SemaChecking.cpp revision 56f20ae1010aa71defd7572f660b41288c56cdd1
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "SemaUtil.h"
23using namespace clang;
24
25/// CheckFunctionCall - Check a direct function call for various correctness
26/// and safety properties not strictly enforced by the C type system.
27Action::ExprResult
28Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
29  llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
30  // Get the IdentifierInfo* for the called function.
31  IdentifierInfo *FnInfo = FDecl->getIdentifier();
32
33  // None of the checks below are needed for functions that don't have
34  // simple names (e.g., C++ conversion functions).
35  if (!FnInfo)
36    return TheCall.take();
37
38  switch (FnInfo->getBuiltinID()) {
39  case Builtin::BI__builtin___CFStringMakeConstantString:
40    assert(TheCall->getNumArgs() == 1 &&
41           "Wrong # arguments to builtin CFStringMakeConstantString");
42    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
43      return true;
44    return TheCall.take();
45  case Builtin::BI__builtin_stdarg_start:
46  case Builtin::BI__builtin_va_start:
47    if (SemaBuiltinVAStart(TheCall.get()))
48      return true;
49    return TheCall.take();
50  case Builtin::BI__builtin_isgreater:
51  case Builtin::BI__builtin_isgreaterequal:
52  case Builtin::BI__builtin_isless:
53  case Builtin::BI__builtin_islessequal:
54  case Builtin::BI__builtin_islessgreater:
55  case Builtin::BI__builtin_isunordered:
56    if (SemaBuiltinUnorderedCompare(TheCall.get()))
57      return true;
58    return TheCall.take();
59  case Builtin::BI__builtin_return_address:
60  case Builtin::BI__builtin_frame_address:
61    if (SemaBuiltinStackAddress(TheCall.get()))
62      return true;
63    return TheCall.take();
64  case Builtin::BI__builtin_shufflevector:
65    return SemaBuiltinShuffleVector(TheCall.get());
66  case Builtin::BI__builtin_prefetch:
67    if (SemaBuiltinPrefetch(TheCall.get()))
68      return true;
69    return TheCall.take();
70  case Builtin::BI__builtin_object_size:
71    if (SemaBuiltinObjectSize(TheCall.get()))
72      return true;
73  }
74
75  // FIXME: This mechanism should be abstracted to be less fragile and
76  // more efficient. For example, just map function ids to custom
77  // handlers.
78
79  // Search the KnownFunctionIDs for the identifier.
80  unsigned i = 0, e = id_num_known_functions;
81  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
82  if (i == e) return TheCall.take();
83
84  // Printf checking.
85  if (i <= id_vprintf) {
86    // Retrieve the index of the format string parameter and determine
87    // if the function is passed a va_arg argument.
88    unsigned format_idx = 0;
89    bool HasVAListArg = false;
90
91    switch (i) {
92    default: assert(false && "No format string argument index.");
93    case id_NSLog:         format_idx = 0; break;
94    case id_asprintf:      format_idx = 1; break;
95    case id_fprintf:       format_idx = 1; break;
96    case id_printf:        format_idx = 0; break;
97    case id_snprintf:      format_idx = 2; break;
98    case id_snprintf_chk:  format_idx = 4; break;
99    case id_sprintf:       format_idx = 1; break;
100    case id_sprintf_chk:   format_idx = 3; break;
101    case id_vasprintf:     format_idx = 1; HasVAListArg = true; break;
102    case id_vfprintf:      format_idx = 1; HasVAListArg = true; break;
103    case id_vsnprintf:     format_idx = 2; HasVAListArg = true; break;
104    case id_vsnprintf_chk: format_idx = 4; HasVAListArg = true; break;
105    case id_vsprintf:      format_idx = 1; HasVAListArg = true; break;
106    case id_vsprintf_chk:  format_idx = 3; HasVAListArg = true; break;
107    case id_vprintf:       format_idx = 0; HasVAListArg = true; break;
108    }
109
110    CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
111  }
112
113  return TheCall.take();
114}
115
116/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
117/// CFString constructor is correct
118bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
119  Arg = Arg->IgnoreParenCasts();
120
121  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
122
123  if (!Literal || Literal->isWide()) {
124    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
125      << Arg->getSourceRange();
126    return true;
127  }
128
129  const char *Data = Literal->getStrData();
130  unsigned Length = Literal->getByteLength();
131
132  for (unsigned i = 0; i < Length; ++i) {
133    if (!isascii(Data[i])) {
134      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
135           diag::warn_cfstring_literal_contains_non_ascii_character)
136        << Arg->getSourceRange();
137      break;
138    }
139
140    if (!Data[i]) {
141      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
142           diag::warn_cfstring_literal_contains_nul_character)
143        << Arg->getSourceRange();
144      break;
145    }
146  }
147
148  return false;
149}
150
151/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
152/// Emit an error and return true on failure, return false on success.
153bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
154  Expr *Fn = TheCall->getCallee();
155  if (TheCall->getNumArgs() > 2) {
156    Diag(TheCall->getArg(2)->getLocStart(),
157         diag::err_typecheck_call_too_many_args)
158      << 0 /*function call*/ << Fn->getSourceRange()
159      << SourceRange(TheCall->getArg(2)->getLocStart(),
160                     (*(TheCall->arg_end()-1))->getLocEnd());
161    return true;
162  }
163
164  if (TheCall->getNumArgs() < 2) {
165    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
166      << 0 /*function call*/;
167  }
168
169  // Determine whether the current function is variadic or not.
170  bool isVariadic;
171  if (getCurFunctionDecl()) {
172    if (FunctionTypeProto* FTP =
173            dyn_cast<FunctionTypeProto>(getCurFunctionDecl()->getType()))
174      isVariadic = FTP->isVariadic();
175    else
176      isVariadic = false;
177  } else {
178    isVariadic = getCurMethodDecl()->isVariadic();
179  }
180
181  if (!isVariadic) {
182    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
183    return true;
184  }
185
186  // Verify that the second argument to the builtin is the last argument of the
187  // current function or method.
188  bool SecondArgIsLastNamedArgument = false;
189  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
190
191  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
192    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
193      // FIXME: This isn't correct for methods (results in bogus warning).
194      // Get the last formal in the current function.
195      const ParmVarDecl *LastArg;
196      if (FunctionDecl *FD = getCurFunctionDecl())
197        LastArg = *(FD->param_end()-1);
198      else
199        LastArg = *(getCurMethodDecl()->param_end()-1);
200      SecondArgIsLastNamedArgument = PV == LastArg;
201    }
202  }
203
204  if (!SecondArgIsLastNamedArgument)
205    Diag(TheCall->getArg(1)->getLocStart(),
206         diag::warn_second_parameter_of_va_start_not_last_named_argument);
207  return false;
208}
209
210/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
211/// friends.  This is declared to take (...), so we have to check everything.
212bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
213  if (TheCall->getNumArgs() < 2)
214    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
215      << 0 /*function call*/;
216  if (TheCall->getNumArgs() > 2)
217    return Diag(TheCall->getArg(2)->getLocStart(),
218                diag::err_typecheck_call_too_many_args)
219      << 0 /*function call*/
220      << SourceRange(TheCall->getArg(2)->getLocStart(),
221                     (*(TheCall->arg_end()-1))->getLocEnd());
222
223  Expr *OrigArg0 = TheCall->getArg(0);
224  Expr *OrigArg1 = TheCall->getArg(1);
225
226  // Do standard promotions between the two arguments, returning their common
227  // type.
228  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
229
230  // If the common type isn't a real floating type, then the arguments were
231  // invalid for this operation.
232  if (!Res->isRealFloatingType())
233    return Diag(OrigArg0->getLocStart(),
234                diag::err_typecheck_call_invalid_ordered_compare)
235      << OrigArg0->getType() << OrigArg1->getType()
236      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
237
238  return false;
239}
240
241bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
242  // The signature for these builtins is exact; the only thing we need
243  // to check is that the argument is a constant.
244  SourceLocation Loc;
245  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
246    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
247
248  return false;
249}
250
251/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
252// This is declared to take (...), so we have to check everything.
253Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
254  if (TheCall->getNumArgs() < 3)
255    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
256      << 0 /*function call*/ << TheCall->getSourceRange();
257
258  QualType FAType = TheCall->getArg(0)->getType();
259  QualType SAType = TheCall->getArg(1)->getType();
260
261  if (!FAType->isVectorType() || !SAType->isVectorType()) {
262    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
263      << SourceRange(TheCall->getArg(0)->getLocStart(),
264                     TheCall->getArg(1)->getLocEnd());
265    return true;
266  }
267
268  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
269      Context.getCanonicalType(SAType).getUnqualifiedType()) {
270    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
271      << SourceRange(TheCall->getArg(0)->getLocStart(),
272                     TheCall->getArg(1)->getLocEnd());
273    return true;
274  }
275
276  unsigned numElements = FAType->getAsVectorType()->getNumElements();
277  if (TheCall->getNumArgs() != numElements+2) {
278    if (TheCall->getNumArgs() < numElements+2)
279      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
280               << 0 /*function call*/ << TheCall->getSourceRange();
281    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
282             << 0 /*function call*/ << TheCall->getSourceRange();
283  }
284
285  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
286    llvm::APSInt Result(32);
287    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
288      return Diag(TheCall->getLocStart(),
289                  diag::err_shufflevector_nonconstant_argument)
290                << TheCall->getArg(i)->getSourceRange();
291
292    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
293      return Diag(TheCall->getLocStart(),
294                  diag::err_shufflevector_argument_too_large)
295               << TheCall->getArg(i)->getSourceRange();
296  }
297
298  llvm::SmallVector<Expr*, 32> exprs;
299
300  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
301    exprs.push_back(TheCall->getArg(i));
302    TheCall->setArg(i, 0);
303  }
304
305  return new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
306                               TheCall->getCallee()->getLocStart(),
307                               TheCall->getRParenLoc());
308}
309
310/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
311// This is declared to take (const void*, ...) and can take two
312// optional constant int args.
313bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
314  unsigned NumArgs = TheCall->getNumArgs();
315
316  if (NumArgs > 3)
317    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
318             << 0 /*function call*/ << TheCall->getSourceRange();
319
320  // Argument 0 is checked for us and the remaining arguments must be
321  // constant integers.
322  for (unsigned i = 1; i != NumArgs; ++i) {
323    Expr *Arg = TheCall->getArg(i);
324    QualType RWType = Arg->getType();
325
326    const BuiltinType *BT = RWType->getAsBuiltinType();
327    llvm::APSInt Result;
328    if (!BT || BT->getKind() != BuiltinType::Int ||
329        !Arg->isIntegerConstantExpr(Result, Context))
330      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
331              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
332
333    // FIXME: gcc issues a warning and rewrites these to 0. These
334    // seems especially odd for the third argument since the default
335    // is 3.
336    if (i == 1) {
337      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
338        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
339             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
340    } else {
341      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
342        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
343            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
344    }
345  }
346
347  return false;
348}
349
350/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
351/// int type). This simply type checks that type is one of the defined
352/// constants (0-3).
353bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
354  Expr *Arg = TheCall->getArg(1);
355  QualType ArgType = Arg->getType();
356  const BuiltinType *BT = ArgType->getAsBuiltinType();
357  llvm::APSInt Result(32);
358  if (!BT || BT->getKind() != BuiltinType::Int ||
359      !Arg->isIntegerConstantExpr(Result, Context)) {
360    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
361             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
362  }
363
364  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
365    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
366             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
367  }
368
369  return false;
370}
371
372/// CheckPrintfArguments - Check calls to printf (and similar functions) for
373/// correct use of format strings.
374///
375///  HasVAListArg - A predicate indicating whether the printf-like
376///    function is passed an explicit va_arg argument (e.g., vprintf)
377///
378///  format_idx - The index into Args for the format string.
379///
380/// Improper format strings to functions in the printf family can be
381/// the source of bizarre bugs and very serious security holes.  A
382/// good source of information is available in the following paper
383/// (which includes additional references):
384///
385///  FormatGuard: Automatic Protection From printf Format String
386///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
387///
388/// Functionality implemented:
389///
390///  We can statically check the following properties for string
391///  literal format strings for non v.*printf functions (where the
392///  arguments are passed directly):
393//
394///  (1) Are the number of format conversions equal to the number of
395///      data arguments?
396///
397///  (2) Does each format conversion correctly match the type of the
398///      corresponding data argument?  (TODO)
399///
400/// Moreover, for all printf functions we can:
401///
402///  (3) Check for a missing format string (when not caught by type checking).
403///
404///  (4) Check for no-operation flags; e.g. using "#" with format
405///      conversion 'c'  (TODO)
406///
407///  (5) Check the use of '%n', a major source of security holes.
408///
409///  (6) Check for malformed format conversions that don't specify anything.
410///
411///  (7) Check for empty format strings.  e.g: printf("");
412///
413///  (8) Check that the format string is a wide literal.
414///
415///  (9) Also check the arguments of functions with the __format__ attribute.
416///      (TODO).
417///
418/// All of these checks can be done by parsing the format string.
419///
420/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
421void
422Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
423                           unsigned format_idx) {
424  Expr *Fn = TheCall->getCallee();
425
426  // CHECK: printf-like function is called with no format string.
427  if (format_idx >= TheCall->getNumArgs()) {
428    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
429      << Fn->getSourceRange();
430    return;
431  }
432
433  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
434
435  // CHECK: format string is not a string literal.
436  //
437  // Dynamically generated format strings are difficult to
438  // automatically vet at compile time.  Requiring that format strings
439  // are string literals: (1) permits the checking of format strings by
440  // the compiler and thereby (2) can practically remove the source of
441  // many format string exploits.
442
443  // Format string can be either ObjC string (e.g. @"%d") or
444  // C string (e.g. "%d")
445  // ObjC string uses the same format specifiers as C string, so we can use
446  // the same format string checking logic for both ObjC and C strings.
447  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
448  StringLiteral *FExpr = NULL;
449
450  if(ObjCFExpr != NULL)
451    FExpr = ObjCFExpr->getString();
452  else
453    FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
454
455  if (FExpr == NULL) {
456    // For vprintf* functions (i.e., HasVAListArg==true), we add a
457    // special check to see if the format string is a function parameter
458    // of the function calling the printf function.  If the function
459    // has an attribute indicating it is a printf-like function, then we
460    // should suppress warnings concerning non-literals being used in a call
461    // to a vprintf function.  For example:
462    //
463    // void
464    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
465    //      va_list ap;
466    //      va_start(ap, fmt);
467    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
468    //      ...
469    //
470    //
471    //  FIXME: We don't have full attribute support yet, so just check to see
472    //    if the argument is a DeclRefExpr that references a parameter.  We'll
473    //    add proper support for checking the attribute later.
474    if (HasVAListArg)
475      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
476        if (isa<ParmVarDecl>(DR->getDecl()))
477          return;
478
479    Diag(TheCall->getArg(format_idx)->getLocStart(),
480         diag::warn_printf_not_string_constant)
481      << OrigFormatExpr->getSourceRange();
482    return;
483  }
484
485  // CHECK: is the format string a wide literal?
486  if (FExpr->isWide()) {
487    Diag(FExpr->getLocStart(),
488         diag::warn_printf_format_string_is_wide_literal)
489      << OrigFormatExpr->getSourceRange();
490    return;
491  }
492
493  // Str - The format string.  NOTE: this is NOT null-terminated!
494  const char * const Str = FExpr->getStrData();
495
496  // CHECK: empty format string?
497  const unsigned StrLen = FExpr->getByteLength();
498
499  if (StrLen == 0) {
500    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
501      << OrigFormatExpr->getSourceRange();
502    return;
503  }
504
505  // We process the format string using a binary state machine.  The
506  // current state is stored in CurrentState.
507  enum {
508    state_OrdChr,
509    state_Conversion
510  } CurrentState = state_OrdChr;
511
512  // numConversions - The number of conversions seen so far.  This is
513  //  incremented as we traverse the format string.
514  unsigned numConversions = 0;
515
516  // numDataArgs - The number of data arguments after the format
517  //  string.  This can only be determined for non vprintf-like
518  //  functions.  For those functions, this value is 1 (the sole
519  //  va_arg argument).
520  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
521
522  // Inspect the format string.
523  unsigned StrIdx = 0;
524
525  // LastConversionIdx - Index within the format string where we last saw
526  //  a '%' character that starts a new format conversion.
527  unsigned LastConversionIdx = 0;
528
529  for (; StrIdx < StrLen; ++StrIdx) {
530
531    // Is the number of detected conversion conversions greater than
532    // the number of matching data arguments?  If so, stop.
533    if (!HasVAListArg && numConversions > numDataArgs) break;
534
535    // Handle "\0"
536    if (Str[StrIdx] == '\0') {
537      // The string returned by getStrData() is not null-terminated,
538      // so the presence of a null character is likely an error.
539      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
540           diag::warn_printf_format_string_contains_null_char)
541        <<  OrigFormatExpr->getSourceRange();
542      return;
543    }
544
545    // Ordinary characters (not processing a format conversion).
546    if (CurrentState == state_OrdChr) {
547      if (Str[StrIdx] == '%') {
548        CurrentState = state_Conversion;
549        LastConversionIdx = StrIdx;
550      }
551      continue;
552    }
553
554    // Seen '%'.  Now processing a format conversion.
555    switch (Str[StrIdx]) {
556    // Handle dynamic precision or width specifier.
557    case '*': {
558      ++numConversions;
559
560      if (!HasVAListArg && numConversions > numDataArgs) {
561        SourceLocation Loc = FExpr->getLocStart();
562        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
563
564        if (Str[StrIdx-1] == '.')
565          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
566            << OrigFormatExpr->getSourceRange();
567        else
568          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
569            << OrigFormatExpr->getSourceRange();
570
571        // Don't do any more checking.  We'll just emit spurious errors.
572        return;
573      }
574
575      // Perform type checking on width/precision specifier.
576      Expr *E = TheCall->getArg(format_idx+numConversions);
577      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
578        if (BT->getKind() == BuiltinType::Int)
579          break;
580
581      SourceLocation Loc =
582        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
583
584      if (Str[StrIdx-1] == '.')
585        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
586          << E->getType() << E->getSourceRange();
587      else
588        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
589          << E->getType() << E->getSourceRange();
590
591      break;
592    }
593
594    // Characters which can terminate a format conversion
595    // (e.g. "%d").  Characters that specify length modifiers or
596    // other flags are handled by the default case below.
597    //
598    // FIXME: additional checks will go into the following cases.
599    case 'i':
600    case 'd':
601    case 'o':
602    case 'u':
603    case 'x':
604    case 'X':
605    case 'D':
606    case 'O':
607    case 'U':
608    case 'e':
609    case 'E':
610    case 'f':
611    case 'F':
612    case 'g':
613    case 'G':
614    case 'a':
615    case 'A':
616    case 'c':
617    case 'C':
618    case 'S':
619    case 's':
620    case 'p':
621      ++numConversions;
622      CurrentState = state_OrdChr;
623      break;
624
625    // CHECK: Are we using "%n"?  Issue a warning.
626    case 'n': {
627      ++numConversions;
628      CurrentState = state_OrdChr;
629      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
630                                                      LastConversionIdx+1);
631
632      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
633      break;
634    }
635
636    // Handle "%@"
637    case '@':
638      // %@ is allowed in ObjC format strings only.
639      if(ObjCFExpr != NULL)
640        CurrentState = state_OrdChr;
641      else {
642        // Issue a warning: invalid format conversion.
643        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
644                                                    LastConversionIdx+1);
645
646        Diag(Loc, diag::warn_printf_invalid_conversion)
647          <<  std::string(Str+LastConversionIdx,
648                          Str+std::min(LastConversionIdx+2, StrLen))
649          << OrigFormatExpr->getSourceRange();
650      }
651      ++numConversions;
652      break;
653
654    // Handle "%%"
655    case '%':
656      // Sanity check: Was the first "%" character the previous one?
657      // If not, we will assume that we have a malformed format
658      // conversion, and that the current "%" character is the start
659      // of a new conversion.
660      if (StrIdx - LastConversionIdx == 1)
661        CurrentState = state_OrdChr;
662      else {
663        // Issue a warning: invalid format conversion.
664        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
665                                                        LastConversionIdx+1);
666
667        Diag(Loc, diag::warn_printf_invalid_conversion)
668          << std::string(Str+LastConversionIdx, Str+StrIdx)
669          << OrigFormatExpr->getSourceRange();
670
671        // This conversion is broken.  Advance to the next format
672        // conversion.
673        LastConversionIdx = StrIdx;
674        ++numConversions;
675      }
676      break;
677
678    default:
679      // This case catches all other characters: flags, widths, etc.
680      // We should eventually process those as well.
681      break;
682    }
683  }
684
685  if (CurrentState == state_Conversion) {
686    // Issue a warning: invalid format conversion.
687    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
688                                                    LastConversionIdx+1);
689
690    Diag(Loc, diag::warn_printf_invalid_conversion)
691      << std::string(Str+LastConversionIdx,
692                     Str+std::min(LastConversionIdx+2, StrLen))
693      << OrigFormatExpr->getSourceRange();
694    return;
695  }
696
697  if (!HasVAListArg) {
698    // CHECK: Does the number of format conversions exceed the number
699    //        of data arguments?
700    if (numConversions > numDataArgs) {
701      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
702                                                      LastConversionIdx);
703
704      Diag(Loc, diag::warn_printf_insufficient_data_args)
705        << OrigFormatExpr->getSourceRange();
706    }
707    // CHECK: Does the number of data arguments exceed the number of
708    //        format conversions in the format string?
709    else if (numConversions < numDataArgs)
710      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
711           diag::warn_printf_too_many_data_args)
712        << OrigFormatExpr->getSourceRange();
713  }
714}
715
716//===--- CHECK: Return Address of Stack Variable --------------------------===//
717
718static DeclRefExpr* EvalVal(Expr *E);
719static DeclRefExpr* EvalAddr(Expr* E);
720
721/// CheckReturnStackAddr - Check if a return statement returns the address
722///   of a stack variable.
723void
724Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
725                           SourceLocation ReturnLoc) {
726
727  // Perform checking for returned stack addresses.
728  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
729    if (DeclRefExpr *DR = EvalAddr(RetValExp))
730      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
731       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
732
733    // Skip over implicit cast expressions when checking for block expressions.
734    if (ImplicitCastExpr *IcExpr =
735          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
736      RetValExp = IcExpr->getSubExpr();
737
738    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
739      Diag(C->getLocStart(), diag::err_ret_local_block)
740        << C->getSourceRange();
741  }
742  // Perform checking for stack values returned by reference.
743  else if (lhsType->isReferenceType()) {
744    // Check for a reference to the stack
745    if (DeclRefExpr *DR = EvalVal(RetValExp))
746      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
747        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
748  }
749}
750
751/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
752///  check if the expression in a return statement evaluates to an address
753///  to a location on the stack.  The recursion is used to traverse the
754///  AST of the return expression, with recursion backtracking when we
755///  encounter a subexpression that (1) clearly does not lead to the address
756///  of a stack variable or (2) is something we cannot determine leads to
757///  the address of a stack variable based on such local checking.
758///
759///  EvalAddr processes expressions that are pointers that are used as
760///  references (and not L-values).  EvalVal handles all other values.
761///  At the base case of the recursion is a check for a DeclRefExpr* in
762///  the refers to a stack variable.
763///
764///  This implementation handles:
765///
766///   * pointer-to-pointer casts
767///   * implicit conversions from array references to pointers
768///   * taking the address of fields
769///   * arbitrary interplay between "&" and "*" operators
770///   * pointer arithmetic from an address of a stack variable
771///   * taking the address of an array element where the array is on the stack
772static DeclRefExpr* EvalAddr(Expr *E) {
773  // We should only be called for evaluating pointer expressions.
774  assert((E->getType()->isPointerType() ||
775          E->getType()->isBlockPointerType() ||
776          E->getType()->isObjCQualifiedIdType()) &&
777         "EvalAddr only works on pointers");
778
779  // Our "symbolic interpreter" is just a dispatch off the currently
780  // viewed AST node.  We then recursively traverse the AST by calling
781  // EvalAddr and EvalVal appropriately.
782  switch (E->getStmtClass()) {
783  case Stmt::ParenExprClass:
784    // Ignore parentheses.
785    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
786
787  case Stmt::UnaryOperatorClass: {
788    // The only unary operator that make sense to handle here
789    // is AddrOf.  All others don't make sense as pointers.
790    UnaryOperator *U = cast<UnaryOperator>(E);
791
792    if (U->getOpcode() == UnaryOperator::AddrOf)
793      return EvalVal(U->getSubExpr());
794    else
795      return NULL;
796  }
797
798  case Stmt::BinaryOperatorClass: {
799    // Handle pointer arithmetic.  All other binary operators are not valid
800    // in this context.
801    BinaryOperator *B = cast<BinaryOperator>(E);
802    BinaryOperator::Opcode op = B->getOpcode();
803
804    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
805      return NULL;
806
807    Expr *Base = B->getLHS();
808
809    // Determine which argument is the real pointer base.  It could be
810    // the RHS argument instead of the LHS.
811    if (!Base->getType()->isPointerType()) Base = B->getRHS();
812
813    assert (Base->getType()->isPointerType());
814    return EvalAddr(Base);
815  }
816
817  // For conditional operators we need to see if either the LHS or RHS are
818  // valid DeclRefExpr*s.  If one of them is valid, we return it.
819  case Stmt::ConditionalOperatorClass: {
820    ConditionalOperator *C = cast<ConditionalOperator>(E);
821
822    // Handle the GNU extension for missing LHS.
823    if (Expr *lhsExpr = C->getLHS())
824      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
825        return LHS;
826
827     return EvalAddr(C->getRHS());
828  }
829
830  // For casts, we need to handle conversions from arrays to
831  // pointer values, and pointer-to-pointer conversions.
832  case Stmt::ImplicitCastExprClass:
833  case Stmt::CStyleCastExprClass:
834  case Stmt::CXXFunctionalCastExprClass: {
835    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
836    QualType T = SubExpr->getType();
837
838    if (SubExpr->getType()->isPointerType() ||
839        SubExpr->getType()->isBlockPointerType() ||
840        SubExpr->getType()->isObjCQualifiedIdType())
841      return EvalAddr(SubExpr);
842    else if (T->isArrayType())
843      return EvalVal(SubExpr);
844    else
845      return 0;
846  }
847
848  // C++ casts.  For dynamic casts, static casts, and const casts, we
849  // are always converting from a pointer-to-pointer, so we just blow
850  // through the cast.  In the case the dynamic cast doesn't fail (and
851  // return NULL), we take the conservative route and report cases
852  // where we return the address of a stack variable.  For Reinterpre
853  // FIXME: The comment about is wrong; we're not always converting
854  // from pointer to pointer. I'm guessing that this code should also
855  // handle references to objects.
856  case Stmt::CXXStaticCastExprClass:
857  case Stmt::CXXDynamicCastExprClass:
858  case Stmt::CXXConstCastExprClass:
859  case Stmt::CXXReinterpretCastExprClass: {
860      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
861      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
862        return EvalAddr(S);
863      else
864        return NULL;
865  }
866
867  // Everything else: we simply don't reason about them.
868  default:
869    return NULL;
870  }
871}
872
873
874///  EvalVal - This function is complements EvalAddr in the mutual recursion.
875///   See the comments for EvalAddr for more details.
876static DeclRefExpr* EvalVal(Expr *E) {
877
878  // We should only be called for evaluating non-pointer expressions, or
879  // expressions with a pointer type that are not used as references but instead
880  // are l-values (e.g., DeclRefExpr with a pointer type).
881
882  // Our "symbolic interpreter" is just a dispatch off the currently
883  // viewed AST node.  We then recursively traverse the AST by calling
884  // EvalAddr and EvalVal appropriately.
885  switch (E->getStmtClass()) {
886  case Stmt::DeclRefExprClass: {
887    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
888    //  at code that refers to a variable's name.  We check if it has local
889    //  storage within the function, and if so, return the expression.
890    DeclRefExpr *DR = cast<DeclRefExpr>(E);
891
892    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
893      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
894
895    return NULL;
896  }
897
898  case Stmt::ParenExprClass:
899    // Ignore parentheses.
900    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
901
902  case Stmt::UnaryOperatorClass: {
903    // The only unary operator that make sense to handle here
904    // is Deref.  All others don't resolve to a "name."  This includes
905    // handling all sorts of rvalues passed to a unary operator.
906    UnaryOperator *U = cast<UnaryOperator>(E);
907
908    if (U->getOpcode() == UnaryOperator::Deref)
909      return EvalAddr(U->getSubExpr());
910
911    return NULL;
912  }
913
914  case Stmt::ArraySubscriptExprClass: {
915    // Array subscripts are potential references to data on the stack.  We
916    // retrieve the DeclRefExpr* for the array variable if it indeed
917    // has local storage.
918    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
919  }
920
921  case Stmt::ConditionalOperatorClass: {
922    // For conditional operators we need to see if either the LHS or RHS are
923    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
924    ConditionalOperator *C = cast<ConditionalOperator>(E);
925
926    // Handle the GNU extension for missing LHS.
927    if (Expr *lhsExpr = C->getLHS())
928      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
929        return LHS;
930
931    return EvalVal(C->getRHS());
932  }
933
934  // Accesses to members are potential references to data on the stack.
935  case Stmt::MemberExprClass: {
936    MemberExpr *M = cast<MemberExpr>(E);
937
938    // Check for indirect access.  We only want direct field accesses.
939    if (!M->isArrow())
940      return EvalVal(M->getBase());
941    else
942      return NULL;
943  }
944
945  // Everything else: we simply don't reason about them.
946  default:
947    return NULL;
948  }
949}
950
951//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
952
953/// Check for comparisons of floating point operands using != and ==.
954/// Issue a warning if these are no self-comparisons, as they are not likely
955/// to do what the programmer intended.
956void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
957  bool EmitWarning = true;
958
959  Expr* LeftExprSansParen = lex->IgnoreParens();
960  Expr* RightExprSansParen = rex->IgnoreParens();
961
962  // Special case: check for x == x (which is OK).
963  // Do not emit warnings for such cases.
964  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
965    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
966      if (DRL->getDecl() == DRR->getDecl())
967        EmitWarning = false;
968
969
970  // Special case: check for comparisons against literals that can be exactly
971  //  represented by APFloat.  In such cases, do not emit a warning.  This
972  //  is a heuristic: often comparison against such literals are used to
973  //  detect if a value in a variable has not changed.  This clearly can
974  //  lead to false negatives.
975  if (EmitWarning) {
976    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
977      if (FLL->isExact())
978        EmitWarning = false;
979    }
980    else
981      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
982        if (FLR->isExact())
983          EmitWarning = false;
984    }
985  }
986
987  // Check for comparisons with builtin types.
988  if (EmitWarning)
989    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
990      if (isCallBuiltin(CL))
991        EmitWarning = false;
992
993  if (EmitWarning)
994    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
995      if (isCallBuiltin(CR))
996        EmitWarning = false;
997
998  // Emit the diagnostic.
999  if (EmitWarning)
1000    Diag(loc, diag::warn_floatingpoint_eq)
1001      << lex->getSourceRange() << rex->getSourceRange();
1002}
1003