SemaChecking.cpp revision 5baba9d98364a3525d6afa15a04cdad82fd6dd30
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Analysis/Analyses/FormatString.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Lex/LiteralSupport.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "clang/Basic/TargetBuiltins.h"
33#include "clang/Basic/TargetInfo.h"
34#include <limits>
35using namespace clang;
36using namespace sema;
37
38/// getLocationOfStringLiteralByte - Return a source location that points to the
39/// specified byte of the specified string literal.
40///
41/// Strings are amazingly complex.  They can be formed from multiple tokens and
42/// can have escape sequences in them in addition to the usual trigraph and
43/// escaped newline business.  This routine handles this complexity.
44///
45SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
46                                                    unsigned ByteNo) const {
47  assert(!SL->isWide() && "This doesn't work for wide strings yet");
48
49  // Loop over all of the tokens in this string until we find the one that
50  // contains the byte we're looking for.
51  unsigned TokNo = 0;
52  while (1) {
53    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
54    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
55
56    // Get the spelling of the string so that we can get the data that makes up
57    // the string literal, not the identifier for the macro it is potentially
58    // expanded through.
59    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
60
61    // Re-lex the token to get its length and original spelling.
62    std::pair<FileID, unsigned> LocInfo =
63      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
64    bool Invalid = false;
65    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
66    if (Invalid)
67      return StrTokSpellingLoc;
68
69    const char *StrData = Buffer.data()+LocInfo.second;
70
71    // Create a langops struct and enable trigraphs.  This is sufficient for
72    // relexing tokens.
73    LangOptions LangOpts;
74    LangOpts.Trigraphs = true;
75
76    // Create a lexer starting at the beginning of this token.
77    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
78                   Buffer.end());
79    Token TheTok;
80    TheLexer.LexFromRawLexer(TheTok);
81
82    // Use the StringLiteralParser to compute the length of the string in bytes.
83    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
84    unsigned TokNumBytes = SLP.GetStringLength();
85
86    // If the byte is in this token, return the location of the byte.
87    if (ByteNo < TokNumBytes ||
88        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
89      unsigned Offset =
90        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
91                                                   /*Complain=*/false);
92
93      // Now that we know the offset of the token in the spelling, use the
94      // preprocessor to get the offset in the original source.
95      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
96    }
97
98    // Move to the next string token.
99    ++TokNo;
100    ByteNo -= TokNumBytes;
101  }
102}
103
104/// CheckablePrintfAttr - does a function call have a "printf" attribute
105/// and arguments that merit checking?
106bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
107  if (Format->getType() == "printf") return true;
108  if (Format->getType() == "printf0") {
109    // printf0 allows null "format" string; if so don't check format/args
110    unsigned format_idx = Format->getFormatIdx() - 1;
111    // Does the index refer to the implicit object argument?
112    if (isa<CXXMemberCallExpr>(TheCall)) {
113      if (format_idx == 0)
114        return false;
115      --format_idx;
116    }
117    if (format_idx < TheCall->getNumArgs()) {
118      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
119      if (!Format->isNullPointerConstant(Context,
120                                         Expr::NPC_ValueDependentIsNull))
121        return true;
122    }
123  }
124  return false;
125}
126
127ExprResult
128Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
129  ExprResult TheCallResult(Owned(TheCall));
130
131  switch (BuiltinID) {
132  case Builtin::BI__builtin___CFStringMakeConstantString:
133    assert(TheCall->getNumArgs() == 1 &&
134           "Wrong # arguments to builtin CFStringMakeConstantString");
135    if (CheckObjCString(TheCall->getArg(0)))
136      return ExprError();
137    break;
138  case Builtin::BI__builtin_stdarg_start:
139  case Builtin::BI__builtin_va_start:
140    if (SemaBuiltinVAStart(TheCall))
141      return ExprError();
142    break;
143  case Builtin::BI__builtin_isgreater:
144  case Builtin::BI__builtin_isgreaterequal:
145  case Builtin::BI__builtin_isless:
146  case Builtin::BI__builtin_islessequal:
147  case Builtin::BI__builtin_islessgreater:
148  case Builtin::BI__builtin_isunordered:
149    if (SemaBuiltinUnorderedCompare(TheCall))
150      return ExprError();
151    break;
152  case Builtin::BI__builtin_fpclassify:
153    if (SemaBuiltinFPClassification(TheCall, 6))
154      return ExprError();
155    break;
156  case Builtin::BI__builtin_isfinite:
157  case Builtin::BI__builtin_isinf:
158  case Builtin::BI__builtin_isinf_sign:
159  case Builtin::BI__builtin_isnan:
160  case Builtin::BI__builtin_isnormal:
161    if (SemaBuiltinFPClassification(TheCall, 1))
162      return ExprError();
163    break;
164  case Builtin::BI__builtin_return_address:
165  case Builtin::BI__builtin_frame_address: {
166    llvm::APSInt Result;
167    if (SemaBuiltinConstantArg(TheCall, 0, Result))
168      return ExprError();
169    break;
170  }
171  case Builtin::BI__builtin_eh_return_data_regno: {
172    llvm::APSInt Result;
173    if (SemaBuiltinConstantArg(TheCall, 0, Result))
174      return ExprError();
175    break;
176  }
177  case Builtin::BI__builtin_shufflevector:
178    return SemaBuiltinShuffleVector(TheCall);
179    // TheCall will be freed by the smart pointer here, but that's fine, since
180    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
181  case Builtin::BI__builtin_prefetch:
182    if (SemaBuiltinPrefetch(TheCall))
183      return ExprError();
184    break;
185  case Builtin::BI__builtin_object_size:
186    if (SemaBuiltinObjectSize(TheCall))
187      return ExprError();
188    break;
189  case Builtin::BI__builtin_longjmp:
190    if (SemaBuiltinLongjmp(TheCall))
191      return ExprError();
192    break;
193  case Builtin::BI__sync_fetch_and_add:
194  case Builtin::BI__sync_fetch_and_sub:
195  case Builtin::BI__sync_fetch_and_or:
196  case Builtin::BI__sync_fetch_and_and:
197  case Builtin::BI__sync_fetch_and_xor:
198  case Builtin::BI__sync_add_and_fetch:
199  case Builtin::BI__sync_sub_and_fetch:
200  case Builtin::BI__sync_and_and_fetch:
201  case Builtin::BI__sync_or_and_fetch:
202  case Builtin::BI__sync_xor_and_fetch:
203  case Builtin::BI__sync_val_compare_and_swap:
204  case Builtin::BI__sync_bool_compare_and_swap:
205  case Builtin::BI__sync_lock_test_and_set:
206  case Builtin::BI__sync_lock_release:
207    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
208  }
209
210  // Since the target specific builtins for each arch overlap, only check those
211  // of the arch we are compiling for.
212  if (BuiltinID >= Builtin::FirstTSBuiltin) {
213    switch (Context.Target.getTriple().getArch()) {
214      case llvm::Triple::arm:
215      case llvm::Triple::thumb:
216        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
217          return ExprError();
218        break;
219      case llvm::Triple::x86:
220      case llvm::Triple::x86_64:
221        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
222          return ExprError();
223        break;
224      default:
225        break;
226    }
227  }
228
229  return move(TheCallResult);
230}
231
232bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
233  switch (BuiltinID) {
234  case X86::BI__builtin_ia32_palignr128:
235  case X86::BI__builtin_ia32_palignr: {
236    llvm::APSInt Result;
237    if (SemaBuiltinConstantArg(TheCall, 2, Result))
238      return true;
239    break;
240  }
241  }
242  return false;
243}
244
245// Get the valid immediate range for the specified NEON type code.
246static unsigned RFT(unsigned t, bool shift = false) {
247  bool quad = t & 0x10;
248
249  switch (t & 0x7) {
250    case 0: // i8
251      return shift ? 7 : (8 << (int)quad) - 1;
252    case 1: // i16
253      return shift ? 15 : (4 << (int)quad) - 1;
254    case 2: // i32
255      return shift ? 31 : (2 << (int)quad) - 1;
256    case 3: // i64
257      return shift ? 63 : (1 << (int)quad) - 1;
258    case 4: // f32
259      assert(!shift && "cannot shift float types!");
260      return (2 << (int)quad) - 1;
261    case 5: // poly8
262      assert(!shift && "cannot shift polynomial types!");
263      return (8 << (int)quad) - 1;
264    case 6: // poly16
265      assert(!shift && "cannot shift polynomial types!");
266      return (4 << (int)quad) - 1;
267    case 7: // float16
268      assert(!shift && "cannot shift float types!");
269      return (4 << (int)quad) - 1;
270  }
271  return 0;
272}
273
274bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
275  llvm::APSInt Result;
276
277  unsigned mask = 0;
278  unsigned TV = 0;
279  switch (BuiltinID) {
280#define GET_NEON_OVERLOAD_CHECK
281#include "clang/Basic/arm_neon.inc"
282#undef GET_NEON_OVERLOAD_CHECK
283  }
284
285  // For NEON intrinsics which are overloaded on vector element type, validate
286  // the immediate which specifies which variant to emit.
287  if (mask) {
288    unsigned ArgNo = TheCall->getNumArgs()-1;
289    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
290      return true;
291
292    TV = Result.getLimitedValue(32);
293    if ((TV > 31) || (mask & (1 << TV)) == 0)
294      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
295        << TheCall->getArg(ArgNo)->getSourceRange();
296  }
297
298  // For NEON intrinsics which take an immediate value as part of the
299  // instruction, range check them here.
300  unsigned i = 0, l = 0, u = 0;
301  switch (BuiltinID) {
302  default: return false;
303  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
304  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
305  case ARM::BI__builtin_arm_vcvtr_f:
306  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
307#define GET_NEON_IMMEDIATE_CHECK
308#include "clang/Basic/arm_neon.inc"
309#undef GET_NEON_IMMEDIATE_CHECK
310  };
311
312  // Check that the immediate argument is actually a constant.
313  if (SemaBuiltinConstantArg(TheCall, i, Result))
314    return true;
315
316  // Range check against the upper/lower values for this isntruction.
317  unsigned Val = Result.getZExtValue();
318  if (Val < l || Val > (u + l))
319    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
320      << l << u+l << TheCall->getArg(i)->getSourceRange();
321
322  // FIXME: VFP Intrinsics should error if VFP not present.
323  return false;
324}
325
326/// CheckFunctionCall - Check a direct function call for various correctness
327/// and safety properties not strictly enforced by the C type system.
328bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
329  // Get the IdentifierInfo* for the called function.
330  IdentifierInfo *FnInfo = FDecl->getIdentifier();
331
332  // None of the checks below are needed for functions that don't have
333  // simple names (e.g., C++ conversion functions).
334  if (!FnInfo)
335    return false;
336
337  // FIXME: This mechanism should be abstracted to be less fragile and
338  // more efficient. For example, just map function ids to custom
339  // handlers.
340
341  // Printf checking.
342  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
343    const bool b = Format->getType() == "scanf";
344    if (b || CheckablePrintfAttr(Format, TheCall)) {
345      bool HasVAListArg = Format->getFirstArg() == 0;
346      CheckPrintfScanfArguments(TheCall, HasVAListArg,
347                                Format->getFormatIdx() - 1,
348                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
349                                !b);
350    }
351  }
352
353  specific_attr_iterator<NonNullAttr>
354    i = FDecl->specific_attr_begin<NonNullAttr>(),
355    e = FDecl->specific_attr_end<NonNullAttr>();
356
357  for (; i != e; ++i)
358    CheckNonNullArguments(*i, TheCall);
359
360  return false;
361}
362
363bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
364  // Printf checking.
365  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
366  if (!Format)
367    return false;
368
369  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
370  if (!V)
371    return false;
372
373  QualType Ty = V->getType();
374  if (!Ty->isBlockPointerType())
375    return false;
376
377  const bool b = Format->getType() == "scanf";
378  if (!b && !CheckablePrintfAttr(Format, TheCall))
379    return false;
380
381  bool HasVAListArg = Format->getFirstArg() == 0;
382  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
383                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
384
385  return false;
386}
387
388/// SemaBuiltinAtomicOverloaded - We have a call to a function like
389/// __sync_fetch_and_add, which is an overloaded function based on the pointer
390/// type of its first argument.  The main ActOnCallExpr routines have already
391/// promoted the types of arguments because all of these calls are prototyped as
392/// void(...).
393///
394/// This function goes through and does final semantic checking for these
395/// builtins,
396ExprResult
397Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
398  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
399  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
400  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
401
402  // Ensure that we have at least one argument to do type inference from.
403  if (TheCall->getNumArgs() < 1) {
404    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
405      << 0 << 1 << TheCall->getNumArgs()
406      << TheCall->getCallee()->getSourceRange();
407    return ExprError();
408  }
409
410  // Inspect the first argument of the atomic builtin.  This should always be
411  // a pointer type, whose element is an integral scalar or pointer type.
412  // Because it is a pointer type, we don't have to worry about any implicit
413  // casts here.
414  // FIXME: We don't allow floating point scalars as input.
415  Expr *FirstArg = TheCall->getArg(0);
416  if (!FirstArg->getType()->isPointerType()) {
417    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
418      << FirstArg->getType() << FirstArg->getSourceRange();
419    return ExprError();
420  }
421
422  QualType ValType =
423    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
424  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
425      !ValType->isBlockPointerType()) {
426    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
427      << FirstArg->getType() << FirstArg->getSourceRange();
428    return ExprError();
429  }
430
431  // The majority of builtins return a value, but a few have special return
432  // types, so allow them to override appropriately below.
433  QualType ResultType = ValType;
434
435  // We need to figure out which concrete builtin this maps onto.  For example,
436  // __sync_fetch_and_add with a 2 byte object turns into
437  // __sync_fetch_and_add_2.
438#define BUILTIN_ROW(x) \
439  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
440    Builtin::BI##x##_8, Builtin::BI##x##_16 }
441
442  static const unsigned BuiltinIndices[][5] = {
443    BUILTIN_ROW(__sync_fetch_and_add),
444    BUILTIN_ROW(__sync_fetch_and_sub),
445    BUILTIN_ROW(__sync_fetch_and_or),
446    BUILTIN_ROW(__sync_fetch_and_and),
447    BUILTIN_ROW(__sync_fetch_and_xor),
448
449    BUILTIN_ROW(__sync_add_and_fetch),
450    BUILTIN_ROW(__sync_sub_and_fetch),
451    BUILTIN_ROW(__sync_and_and_fetch),
452    BUILTIN_ROW(__sync_or_and_fetch),
453    BUILTIN_ROW(__sync_xor_and_fetch),
454
455    BUILTIN_ROW(__sync_val_compare_and_swap),
456    BUILTIN_ROW(__sync_bool_compare_and_swap),
457    BUILTIN_ROW(__sync_lock_test_and_set),
458    BUILTIN_ROW(__sync_lock_release)
459  };
460#undef BUILTIN_ROW
461
462  // Determine the index of the size.
463  unsigned SizeIndex;
464  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
465  case 1: SizeIndex = 0; break;
466  case 2: SizeIndex = 1; break;
467  case 4: SizeIndex = 2; break;
468  case 8: SizeIndex = 3; break;
469  case 16: SizeIndex = 4; break;
470  default:
471    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
472      << FirstArg->getType() << FirstArg->getSourceRange();
473    return ExprError();
474  }
475
476  // Each of these builtins has one pointer argument, followed by some number of
477  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
478  // that we ignore.  Find out which row of BuiltinIndices to read from as well
479  // as the number of fixed args.
480  unsigned BuiltinID = FDecl->getBuiltinID();
481  unsigned BuiltinIndex, NumFixed = 1;
482  switch (BuiltinID) {
483  default: assert(0 && "Unknown overloaded atomic builtin!");
484  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
485  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
486  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
487  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
488  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
489
490  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
491  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
492  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
493  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
494  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
495
496  case Builtin::BI__sync_val_compare_and_swap:
497    BuiltinIndex = 10;
498    NumFixed = 2;
499    break;
500  case Builtin::BI__sync_bool_compare_and_swap:
501    BuiltinIndex = 11;
502    NumFixed = 2;
503    ResultType = Context.BoolTy;
504    break;
505  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
506  case Builtin::BI__sync_lock_release:
507    BuiltinIndex = 13;
508    NumFixed = 0;
509    ResultType = Context.VoidTy;
510    break;
511  }
512
513  // Now that we know how many fixed arguments we expect, first check that we
514  // have at least that many.
515  if (TheCall->getNumArgs() < 1+NumFixed) {
516    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
517      << 0 << 1+NumFixed << TheCall->getNumArgs()
518      << TheCall->getCallee()->getSourceRange();
519    return ExprError();
520  }
521
522  // Get the decl for the concrete builtin from this, we can tell what the
523  // concrete integer type we should convert to is.
524  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
525  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
526  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
527  FunctionDecl *NewBuiltinDecl =
528    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
529                                           TUScope, false, DRE->getLocStart()));
530
531  // The first argument --- the pointer --- has a fixed type; we
532  // deduce the types of the rest of the arguments accordingly.  Walk
533  // the remaining arguments, converting them to the deduced value type.
534  for (unsigned i = 0; i != NumFixed; ++i) {
535    Expr *Arg = TheCall->getArg(i+1);
536
537    // If the argument is an implicit cast, then there was a promotion due to
538    // "...", just remove it now.
539    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
540      Arg = ICE->getSubExpr();
541      ICE->setSubExpr(0);
542      TheCall->setArg(i+1, Arg);
543    }
544
545    // GCC does an implicit conversion to the pointer or integer ValType.  This
546    // can fail in some cases (1i -> int**), check for this error case now.
547    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
548    CXXCastPath BasePath;
549    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
550      return ExprError();
551
552    // Okay, we have something that *can* be converted to the right type.  Check
553    // to see if there is a potentially weird extension going on here.  This can
554    // happen when you do an atomic operation on something like an char* and
555    // pass in 42.  The 42 gets converted to char.  This is even more strange
556    // for things like 45.123 -> char, etc.
557    // FIXME: Do this check.
558    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
559    TheCall->setArg(i+1, Arg);
560  }
561
562  // Switch the DeclRefExpr to refer to the new decl.
563  DRE->setDecl(NewBuiltinDecl);
564  DRE->setType(NewBuiltinDecl->getType());
565
566  // Set the callee in the CallExpr.
567  // FIXME: This leaks the original parens and implicit casts.
568  Expr *PromotedCall = DRE;
569  UsualUnaryConversions(PromotedCall);
570  TheCall->setCallee(PromotedCall);
571
572  // Change the result type of the call to match the original value type. This
573  // is arbitrary, but the codegen for these builtins ins design to handle it
574  // gracefully.
575  TheCall->setType(ResultType);
576
577  return move(TheCallResult);
578}
579
580
581/// CheckObjCString - Checks that the argument to the builtin
582/// CFString constructor is correct
583/// FIXME: GCC currently emits the following warning:
584/// "warning: input conversion stopped due to an input byte that does not
585///           belong to the input codeset UTF-8"
586/// Note: It might also make sense to do the UTF-16 conversion here (would
587/// simplify the backend).
588bool Sema::CheckObjCString(Expr *Arg) {
589  Arg = Arg->IgnoreParenCasts();
590  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
591
592  if (!Literal || Literal->isWide()) {
593    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
594      << Arg->getSourceRange();
595    return true;
596  }
597
598  size_t NulPos = Literal->getString().find('\0');
599  if (NulPos != llvm::StringRef::npos) {
600    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
601         diag::warn_cfstring_literal_contains_nul_character)
602      << Arg->getSourceRange();
603  }
604
605  return false;
606}
607
608/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
609/// Emit an error and return true on failure, return false on success.
610bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
611  Expr *Fn = TheCall->getCallee();
612  if (TheCall->getNumArgs() > 2) {
613    Diag(TheCall->getArg(2)->getLocStart(),
614         diag::err_typecheck_call_too_many_args)
615      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
616      << Fn->getSourceRange()
617      << SourceRange(TheCall->getArg(2)->getLocStart(),
618                     (*(TheCall->arg_end()-1))->getLocEnd());
619    return true;
620  }
621
622  if (TheCall->getNumArgs() < 2) {
623    return Diag(TheCall->getLocEnd(),
624      diag::err_typecheck_call_too_few_args_at_least)
625      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
626  }
627
628  // Determine whether the current function is variadic or not.
629  BlockScopeInfo *CurBlock = getCurBlock();
630  bool isVariadic;
631  if (CurBlock)
632    isVariadic = CurBlock->TheDecl->isVariadic();
633  else if (FunctionDecl *FD = getCurFunctionDecl())
634    isVariadic = FD->isVariadic();
635  else
636    isVariadic = getCurMethodDecl()->isVariadic();
637
638  if (!isVariadic) {
639    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
640    return true;
641  }
642
643  // Verify that the second argument to the builtin is the last argument of the
644  // current function or method.
645  bool SecondArgIsLastNamedArgument = false;
646  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
647
648  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
649    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
650      // FIXME: This isn't correct for methods (results in bogus warning).
651      // Get the last formal in the current function.
652      const ParmVarDecl *LastArg;
653      if (CurBlock)
654        LastArg = *(CurBlock->TheDecl->param_end()-1);
655      else if (FunctionDecl *FD = getCurFunctionDecl())
656        LastArg = *(FD->param_end()-1);
657      else
658        LastArg = *(getCurMethodDecl()->param_end()-1);
659      SecondArgIsLastNamedArgument = PV == LastArg;
660    }
661  }
662
663  if (!SecondArgIsLastNamedArgument)
664    Diag(TheCall->getArg(1)->getLocStart(),
665         diag::warn_second_parameter_of_va_start_not_last_named_argument);
666  return false;
667}
668
669/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
670/// friends.  This is declared to take (...), so we have to check everything.
671bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
672  if (TheCall->getNumArgs() < 2)
673    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
674      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
675  if (TheCall->getNumArgs() > 2)
676    return Diag(TheCall->getArg(2)->getLocStart(),
677                diag::err_typecheck_call_too_many_args)
678      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
679      << SourceRange(TheCall->getArg(2)->getLocStart(),
680                     (*(TheCall->arg_end()-1))->getLocEnd());
681
682  Expr *OrigArg0 = TheCall->getArg(0);
683  Expr *OrigArg1 = TheCall->getArg(1);
684
685  // Do standard promotions between the two arguments, returning their common
686  // type.
687  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
688
689  // Make sure any conversions are pushed back into the call; this is
690  // type safe since unordered compare builtins are declared as "_Bool
691  // foo(...)".
692  TheCall->setArg(0, OrigArg0);
693  TheCall->setArg(1, OrigArg1);
694
695  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
696    return false;
697
698  // If the common type isn't a real floating type, then the arguments were
699  // invalid for this operation.
700  if (!Res->isRealFloatingType())
701    return Diag(OrigArg0->getLocStart(),
702                diag::err_typecheck_call_invalid_ordered_compare)
703      << OrigArg0->getType() << OrigArg1->getType()
704      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
705
706  return false;
707}
708
709/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
710/// __builtin_isnan and friends.  This is declared to take (...), so we have
711/// to check everything. We expect the last argument to be a floating point
712/// value.
713bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
714  if (TheCall->getNumArgs() < NumArgs)
715    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
716      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
717  if (TheCall->getNumArgs() > NumArgs)
718    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
719                diag::err_typecheck_call_too_many_args)
720      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
721      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
722                     (*(TheCall->arg_end()-1))->getLocEnd());
723
724  Expr *OrigArg = TheCall->getArg(NumArgs-1);
725
726  if (OrigArg->isTypeDependent())
727    return false;
728
729  // This operation requires a non-_Complex floating-point number.
730  if (!OrigArg->getType()->isRealFloatingType())
731    return Diag(OrigArg->getLocStart(),
732                diag::err_typecheck_call_invalid_unary_fp)
733      << OrigArg->getType() << OrigArg->getSourceRange();
734
735  // If this is an implicit conversion from float -> double, remove it.
736  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
737    Expr *CastArg = Cast->getSubExpr();
738    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
739      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
740             "promotion from float to double is the only expected cast here");
741      Cast->setSubExpr(0);
742      TheCall->setArg(NumArgs-1, CastArg);
743      OrigArg = CastArg;
744    }
745  }
746
747  return false;
748}
749
750/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
751// This is declared to take (...), so we have to check everything.
752ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
753  if (TheCall->getNumArgs() < 2)
754    return ExprError(Diag(TheCall->getLocEnd(),
755                          diag::err_typecheck_call_too_few_args_at_least)
756      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
757      << TheCall->getSourceRange());
758
759  // Determine which of the following types of shufflevector we're checking:
760  // 1) unary, vector mask: (lhs, mask)
761  // 2) binary, vector mask: (lhs, rhs, mask)
762  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
763  QualType resType = TheCall->getArg(0)->getType();
764  unsigned numElements = 0;
765
766  if (!TheCall->getArg(0)->isTypeDependent() &&
767      !TheCall->getArg(1)->isTypeDependent()) {
768    QualType LHSType = TheCall->getArg(0)->getType();
769    QualType RHSType = TheCall->getArg(1)->getType();
770
771    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
772      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
773        << SourceRange(TheCall->getArg(0)->getLocStart(),
774                       TheCall->getArg(1)->getLocEnd());
775      return ExprError();
776    }
777
778    numElements = LHSType->getAs<VectorType>()->getNumElements();
779    unsigned numResElements = TheCall->getNumArgs() - 2;
780
781    // Check to see if we have a call with 2 vector arguments, the unary shuffle
782    // with mask.  If so, verify that RHS is an integer vector type with the
783    // same number of elts as lhs.
784    if (TheCall->getNumArgs() == 2) {
785      if (!RHSType->hasIntegerRepresentation() ||
786          RHSType->getAs<VectorType>()->getNumElements() != numElements)
787        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
788          << SourceRange(TheCall->getArg(1)->getLocStart(),
789                         TheCall->getArg(1)->getLocEnd());
790      numResElements = numElements;
791    }
792    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
793      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
794        << SourceRange(TheCall->getArg(0)->getLocStart(),
795                       TheCall->getArg(1)->getLocEnd());
796      return ExprError();
797    } else if (numElements != numResElements) {
798      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
799      resType = Context.getVectorType(eltType, numResElements,
800                                      VectorType::NotAltiVec);
801    }
802  }
803
804  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
805    if (TheCall->getArg(i)->isTypeDependent() ||
806        TheCall->getArg(i)->isValueDependent())
807      continue;
808
809    llvm::APSInt Result(32);
810    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
811      return ExprError(Diag(TheCall->getLocStart(),
812                  diag::err_shufflevector_nonconstant_argument)
813                << TheCall->getArg(i)->getSourceRange());
814
815    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
816      return ExprError(Diag(TheCall->getLocStart(),
817                  diag::err_shufflevector_argument_too_large)
818               << TheCall->getArg(i)->getSourceRange());
819  }
820
821  llvm::SmallVector<Expr*, 32> exprs;
822
823  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
824    exprs.push_back(TheCall->getArg(i));
825    TheCall->setArg(i, 0);
826  }
827
828  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
829                                            exprs.size(), resType,
830                                            TheCall->getCallee()->getLocStart(),
831                                            TheCall->getRParenLoc()));
832}
833
834/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
835// This is declared to take (const void*, ...) and can take two
836// optional constant int args.
837bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
838  unsigned NumArgs = TheCall->getNumArgs();
839
840  if (NumArgs > 3)
841    return Diag(TheCall->getLocEnd(),
842             diag::err_typecheck_call_too_many_args_at_most)
843             << 0 /*function call*/ << 3 << NumArgs
844             << TheCall->getSourceRange();
845
846  // Argument 0 is checked for us and the remaining arguments must be
847  // constant integers.
848  for (unsigned i = 1; i != NumArgs; ++i) {
849    Expr *Arg = TheCall->getArg(i);
850
851    llvm::APSInt Result;
852    if (SemaBuiltinConstantArg(TheCall, i, Result))
853      return true;
854
855    // FIXME: gcc issues a warning and rewrites these to 0. These
856    // seems especially odd for the third argument since the default
857    // is 3.
858    if (i == 1) {
859      if (Result.getLimitedValue() > 1)
860        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
861             << "0" << "1" << Arg->getSourceRange();
862    } else {
863      if (Result.getLimitedValue() > 3)
864        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
865            << "0" << "3" << Arg->getSourceRange();
866    }
867  }
868
869  return false;
870}
871
872/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
873/// TheCall is a constant expression.
874bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
875                                  llvm::APSInt &Result) {
876  Expr *Arg = TheCall->getArg(ArgNum);
877  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
878  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
879
880  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
881
882  if (!Arg->isIntegerConstantExpr(Result, Context))
883    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
884                << FDecl->getDeclName() <<  Arg->getSourceRange();
885
886  return false;
887}
888
889/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
890/// int type). This simply type checks that type is one of the defined
891/// constants (0-3).
892// For compatability check 0-3, llvm only handles 0 and 2.
893bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
894  llvm::APSInt Result;
895
896  // Check constant-ness first.
897  if (SemaBuiltinConstantArg(TheCall, 1, Result))
898    return true;
899
900  Expr *Arg = TheCall->getArg(1);
901  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
902    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
903             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
904  }
905
906  return false;
907}
908
909/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
910/// This checks that val is a constant 1.
911bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
912  Expr *Arg = TheCall->getArg(1);
913  llvm::APSInt Result;
914
915  // TODO: This is less than ideal. Overload this to take a value.
916  if (SemaBuiltinConstantArg(TheCall, 1, Result))
917    return true;
918
919  if (Result != 1)
920    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
921             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
922
923  return false;
924}
925
926// Handle i > 1 ? "x" : "y", recursivelly
927bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
928                                  bool HasVAListArg,
929                                  unsigned format_idx, unsigned firstDataArg,
930                                  bool isPrintf) {
931
932  if (E->isTypeDependent() || E->isValueDependent())
933    return false;
934
935  switch (E->getStmtClass()) {
936  case Stmt::ConditionalOperatorClass: {
937    const ConditionalOperator *C = cast<ConditionalOperator>(E);
938    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
939                                  format_idx, firstDataArg, isPrintf)
940        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
941                                  format_idx, firstDataArg, isPrintf);
942  }
943
944  case Stmt::ImplicitCastExprClass: {
945    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
946    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
947                                  format_idx, firstDataArg, isPrintf);
948  }
949
950  case Stmt::ParenExprClass: {
951    const ParenExpr *Expr = cast<ParenExpr>(E);
952    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
953                                  format_idx, firstDataArg, isPrintf);
954  }
955
956  case Stmt::DeclRefExprClass: {
957    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
958
959    // As an exception, do not flag errors for variables binding to
960    // const string literals.
961    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
962      bool isConstant = false;
963      QualType T = DR->getType();
964
965      if (const ArrayType *AT = Context.getAsArrayType(T)) {
966        isConstant = AT->getElementType().isConstant(Context);
967      } else if (const PointerType *PT = T->getAs<PointerType>()) {
968        isConstant = T.isConstant(Context) &&
969                     PT->getPointeeType().isConstant(Context);
970      }
971
972      if (isConstant) {
973        if (const Expr *Init = VD->getAnyInitializer())
974          return SemaCheckStringLiteral(Init, TheCall,
975                                        HasVAListArg, format_idx, firstDataArg,
976                                        isPrintf);
977      }
978
979      // For vprintf* functions (i.e., HasVAListArg==true), we add a
980      // special check to see if the format string is a function parameter
981      // of the function calling the printf function.  If the function
982      // has an attribute indicating it is a printf-like function, then we
983      // should suppress warnings concerning non-literals being used in a call
984      // to a vprintf function.  For example:
985      //
986      // void
987      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
988      //      va_list ap;
989      //      va_start(ap, fmt);
990      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
991      //      ...
992      //
993      //
994      //  FIXME: We don't have full attribute support yet, so just check to see
995      //    if the argument is a DeclRefExpr that references a parameter.  We'll
996      //    add proper support for checking the attribute later.
997      if (HasVAListArg)
998        if (isa<ParmVarDecl>(VD))
999          return true;
1000    }
1001
1002    return false;
1003  }
1004
1005  case Stmt::CallExprClass: {
1006    const CallExpr *CE = cast<CallExpr>(E);
1007    if (const ImplicitCastExpr *ICE
1008          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1009      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1010        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1011          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1012            unsigned ArgIndex = FA->getFormatIdx();
1013            const Expr *Arg = CE->getArg(ArgIndex - 1);
1014
1015            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1016                                          format_idx, firstDataArg, isPrintf);
1017          }
1018        }
1019      }
1020    }
1021
1022    return false;
1023  }
1024  case Stmt::ObjCStringLiteralClass:
1025  case Stmt::StringLiteralClass: {
1026    const StringLiteral *StrE = NULL;
1027
1028    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1029      StrE = ObjCFExpr->getString();
1030    else
1031      StrE = cast<StringLiteral>(E);
1032
1033    if (StrE) {
1034      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1035                        firstDataArg, isPrintf);
1036      return true;
1037    }
1038
1039    return false;
1040  }
1041
1042  default:
1043    return false;
1044  }
1045}
1046
1047void
1048Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1049                            const CallExpr *TheCall) {
1050  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1051                                  e = NonNull->args_end();
1052       i != e; ++i) {
1053    const Expr *ArgExpr = TheCall->getArg(*i);
1054    if (ArgExpr->isNullPointerConstant(Context,
1055                                       Expr::NPC_ValueDependentIsNotNull))
1056      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1057        << ArgExpr->getSourceRange();
1058  }
1059}
1060
1061/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1062/// functions) for correct use of format strings.
1063void
1064Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1065                                unsigned format_idx, unsigned firstDataArg,
1066                                bool isPrintf) {
1067
1068  const Expr *Fn = TheCall->getCallee();
1069
1070  // The way the format attribute works in GCC, the implicit this argument
1071  // of member functions is counted. However, it doesn't appear in our own
1072  // lists, so decrement format_idx in that case.
1073  if (isa<CXXMemberCallExpr>(TheCall)) {
1074    // Catch a format attribute mistakenly referring to the object argument.
1075    if (format_idx == 0)
1076      return;
1077    --format_idx;
1078    if(firstDataArg != 0)
1079      --firstDataArg;
1080  }
1081
1082  // CHECK: printf/scanf-like function is called with no format string.
1083  if (format_idx >= TheCall->getNumArgs()) {
1084    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1085      << Fn->getSourceRange();
1086    return;
1087  }
1088
1089  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1090
1091  // CHECK: format string is not a string literal.
1092  //
1093  // Dynamically generated format strings are difficult to
1094  // automatically vet at compile time.  Requiring that format strings
1095  // are string literals: (1) permits the checking of format strings by
1096  // the compiler and thereby (2) can practically remove the source of
1097  // many format string exploits.
1098
1099  // Format string can be either ObjC string (e.g. @"%d") or
1100  // C string (e.g. "%d")
1101  // ObjC string uses the same format specifiers as C string, so we can use
1102  // the same format string checking logic for both ObjC and C strings.
1103  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1104                             firstDataArg, isPrintf))
1105    return;  // Literal format string found, check done!
1106
1107  // If there are no arguments specified, warn with -Wformat-security, otherwise
1108  // warn only with -Wformat-nonliteral.
1109  if (TheCall->getNumArgs() == format_idx+1)
1110    Diag(TheCall->getArg(format_idx)->getLocStart(),
1111         diag::warn_format_nonliteral_noargs)
1112      << OrigFormatExpr->getSourceRange();
1113  else
1114    Diag(TheCall->getArg(format_idx)->getLocStart(),
1115         diag::warn_format_nonliteral)
1116           << OrigFormatExpr->getSourceRange();
1117}
1118
1119namespace {
1120class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1121protected:
1122  Sema &S;
1123  const StringLiteral *FExpr;
1124  const Expr *OrigFormatExpr;
1125  const unsigned FirstDataArg;
1126  const unsigned NumDataArgs;
1127  const bool IsObjCLiteral;
1128  const char *Beg; // Start of format string.
1129  const bool HasVAListArg;
1130  const CallExpr *TheCall;
1131  unsigned FormatIdx;
1132  llvm::BitVector CoveredArgs;
1133  bool usesPositionalArgs;
1134  bool atFirstArg;
1135public:
1136  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1137                     const Expr *origFormatExpr, unsigned firstDataArg,
1138                     unsigned numDataArgs, bool isObjCLiteral,
1139                     const char *beg, bool hasVAListArg,
1140                     const CallExpr *theCall, unsigned formatIdx)
1141    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1142      FirstDataArg(firstDataArg),
1143      NumDataArgs(numDataArgs),
1144      IsObjCLiteral(isObjCLiteral), Beg(beg),
1145      HasVAListArg(hasVAListArg),
1146      TheCall(theCall), FormatIdx(formatIdx),
1147      usesPositionalArgs(false), atFirstArg(true) {
1148        CoveredArgs.resize(numDataArgs);
1149        CoveredArgs.reset();
1150      }
1151
1152  void DoneProcessing();
1153
1154  void HandleIncompleteSpecifier(const char *startSpecifier,
1155                                 unsigned specifierLen);
1156
1157  virtual void HandleInvalidPosition(const char *startSpecifier,
1158                                     unsigned specifierLen,
1159                                     analyze_format_string::PositionContext p);
1160
1161  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1162
1163  void HandleNullChar(const char *nullCharacter);
1164
1165protected:
1166  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1167                                        const char *startSpec,
1168                                        unsigned specifierLen,
1169                                        const char *csStart, unsigned csLen);
1170
1171  SourceRange getFormatStringRange();
1172  CharSourceRange getSpecifierRange(const char *startSpecifier,
1173                                    unsigned specifierLen);
1174  SourceLocation getLocationOfByte(const char *x);
1175
1176  const Expr *getDataArg(unsigned i) const;
1177
1178  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1179                    const analyze_format_string::ConversionSpecifier &CS,
1180                    const char *startSpecifier, unsigned specifierLen,
1181                    unsigned argIndex);
1182};
1183}
1184
1185SourceRange CheckFormatHandler::getFormatStringRange() {
1186  return OrigFormatExpr->getSourceRange();
1187}
1188
1189CharSourceRange CheckFormatHandler::
1190getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1191  SourceLocation Start = getLocationOfByte(startSpecifier);
1192  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1193
1194  // Advance the end SourceLocation by one due to half-open ranges.
1195  End = End.getFileLocWithOffset(1);
1196
1197  return CharSourceRange::getCharRange(Start, End);
1198}
1199
1200SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1201  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1202}
1203
1204void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1205                                                   unsigned specifierLen){
1206  SourceLocation Loc = getLocationOfByte(startSpecifier);
1207  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1208    << getSpecifierRange(startSpecifier, specifierLen);
1209}
1210
1211void
1212CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1213                                     analyze_format_string::PositionContext p) {
1214  SourceLocation Loc = getLocationOfByte(startPos);
1215  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1216    << (unsigned) p << getSpecifierRange(startPos, posLen);
1217}
1218
1219void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1220                                            unsigned posLen) {
1221  SourceLocation Loc = getLocationOfByte(startPos);
1222  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1223    << getSpecifierRange(startPos, posLen);
1224}
1225
1226void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1227  // The presence of a null character is likely an error.
1228  S.Diag(getLocationOfByte(nullCharacter),
1229         diag::warn_printf_format_string_contains_null_char)
1230    << getFormatStringRange();
1231}
1232
1233const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1234  return TheCall->getArg(FirstDataArg + i);
1235}
1236
1237void CheckFormatHandler::DoneProcessing() {
1238    // Does the number of data arguments exceed the number of
1239    // format conversions in the format string?
1240  if (!HasVAListArg) {
1241      // Find any arguments that weren't covered.
1242    CoveredArgs.flip();
1243    signed notCoveredArg = CoveredArgs.find_first();
1244    if (notCoveredArg >= 0) {
1245      assert((unsigned)notCoveredArg < NumDataArgs);
1246      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1247             diag::warn_printf_data_arg_not_used)
1248      << getFormatStringRange();
1249    }
1250  }
1251}
1252
1253bool
1254CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1255                                                     SourceLocation Loc,
1256                                                     const char *startSpec,
1257                                                     unsigned specifierLen,
1258                                                     const char *csStart,
1259                                                     unsigned csLen) {
1260
1261  bool keepGoing = true;
1262  if (argIndex < NumDataArgs) {
1263    // Consider the argument coverered, even though the specifier doesn't
1264    // make sense.
1265    CoveredArgs.set(argIndex);
1266  }
1267  else {
1268    // If argIndex exceeds the number of data arguments we
1269    // don't issue a warning because that is just a cascade of warnings (and
1270    // they may have intended '%%' anyway). We don't want to continue processing
1271    // the format string after this point, however, as we will like just get
1272    // gibberish when trying to match arguments.
1273    keepGoing = false;
1274  }
1275
1276  S.Diag(Loc, diag::warn_format_invalid_conversion)
1277    << llvm::StringRef(csStart, csLen)
1278    << getSpecifierRange(startSpec, specifierLen);
1279
1280  return keepGoing;
1281}
1282
1283bool
1284CheckFormatHandler::CheckNumArgs(
1285  const analyze_format_string::FormatSpecifier &FS,
1286  const analyze_format_string::ConversionSpecifier &CS,
1287  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1288
1289  if (argIndex >= NumDataArgs) {
1290    if (FS.usesPositionalArg())  {
1291      S.Diag(getLocationOfByte(CS.getStart()),
1292             diag::warn_printf_positional_arg_exceeds_data_args)
1293      << (argIndex+1) << NumDataArgs
1294      << getSpecifierRange(startSpecifier, specifierLen);
1295    }
1296    else {
1297      S.Diag(getLocationOfByte(CS.getStart()),
1298             diag::warn_printf_insufficient_data_args)
1299      << getSpecifierRange(startSpecifier, specifierLen);
1300    }
1301
1302    return false;
1303  }
1304  return true;
1305}
1306
1307//===--- CHECK: Printf format string checking ------------------------------===//
1308
1309namespace {
1310class CheckPrintfHandler : public CheckFormatHandler {
1311public:
1312  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1313                     const Expr *origFormatExpr, unsigned firstDataArg,
1314                     unsigned numDataArgs, bool isObjCLiteral,
1315                     const char *beg, bool hasVAListArg,
1316                     const CallExpr *theCall, unsigned formatIdx)
1317  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1318                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1319                       theCall, formatIdx) {}
1320
1321
1322  bool HandleInvalidPrintfConversionSpecifier(
1323                                      const analyze_printf::PrintfSpecifier &FS,
1324                                      const char *startSpecifier,
1325                                      unsigned specifierLen);
1326
1327  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1328                             const char *startSpecifier,
1329                             unsigned specifierLen);
1330
1331  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1332                    const char *startSpecifier, unsigned specifierLen);
1333  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1334                           const analyze_printf::OptionalAmount &Amt,
1335                           unsigned type,
1336                           const char *startSpecifier, unsigned specifierLen);
1337  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1338                  const analyze_printf::OptionalFlag &flag,
1339                  const char *startSpecifier, unsigned specifierLen);
1340  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1341                         const analyze_printf::OptionalFlag &ignoredFlag,
1342                         const analyze_printf::OptionalFlag &flag,
1343                         const char *startSpecifier, unsigned specifierLen);
1344};
1345}
1346
1347bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1348                                      const analyze_printf::PrintfSpecifier &FS,
1349                                      const char *startSpecifier,
1350                                      unsigned specifierLen) {
1351  const analyze_printf::PrintfConversionSpecifier &CS =
1352    FS.getConversionSpecifier();
1353
1354  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1355                                          getLocationOfByte(CS.getStart()),
1356                                          startSpecifier, specifierLen,
1357                                          CS.getStart(), CS.getLength());
1358}
1359
1360bool CheckPrintfHandler::HandleAmount(
1361                               const analyze_format_string::OptionalAmount &Amt,
1362                               unsigned k, const char *startSpecifier,
1363                               unsigned specifierLen) {
1364
1365  if (Amt.hasDataArgument()) {
1366    if (!HasVAListArg) {
1367      unsigned argIndex = Amt.getArgIndex();
1368      if (argIndex >= NumDataArgs) {
1369        S.Diag(getLocationOfByte(Amt.getStart()),
1370               diag::warn_printf_asterisk_missing_arg)
1371          << k << getSpecifierRange(startSpecifier, specifierLen);
1372        // Don't do any more checking.  We will just emit
1373        // spurious errors.
1374        return false;
1375      }
1376
1377      // Type check the data argument.  It should be an 'int'.
1378      // Although not in conformance with C99, we also allow the argument to be
1379      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1380      // doesn't emit a warning for that case.
1381      CoveredArgs.set(argIndex);
1382      const Expr *Arg = getDataArg(argIndex);
1383      QualType T = Arg->getType();
1384
1385      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1386      assert(ATR.isValid());
1387
1388      if (!ATR.matchesType(S.Context, T)) {
1389        S.Diag(getLocationOfByte(Amt.getStart()),
1390               diag::warn_printf_asterisk_wrong_type)
1391          << k
1392          << ATR.getRepresentativeType(S.Context) << T
1393          << getSpecifierRange(startSpecifier, specifierLen)
1394          << Arg->getSourceRange();
1395        // Don't do any more checking.  We will just emit
1396        // spurious errors.
1397        return false;
1398      }
1399    }
1400  }
1401  return true;
1402}
1403
1404void CheckPrintfHandler::HandleInvalidAmount(
1405                                      const analyze_printf::PrintfSpecifier &FS,
1406                                      const analyze_printf::OptionalAmount &Amt,
1407                                      unsigned type,
1408                                      const char *startSpecifier,
1409                                      unsigned specifierLen) {
1410  const analyze_printf::PrintfConversionSpecifier &CS =
1411    FS.getConversionSpecifier();
1412  switch (Amt.getHowSpecified()) {
1413  case analyze_printf::OptionalAmount::Constant:
1414    S.Diag(getLocationOfByte(Amt.getStart()),
1415        diag::warn_printf_nonsensical_optional_amount)
1416      << type
1417      << CS.toString()
1418      << getSpecifierRange(startSpecifier, specifierLen)
1419      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1420          Amt.getConstantLength()));
1421    break;
1422
1423  default:
1424    S.Diag(getLocationOfByte(Amt.getStart()),
1425        diag::warn_printf_nonsensical_optional_amount)
1426      << type
1427      << CS.toString()
1428      << getSpecifierRange(startSpecifier, specifierLen);
1429    break;
1430  }
1431}
1432
1433void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1434                                    const analyze_printf::OptionalFlag &flag,
1435                                    const char *startSpecifier,
1436                                    unsigned specifierLen) {
1437  // Warn about pointless flag with a fixit removal.
1438  const analyze_printf::PrintfConversionSpecifier &CS =
1439    FS.getConversionSpecifier();
1440  S.Diag(getLocationOfByte(flag.getPosition()),
1441      diag::warn_printf_nonsensical_flag)
1442    << flag.toString() << CS.toString()
1443    << getSpecifierRange(startSpecifier, specifierLen)
1444    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1445}
1446
1447void CheckPrintfHandler::HandleIgnoredFlag(
1448                                const analyze_printf::PrintfSpecifier &FS,
1449                                const analyze_printf::OptionalFlag &ignoredFlag,
1450                                const analyze_printf::OptionalFlag &flag,
1451                                const char *startSpecifier,
1452                                unsigned specifierLen) {
1453  // Warn about ignored flag with a fixit removal.
1454  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1455      diag::warn_printf_ignored_flag)
1456    << ignoredFlag.toString() << flag.toString()
1457    << getSpecifierRange(startSpecifier, specifierLen)
1458    << FixItHint::CreateRemoval(getSpecifierRange(
1459        ignoredFlag.getPosition(), 1));
1460}
1461
1462bool
1463CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1464                                            &FS,
1465                                          const char *startSpecifier,
1466                                          unsigned specifierLen) {
1467
1468  using namespace analyze_format_string;
1469  using namespace analyze_printf;
1470  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1471
1472  if (FS.consumesDataArgument()) {
1473    if (atFirstArg) {
1474        atFirstArg = false;
1475        usesPositionalArgs = FS.usesPositionalArg();
1476    }
1477    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1478      // Cannot mix-and-match positional and non-positional arguments.
1479      S.Diag(getLocationOfByte(CS.getStart()),
1480             diag::warn_format_mix_positional_nonpositional_args)
1481        << getSpecifierRange(startSpecifier, specifierLen);
1482      return false;
1483    }
1484  }
1485
1486  // First check if the field width, precision, and conversion specifier
1487  // have matching data arguments.
1488  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1489                    startSpecifier, specifierLen)) {
1490    return false;
1491  }
1492
1493  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1494                    startSpecifier, specifierLen)) {
1495    return false;
1496  }
1497
1498  if (!CS.consumesDataArgument()) {
1499    // FIXME: Technically specifying a precision or field width here
1500    // makes no sense.  Worth issuing a warning at some point.
1501    return true;
1502  }
1503
1504  // Consume the argument.
1505  unsigned argIndex = FS.getArgIndex();
1506  if (argIndex < NumDataArgs) {
1507    // The check to see if the argIndex is valid will come later.
1508    // We set the bit here because we may exit early from this
1509    // function if we encounter some other error.
1510    CoveredArgs.set(argIndex);
1511  }
1512
1513  // Check for using an Objective-C specific conversion specifier
1514  // in a non-ObjC literal.
1515  if (!IsObjCLiteral && CS.isObjCArg()) {
1516    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1517                                                  specifierLen);
1518  }
1519
1520  // Check for invalid use of field width
1521  if (!FS.hasValidFieldWidth()) {
1522    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1523        startSpecifier, specifierLen);
1524  }
1525
1526  // Check for invalid use of precision
1527  if (!FS.hasValidPrecision()) {
1528    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1529        startSpecifier, specifierLen);
1530  }
1531
1532  // Check each flag does not conflict with any other component.
1533  if (!FS.hasValidLeadingZeros())
1534    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1535  if (!FS.hasValidPlusPrefix())
1536    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1537  if (!FS.hasValidSpacePrefix())
1538    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1539  if (!FS.hasValidAlternativeForm())
1540    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1541  if (!FS.hasValidLeftJustified())
1542    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1543
1544  // Check that flags are not ignored by another flag
1545  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1546    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1547        startSpecifier, specifierLen);
1548  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1549    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1550            startSpecifier, specifierLen);
1551
1552  // Check the length modifier is valid with the given conversion specifier.
1553  const LengthModifier &LM = FS.getLengthModifier();
1554  if (!FS.hasValidLengthModifier())
1555    S.Diag(getLocationOfByte(LM.getStart()),
1556        diag::warn_format_nonsensical_length)
1557      << LM.toString() << CS.toString()
1558      << getSpecifierRange(startSpecifier, specifierLen)
1559      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1560          LM.getLength()));
1561
1562  // Are we using '%n'?
1563  if (CS.getKind() == ConversionSpecifier::nArg) {
1564    // Issue a warning about this being a possible security issue.
1565    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1566      << getSpecifierRange(startSpecifier, specifierLen);
1567    // Continue checking the other format specifiers.
1568    return true;
1569  }
1570
1571  // The remaining checks depend on the data arguments.
1572  if (HasVAListArg)
1573    return true;
1574
1575  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1576    return false;
1577
1578  // Now type check the data expression that matches the
1579  // format specifier.
1580  const Expr *Ex = getDataArg(argIndex);
1581  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1582  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1583    // Check if we didn't match because of an implicit cast from a 'char'
1584    // or 'short' to an 'int'.  This is done because printf is a varargs
1585    // function.
1586    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1587      if (ICE->getType() == S.Context.IntTy)
1588        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1589          return true;
1590
1591    // We may be able to offer a FixItHint if it is a supported type.
1592    PrintfSpecifier fixedFS = FS;
1593    bool success = fixedFS.fixType(Ex->getType());
1594
1595    if (success) {
1596      // Get the fix string from the fixed format specifier
1597      llvm::SmallString<128> buf;
1598      llvm::raw_svector_ostream os(buf);
1599      fixedFS.toString(os);
1600
1601      // FIXME: getRepresentativeType() perhaps should return a string
1602      // instead of a QualType to better handle when the representative
1603      // type is 'wint_t' (which is defined in the system headers).
1604      S.Diag(getLocationOfByte(CS.getStart()),
1605          diag::warn_printf_conversion_argument_type_mismatch)
1606        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1607        << getSpecifierRange(startSpecifier, specifierLen)
1608        << Ex->getSourceRange()
1609        << FixItHint::CreateReplacement(
1610            getSpecifierRange(startSpecifier, specifierLen),
1611            os.str());
1612    }
1613    else {
1614      S.Diag(getLocationOfByte(CS.getStart()),
1615             diag::warn_printf_conversion_argument_type_mismatch)
1616        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1617        << getSpecifierRange(startSpecifier, specifierLen)
1618        << Ex->getSourceRange();
1619    }
1620  }
1621
1622  return true;
1623}
1624
1625//===--- CHECK: Scanf format string checking ------------------------------===//
1626
1627namespace {
1628class CheckScanfHandler : public CheckFormatHandler {
1629public:
1630  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1631                    const Expr *origFormatExpr, unsigned firstDataArg,
1632                    unsigned numDataArgs, bool isObjCLiteral,
1633                    const char *beg, bool hasVAListArg,
1634                    const CallExpr *theCall, unsigned formatIdx)
1635  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1636                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1637                       theCall, formatIdx) {}
1638
1639  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1640                            const char *startSpecifier,
1641                            unsigned specifierLen);
1642
1643  bool HandleInvalidScanfConversionSpecifier(
1644          const analyze_scanf::ScanfSpecifier &FS,
1645          const char *startSpecifier,
1646          unsigned specifierLen);
1647
1648  void HandleIncompleteScanList(const char *start, const char *end);
1649};
1650}
1651
1652void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1653                                                 const char *end) {
1654  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1655    << getSpecifierRange(start, end - start);
1656}
1657
1658bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1659                                        const analyze_scanf::ScanfSpecifier &FS,
1660                                        const char *startSpecifier,
1661                                        unsigned specifierLen) {
1662
1663  const analyze_scanf::ScanfConversionSpecifier &CS =
1664    FS.getConversionSpecifier();
1665
1666  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1667                                          getLocationOfByte(CS.getStart()),
1668                                          startSpecifier, specifierLen,
1669                                          CS.getStart(), CS.getLength());
1670}
1671
1672bool CheckScanfHandler::HandleScanfSpecifier(
1673                                       const analyze_scanf::ScanfSpecifier &FS,
1674                                       const char *startSpecifier,
1675                                       unsigned specifierLen) {
1676
1677  using namespace analyze_scanf;
1678  using namespace analyze_format_string;
1679
1680  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1681
1682  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1683  // be used to decide if we are using positional arguments consistently.
1684  if (FS.consumesDataArgument()) {
1685    if (atFirstArg) {
1686      atFirstArg = false;
1687      usesPositionalArgs = FS.usesPositionalArg();
1688    }
1689    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1690      // Cannot mix-and-match positional and non-positional arguments.
1691      S.Diag(getLocationOfByte(CS.getStart()),
1692             diag::warn_format_mix_positional_nonpositional_args)
1693        << getSpecifierRange(startSpecifier, specifierLen);
1694      return false;
1695    }
1696  }
1697
1698  // Check if the field with is non-zero.
1699  const OptionalAmount &Amt = FS.getFieldWidth();
1700  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1701    if (Amt.getConstantAmount() == 0) {
1702      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1703                                                   Amt.getConstantLength());
1704      S.Diag(getLocationOfByte(Amt.getStart()),
1705             diag::warn_scanf_nonzero_width)
1706        << R << FixItHint::CreateRemoval(R);
1707    }
1708  }
1709
1710  if (!FS.consumesDataArgument()) {
1711    // FIXME: Technically specifying a precision or field width here
1712    // makes no sense.  Worth issuing a warning at some point.
1713    return true;
1714  }
1715
1716  // Consume the argument.
1717  unsigned argIndex = FS.getArgIndex();
1718  if (argIndex < NumDataArgs) {
1719      // The check to see if the argIndex is valid will come later.
1720      // We set the bit here because we may exit early from this
1721      // function if we encounter some other error.
1722    CoveredArgs.set(argIndex);
1723  }
1724
1725  // Check the length modifier is valid with the given conversion specifier.
1726  const LengthModifier &LM = FS.getLengthModifier();
1727  if (!FS.hasValidLengthModifier()) {
1728    S.Diag(getLocationOfByte(LM.getStart()),
1729           diag::warn_format_nonsensical_length)
1730      << LM.toString() << CS.toString()
1731      << getSpecifierRange(startSpecifier, specifierLen)
1732      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1733                                                    LM.getLength()));
1734  }
1735
1736  // The remaining checks depend on the data arguments.
1737  if (HasVAListArg)
1738    return true;
1739
1740  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1741    return false;
1742
1743  // FIXME: Check that the argument type matches the format specifier.
1744
1745  return true;
1746}
1747
1748void Sema::CheckFormatString(const StringLiteral *FExpr,
1749                             const Expr *OrigFormatExpr,
1750                             const CallExpr *TheCall, bool HasVAListArg,
1751                             unsigned format_idx, unsigned firstDataArg,
1752                             bool isPrintf) {
1753
1754  // CHECK: is the format string a wide literal?
1755  if (FExpr->isWide()) {
1756    Diag(FExpr->getLocStart(),
1757         diag::warn_format_string_is_wide_literal)
1758    << OrigFormatExpr->getSourceRange();
1759    return;
1760  }
1761
1762  // Str - The format string.  NOTE: this is NOT null-terminated!
1763  llvm::StringRef StrRef = FExpr->getString();
1764  const char *Str = StrRef.data();
1765  unsigned StrLen = StrRef.size();
1766
1767  // CHECK: empty format string?
1768  if (StrLen == 0) {
1769    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1770    << OrigFormatExpr->getSourceRange();
1771    return;
1772  }
1773
1774  if (isPrintf) {
1775    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1776                         TheCall->getNumArgs() - firstDataArg,
1777                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1778                         HasVAListArg, TheCall, format_idx);
1779
1780    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1781      H.DoneProcessing();
1782  }
1783  else {
1784    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1785                        TheCall->getNumArgs() - firstDataArg,
1786                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1787                        HasVAListArg, TheCall, format_idx);
1788
1789    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1790      H.DoneProcessing();
1791  }
1792}
1793
1794//===--- CHECK: Return Address of Stack Variable --------------------------===//
1795
1796static DeclRefExpr* EvalVal(Expr *E);
1797static DeclRefExpr* EvalAddr(Expr* E);
1798
1799/// CheckReturnStackAddr - Check if a return statement returns the address
1800///   of a stack variable.
1801void
1802Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1803                           SourceLocation ReturnLoc) {
1804
1805  // Perform checking for returned stack addresses.
1806  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1807    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1808      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1809       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1810
1811    // Skip over implicit cast expressions when checking for block expressions.
1812    RetValExp = RetValExp->IgnoreParenCasts();
1813
1814    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1815      if (C->hasBlockDeclRefExprs())
1816        Diag(C->getLocStart(), diag::err_ret_local_block)
1817          << C->getSourceRange();
1818
1819    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1820      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1821        << ALE->getSourceRange();
1822
1823  } else if (lhsType->isReferenceType()) {
1824    // Perform checking for stack values returned by reference.
1825    // Check for a reference to the stack
1826    if (DeclRefExpr *DR = EvalVal(RetValExp))
1827      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1828        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1829  }
1830}
1831
1832/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1833///  check if the expression in a return statement evaluates to an address
1834///  to a location on the stack.  The recursion is used to traverse the
1835///  AST of the return expression, with recursion backtracking when we
1836///  encounter a subexpression that (1) clearly does not lead to the address
1837///  of a stack variable or (2) is something we cannot determine leads to
1838///  the address of a stack variable based on such local checking.
1839///
1840///  EvalAddr processes expressions that are pointers that are used as
1841///  references (and not L-values).  EvalVal handles all other values.
1842///  At the base case of the recursion is a check for a DeclRefExpr* in
1843///  the refers to a stack variable.
1844///
1845///  This implementation handles:
1846///
1847///   * pointer-to-pointer casts
1848///   * implicit conversions from array references to pointers
1849///   * taking the address of fields
1850///   * arbitrary interplay between "&" and "*" operators
1851///   * pointer arithmetic from an address of a stack variable
1852///   * taking the address of an array element where the array is on the stack
1853static DeclRefExpr* EvalAddr(Expr *E) {
1854  // We should only be called for evaluating pointer expressions.
1855  assert((E->getType()->isAnyPointerType() ||
1856          E->getType()->isBlockPointerType() ||
1857          E->getType()->isObjCQualifiedIdType()) &&
1858         "EvalAddr only works on pointers");
1859
1860  // Our "symbolic interpreter" is just a dispatch off the currently
1861  // viewed AST node.  We then recursively traverse the AST by calling
1862  // EvalAddr and EvalVal appropriately.
1863  switch (E->getStmtClass()) {
1864  case Stmt::ParenExprClass:
1865    // Ignore parentheses.
1866    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1867
1868  case Stmt::UnaryOperatorClass: {
1869    // The only unary operator that make sense to handle here
1870    // is AddrOf.  All others don't make sense as pointers.
1871    UnaryOperator *U = cast<UnaryOperator>(E);
1872
1873    if (U->getOpcode() == UnaryOperator::AddrOf)
1874      return EvalVal(U->getSubExpr());
1875    else
1876      return NULL;
1877  }
1878
1879  case Stmt::BinaryOperatorClass: {
1880    // Handle pointer arithmetic.  All other binary operators are not valid
1881    // in this context.
1882    BinaryOperator *B = cast<BinaryOperator>(E);
1883    BinaryOperator::Opcode op = B->getOpcode();
1884
1885    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1886      return NULL;
1887
1888    Expr *Base = B->getLHS();
1889
1890    // Determine which argument is the real pointer base.  It could be
1891    // the RHS argument instead of the LHS.
1892    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1893
1894    assert (Base->getType()->isPointerType());
1895    return EvalAddr(Base);
1896  }
1897
1898  // For conditional operators we need to see if either the LHS or RHS are
1899  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1900  case Stmt::ConditionalOperatorClass: {
1901    ConditionalOperator *C = cast<ConditionalOperator>(E);
1902
1903    // Handle the GNU extension for missing LHS.
1904    if (Expr *lhsExpr = C->getLHS())
1905      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1906        return LHS;
1907
1908     return EvalAddr(C->getRHS());
1909  }
1910
1911  // For casts, we need to handle conversions from arrays to
1912  // pointer values, and pointer-to-pointer conversions.
1913  case Stmt::ImplicitCastExprClass:
1914  case Stmt::CStyleCastExprClass:
1915  case Stmt::CXXFunctionalCastExprClass: {
1916    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1917    QualType T = SubExpr->getType();
1918
1919    if (SubExpr->getType()->isPointerType() ||
1920        SubExpr->getType()->isBlockPointerType() ||
1921        SubExpr->getType()->isObjCQualifiedIdType())
1922      return EvalAddr(SubExpr);
1923    else if (T->isArrayType())
1924      return EvalVal(SubExpr);
1925    else
1926      return 0;
1927  }
1928
1929  // C++ casts.  For dynamic casts, static casts, and const casts, we
1930  // are always converting from a pointer-to-pointer, so we just blow
1931  // through the cast.  In the case the dynamic cast doesn't fail (and
1932  // return NULL), we take the conservative route and report cases
1933  // where we return the address of a stack variable.  For Reinterpre
1934  // FIXME: The comment about is wrong; we're not always converting
1935  // from pointer to pointer. I'm guessing that this code should also
1936  // handle references to objects.
1937  case Stmt::CXXStaticCastExprClass:
1938  case Stmt::CXXDynamicCastExprClass:
1939  case Stmt::CXXConstCastExprClass:
1940  case Stmt::CXXReinterpretCastExprClass: {
1941      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1942      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1943        return EvalAddr(S);
1944      else
1945        return NULL;
1946  }
1947
1948  // Everything else: we simply don't reason about them.
1949  default:
1950    return NULL;
1951  }
1952}
1953
1954
1955///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1956///   See the comments for EvalAddr for more details.
1957static DeclRefExpr* EvalVal(Expr *E) {
1958do {
1959  // We should only be called for evaluating non-pointer expressions, or
1960  // expressions with a pointer type that are not used as references but instead
1961  // are l-values (e.g., DeclRefExpr with a pointer type).
1962
1963  // Our "symbolic interpreter" is just a dispatch off the currently
1964  // viewed AST node.  We then recursively traverse the AST by calling
1965  // EvalAddr and EvalVal appropriately.
1966  switch (E->getStmtClass()) {
1967  case Stmt::ImplicitCastExprClass: {
1968    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
1969    if (IE->getValueKind() == VK_LValue) {
1970      E = IE->getSubExpr();
1971      continue;
1972    }
1973    return NULL;
1974  }
1975
1976  case Stmt::DeclRefExprClass: {
1977    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1978    //  at code that refers to a variable's name.  We check if it has local
1979    //  storage within the function, and if so, return the expression.
1980    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1981
1982    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1983      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1984
1985    return NULL;
1986  }
1987
1988  case Stmt::ParenExprClass: {
1989    // Ignore parentheses.
1990    E = cast<ParenExpr>(E)->getSubExpr();
1991    continue;
1992  }
1993
1994  case Stmt::UnaryOperatorClass: {
1995    // The only unary operator that make sense to handle here
1996    // is Deref.  All others don't resolve to a "name."  This includes
1997    // handling all sorts of rvalues passed to a unary operator.
1998    UnaryOperator *U = cast<UnaryOperator>(E);
1999
2000    if (U->getOpcode() == UnaryOperator::Deref)
2001      return EvalAddr(U->getSubExpr());
2002
2003    return NULL;
2004  }
2005
2006  case Stmt::ArraySubscriptExprClass: {
2007    // Array subscripts are potential references to data on the stack.  We
2008    // retrieve the DeclRefExpr* for the array variable if it indeed
2009    // has local storage.
2010    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2011  }
2012
2013  case Stmt::ConditionalOperatorClass: {
2014    // For conditional operators we need to see if either the LHS or RHS are
2015    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2016    ConditionalOperator *C = cast<ConditionalOperator>(E);
2017
2018    // Handle the GNU extension for missing LHS.
2019    if (Expr *lhsExpr = C->getLHS())
2020      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2021        return LHS;
2022
2023    return EvalVal(C->getRHS());
2024  }
2025
2026  // Accesses to members are potential references to data on the stack.
2027  case Stmt::MemberExprClass: {
2028    MemberExpr *M = cast<MemberExpr>(E);
2029
2030    // Check for indirect access.  We only want direct field accesses.
2031    if (!M->isArrow())
2032      return EvalVal(M->getBase());
2033    else
2034      return NULL;
2035  }
2036
2037  // Everything else: we simply don't reason about them.
2038  default:
2039    return NULL;
2040  }
2041} while (true);
2042}
2043
2044//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2045
2046/// Check for comparisons of floating point operands using != and ==.
2047/// Issue a warning if these are no self-comparisons, as they are not likely
2048/// to do what the programmer intended.
2049void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2050  bool EmitWarning = true;
2051
2052  Expr* LeftExprSansParen = lex->IgnoreParens();
2053  Expr* RightExprSansParen = rex->IgnoreParens();
2054
2055  // Special case: check for x == x (which is OK).
2056  // Do not emit warnings for such cases.
2057  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2058    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2059      if (DRL->getDecl() == DRR->getDecl())
2060        EmitWarning = false;
2061
2062
2063  // Special case: check for comparisons against literals that can be exactly
2064  //  represented by APFloat.  In such cases, do not emit a warning.  This
2065  //  is a heuristic: often comparison against such literals are used to
2066  //  detect if a value in a variable has not changed.  This clearly can
2067  //  lead to false negatives.
2068  if (EmitWarning) {
2069    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2070      if (FLL->isExact())
2071        EmitWarning = false;
2072    } else
2073      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2074        if (FLR->isExact())
2075          EmitWarning = false;
2076    }
2077  }
2078
2079  // Check for comparisons with builtin types.
2080  if (EmitWarning)
2081    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2082      if (CL->isBuiltinCall(Context))
2083        EmitWarning = false;
2084
2085  if (EmitWarning)
2086    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2087      if (CR->isBuiltinCall(Context))
2088        EmitWarning = false;
2089
2090  // Emit the diagnostic.
2091  if (EmitWarning)
2092    Diag(loc, diag::warn_floatingpoint_eq)
2093      << lex->getSourceRange() << rex->getSourceRange();
2094}
2095
2096//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2097//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2098
2099namespace {
2100
2101/// Structure recording the 'active' range of an integer-valued
2102/// expression.
2103struct IntRange {
2104  /// The number of bits active in the int.
2105  unsigned Width;
2106
2107  /// True if the int is known not to have negative values.
2108  bool NonNegative;
2109
2110  IntRange(unsigned Width, bool NonNegative)
2111    : Width(Width), NonNegative(NonNegative)
2112  {}
2113
2114  // Returns the range of the bool type.
2115  static IntRange forBoolType() {
2116    return IntRange(1, true);
2117  }
2118
2119  // Returns the range of an integral type.
2120  static IntRange forType(ASTContext &C, QualType T) {
2121    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2122  }
2123
2124  // Returns the range of an integeral type based on its canonical
2125  // representation.
2126  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2127    assert(T->isCanonicalUnqualified());
2128
2129    if (const VectorType *VT = dyn_cast<VectorType>(T))
2130      T = VT->getElementType().getTypePtr();
2131    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2132      T = CT->getElementType().getTypePtr();
2133
2134    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2135      EnumDecl *Enum = ET->getDecl();
2136      unsigned NumPositive = Enum->getNumPositiveBits();
2137      unsigned NumNegative = Enum->getNumNegativeBits();
2138
2139      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2140    }
2141
2142    const BuiltinType *BT = cast<BuiltinType>(T);
2143    assert(BT->isInteger());
2144
2145    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2146  }
2147
2148  // Returns the supremum of two ranges: i.e. their conservative merge.
2149  static IntRange join(IntRange L, IntRange R) {
2150    return IntRange(std::max(L.Width, R.Width),
2151                    L.NonNegative && R.NonNegative);
2152  }
2153
2154  // Returns the infinum of two ranges: i.e. their aggressive merge.
2155  static IntRange meet(IntRange L, IntRange R) {
2156    return IntRange(std::min(L.Width, R.Width),
2157                    L.NonNegative || R.NonNegative);
2158  }
2159};
2160
2161IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2162  if (value.isSigned() && value.isNegative())
2163    return IntRange(value.getMinSignedBits(), false);
2164
2165  if (value.getBitWidth() > MaxWidth)
2166    value.trunc(MaxWidth);
2167
2168  // isNonNegative() just checks the sign bit without considering
2169  // signedness.
2170  return IntRange(value.getActiveBits(), true);
2171}
2172
2173IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2174                       unsigned MaxWidth) {
2175  if (result.isInt())
2176    return GetValueRange(C, result.getInt(), MaxWidth);
2177
2178  if (result.isVector()) {
2179    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2180    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2181      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2182      R = IntRange::join(R, El);
2183    }
2184    return R;
2185  }
2186
2187  if (result.isComplexInt()) {
2188    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2189    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2190    return IntRange::join(R, I);
2191  }
2192
2193  // This can happen with lossless casts to intptr_t of "based" lvalues.
2194  // Assume it might use arbitrary bits.
2195  // FIXME: The only reason we need to pass the type in here is to get
2196  // the sign right on this one case.  It would be nice if APValue
2197  // preserved this.
2198  assert(result.isLValue());
2199  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2200}
2201
2202/// Pseudo-evaluate the given integer expression, estimating the
2203/// range of values it might take.
2204///
2205/// \param MaxWidth - the width to which the value will be truncated
2206IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2207  E = E->IgnoreParens();
2208
2209  // Try a full evaluation first.
2210  Expr::EvalResult result;
2211  if (E->Evaluate(result, C))
2212    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2213
2214  // I think we only want to look through implicit casts here; if the
2215  // user has an explicit widening cast, we should treat the value as
2216  // being of the new, wider type.
2217  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2218    if (CE->getCastKind() == CastExpr::CK_NoOp)
2219      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2220
2221    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2222
2223    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
2224    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
2225      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2226
2227    // Assume that non-integer casts can span the full range of the type.
2228    if (!isIntegerCast)
2229      return OutputTypeRange;
2230
2231    IntRange SubRange
2232      = GetExprRange(C, CE->getSubExpr(),
2233                     std::min(MaxWidth, OutputTypeRange.Width));
2234
2235    // Bail out if the subexpr's range is as wide as the cast type.
2236    if (SubRange.Width >= OutputTypeRange.Width)
2237      return OutputTypeRange;
2238
2239    // Otherwise, we take the smaller width, and we're non-negative if
2240    // either the output type or the subexpr is.
2241    return IntRange(SubRange.Width,
2242                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2243  }
2244
2245  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2246    // If we can fold the condition, just take that operand.
2247    bool CondResult;
2248    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2249      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2250                                        : CO->getFalseExpr(),
2251                          MaxWidth);
2252
2253    // Otherwise, conservatively merge.
2254    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2255    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2256    return IntRange::join(L, R);
2257  }
2258
2259  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2260    switch (BO->getOpcode()) {
2261
2262    // Boolean-valued operations are single-bit and positive.
2263    case BinaryOperator::LAnd:
2264    case BinaryOperator::LOr:
2265    case BinaryOperator::LT:
2266    case BinaryOperator::GT:
2267    case BinaryOperator::LE:
2268    case BinaryOperator::GE:
2269    case BinaryOperator::EQ:
2270    case BinaryOperator::NE:
2271      return IntRange::forBoolType();
2272
2273    // The type of these compound assignments is the type of the LHS,
2274    // so the RHS is not necessarily an integer.
2275    case BinaryOperator::MulAssign:
2276    case BinaryOperator::DivAssign:
2277    case BinaryOperator::RemAssign:
2278    case BinaryOperator::AddAssign:
2279    case BinaryOperator::SubAssign:
2280      return IntRange::forType(C, E->getType());
2281
2282    // Operations with opaque sources are black-listed.
2283    case BinaryOperator::PtrMemD:
2284    case BinaryOperator::PtrMemI:
2285      return IntRange::forType(C, E->getType());
2286
2287    // Bitwise-and uses the *infinum* of the two source ranges.
2288    case BinaryOperator::And:
2289    case BinaryOperator::AndAssign:
2290      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2291                            GetExprRange(C, BO->getRHS(), MaxWidth));
2292
2293    // Left shift gets black-listed based on a judgement call.
2294    case BinaryOperator::Shl:
2295      // ...except that we want to treat '1 << (blah)' as logically
2296      // positive.  It's an important idiom.
2297      if (IntegerLiteral *I
2298            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2299        if (I->getValue() == 1) {
2300          IntRange R = IntRange::forType(C, E->getType());
2301          return IntRange(R.Width, /*NonNegative*/ true);
2302        }
2303      }
2304      // fallthrough
2305
2306    case BinaryOperator::ShlAssign:
2307      return IntRange::forType(C, E->getType());
2308
2309    // Right shift by a constant can narrow its left argument.
2310    case BinaryOperator::Shr:
2311    case BinaryOperator::ShrAssign: {
2312      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2313
2314      // If the shift amount is a positive constant, drop the width by
2315      // that much.
2316      llvm::APSInt shift;
2317      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2318          shift.isNonNegative()) {
2319        unsigned zext = shift.getZExtValue();
2320        if (zext >= L.Width)
2321          L.Width = (L.NonNegative ? 0 : 1);
2322        else
2323          L.Width -= zext;
2324      }
2325
2326      return L;
2327    }
2328
2329    // Comma acts as its right operand.
2330    case BinaryOperator::Comma:
2331      return GetExprRange(C, BO->getRHS(), MaxWidth);
2332
2333    // Black-list pointer subtractions.
2334    case BinaryOperator::Sub:
2335      if (BO->getLHS()->getType()->isPointerType())
2336        return IntRange::forType(C, E->getType());
2337      // fallthrough
2338
2339    default:
2340      break;
2341    }
2342
2343    // Treat every other operator as if it were closed on the
2344    // narrowest type that encompasses both operands.
2345    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2346    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2347    return IntRange::join(L, R);
2348  }
2349
2350  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2351    switch (UO->getOpcode()) {
2352    // Boolean-valued operations are white-listed.
2353    case UnaryOperator::LNot:
2354      return IntRange::forBoolType();
2355
2356    // Operations with opaque sources are black-listed.
2357    case UnaryOperator::Deref:
2358    case UnaryOperator::AddrOf: // should be impossible
2359      return IntRange::forType(C, E->getType());
2360
2361    default:
2362      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2363    }
2364  }
2365
2366  if (dyn_cast<OffsetOfExpr>(E)) {
2367    IntRange::forType(C, E->getType());
2368  }
2369
2370  FieldDecl *BitField = E->getBitField();
2371  if (BitField) {
2372    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2373    unsigned BitWidth = BitWidthAP.getZExtValue();
2374
2375    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2376  }
2377
2378  return IntRange::forType(C, E->getType());
2379}
2380
2381IntRange GetExprRange(ASTContext &C, Expr *E) {
2382  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2383}
2384
2385/// Checks whether the given value, which currently has the given
2386/// source semantics, has the same value when coerced through the
2387/// target semantics.
2388bool IsSameFloatAfterCast(const llvm::APFloat &value,
2389                          const llvm::fltSemantics &Src,
2390                          const llvm::fltSemantics &Tgt) {
2391  llvm::APFloat truncated = value;
2392
2393  bool ignored;
2394  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2395  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2396
2397  return truncated.bitwiseIsEqual(value);
2398}
2399
2400/// Checks whether the given value, which currently has the given
2401/// source semantics, has the same value when coerced through the
2402/// target semantics.
2403///
2404/// The value might be a vector of floats (or a complex number).
2405bool IsSameFloatAfterCast(const APValue &value,
2406                          const llvm::fltSemantics &Src,
2407                          const llvm::fltSemantics &Tgt) {
2408  if (value.isFloat())
2409    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2410
2411  if (value.isVector()) {
2412    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2413      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2414        return false;
2415    return true;
2416  }
2417
2418  assert(value.isComplexFloat());
2419  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2420          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2421}
2422
2423void AnalyzeImplicitConversions(Sema &S, Expr *E);
2424
2425bool IsZero(Sema &S, Expr *E) {
2426  llvm::APSInt Value;
2427  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2428}
2429
2430void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2431  BinaryOperator::Opcode op = E->getOpcode();
2432  if (op == BinaryOperator::LT && IsZero(S, E->getRHS())) {
2433    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2434      << "< 0" << "false"
2435      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2436  } else if (op == BinaryOperator::GE && IsZero(S, E->getRHS())) {
2437    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2438      << ">= 0" << "true"
2439      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2440  } else if (op == BinaryOperator::GT && IsZero(S, E->getLHS())) {
2441    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2442      << "0 >" << "false"
2443      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2444  } else if (op == BinaryOperator::LE && IsZero(S, E->getLHS())) {
2445    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2446      << "0 <=" << "true"
2447      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2448  }
2449}
2450
2451/// Analyze the operands of the given comparison.  Implements the
2452/// fallback case from AnalyzeComparison.
2453void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2454  AnalyzeImplicitConversions(S, E->getLHS());
2455  AnalyzeImplicitConversions(S, E->getRHS());
2456}
2457
2458/// \brief Implements -Wsign-compare.
2459///
2460/// \param lex the left-hand expression
2461/// \param rex the right-hand expression
2462/// \param OpLoc the location of the joining operator
2463/// \param BinOpc binary opcode or 0
2464void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2465  // The type the comparison is being performed in.
2466  QualType T = E->getLHS()->getType();
2467  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2468         && "comparison with mismatched types");
2469
2470  // We don't do anything special if this isn't an unsigned integral
2471  // comparison:  we're only interested in integral comparisons, and
2472  // signed comparisons only happen in cases we don't care to warn about.
2473  if (!T->hasUnsignedIntegerRepresentation())
2474    return AnalyzeImpConvsInComparison(S, E);
2475
2476  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2477  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2478
2479  // Check to see if one of the (unmodified) operands is of different
2480  // signedness.
2481  Expr *signedOperand, *unsignedOperand;
2482  if (lex->getType()->hasSignedIntegerRepresentation()) {
2483    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2484           "unsigned comparison between two signed integer expressions?");
2485    signedOperand = lex;
2486    unsignedOperand = rex;
2487  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2488    signedOperand = rex;
2489    unsignedOperand = lex;
2490  } else {
2491    CheckTrivialUnsignedComparison(S, E);
2492    return AnalyzeImpConvsInComparison(S, E);
2493  }
2494
2495  // Otherwise, calculate the effective range of the signed operand.
2496  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2497
2498  // Go ahead and analyze implicit conversions in the operands.  Note
2499  // that we skip the implicit conversions on both sides.
2500  AnalyzeImplicitConversions(S, lex);
2501  AnalyzeImplicitConversions(S, rex);
2502
2503  // If the signed range is non-negative, -Wsign-compare won't fire,
2504  // but we should still check for comparisons which are always true
2505  // or false.
2506  if (signedRange.NonNegative)
2507    return CheckTrivialUnsignedComparison(S, E);
2508
2509  // For (in)equality comparisons, if the unsigned operand is a
2510  // constant which cannot collide with a overflowed signed operand,
2511  // then reinterpreting the signed operand as unsigned will not
2512  // change the result of the comparison.
2513  if (E->isEqualityOp()) {
2514    unsigned comparisonWidth = S.Context.getIntWidth(T);
2515    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2516
2517    // We should never be unable to prove that the unsigned operand is
2518    // non-negative.
2519    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2520
2521    if (unsignedRange.Width < comparisonWidth)
2522      return;
2523  }
2524
2525  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2526    << lex->getType() << rex->getType()
2527    << lex->getSourceRange() << rex->getSourceRange();
2528}
2529
2530/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2531void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2532  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2533}
2534
2535void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2536                             bool *ICContext = 0) {
2537  if (E->isTypeDependent() || E->isValueDependent()) return;
2538
2539  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2540  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2541  if (Source == Target) return;
2542  if (Target->isDependentType()) return;
2543
2544  // Never diagnose implicit casts to bool.
2545  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2546    return;
2547
2548  // Strip vector types.
2549  if (isa<VectorType>(Source)) {
2550    if (!isa<VectorType>(Target))
2551      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2552
2553    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2554    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2555  }
2556
2557  // Strip complex types.
2558  if (isa<ComplexType>(Source)) {
2559    if (!isa<ComplexType>(Target))
2560      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2561
2562    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2563    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2564  }
2565
2566  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2567  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2568
2569  // If the source is floating point...
2570  if (SourceBT && SourceBT->isFloatingPoint()) {
2571    // ...and the target is floating point...
2572    if (TargetBT && TargetBT->isFloatingPoint()) {
2573      // ...then warn if we're dropping FP rank.
2574
2575      // Builtin FP kinds are ordered by increasing FP rank.
2576      if (SourceBT->getKind() > TargetBT->getKind()) {
2577        // Don't warn about float constants that are precisely
2578        // representable in the target type.
2579        Expr::EvalResult result;
2580        if (E->Evaluate(result, S.Context)) {
2581          // Value might be a float, a float vector, or a float complex.
2582          if (IsSameFloatAfterCast(result.Val,
2583                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2584                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2585            return;
2586        }
2587
2588        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2589      }
2590      return;
2591    }
2592
2593    // If the target is integral, always warn.
2594    if ((TargetBT && TargetBT->isInteger()))
2595      // TODO: don't warn for integer values?
2596      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2597
2598    return;
2599  }
2600
2601  if (!Source->isIntegerType() || !Target->isIntegerType())
2602    return;
2603
2604  IntRange SourceRange = GetExprRange(S.Context, E);
2605  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2606
2607  if (SourceRange.Width > TargetRange.Width) {
2608    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2609    // and by god we'll let them.
2610    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2611      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2612    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2613  }
2614
2615  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2616      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2617       SourceRange.Width == TargetRange.Width)) {
2618    unsigned DiagID = diag::warn_impcast_integer_sign;
2619
2620    // Traditionally, gcc has warned about this under -Wsign-compare.
2621    // We also want to warn about it in -Wconversion.
2622    // So if -Wconversion is off, use a completely identical diagnostic
2623    // in the sign-compare group.
2624    // The conditional-checking code will
2625    if (ICContext) {
2626      DiagID = diag::warn_impcast_integer_sign_conditional;
2627      *ICContext = true;
2628    }
2629
2630    return DiagnoseImpCast(S, E, T, DiagID);
2631  }
2632
2633  return;
2634}
2635
2636void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2637
2638void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2639                             bool &ICContext) {
2640  E = E->IgnoreParenImpCasts();
2641
2642  if (isa<ConditionalOperator>(E))
2643    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2644
2645  AnalyzeImplicitConversions(S, E);
2646  if (E->getType() != T)
2647    return CheckImplicitConversion(S, E, T, &ICContext);
2648  return;
2649}
2650
2651void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2652  AnalyzeImplicitConversions(S, E->getCond());
2653
2654  bool Suspicious = false;
2655  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2656  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2657
2658  // If -Wconversion would have warned about either of the candidates
2659  // for a signedness conversion to the context type...
2660  if (!Suspicious) return;
2661
2662  // ...but it's currently ignored...
2663  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2664    return;
2665
2666  // ...and -Wsign-compare isn't...
2667  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2668    return;
2669
2670  // ...then check whether it would have warned about either of the
2671  // candidates for a signedness conversion to the condition type.
2672  if (E->getType() != T) {
2673    Suspicious = false;
2674    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2675                            E->getType(), &Suspicious);
2676    if (!Suspicious)
2677      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2678                              E->getType(), &Suspicious);
2679    if (!Suspicious)
2680      return;
2681  }
2682
2683  // If so, emit a diagnostic under -Wsign-compare.
2684  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2685  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2686  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2687    << lex->getType() << rex->getType()
2688    << lex->getSourceRange() << rex->getSourceRange();
2689}
2690
2691/// AnalyzeImplicitConversions - Find and report any interesting
2692/// implicit conversions in the given expression.  There are a couple
2693/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2694void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2695  QualType T = OrigE->getType();
2696  Expr *E = OrigE->IgnoreParenImpCasts();
2697
2698  // For conditional operators, we analyze the arguments as if they
2699  // were being fed directly into the output.
2700  if (isa<ConditionalOperator>(E)) {
2701    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2702    CheckConditionalOperator(S, CO, T);
2703    return;
2704  }
2705
2706  // Go ahead and check any implicit conversions we might have skipped.
2707  // The non-canonical typecheck is just an optimization;
2708  // CheckImplicitConversion will filter out dead implicit conversions.
2709  if (E->getType() != T)
2710    CheckImplicitConversion(S, E, T);
2711
2712  // Now continue drilling into this expression.
2713
2714  // Skip past explicit casts.
2715  if (isa<ExplicitCastExpr>(E)) {
2716    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2717    return AnalyzeImplicitConversions(S, E);
2718  }
2719
2720  // Do a somewhat different check with comparison operators.
2721  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2722    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2723
2724  // These break the otherwise-useful invariant below.  Fortunately,
2725  // we don't really need to recurse into them, because any internal
2726  // expressions should have been analyzed already when they were
2727  // built into statements.
2728  if (isa<StmtExpr>(E)) return;
2729
2730  // Don't descend into unevaluated contexts.
2731  if (isa<SizeOfAlignOfExpr>(E)) return;
2732
2733  // Now just recurse over the expression's children.
2734  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2735         I != IE; ++I)
2736    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2737}
2738
2739} // end anonymous namespace
2740
2741/// Diagnoses "dangerous" implicit conversions within the given
2742/// expression (which is a full expression).  Implements -Wconversion
2743/// and -Wsign-compare.
2744void Sema::CheckImplicitConversions(Expr *E) {
2745  // Don't diagnose in unevaluated contexts.
2746  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2747    return;
2748
2749  // Don't diagnose for value- or type-dependent expressions.
2750  if (E->isTypeDependent() || E->isValueDependent())
2751    return;
2752
2753  AnalyzeImplicitConversions(*this, E);
2754}
2755
2756/// CheckParmsForFunctionDef - Check that the parameters of the given
2757/// function are appropriate for the definition of a function. This
2758/// takes care of any checks that cannot be performed on the
2759/// declaration itself, e.g., that the types of each of the function
2760/// parameters are complete.
2761bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2762  bool HasInvalidParm = false;
2763  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2764    ParmVarDecl *Param = FD->getParamDecl(p);
2765
2766    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2767    // function declarator that is part of a function definition of
2768    // that function shall not have incomplete type.
2769    //
2770    // This is also C++ [dcl.fct]p6.
2771    if (!Param->isInvalidDecl() &&
2772        RequireCompleteType(Param->getLocation(), Param->getType(),
2773                               diag::err_typecheck_decl_incomplete_type)) {
2774      Param->setInvalidDecl();
2775      HasInvalidParm = true;
2776    }
2777
2778    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2779    // declaration of each parameter shall include an identifier.
2780    if (Param->getIdentifier() == 0 &&
2781        !Param->isImplicit() &&
2782        !getLangOptions().CPlusPlus)
2783      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2784
2785    // C99 6.7.5.3p12:
2786    //   If the function declarator is not part of a definition of that
2787    //   function, parameters may have incomplete type and may use the [*]
2788    //   notation in their sequences of declarator specifiers to specify
2789    //   variable length array types.
2790    QualType PType = Param->getOriginalType();
2791    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2792      if (AT->getSizeModifier() == ArrayType::Star) {
2793        // FIXME: This diagnosic should point the the '[*]' if source-location
2794        // information is added for it.
2795        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2796      }
2797    }
2798  }
2799
2800  return HasInvalidParm;
2801}
2802
2803/// CheckCastAlign - Implements -Wcast-align, which warns when a
2804/// pointer cast increases the alignment requirements.
2805void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
2806  // This is actually a lot of work to potentially be doing on every
2807  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
2808  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
2809        == Diagnostic::Ignored)
2810    return;
2811
2812  // Ignore dependent types.
2813  if (T->isDependentType() || Op->getType()->isDependentType())
2814    return;
2815
2816  // Require that the destination be a pointer type.
2817  const PointerType *DestPtr = T->getAs<PointerType>();
2818  if (!DestPtr) return;
2819
2820  // If the destination has alignment 1, we're done.
2821  QualType DestPointee = DestPtr->getPointeeType();
2822  if (DestPointee->isIncompleteType()) return;
2823  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
2824  if (DestAlign.isOne()) return;
2825
2826  // Require that the source be a pointer type.
2827  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
2828  if (!SrcPtr) return;
2829  QualType SrcPointee = SrcPtr->getPointeeType();
2830
2831  // Whitelist casts from cv void*.  We already implicitly
2832  // whitelisted casts to cv void*, since they have alignment 1.
2833  // Also whitelist casts involving incomplete types, which implicitly
2834  // includes 'void'.
2835  if (SrcPointee->isIncompleteType()) return;
2836
2837  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
2838  if (SrcAlign >= DestAlign) return;
2839
2840  Diag(TRange.getBegin(), diag::warn_cast_align)
2841    << Op->getType() << T
2842    << static_cast<unsigned>(SrcAlign.getQuantity())
2843    << static_cast<unsigned>(DestAlign.getQuantity())
2844    << TRange << Op->getSourceRange();
2845}
2846
2847