SemaChecking.cpp revision 5ac4dff56e4d241ec47d086fcc646aca4caf9ffd
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22using namespace clang;
23
24/// getLocationOfStringLiteralByte - Return a source location that points to the
25/// specified byte of the specified string literal.
26///
27/// Strings are amazingly complex.  They can be formed from multiple tokens and
28/// can have escape sequences in them in addition to the usual trigraph and
29/// escaped newline business.  This routine handles this complexity.
30///
31SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
32                                                    unsigned ByteNo) const {
33  assert(!SL->isWide() && "This doesn't work for wide strings yet");
34
35  // Loop over all of the tokens in this string until we find the one that
36  // contains the byte we're looking for.
37  unsigned TokNo = 0;
38  while (1) {
39    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
40    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
41
42    // Get the spelling of the string so that we can get the data that makes up
43    // the string literal, not the identifier for the macro it is potentially
44    // expanded through.
45    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
46
47    // Re-lex the token to get its length and original spelling.
48    std::pair<FileID, unsigned> LocInfo =
49      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
50    std::pair<const char *,const char *> Buffer =
51      SourceMgr.getBufferData(LocInfo.first);
52    const char *StrData = Buffer.first+LocInfo.second;
53
54    // Create a langops struct and enable trigraphs.  This is sufficient for
55    // relexing tokens.
56    LangOptions LangOpts;
57    LangOpts.Trigraphs = true;
58
59    // Create a lexer starting at the beginning of this token.
60    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
61                   Buffer.second);
62    Token TheTok;
63    TheLexer.LexFromRawLexer(TheTok);
64
65    // Use the StringLiteralParser to compute the length of the string in bytes.
66    StringLiteralParser SLP(&TheTok, 1, PP);
67    unsigned TokNumBytes = SLP.GetStringLength();
68
69    // If the byte is in this token, return the location of the byte.
70    if (ByteNo < TokNumBytes ||
71        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
72      unsigned Offset =
73        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
74
75      // Now that we know the offset of the token in the spelling, use the
76      // preprocessor to get the offset in the original source.
77      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
78    }
79
80    // Move to the next string token.
81    ++TokNo;
82    ByteNo -= TokNumBytes;
83  }
84}
85
86
87/// CheckFunctionCall - Check a direct function call for various correctness
88/// and safety properties not strictly enforced by the C type system.
89Action::OwningExprResult
90Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
91  OwningExprResult TheCallResult(Owned(TheCall));
92  // Get the IdentifierInfo* for the called function.
93  IdentifierInfo *FnInfo = FDecl->getIdentifier();
94
95  // None of the checks below are needed for functions that don't have
96  // simple names (e.g., C++ conversion functions).
97  if (!FnInfo)
98    return move(TheCallResult);
99
100  switch (FDecl->getBuiltinID(Context)) {
101  case Builtin::BI__builtin___CFStringMakeConstantString:
102    assert(TheCall->getNumArgs() == 1 &&
103           "Wrong # arguments to builtin CFStringMakeConstantString");
104    if (CheckObjCString(TheCall->getArg(0)))
105      return ExprError();
106    return move(TheCallResult);
107  case Builtin::BI__builtin_stdarg_start:
108  case Builtin::BI__builtin_va_start:
109    if (SemaBuiltinVAStart(TheCall))
110      return ExprError();
111    return move(TheCallResult);
112  case Builtin::BI__builtin_isgreater:
113  case Builtin::BI__builtin_isgreaterequal:
114  case Builtin::BI__builtin_isless:
115  case Builtin::BI__builtin_islessequal:
116  case Builtin::BI__builtin_islessgreater:
117  case Builtin::BI__builtin_isunordered:
118    if (SemaBuiltinUnorderedCompare(TheCall))
119      return ExprError();
120    return move(TheCallResult);
121  case Builtin::BI__builtin_return_address:
122  case Builtin::BI__builtin_frame_address:
123    if (SemaBuiltinStackAddress(TheCall))
124      return ExprError();
125    return move(TheCallResult);
126  case Builtin::BI__builtin_shufflevector:
127    return SemaBuiltinShuffleVector(TheCall);
128    // TheCall will be freed by the smart pointer here, but that's fine, since
129    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
130  case Builtin::BI__builtin_prefetch:
131    if (SemaBuiltinPrefetch(TheCall))
132      return ExprError();
133    return move(TheCallResult);
134  case Builtin::BI__builtin_object_size:
135    if (SemaBuiltinObjectSize(TheCall))
136      return ExprError();
137  }
138
139  // FIXME: This mechanism should be abstracted to be less fragile and
140  // more efficient. For example, just map function ids to custom
141  // handlers.
142
143  // Printf checking.
144  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
145    if (Format->getType() == "printf") {
146      bool HasVAListArg = false;
147      if (const FunctionTypeProto *Proto
148          = FDecl->getType()->getAsFunctionTypeProto())
149        HasVAListArg = !Proto->isVariadic();
150      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
151                           Format->getFirstArg() - 1);
152    }
153  }
154
155  return move(TheCallResult);
156}
157
158/// CheckObjCString - Checks that the argument to the builtin
159/// CFString constructor is correct
160bool Sema::CheckObjCString(Expr *Arg) {
161  Arg = Arg->IgnoreParenCasts();
162  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
163
164  if (!Literal || Literal->isWide()) {
165    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
166      << Arg->getSourceRange();
167    return true;
168  }
169
170  const char *Data = Literal->getStrData();
171  unsigned Length = Literal->getByteLength();
172
173  for (unsigned i = 0; i < Length; ++i) {
174    if (!isascii(Data[i])) {
175      Diag(getLocationOfStringLiteralByte(Literal, i),
176           diag::warn_cfstring_literal_contains_non_ascii_character)
177        << Arg->getSourceRange();
178      break;
179    }
180
181    if (!Data[i]) {
182      Diag(getLocationOfStringLiteralByte(Literal, i),
183           diag::warn_cfstring_literal_contains_nul_character)
184        << Arg->getSourceRange();
185      break;
186    }
187  }
188
189  return false;
190}
191
192/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
193/// Emit an error and return true on failure, return false on success.
194bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
195  Expr *Fn = TheCall->getCallee();
196  if (TheCall->getNumArgs() > 2) {
197    Diag(TheCall->getArg(2)->getLocStart(),
198         diag::err_typecheck_call_too_many_args)
199      << 0 /*function call*/ << Fn->getSourceRange()
200      << SourceRange(TheCall->getArg(2)->getLocStart(),
201                     (*(TheCall->arg_end()-1))->getLocEnd());
202    return true;
203  }
204
205  if (TheCall->getNumArgs() < 2) {
206    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
207      << 0 /*function call*/;
208  }
209
210  // Determine whether the current function is variadic or not.
211  bool isVariadic;
212  if (getCurFunctionDecl()) {
213    if (FunctionTypeProto* FTP =
214            dyn_cast<FunctionTypeProto>(getCurFunctionDecl()->getType()))
215      isVariadic = FTP->isVariadic();
216    else
217      isVariadic = false;
218  } else {
219    isVariadic = getCurMethodDecl()->isVariadic();
220  }
221
222  if (!isVariadic) {
223    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
224    return true;
225  }
226
227  // Verify that the second argument to the builtin is the last argument of the
228  // current function or method.
229  bool SecondArgIsLastNamedArgument = false;
230  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
231
232  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
233    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
234      // FIXME: This isn't correct for methods (results in bogus warning).
235      // Get the last formal in the current function.
236      const ParmVarDecl *LastArg;
237      if (FunctionDecl *FD = getCurFunctionDecl())
238        LastArg = *(FD->param_end()-1);
239      else
240        LastArg = *(getCurMethodDecl()->param_end()-1);
241      SecondArgIsLastNamedArgument = PV == LastArg;
242    }
243  }
244
245  if (!SecondArgIsLastNamedArgument)
246    Diag(TheCall->getArg(1)->getLocStart(),
247         diag::warn_second_parameter_of_va_start_not_last_named_argument);
248  return false;
249}
250
251/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
252/// friends.  This is declared to take (...), so we have to check everything.
253bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
254  if (TheCall->getNumArgs() < 2)
255    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
256      << 0 /*function call*/;
257  if (TheCall->getNumArgs() > 2)
258    return Diag(TheCall->getArg(2)->getLocStart(),
259                diag::err_typecheck_call_too_many_args)
260      << 0 /*function call*/
261      << SourceRange(TheCall->getArg(2)->getLocStart(),
262                     (*(TheCall->arg_end()-1))->getLocEnd());
263
264  Expr *OrigArg0 = TheCall->getArg(0);
265  Expr *OrigArg1 = TheCall->getArg(1);
266
267  // Do standard promotions between the two arguments, returning their common
268  // type.
269  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
270
271  // Make sure any conversions are pushed back into the call; this is
272  // type safe since unordered compare builtins are declared as "_Bool
273  // foo(...)".
274  TheCall->setArg(0, OrigArg0);
275  TheCall->setArg(1, OrigArg1);
276
277  // If the common type isn't a real floating type, then the arguments were
278  // invalid for this operation.
279  if (!Res->isRealFloatingType())
280    return Diag(OrigArg0->getLocStart(),
281                diag::err_typecheck_call_invalid_ordered_compare)
282      << OrigArg0->getType() << OrigArg1->getType()
283      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
284
285  return false;
286}
287
288bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
289  // The signature for these builtins is exact; the only thing we need
290  // to check is that the argument is a constant.
291  SourceLocation Loc;
292  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
293    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
294
295  return false;
296}
297
298/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
299// This is declared to take (...), so we have to check everything.
300Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
301  if (TheCall->getNumArgs() < 3)
302    return ExprError(Diag(TheCall->getLocEnd(),
303                          diag::err_typecheck_call_too_few_args)
304      << 0 /*function call*/ << TheCall->getSourceRange());
305
306  QualType FAType = TheCall->getArg(0)->getType();
307  QualType SAType = TheCall->getArg(1)->getType();
308
309  if (!FAType->isVectorType() || !SAType->isVectorType()) {
310    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
311      << SourceRange(TheCall->getArg(0)->getLocStart(),
312                     TheCall->getArg(1)->getLocEnd());
313    return ExprError();
314  }
315
316  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
317      Context.getCanonicalType(SAType).getUnqualifiedType()) {
318    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
319      << SourceRange(TheCall->getArg(0)->getLocStart(),
320                     TheCall->getArg(1)->getLocEnd());
321    return ExprError();
322  }
323
324  unsigned numElements = FAType->getAsVectorType()->getNumElements();
325  if (TheCall->getNumArgs() != numElements+2) {
326    if (TheCall->getNumArgs() < numElements+2)
327      return ExprError(Diag(TheCall->getLocEnd(),
328                            diag::err_typecheck_call_too_few_args)
329               << 0 /*function call*/ << TheCall->getSourceRange());
330    return ExprError(Diag(TheCall->getLocEnd(),
331                          diag::err_typecheck_call_too_many_args)
332             << 0 /*function call*/ << TheCall->getSourceRange());
333  }
334
335  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
336    llvm::APSInt Result(32);
337    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
338      return ExprError(Diag(TheCall->getLocStart(),
339                  diag::err_shufflevector_nonconstant_argument)
340                << TheCall->getArg(i)->getSourceRange());
341
342    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
343      return ExprError(Diag(TheCall->getLocStart(),
344                  diag::err_shufflevector_argument_too_large)
345               << TheCall->getArg(i)->getSourceRange());
346  }
347
348  llvm::SmallVector<Expr*, 32> exprs;
349
350  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
351    exprs.push_back(TheCall->getArg(i));
352    TheCall->setArg(i, 0);
353  }
354
355  return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), numElements+2,
356                                            FAType,
357                                            TheCall->getCallee()->getLocStart(),
358                                            TheCall->getRParenLoc()));
359}
360
361/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
362// This is declared to take (const void*, ...) and can take two
363// optional constant int args.
364bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
365  unsigned NumArgs = TheCall->getNumArgs();
366
367  if (NumArgs > 3)
368    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
369             << 0 /*function call*/ << TheCall->getSourceRange();
370
371  // Argument 0 is checked for us and the remaining arguments must be
372  // constant integers.
373  for (unsigned i = 1; i != NumArgs; ++i) {
374    Expr *Arg = TheCall->getArg(i);
375    QualType RWType = Arg->getType();
376
377    const BuiltinType *BT = RWType->getAsBuiltinType();
378    llvm::APSInt Result;
379    if (!BT || BT->getKind() != BuiltinType::Int ||
380        !Arg->isIntegerConstantExpr(Result, Context))
381      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
382              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
383
384    // FIXME: gcc issues a warning and rewrites these to 0. These
385    // seems especially odd for the third argument since the default
386    // is 3.
387    if (i == 1) {
388      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
389        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
390             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
391    } else {
392      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
393        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
394            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
395    }
396  }
397
398  return false;
399}
400
401/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
402/// int type). This simply type checks that type is one of the defined
403/// constants (0-3).
404bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
405  Expr *Arg = TheCall->getArg(1);
406  QualType ArgType = Arg->getType();
407  const BuiltinType *BT = ArgType->getAsBuiltinType();
408  llvm::APSInt Result(32);
409  if (!BT || BT->getKind() != BuiltinType::Int ||
410      !Arg->isIntegerConstantExpr(Result, Context)) {
411    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
412             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
413  }
414
415  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
416    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
417             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
418  }
419
420  return false;
421}
422
423// Handle i > 1 ? "x" : "y", recursivelly
424bool Sema::SemaCheckStringLiteral(Expr *E, CallExpr *TheCall, bool HasVAListArg,
425                                  unsigned format_idx, unsigned firstDataArg) {
426
427  switch (E->getStmtClass()) {
428  case Stmt::ConditionalOperatorClass: {
429    ConditionalOperator *C = cast<ConditionalOperator>(E);
430    return SemaCheckStringLiteral(C->getLHS(), TheCall,
431                                  HasVAListArg, format_idx, firstDataArg)
432        && SemaCheckStringLiteral(C->getRHS(), TheCall,
433                                  HasVAListArg, format_idx, firstDataArg);
434  }
435
436  case Stmt::ImplicitCastExprClass: {
437    ImplicitCastExpr *Expr = dyn_cast<ImplicitCastExpr>(E);
438    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
439                                  format_idx, firstDataArg);
440  }
441
442  case Stmt::ParenExprClass: {
443    ParenExpr *Expr = dyn_cast<ParenExpr>(E);
444    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
445                                  format_idx, firstDataArg);
446  }
447
448  default: {
449    ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E);
450    StringLiteral *StrE = NULL;
451
452    if (ObjCFExpr)
453      StrE = ObjCFExpr->getString();
454    else
455      StrE = dyn_cast<StringLiteral>(E);
456
457    if (StrE) {
458      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
459                        firstDataArg);
460      return true;
461    }
462
463    return false;
464  }
465  }
466}
467
468
469/// CheckPrintfArguments - Check calls to printf (and similar functions) for
470/// correct use of format strings.
471///
472///  HasVAListArg - A predicate indicating whether the printf-like
473///    function is passed an explicit va_arg argument (e.g., vprintf)
474///
475///  format_idx - The index into Args for the format string.
476///
477/// Improper format strings to functions in the printf family can be
478/// the source of bizarre bugs and very serious security holes.  A
479/// good source of information is available in the following paper
480/// (which includes additional references):
481///
482///  FormatGuard: Automatic Protection From printf Format String
483///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
484///
485/// Functionality implemented:
486///
487///  We can statically check the following properties for string
488///  literal format strings for non v.*printf functions (where the
489///  arguments are passed directly):
490//
491///  (1) Are the number of format conversions equal to the number of
492///      data arguments?
493///
494///  (2) Does each format conversion correctly match the type of the
495///      corresponding data argument?  (TODO)
496///
497/// Moreover, for all printf functions we can:
498///
499///  (3) Check for a missing format string (when not caught by type checking).
500///
501///  (4) Check for no-operation flags; e.g. using "#" with format
502///      conversion 'c'  (TODO)
503///
504///  (5) Check the use of '%n', a major source of security holes.
505///
506///  (6) Check for malformed format conversions that don't specify anything.
507///
508///  (7) Check for empty format strings.  e.g: printf("");
509///
510///  (8) Check that the format string is a wide literal.
511///
512///  (9) Also check the arguments of functions with the __format__ attribute.
513///      (TODO).
514///
515/// All of these checks can be done by parsing the format string.
516///
517/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
518void
519Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
520                           unsigned format_idx, unsigned firstDataArg) {
521  Expr *Fn = TheCall->getCallee();
522
523  // CHECK: printf-like function is called with no format string.
524  if (format_idx >= TheCall->getNumArgs()) {
525    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
526      << Fn->getSourceRange();
527    return;
528  }
529
530  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
531
532  // CHECK: format string is not a string literal.
533  //
534  // Dynamically generated format strings are difficult to
535  // automatically vet at compile time.  Requiring that format strings
536  // are string literals: (1) permits the checking of format strings by
537  // the compiler and thereby (2) can practically remove the source of
538  // many format string exploits.
539
540  // Format string can be either ObjC string (e.g. @"%d") or
541  // C string (e.g. "%d")
542  // ObjC string uses the same format specifiers as C string, so we can use
543  // the same format string checking logic for both ObjC and C strings.
544  bool isFExpr = SemaCheckStringLiteral(OrigFormatExpr, TheCall,
545                                        HasVAListArg, format_idx,
546                                        firstDataArg);
547
548  if (!isFExpr) {
549    // For vprintf* functions (i.e., HasVAListArg==true), we add a
550    // special check to see if the format string is a function parameter
551    // of the function calling the printf function.  If the function
552    // has an attribute indicating it is a printf-like function, then we
553    // should suppress warnings concerning non-literals being used in a call
554    // to a vprintf function.  For example:
555    //
556    // void
557    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
558    //      va_list ap;
559    //      va_start(ap, fmt);
560    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
561    //      ...
562    //
563    //
564    //  FIXME: We don't have full attribute support yet, so just check to see
565    //    if the argument is a DeclRefExpr that references a parameter.  We'll
566    //    add proper support for checking the attribute later.
567    if (HasVAListArg)
568      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
569        if (isa<ParmVarDecl>(DR->getDecl()))
570          return;
571
572    Diag(TheCall->getArg(format_idx)->getLocStart(),
573         diag::warn_printf_not_string_constant)
574      << OrigFormatExpr->getSourceRange();
575    return;
576  }
577}
578
579void Sema::CheckPrintfString(StringLiteral *FExpr, Expr *OrigFormatExpr,
580      CallExpr *TheCall, bool HasVAListArg, unsigned format_idx,
581                             unsigned firstDataArg) {
582
583  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
584  // CHECK: is the format string a wide literal?
585  if (FExpr->isWide()) {
586    Diag(FExpr->getLocStart(),
587         diag::warn_printf_format_string_is_wide_literal)
588      << OrigFormatExpr->getSourceRange();
589    return;
590  }
591
592  // Str - The format string.  NOTE: this is NOT null-terminated!
593  const char * const Str = FExpr->getStrData();
594
595  // CHECK: empty format string?
596  const unsigned StrLen = FExpr->getByteLength();
597
598  if (StrLen == 0) {
599    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
600      << OrigFormatExpr->getSourceRange();
601    return;
602  }
603
604  // We process the format string using a binary state machine.  The
605  // current state is stored in CurrentState.
606  enum {
607    state_OrdChr,
608    state_Conversion
609  } CurrentState = state_OrdChr;
610
611  // numConversions - The number of conversions seen so far.  This is
612  //  incremented as we traverse the format string.
613  unsigned numConversions = 0;
614
615  // numDataArgs - The number of data arguments after the format
616  //  string.  This can only be determined for non vprintf-like
617  //  functions.  For those functions, this value is 1 (the sole
618  //  va_arg argument).
619  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
620
621  // Inspect the format string.
622  unsigned StrIdx = 0;
623
624  // LastConversionIdx - Index within the format string where we last saw
625  //  a '%' character that starts a new format conversion.
626  unsigned LastConversionIdx = 0;
627
628  for (; StrIdx < StrLen; ++StrIdx) {
629
630    // Is the number of detected conversion conversions greater than
631    // the number of matching data arguments?  If so, stop.
632    if (!HasVAListArg && numConversions > numDataArgs) break;
633
634    // Handle "\0"
635    if (Str[StrIdx] == '\0') {
636      // The string returned by getStrData() is not null-terminated,
637      // so the presence of a null character is likely an error.
638      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
639           diag::warn_printf_format_string_contains_null_char)
640        <<  OrigFormatExpr->getSourceRange();
641      return;
642    }
643
644    // Ordinary characters (not processing a format conversion).
645    if (CurrentState == state_OrdChr) {
646      if (Str[StrIdx] == '%') {
647        CurrentState = state_Conversion;
648        LastConversionIdx = StrIdx;
649      }
650      continue;
651    }
652
653    // Seen '%'.  Now processing a format conversion.
654    switch (Str[StrIdx]) {
655    // Handle dynamic precision or width specifier.
656    case '*': {
657      ++numConversions;
658
659      if (!HasVAListArg && numConversions > numDataArgs) {
660        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
661
662        if (Str[StrIdx-1] == '.')
663          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
664            << OrigFormatExpr->getSourceRange();
665        else
666          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
667            << OrigFormatExpr->getSourceRange();
668
669        // Don't do any more checking.  We'll just emit spurious errors.
670        return;
671      }
672
673      // Perform type checking on width/precision specifier.
674      Expr *E = TheCall->getArg(format_idx+numConversions);
675      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
676        if (BT->getKind() == BuiltinType::Int)
677          break;
678
679      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
680
681      if (Str[StrIdx-1] == '.')
682        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
683          << E->getType() << E->getSourceRange();
684      else
685        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
686          << E->getType() << E->getSourceRange();
687
688      break;
689    }
690
691    // Characters which can terminate a format conversion
692    // (e.g. "%d").  Characters that specify length modifiers or
693    // other flags are handled by the default case below.
694    //
695    // FIXME: additional checks will go into the following cases.
696    case 'i':
697    case 'd':
698    case 'o':
699    case 'u':
700    case 'x':
701    case 'X':
702    case 'D':
703    case 'O':
704    case 'U':
705    case 'e':
706    case 'E':
707    case 'f':
708    case 'F':
709    case 'g':
710    case 'G':
711    case 'a':
712    case 'A':
713    case 'c':
714    case 'C':
715    case 'S':
716    case 's':
717    case 'p':
718      ++numConversions;
719      CurrentState = state_OrdChr;
720      break;
721
722    // CHECK: Are we using "%n"?  Issue a warning.
723    case 'n': {
724      ++numConversions;
725      CurrentState = state_OrdChr;
726      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
727                                                          LastConversionIdx);
728
729      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
730      break;
731    }
732
733    // Handle "%@"
734    case '@':
735      // %@ is allowed in ObjC format strings only.
736      if(ObjCFExpr != NULL)
737        CurrentState = state_OrdChr;
738      else {
739        // Issue a warning: invalid format conversion.
740        SourceLocation Loc =
741          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
742
743        Diag(Loc, diag::warn_printf_invalid_conversion)
744          <<  std::string(Str+LastConversionIdx,
745                          Str+std::min(LastConversionIdx+2, StrLen))
746          << OrigFormatExpr->getSourceRange();
747      }
748      ++numConversions;
749      break;
750
751    // Handle "%%"
752    case '%':
753      // Sanity check: Was the first "%" character the previous one?
754      // If not, we will assume that we have a malformed format
755      // conversion, and that the current "%" character is the start
756      // of a new conversion.
757      if (StrIdx - LastConversionIdx == 1)
758        CurrentState = state_OrdChr;
759      else {
760        // Issue a warning: invalid format conversion.
761        SourceLocation Loc =
762          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
763
764        Diag(Loc, diag::warn_printf_invalid_conversion)
765          << std::string(Str+LastConversionIdx, Str+StrIdx)
766          << OrigFormatExpr->getSourceRange();
767
768        // This conversion is broken.  Advance to the next format
769        // conversion.
770        LastConversionIdx = StrIdx;
771        ++numConversions;
772      }
773      break;
774
775    default:
776      // This case catches all other characters: flags, widths, etc.
777      // We should eventually process those as well.
778      break;
779    }
780  }
781
782  if (CurrentState == state_Conversion) {
783    // Issue a warning: invalid format conversion.
784    SourceLocation Loc =
785      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
786
787    Diag(Loc, diag::warn_printf_invalid_conversion)
788      << std::string(Str+LastConversionIdx,
789                     Str+std::min(LastConversionIdx+2, StrLen))
790      << OrigFormatExpr->getSourceRange();
791    return;
792  }
793
794  if (!HasVAListArg) {
795    // CHECK: Does the number of format conversions exceed the number
796    //        of data arguments?
797    if (numConversions > numDataArgs) {
798      SourceLocation Loc =
799        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
800
801      Diag(Loc, diag::warn_printf_insufficient_data_args)
802        << OrigFormatExpr->getSourceRange();
803    }
804    // CHECK: Does the number of data arguments exceed the number of
805    //        format conversions in the format string?
806    else if (numConversions < numDataArgs)
807      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
808           diag::warn_printf_too_many_data_args)
809        << OrigFormatExpr->getSourceRange();
810  }
811}
812
813//===--- CHECK: Return Address of Stack Variable --------------------------===//
814
815static DeclRefExpr* EvalVal(Expr *E);
816static DeclRefExpr* EvalAddr(Expr* E);
817
818/// CheckReturnStackAddr - Check if a return statement returns the address
819///   of a stack variable.
820void
821Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
822                           SourceLocation ReturnLoc) {
823
824  // Perform checking for returned stack addresses.
825  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
826    if (DeclRefExpr *DR = EvalAddr(RetValExp))
827      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
828       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
829
830    // Skip over implicit cast expressions when checking for block expressions.
831    if (ImplicitCastExpr *IcExpr =
832          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
833      RetValExp = IcExpr->getSubExpr();
834
835    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
836      Diag(C->getLocStart(), diag::err_ret_local_block)
837        << C->getSourceRange();
838  }
839  // Perform checking for stack values returned by reference.
840  else if (lhsType->isReferenceType()) {
841    // Check for a reference to the stack
842    if (DeclRefExpr *DR = EvalVal(RetValExp))
843      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
844        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
845  }
846}
847
848/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
849///  check if the expression in a return statement evaluates to an address
850///  to a location on the stack.  The recursion is used to traverse the
851///  AST of the return expression, with recursion backtracking when we
852///  encounter a subexpression that (1) clearly does not lead to the address
853///  of a stack variable or (2) is something we cannot determine leads to
854///  the address of a stack variable based on such local checking.
855///
856///  EvalAddr processes expressions that are pointers that are used as
857///  references (and not L-values).  EvalVal handles all other values.
858///  At the base case of the recursion is a check for a DeclRefExpr* in
859///  the refers to a stack variable.
860///
861///  This implementation handles:
862///
863///   * pointer-to-pointer casts
864///   * implicit conversions from array references to pointers
865///   * taking the address of fields
866///   * arbitrary interplay between "&" and "*" operators
867///   * pointer arithmetic from an address of a stack variable
868///   * taking the address of an array element where the array is on the stack
869static DeclRefExpr* EvalAddr(Expr *E) {
870  // We should only be called for evaluating pointer expressions.
871  assert((E->getType()->isPointerType() ||
872          E->getType()->isBlockPointerType() ||
873          E->getType()->isObjCQualifiedIdType()) &&
874         "EvalAddr only works on pointers");
875
876  // Our "symbolic interpreter" is just a dispatch off the currently
877  // viewed AST node.  We then recursively traverse the AST by calling
878  // EvalAddr and EvalVal appropriately.
879  switch (E->getStmtClass()) {
880  case Stmt::ParenExprClass:
881    // Ignore parentheses.
882    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
883
884  case Stmt::UnaryOperatorClass: {
885    // The only unary operator that make sense to handle here
886    // is AddrOf.  All others don't make sense as pointers.
887    UnaryOperator *U = cast<UnaryOperator>(E);
888
889    if (U->getOpcode() == UnaryOperator::AddrOf)
890      return EvalVal(U->getSubExpr());
891    else
892      return NULL;
893  }
894
895  case Stmt::BinaryOperatorClass: {
896    // Handle pointer arithmetic.  All other binary operators are not valid
897    // in this context.
898    BinaryOperator *B = cast<BinaryOperator>(E);
899    BinaryOperator::Opcode op = B->getOpcode();
900
901    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
902      return NULL;
903
904    Expr *Base = B->getLHS();
905
906    // Determine which argument is the real pointer base.  It could be
907    // the RHS argument instead of the LHS.
908    if (!Base->getType()->isPointerType()) Base = B->getRHS();
909
910    assert (Base->getType()->isPointerType());
911    return EvalAddr(Base);
912  }
913
914  // For conditional operators we need to see if either the LHS or RHS are
915  // valid DeclRefExpr*s.  If one of them is valid, we return it.
916  case Stmt::ConditionalOperatorClass: {
917    ConditionalOperator *C = cast<ConditionalOperator>(E);
918
919    // Handle the GNU extension for missing LHS.
920    if (Expr *lhsExpr = C->getLHS())
921      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
922        return LHS;
923
924     return EvalAddr(C->getRHS());
925  }
926
927  // For casts, we need to handle conversions from arrays to
928  // pointer values, and pointer-to-pointer conversions.
929  case Stmt::ImplicitCastExprClass:
930  case Stmt::CStyleCastExprClass:
931  case Stmt::CXXFunctionalCastExprClass: {
932    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
933    QualType T = SubExpr->getType();
934
935    if (SubExpr->getType()->isPointerType() ||
936        SubExpr->getType()->isBlockPointerType() ||
937        SubExpr->getType()->isObjCQualifiedIdType())
938      return EvalAddr(SubExpr);
939    else if (T->isArrayType())
940      return EvalVal(SubExpr);
941    else
942      return 0;
943  }
944
945  // C++ casts.  For dynamic casts, static casts, and const casts, we
946  // are always converting from a pointer-to-pointer, so we just blow
947  // through the cast.  In the case the dynamic cast doesn't fail (and
948  // return NULL), we take the conservative route and report cases
949  // where we return the address of a stack variable.  For Reinterpre
950  // FIXME: The comment about is wrong; we're not always converting
951  // from pointer to pointer. I'm guessing that this code should also
952  // handle references to objects.
953  case Stmt::CXXStaticCastExprClass:
954  case Stmt::CXXDynamicCastExprClass:
955  case Stmt::CXXConstCastExprClass:
956  case Stmt::CXXReinterpretCastExprClass: {
957      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
958      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
959        return EvalAddr(S);
960      else
961        return NULL;
962  }
963
964  // Everything else: we simply don't reason about them.
965  default:
966    return NULL;
967  }
968}
969
970
971///  EvalVal - This function is complements EvalAddr in the mutual recursion.
972///   See the comments for EvalAddr for more details.
973static DeclRefExpr* EvalVal(Expr *E) {
974
975  // We should only be called for evaluating non-pointer expressions, or
976  // expressions with a pointer type that are not used as references but instead
977  // are l-values (e.g., DeclRefExpr with a pointer type).
978
979  // Our "symbolic interpreter" is just a dispatch off the currently
980  // viewed AST node.  We then recursively traverse the AST by calling
981  // EvalAddr and EvalVal appropriately.
982  switch (E->getStmtClass()) {
983  case Stmt::DeclRefExprClass:
984  case Stmt::QualifiedDeclRefExprClass: {
985    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
986    //  at code that refers to a variable's name.  We check if it has local
987    //  storage within the function, and if so, return the expression.
988    DeclRefExpr *DR = cast<DeclRefExpr>(E);
989
990    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
991      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
992
993    return NULL;
994  }
995
996  case Stmt::ParenExprClass:
997    // Ignore parentheses.
998    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
999
1000  case Stmt::UnaryOperatorClass: {
1001    // The only unary operator that make sense to handle here
1002    // is Deref.  All others don't resolve to a "name."  This includes
1003    // handling all sorts of rvalues passed to a unary operator.
1004    UnaryOperator *U = cast<UnaryOperator>(E);
1005
1006    if (U->getOpcode() == UnaryOperator::Deref)
1007      return EvalAddr(U->getSubExpr());
1008
1009    return NULL;
1010  }
1011
1012  case Stmt::ArraySubscriptExprClass: {
1013    // Array subscripts are potential references to data on the stack.  We
1014    // retrieve the DeclRefExpr* for the array variable if it indeed
1015    // has local storage.
1016    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1017  }
1018
1019  case Stmt::ConditionalOperatorClass: {
1020    // For conditional operators we need to see if either the LHS or RHS are
1021    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1022    ConditionalOperator *C = cast<ConditionalOperator>(E);
1023
1024    // Handle the GNU extension for missing LHS.
1025    if (Expr *lhsExpr = C->getLHS())
1026      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1027        return LHS;
1028
1029    return EvalVal(C->getRHS());
1030  }
1031
1032  // Accesses to members are potential references to data on the stack.
1033  case Stmt::MemberExprClass: {
1034    MemberExpr *M = cast<MemberExpr>(E);
1035
1036    // Check for indirect access.  We only want direct field accesses.
1037    if (!M->isArrow())
1038      return EvalVal(M->getBase());
1039    else
1040      return NULL;
1041  }
1042
1043  // Everything else: we simply don't reason about them.
1044  default:
1045    return NULL;
1046  }
1047}
1048
1049//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1050
1051/// Check for comparisons of floating point operands using != and ==.
1052/// Issue a warning if these are no self-comparisons, as they are not likely
1053/// to do what the programmer intended.
1054void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1055  bool EmitWarning = true;
1056
1057  Expr* LeftExprSansParen = lex->IgnoreParens();
1058  Expr* RightExprSansParen = rex->IgnoreParens();
1059
1060  // Special case: check for x == x (which is OK).
1061  // Do not emit warnings for such cases.
1062  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1063    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1064      if (DRL->getDecl() == DRR->getDecl())
1065        EmitWarning = false;
1066
1067
1068  // Special case: check for comparisons against literals that can be exactly
1069  //  represented by APFloat.  In such cases, do not emit a warning.  This
1070  //  is a heuristic: often comparison against such literals are used to
1071  //  detect if a value in a variable has not changed.  This clearly can
1072  //  lead to false negatives.
1073  if (EmitWarning) {
1074    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1075      if (FLL->isExact())
1076        EmitWarning = false;
1077    }
1078    else
1079      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1080        if (FLR->isExact())
1081          EmitWarning = false;
1082    }
1083  }
1084
1085  // Check for comparisons with builtin types.
1086  if (EmitWarning)
1087    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1088      if (CL->isBuiltinCall(Context))
1089        EmitWarning = false;
1090
1091  if (EmitWarning)
1092    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1093      if (CR->isBuiltinCall(Context))
1094        EmitWarning = false;
1095
1096  // Emit the diagnostic.
1097  if (EmitWarning)
1098    Diag(loc, diag::warn_floatingpoint_eq)
1099      << lex->getSourceRange() << rex->getSourceRange();
1100}
1101