110      << lex->getSourceRange() << rex->getSourceRange();
2111}
2112
2113//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2114//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2115
2116namespace {
2117
2118/// Structure recording the 'active' range of an integer-valued
2119/// expression.
2120struct IntRange {
2121  /// The number of bits active in the int.
2122  unsigned Width;
2123
2124  /// True if the int is known not to have negative values.
2125  bool NonNegative;
2126
2127  IntRange(unsigned Width, bool NonNegative)
2128    : Width(Width), NonNegative(NonNegative)
2129  {}
2130
2131  // Returns the range of the bool type.
2132  static IntRange forBoolType() {
2133    return IntRange(1, true);
2134  }
2135
2136  // Returns the range of an integral type.
2137  static IntRange forType(ASTContext &C, QualType T) {
2138    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2139  }
2140
2141  // Returns the range of an integeral type based on its canonical
2142  // representation.
2143  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2144    assert(T->isCanonicalUnqualified());
2145
2146    if (const VectorType *VT = dyn_cast<VectorType>(T))
2147      T = VT->getElementType().getTypePtr();
2148    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2149      T = CT->getElementType().getTypePtr();
2150
2151    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2152      EnumDecl *Enum = ET->getDecl();
2153      unsigned NumPositive = Enum->getNumPositiveBits();
2154      unsigned NumNegative = Enum->getNumNegativeBits();
2155
2156      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2157    }
2158
2159    const BuiltinType *BT = cast<BuiltinType>(T);
2160    assert(BT->isInteger());
2161
2162    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2163  }
2164
2165  // Returns the supremum of two ranges: i.e. their conservative merge.
2166  static IntRange join(IntRange L, IntRange R) {
2167    return IntRange(std::max(L.Width, R.Width),
2168                    L.NonNegative && R.NonNegative);
2169  }
2170
2171  // Returns the infinum of two ranges: i.e. their aggressive merge.
2172  static IntRange meet(IntRange L, IntRange R) {
2173    return IntRange(std::min(L.Width, R.Width),
2174                    L.NonNegative || R.NonNegative);
2175  }
2176};
2177
2178IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2179  if (value.isSigned() && value.isNegative())
2180    return IntRange(value.getMinSignedBits(), false);
2181
2182  if (value.getBitWidth() > MaxWidth)
2183    value.trunc(MaxWidth);
2184
2185  // isNonNegative() just checks the sign bit without considering
2186  // signedness.
2187  return IntRange(value.getActiveBits(), true);
2188}
2189
2190IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2191                       unsigned MaxWidth) {
2192  if (result.isInt())
2193    return GetValueRange(C, result.getInt(), MaxWidth);
2194
2195  if (result.isVector()) {
2196    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2197    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2198      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2199      R = IntRange::join(R, El);
2200    }
2201    return R;
2202  }
2203
2204  if (result.isComplexInt()) {
2205    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2206    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2207    return IntRange::join(R, I);
2208  }
2209
2210  // This can happen with lossless casts to intptr_t of "based" lvalues.
2211  // Assume it might use arbitrary bits.
2212  // FIXME: The only reason we need to pass the type in here is to get
2213  // the sign right on this one case.  It would be nice if APValue
2214  // preserved this.
2215  assert(result.isLValue());
2216  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2217}
2218
2219/// Pseudo-evaluate the given integer expression, estimating the
2220/// range of values it might take.
2221///
2222/// \param MaxWidth - the width to which the value will be truncated
2223IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2224  E = E->IgnoreParens();
2225
2226  // Try a full evaluation first.
2227  Expr::EvalResult result;
2228  if (E->Evaluate(result, C))
2229    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2230
2231  // I think we only want to look through implicit casts here; if the
2232  // user has an explicit widening cast, we should treat the value as
2233  // being of the new, wider type.
2234  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2235    if (CE->getCastKind() == CK_NoOp)
2236      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2237
2238    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2239
2240    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2241    if (!isIntegerCast && CE->getCastKind() == CK_Unknown)
2242      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2243
2244    // Assume that non-integer casts can span the full range of the type.
2245    if (!isIntegerCast)
2246      return OutputTypeRange;
2247
2248    IntRange SubRange
2249      = GetExprRange(C, CE->getSubExpr(),
2250                     std::min(MaxWidth, OutputTypeRange.Width));
2251
2252    // Bail out if the subexpr's range is as wide as the cast type.
2253    if (SubRange.Width >= OutputTypeRange.Width)
2254      return OutputTypeRange;
2255
2256    // Otherwise, we take the smaller width, and we're non-negative if
2257    // either the output type or the subexpr is.
2258    return IntRange(SubRange.Width,
2259                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2260  }
2261
2262  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2263    // If we can fold the condition, just take that operand.
2264    bool CondResult;
2265    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2266      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2267                                        : CO->getFalseExpr(),
2268                          MaxWidth);
2269
2270    // Otherwise, conservatively merge.
2271    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2272    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2273    return IntRange::join(L, R);
2274  }
2275
2276  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2277    switch (BO->getOpcode()) {
2278
2279    // Boolean-valued operations are single-bit and positive.
2280    case BO_LAnd:
2281    case BO_LOr:
2282    case BO_LT:
2283    case BO_GT:
2284    case BO_LE:
2285    case BO_GE:
2286    case BO_EQ:
2287    case BO_NE:
2288      return IntRange::forBoolType();
2289
2290    // The type of these compound assignments is the type of the LHS,
2291    // so the RHS is not necessarily an integer.
2292    case BO_MulAssign:
2293    case BO_DivAssign:
2294    case BO_RemAssign:
2295    case BO_AddAssign:
2296    case BO_SubAssign:
2297      return IntRange::forType(C, E->getType());
2298
2299    // Operations with opaque sources are black-listed.
2300    case BO_PtrMemD:
2301    case BO_PtrMemI:
2302      return IntRange::forType(C, E->getType());
2303
2304    // Bitwise-and uses the *infinum* of the two source ranges.
2305    case BO_And:
2306    case BO_AndAssign:
2307      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2308                            GetExprRange(C, BO->getRHS(), MaxWidth));
2309
2310    // Left shift gets black-listed based on a judgement call.
2311    case BO_Shl:
2312      // ...except that we want to treat '1 << (blah)' as logically
2313      // positive.  It's an important idiom.
2314      if (IntegerLiteral *I
2315            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2316        if (I->getValue() == 1) {
2317          IntRange R = IntRange::forType(C, E->getType());
2318          return IntRange(R.Width, /*NonNegative*/ true);
2319        }
2320      }
2321      // fallthrough
2322
2323    case BO_ShlAssign:
2324      return IntRange::forType(C, E->getType());
2325
2326    // Right shift by a constant can narrow its left argument.
2327    case BO_Shr:
2328    case BO_ShrAssign: {
2329      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2330
2331      // If the shift amount is a positive constant, drop the width by
2332      // that much.
2333      llvm::APSInt shift;
2334      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2335          shift.isNonNegative()) {
2336        unsigned zext = shift.getZExtValue();
2337        if (zext >= L.Width)
2338          L.Width = (L.NonNegative ? 0 : 1);
2339        else
2340          L.Width -= zext;
2341      }
2342
2343      return L;
2344    }
2345
2346    // Comma acts as its right operand.
2347    case BO_Comma:
2348      return GetExprRange(C, BO->getRHS(), MaxWidth);
2349
2350    // Black-list pointer subtractions.
2351    case BO_Sub:
2352      if (BO->getLHS()->getType()->isPointerType())
2353        return IntRange::forType(C, E->getType());
2354      // fallthrough
2355
2356    default:
2357      break;
2358    }
2359
2360    // Treat every other operator as if it were closed on the
2361    // narrowest type that encompasses both operands.
2362    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2363    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2364    return IntRange::join(L, R);
2365  }
2366
2367  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2368    switch (UO->getOpcode()) {
2369    // Boolean-valued operations are white-listed.
2370    case UO_LNot:
2371      return IntRange::forBoolType();
2372
2373    // Operations with opaque sources are black-listed.
2374    case UO_Deref:
2375    case UO_AddrOf: // should be impossible
2376      return IntRange::forType(C, E->getType());
2377
2378    default:
2379      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2380    }
2381  }
2382
2383  if (dyn_cast<OffsetOfExpr>(E)) {
2384    IntRange::forType(C, E->getType());
2385  }
2386
2387  FieldDecl *BitField = E->getBitField();
2388  if (BitField) {
2389    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2390    unsigned BitWidth = BitWidthAP.getZExtValue();
2391
2392    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2393  }
2394
2395  return IntRange::forType(C, E->getType());
2396}
2397
2398IntRange GetExprRange(ASTContext &C, Expr *E) {
2399  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2400}
2401
2402/// Checks whether the given value, which currently has the given
2403/// source semantics, has the same value when coerced through the
2404/// target semantics.
2405bool IsSameFloatAfterCast(const llvm::APFloat &value,
2406                          const llvm::fltSemantics &Src,
2407                          const llvm::fltSemantics &Tgt) {
2408  llvm::APFloat truncated = value;
2409
2410  bool ignored;
2411  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2412  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2413
2414  return truncated.bitwiseIsEqual(value);
2415}
2416
2417/// Checks whether the given value, which currently has the given
2418/// source semantics, has the same value when coerced through the
2419/// target semantics.
2420///
2421/// The value might be a vector of floats (or a complex number).
2422bool IsSameFloatAfterCast(const APValue &value,
2423                          const llvm::fltSemantics &Src,
2424                          const llvm::fltSemantics &Tgt) {
2425  if (value.isFloat())
2426    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2427
2428  if (value.isVector()) {
2429    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2430      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2431        return false;
2432    return true;
2433  }
2434
2435  assert(value.isComplexFloat());
2436  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2437          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2438}
2439
2440void AnalyzeImplicitConversions(Sema &S, Expr *E);
2441
2442bool IsZero(Sema &S, Expr *E) {
2443  llvm::APSInt Value;
2444  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2445}
2446
2447void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2448  BinaryOperatorKind op = E->getOpcode();
2449  if (op == BO_LT && IsZero(S, E->getRHS())) {
2450    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2451      << "< 0" << "false"
2452      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2453  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2454    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2455      << ">= 0" << "true"
2456      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2457  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2458    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2459      << "0 >" << "false"
2460      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2461  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2462    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2463      << "0 <=" << "true"
2464      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2465  }
2466}
2467
2468/// Analyze the operands of the given comparison.  Implements the
2469/// fallback case from AnalyzeComparison.
2470void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2471  AnalyzeImplicitConversions(S, E->getLHS());
2472  AnalyzeImplicitConversions(S, E->getRHS());
2473}
2474
2475/// \brief Implements -Wsign-compare.
2476///
2477/// \param lex the left-hand expression
2478/// \param rex the right-hand expression
2479/// \param OpLoc the location of the joining operator
2480/// \param BinOpc binary opcode or 0
2481void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2482  // The type the comparison is being performed in.
2483  QualType T = E->getLHS()->getType();
2484  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2485         && "comparison with mismatched types");
2486
2487  // We don't do anything special if this isn't an unsigned integral
2488  // comparison:  we're only interested in integral comparisons, and
2489  // signed comparisons only happen in cases we don't care to warn about.
2490  if (!T->hasUnsignedIntegerRepresentation())
2491    return AnalyzeImpConvsInComparison(S, E);
2492
2493  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2494  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2495
2496  // Check to see if one of the (unmodified) operands is of different
2497  // signedness.
2498  Expr *signedOperand, *unsignedOperand;
2499  if (lex->getType()->hasSignedIntegerRepresentation()) {
2500    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2501           "unsigned comparison between two signed integer expressions?");
2502    signedOperand = lex;
2503    unsignedOperand = rex;
2504  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2505    signedOperand = rex;
2506    unsignedOperand = lex;
2507  } else {
2508    CheckTrivialUnsignedComparison(S, E);
2509    return AnalyzeImpConvsInComparison(S, E);
2510  }
2511
2512  // Otherwise, calculate the effective range of the signed operand.
2513  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2514
2515  // Go ahead and analyze implicit conversions in the operands.  Note
2516  // that we skip the implicit conversions on both sides.
2517  AnalyzeImplicitConversions(S, lex);
2518  AnalyzeImplicitConversions(S, rex);
2519
2520  // If the signed range is non-negative, -Wsign-compare won't fire,
2521  // but we should still check for comparisons which are always true
2522  // or false.
2523  if (signedRange.NonNegative)
2524    return CheckTrivialUnsignedComparison(S, E);
2525
2526  // For (in)equality comparisons, if the unsigned operand is a
2527  // constant which cannot collide with a overflowed signed operand,
2528  // then reinterpreting the signed operand as unsigned will not
2529  // change the result of the comparison.
2530  if (E->isEqualityOp()) {
2531    unsigned comparisonWidth = S.Context.getIntWidth(T);
2532    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2533
2534    // We should never be unable to prove that the unsigned operand is
2535    // non-negative.
2536    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2537
2538    if (unsignedRange.Width < comparisonWidth)
2539      return;
2540  }
2541
2542  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2543    << lex->getType() << rex->getType()
2544    << lex->getSourceRange() << rex->getSourceRange();
2545}
2546
2547/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2548void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2549  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2550}
2551
2552void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2553                             bool *ICContext = 0) {
2554  if (E->isTypeDependent() || E->isValueDependent()) return;
2555
2556  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2557  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2558  if (Source == Target) return;
2559  if (Target->isDependentType()) return;
2560
2561  // Never diagnose implicit casts to bool.
2562  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2563    return;
2564
2565  // Strip vector types.
2566  if (isa<VectorType>(Source)) {
2567    if (!isa<VectorType>(Target))
2568      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2569
2570    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2571    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2572  }
2573
2574  // Strip complex types.
2575  if (isa<ComplexType>(Source)) {
2576    if (!isa<ComplexType>(Target))
2577      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2578
2579    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2580    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2581  }
2582
2583  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2584  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2585
2586  // If the source is floating point...
2587  if (SourceBT && SourceBT->isFloatingPoint()) {
2588    // ...and the target is floating point...
2589    if (TargetBT && TargetBT->isFloatingPoint()) {
2590      // ...then warn if we're dropping FP rank.
2591
2592      // Builtin FP kinds are ordered by increasing FP rank.
2593      if (SourceBT->getKind() > TargetBT->getKind()) {
2594        // Don't warn about float constants that are precisely
2595        // representable in the target type.
2596        Expr::EvalResult result;
2597        if (E->Evaluate(result, S.Context)) {
2598          // Value might be a float, a float vector, or a float complex.
2599          if (IsSameFloatAfterCast(result.Val,
2600                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2601                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2602            return;
2603        }
2604
2605        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2606      }
2607      return;
2608    }
2609
2610    // If the target is integral, always warn.
2611    if ((TargetBT && TargetBT->isInteger()))
2612      // TODO: don't warn for integer values?
2613      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2614
2615    return;
2616  }
2617
2618  if (!Source->isIntegerType() || !Target->isIntegerType())
2619    return;
2620
2621  IntRange SourceRange = GetExprRange(S.Context, E);
2622  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2623
2624  if (SourceRange.Width > TargetRange.Width) {
2625    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2626    // and by god we'll let them.
2627    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2628      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2629    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2630  }
2631
2632  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2633      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2634       SourceRange.Width == TargetRange.Width)) {
2635    unsigned DiagID = diag::warn_impcast_integer_sign;
2636
2637    // Traditionally, gcc has warned about this under -Wsign-compare.
2638    // We also want to warn about it in -Wconversion.
2639    // So if -Wconversion is off, use a completely identical diagnostic
2640    // in the sign-compare group.
2641    // The conditional-checking code will
2642    if (ICContext) {
2643      DiagID = diag::warn_impcast_integer_sign_conditional;
2644      *ICContext = true;
2645    }
2646
2647    return DiagnoseImpCast(S, E, T, DiagID);
2648  }
2649
2650  return;
2651}
2652
2653void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2654
2655void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2656                             bool &ICContext) {
2657  E = E->IgnoreParenImpCasts();
2658
2659  if (isa<ConditionalOperator>(E))
2660    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2661
2662  AnalyzeImplicitConversions(S, E);
2663  if (E->getType() != T)
2664    return CheckImplicitConversion(S, E, T, &ICContext);
2665  return;
2666}
2667
2668void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2669  AnalyzeImplicitConversions(S, E->getCond());
2670
2671  bool Suspicious = false;
2672  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2673  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2674
2675  // If -Wconversion would have warned about either of the candidates
2676  // for a signedness conversion to the context type...
2677  if (!Suspicious) return;
2678
2679  // ...but it's currently ignored...
2680  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2681    return;
2682
2683  // ...and -Wsign-compare isn't...
2684  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2685    return;
2686
2687  // ...then check whether it would have warned about either of the
2688  // candidates for a signedness conversion to the condition type.
2689  if (E->getType() != T) {
2690    Suspicious = false;
2691    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2692                            E->getType(), &Suspicious);
2693    if (!Suspicious)
2694      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2695                              E->getType(), &Suspicious);
2696    if (!Suspicious)
2697      return;
2698  }
2699
2700  // If so, emit a diagnostic under -Wsign-compare.
2701  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2702  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2703  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2704    << lex->getType() << rex->getType()
2705    << lex->getSourceRange() << rex->getSourceRange();
2706}
2707
2708/// AnalyzeImplicitConversions - Find and report any interesting
2709/// implicit conversions in the given expression.  There are a couple
2710/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2711void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2712  QualType T = OrigE->getType();
2713  Expr *E = OrigE->IgnoreParenImpCasts();
2714
2715  // For conditional operators, we analyze the arguments as if they
2716  // were being fed directly into the output.
2717  if (isa<ConditionalOperator>(E)) {
2718    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2719    CheckConditionalOperator(S, CO, T);
2720    return;
2721  }
2722
2723  // Go ahead and check any implicit conversions we might have skipped.
2724  // The non-canonical typecheck is just an optimization;
2725  // CheckImplicitConversion will filter out dead implicit conversions.
2726  if (E->getType() != T)
2727    CheckImplicitConversion(S, E, T);
2728
2729  // Now continue drilling into this expression.
2730
2731  // Skip past explicit casts.
2732  if (isa<ExplicitCastExpr>(E)) {
2733    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2734    return AnalyzeImplicitConversions(S, E);
2735  }
2736
2737  // Do a somewhat different check with comparison operators.
2738  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2739    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2740
2741  // These break the otherwise-useful invariant below.  Fortunately,
2742  // we don't really need to recurse into them, because any internal
2743  // expressions should have been analyzed already when they were
2744  // built into statements.
2745  if (isa<StmtExpr>(E)) return;
2746
2747  // Don't descend into unevaluated contexts.
2748  if (isa<SizeOfAlignOfExpr>(E)) return;
2749
2750  // Now just recurse over the expression's children.
2751  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2752         I != IE; ++I)
2753    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2754}
2755
2756} // end anonymous namespace
2757
2758/// Diagnoses "dangerous" implicit conversions within the given
2759/// expression (which is a full expression).  Implements -Wconversion
2760/// and -Wsign-compare.
2761void Sema::CheckImplicitConversions(Expr *E) {
2762  // Don't diagnose in unevaluated contexts.
2763  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2764    return;
2765
2766  // Don't diagnose for value- or type-dependent expressions.
2767  if (E->isTypeDependent() || E->isValueDependent())
2768    return;
2769
2770  AnalyzeImplicitConversions(*this, E);
2771}
2772
2773/// CheckParmsForFunctionDef - Check that the parameters of the given
2774/// function are appropriate for the definition of a function. This
2775/// takes care of any checks that cannot be performed on the
2776/// declaration itself, e.g., that the types of each of the function
2777/// parameters are complete.
2778bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2779  bool HasInvalidParm = false;
2780  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2781    ParmVarDecl *Param = FD->getParamDecl(p);
2782
2783    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2784    // function declarator that is part of a function definition of
2785    // that function shall not have incomplete type.
2786    //
2787    // This is also C++ [dcl.fct]p6.
2788    if (!Param->isInvalidDecl() &&
2789        RequireCompleteType(Param->getLocation(), Param->getType(),
2790                               diag::err_typecheck_decl_incomplete_type)) {
2791      Param->setInvalidDecl();
2792      HasInvalidParm = true;
2793    }
2794
2795    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2796    // declaration of each parameter shall include an identifier.
2797    if (Param->getIdentifier() == 0 &&
2798        !Param->isImplicit() &&
2799        !getLangOptions().CPlusPlus)
2800      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2801
2802    // C99 6.7.5.3p12:
2803    //   If the function declarator is not part of a definition of that
2804    //   function, parameters may have incomplete type and may use the [*]
2805    //   notation in their sequences of declarator specifiers to specify
2806    //   variable length array types.
2807    QualType PType = Param->getOriginalType();
2808    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2809      if (AT->getSizeModifier() == ArrayType::Star) {
2810        // FIXME: This diagnosic should point the the '[*]' if source-location
2811        // information is added for it.
2812        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2813      }
2814    }
2815  }
2816
2817  return HasInvalidParm;
2818}
2819
2820/// CheckCastAlign - Implements -Wcast-align, which warns when a
2821/// pointer cast increases the alignment requirements.
2822void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
2823  // This is actually a lot of work to potentially be doing on every
2824  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
2825  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
2826        == Diagnostic::Ignored)
2827    return;
2828
2829  // Ignore dependent types.
2830  if (T->isDependentType() || Op->getType()->isDependentType())
2831    return;
2832
2833  // Require that the destination be a pointer type.
2834  const PointerType *DestPtr = T->getAs<PointerType>();
2835  if (!DestPtr) return;
2836
2837  // If the destination has alignment 1, we're done.
2838  QualType DestPointee = DestPtr->getPointeeType();
2839  if (DestPointee->isIncompleteType()) return;
2840  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
2841  if (DestAlign.isOne()) return;
2842
2843  // Require that the source be a pointer type.
2844  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
2845  if (!SrcPtr) return;
2846  QualType SrcPointee = SrcPtr->getPointeeType();
2847
2848  // Whitelist casts from cv void*.  We already implicitly
2849  // whitelisted casts to cv void*, since they have alignment 1.
2850  // Also whitelist casts involving incomplete types, which implicitly
2851  // includes 'void'.
2852  if (SrcPointee->isIncompleteType()) return;
2853
2854  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
2855  if (SrcAlign >= DestAlign) return;
2856
2857  Diag(TRange.getBegin(), diag::warn_cast_align)
2858    << Op->getType() << T
2859    << static_cast<unsigned>(SrcAlign.getQuantity())
2860    << static_cast<unsigned>(DestAlign.getQuantity())
2861    << TRange << Op->getSourceRange();
2862}
2863
2864