SemaChecking.cpp revision 5f8d604246976a93a73549b07bbc8ee0b2061b50
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Analysis/Analyses/FormatString.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/StmtObjC.h"
30#include "clang/Lex/Preprocessor.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "clang/Basic/TargetBuiltins.h"
35#include "clang/Basic/TargetInfo.h"
36#include "clang/Basic/ConvertUTF.h"
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
42                                                    unsigned ByteNo) const {
43  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
44                               PP.getLangOptions(), PP.getTargetInfo());
45}
46
47
48/// CheckablePrintfAttr - does a function call have a "printf" attribute
49/// and arguments that merit checking?
50bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
51  if (Format->getType() == "printf") return true;
52  if (Format->getType() == "printf0") {
53    // printf0 allows null "format" string; if so don't check format/args
54    unsigned format_idx = Format->getFormatIdx() - 1;
55    // Does the index refer to the implicit object argument?
56    if (isa<CXXMemberCallExpr>(TheCall)) {
57      if (format_idx == 0)
58        return false;
59      --format_idx;
60    }
61    if (format_idx < TheCall->getNumArgs()) {
62      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
63      if (!Format->isNullPointerConstant(Context,
64                                         Expr::NPC_ValueDependentIsNull))
65        return true;
66    }
67  }
68  return false;
69}
70
71/// Checks that a call expression's argument count is the desired number.
72/// This is useful when doing custom type-checking.  Returns true on error.
73static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
74  unsigned argCount = call->getNumArgs();
75  if (argCount == desiredArgCount) return false;
76
77  if (argCount < desiredArgCount)
78    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
79        << 0 /*function call*/ << desiredArgCount << argCount
80        << call->getSourceRange();
81
82  // Highlight all the excess arguments.
83  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
84                    call->getArg(argCount - 1)->getLocEnd());
85
86  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
87    << 0 /*function call*/ << desiredArgCount << argCount
88    << call->getArg(1)->getSourceRange();
89}
90
91ExprResult
92Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
93  ExprResult TheCallResult(Owned(TheCall));
94
95  // Find out if any arguments are required to be integer constant expressions.
96  unsigned ICEArguments = 0;
97  ASTContext::GetBuiltinTypeError Error;
98  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
99  if (Error != ASTContext::GE_None)
100    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
101
102  // If any arguments are required to be ICE's, check and diagnose.
103  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
104    // Skip arguments not required to be ICE's.
105    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
106
107    llvm::APSInt Result;
108    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
109      return true;
110    ICEArguments &= ~(1 << ArgNo);
111  }
112
113  switch (BuiltinID) {
114  case Builtin::BI__builtin___CFStringMakeConstantString:
115    assert(TheCall->getNumArgs() == 1 &&
116           "Wrong # arguments to builtin CFStringMakeConstantString");
117    if (CheckObjCString(TheCall->getArg(0)))
118      return ExprError();
119    break;
120  case Builtin::BI__builtin_stdarg_start:
121  case Builtin::BI__builtin_va_start:
122    if (SemaBuiltinVAStart(TheCall))
123      return ExprError();
124    break;
125  case Builtin::BI__builtin_isgreater:
126  case Builtin::BI__builtin_isgreaterequal:
127  case Builtin::BI__builtin_isless:
128  case Builtin::BI__builtin_islessequal:
129  case Builtin::BI__builtin_islessgreater:
130  case Builtin::BI__builtin_isunordered:
131    if (SemaBuiltinUnorderedCompare(TheCall))
132      return ExprError();
133    break;
134  case Builtin::BI__builtin_fpclassify:
135    if (SemaBuiltinFPClassification(TheCall, 6))
136      return ExprError();
137    break;
138  case Builtin::BI__builtin_isfinite:
139  case Builtin::BI__builtin_isinf:
140  case Builtin::BI__builtin_isinf_sign:
141  case Builtin::BI__builtin_isnan:
142  case Builtin::BI__builtin_isnormal:
143    if (SemaBuiltinFPClassification(TheCall, 1))
144      return ExprError();
145    break;
146  case Builtin::BI__builtin_shufflevector:
147    return SemaBuiltinShuffleVector(TheCall);
148    // TheCall will be freed by the smart pointer here, but that's fine, since
149    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
150  case Builtin::BI__builtin_prefetch:
151    if (SemaBuiltinPrefetch(TheCall))
152      return ExprError();
153    break;
154  case Builtin::BI__builtin_object_size:
155    if (SemaBuiltinObjectSize(TheCall))
156      return ExprError();
157    break;
158  case Builtin::BI__builtin_longjmp:
159    if (SemaBuiltinLongjmp(TheCall))
160      return ExprError();
161    break;
162
163  case Builtin::BI__builtin_classify_type:
164    if (checkArgCount(*this, TheCall, 1)) return true;
165    TheCall->setType(Context.IntTy);
166    break;
167  case Builtin::BI__builtin_constant_p:
168    if (checkArgCount(*this, TheCall, 1)) return true;
169    TheCall->setType(Context.IntTy);
170    break;
171  case Builtin::BI__sync_fetch_and_add:
172  case Builtin::BI__sync_fetch_and_sub:
173  case Builtin::BI__sync_fetch_and_or:
174  case Builtin::BI__sync_fetch_and_and:
175  case Builtin::BI__sync_fetch_and_xor:
176  case Builtin::BI__sync_add_and_fetch:
177  case Builtin::BI__sync_sub_and_fetch:
178  case Builtin::BI__sync_and_and_fetch:
179  case Builtin::BI__sync_or_and_fetch:
180  case Builtin::BI__sync_xor_and_fetch:
181  case Builtin::BI__sync_val_compare_and_swap:
182  case Builtin::BI__sync_bool_compare_and_swap:
183  case Builtin::BI__sync_lock_test_and_set:
184  case Builtin::BI__sync_lock_release:
185  case Builtin::BI__sync_swap:
186    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
187  }
188
189  // Since the target specific builtins for each arch overlap, only check those
190  // of the arch we are compiling for.
191  if (BuiltinID >= Builtin::FirstTSBuiltin) {
192    switch (Context.Target.getTriple().getArch()) {
193      case llvm::Triple::arm:
194      case llvm::Triple::thumb:
195        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
196          return ExprError();
197        break;
198      default:
199        break;
200    }
201  }
202
203  return move(TheCallResult);
204}
205
206// Get the valid immediate range for the specified NEON type code.
207static unsigned RFT(unsigned t, bool shift = false) {
208  bool quad = t & 0x10;
209
210  switch (t & 0x7) {
211    case 0: // i8
212      return shift ? 7 : (8 << (int)quad) - 1;
213    case 1: // i16
214      return shift ? 15 : (4 << (int)quad) - 1;
215    case 2: // i32
216      return shift ? 31 : (2 << (int)quad) - 1;
217    case 3: // i64
218      return shift ? 63 : (1 << (int)quad) - 1;
219    case 4: // f32
220      assert(!shift && "cannot shift float types!");
221      return (2 << (int)quad) - 1;
222    case 5: // poly8
223      return shift ? 7 : (8 << (int)quad) - 1;
224    case 6: // poly16
225      return shift ? 15 : (4 << (int)quad) - 1;
226    case 7: // float16
227      assert(!shift && "cannot shift float types!");
228      return (4 << (int)quad) - 1;
229  }
230  return 0;
231}
232
233bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
234  llvm::APSInt Result;
235
236  unsigned mask = 0;
237  unsigned TV = 0;
238  switch (BuiltinID) {
239#define GET_NEON_OVERLOAD_CHECK
240#include "clang/Basic/arm_neon.inc"
241#undef GET_NEON_OVERLOAD_CHECK
242  }
243
244  // For NEON intrinsics which are overloaded on vector element type, validate
245  // the immediate which specifies which variant to emit.
246  if (mask) {
247    unsigned ArgNo = TheCall->getNumArgs()-1;
248    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
249      return true;
250
251    TV = Result.getLimitedValue(32);
252    if ((TV > 31) || (mask & (1 << TV)) == 0)
253      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
254        << TheCall->getArg(ArgNo)->getSourceRange();
255  }
256
257  // For NEON intrinsics which take an immediate value as part of the
258  // instruction, range check them here.
259  unsigned i = 0, l = 0, u = 0;
260  switch (BuiltinID) {
261  default: return false;
262  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
263  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
264  case ARM::BI__builtin_arm_vcvtr_f:
265  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
266#define GET_NEON_IMMEDIATE_CHECK
267#include "clang/Basic/arm_neon.inc"
268#undef GET_NEON_IMMEDIATE_CHECK
269  };
270
271  // Check that the immediate argument is actually a constant.
272  if (SemaBuiltinConstantArg(TheCall, i, Result))
273    return true;
274
275  // Range check against the upper/lower values for this isntruction.
276  unsigned Val = Result.getZExtValue();
277  if (Val < l || Val > (u + l))
278    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
279      << l << u+l << TheCall->getArg(i)->getSourceRange();
280
281  // FIXME: VFP Intrinsics should error if VFP not present.
282  return false;
283}
284
285/// CheckFunctionCall - Check a direct function call for various correctness
286/// and safety properties not strictly enforced by the C type system.
287bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
288  // Get the IdentifierInfo* for the called function.
289  IdentifierInfo *FnInfo = FDecl->getIdentifier();
290
291  // None of the checks below are needed for functions that don't have
292  // simple names (e.g., C++ conversion functions).
293  if (!FnInfo)
294    return false;
295
296  // FIXME: This mechanism should be abstracted to be less fragile and
297  // more efficient. For example, just map function ids to custom
298  // handlers.
299
300  // Printf and scanf checking.
301  for (specific_attr_iterator<FormatAttr>
302         i = FDecl->specific_attr_begin<FormatAttr>(),
303         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
304
305    const FormatAttr *Format = *i;
306    const bool b = Format->getType() == "scanf";
307    if (b || CheckablePrintfAttr(Format, TheCall)) {
308      bool HasVAListArg = Format->getFirstArg() == 0;
309      CheckPrintfScanfArguments(TheCall, HasVAListArg,
310                                Format->getFormatIdx() - 1,
311                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
312                                !b);
313    }
314  }
315
316  for (specific_attr_iterator<NonNullAttr>
317         i = FDecl->specific_attr_begin<NonNullAttr>(),
318         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
319    CheckNonNullArguments(*i, TheCall->getArgs(),
320                          TheCall->getCallee()->getLocStart());
321  }
322
323  // Builtin handling
324  int CMF = -1;
325  switch (FDecl->getBuiltinID()) {
326  case Builtin::BI__builtin_memset:
327  case Builtin::BI__builtin___memset_chk:
328  case Builtin::BImemset:
329    CMF = CMF_Memset;
330    break;
331
332  case Builtin::BI__builtin_memcpy:
333  case Builtin::BI__builtin___memcpy_chk:
334  case Builtin::BImemcpy:
335    CMF = CMF_Memcpy;
336    break;
337
338  case Builtin::BI__builtin_memmove:
339  case Builtin::BI__builtin___memmove_chk:
340  case Builtin::BImemmove:
341    CMF = CMF_Memmove;
342    break;
343
344  case Builtin::BIstrlcpy:
345  case Builtin::BIstrlcat:
346    CheckStrlcpycatArguments(TheCall, FnInfo);
347    break;
348
349  case Builtin::BI__builtin_memcmp:
350    CMF = CMF_Memcmp;
351    break;
352
353  default:
354    if (FDecl->getLinkage() == ExternalLinkage &&
355        (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
356      if (FnInfo->isStr("memset"))
357        CMF = CMF_Memset;
358      else if (FnInfo->isStr("memcpy"))
359        CMF = CMF_Memcpy;
360      else if (FnInfo->isStr("memmove"))
361        CMF = CMF_Memmove;
362      else if (FnInfo->isStr("memcmp"))
363        CMF = CMF_Memcmp;
364    }
365    break;
366  }
367
368  // Memset/memcpy/memmove handling
369  if (CMF != -1)
370    CheckMemaccessArguments(TheCall, CheckedMemoryFunction(CMF), FnInfo);
371
372  return false;
373}
374
375bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
376  // Printf checking.
377  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
378  if (!Format)
379    return false;
380
381  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
382  if (!V)
383    return false;
384
385  QualType Ty = V->getType();
386  if (!Ty->isBlockPointerType())
387    return false;
388
389  const bool b = Format->getType() == "scanf";
390  if (!b && !CheckablePrintfAttr(Format, TheCall))
391    return false;
392
393  bool HasVAListArg = Format->getFirstArg() == 0;
394  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
395                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
396
397  return false;
398}
399
400/// checkBuiltinArgument - Given a call to a builtin function, perform
401/// normal type-checking on the given argument, updating the call in
402/// place.  This is useful when a builtin function requires custom
403/// type-checking for some of its arguments but not necessarily all of
404/// them.
405///
406/// Returns true on error.
407static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
408  FunctionDecl *Fn = E->getDirectCallee();
409  assert(Fn && "builtin call without direct callee!");
410
411  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
412  InitializedEntity Entity =
413    InitializedEntity::InitializeParameter(S.Context, Param);
414
415  ExprResult Arg = E->getArg(0);
416  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
417  if (Arg.isInvalid())
418    return true;
419
420  E->setArg(ArgIndex, Arg.take());
421  return false;
422}
423
424/// SemaBuiltinAtomicOverloaded - We have a call to a function like
425/// __sync_fetch_and_add, which is an overloaded function based on the pointer
426/// type of its first argument.  The main ActOnCallExpr routines have already
427/// promoted the types of arguments because all of these calls are prototyped as
428/// void(...).
429///
430/// This function goes through and does final semantic checking for these
431/// builtins,
432ExprResult
433Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
434  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
435  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
436  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
437
438  // Ensure that we have at least one argument to do type inference from.
439  if (TheCall->getNumArgs() < 1) {
440    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
441      << 0 << 1 << TheCall->getNumArgs()
442      << TheCall->getCallee()->getSourceRange();
443    return ExprError();
444  }
445
446  // Inspect the first argument of the atomic builtin.  This should always be
447  // a pointer type, whose element is an integral scalar or pointer type.
448  // Because it is a pointer type, we don't have to worry about any implicit
449  // casts here.
450  // FIXME: We don't allow floating point scalars as input.
451  Expr *FirstArg = TheCall->getArg(0);
452  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
453  if (!pointerType) {
454    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
455      << FirstArg->getType() << FirstArg->getSourceRange();
456    return ExprError();
457  }
458
459  QualType ValType = pointerType->getPointeeType();
460  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
461      !ValType->isBlockPointerType()) {
462    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
463      << FirstArg->getType() << FirstArg->getSourceRange();
464    return ExprError();
465  }
466
467  switch (ValType.getObjCLifetime()) {
468  case Qualifiers::OCL_None:
469  case Qualifiers::OCL_ExplicitNone:
470    // okay
471    break;
472
473  case Qualifiers::OCL_Weak:
474  case Qualifiers::OCL_Strong:
475  case Qualifiers::OCL_Autoreleasing:
476    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
477      << ValType << FirstArg->getSourceRange();
478    return ExprError();
479  }
480
481  // The majority of builtins return a value, but a few have special return
482  // types, so allow them to override appropriately below.
483  QualType ResultType = ValType;
484
485  // We need to figure out which concrete builtin this maps onto.  For example,
486  // __sync_fetch_and_add with a 2 byte object turns into
487  // __sync_fetch_and_add_2.
488#define BUILTIN_ROW(x) \
489  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
490    Builtin::BI##x##_8, Builtin::BI##x##_16 }
491
492  static const unsigned BuiltinIndices[][5] = {
493    BUILTIN_ROW(__sync_fetch_and_add),
494    BUILTIN_ROW(__sync_fetch_and_sub),
495    BUILTIN_ROW(__sync_fetch_and_or),
496    BUILTIN_ROW(__sync_fetch_and_and),
497    BUILTIN_ROW(__sync_fetch_and_xor),
498
499    BUILTIN_ROW(__sync_add_and_fetch),
500    BUILTIN_ROW(__sync_sub_and_fetch),
501    BUILTIN_ROW(__sync_and_and_fetch),
502    BUILTIN_ROW(__sync_or_and_fetch),
503    BUILTIN_ROW(__sync_xor_and_fetch),
504
505    BUILTIN_ROW(__sync_val_compare_and_swap),
506    BUILTIN_ROW(__sync_bool_compare_and_swap),
507    BUILTIN_ROW(__sync_lock_test_and_set),
508    BUILTIN_ROW(__sync_lock_release),
509    BUILTIN_ROW(__sync_swap)
510  };
511#undef BUILTIN_ROW
512
513  // Determine the index of the size.
514  unsigned SizeIndex;
515  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
516  case 1: SizeIndex = 0; break;
517  case 2: SizeIndex = 1; break;
518  case 4: SizeIndex = 2; break;
519  case 8: SizeIndex = 3; break;
520  case 16: SizeIndex = 4; break;
521  default:
522    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
523      << FirstArg->getType() << FirstArg->getSourceRange();
524    return ExprError();
525  }
526
527  // Each of these builtins has one pointer argument, followed by some number of
528  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
529  // that we ignore.  Find out which row of BuiltinIndices to read from as well
530  // as the number of fixed args.
531  unsigned BuiltinID = FDecl->getBuiltinID();
532  unsigned BuiltinIndex, NumFixed = 1;
533  switch (BuiltinID) {
534  default: assert(0 && "Unknown overloaded atomic builtin!");
535  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
536  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
537  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
538  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
539  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
540
541  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
542  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
543  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
544  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
545  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
546
547  case Builtin::BI__sync_val_compare_and_swap:
548    BuiltinIndex = 10;
549    NumFixed = 2;
550    break;
551  case Builtin::BI__sync_bool_compare_and_swap:
552    BuiltinIndex = 11;
553    NumFixed = 2;
554    ResultType = Context.BoolTy;
555    break;
556  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
557  case Builtin::BI__sync_lock_release:
558    BuiltinIndex = 13;
559    NumFixed = 0;
560    ResultType = Context.VoidTy;
561    break;
562  case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
563  }
564
565  // Now that we know how many fixed arguments we expect, first check that we
566  // have at least that many.
567  if (TheCall->getNumArgs() < 1+NumFixed) {
568    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
569      << 0 << 1+NumFixed << TheCall->getNumArgs()
570      << TheCall->getCallee()->getSourceRange();
571    return ExprError();
572  }
573
574  // Get the decl for the concrete builtin from this, we can tell what the
575  // concrete integer type we should convert to is.
576  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
577  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
578  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
579  FunctionDecl *NewBuiltinDecl =
580    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
581                                           TUScope, false, DRE->getLocStart()));
582
583  // The first argument --- the pointer --- has a fixed type; we
584  // deduce the types of the rest of the arguments accordingly.  Walk
585  // the remaining arguments, converting them to the deduced value type.
586  for (unsigned i = 0; i != NumFixed; ++i) {
587    ExprResult Arg = TheCall->getArg(i+1);
588
589    // If the argument is an implicit cast, then there was a promotion due to
590    // "...", just remove it now.
591    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
592      Arg = ICE->getSubExpr();
593      ICE->setSubExpr(0);
594      TheCall->setArg(i+1, Arg.get());
595    }
596
597    // GCC does an implicit conversion to the pointer or integer ValType.  This
598    // can fail in some cases (1i -> int**), check for this error case now.
599    CastKind Kind = CK_Invalid;
600    ExprValueKind VK = VK_RValue;
601    CXXCastPath BasePath;
602    Arg = CheckCastTypes(Arg.get()->getLocStart(), Arg.get()->getSourceRange(),
603                         ValType, Arg.take(), Kind, VK, BasePath);
604    if (Arg.isInvalid())
605      return ExprError();
606
607    // Okay, we have something that *can* be converted to the right type.  Check
608    // to see if there is a potentially weird extension going on here.  This can
609    // happen when you do an atomic operation on something like an char* and
610    // pass in 42.  The 42 gets converted to char.  This is even more strange
611    // for things like 45.123 -> char, etc.
612    // FIXME: Do this check.
613    Arg = ImpCastExprToType(Arg.take(), ValType, Kind, VK, &BasePath);
614    TheCall->setArg(i+1, Arg.get());
615  }
616
617  // Switch the DeclRefExpr to refer to the new decl.
618  DRE->setDecl(NewBuiltinDecl);
619  DRE->setType(NewBuiltinDecl->getType());
620
621  // Set the callee in the CallExpr.
622  // FIXME: This leaks the original parens and implicit casts.
623  ExprResult PromotedCall = UsualUnaryConversions(DRE);
624  if (PromotedCall.isInvalid())
625    return ExprError();
626  TheCall->setCallee(PromotedCall.take());
627
628  // Change the result type of the call to match the original value type. This
629  // is arbitrary, but the codegen for these builtins ins design to handle it
630  // gracefully.
631  TheCall->setType(ResultType);
632
633  return move(TheCallResult);
634}
635
636
637/// CheckObjCString - Checks that the argument to the builtin
638/// CFString constructor is correct
639/// Note: It might also make sense to do the UTF-16 conversion here (would
640/// simplify the backend).
641bool Sema::CheckObjCString(Expr *Arg) {
642  Arg = Arg->IgnoreParenCasts();
643  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
644
645  if (!Literal || !Literal->isAscii()) {
646    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
647      << Arg->getSourceRange();
648    return true;
649  }
650
651  if (Literal->containsNonAsciiOrNull()) {
652    StringRef String = Literal->getString();
653    unsigned NumBytes = String.size();
654    SmallVector<UTF16, 128> ToBuf(NumBytes);
655    const UTF8 *FromPtr = (UTF8 *)String.data();
656    UTF16 *ToPtr = &ToBuf[0];
657
658    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
659                                                 &ToPtr, ToPtr + NumBytes,
660                                                 strictConversion);
661    // Check for conversion failure.
662    if (Result != conversionOK)
663      Diag(Arg->getLocStart(),
664           diag::warn_cfstring_truncated) << Arg->getSourceRange();
665  }
666  return false;
667}
668
669/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
670/// Emit an error and return true on failure, return false on success.
671bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
672  Expr *Fn = TheCall->getCallee();
673  if (TheCall->getNumArgs() > 2) {
674    Diag(TheCall->getArg(2)->getLocStart(),
675         diag::err_typecheck_call_too_many_args)
676      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
677      << Fn->getSourceRange()
678      << SourceRange(TheCall->getArg(2)->getLocStart(),
679                     (*(TheCall->arg_end()-1))->getLocEnd());
680    return true;
681  }
682
683  if (TheCall->getNumArgs() < 2) {
684    return Diag(TheCall->getLocEnd(),
685      diag::err_typecheck_call_too_few_args_at_least)
686      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
687  }
688
689  // Type-check the first argument normally.
690  if (checkBuiltinArgument(*this, TheCall, 0))
691    return true;
692
693  // Determine whether the current function is variadic or not.
694  BlockScopeInfo *CurBlock = getCurBlock();
695  bool isVariadic;
696  if (CurBlock)
697    isVariadic = CurBlock->TheDecl->isVariadic();
698  else if (FunctionDecl *FD = getCurFunctionDecl())
699    isVariadic = FD->isVariadic();
700  else
701    isVariadic = getCurMethodDecl()->isVariadic();
702
703  if (!isVariadic) {
704    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
705    return true;
706  }
707
708  // Verify that the second argument to the builtin is the last argument of the
709  // current function or method.
710  bool SecondArgIsLastNamedArgument = false;
711  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
712
713  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
714    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
715      // FIXME: This isn't correct for methods (results in bogus warning).
716      // Get the last formal in the current function.
717      const ParmVarDecl *LastArg;
718      if (CurBlock)
719        LastArg = *(CurBlock->TheDecl->param_end()-1);
720      else if (FunctionDecl *FD = getCurFunctionDecl())
721        LastArg = *(FD->param_end()-1);
722      else
723        LastArg = *(getCurMethodDecl()->param_end()-1);
724      SecondArgIsLastNamedArgument = PV == LastArg;
725    }
726  }
727
728  if (!SecondArgIsLastNamedArgument)
729    Diag(TheCall->getArg(1)->getLocStart(),
730         diag::warn_second_parameter_of_va_start_not_last_named_argument);
731  return false;
732}
733
734/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
735/// friends.  This is declared to take (...), so we have to check everything.
736bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
737  if (TheCall->getNumArgs() < 2)
738    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
739      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
740  if (TheCall->getNumArgs() > 2)
741    return Diag(TheCall->getArg(2)->getLocStart(),
742                diag::err_typecheck_call_too_many_args)
743      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
744      << SourceRange(TheCall->getArg(2)->getLocStart(),
745                     (*(TheCall->arg_end()-1))->getLocEnd());
746
747  ExprResult OrigArg0 = TheCall->getArg(0);
748  ExprResult OrigArg1 = TheCall->getArg(1);
749
750  // Do standard promotions between the two arguments, returning their common
751  // type.
752  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
753  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
754    return true;
755
756  // Make sure any conversions are pushed back into the call; this is
757  // type safe since unordered compare builtins are declared as "_Bool
758  // foo(...)".
759  TheCall->setArg(0, OrigArg0.get());
760  TheCall->setArg(1, OrigArg1.get());
761
762  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
763    return false;
764
765  // If the common type isn't a real floating type, then the arguments were
766  // invalid for this operation.
767  if (!Res->isRealFloatingType())
768    return Diag(OrigArg0.get()->getLocStart(),
769                diag::err_typecheck_call_invalid_ordered_compare)
770      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
771      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
772
773  return false;
774}
775
776/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
777/// __builtin_isnan and friends.  This is declared to take (...), so we have
778/// to check everything. We expect the last argument to be a floating point
779/// value.
780bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
781  if (TheCall->getNumArgs() < NumArgs)
782    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
783      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
784  if (TheCall->getNumArgs() > NumArgs)
785    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
786                diag::err_typecheck_call_too_many_args)
787      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
788      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
789                     (*(TheCall->arg_end()-1))->getLocEnd());
790
791  Expr *OrigArg = TheCall->getArg(NumArgs-1);
792
793  if (OrigArg->isTypeDependent())
794    return false;
795
796  // This operation requires a non-_Complex floating-point number.
797  if (!OrigArg->getType()->isRealFloatingType())
798    return Diag(OrigArg->getLocStart(),
799                diag::err_typecheck_call_invalid_unary_fp)
800      << OrigArg->getType() << OrigArg->getSourceRange();
801
802  // If this is an implicit conversion from float -> double, remove it.
803  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
804    Expr *CastArg = Cast->getSubExpr();
805    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
806      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
807             "promotion from float to double is the only expected cast here");
808      Cast->setSubExpr(0);
809      TheCall->setArg(NumArgs-1, CastArg);
810      OrigArg = CastArg;
811    }
812  }
813
814  return false;
815}
816
817/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
818// This is declared to take (...), so we have to check everything.
819ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
820  if (TheCall->getNumArgs() < 2)
821    return ExprError(Diag(TheCall->getLocEnd(),
822                          diag::err_typecheck_call_too_few_args_at_least)
823      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
824      << TheCall->getSourceRange());
825
826  // Determine which of the following types of shufflevector we're checking:
827  // 1) unary, vector mask: (lhs, mask)
828  // 2) binary, vector mask: (lhs, rhs, mask)
829  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
830  QualType resType = TheCall->getArg(0)->getType();
831  unsigned numElements = 0;
832
833  if (!TheCall->getArg(0)->isTypeDependent() &&
834      !TheCall->getArg(1)->isTypeDependent()) {
835    QualType LHSType = TheCall->getArg(0)->getType();
836    QualType RHSType = TheCall->getArg(1)->getType();
837
838    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
839      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
840        << SourceRange(TheCall->getArg(0)->getLocStart(),
841                       TheCall->getArg(1)->getLocEnd());
842      return ExprError();
843    }
844
845    numElements = LHSType->getAs<VectorType>()->getNumElements();
846    unsigned numResElements = TheCall->getNumArgs() - 2;
847
848    // Check to see if we have a call with 2 vector arguments, the unary shuffle
849    // with mask.  If so, verify that RHS is an integer vector type with the
850    // same number of elts as lhs.
851    if (TheCall->getNumArgs() == 2) {
852      if (!RHSType->hasIntegerRepresentation() ||
853          RHSType->getAs<VectorType>()->getNumElements() != numElements)
854        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
855          << SourceRange(TheCall->getArg(1)->getLocStart(),
856                         TheCall->getArg(1)->getLocEnd());
857      numResElements = numElements;
858    }
859    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
860      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
861        << SourceRange(TheCall->getArg(0)->getLocStart(),
862                       TheCall->getArg(1)->getLocEnd());
863      return ExprError();
864    } else if (numElements != numResElements) {
865      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
866      resType = Context.getVectorType(eltType, numResElements,
867                                      VectorType::GenericVector);
868    }
869  }
870
871  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
872    if (TheCall->getArg(i)->isTypeDependent() ||
873        TheCall->getArg(i)->isValueDependent())
874      continue;
875
876    llvm::APSInt Result(32);
877    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
878      return ExprError(Diag(TheCall->getLocStart(),
879                  diag::err_shufflevector_nonconstant_argument)
880                << TheCall->getArg(i)->getSourceRange());
881
882    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
883      return ExprError(Diag(TheCall->getLocStart(),
884                  diag::err_shufflevector_argument_too_large)
885               << TheCall->getArg(i)->getSourceRange());
886  }
887
888  SmallVector<Expr*, 32> exprs;
889
890  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
891    exprs.push_back(TheCall->getArg(i));
892    TheCall->setArg(i, 0);
893  }
894
895  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
896                                            exprs.size(), resType,
897                                            TheCall->getCallee()->getLocStart(),
898                                            TheCall->getRParenLoc()));
899}
900
901/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
902// This is declared to take (const void*, ...) and can take two
903// optional constant int args.
904bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
905  unsigned NumArgs = TheCall->getNumArgs();
906
907  if (NumArgs > 3)
908    return Diag(TheCall->getLocEnd(),
909             diag::err_typecheck_call_too_many_args_at_most)
910             << 0 /*function call*/ << 3 << NumArgs
911             << TheCall->getSourceRange();
912
913  // Argument 0 is checked for us and the remaining arguments must be
914  // constant integers.
915  for (unsigned i = 1; i != NumArgs; ++i) {
916    Expr *Arg = TheCall->getArg(i);
917
918    llvm::APSInt Result;
919    if (SemaBuiltinConstantArg(TheCall, i, Result))
920      return true;
921
922    // FIXME: gcc issues a warning and rewrites these to 0. These
923    // seems especially odd for the third argument since the default
924    // is 3.
925    if (i == 1) {
926      if (Result.getLimitedValue() > 1)
927        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
928             << "0" << "1" << Arg->getSourceRange();
929    } else {
930      if (Result.getLimitedValue() > 3)
931        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
932            << "0" << "3" << Arg->getSourceRange();
933    }
934  }
935
936  return false;
937}
938
939/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
940/// TheCall is a constant expression.
941bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
942                                  llvm::APSInt &Result) {
943  Expr *Arg = TheCall->getArg(ArgNum);
944  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
945  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
946
947  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
948
949  if (!Arg->isIntegerConstantExpr(Result, Context))
950    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
951                << FDecl->getDeclName() <<  Arg->getSourceRange();
952
953  return false;
954}
955
956/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
957/// int type). This simply type checks that type is one of the defined
958/// constants (0-3).
959// For compatibility check 0-3, llvm only handles 0 and 2.
960bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
961  llvm::APSInt Result;
962
963  // Check constant-ness first.
964  if (SemaBuiltinConstantArg(TheCall, 1, Result))
965    return true;
966
967  Expr *Arg = TheCall->getArg(1);
968  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
969    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
970             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
971  }
972
973  return false;
974}
975
976/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
977/// This checks that val is a constant 1.
978bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
979  Expr *Arg = TheCall->getArg(1);
980  llvm::APSInt Result;
981
982  // TODO: This is less than ideal. Overload this to take a value.
983  if (SemaBuiltinConstantArg(TheCall, 1, Result))
984    return true;
985
986  if (Result != 1)
987    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
988             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
989
990  return false;
991}
992
993// Handle i > 1 ? "x" : "y", recursively.
994bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
995                                  bool HasVAListArg,
996                                  unsigned format_idx, unsigned firstDataArg,
997                                  bool isPrintf) {
998 tryAgain:
999  if (E->isTypeDependent() || E->isValueDependent())
1000    return false;
1001
1002  E = E->IgnoreParens();
1003
1004  switch (E->getStmtClass()) {
1005  case Stmt::BinaryConditionalOperatorClass:
1006  case Stmt::ConditionalOperatorClass: {
1007    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1008    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
1009                                  format_idx, firstDataArg, isPrintf)
1010        && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
1011                                  format_idx, firstDataArg, isPrintf);
1012  }
1013
1014  case Stmt::IntegerLiteralClass:
1015    // Technically -Wformat-nonliteral does not warn about this case.
1016    // The behavior of printf and friends in this case is implementation
1017    // dependent.  Ideally if the format string cannot be null then
1018    // it should have a 'nonnull' attribute in the function prototype.
1019    return true;
1020
1021  case Stmt::ImplicitCastExprClass: {
1022    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1023    goto tryAgain;
1024  }
1025
1026  case Stmt::OpaqueValueExprClass:
1027    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1028      E = src;
1029      goto tryAgain;
1030    }
1031    return false;
1032
1033  case Stmt::PredefinedExprClass:
1034    // While __func__, etc., are technically not string literals, they
1035    // cannot contain format specifiers and thus are not a security
1036    // liability.
1037    return true;
1038
1039  case Stmt::DeclRefExprClass: {
1040    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1041
1042    // As an exception, do not flag errors for variables binding to
1043    // const string literals.
1044    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1045      bool isConstant = false;
1046      QualType T = DR->getType();
1047
1048      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1049        isConstant = AT->getElementType().isConstant(Context);
1050      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1051        isConstant = T.isConstant(Context) &&
1052                     PT->getPointeeType().isConstant(Context);
1053      }
1054
1055      if (isConstant) {
1056        if (const Expr *Init = VD->getAnyInitializer())
1057          return SemaCheckStringLiteral(Init, TheCall,
1058                                        HasVAListArg, format_idx, firstDataArg,
1059                                        isPrintf);
1060      }
1061
1062      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1063      // special check to see if the format string is a function parameter
1064      // of the function calling the printf function.  If the function
1065      // has an attribute indicating it is a printf-like function, then we
1066      // should suppress warnings concerning non-literals being used in a call
1067      // to a vprintf function.  For example:
1068      //
1069      // void
1070      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1071      //      va_list ap;
1072      //      va_start(ap, fmt);
1073      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1074      //      ...
1075      //
1076      //
1077      //  FIXME: We don't have full attribute support yet, so just check to see
1078      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1079      //    add proper support for checking the attribute later.
1080      if (HasVAListArg)
1081        if (isa<ParmVarDecl>(VD))
1082          return true;
1083    }
1084
1085    return false;
1086  }
1087
1088  case Stmt::CallExprClass: {
1089    const CallExpr *CE = cast<CallExpr>(E);
1090    if (const ImplicitCastExpr *ICE
1091          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1092      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1093        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1094          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1095            unsigned ArgIndex = FA->getFormatIdx();
1096            const Expr *Arg = CE->getArg(ArgIndex - 1);
1097
1098            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1099                                          format_idx, firstDataArg, isPrintf);
1100          }
1101        }
1102      }
1103    }
1104
1105    return false;
1106  }
1107  case Stmt::ObjCStringLiteralClass:
1108  case Stmt::StringLiteralClass: {
1109    const StringLiteral *StrE = NULL;
1110
1111    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1112      StrE = ObjCFExpr->getString();
1113    else
1114      StrE = cast<StringLiteral>(E);
1115
1116    if (StrE) {
1117      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1118                        firstDataArg, isPrintf);
1119      return true;
1120    }
1121
1122    return false;
1123  }
1124
1125  default:
1126    return false;
1127  }
1128}
1129
1130void
1131Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1132                            const Expr * const *ExprArgs,
1133                            SourceLocation CallSiteLoc) {
1134  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1135                                  e = NonNull->args_end();
1136       i != e; ++i) {
1137    const Expr *ArgExpr = ExprArgs[*i];
1138    if (ArgExpr->isNullPointerConstant(Context,
1139                                       Expr::NPC_ValueDependentIsNotNull))
1140      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1141  }
1142}
1143
1144/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1145/// functions) for correct use of format strings.
1146void
1147Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1148                                unsigned format_idx, unsigned firstDataArg,
1149                                bool isPrintf) {
1150
1151  const Expr *Fn = TheCall->getCallee();
1152
1153  // The way the format attribute works in GCC, the implicit this argument
1154  // of member functions is counted. However, it doesn't appear in our own
1155  // lists, so decrement format_idx in that case.
1156  if (isa<CXXMemberCallExpr>(TheCall)) {
1157    const CXXMethodDecl *method_decl =
1158      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1159    if (method_decl && method_decl->isInstance()) {
1160      // Catch a format attribute mistakenly referring to the object argument.
1161      if (format_idx == 0)
1162        return;
1163      --format_idx;
1164      if(firstDataArg != 0)
1165        --firstDataArg;
1166    }
1167  }
1168
1169  // CHECK: printf/scanf-like function is called with no format string.
1170  if (format_idx >= TheCall->getNumArgs()) {
1171    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1172      << Fn->getSourceRange();
1173    return;
1174  }
1175
1176  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1177
1178  // CHECK: format string is not a string literal.
1179  //
1180  // Dynamically generated format strings are difficult to
1181  // automatically vet at compile time.  Requiring that format strings
1182  // are string literals: (1) permits the checking of format strings by
1183  // the compiler and thereby (2) can practically remove the source of
1184  // many format string exploits.
1185
1186  // Format string can be either ObjC string (e.g. @"%d") or
1187  // C string (e.g. "%d")
1188  // ObjC string uses the same format specifiers as C string, so we can use
1189  // the same format string checking logic for both ObjC and C strings.
1190  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1191                             firstDataArg, isPrintf))
1192    return;  // Literal format string found, check done!
1193
1194  // If there are no arguments specified, warn with -Wformat-security, otherwise
1195  // warn only with -Wformat-nonliteral.
1196  if (TheCall->getNumArgs() == format_idx+1)
1197    Diag(TheCall->getArg(format_idx)->getLocStart(),
1198         diag::warn_format_nonliteral_noargs)
1199      << OrigFormatExpr->getSourceRange();
1200  else
1201    Diag(TheCall->getArg(format_idx)->getLocStart(),
1202         diag::warn_format_nonliteral)
1203           << OrigFormatExpr->getSourceRange();
1204}
1205
1206namespace {
1207class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1208protected:
1209  Sema &S;
1210  const StringLiteral *FExpr;
1211  const Expr *OrigFormatExpr;
1212  const unsigned FirstDataArg;
1213  const unsigned NumDataArgs;
1214  const bool IsObjCLiteral;
1215  const char *Beg; // Start of format string.
1216  const bool HasVAListArg;
1217  const CallExpr *TheCall;
1218  unsigned FormatIdx;
1219  llvm::BitVector CoveredArgs;
1220  bool usesPositionalArgs;
1221  bool atFirstArg;
1222public:
1223  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1224                     const Expr *origFormatExpr, unsigned firstDataArg,
1225                     unsigned numDataArgs, bool isObjCLiteral,
1226                     const char *beg, bool hasVAListArg,
1227                     const CallExpr *theCall, unsigned formatIdx)
1228    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1229      FirstDataArg(firstDataArg),
1230      NumDataArgs(numDataArgs),
1231      IsObjCLiteral(isObjCLiteral), Beg(beg),
1232      HasVAListArg(hasVAListArg),
1233      TheCall(theCall), FormatIdx(formatIdx),
1234      usesPositionalArgs(false), atFirstArg(true) {
1235        CoveredArgs.resize(numDataArgs);
1236        CoveredArgs.reset();
1237      }
1238
1239  void DoneProcessing();
1240
1241  void HandleIncompleteSpecifier(const char *startSpecifier,
1242                                 unsigned specifierLen);
1243
1244  virtual void HandleInvalidPosition(const char *startSpecifier,
1245                                     unsigned specifierLen,
1246                                     analyze_format_string::PositionContext p);
1247
1248  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1249
1250  void HandleNullChar(const char *nullCharacter);
1251
1252protected:
1253  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1254                                        const char *startSpec,
1255                                        unsigned specifierLen,
1256                                        const char *csStart, unsigned csLen);
1257
1258  SourceRange getFormatStringRange();
1259  CharSourceRange getSpecifierRange(const char *startSpecifier,
1260                                    unsigned specifierLen);
1261  SourceLocation getLocationOfByte(const char *x);
1262
1263  const Expr *getDataArg(unsigned i) const;
1264
1265  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1266                    const analyze_format_string::ConversionSpecifier &CS,
1267                    const char *startSpecifier, unsigned specifierLen,
1268                    unsigned argIndex);
1269};
1270}
1271
1272SourceRange CheckFormatHandler::getFormatStringRange() {
1273  return OrigFormatExpr->getSourceRange();
1274}
1275
1276CharSourceRange CheckFormatHandler::
1277getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1278  SourceLocation Start = getLocationOfByte(startSpecifier);
1279  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1280
1281  // Advance the end SourceLocation by one due to half-open ranges.
1282  End = End.getFileLocWithOffset(1);
1283
1284  return CharSourceRange::getCharRange(Start, End);
1285}
1286
1287SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1288  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1289}
1290
1291void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1292                                                   unsigned specifierLen){
1293  SourceLocation Loc = getLocationOfByte(startSpecifier);
1294  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1295    << getSpecifierRange(startSpecifier, specifierLen);
1296}
1297
1298void
1299CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1300                                     analyze_format_string::PositionContext p) {
1301  SourceLocation Loc = getLocationOfByte(startPos);
1302  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1303    << (unsigned) p << getSpecifierRange(startPos, posLen);
1304}
1305
1306void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1307                                            unsigned posLen) {
1308  SourceLocation Loc = getLocationOfByte(startPos);
1309  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1310    << getSpecifierRange(startPos, posLen);
1311}
1312
1313void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1314  if (!IsObjCLiteral) {
1315    // The presence of a null character is likely an error.
1316    S.Diag(getLocationOfByte(nullCharacter),
1317           diag::warn_printf_format_string_contains_null_char)
1318      << getFormatStringRange();
1319  }
1320}
1321
1322const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1323  return TheCall->getArg(FirstDataArg + i);
1324}
1325
1326void CheckFormatHandler::DoneProcessing() {
1327    // Does the number of data arguments exceed the number of
1328    // format conversions in the format string?
1329  if (!HasVAListArg) {
1330      // Find any arguments that weren't covered.
1331    CoveredArgs.flip();
1332    signed notCoveredArg = CoveredArgs.find_first();
1333    if (notCoveredArg >= 0) {
1334      assert((unsigned)notCoveredArg < NumDataArgs);
1335      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1336             diag::warn_printf_data_arg_not_used)
1337      << getFormatStringRange();
1338    }
1339  }
1340}
1341
1342bool
1343CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1344                                                     SourceLocation Loc,
1345                                                     const char *startSpec,
1346                                                     unsigned specifierLen,
1347                                                     const char *csStart,
1348                                                     unsigned csLen) {
1349
1350  bool keepGoing = true;
1351  if (argIndex < NumDataArgs) {
1352    // Consider the argument coverered, even though the specifier doesn't
1353    // make sense.
1354    CoveredArgs.set(argIndex);
1355  }
1356  else {
1357    // If argIndex exceeds the number of data arguments we
1358    // don't issue a warning because that is just a cascade of warnings (and
1359    // they may have intended '%%' anyway). We don't want to continue processing
1360    // the format string after this point, however, as we will like just get
1361    // gibberish when trying to match arguments.
1362    keepGoing = false;
1363  }
1364
1365  S.Diag(Loc, diag::warn_format_invalid_conversion)
1366    << StringRef(csStart, csLen)
1367    << getSpecifierRange(startSpec, specifierLen);
1368
1369  return keepGoing;
1370}
1371
1372bool
1373CheckFormatHandler::CheckNumArgs(
1374  const analyze_format_string::FormatSpecifier &FS,
1375  const analyze_format_string::ConversionSpecifier &CS,
1376  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1377
1378  if (argIndex >= NumDataArgs) {
1379    if (FS.usesPositionalArg())  {
1380      S.Diag(getLocationOfByte(CS.getStart()),
1381             diag::warn_printf_positional_arg_exceeds_data_args)
1382      << (argIndex+1) << NumDataArgs
1383      << getSpecifierRange(startSpecifier, specifierLen);
1384    }
1385    else {
1386      S.Diag(getLocationOfByte(CS.getStart()),
1387             diag::warn_printf_insufficient_data_args)
1388      << getSpecifierRange(startSpecifier, specifierLen);
1389    }
1390
1391    return false;
1392  }
1393  return true;
1394}
1395
1396//===--- CHECK: Printf format string checking ------------------------------===//
1397
1398namespace {
1399class CheckPrintfHandler : public CheckFormatHandler {
1400public:
1401  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1402                     const Expr *origFormatExpr, unsigned firstDataArg,
1403                     unsigned numDataArgs, bool isObjCLiteral,
1404                     const char *beg, bool hasVAListArg,
1405                     const CallExpr *theCall, unsigned formatIdx)
1406  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1407                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1408                       theCall, formatIdx) {}
1409
1410
1411  bool HandleInvalidPrintfConversionSpecifier(
1412                                      const analyze_printf::PrintfSpecifier &FS,
1413                                      const char *startSpecifier,
1414                                      unsigned specifierLen);
1415
1416  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1417                             const char *startSpecifier,
1418                             unsigned specifierLen);
1419
1420  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1421                    const char *startSpecifier, unsigned specifierLen);
1422  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1423                           const analyze_printf::OptionalAmount &Amt,
1424                           unsigned type,
1425                           const char *startSpecifier, unsigned specifierLen);
1426  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1427                  const analyze_printf::OptionalFlag &flag,
1428                  const char *startSpecifier, unsigned specifierLen);
1429  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1430                         const analyze_printf::OptionalFlag &ignoredFlag,
1431                         const analyze_printf::OptionalFlag &flag,
1432                         const char *startSpecifier, unsigned specifierLen);
1433};
1434}
1435
1436bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1437                                      const analyze_printf::PrintfSpecifier &FS,
1438                                      const char *startSpecifier,
1439                                      unsigned specifierLen) {
1440  const analyze_printf::PrintfConversionSpecifier &CS =
1441    FS.getConversionSpecifier();
1442
1443  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1444                                          getLocationOfByte(CS.getStart()),
1445                                          startSpecifier, specifierLen,
1446                                          CS.getStart(), CS.getLength());
1447}
1448
1449bool CheckPrintfHandler::HandleAmount(
1450                               const analyze_format_string::OptionalAmount &Amt,
1451                               unsigned k, const char *startSpecifier,
1452                               unsigned specifierLen) {
1453
1454  if (Amt.hasDataArgument()) {
1455    if (!HasVAListArg) {
1456      unsigned argIndex = Amt.getArgIndex();
1457      if (argIndex >= NumDataArgs) {
1458        S.Diag(getLocationOfByte(Amt.getStart()),
1459               diag::warn_printf_asterisk_missing_arg)
1460          << k << getSpecifierRange(startSpecifier, specifierLen);
1461        // Don't do any more checking.  We will just emit
1462        // spurious errors.
1463        return false;
1464      }
1465
1466      // Type check the data argument.  It should be an 'int'.
1467      // Although not in conformance with C99, we also allow the argument to be
1468      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1469      // doesn't emit a warning for that case.
1470      CoveredArgs.set(argIndex);
1471      const Expr *Arg = getDataArg(argIndex);
1472      QualType T = Arg->getType();
1473
1474      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1475      assert(ATR.isValid());
1476
1477      if (!ATR.matchesType(S.Context, T)) {
1478        S.Diag(getLocationOfByte(Amt.getStart()),
1479               diag::warn_printf_asterisk_wrong_type)
1480          << k
1481          << ATR.getRepresentativeType(S.Context) << T
1482          << getSpecifierRange(startSpecifier, specifierLen)
1483          << Arg->getSourceRange();
1484        // Don't do any more checking.  We will just emit
1485        // spurious errors.
1486        return false;
1487      }
1488    }
1489  }
1490  return true;
1491}
1492
1493void CheckPrintfHandler::HandleInvalidAmount(
1494                                      const analyze_printf::PrintfSpecifier &FS,
1495                                      const analyze_printf::OptionalAmount &Amt,
1496                                      unsigned type,
1497                                      const char *startSpecifier,
1498                                      unsigned specifierLen) {
1499  const analyze_printf::PrintfConversionSpecifier &CS =
1500    FS.getConversionSpecifier();
1501  switch (Amt.getHowSpecified()) {
1502  case analyze_printf::OptionalAmount::Constant:
1503    S.Diag(getLocationOfByte(Amt.getStart()),
1504        diag::warn_printf_nonsensical_optional_amount)
1505      << type
1506      << CS.toString()
1507      << getSpecifierRange(startSpecifier, specifierLen)
1508      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1509          Amt.getConstantLength()));
1510    break;
1511
1512  default:
1513    S.Diag(getLocationOfByte(Amt.getStart()),
1514        diag::warn_printf_nonsensical_optional_amount)
1515      << type
1516      << CS.toString()
1517      << getSpecifierRange(startSpecifier, specifierLen);
1518    break;
1519  }
1520}
1521
1522void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1523                                    const analyze_printf::OptionalFlag &flag,
1524                                    const char *startSpecifier,
1525                                    unsigned specifierLen) {
1526  // Warn about pointless flag with a fixit removal.
1527  const analyze_printf::PrintfConversionSpecifier &CS =
1528    FS.getConversionSpecifier();
1529  S.Diag(getLocationOfByte(flag.getPosition()),
1530      diag::warn_printf_nonsensical_flag)
1531    << flag.toString() << CS.toString()
1532    << getSpecifierRange(startSpecifier, specifierLen)
1533    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1534}
1535
1536void CheckPrintfHandler::HandleIgnoredFlag(
1537                                const analyze_printf::PrintfSpecifier &FS,
1538                                const analyze_printf::OptionalFlag &ignoredFlag,
1539                                const analyze_printf::OptionalFlag &flag,
1540                                const char *startSpecifier,
1541                                unsigned specifierLen) {
1542  // Warn about ignored flag with a fixit removal.
1543  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1544      diag::warn_printf_ignored_flag)
1545    << ignoredFlag.toString() << flag.toString()
1546    << getSpecifierRange(startSpecifier, specifierLen)
1547    << FixItHint::CreateRemoval(getSpecifierRange(
1548        ignoredFlag.getPosition(), 1));
1549}
1550
1551bool
1552CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1553                                            &FS,
1554                                          const char *startSpecifier,
1555                                          unsigned specifierLen) {
1556
1557  using namespace analyze_format_string;
1558  using namespace analyze_printf;
1559  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1560
1561  if (FS.consumesDataArgument()) {
1562    if (atFirstArg) {
1563        atFirstArg = false;
1564        usesPositionalArgs = FS.usesPositionalArg();
1565    }
1566    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1567      // Cannot mix-and-match positional and non-positional arguments.
1568      S.Diag(getLocationOfByte(CS.getStart()),
1569             diag::warn_format_mix_positional_nonpositional_args)
1570        << getSpecifierRange(startSpecifier, specifierLen);
1571      return false;
1572    }
1573  }
1574
1575  // First check if the field width, precision, and conversion specifier
1576  // have matching data arguments.
1577  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1578                    startSpecifier, specifierLen)) {
1579    return false;
1580  }
1581
1582  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1583                    startSpecifier, specifierLen)) {
1584    return false;
1585  }
1586
1587  if (!CS.consumesDataArgument()) {
1588    // FIXME: Technically specifying a precision or field width here
1589    // makes no sense.  Worth issuing a warning at some point.
1590    return true;
1591  }
1592
1593  // Consume the argument.
1594  unsigned argIndex = FS.getArgIndex();
1595  if (argIndex < NumDataArgs) {
1596    // The check to see if the argIndex is valid will come later.
1597    // We set the bit here because we may exit early from this
1598    // function if we encounter some other error.
1599    CoveredArgs.set(argIndex);
1600  }
1601
1602  // Check for using an Objective-C specific conversion specifier
1603  // in a non-ObjC literal.
1604  if (!IsObjCLiteral && CS.isObjCArg()) {
1605    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1606                                                  specifierLen);
1607  }
1608
1609  // Check for invalid use of field width
1610  if (!FS.hasValidFieldWidth()) {
1611    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1612        startSpecifier, specifierLen);
1613  }
1614
1615  // Check for invalid use of precision
1616  if (!FS.hasValidPrecision()) {
1617    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1618        startSpecifier, specifierLen);
1619  }
1620
1621  // Check each flag does not conflict with any other component.
1622  if (!FS.hasValidThousandsGroupingPrefix())
1623    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
1624  if (!FS.hasValidLeadingZeros())
1625    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1626  if (!FS.hasValidPlusPrefix())
1627    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1628  if (!FS.hasValidSpacePrefix())
1629    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1630  if (!FS.hasValidAlternativeForm())
1631    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1632  if (!FS.hasValidLeftJustified())
1633    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1634
1635  // Check that flags are not ignored by another flag
1636  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1637    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1638        startSpecifier, specifierLen);
1639  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1640    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1641            startSpecifier, specifierLen);
1642
1643  // Check the length modifier is valid with the given conversion specifier.
1644  const LengthModifier &LM = FS.getLengthModifier();
1645  if (!FS.hasValidLengthModifier())
1646    S.Diag(getLocationOfByte(LM.getStart()),
1647        diag::warn_format_nonsensical_length)
1648      << LM.toString() << CS.toString()
1649      << getSpecifierRange(startSpecifier, specifierLen)
1650      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1651          LM.getLength()));
1652
1653  // Are we using '%n'?
1654  if (CS.getKind() == ConversionSpecifier::nArg) {
1655    // Issue a warning about this being a possible security issue.
1656    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1657      << getSpecifierRange(startSpecifier, specifierLen);
1658    // Continue checking the other format specifiers.
1659    return true;
1660  }
1661
1662  // The remaining checks depend on the data arguments.
1663  if (HasVAListArg)
1664    return true;
1665
1666  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1667    return false;
1668
1669  // Now type check the data expression that matches the
1670  // format specifier.
1671  const Expr *Ex = getDataArg(argIndex);
1672  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1673  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1674    // Check if we didn't match because of an implicit cast from a 'char'
1675    // or 'short' to an 'int'.  This is done because printf is a varargs
1676    // function.
1677    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1678      if (ICE->getType() == S.Context.IntTy) {
1679        // All further checking is done on the subexpression.
1680        Ex = ICE->getSubExpr();
1681        if (ATR.matchesType(S.Context, Ex->getType()))
1682          return true;
1683      }
1684
1685    // We may be able to offer a FixItHint if it is a supported type.
1686    PrintfSpecifier fixedFS = FS;
1687    bool success = fixedFS.fixType(Ex->getType());
1688
1689    if (success) {
1690      // Get the fix string from the fixed format specifier
1691      llvm::SmallString<128> buf;
1692      llvm::raw_svector_ostream os(buf);
1693      fixedFS.toString(os);
1694
1695      // FIXME: getRepresentativeType() perhaps should return a string
1696      // instead of a QualType to better handle when the representative
1697      // type is 'wint_t' (which is defined in the system headers).
1698      S.Diag(getLocationOfByte(CS.getStart()),
1699          diag::warn_printf_conversion_argument_type_mismatch)
1700        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1701        << getSpecifierRange(startSpecifier, specifierLen)
1702        << Ex->getSourceRange()
1703        << FixItHint::CreateReplacement(
1704            getSpecifierRange(startSpecifier, specifierLen),
1705            os.str());
1706    }
1707    else {
1708      S.Diag(getLocationOfByte(CS.getStart()),
1709             diag::warn_printf_conversion_argument_type_mismatch)
1710        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1711        << getSpecifierRange(startSpecifier, specifierLen)
1712        << Ex->getSourceRange();
1713    }
1714  }
1715
1716  return true;
1717}
1718
1719//===--- CHECK: Scanf format string checking ------------------------------===//
1720
1721namespace {
1722class CheckScanfHandler : public CheckFormatHandler {
1723public:
1724  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1725                    const Expr *origFormatExpr, unsigned firstDataArg,
1726                    unsigned numDataArgs, bool isObjCLiteral,
1727                    const char *beg, bool hasVAListArg,
1728                    const CallExpr *theCall, unsigned formatIdx)
1729  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1730                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1731                       theCall, formatIdx) {}
1732
1733  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1734                            const char *startSpecifier,
1735                            unsigned specifierLen);
1736
1737  bool HandleInvalidScanfConversionSpecifier(
1738          const analyze_scanf::ScanfSpecifier &FS,
1739          const char *startSpecifier,
1740          unsigned specifierLen);
1741
1742  void HandleIncompleteScanList(const char *start, const char *end);
1743};
1744}
1745
1746void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1747                                                 const char *end) {
1748  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1749    << getSpecifierRange(start, end - start);
1750}
1751
1752bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1753                                        const analyze_scanf::ScanfSpecifier &FS,
1754                                        const char *startSpecifier,
1755                                        unsigned specifierLen) {
1756
1757  const analyze_scanf::ScanfConversionSpecifier &CS =
1758    FS.getConversionSpecifier();
1759
1760  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1761                                          getLocationOfByte(CS.getStart()),
1762                                          startSpecifier, specifierLen,
1763                                          CS.getStart(), CS.getLength());
1764}
1765
1766bool CheckScanfHandler::HandleScanfSpecifier(
1767                                       const analyze_scanf::ScanfSpecifier &FS,
1768                                       const char *startSpecifier,
1769                                       unsigned specifierLen) {
1770
1771  using namespace analyze_scanf;
1772  using namespace analyze_format_string;
1773
1774  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1775
1776  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1777  // be used to decide if we are using positional arguments consistently.
1778  if (FS.consumesDataArgument()) {
1779    if (atFirstArg) {
1780      atFirstArg = false;
1781      usesPositionalArgs = FS.usesPositionalArg();
1782    }
1783    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1784      // Cannot mix-and-match positional and non-positional arguments.
1785      S.Diag(getLocationOfByte(CS.getStart()),
1786             diag::warn_format_mix_positional_nonpositional_args)
1787        << getSpecifierRange(startSpecifier, specifierLen);
1788      return false;
1789    }
1790  }
1791
1792  // Check if the field with is non-zero.
1793  const OptionalAmount &Amt = FS.getFieldWidth();
1794  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1795    if (Amt.getConstantAmount() == 0) {
1796      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1797                                                   Amt.getConstantLength());
1798      S.Diag(getLocationOfByte(Amt.getStart()),
1799             diag::warn_scanf_nonzero_width)
1800        << R << FixItHint::CreateRemoval(R);
1801    }
1802  }
1803
1804  if (!FS.consumesDataArgument()) {
1805    // FIXME: Technically specifying a precision or field width here
1806    // makes no sense.  Worth issuing a warning at some point.
1807    return true;
1808  }
1809
1810  // Consume the argument.
1811  unsigned argIndex = FS.getArgIndex();
1812  if (argIndex < NumDataArgs) {
1813      // The check to see if the argIndex is valid will come later.
1814      // We set the bit here because we may exit early from this
1815      // function if we encounter some other error.
1816    CoveredArgs.set(argIndex);
1817  }
1818
1819  // Check the length modifier is valid with the given conversion specifier.
1820  const LengthModifier &LM = FS.getLengthModifier();
1821  if (!FS.hasValidLengthModifier()) {
1822    S.Diag(getLocationOfByte(LM.getStart()),
1823           diag::warn_format_nonsensical_length)
1824      << LM.toString() << CS.toString()
1825      << getSpecifierRange(startSpecifier, specifierLen)
1826      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1827                                                    LM.getLength()));
1828  }
1829
1830  // The remaining checks depend on the data arguments.
1831  if (HasVAListArg)
1832    return true;
1833
1834  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1835    return false;
1836
1837  // FIXME: Check that the argument type matches the format specifier.
1838
1839  return true;
1840}
1841
1842void Sema::CheckFormatString(const StringLiteral *FExpr,
1843                             const Expr *OrigFormatExpr,
1844                             const CallExpr *TheCall, bool HasVAListArg,
1845                             unsigned format_idx, unsigned firstDataArg,
1846                             bool isPrintf) {
1847
1848  // CHECK: is the format string a wide literal?
1849  if (!FExpr->isAscii()) {
1850    Diag(FExpr->getLocStart(),
1851         diag::warn_format_string_is_wide_literal)
1852    << OrigFormatExpr->getSourceRange();
1853    return;
1854  }
1855
1856  // Str - The format string.  NOTE: this is NOT null-terminated!
1857  StringRef StrRef = FExpr->getString();
1858  const char *Str = StrRef.data();
1859  unsigned StrLen = StrRef.size();
1860
1861  // CHECK: empty format string?
1862  if (StrLen == 0) {
1863    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1864    << OrigFormatExpr->getSourceRange();
1865    return;
1866  }
1867
1868  if (isPrintf) {
1869    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1870                         TheCall->getNumArgs() - firstDataArg,
1871                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1872                         HasVAListArg, TheCall, format_idx);
1873
1874    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1875      H.DoneProcessing();
1876  }
1877  else {
1878    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1879                        TheCall->getNumArgs() - firstDataArg,
1880                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1881                        HasVAListArg, TheCall, format_idx);
1882
1883    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1884      H.DoneProcessing();
1885  }
1886}
1887
1888//===--- CHECK: Standard memory functions ---------------------------------===//
1889
1890/// \brief Determine whether the given type is a dynamic class type (e.g.,
1891/// whether it has a vtable).
1892static bool isDynamicClassType(QualType T) {
1893  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
1894    if (CXXRecordDecl *Definition = Record->getDefinition())
1895      if (Definition->isDynamicClass())
1896        return true;
1897
1898  return false;
1899}
1900
1901/// \brief If E is a sizeof expression, returns its argument expression,
1902/// otherwise returns NULL.
1903static const Expr *getSizeOfExprArg(const Expr* E) {
1904  if (const UnaryExprOrTypeTraitExpr *SizeOf =
1905      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1906    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
1907      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
1908
1909  return 0;
1910}
1911
1912/// \brief If E is a sizeof expression, returns its argument type.
1913static QualType getSizeOfArgType(const Expr* E) {
1914  if (const UnaryExprOrTypeTraitExpr *SizeOf =
1915      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1916    if (SizeOf->getKind() == clang::UETT_SizeOf)
1917      return SizeOf->getTypeOfArgument();
1918
1919  return QualType();
1920}
1921
1922/// \brief Check for dangerous or invalid arguments to memset().
1923///
1924/// This issues warnings on known problematic, dangerous or unspecified
1925/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
1926/// function calls.
1927///
1928/// \param Call The call expression to diagnose.
1929void Sema::CheckMemaccessArguments(const CallExpr *Call,
1930                                   CheckedMemoryFunction CMF,
1931                                   IdentifierInfo *FnName) {
1932  // It is possible to have a non-standard definition of memset.  Validate
1933  // we have enough arguments, and if not, abort further checking.
1934  if (Call->getNumArgs() < 3)
1935    return;
1936
1937  unsigned LastArg = (CMF == CMF_Memset? 1 : 2);
1938  const Expr *LenExpr = Call->getArg(2)->IgnoreParenImpCasts();
1939
1940  // We have special checking when the length is a sizeof expression.
1941  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
1942  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
1943  llvm::FoldingSetNodeID SizeOfArgID;
1944
1945  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
1946    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
1947    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
1948
1949    QualType DestTy = Dest->getType();
1950    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
1951      QualType PointeeTy = DestPtrTy->getPointeeType();
1952
1953      // Never warn about void type pointers. This can be used to suppress
1954      // false positives.
1955      if (PointeeTy->isVoidType())
1956        continue;
1957
1958      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
1959      // actually comparing the expressions for equality. Because computing the
1960      // expression IDs can be expensive, we only do this if the diagnostic is
1961      // enabled.
1962      if (SizeOfArg &&
1963          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
1964                                   SizeOfArg->getExprLoc())) {
1965        // We only compute IDs for expressions if the warning is enabled, and
1966        // cache the sizeof arg's ID.
1967        if (SizeOfArgID == llvm::FoldingSetNodeID())
1968          SizeOfArg->Profile(SizeOfArgID, Context, true);
1969        llvm::FoldingSetNodeID DestID;
1970        Dest->Profile(DestID, Context, true);
1971        if (DestID == SizeOfArgID) {
1972          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
1973          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
1974            if (UnaryOp->getOpcode() == UO_AddrOf)
1975              ActionIdx = 1; // If its an address-of operator, just remove it.
1976          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
1977            ActionIdx = 2; // If the pointee's size is sizeof(char),
1978                           // suggest an explicit length.
1979          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
1980                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
1981                                << FnName << ArgIdx << ActionIdx
1982                                << Dest->getSourceRange()
1983                                << SizeOfArg->getSourceRange());
1984          break;
1985        }
1986      }
1987
1988      // Also check for cases where the sizeof argument is the exact same
1989      // type as the memory argument, and where it points to a user-defined
1990      // record type.
1991      if (SizeOfArgTy != QualType()) {
1992        if (PointeeTy->isRecordType() &&
1993            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
1994          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
1995                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
1996                                << FnName << SizeOfArgTy << ArgIdx
1997                                << PointeeTy << Dest->getSourceRange()
1998                                << LenExpr->getSourceRange());
1999          break;
2000        }
2001      }
2002
2003      // Always complain about dynamic classes.
2004      if (isDynamicClassType(PointeeTy))
2005        DiagRuntimeBehavior(
2006          Dest->getExprLoc(), Dest,
2007          PDiag(diag::warn_dyn_class_memaccess)
2008            << (CMF == CMF_Memcmp ? ArgIdx + 2 : ArgIdx) << FnName << PointeeTy
2009            // "overwritten" if we're warning about the destination for any call
2010            // but memcmp; otherwise a verb appropriate to the call.
2011            << (ArgIdx == 0 && CMF != CMF_Memcmp ? 0 : (unsigned)CMF)
2012            << Call->getCallee()->getSourceRange());
2013      else if (PointeeTy.hasNonTrivialObjCLifetime() && CMF != CMF_Memset)
2014        DiagRuntimeBehavior(
2015          Dest->getExprLoc(), Dest,
2016          PDiag(diag::warn_arc_object_memaccess)
2017            << ArgIdx << FnName << PointeeTy
2018            << Call->getCallee()->getSourceRange());
2019      else
2020        continue;
2021
2022      DiagRuntimeBehavior(
2023        Dest->getExprLoc(), Dest,
2024        PDiag(diag::note_bad_memaccess_silence)
2025          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2026      break;
2027    }
2028  }
2029}
2030
2031// A little helper routine: ignore addition and subtraction of integer literals.
2032// This intentionally does not ignore all integer constant expressions because
2033// we don't want to remove sizeof().
2034static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2035  Ex = Ex->IgnoreParenCasts();
2036
2037  for (;;) {
2038    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2039    if (!BO || !BO->isAdditiveOp())
2040      break;
2041
2042    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2043    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2044
2045    if (isa<IntegerLiteral>(RHS))
2046      Ex = LHS;
2047    else if (isa<IntegerLiteral>(LHS))
2048      Ex = RHS;
2049    else
2050      break;
2051  }
2052
2053  return Ex;
2054}
2055
2056// Warn if the user has made the 'size' argument to strlcpy or strlcat
2057// be the size of the source, instead of the destination.
2058void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2059                                    IdentifierInfo *FnName) {
2060
2061  // Don't crash if the user has the wrong number of arguments
2062  if (Call->getNumArgs() != 3)
2063    return;
2064
2065  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2066  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2067  const Expr *CompareWithSrc = NULL;
2068
2069  // Look for 'strlcpy(dst, x, sizeof(x))'
2070  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2071    CompareWithSrc = Ex;
2072  else {
2073    // Look for 'strlcpy(dst, x, strlen(x))'
2074    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2075      if (SizeCall->isBuiltinCall(Context) == Builtin::BIstrlen
2076          && SizeCall->getNumArgs() == 1)
2077        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2078    }
2079  }
2080
2081  if (!CompareWithSrc)
2082    return;
2083
2084  // Determine if the argument to sizeof/strlen is equal to the source
2085  // argument.  In principle there's all kinds of things you could do
2086  // here, for instance creating an == expression and evaluating it with
2087  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2088  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2089  if (!SrcArgDRE)
2090    return;
2091
2092  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2093  if (!CompareWithSrcDRE ||
2094      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2095    return;
2096
2097  const Expr *OriginalSizeArg = Call->getArg(2);
2098  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2099    << OriginalSizeArg->getSourceRange() << FnName;
2100
2101  // Output a FIXIT hint if the destination is an array (rather than a
2102  // pointer to an array).  This could be enhanced to handle some
2103  // pointers if we know the actual size, like if DstArg is 'array+2'
2104  // we could say 'sizeof(array)-2'.
2105  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2106  QualType DstArgTy = DstArg->getType();
2107
2108  // Only handle constant-sized or VLAs, but not flexible members.
2109  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2110    // Only issue the FIXIT for arrays of size > 1.
2111    if (CAT->getSize().getSExtValue() <= 1)
2112      return;
2113  } else if (!DstArgTy->isVariableArrayType()) {
2114    return;
2115  }
2116
2117  llvm::SmallString<128> sizeString;
2118  llvm::raw_svector_ostream OS(sizeString);
2119  OS << "sizeof(";
2120  DstArg->printPretty(OS, Context, 0, Context.PrintingPolicy);
2121  OS << ")";
2122
2123  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2124    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2125                                    OS.str());
2126}
2127
2128//===--- CHECK: Return Address of Stack Variable --------------------------===//
2129
2130static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2131static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2132
2133/// CheckReturnStackAddr - Check if a return statement returns the address
2134///   of a stack variable.
2135void
2136Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2137                           SourceLocation ReturnLoc) {
2138
2139  Expr *stackE = 0;
2140  SmallVector<DeclRefExpr *, 8> refVars;
2141
2142  // Perform checking for returned stack addresses, local blocks,
2143  // label addresses or references to temporaries.
2144  if (lhsType->isPointerType() ||
2145      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2146    stackE = EvalAddr(RetValExp, refVars);
2147  } else if (lhsType->isReferenceType()) {
2148    stackE = EvalVal(RetValExp, refVars);
2149  }
2150
2151  if (stackE == 0)
2152    return; // Nothing suspicious was found.
2153
2154  SourceLocation diagLoc;
2155  SourceRange diagRange;
2156  if (refVars.empty()) {
2157    diagLoc = stackE->getLocStart();
2158    diagRange = stackE->getSourceRange();
2159  } else {
2160    // We followed through a reference variable. 'stackE' contains the
2161    // problematic expression but we will warn at the return statement pointing
2162    // at the reference variable. We will later display the "trail" of
2163    // reference variables using notes.
2164    diagLoc = refVars[0]->getLocStart();
2165    diagRange = refVars[0]->getSourceRange();
2166  }
2167
2168  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2169    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2170                                             : diag::warn_ret_stack_addr)
2171     << DR->getDecl()->getDeclName() << diagRange;
2172  } else if (isa<BlockExpr>(stackE)) { // local block.
2173    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2174  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2175    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2176  } else { // local temporary.
2177    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2178                                             : diag::warn_ret_local_temp_addr)
2179     << diagRange;
2180  }
2181
2182  // Display the "trail" of reference variables that we followed until we
2183  // found the problematic expression using notes.
2184  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2185    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2186    // If this var binds to another reference var, show the range of the next
2187    // var, otherwise the var binds to the problematic expression, in which case
2188    // show the range of the expression.
2189    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2190                                  : stackE->getSourceRange();
2191    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2192      << VD->getDeclName() << range;
2193  }
2194}
2195
2196/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2197///  check if the expression in a return statement evaluates to an address
2198///  to a location on the stack, a local block, an address of a label, or a
2199///  reference to local temporary. The recursion is used to traverse the
2200///  AST of the return expression, with recursion backtracking when we
2201///  encounter a subexpression that (1) clearly does not lead to one of the
2202///  above problematic expressions (2) is something we cannot determine leads to
2203///  a problematic expression based on such local checking.
2204///
2205///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2206///  the expression that they point to. Such variables are added to the
2207///  'refVars' vector so that we know what the reference variable "trail" was.
2208///
2209///  EvalAddr processes expressions that are pointers that are used as
2210///  references (and not L-values).  EvalVal handles all other values.
2211///  At the base case of the recursion is a check for the above problematic
2212///  expressions.
2213///
2214///  This implementation handles:
2215///
2216///   * pointer-to-pointer casts
2217///   * implicit conversions from array references to pointers
2218///   * taking the address of fields
2219///   * arbitrary interplay between "&" and "*" operators
2220///   * pointer arithmetic from an address of a stack variable
2221///   * taking the address of an array element where the array is on the stack
2222static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2223  if (E->isTypeDependent())
2224      return NULL;
2225
2226  // We should only be called for evaluating pointer expressions.
2227  assert((E->getType()->isAnyPointerType() ||
2228          E->getType()->isBlockPointerType() ||
2229          E->getType()->isObjCQualifiedIdType()) &&
2230         "EvalAddr only works on pointers");
2231
2232  E = E->IgnoreParens();
2233
2234  // Our "symbolic interpreter" is just a dispatch off the currently
2235  // viewed AST node.  We then recursively traverse the AST by calling
2236  // EvalAddr and EvalVal appropriately.
2237  switch (E->getStmtClass()) {
2238  case Stmt::DeclRefExprClass: {
2239    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2240
2241    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2242      // If this is a reference variable, follow through to the expression that
2243      // it points to.
2244      if (V->hasLocalStorage() &&
2245          V->getType()->isReferenceType() && V->hasInit()) {
2246        // Add the reference variable to the "trail".
2247        refVars.push_back(DR);
2248        return EvalAddr(V->getInit(), refVars);
2249      }
2250
2251    return NULL;
2252  }
2253
2254  case Stmt::UnaryOperatorClass: {
2255    // The only unary operator that make sense to handle here
2256    // is AddrOf.  All others don't make sense as pointers.
2257    UnaryOperator *U = cast<UnaryOperator>(E);
2258
2259    if (U->getOpcode() == UO_AddrOf)
2260      return EvalVal(U->getSubExpr(), refVars);
2261    else
2262      return NULL;
2263  }
2264
2265  case Stmt::BinaryOperatorClass: {
2266    // Handle pointer arithmetic.  All other binary operators are not valid
2267    // in this context.
2268    BinaryOperator *B = cast<BinaryOperator>(E);
2269    BinaryOperatorKind op = B->getOpcode();
2270
2271    if (op != BO_Add && op != BO_Sub)
2272      return NULL;
2273
2274    Expr *Base = B->getLHS();
2275
2276    // Determine which argument is the real pointer base.  It could be
2277    // the RHS argument instead of the LHS.
2278    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2279
2280    assert (Base->getType()->isPointerType());
2281    return EvalAddr(Base, refVars);
2282  }
2283
2284  // For conditional operators we need to see if either the LHS or RHS are
2285  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2286  case Stmt::ConditionalOperatorClass: {
2287    ConditionalOperator *C = cast<ConditionalOperator>(E);
2288
2289    // Handle the GNU extension for missing LHS.
2290    if (Expr *lhsExpr = C->getLHS()) {
2291    // In C++, we can have a throw-expression, which has 'void' type.
2292      if (!lhsExpr->getType()->isVoidType())
2293        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2294          return LHS;
2295    }
2296
2297    // In C++, we can have a throw-expression, which has 'void' type.
2298    if (C->getRHS()->getType()->isVoidType())
2299      return NULL;
2300
2301    return EvalAddr(C->getRHS(), refVars);
2302  }
2303
2304  case Stmt::BlockExprClass:
2305    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2306      return E; // local block.
2307    return NULL;
2308
2309  case Stmt::AddrLabelExprClass:
2310    return E; // address of label.
2311
2312  // For casts, we need to handle conversions from arrays to
2313  // pointer values, and pointer-to-pointer conversions.
2314  case Stmt::ImplicitCastExprClass:
2315  case Stmt::CStyleCastExprClass:
2316  case Stmt::CXXFunctionalCastExprClass:
2317  case Stmt::ObjCBridgedCastExprClass: {
2318    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2319    QualType T = SubExpr->getType();
2320
2321    if (SubExpr->getType()->isPointerType() ||
2322        SubExpr->getType()->isBlockPointerType() ||
2323        SubExpr->getType()->isObjCQualifiedIdType())
2324      return EvalAddr(SubExpr, refVars);
2325    else if (T->isArrayType())
2326      return EvalVal(SubExpr, refVars);
2327    else
2328      return 0;
2329  }
2330
2331  // C++ casts.  For dynamic casts, static casts, and const casts, we
2332  // are always converting from a pointer-to-pointer, so we just blow
2333  // through the cast.  In the case the dynamic cast doesn't fail (and
2334  // return NULL), we take the conservative route and report cases
2335  // where we return the address of a stack variable.  For Reinterpre
2336  // FIXME: The comment about is wrong; we're not always converting
2337  // from pointer to pointer. I'm guessing that this code should also
2338  // handle references to objects.
2339  case Stmt::CXXStaticCastExprClass:
2340  case Stmt::CXXDynamicCastExprClass:
2341  case Stmt::CXXConstCastExprClass:
2342  case Stmt::CXXReinterpretCastExprClass: {
2343      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2344      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2345        return EvalAddr(S, refVars);
2346      else
2347        return NULL;
2348  }
2349
2350  case Stmt::MaterializeTemporaryExprClass:
2351    if (Expr *Result = EvalAddr(
2352                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2353                                refVars))
2354      return Result;
2355
2356    return E;
2357
2358  // Everything else: we simply don't reason about them.
2359  default:
2360    return NULL;
2361  }
2362}
2363
2364
2365///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2366///   See the comments for EvalAddr for more details.
2367static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2368do {
2369  // We should only be called for evaluating non-pointer expressions, or
2370  // expressions with a pointer type that are not used as references but instead
2371  // are l-values (e.g., DeclRefExpr with a pointer type).
2372
2373  // Our "symbolic interpreter" is just a dispatch off the currently
2374  // viewed AST node.  We then recursively traverse the AST by calling
2375  // EvalAddr and EvalVal appropriately.
2376
2377  E = E->IgnoreParens();
2378  switch (E->getStmtClass()) {
2379  case Stmt::ImplicitCastExprClass: {
2380    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2381    if (IE->getValueKind() == VK_LValue) {
2382      E = IE->getSubExpr();
2383      continue;
2384    }
2385    return NULL;
2386  }
2387
2388  case Stmt::DeclRefExprClass: {
2389    // When we hit a DeclRefExpr we are looking at code that refers to a
2390    // variable's name. If it's not a reference variable we check if it has
2391    // local storage within the function, and if so, return the expression.
2392    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2393
2394    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2395      if (V->hasLocalStorage()) {
2396        if (!V->getType()->isReferenceType())
2397          return DR;
2398
2399        // Reference variable, follow through to the expression that
2400        // it points to.
2401        if (V->hasInit()) {
2402          // Add the reference variable to the "trail".
2403          refVars.push_back(DR);
2404          return EvalVal(V->getInit(), refVars);
2405        }
2406      }
2407
2408    return NULL;
2409  }
2410
2411  case Stmt::UnaryOperatorClass: {
2412    // The only unary operator that make sense to handle here
2413    // is Deref.  All others don't resolve to a "name."  This includes
2414    // handling all sorts of rvalues passed to a unary operator.
2415    UnaryOperator *U = cast<UnaryOperator>(E);
2416
2417    if (U->getOpcode() == UO_Deref)
2418      return EvalAddr(U->getSubExpr(), refVars);
2419
2420    return NULL;
2421  }
2422
2423  case Stmt::ArraySubscriptExprClass: {
2424    // Array subscripts are potential references to data on the stack.  We
2425    // retrieve the DeclRefExpr* for the array variable if it indeed
2426    // has local storage.
2427    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2428  }
2429
2430  case Stmt::ConditionalOperatorClass: {
2431    // For conditional operators we need to see if either the LHS or RHS are
2432    // non-NULL Expr's.  If one is non-NULL, we return it.
2433    ConditionalOperator *C = cast<ConditionalOperator>(E);
2434
2435    // Handle the GNU extension for missing LHS.
2436    if (Expr *lhsExpr = C->getLHS())
2437      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2438        return LHS;
2439
2440    return EvalVal(C->getRHS(), refVars);
2441  }
2442
2443  // Accesses to members are potential references to data on the stack.
2444  case Stmt::MemberExprClass: {
2445    MemberExpr *M = cast<MemberExpr>(E);
2446
2447    // Check for indirect access.  We only want direct field accesses.
2448    if (M->isArrow())
2449      return NULL;
2450
2451    // Check whether the member type is itself a reference, in which case
2452    // we're not going to refer to the member, but to what the member refers to.
2453    if (M->getMemberDecl()->getType()->isReferenceType())
2454      return NULL;
2455
2456    return EvalVal(M->getBase(), refVars);
2457  }
2458
2459  case Stmt::MaterializeTemporaryExprClass:
2460    if (Expr *Result = EvalVal(
2461                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2462                               refVars))
2463      return Result;
2464
2465    return E;
2466
2467  default:
2468    // Check that we don't return or take the address of a reference to a
2469    // temporary. This is only useful in C++.
2470    if (!E->isTypeDependent() && E->isRValue())
2471      return E;
2472
2473    // Everything else: we simply don't reason about them.
2474    return NULL;
2475  }
2476} while (true);
2477}
2478
2479//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2480
2481/// Check for comparisons of floating point operands using != and ==.
2482/// Issue a warning if these are no self-comparisons, as they are not likely
2483/// to do what the programmer intended.
2484void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2485  bool EmitWarning = true;
2486
2487  Expr* LeftExprSansParen = lex->IgnoreParenImpCasts();
2488  Expr* RightExprSansParen = rex->IgnoreParenImpCasts();
2489
2490  // Special case: check for x == x (which is OK).
2491  // Do not emit warnings for such cases.
2492  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2493    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2494      if (DRL->getDecl() == DRR->getDecl())
2495        EmitWarning = false;
2496
2497
2498  // Special case: check for comparisons against literals that can be exactly
2499  //  represented by APFloat.  In such cases, do not emit a warning.  This
2500  //  is a heuristic: often comparison against such literals are used to
2501  //  detect if a value in a variable has not changed.  This clearly can
2502  //  lead to false negatives.
2503  if (EmitWarning) {
2504    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2505      if (FLL->isExact())
2506        EmitWarning = false;
2507    } else
2508      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2509        if (FLR->isExact())
2510          EmitWarning = false;
2511    }
2512  }
2513
2514  // Check for comparisons with builtin types.
2515  if (EmitWarning)
2516    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2517      if (CL->isBuiltinCall(Context))
2518        EmitWarning = false;
2519
2520  if (EmitWarning)
2521    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2522      if (CR->isBuiltinCall(Context))
2523        EmitWarning = false;
2524
2525  // Emit the diagnostic.
2526  if (EmitWarning)
2527    Diag(loc, diag::warn_floatingpoint_eq)
2528      << lex->getSourceRange() << rex->getSourceRange();
2529}
2530
2531//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2532//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2533
2534namespace {
2535
2536/// Structure recording the 'active' range of an integer-valued
2537/// expression.
2538struct IntRange {
2539  /// The number of bits active in the int.
2540  unsigned Width;
2541
2542  /// True if the int is known not to have negative values.
2543  bool NonNegative;
2544
2545  IntRange(unsigned Width, bool NonNegative)
2546    : Width(Width), NonNegative(NonNegative)
2547  {}
2548
2549  /// Returns the range of the bool type.
2550  static IntRange forBoolType() {
2551    return IntRange(1, true);
2552  }
2553
2554  /// Returns the range of an opaque value of the given integral type.
2555  static IntRange forValueOfType(ASTContext &C, QualType T) {
2556    return forValueOfCanonicalType(C,
2557                          T->getCanonicalTypeInternal().getTypePtr());
2558  }
2559
2560  /// Returns the range of an opaque value of a canonical integral type.
2561  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2562    assert(T->isCanonicalUnqualified());
2563
2564    if (const VectorType *VT = dyn_cast<VectorType>(T))
2565      T = VT->getElementType().getTypePtr();
2566    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2567      T = CT->getElementType().getTypePtr();
2568
2569    // For enum types, use the known bit width of the enumerators.
2570    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2571      EnumDecl *Enum = ET->getDecl();
2572      if (!Enum->isDefinition())
2573        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2574
2575      unsigned NumPositive = Enum->getNumPositiveBits();
2576      unsigned NumNegative = Enum->getNumNegativeBits();
2577
2578      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2579    }
2580
2581    const BuiltinType *BT = cast<BuiltinType>(T);
2582    assert(BT->isInteger());
2583
2584    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2585  }
2586
2587  /// Returns the "target" range of a canonical integral type, i.e.
2588  /// the range of values expressible in the type.
2589  ///
2590  /// This matches forValueOfCanonicalType except that enums have the
2591  /// full range of their type, not the range of their enumerators.
2592  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2593    assert(T->isCanonicalUnqualified());
2594
2595    if (const VectorType *VT = dyn_cast<VectorType>(T))
2596      T = VT->getElementType().getTypePtr();
2597    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2598      T = CT->getElementType().getTypePtr();
2599    if (const EnumType *ET = dyn_cast<EnumType>(T))
2600      T = ET->getDecl()->getIntegerType().getTypePtr();
2601
2602    const BuiltinType *BT = cast<BuiltinType>(T);
2603    assert(BT->isInteger());
2604
2605    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2606  }
2607
2608  /// Returns the supremum of two ranges: i.e. their conservative merge.
2609  static IntRange join(IntRange L, IntRange R) {
2610    return IntRange(std::max(L.Width, R.Width),
2611                    L.NonNegative && R.NonNegative);
2612  }
2613
2614  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2615  static IntRange meet(IntRange L, IntRange R) {
2616    return IntRange(std::min(L.Width, R.Width),
2617                    L.NonNegative || R.NonNegative);
2618  }
2619};
2620
2621IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2622  if (value.isSigned() && value.isNegative())
2623    return IntRange(value.getMinSignedBits(), false);
2624
2625  if (value.getBitWidth() > MaxWidth)
2626    value = value.trunc(MaxWidth);
2627
2628  // isNonNegative() just checks the sign bit without considering
2629  // signedness.
2630  return IntRange(value.getActiveBits(), true);
2631}
2632
2633IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2634                       unsigned MaxWidth) {
2635  if (result.isInt())
2636    return GetValueRange(C, result.getInt(), MaxWidth);
2637
2638  if (result.isVector()) {
2639    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2640    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2641      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2642      R = IntRange::join(R, El);
2643    }
2644    return R;
2645  }
2646
2647  if (result.isComplexInt()) {
2648    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2649    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2650    return IntRange::join(R, I);
2651  }
2652
2653  // This can happen with lossless casts to intptr_t of "based" lvalues.
2654  // Assume it might use arbitrary bits.
2655  // FIXME: The only reason we need to pass the type in here is to get
2656  // the sign right on this one case.  It would be nice if APValue
2657  // preserved this.
2658  assert(result.isLValue());
2659  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
2660}
2661
2662/// Pseudo-evaluate the given integer expression, estimating the
2663/// range of values it might take.
2664///
2665/// \param MaxWidth - the width to which the value will be truncated
2666IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2667  E = E->IgnoreParens();
2668
2669  // Try a full evaluation first.
2670  Expr::EvalResult result;
2671  if (E->Evaluate(result, C))
2672    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2673
2674  // I think we only want to look through implicit casts here; if the
2675  // user has an explicit widening cast, we should treat the value as
2676  // being of the new, wider type.
2677  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2678    if (CE->getCastKind() == CK_NoOp)
2679      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2680
2681    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2682
2683    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2684
2685    // Assume that non-integer casts can span the full range of the type.
2686    if (!isIntegerCast)
2687      return OutputTypeRange;
2688
2689    IntRange SubRange
2690      = GetExprRange(C, CE->getSubExpr(),
2691                     std::min(MaxWidth, OutputTypeRange.Width));
2692
2693    // Bail out if the subexpr's range is as wide as the cast type.
2694    if (SubRange.Width >= OutputTypeRange.Width)
2695      return OutputTypeRange;
2696
2697    // Otherwise, we take the smaller width, and we're non-negative if
2698    // either the output type or the subexpr is.
2699    return IntRange(SubRange.Width,
2700                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2701  }
2702
2703  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2704    // If we can fold the condition, just take that operand.
2705    bool CondResult;
2706    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2707      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2708                                        : CO->getFalseExpr(),
2709                          MaxWidth);
2710
2711    // Otherwise, conservatively merge.
2712    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2713    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2714    return IntRange::join(L, R);
2715  }
2716
2717  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2718    switch (BO->getOpcode()) {
2719
2720    // Boolean-valued operations are single-bit and positive.
2721    case BO_LAnd:
2722    case BO_LOr:
2723    case BO_LT:
2724    case BO_GT:
2725    case BO_LE:
2726    case BO_GE:
2727    case BO_EQ:
2728    case BO_NE:
2729      return IntRange::forBoolType();
2730
2731    // The type of the assignments is the type of the LHS, so the RHS
2732    // is not necessarily the same type.
2733    case BO_MulAssign:
2734    case BO_DivAssign:
2735    case BO_RemAssign:
2736    case BO_AddAssign:
2737    case BO_SubAssign:
2738    case BO_XorAssign:
2739    case BO_OrAssign:
2740      // TODO: bitfields?
2741      return IntRange::forValueOfType(C, E->getType());
2742
2743    // Simple assignments just pass through the RHS, which will have
2744    // been coerced to the LHS type.
2745    case BO_Assign:
2746      // TODO: bitfields?
2747      return GetExprRange(C, BO->getRHS(), MaxWidth);
2748
2749    // Operations with opaque sources are black-listed.
2750    case BO_PtrMemD:
2751    case BO_PtrMemI:
2752      return IntRange::forValueOfType(C, E->getType());
2753
2754    // Bitwise-and uses the *infinum* of the two source ranges.
2755    case BO_And:
2756    case BO_AndAssign:
2757      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2758                            GetExprRange(C, BO->getRHS(), MaxWidth));
2759
2760    // Left shift gets black-listed based on a judgement call.
2761    case BO_Shl:
2762      // ...except that we want to treat '1 << (blah)' as logically
2763      // positive.  It's an important idiom.
2764      if (IntegerLiteral *I
2765            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2766        if (I->getValue() == 1) {
2767          IntRange R = IntRange::forValueOfType(C, E->getType());
2768          return IntRange(R.Width, /*NonNegative*/ true);
2769        }
2770      }
2771      // fallthrough
2772
2773    case BO_ShlAssign:
2774      return IntRange::forValueOfType(C, E->getType());
2775
2776    // Right shift by a constant can narrow its left argument.
2777    case BO_Shr:
2778    case BO_ShrAssign: {
2779      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2780
2781      // If the shift amount is a positive constant, drop the width by
2782      // that much.
2783      llvm::APSInt shift;
2784      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2785          shift.isNonNegative()) {
2786        unsigned zext = shift.getZExtValue();
2787        if (zext >= L.Width)
2788          L.Width = (L.NonNegative ? 0 : 1);
2789        else
2790          L.Width -= zext;
2791      }
2792
2793      return L;
2794    }
2795
2796    // Comma acts as its right operand.
2797    case BO_Comma:
2798      return GetExprRange(C, BO->getRHS(), MaxWidth);
2799
2800    // Black-list pointer subtractions.
2801    case BO_Sub:
2802      if (BO->getLHS()->getType()->isPointerType())
2803        return IntRange::forValueOfType(C, E->getType());
2804      break;
2805
2806    // The width of a division result is mostly determined by the size
2807    // of the LHS.
2808    case BO_Div: {
2809      // Don't 'pre-truncate' the operands.
2810      unsigned opWidth = C.getIntWidth(E->getType());
2811      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
2812
2813      // If the divisor is constant, use that.
2814      llvm::APSInt divisor;
2815      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
2816        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
2817        if (log2 >= L.Width)
2818          L.Width = (L.NonNegative ? 0 : 1);
2819        else
2820          L.Width = std::min(L.Width - log2, MaxWidth);
2821        return L;
2822      }
2823
2824      // Otherwise, just use the LHS's width.
2825      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
2826      return IntRange(L.Width, L.NonNegative && R.NonNegative);
2827    }
2828
2829    // The result of a remainder can't be larger than the result of
2830    // either side.
2831    case BO_Rem: {
2832      // Don't 'pre-truncate' the operands.
2833      unsigned opWidth = C.getIntWidth(E->getType());
2834      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
2835      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
2836
2837      IntRange meet = IntRange::meet(L, R);
2838      meet.Width = std::min(meet.Width, MaxWidth);
2839      return meet;
2840    }
2841
2842    // The default behavior is okay for these.
2843    case BO_Mul:
2844    case BO_Add:
2845    case BO_Xor:
2846    case BO_Or:
2847      break;
2848    }
2849
2850    // The default case is to treat the operation as if it were closed
2851    // on the narrowest type that encompasses both operands.
2852    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2853    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2854    return IntRange::join(L, R);
2855  }
2856
2857  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2858    switch (UO->getOpcode()) {
2859    // Boolean-valued operations are white-listed.
2860    case UO_LNot:
2861      return IntRange::forBoolType();
2862
2863    // Operations with opaque sources are black-listed.
2864    case UO_Deref:
2865    case UO_AddrOf: // should be impossible
2866      return IntRange::forValueOfType(C, E->getType());
2867
2868    default:
2869      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2870    }
2871  }
2872
2873  if (dyn_cast<OffsetOfExpr>(E)) {
2874    IntRange::forValueOfType(C, E->getType());
2875  }
2876
2877  FieldDecl *BitField = E->getBitField();
2878  if (BitField) {
2879    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2880    unsigned BitWidth = BitWidthAP.getZExtValue();
2881
2882    return IntRange(BitWidth,
2883                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
2884  }
2885
2886  return IntRange::forValueOfType(C, E->getType());
2887}
2888
2889IntRange GetExprRange(ASTContext &C, Expr *E) {
2890  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2891}
2892
2893/// Checks whether the given value, which currently has the given
2894/// source semantics, has the same value when coerced through the
2895/// target semantics.
2896bool IsSameFloatAfterCast(const llvm::APFloat &value,
2897                          const llvm::fltSemantics &Src,
2898                          const llvm::fltSemantics &Tgt) {
2899  llvm::APFloat truncated = value;
2900
2901  bool ignored;
2902  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2903  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2904
2905  return truncated.bitwiseIsEqual(value);
2906}
2907
2908/// Checks whether the given value, which currently has the given
2909/// source semantics, has the same value when coerced through the
2910/// target semantics.
2911///
2912/// The value might be a vector of floats (or a complex number).
2913bool IsSameFloatAfterCast(const APValue &value,
2914                          const llvm::fltSemantics &Src,
2915                          const llvm::fltSemantics &Tgt) {
2916  if (value.isFloat())
2917    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2918
2919  if (value.isVector()) {
2920    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2921      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2922        return false;
2923    return true;
2924  }
2925
2926  assert(value.isComplexFloat());
2927  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2928          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2929}
2930
2931void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2932
2933static bool IsZero(Sema &S, Expr *E) {
2934  // Suppress cases where we are comparing against an enum constant.
2935  if (const DeclRefExpr *DR =
2936      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2937    if (isa<EnumConstantDecl>(DR->getDecl()))
2938      return false;
2939
2940  // Suppress cases where the '0' value is expanded from a macro.
2941  if (E->getLocStart().isMacroID())
2942    return false;
2943
2944  llvm::APSInt Value;
2945  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2946}
2947
2948static bool HasEnumType(Expr *E) {
2949  // Strip off implicit integral promotions.
2950  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2951    if (ICE->getCastKind() != CK_IntegralCast &&
2952        ICE->getCastKind() != CK_NoOp)
2953      break;
2954    E = ICE->getSubExpr();
2955  }
2956
2957  return E->getType()->isEnumeralType();
2958}
2959
2960void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2961  BinaryOperatorKind op = E->getOpcode();
2962  if (E->isValueDependent())
2963    return;
2964
2965  if (op == BO_LT && IsZero(S, E->getRHS())) {
2966    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2967      << "< 0" << "false" << HasEnumType(E->getLHS())
2968      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2969  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2970    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2971      << ">= 0" << "true" << HasEnumType(E->getLHS())
2972      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2973  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2974    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2975      << "0 >" << "false" << HasEnumType(E->getRHS())
2976      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2977  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2978    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2979      << "0 <=" << "true" << HasEnumType(E->getRHS())
2980      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2981  }
2982}
2983
2984/// Analyze the operands of the given comparison.  Implements the
2985/// fallback case from AnalyzeComparison.
2986void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2987  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2988  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2989}
2990
2991/// \brief Implements -Wsign-compare.
2992///
2993/// \param lex the left-hand expression
2994/// \param rex the right-hand expression
2995/// \param OpLoc the location of the joining operator
2996/// \param BinOpc binary opcode or 0
2997void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2998  // The type the comparison is being performed in.
2999  QualType T = E->getLHS()->getType();
3000  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3001         && "comparison with mismatched types");
3002
3003  // We don't do anything special if this isn't an unsigned integral
3004  // comparison:  we're only interested in integral comparisons, and
3005  // signed comparisons only happen in cases we don't care to warn about.
3006  //
3007  // We also don't care about value-dependent expressions or expressions
3008  // whose result is a constant.
3009  if (!T->hasUnsignedIntegerRepresentation()
3010      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3011    return AnalyzeImpConvsInComparison(S, E);
3012
3013  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
3014  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
3015
3016  // Check to see if one of the (unmodified) operands is of different
3017  // signedness.
3018  Expr *signedOperand, *unsignedOperand;
3019  if (lex->getType()->hasSignedIntegerRepresentation()) {
3020    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
3021           "unsigned comparison between two signed integer expressions?");
3022    signedOperand = lex;
3023    unsignedOperand = rex;
3024  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
3025    signedOperand = rex;
3026    unsignedOperand = lex;
3027  } else {
3028    CheckTrivialUnsignedComparison(S, E);
3029    return AnalyzeImpConvsInComparison(S, E);
3030  }
3031
3032  // Otherwise, calculate the effective range of the signed operand.
3033  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3034
3035  // Go ahead and analyze implicit conversions in the operands.  Note
3036  // that we skip the implicit conversions on both sides.
3037  AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
3038  AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
3039
3040  // If the signed range is non-negative, -Wsign-compare won't fire,
3041  // but we should still check for comparisons which are always true
3042  // or false.
3043  if (signedRange.NonNegative)
3044    return CheckTrivialUnsignedComparison(S, E);
3045
3046  // For (in)equality comparisons, if the unsigned operand is a
3047  // constant which cannot collide with a overflowed signed operand,
3048  // then reinterpreting the signed operand as unsigned will not
3049  // change the result of the comparison.
3050  if (E->isEqualityOp()) {
3051    unsigned comparisonWidth = S.Context.getIntWidth(T);
3052    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3053
3054    // We should never be unable to prove that the unsigned operand is
3055    // non-negative.
3056    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3057
3058    if (unsignedRange.Width < comparisonWidth)
3059      return;
3060  }
3061
3062  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3063    << lex->getType() << rex->getType()
3064    << lex->getSourceRange() << rex->getSourceRange();
3065}
3066
3067/// Analyzes an attempt to assign the given value to a bitfield.
3068///
3069/// Returns true if there was something fishy about the attempt.
3070bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3071                               SourceLocation InitLoc) {
3072  assert(Bitfield->isBitField());
3073  if (Bitfield->isInvalidDecl())
3074    return false;
3075
3076  // White-list bool bitfields.
3077  if (Bitfield->getType()->isBooleanType())
3078    return false;
3079
3080  // Ignore value- or type-dependent expressions.
3081  if (Bitfield->getBitWidth()->isValueDependent() ||
3082      Bitfield->getBitWidth()->isTypeDependent() ||
3083      Init->isValueDependent() ||
3084      Init->isTypeDependent())
3085    return false;
3086
3087  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3088
3089  llvm::APSInt Width(32);
3090  Expr::EvalResult InitValue;
3091  if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
3092      !OriginalInit->Evaluate(InitValue, S.Context) ||
3093      !InitValue.Val.isInt())
3094    return false;
3095
3096  const llvm::APSInt &Value = InitValue.Val.getInt();
3097  unsigned OriginalWidth = Value.getBitWidth();
3098  unsigned FieldWidth = Width.getZExtValue();
3099
3100  if (OriginalWidth <= FieldWidth)
3101    return false;
3102
3103  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3104
3105  // It's fairly common to write values into signed bitfields
3106  // that, if sign-extended, would end up becoming a different
3107  // value.  We don't want to warn about that.
3108  if (Value.isSigned() && Value.isNegative())
3109    TruncatedValue = TruncatedValue.sext(OriginalWidth);
3110  else
3111    TruncatedValue = TruncatedValue.zext(OriginalWidth);
3112
3113  if (Value == TruncatedValue)
3114    return false;
3115
3116  std::string PrettyValue = Value.toString(10);
3117  std::string PrettyTrunc = TruncatedValue.toString(10);
3118
3119  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3120    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3121    << Init->getSourceRange();
3122
3123  return true;
3124}
3125
3126/// Analyze the given simple or compound assignment for warning-worthy
3127/// operations.
3128void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3129  // Just recurse on the LHS.
3130  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3131
3132  // We want to recurse on the RHS as normal unless we're assigning to
3133  // a bitfield.
3134  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3135    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3136                                  E->getOperatorLoc())) {
3137      // Recurse, ignoring any implicit conversions on the RHS.
3138      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3139                                        E->getOperatorLoc());
3140    }
3141  }
3142
3143  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3144}
3145
3146/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3147void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3148                     SourceLocation CContext, unsigned diag) {
3149  S.Diag(E->getExprLoc(), diag)
3150    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3151}
3152
3153/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3154void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3155                     unsigned diag) {
3156  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3157}
3158
3159/// Diagnose an implicit cast from a literal expression. Also attemps to supply
3160/// fixit hints when the cast wouldn't lose information to simply write the
3161/// expression with the expected type.
3162void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3163                                    SourceLocation CContext) {
3164  // Emit the primary warning first, then try to emit a fixit hint note if
3165  // reasonable.
3166  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3167    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3168
3169  const llvm::APFloat &Value = FL->getValue();
3170
3171  // Don't attempt to fix PPC double double literals.
3172  if (&Value.getSemantics() == &llvm::APFloat::PPCDoubleDouble)
3173    return;
3174
3175  // Try to convert this exactly to an integer.
3176  bool isExact = false;
3177  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3178                            T->hasUnsignedIntegerRepresentation());
3179  if (Value.convertToInteger(IntegerValue,
3180                             llvm::APFloat::rmTowardZero, &isExact)
3181      != llvm::APFloat::opOK || !isExact)
3182    return;
3183
3184  std::string LiteralValue = IntegerValue.toString(10);
3185  S.Diag(FL->getExprLoc(), diag::note_fix_integral_float_as_integer)
3186    << FixItHint::CreateReplacement(FL->getSourceRange(), LiteralValue);
3187}
3188
3189std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3190  if (!Range.Width) return "0";
3191
3192  llvm::APSInt ValueInRange = Value;
3193  ValueInRange.setIsSigned(!Range.NonNegative);
3194  ValueInRange = ValueInRange.trunc(Range.Width);
3195  return ValueInRange.toString(10);
3196}
3197
3198static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
3199  SourceManager &smgr = S.Context.getSourceManager();
3200  return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
3201}
3202
3203void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3204                             SourceLocation CC, bool *ICContext = 0) {
3205  if (E->isTypeDependent() || E->isValueDependent()) return;
3206
3207  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3208  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3209  if (Source == Target) return;
3210  if (Target->isDependentType()) return;
3211
3212  // If the conversion context location is invalid don't complain. We also
3213  // don't want to emit a warning if the issue occurs from the expansion of
3214  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3215  // delay this check as long as possible. Once we detect we are in that
3216  // scenario, we just return.
3217  if (CC.isInvalid())
3218    return;
3219
3220  // Never diagnose implicit casts to bool.
3221  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
3222    return;
3223
3224  // Strip vector types.
3225  if (isa<VectorType>(Source)) {
3226    if (!isa<VectorType>(Target)) {
3227      if (isFromSystemMacro(S, CC))
3228        return;
3229      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3230    }
3231
3232    // If the vector cast is cast between two vectors of the same size, it is
3233    // a bitcast, not a conversion.
3234    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3235      return;
3236
3237    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3238    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3239  }
3240
3241  // Strip complex types.
3242  if (isa<ComplexType>(Source)) {
3243    if (!isa<ComplexType>(Target)) {
3244      if (isFromSystemMacro(S, CC))
3245        return;
3246
3247      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3248    }
3249
3250    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3251    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3252  }
3253
3254  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3255  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3256
3257  // If the source is floating point...
3258  if (SourceBT && SourceBT->isFloatingPoint()) {
3259    // ...and the target is floating point...
3260    if (TargetBT && TargetBT->isFloatingPoint()) {
3261      // ...then warn if we're dropping FP rank.
3262
3263      // Builtin FP kinds are ordered by increasing FP rank.
3264      if (SourceBT->getKind() > TargetBT->getKind()) {
3265        // Don't warn about float constants that are precisely
3266        // representable in the target type.
3267        Expr::EvalResult result;
3268        if (E->Evaluate(result, S.Context)) {
3269          // Value might be a float, a float vector, or a float complex.
3270          if (IsSameFloatAfterCast(result.Val,
3271                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3272                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3273            return;
3274        }
3275
3276        if (isFromSystemMacro(S, CC))
3277          return;
3278
3279        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3280      }
3281      return;
3282    }
3283
3284    // If the target is integral, always warn.
3285    if ((TargetBT && TargetBT->isInteger())) {
3286      if (isFromSystemMacro(S, CC))
3287        return;
3288
3289      Expr *InnerE = E->IgnoreParenImpCasts();
3290      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3291        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3292      } else {
3293        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3294      }
3295    }
3296
3297    return;
3298  }
3299
3300  if (!Source->isIntegerType() || !Target->isIntegerType())
3301    return;
3302
3303  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3304           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3305    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3306        << E->getSourceRange() << clang::SourceRange(CC);
3307    return;
3308  }
3309
3310  IntRange SourceRange = GetExprRange(S.Context, E);
3311  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3312
3313  if (SourceRange.Width > TargetRange.Width) {
3314    // If the source is a constant, use a default-on diagnostic.
3315    // TODO: this should happen for bitfield stores, too.
3316    llvm::APSInt Value(32);
3317    if (E->isIntegerConstantExpr(Value, S.Context)) {
3318      if (isFromSystemMacro(S, CC))
3319        return;
3320
3321      std::string PrettySourceValue = Value.toString(10);
3322      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3323
3324      S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
3325        << PrettySourceValue << PrettyTargetValue
3326        << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
3327      return;
3328    }
3329
3330    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3331    if (isFromSystemMacro(S, CC))
3332      return;
3333
3334    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3335      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3336    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3337  }
3338
3339  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3340      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3341       SourceRange.Width == TargetRange.Width)) {
3342
3343    if (isFromSystemMacro(S, CC))
3344      return;
3345
3346    unsigned DiagID = diag::warn_impcast_integer_sign;
3347
3348    // Traditionally, gcc has warned about this under -Wsign-compare.
3349    // We also want to warn about it in -Wconversion.
3350    // So if -Wconversion is off, use a completely identical diagnostic
3351    // in the sign-compare group.
3352    // The conditional-checking code will
3353    if (ICContext) {
3354      DiagID = diag::warn_impcast_integer_sign_conditional;
3355      *ICContext = true;
3356    }
3357
3358    return DiagnoseImpCast(S, E, T, CC, DiagID);
3359  }
3360
3361  // Diagnose conversions between different enumeration types.
3362  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3363  // type, to give us better diagnostics.
3364  QualType SourceType = E->getType();
3365  if (!S.getLangOptions().CPlusPlus) {
3366    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3367      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3368        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3369        SourceType = S.Context.getTypeDeclType(Enum);
3370        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3371      }
3372  }
3373
3374  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3375    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3376      if ((SourceEnum->getDecl()->getIdentifier() ||
3377           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3378          (TargetEnum->getDecl()->getIdentifier() ||
3379           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3380          SourceEnum != TargetEnum) {
3381        if (isFromSystemMacro(S, CC))
3382          return;
3383
3384        return DiagnoseImpCast(S, E, SourceType, T, CC,
3385                               diag::warn_impcast_different_enum_types);
3386      }
3387
3388  return;
3389}
3390
3391void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3392
3393void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3394                             SourceLocation CC, bool &ICContext) {
3395  E = E->IgnoreParenImpCasts();
3396
3397  if (isa<ConditionalOperator>(E))
3398    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3399
3400  AnalyzeImplicitConversions(S, E, CC);
3401  if (E->getType() != T)
3402    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3403  return;
3404}
3405
3406void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3407  SourceLocation CC = E->getQuestionLoc();
3408
3409  AnalyzeImplicitConversions(S, E->getCond(), CC);
3410
3411  bool Suspicious = false;
3412  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3413  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3414
3415  // If -Wconversion would have warned about either of the candidates
3416  // for a signedness conversion to the context type...
3417  if (!Suspicious) return;
3418
3419  // ...but it's currently ignored...
3420  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3421                                 CC))
3422    return;
3423
3424  // ...then check whether it would have warned about either of the
3425  // candidates for a signedness conversion to the condition type.
3426  if (E->getType() == T) return;
3427
3428  Suspicious = false;
3429  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
3430                          E->getType(), CC, &Suspicious);
3431  if (!Suspicious)
3432    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
3433                            E->getType(), CC, &Suspicious);
3434}
3435
3436/// AnalyzeImplicitConversions - Find and report any interesting
3437/// implicit conversions in the given expression.  There are a couple
3438/// of competing diagnostics here, -Wconversion and -Wsign-compare.
3439void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
3440  QualType T = OrigE->getType();
3441  Expr *E = OrigE->IgnoreParenImpCasts();
3442
3443  // For conditional operators, we analyze the arguments as if they
3444  // were being fed directly into the output.
3445  if (isa<ConditionalOperator>(E)) {
3446    ConditionalOperator *CO = cast<ConditionalOperator>(E);
3447    CheckConditionalOperator(S, CO, T);
3448    return;
3449  }
3450
3451  // Go ahead and check any implicit conversions we might have skipped.
3452  // The non-canonical typecheck is just an optimization;
3453  // CheckImplicitConversion will filter out dead implicit conversions.
3454  if (E->getType() != T)
3455    CheckImplicitConversion(S, E, T, CC);
3456
3457  // Now continue drilling into this expression.
3458
3459  // Skip past explicit casts.
3460  if (isa<ExplicitCastExpr>(E)) {
3461    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
3462    return AnalyzeImplicitConversions(S, E, CC);
3463  }
3464
3465  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3466    // Do a somewhat different check with comparison operators.
3467    if (BO->isComparisonOp())
3468      return AnalyzeComparison(S, BO);
3469
3470    // And with assignments and compound assignments.
3471    if (BO->isAssignmentOp())
3472      return AnalyzeAssignment(S, BO);
3473  }
3474
3475  // These break the otherwise-useful invariant below.  Fortunately,
3476  // we don't really need to recurse into them, because any internal
3477  // expressions should have been analyzed already when they were
3478  // built into statements.
3479  if (isa<StmtExpr>(E)) return;
3480
3481  // Don't descend into unevaluated contexts.
3482  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
3483
3484  // Now just recurse over the expression's children.
3485  CC = E->getExprLoc();
3486  for (Stmt::child_range I = E->children(); I; ++I)
3487    AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
3488}
3489
3490} // end anonymous namespace
3491
3492/// Diagnoses "dangerous" implicit conversions within the given
3493/// expression (which is a full expression).  Implements -Wconversion
3494/// and -Wsign-compare.
3495///
3496/// \param CC the "context" location of the implicit conversion, i.e.
3497///   the most location of the syntactic entity requiring the implicit
3498///   conversion
3499void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
3500  // Don't diagnose in unevaluated contexts.
3501  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
3502    return;
3503
3504  // Don't diagnose for value- or type-dependent expressions.
3505  if (E->isTypeDependent() || E->isValueDependent())
3506    return;
3507
3508  // Check for array bounds violations in cases where the check isn't triggered
3509  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
3510  // ArraySubscriptExpr is on the RHS of a variable initialization.
3511  CheckArrayAccess(E);
3512
3513  // This is not the right CC for (e.g.) a variable initialization.
3514  AnalyzeImplicitConversions(*this, E, CC);
3515}
3516
3517void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
3518                                       FieldDecl *BitField,
3519                                       Expr *Init) {
3520  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
3521}
3522
3523/// CheckParmsForFunctionDef - Check that the parameters of the given
3524/// function are appropriate for the definition of a function. This
3525/// takes care of any checks that cannot be performed on the
3526/// declaration itself, e.g., that the types of each of the function
3527/// parameters are complete.
3528bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
3529                                    bool CheckParameterNames) {
3530  bool HasInvalidParm = false;
3531  for (; P != PEnd; ++P) {
3532    ParmVarDecl *Param = *P;
3533
3534    // C99 6.7.5.3p4: the parameters in a parameter type list in a
3535    // function declarator that is part of a function definition of
3536    // that function shall not have incomplete type.
3537    //
3538    // This is also C++ [dcl.fct]p6.
3539    if (!Param->isInvalidDecl() &&
3540        RequireCompleteType(Param->getLocation(), Param->getType(),
3541                               diag::err_typecheck_decl_incomplete_type)) {
3542      Param->setInvalidDecl();
3543      HasInvalidParm = true;
3544    }
3545
3546    // C99 6.9.1p5: If the declarator includes a parameter type list, the
3547    // declaration of each parameter shall include an identifier.
3548    if (CheckParameterNames &&
3549        Param->getIdentifier() == 0 &&
3550        !Param->isImplicit() &&
3551        !getLangOptions().CPlusPlus)
3552      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3553
3554    // C99 6.7.5.3p12:
3555    //   If the function declarator is not part of a definition of that
3556    //   function, parameters may have incomplete type and may use the [*]
3557    //   notation in their sequences of declarator specifiers to specify
3558    //   variable length array types.
3559    QualType PType = Param->getOriginalType();
3560    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3561      if (AT->getSizeModifier() == ArrayType::Star) {
3562        // FIXME: This diagnosic should point the the '[*]' if source-location
3563        // information is added for it.
3564        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3565      }
3566    }
3567  }
3568
3569  return HasInvalidParm;
3570}
3571
3572/// CheckCastAlign - Implements -Wcast-align, which warns when a
3573/// pointer cast increases the alignment requirements.
3574void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3575  // This is actually a lot of work to potentially be doing on every
3576  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3577  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
3578                                          TRange.getBegin())
3579        == Diagnostic::Ignored)
3580    return;
3581
3582  // Ignore dependent types.
3583  if (T->isDependentType() || Op->getType()->isDependentType())
3584    return;
3585
3586  // Require that the destination be a pointer type.
3587  const PointerType *DestPtr = T->getAs<PointerType>();
3588  if (!DestPtr) return;
3589
3590  // If the destination has alignment 1, we're done.
3591  QualType DestPointee = DestPtr->getPointeeType();
3592  if (DestPointee->isIncompleteType()) return;
3593  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3594  if (DestAlign.isOne()) return;
3595
3596  // Require that the source be a pointer type.
3597  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3598  if (!SrcPtr) return;
3599  QualType SrcPointee = SrcPtr->getPointeeType();
3600
3601  // Whitelist casts from cv void*.  We already implicitly
3602  // whitelisted casts to cv void*, since they have alignment 1.
3603  // Also whitelist casts involving incomplete types, which implicitly
3604  // includes 'void'.
3605  if (SrcPointee->isIncompleteType()) return;
3606
3607  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3608  if (SrcAlign >= DestAlign) return;
3609
3610  Diag(TRange.getBegin(), diag::warn_cast_align)
3611    << Op->getType() << T
3612    << static_cast<unsigned>(SrcAlign.getQuantity())
3613    << static_cast<unsigned>(DestAlign.getQuantity())
3614    << TRange << Op->getSourceRange();
3615}
3616
3617static const Type* getElementType(const Expr *BaseExpr) {
3618  const Type* EltType = BaseExpr->getType().getTypePtr();
3619  if (EltType->isAnyPointerType())
3620    return EltType->getPointeeType().getTypePtr();
3621  else if (EltType->isArrayType())
3622    return EltType->getBaseElementTypeUnsafe();
3623  return EltType;
3624}
3625
3626/// \brief Check whether this array fits the idiom of a size-one tail padded
3627/// array member of a struct.
3628///
3629/// We avoid emitting out-of-bounds access warnings for such arrays as they are
3630/// commonly used to emulate flexible arrays in C89 code.
3631static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
3632                                    const NamedDecl *ND) {
3633  if (Size != 1 || !ND) return false;
3634
3635  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
3636  if (!FD) return false;
3637
3638  // Don't consider sizes resulting from macro expansions or template argument
3639  // substitution to form C89 tail-padded arrays.
3640  ConstantArrayTypeLoc TL =
3641    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
3642  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
3643  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
3644    return false;
3645
3646  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
3647  if (!RD || !RD->isStruct())
3648    return false;
3649
3650  // See if this is the last field decl in the record.
3651  const Decl *D = FD;
3652  while ((D = D->getNextDeclInContext()))
3653    if (isa<FieldDecl>(D))
3654      return false;
3655  return true;
3656}
3657
3658void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
3659                            bool isSubscript, bool AllowOnePastEnd) {
3660  const Type* EffectiveType = getElementType(BaseExpr);
3661  BaseExpr = BaseExpr->IgnoreParenCasts();
3662  IndexExpr = IndexExpr->IgnoreParenCasts();
3663
3664  const ConstantArrayType *ArrayTy =
3665    Context.getAsConstantArrayType(BaseExpr->getType());
3666  if (!ArrayTy)
3667    return;
3668
3669  if (IndexExpr->isValueDependent())
3670    return;
3671  llvm::APSInt index;
3672  if (!IndexExpr->isIntegerConstantExpr(index, Context))
3673    return;
3674
3675  const NamedDecl *ND = NULL;
3676  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
3677    ND = dyn_cast<NamedDecl>(DRE->getDecl());
3678  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
3679    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
3680
3681  if (index.isUnsigned() || !index.isNegative()) {
3682    llvm::APInt size = ArrayTy->getSize();
3683    if (!size.isStrictlyPositive())
3684      return;
3685
3686    const Type* BaseType = getElementType(BaseExpr);
3687    if (!isSubscript && BaseType != EffectiveType) {
3688      // Make sure we're comparing apples to apples when comparing index to size
3689      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
3690      uint64_t array_typesize = Context.getTypeSize(BaseType);
3691      // Handle ptrarith_typesize being zero, such as when casting to void*
3692      if (!ptrarith_typesize) ptrarith_typesize = 1;
3693      if (ptrarith_typesize != array_typesize) {
3694        // There's a cast to a different size type involved
3695        uint64_t ratio = array_typesize / ptrarith_typesize;
3696        // TODO: Be smarter about handling cases where array_typesize is not a
3697        // multiple of ptrarith_typesize
3698        if (ptrarith_typesize * ratio == array_typesize)
3699          size *= llvm::APInt(size.getBitWidth(), ratio);
3700      }
3701    }
3702
3703    if (size.getBitWidth() > index.getBitWidth())
3704      index = index.sext(size.getBitWidth());
3705    else if (size.getBitWidth() < index.getBitWidth())
3706      size = size.sext(index.getBitWidth());
3707
3708    // For array subscripting the index must be less than size, but for pointer
3709    // arithmetic also allow the index (offset) to be equal to size since
3710    // computing the next address after the end of the array is legal and
3711    // commonly done e.g. in C++ iterators and range-based for loops.
3712    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
3713      return;
3714
3715    // Also don't warn for arrays of size 1 which are members of some
3716    // structure. These are often used to approximate flexible arrays in C89
3717    // code.
3718    if (IsTailPaddedMemberArray(*this, size, ND))
3719      return;
3720
3721    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
3722    if (isSubscript)
3723      DiagID = diag::warn_array_index_exceeds_bounds;
3724
3725    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
3726                        PDiag(DiagID) << index.toString(10, true)
3727                          << size.toString(10, true)
3728                          << (unsigned)size.getLimitedValue(~0U)
3729                          << IndexExpr->getSourceRange());
3730  } else {
3731    unsigned DiagID = diag::warn_array_index_precedes_bounds;
3732    if (!isSubscript) {
3733      DiagID = diag::warn_ptr_arith_precedes_bounds;
3734      if (index.isNegative()) index = -index;
3735    }
3736
3737    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
3738                        PDiag(DiagID) << index.toString(10, true)
3739                          << IndexExpr->getSourceRange());
3740  }
3741
3742  if (ND)
3743    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
3744                        PDiag(diag::note_array_index_out_of_bounds)
3745                          << ND->getDeclName());
3746}
3747
3748void Sema::CheckArrayAccess(const Expr *expr) {
3749  int AllowOnePastEnd = 0;
3750  while (expr) {
3751    expr = expr->IgnoreParenImpCasts();
3752    switch (expr->getStmtClass()) {
3753      case Stmt::ArraySubscriptExprClass: {
3754        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
3755        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), true,
3756                         AllowOnePastEnd > 0);
3757        return;
3758      }
3759      case Stmt::UnaryOperatorClass: {
3760        // Only unwrap the * and & unary operators
3761        const UnaryOperator *UO = cast<UnaryOperator>(expr);
3762        expr = UO->getSubExpr();
3763        switch (UO->getOpcode()) {
3764          case UO_AddrOf:
3765            AllowOnePastEnd++;
3766            break;
3767          case UO_Deref:
3768            AllowOnePastEnd--;
3769            break;
3770          default:
3771            return;
3772        }
3773        break;
3774      }
3775      case Stmt::ConditionalOperatorClass: {
3776        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
3777        if (const Expr *lhs = cond->getLHS())
3778          CheckArrayAccess(lhs);
3779        if (const Expr *rhs = cond->getRHS())
3780          CheckArrayAccess(rhs);
3781        return;
3782      }
3783      default:
3784        return;
3785    }
3786  }
3787}
3788
3789//===--- CHECK: Objective-C retain cycles ----------------------------------//
3790
3791namespace {
3792  struct RetainCycleOwner {
3793    RetainCycleOwner() : Variable(0), Indirect(false) {}
3794    VarDecl *Variable;
3795    SourceRange Range;
3796    SourceLocation Loc;
3797    bool Indirect;
3798
3799    void setLocsFrom(Expr *e) {
3800      Loc = e->getExprLoc();
3801      Range = e->getSourceRange();
3802    }
3803  };
3804}
3805
3806/// Consider whether capturing the given variable can possibly lead to
3807/// a retain cycle.
3808static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
3809  // In ARC, it's captured strongly iff the variable has __strong
3810  // lifetime.  In MRR, it's captured strongly if the variable is
3811  // __block and has an appropriate type.
3812  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3813    return false;
3814
3815  owner.Variable = var;
3816  owner.setLocsFrom(ref);
3817  return true;
3818}
3819
3820static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
3821  while (true) {
3822    e = e->IgnoreParens();
3823    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
3824      switch (cast->getCastKind()) {
3825      case CK_BitCast:
3826      case CK_LValueBitCast:
3827      case CK_LValueToRValue:
3828      case CK_ObjCReclaimReturnedObject:
3829        e = cast->getSubExpr();
3830        continue;
3831
3832      case CK_GetObjCProperty: {
3833        // Bail out if this isn't a strong explicit property.
3834        const ObjCPropertyRefExpr *pre = cast->getSubExpr()->getObjCProperty();
3835        if (pre->isImplicitProperty()) return false;
3836        ObjCPropertyDecl *property = pre->getExplicitProperty();
3837        if (!(property->getPropertyAttributes() &
3838              (ObjCPropertyDecl::OBJC_PR_retain |
3839               ObjCPropertyDecl::OBJC_PR_copy |
3840               ObjCPropertyDecl::OBJC_PR_strong)) &&
3841            !(property->getPropertyIvarDecl() &&
3842              property->getPropertyIvarDecl()->getType()
3843                .getObjCLifetime() == Qualifiers::OCL_Strong))
3844          return false;
3845
3846        owner.Indirect = true;
3847        e = const_cast<Expr*>(pre->getBase());
3848        continue;
3849      }
3850
3851      default:
3852        return false;
3853      }
3854    }
3855
3856    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
3857      ObjCIvarDecl *ivar = ref->getDecl();
3858      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3859        return false;
3860
3861      // Try to find a retain cycle in the base.
3862      if (!findRetainCycleOwner(ref->getBase(), owner))
3863        return false;
3864
3865      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
3866      owner.Indirect = true;
3867      return true;
3868    }
3869
3870    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
3871      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
3872      if (!var) return false;
3873      return considerVariable(var, ref, owner);
3874    }
3875
3876    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
3877      owner.Variable = ref->getDecl();
3878      owner.setLocsFrom(ref);
3879      return true;
3880    }
3881
3882    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
3883      if (member->isArrow()) return false;
3884
3885      // Don't count this as an indirect ownership.
3886      e = member->getBase();
3887      continue;
3888    }
3889
3890    // Array ivars?
3891
3892    return false;
3893  }
3894}
3895
3896namespace {
3897  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
3898    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
3899      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
3900        Variable(variable), Capturer(0) {}
3901
3902    VarDecl *Variable;
3903    Expr *Capturer;
3904
3905    void VisitDeclRefExpr(DeclRefExpr *ref) {
3906      if (ref->getDecl() == Variable && !Capturer)
3907        Capturer = ref;
3908    }
3909
3910    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
3911      if (ref->getDecl() == Variable && !Capturer)
3912        Capturer = ref;
3913    }
3914
3915    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
3916      if (Capturer) return;
3917      Visit(ref->getBase());
3918      if (Capturer && ref->isFreeIvar())
3919        Capturer = ref;
3920    }
3921
3922    void VisitBlockExpr(BlockExpr *block) {
3923      // Look inside nested blocks
3924      if (block->getBlockDecl()->capturesVariable(Variable))
3925        Visit(block->getBlockDecl()->getBody());
3926    }
3927  };
3928}
3929
3930/// Check whether the given argument is a block which captures a
3931/// variable.
3932static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
3933  assert(owner.Variable && owner.Loc.isValid());
3934
3935  e = e->IgnoreParenCasts();
3936  BlockExpr *block = dyn_cast<BlockExpr>(e);
3937  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
3938    return 0;
3939
3940  FindCaptureVisitor visitor(S.Context, owner.Variable);
3941  visitor.Visit(block->getBlockDecl()->getBody());
3942  return visitor.Capturer;
3943}
3944
3945static void diagnoseRetainCycle(Sema &S, Expr *capturer,
3946                                RetainCycleOwner &owner) {
3947  assert(capturer);
3948  assert(owner.Variable && owner.Loc.isValid());
3949
3950  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
3951    << owner.Variable << capturer->getSourceRange();
3952  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
3953    << owner.Indirect << owner.Range;
3954}
3955
3956/// Check for a keyword selector that starts with the word 'add' or
3957/// 'set'.
3958static bool isSetterLikeSelector(Selector sel) {
3959  if (sel.isUnarySelector()) return false;
3960
3961  StringRef str = sel.getNameForSlot(0);
3962  while (!str.empty() && str.front() == '_') str = str.substr(1);
3963  if (str.startswith("set") || str.startswith("add"))
3964    str = str.substr(3);
3965  else
3966    return false;
3967
3968  if (str.empty()) return true;
3969  return !islower(str.front());
3970}
3971
3972/// Check a message send to see if it's likely to cause a retain cycle.
3973void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
3974  // Only check instance methods whose selector looks like a setter.
3975  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
3976    return;
3977
3978  // Try to find a variable that the receiver is strongly owned by.
3979  RetainCycleOwner owner;
3980  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
3981    if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
3982      return;
3983  } else {
3984    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
3985    owner.Variable = getCurMethodDecl()->getSelfDecl();
3986    owner.Loc = msg->getSuperLoc();
3987    owner.Range = msg->getSuperLoc();
3988  }
3989
3990  // Check whether the receiver is captured by any of the arguments.
3991  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
3992    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
3993      return diagnoseRetainCycle(*this, capturer, owner);
3994}
3995
3996/// Check a property assign to see if it's likely to cause a retain cycle.
3997void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
3998  RetainCycleOwner owner;
3999  if (!findRetainCycleOwner(receiver, owner))
4000    return;
4001
4002  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4003    diagnoseRetainCycle(*this, capturer, owner);
4004}
4005
4006bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4007                              QualType LHS, Expr *RHS) {
4008  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4009  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4010    return false;
4011  // strip off any implicit cast added to get to the one arc-specific
4012  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4013    if (cast->getCastKind() == CK_ObjCConsumeObject) {
4014      Diag(Loc, diag::warn_arc_retained_assign)
4015        << (LT == Qualifiers::OCL_ExplicitNone)
4016        << RHS->getSourceRange();
4017      return true;
4018    }
4019    RHS = cast->getSubExpr();
4020  }
4021  return false;
4022}
4023
4024void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4025                              Expr *LHS, Expr *RHS) {
4026  QualType LHSType = LHS->getType();
4027  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4028    return;
4029  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4030  // FIXME. Check for other life times.
4031  if (LT != Qualifiers::OCL_None)
4032    return;
4033
4034  if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(LHS)) {
4035    if (PRE->isImplicitProperty())
4036      return;
4037    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4038    if (!PD)
4039      return;
4040
4041    unsigned Attributes = PD->getPropertyAttributes();
4042    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign)
4043      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4044        if (cast->getCastKind() == CK_ObjCConsumeObject) {
4045          Diag(Loc, diag::warn_arc_retained_property_assign)
4046          << RHS->getSourceRange();
4047          return;
4048        }
4049        RHS = cast->getSubExpr();
4050      }
4051  }
4052}
4053